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Abstract In the last decades, the finite element method (FEM) in fluid mechanics
applications has gained substantial momentum. FE analysis was initially introduced
to solid mechanics. However, the progress in fluid mechanics problems was slower
due to the non-linearities of the equations and inherent difficulties of the classical
FEM to deal with instabilities in the solution of these problems. The main goal of
this review is to analyze FEM and provide the theoretical basis of the approach
mainly focusing on parabolic type of problems applied in fluid mechanics. Initially,
we analyze the basics of FEM for the Stokes problem and we provide theorems for
uniqueness and error estimates of the solution. We further discuss FE approaches
for the solution of the advection–diffusion equation such as the stabilized FEM, the
variational multiscale method, and the discontinuous Galerkin method. Finally, we
extend the analysis on the non-linear Navier–Stokes equations and introduce recent
FEM advancements.

1 Introduction

Finite element method (FEM) has gained substantial momentum in the last decades.
FEM was initially introduced as an answer to solid mechanics problems that were
difficult to solve until then. Most of them would be encountered in aeronautics or
civil engineering due to the need of solving problems related to the construction of
complicated structures. The method was extended to fluid mechanics applications
where the convective terms play important role leading to a non-linear formulation
of the problem. The progress in fluid mechanics was slower due to the non-
linearities and instabilities of the solution of these problems.

The basic principles of the FEM were developed by the German mathematician
Ritz in 1909. In 1915 Galerkin worked on the theoretical aspects of the method.
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The absence of computers delayed further advancement of the method. Later on,
when computers were introduced, the method was further developed. Hrenikoff,
1941, introduced the framework method, in which a plain elastic medium could be
replaced by an equivalent system of sticks and rods. In 1943 Courant solved the
torsion problem by using triangular elements based on the principle of minimum
potential energy introducing the Rayleigh–Ritz method. Courant’s theory could not
be implemented due to the unavailability of computers at the time [82].

Argyris, 1955, in the book “Energy Theorems and Structural Analysis” intro-
duced the principles of the finite element method [3, 85]. In 1956 Clough, Turner,
Martin, and Top calculated the stiffness matrix of rod and other elements. Argyris
and Kelsey, 1960, published their work which was based on the finite element
principles. In the same year, the term finite element method was introduced by
Clough in his paper and the term has been used extensively in the literature until
today. Zienkiewicz and Chung wrote the first book on finite elements method, in
1967. Other notable researchers in the FEM field are Samuel Levy, Borje Langefors,
Paul Denke, Baudoin Fraejis De Veubeke, L. Brandeis Wehle Jr., Theodore Pian,
Warner Lansing, Bertran Klein, John Archer, Robert Melosh, John Przemieniecki,
Ian Taig, Richard Gallagher, Bruce Irons, and others.

As mentioned before the progress of FEM in fluid mechanics applications had
several drawbacks due to the non-linear convective terms and instabilities of the
solution based on the element selection. For these reasons many researchers studied
the advection–diffusion equation. The Galerkin method was introduced as a natural
extension of the weak formulation of the PDEs under consideration. One of the
reasons why finite elements have been less popular in the past than other numerical
techniques such as finite differences is the lack of upwind techniques. However,
accurate upwind methods have been constructed. The most popular of these upwind
approaches is the Streamline Upwind Petrov–Galerkin method (SUPG) [89]. It can
be shown that upwinding may increase the quality of the solution considerably.
Another important aspect of upwinding is that it makes the systems of equations
appropriate for the utilization of iterative methods. As a consequence both the
number of iterations and the computation time substantially decrease.

The advection–diffusion equation represents diffusion of a scalar variable while
convected by a velocity field. In this respect, the equation by itself applies in several
physical phenomena and is a precursor to studying the non-linear Navier–Stokes
equations that represents in a simplifying manner the transport of velocity itself.
In any case, the development of accurate and stable numerical formulations for
the advection–diffusion equation is quite challenging. For example, the classical
Galerkin method is known to perform poorly for advection-dominated transport
problems. Spurious oscillations emerge in the solution due to the truncation error
inherently introduced in the discretized Galerkin approximation. The literature
suggests numerous strategies to overcome this problem. The addition of artificial
diffusion is a standard strategy, another is the employment of a non-centered
discretization of the advection operator, the so-called upwind schemes [45]. Other
strategies involve multiscale models using bubble functions or wavelets [72], while
in many cases, these methods are equivalent [17]. In the relevant section of this
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chapter, more information is provided regarding some of the strategies in the context
of finite element methods that have been developed to address the problems that
standard discretizations face.

Studying the advection–diffusion equation helps in understanding more compli-
cated problems such as the Navier–Stokes equations. For the discretization of the
incompressible Navier–Stokes equations, since the pressure is an unknown in the
momentum but not in the continuity equation, the discretization must satisfy some
special requirements. In fact one is no longer free to choose any combination of
pressure and velocity approximation but the finite elements must be constructed
such that the Ladyzhenskaya–Brezzi–Babuska (LBB) condition is satisfied. This
condition provides a relation between pressure and velocity approximation. In finite
differences and finite volumes the equivalent of the LBB condition is satisfied if
staggered grids are applied.

The solenoidal (divergence free) approach has been introduced where in this
method, the elements are constructed in such a way that the approximate divergence
freedom is satisfied explicitly. This method seems very attractive, however, the
extension to three-dimensional problems is difficult. Stabilized and multiscale for-
mulations are among the most fundamental method for fluid mechanics problems.
The SUPG is one of the first finite element approaches for studying fluid mechanics
applications. However, due to the advancement in research nowadays, new finite
element approaches have emerged such as the variational multiscale method (VMS),
the characteristic base split (CBS) method, the gradient smoothed method (GSM),
discontinuous Galerkin (DG) and adaptive FEM.

In this review we initially present the basic analysis focused on the Stokes
problem providing error estimates. We further analyze the advection–diffusion
equation introducing several FEM advancements. We conclude this chapter with
a brief analysis on FEM for the non-linear Navier–Stokes equations.

2 Preliminaries and Basic Theorems

We begin this chapter with the main steps of the finite element method. In advance,
we formulate basic definitions and theorems about the existence and uniqueness
of the solution in these problems. More details can be found in the textbooks by
Brenner and Scott and Brezzi [15, 16].

Definition 1 Let a(·, ·) be a bilinear form on a normed linear space, H . The bilinear
form is said to be bounded (or continuous) if exists C < ∞ such that

| a(u, v) |≤ C ‖u‖H ‖v‖H ∀ u, v ∈ H,

and coercive on subspace V = {
v ∈ H 1(0, 1) : v(0) = 0

}
, V ⊂ H if exists δ > 0

such that
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a(v, v) ≥ δ ‖v‖2
H , ∀ v ∈ V,

where a(u, v) = ∫ 1
0 u′ v′ dx, ‖·‖H is the norm in space H .

Focusing our attention on the non-symmetric variational problem, that is more
general, the following conditions are valid:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(H, (·, ·)) is a Hilbert space.

V is a (closed) subspace of H.

a(·, ·) is a bilinear form on V.

a(·, ·) is continuous (bounded) on V.

a(·, ·) is coercive on V.

Then the non-symmetric variational problem is the following, given F ∈ V ′, find
u ∈ V , such that a(u, v) = F(v), ∀ v ∈ V , where V ′ is the dual space of V .

The discrete form or the Galerkin approximation of this problem is the following,
given a finite dimensional subspace Vh ⊂ V and F ∈ V ′, find uh ∈ Vh such that

a(uh, v) = F(v), ∀ v ∈ Vh. (1)

Theorem 1 (Lax-Milgram) Given a Hilbert space (V , (·, ·)), a continuous, coer-
cive bilinear form a(·, ·) and a continuous linear functional F ∈ V ′, there exists a
unique solution u ∈ V , such that

a(u, v) = F(v), ∀ v ∈ V. (2)

This theorem guarantees existence and uniqueness of the solution for both
the variational and the approximation problems under the conditions mentioned
previously and its proof can be found in [15, 16]. We define the energy norm, ‖·‖E

as

‖v‖E = √
a(v.v), ∀ v ∈ V. (3)

Based on the above definition for the energy norm and with the use of the
Schwartz’ inequality the error estimate for the previous problem (2) is proven to
be

‖u − uh‖E = inf{‖u − v‖E : v ∈ S}, (4)

where u is the solution and uh the approximate one and v ∈ S, S a finite dimensional
subspace of V . This is the basic error estimate and is optimal in the energy norm.
Moreover, in some cases it can be proved that we can replace “infimum” with
“minimum,” more details can be found elsewhere [15],
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‖u − uh‖E = min{‖u − v‖E : v ∈ S}. (5)

We further focus our attention on a specific linear parabolic problem the Stokes
problem.

3 The Stokes Problem

Initially, we consider the stationary Stokes problem for incompressible flow. Ω is a
bounded open set of Rn (where n = 2, 3) with regular boundary and f is a square
integrable function on Ω . We seek a solution (u, p) ∈ H 1

0 (Ω)2 × (L2(Ω)/R) of the
problem,

⎧
⎨

⎩

−Δu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

(6)

Based on this problem, we will introduce the error estimates (a priori and a
posteriori) and we briefly discuss about the uniqueness of the solution for this
problem [10]. Our goal is to extend these arguments for the non-stationary case.

According to the finite element analysis we end up with the following weak form:

{
a (u, v) + b (p, v) = (f, v) , ∀ v ∈ H 1

0 (Ω)n, u ∈ H 1
0 (Ω)n,

b (u, q) = 0 ∀ q ∈ H 1(Ω), p ∈ H 1(Ω),
(7)

where a (u, v) =
∫

Ω

∇u ∇v dΩ and b (p, v) =
∫

Ω

p ∇v dΩ .

Given two finite dimensional subspaces Vh ⊂ H 1(Ω)n and Qh ⊂ H 1(Ω) the
corresponding discrete form is

{
a (uh, vh) + b (ph, vh) = (f, vh) , ∀ vh ∈ V0h, uh ∈ V0h,

b (uh, qh) = 0, ∀ qh ∈ Qh, ph ∈ Qh,
(8)

where V0h = {vh ∈ Vh : vh |∂Ω= 0}.

Two cases are analyzed for both triangular and quadrilateral elements depending
on the number of nodes on each element [10]. We focus only on the Taylor–Hood
method (six node triangular elements), second order polynomials for the velocity
and first order polynomials for the pressure at each element (P2 − P1).

After finding a solution, for the problem under consideration, it is important to
study whether the stability of the problem is affected by the input data. This can
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be done using the inf–sup condition, the Ladyzhenskaya–Babuska–Brezzi (LBB)
condition. This is a condition for saddle point problems, i.e. problems arise in
different types of discretization of equations. Convergence is ensured for most
discretization schemes for positive definite problems but for saddle point problems
there are still discretizations that are unstable, due to spurious oscillations [89]. In
these cases a better approach is the adaptation of the computational grid [78]. We
further discuss for the BB condition, introducing the following theorem.

Theorem 2 If Ω is polygonal and Ωh = Ω , Ωh = ⋃

i

Ti , where Ti are the triangles

and h denotes the length of greatest triangle side, if all triangles have at least one
vertex which is not on ∂Ω , if Vh, Qh are chosen as in the Taylor–Hood method,
then there exists a constant C, independent of h, such that

supvh∈V0h

(vh,∇qh)

(vh, vh)
1
2

≥ C (∇qh,∇qh)
1
2 , ∀qh ∈ Qh. (9)

This theorem follows the idea of the BB condition and the proof depends on the
choice of the elements and can be found in [10]. One of the most important questions
in solving such a problem is that of existence and uniqueness of the solution. In this
case we focus on the discrete form of the problem under consideration, (8) where
we can ensure the previous with the following theorem.

Theorem 3 Under the conditions of Theorem 2 the discrete form, Equation (8), has
a unique solution (uh, ph) in V0h × (Qh/R) .

Additionally, we are interested in error estimates of the Stokes problem as
discussed in the following sections.

3.1 A Priori Error Estimates

The a priori error estimates depend only on the exact solution, but not on the
approximated one. On the other hand, the a posteriori error estimates require
computation of the solution. A posteriori error estimates can also provide results
on which element size gives a larger error contribution leading to conclusions about
grid adaptation [78]. A theorem that provides a priori error estimates for the discrete
form of the stationary Stokes problem using Taylor–Hood elements (P2 − P1) is as
follows.

Theorem 4 Let Ω be a polygon and Ωh = Ω for all h. We assume that each
element of Th (set of triangles) has at least one vertex not on the boundary. Then
the following inequalities are valid:



Finite Element Analysis in Fluid Mechanics 487

‖∇(u − uh)‖0 � h2K
(‖u‖H 3(Ω)N + ‖p‖H 2(Ω)/R

)
,

‖∇(p − ph)‖0 � hK
(‖u‖H 3(Ω)N + ‖p‖H 2(Ω)/R

)
.

(10)

Similar inequalities can be found in the case where we have quadrilaterals [10].
Expanding previous arguments for the non-stationary problem we find that there

are not as many studies as in the previous case. According to Kemmochi [59] for
the non-stationary Stokes problem,

⎧
⎪⎪⎨

⎪⎪⎩

ut − Δu + ∇p = f in Ω × [0, T ],
div u = 0 in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],
u(·, 0) = u0(·) in Ω,

(11)

the error estimates for the velocity u and pressure p are

‖u − uh‖H � Ch2t−1 ‖u0‖H ,

‖p − ph‖Q � Cht−1 ‖u0‖H .
(12)

Remark 1 The difference between the a priori error estimates for the stationary
and the non-stationary Stokes problem is the introduction of the time variable in
the results. Additional results can be obtained for the time derivative for the non-
stationary Stokes problem.

In many cases, of the classic finite element approach, the LBB condition is not
satisfied, thus it is necessary to find a way to solve the problems and also satisfy
this condition. An effective way to overcome this problem is to utilize the adaptive
FEM. In the following, we analyze the method suggested by Arnold, Brezzi, and
Fortin for the Stokes problem [4]. The discrete form is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2∑

i,j=1

∫

Ω

εij (u)εij (v) dx −
∫

Ω

p ∇ · u dx =
∫

Ω

f v dx ∀v ∈ (H 1
0 (Ω))2,

∫

Ω

q ∇ · u dx = 0 ∀q ∈ L2(Ω)/R,

(13)

where εij (u) = (∂iuj + ∂jui)

2
. This method is based on using the MINI element as

a way to satisfy the inf–sup condition introducing an operator Πh : (H 1
0 (Ω))2 →

Vh. Thus the second equation can be written as

∫

Ω

qhdiv (Πhv − v) dx = 0, ∀qh ∈ Qh,∀v ∈
(
H 1

0

)2
(14)

and
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‖Πhv‖1 ≤ c ‖v‖1 ∀v ∈
(
H 1

0

)2
. (15)

For the MINI element the space is

Vh =
(
M̊1

0

)2 ⊕
(
B3
)2

, Qh = M1
0 , (16)

where

Mk
0 (Th) =

{
v | v ∈ C0(Ω), v|T ∈ Pk(T ), ∀ T ∈ Th

}
, M̊k

0 (Th) = Mk
0 (Th)∩H 1

0 (Ω)

(17)
for k ≥ 1 and

Bk(Th) =
{
v | v|T ∈ Pk(T ) ∩ H 1

0 (T ), ∀ T ∈ Th

}
, (18)

for k ≥ 3 and T the triangular elements of Th . For the problem based on the MINI
elements, the following argument is valid:

‖u − uh‖1 + ‖p + ph‖0/R ≤ C inf
{‖u − v‖1 + ‖p + q‖0/R

} ≤ Ch ‖f ‖0 ,

(19)
where C is independent of h. These spaces can be further extended leading to other
methods [4]. For example, there is a case where it can be seen as an enriched version
of Taylor–Hood method where convergence is simpler than the classical Taylor–
Hood method. In other methods discontinuous approximation of the pressure is used
as mentioned in Crouzeix–Raviart [4, 30].

3.2 A Posteriori Error Estimates

In this section we focus our attention on a posteriori estimates for the approximation
of time dependent Stokes equations. We introduce the notion of the Stokes
reconstruction operator and present the error equation that satisfies the exact
divergence-free condition described in detail in [57].

The energy technique for a posteriori error analysis of finite element discretiza-
tions of parabolic problems provides suboptimal rates in the L∞(0, T ;L2(Ω))

norm. Makridakis and Nochetto in their study combine energy techniques with
appropriate pointwise representation of the error based on an elliptic reconstruction
operator which restores optimal order and regularity for piecewise polynomials of
degree higher than one [68]. Additionally, Lakkis and Makridakis based on the
previous work derive a posteriori error estimates for fully discrete approximations
of the solutions of linear parabolic equations. The discretization uses finite element
spaces that change in time [62]. Akrivis and collaborators presented a refined
analysis for quasilinear parabolic problems applying implicit-explicit multistep
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finite element schemes [1]. Let us consider the non-stationary Stokes problem for
incompressible flow. These equations are discretized in space by the finite elements
or the finite volumes method. This problem is still open and directly related to
Navier–Stokes equations. This is due to the fact that the a posteriori error theory
is still in progress as reported by several researchers [11, 34, 57, 62, 68]. We assume
the availability of a posteriori estimator for the Stokes problem, expressed by the
following assumption.

Assumption Let (w, q) ∈ Z × Π and (wh, qh) ∈ Zh × Πh be the exact solution
and its finite element approximation. For the space X (equal to H = (L2(Ω))d ,
V = (H 1

0 (Ω))d , d = 2, 3 or V′ the dual space of V), we assume that there exists
a posteriori estimator function, E ((wh, qh) and Epres((wh, qh), which depend on
(wh, qh), g and the corresponding norm, such that

‖w − wh‖X ≤ E ((wh, qh), g; X) and ‖q − qh‖Π ≤ Epres((wh, qh), g; Π).

(20)

It can be shown that the discrete solution coincides with the continuous solu-
tion [57]. In order to define the Stokes reconstruction as introduced by Karakatsani
and Makridakis, 2007, we provide the following definitions [46, 57],

Definition 2 (Stokes Operator) Let Δ̄ : H2 ∩ Z ⊂ J → J be the Stokes operator,
meaning, the L2-projection of the Laplace operator onto J. Then introducing the
discrete version of the Stokes operator Δ̄h : Zh → Zh by,

〈
Δ̄hv,χ

〉 = −a(v,χ), ∀χ ∈ Zh. (21)

Definition 3 (Stokes Reconstruction) For fixed t ∈ [0, T ], let (U, P ) ∈ V×Π be
the solution of the stationary Stokes problem,

{
a(U, v) + b(v, P ) = 〈gh(t), v〉 , ∀ v ∈ V,

b(v, P ) = 0, ∀ q ∈ Π,
(22)

where

gh = −Δhuh − fh + f. (23)

We call (U, P ) = (U(t), P (t)) the Stokes reconstruction of the discrete velocity
and pressure fields, (uh(t), ph(t)).

Based on the above definitions Karakatsani and Makridakis, 2007, introduce the
following theorem, where it provides the error equations based on the a posteriori
estimator function introduced before [57].

Theorem 5 (Error Equation) Let (U, P ) be the Stokes reconstruction and (u, p)

the solution of the Stokes problem which is assumed to be sufficiently regular. If
e = U − u and ε = P − p, then (e, ε) is the weak solution of the problem,
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{
et − Δe + ∇ε = (U − uh)t ,

div e = 0.
(24)

Additionally, U − uh and (U − uh)t satisfy the following estimates:

∥∥∥∂(j)
t (U − uh)

∥∥∥
X

≤ E ((∂
(j)
t uh, ∂

(j)
t ph), ∂

(j)
t gh; X), j = 0, 1, (25)

where X is one of the spaces, H, V or V′, discussed before and E is the a posteriori
estimator function defined in previous assumption. The proof of this theorem can be
found in [57].

Theorem 6 (L∞(H) and L2(V) Norm Error Estimates) Let us assume that
(u, p) is the solution of the time dependent Stokes problem, Equation (11), and
(uh, ph) is the finite element approximation. Let (U, P ) be the solution of the
stationary Stokes problem and E is the a posteriori estimator function defined
previously. Then the following a posteriori error bounds hold for, 0 < t ≤ T ,

‖u(t) − U(t)‖2
H +

∫ t

0
‖(u − U)(s)‖2

V ds

� ‖u(0) − U(0)‖2
H +

∫ t

0
E ((uh,t , ph,t ), gh,t ; V′)2ds.

(26)

Additional inequalities and the proof of this theorem can be found in [57].

They additionally provide a theorem for L∞(V) norm error estimates and at the
same study they discuss about estimates using the parabolic duality argument [34,
90]. In this study two related applications of the reconstruction of the Stokes
problem are discussed [57].

3.3 Crouzeix–Raviart Finite Element Discretization and Finite
Volume Scheme

An a posteriori bound for the time dependent Stokes problem under the Crouzeix–
Raviart finite element approximation is derived. However, further detailed work is
required related to the specific form of possible singularities of the exact solution for
this problem [57]. The finite volume (FV) scheme approximations is the Crouzeix–
Raviart couple Vh × Πh. The FV methods rely on local conservation properties of
the differential equations under consideration over the “control volume.” Integrating
over a region b ⊂ Ω and utilizing the Green’s formula, we obtain the following
system for the Stokes problem in the discrete form,
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⎧
⎪⎨

⎪⎩

∫

be

uh,t −
∫

∂be

∇uhn +
∫

∂be

phn =
∫

be

f, ∀ e ∈ Eh,
∫

K

div uh = 0, ∀ K ∈ Th.

(27)

where zK is an inner point of K ∈ Th, connecting the point with line segments
to the vertices of the triangle K , we partition it into three segments Ke, where
e ∈ Eh(K), then each side e is associated with a quadrilateral, be, which is the
union of the subregions Ke. Chatzipandelidis et al. have introduced a priori and a
posteriori error estimates for the FV methods and for the stationary Stokes problem
with the admission that FV scheme provides a variational formulation similar to
the FE scheme [21]. These studies highlight the importance of a posteriori error
estimates on a theoretical basis especially for parabolic problems such as the Stokes
problem [12, 21].

We highlight the main finding from Karakatsani and Makridakis study for the FV
scheme that is the following theorem,

Theorem 7 (Residual Based L2(H 1) and L∞(H 1) Norm Error Estimates) Let
us assume that (u, p) is the solution of the time dependent Stokes problem and
(uh, ph) is the finite volume approximation. The following a posteriori error bounds
hold for, 0 < t ≤ T ,

‖∇(u − uh)(t)‖H ≤
∥∥∥u0 − u0

h

∥∥∥
V

+ C

(∫ t

0
η1(uh,t (s))

2ds

)1/2

+C η1 (uh(0)) + C η1(uh(t)),

(28)

Additional inequalities and the proof of this theorem can be found in [57].

Further, Larson and Malqvist derived a residual based a posteriori error estimates
for parabolic problems on mixed form using Raviart-Thomas-Nedelec (RTN) finite
elements in space and backward Euler in time [63]. In their study an a posteriori
error estimate for the divergence of the flux in a weak norm is derived. The
concept of elliptic reconstruction has been used to derive a posteriori error estimates
for parabolic problems as briefly described before [57, 68]. In this framework,
Larson and Malqvist use known a posteriori error estimates for the corresponding
elliptic problem to derive error bounds for the parabolic problem [63]. However, the
literature on FEM for parabolic problems on mixed form is less extensive and the
development of the theory is still in progress [31, 90].

4 Advection–Diffusion Equation

The steady-state advection and diffusion of a scalar field is described by the partial
differential equation (assuming homogeneous Dirichlet boundary condition),
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α · ∇u − ∇ · (D∇u) = f in Ω, (29)

u = 0 on ∂Ω, (30)

where α is the velocity that the quantity, u, is moving with, which is considered to
be divergent-free, ∇ · α = 0 [17]. For example, take as quantity the concentration
of a chemical species that diffuses in a river while moving with its velocity α. The
diffusion coefficient of the quantity is denoted with D and f represents sources or
sinks.

The advection–diffusion problems are frequently treated as the point of departure
for the study of the non-linear Navier–Stokes equations, at the level of developing
discretization methods. The Peclet number, defined as the ratio of the advection and
diffusion rates, Pe = |a|h/D, is a characteristic dimensionless number for such
problems. A small Peclet number (Pe � 1) indicates diffusion-dominated flows
while a large one (Pe � 1) indicates advection-dominated flows. In the diffusion-
dominated regime, the standard Galerkin finite element method provides a good
approximation of the solution [14].

The standard variational formulation arises by requesting the residual of Equa-
tion (29) to be orthogonal to a basis of the function space, H 1

0 . The task is to find
u ∈ H 1

0 (Ω) such that

(α · ∇u, v) − (∇ · (D∇u), v) = (f, v), (31)

is satisfied for any test function v ∈ H 1
0 (Ω). The Sobolev space, H 1

0 , consists of
functions that are one time weakly differentiable and also satisfy the zero Dirichlet
boundary condition. In this respect, the second order term of the weak formulation
can be integrated by parts, leading to,

(α · ∇u, v) + (D∇u,∇v) = (f, v). (32)

4.1 The Galerkin Formulation

To approximately solve Equation (32) using the Finite Element method, Ω is dis-
cretized in non-overlapping triangle element domains Ωe with boundaries Γe, e =
1, 2 . . . K , such that,

Ω =
K⋃

k=0

Ωk.

The standard Galerkin formulation is retrieved by searching a solution in a finite-
dimensional linear polynomial function space, Vh ⊂ H 1

0 (Ω),
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Vh = {vh ∈ H 1
0 (Ω) | vh(Ωk) ∈ P1(Ωk), Ωk ∈ Ω}

The problem now states, find uh ∈ Vh(Ω) such that,

(α · ∇uh, vh) + (D∇uh,∇vh) = (f, vh), ∀ vh ∈ Vh(Ω). (33)

4.2 The Stabilized Finite Element Methods

It is well known that for advection-dominated flows, where the Peclet number is
large, the solution involves non-physical oscillations [17]. To address the deficiency
of the standard polynomial finite element method for advection-dominated flow
problems, various approaches have been proposed, such as the streamline upwind
Petrov–Galerkin (SUPG) method [18], Galerkin least squares (GLS) method [54],
and the unusual stabilized FEM (USFEM) [38]. The common characteristic of the
aforementioned methods is the introduction of artificial diffusion in the solution
process while preserving the consistency of the discretization. Such methods are
commonly referred to as stabilized finite element methods (SFEM).

The SFEM for the stationary advection–diffusion problem can be grouped as
follows: find uh ∈ Vh(Ω) such that,

B(uh, vh) = F(vh), ∀ vh ∈ Vh(Ω), (34)

where,

B(uh, vh) = (α · ∇uh, vh) + (D∇uh,∇vh) + Q(uh, vh), (35)

F(vh) = (f, vh), (36)

where Q(uh, vh) indicates the additional terms added to the standard variational
formulation. These are added to preserve consistency and enhance numerical
stability. For instance, the stability term corresponding to the SUPG method is,

QSUPG(uh, vh) =
∑

K

τk(α · ∇uh − ∇ · (k∇uh) − f, α · ∇uh)k, (37)

where (·, ·)k denotes element wise integration and τ k is the stability coefficient for
the SUPG method, as defined in [39],
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ k = hk

2|α|p ξ(P ek),

P ek = mk|a|phk

2k
,

ξ(P ek) =
{

Pek, 0 ≤ Pek < 1

1, P ek ≥ 1

|α|p =
( N∑

i=1

|αi |p
) 1

p

, 1 ≤ p < ∞,

mk = min

{
1

3
, 2Ck

}
,

Ck

∑

K

h2
k ‖Δvh‖2

0,K � ‖∇vh‖2
0 , vh ∈ Vh.

(38)

Accordingly, the stability terms added to the standard variational formulation for
the GLS and the USFEM methods are,

QGLS(uh, vh) =
∑

K

τk(α · ∇uh − ∇ · (D∇uh) − f, α · ∇uh − ∇ · (D∇uh))k,

(39)

QUSFEM(uh, vh) =
∑

K

τk(α · ∇uh − ∇ · (D∇uh) − f, α · ∇uh + ∇ · (D∇uh))k.

(40)

The stability of the SUPG method for transient convection–diffusion equations is
studied in [13]. In the work by Onate [79], it was proven that the stabilization terms
can be interpreted as a natural contribution to the governing differential equations of
advection–diffusion problems. By considering the concept of flow equilibrium, the
stabilization terms emerging in methods such as SUPG, subgrid scale (SS), GLS,
Lax–Wendroff, characteristic Galerkin, Laplacian pressure operator, are not intro-
duced as correction terms at the discretization level but rather derive naturally. For
a comprehensive analysis of SFEM for the stationary or non-stationary advection-
diffusion–reaction equation, the review by Codina [28] is recommended.

Writing the advection–diffusion equation in its first-order form via introduction
of the flux of the scalar field as an additional unknown, is suited for many problems
where higher accuracy of the flux is important, such as flow in porous media.
Masud et al. studied the first-order form of the advection–diffusion equation in the
framework of SFEM [74] .

Based on the partition of unity framework that is an instance of the generalized
finite element method (GFEM), Turner et al. improved the performance of the
Galerkin formulation designing enrichment functions using a priori knowledge
about the qualitative behavior of solution to make better choices for the local
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approximation space [91]. The proposed method differs from the standard stabi-
lization strategies as stability is not achieved by adding terms but by multiplying the
polynomial with the enrichment functions.

4.3 The Variational Multiscale Method

Stabilized SUPG-type methods have several advantages, such as applicability to
a wide range of problems and simplicity in computer implementations. However,
spurious oscillations are often observed in regions around sharp layers even with
the enhanced stability provided by the SUPG method [84]. To overcome the sharp
features of the solution of advection-dominated problems, a higher resolution of
the grid is usually employed which is, however, impractical in many cases. The
multiscale approach comes at hand when fine scales cannot be captured by a given
discretization in space [72].

The variational multiscale method was introduced in [49, 51] as a procedure for
deriving numerical methods capable of dealing with multiscale phenomena that the
straightforward application of the Galerkin’s method with standard bases cannot
address. It can be considered as a procedure to rebuild the error term in the weak
form of the problem, yielding a stabilized form of the problem with higher accuracy
on coarse grids.

The union of element interiors and element boundaries is denoted by Ω ′ and Γ ′,
respectively,

Ω ′ =
K⋃

k=0

Ωk, Γ ′ =
K⋃

k=0

Γk. (41)

The appropriate function spaces for the coarse and the fine scale fields are
introduced via a direct sum decomposition,

V = V ⊕ V ′, (42)

where V is the space of trial and test functions for the coarse scale field,

V = {v ∈ H 1
0 (Ω) | v(Ωk) ∈ Pn(Ωk), Ωk ∈ Ω}, (43)

where Pn(Ωe) denotes polynomials of order n over the element interior.
In the discrete case, V ′ can contain various finite dimensional approximations

such as bubble functions or p-refinements that further satisfy the assumption that
the fine scales vanish identically over the element boundaries. Consequently,

V ′ = {
v′ | v′ = 0 on Γ ′}. (44)
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In this respect, the scalar field is decomposed in the coarse and fine scales denoted
by uh and u′

h, respectively,

uh(x) = uh(x) + u′
h(x). (45)

Likewise, the trial function is decomposed in its coarse and the fine scale
components indicated as vh and v′

h, respectively,

vh(x) = vh(x) + v′
h(x). (46)

Remark 2 Alternatively, the decomposition can be interpreted as the split of the
solution in the part obtained on a given mesh and the part that is lost because its
scale is smaller than the characteristic length of this mesh, representing the error in
the solution.

The decomposed trial and test functions are substituted in the standard variational
form (33), leading to,

(α ·∇(uh +u′
h), (vh +v′

h))+ (k∇(uh +u′
h),∇(vh +v′

h)) = (f, (vh +v′
h)). (47)

Employing the linearity of the weighting function, the problem can be split into
the coarse and the fine scale parts, indicated as vh and v′

h. The coarse scale sub-
problem can be written as

(α · ∇(uh + u′
h), vh) + (D∇(uh + u′

h),∇vh) = (f, vh). (48)

The fine scale sub-problem can be written as

(α · ∇(uh + u′
h), v

′
h) + (D∇(uh + u′

h),∇v′
h) = (f, v′

h). (49)

When compared with the standard Galerkin method, the multiscale approach
involves additional integrals that are evaluated element wise. These additional terms
represent the effects of the subgrid scales in terms of the residuals of the coarse
scales of the problem. The architecture of the method is simple: u′

h is determined
analytically and is eliminated from the uh problem that is computed numerically. uh

and uh may overlap or be disjoint, and uh may be globally or locally defined, while
the effect of uh on the uh problem is nonlocal [49].

Hughes et al. generalized the problem working in the context of an abstract
Dirichlet problem involving a second-order differential operator which enables the
study of equations of practical interest, such as the advection–diffusion equation [55,
56]. After introducing the variational formulation of the Dirichlet problem, the
authors took advantage of the multiscale approach.

An overview of finite element approximations to deal with oscillations near
layers using the variational multiscale formulation is presented in [29], where the
time-discretization of the sub-grid scales is also addressed. Recently, Sendur et al.
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used the pseudo residual-free bubbles (PRFB) method to achieve discretization in
space and the fractional-step θ -scheme for the discretization in time [84] . The
discontinuous enrichment method augments the polynomial field by free-space
solutions of the homogeneous differential equation differentiating from the standard
bubble methods in enforcing continuity across element boundaries by Lagrange
multipliers [91].

4.4 The Discontinuous Galerkin (DG) Method

Another class of important methods is the discontinuous Galerkin (DG) methods
that are popular in convection-dominated advection–diffusion problems due to their
good stability and local conservation properties [27, 76]. The DG methods have
several advantages such as high order accuracy, local data structure, and high
parallelization capacity, attracting the interest of several groups [6, 22, 25, 40].
Moreover, the DG methods can cover meshes with hanging nodes and/or locally
varying polynomial degrees rendering them ideally suited for hp-adaptivity. In
contrast with the continuous approach, in the discontinuous context, the local
elemental bases can be chosen freely due to the lack of inter-element continuity
requirements, yielding sparse mass matrices [43].

For advection and (advection-dominated) advection–diffusion equations, hp-
finite element approximations have been investigated by Houston, Schwab, and Suli
for interior penalty discontinuous finite elements [47], leading to the so-called hp-
streamline diffusion method and the hp-discontinuous Galerkin method [19, 20].

To capture detailed features of the solution near singular points or sharp layers,
a very fine mesh is required. However, the computation of the solution is very
challenging due to the amount of computer memory and time needed. For quicker
convergence and to reduce the computational cost, the mesh can be refined locally
at suitable locations. For stationary convection–diffusion equations, the quest for
robust a posteriori error estimators that are independent of the Peclet number
has advanced in various contexts [83, 93, 97]. For instance, a posteriori estimates
using the reconstruction of the flux term can be found in [36]. In non-stationary
convection–diffusion equations, as time progresses, the nature of the solution
may vary throughout the domain rendering the use of adaptive algorithms an
attractive proposition for the accurate and efficient numerical approximation of such
problems. As adaptive algorithms are usually based on suitable a posteriori error
estimators, robust estimation of the temporal and spatial error depends on their
formulation. For non-stationary linear convection–diffusion equations, a posteriori
error estimators have been developed for various discretizations [2, 35, 42, 92].

Chung and Enquist [23] in 2006 conceived the staggered DG (SDG) method
that is a sub-class of the DG method. The introduction of the staggered mesh
approach automatically satisfies the preservation of the physical laws arising from
the corresponding partial differential equations. The SDG method can be continuous
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along some of the faces and discontinuous along other faces. An SDG scheme
for the convection-diffusion equation was proposed by Chung and Lee [24] in
2012. Recently, an adaptive SDG method to solve the steady state convection–
diffusion equation was presented by Du et al. [33]. The study by Cockburn et
al. [27] is devoted to some new DG methods for convection–diffusion–reaction
problems, called local discontinuous Galerkin–hybridizable (LDG–H) methods.
Three novel features render these methods attractive. Namely, the first is that they
are hybridizable and hence efficiently implementable, the second is that they provide
approximations for the flux which are optimally convergent when both the flux and
the scalar variables are approximated by polynomials of the same degree on each
element. Finally, the third feature is that the approximations to the scalar variable
super converge.

5 The Navier–Stokes Problem

In finite element formulation and computation of incompressible flows there are
two main sources of instabilities associated with the classical Galerkin formulation
of the Navier–Stokes problem. One source of instabilities is due to the presence
of advection terms leading to spurious oscillations mainly in the velocity field,
as discussed in the previous section. The other source of instability is due to an
inappropriate combination of interpolation functions for the velocity and pressure
field. These instabilities usually appear as oscillations primarily in the pressure
field [89]. Below, we present the most interesting FE methodologies for solving
the Navier–Stokes problem.

5.1 Streamline–Upwind/Petrov–Galerkin (SUPG)

The most popular stabilized method, the Streamline–Upwind/Petrov–Galerkin
(SUPG) formulation, was introduced in 1979 for the incompressible Navier–Stokes
equations [9, 50]. By augmenting the Galerkin formulation with residual-based
terms, the SUPG formulation addressed the instability of the Galerkin technique for
convection dominated flows, leading to a stable method with optimal convergence
properties. For compressible flows, the SUPG formulation was initially introduced
in 1982 [87], but a more thorough presentation of the method with additional
examples published in [52]. The compressible flow SUPG formulation was initially
introduced for conservation variables, and later for primitive variables. For more
details on these developments, the interested reader is referred to a recent paper on
stabilized methods for compressible flows [9].

The Pressure-Stabilizing/Petrov–Galerkin (PSPG) formulation for the Navier–
Stokes equations of incompressible flows in the framework of residual-based
methods was introduced in [86, 89]. This method allowed the use of equal-order
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interpolation functions for the velocity and pressure variables and assured numerical
stability and optimal accuracy. An earlier version of the PSPG formulation for the
Stokes problem was introduced in [53]. The SUPG and PSPG stabilizations were
combined under a single name, the SUPS stabilization method [8, 9].

5.2 Variational Multiscale Method (VMS) and Stabilized FEM

Stabilized and multiscale formulations are among the most fundamental and impor-
tant methodologies for finite element computations of complex fluid mechanics
problems. Tezduyar et al. have proposed certain stabilized formulations with bilinear
and linear equal-order-interpolation elements for the computation of dynamic and
steady incompressible flows [89]. In their study, the stabilization procedure involves
a modified Galerkin/least-squares formulation of the steady-state equations. The
results from the considered test problems show that the Q1 − Q1 element is
slightly less dissipative than the P1 −P1 element. The solutions obtained with these
elements compare well with the solutions obtained from other studies [88]. The
incompressible Navier–Stokes equations are written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇ + v · ∇v − 2 ν ∇ · ε(v) + ∇p = f, in Ω × [0, T],
div v = 0, in Ω × [0, T],
v = g, on Γg × [0, T],
σ · n = (2 ν ∇sv − pI) · n = h, on Γh × [0, T],
v(x, 0) = v0(x), on Ω0,

(50)

where v is the velocity vector, p is the kinematic pressure, f is the body force
vector, ν is the kinematic viscosity, ∇sv is the symmetric part of the velocity
gradient, I is the identity tensor, and ε(v) is the strain rate tensor which is defined
as ε(v) = 1

2 (∇v + ∇vT). Equation (50) represents the momentum and continuity
equations, with the Dirichlet and Neumann boundary conditions, and the initial
condition, respectively.

Discretizing the bounded domain Ω into non-overlapping regions Ωe with
boundaries Γ e, e = 1, 2, . . . , nel , such that Ω = ∪nel

e=1Ω
e. The union of element

interiors and element boundaries are Ω ′ = nel∪
e=1

(int)Ωe and Γ ′ = nel∪
e=1

Γ e, respec-

tively. In variational multiscale method (VMS) the velocity field is decomposed into
the sum of the coarse or resolved scales and the fine or subgrid scales [70, 73],

v(x, t) = v̄(x, t) + v′(x, t), (51)

and the weighting function is decomposed in its coarse and the fine scale compo-
nents indicated as w̄(x) and w′(x), respectively,
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w(x) = w̄(x) + w′(x). (52)

Remark 3 The main goal of the VMS method is to solve the fine-scale problem,
defined over the sum of element interiors to obtain the fine scale solution. This
solution is then substituted in the coarse-scale problem, eliminating the explicit
appearance of the fine scales while still modeling their effects. Both coarse and
fine scale equations are nonlinear equations due to the convection term, and to solve
them a linearization is taking place [73].

The resulting equation is expressed in terms of the coarse scales and for the
sake of simplicity the superposed bars are dropped. So, the VMS residual-based
stabilized form for the incompressible Navier–Stokes equations is

(w, δvt ) + (w, δv · ∇v(i) + v(i) · ∇δv) + β(w, v(i)∇ · δv + δv∇ · v(i))

+(∇Sw, 2ν ∇Sδv) − (∇ · w, δp) + (q,∇ · δv)

+(v(i) · ∇w + 2ν Δw + ∇q + (1 − β)w∇ · v(i), τ r2)

−(1 − β) (w, (τ r2) · ∇v(i)) + β((τ r2) · ∇w, v(i)),

(53)

where the last two lines of the equation correspond to the stabilization terms,
β ∈ [0, 1], r2 is the residual from the linearization of the non-linear fine-scale
problem, τ is the fine-scale variational operator, and Δ is the vector Laplacian oper-
ator. A significant contribution of the VMS method is the systematic and consistent
derivation of the fine-scale variational operator, τ , termed as the stabilization tensor
that possesses the right order in the advective and diffusive limits, and variationally
projects the fine-scale solution on the coarse-scale space [73]. The stabilization
operator can be defined as [70],

τ = be
∫

bedΩ

×
⎡

⎣

∫
(be)2∇T v(i)dΩ + ∫

bev(i) · ∇bedΩ I
+β

∫
bev(i) ⊗ ∇bedΩ + β

∫
be(∇ · v(i)) dΩ I

+ ν
∫ |∇be|2 dΩ I + ν

∫ ∇be ⊗ ∇bedΩ

⎤

⎦

−1

,
(54)

where be(ξ) is a bubble function over Ω ′. More details on the derivation and
the obtained form of the VMS residual-based stabilized form and the fine-scale
variational operator, τ , for the incompressible Navier–Stokes equations can be found
in [70, 73]. Massud and collaborators have further extended the VMS methodology
for shear-rate dependent non-Newtonian fluids and incompressible turbulent fluid
flows [61, 71, 75].
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5.3 Characteristic Based Split (CBS) Method and Two-Step
Methods

The characteristic base split (CBS) method was first introduced by Zienkiewicz
and Nithiarasu, 1995, in order to find a similar method to the Taylor–Galerkin,
applicable in two or three dimensional problems. The algorithm is based on splitting
the equations in two parts where the first would be a scalar convective-diffusion type
of equations and the solution is derived from the characteristic Galerkin method [77,
98]. The second part constitutes of self-adjoined equations. There are four forms of
the algorithm (fully explicit, semi-implicit, nearly implicit, fully implicit) depending
on the problems we are called to solve. Here we focus only on the fully explicit and
semi-implicit forms. Initially, we deal with the scalar convection–diffusion problem
and the characteristic Galerkin explicit approximation. Assuming that the equation
for this problem is

∂V

∂t
= ∂Fi

∂xi

+ ∂Gi

∂xi

+ Q = 0, (55)

where xi is the i-th coordinate, Fi,Gi are the convected and the diffusion flux terms,
respectively, and Q is the source term [98]. An alternative form of this equation is

∂φ

∂t
= −uj

∂φ

∂xj

+ ∂

∂xi

(
k

∂φ

∂xi

)
− Q − φ

∂uj

∂xj

= R(φ). (56)

The term, −uj
∂φ
∂xj

, is not self-adjoined. Introducing a transformation we change
the coordinate system, this term can be vanished and the equation will be a fully
self-adjoined system. The stability condition for this problem is given as

Δt ≤ Δtcrit = h

| u |

(√
1

Pe2 + 1

3
− 1

Pe

)

, (57)

where Pe is the Peclet number defined as Pe = |u|h
2k

. For multidimensional
problems such as the two-dimensional Navier-Stokes the critical time step will be

Δtcrit = Δtσ Δtν

Δtσ + Δtν
, (58)

where Δtσ is given by Equation (57) and Δtν = h2/2k. If Δt = Δtcrit the
steady state solutions are almost identical to that from the optimal streamline
upwind methods [98]. The Navier–Stokes problem can be written in a form of the
convection–diffusion problem as
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∂V
∂t

= ∂Fi

∂xi

+ ∂Gi

∂xi

+ Q = 0. (59)

Then the basic steps for this problem are highlighted below:

• Solve momentum equation without pressure terms,
• Calculate pressure from Poisson equation,
• Correct the velocities,
• Calculate additional terms as temperature, concentration, energy, etc. from the

corresponding equations.

The equations after the standard Galerkin discretization are

ΔU∗
i = −M−1Δt[(CU + KU − f) − Δ(KuU + f)]n, (60)

where Ui = NUi, ΔUi = NΔUi, ΔU∗
i = NΔU

∗
i and p = Npp in the first step.

This gives the solution for U∗
i .

We can solve the following equation to find Δp,

(M̃ + Δt2θ1θ2H)Δp = Δt[Q(U
n + θ1ΔU∗) − Δtθ1Hp − fp]n, (61)

where H, M̃, Q are matrices, and this is step two.

Further U
n+1

, pn+1 can be computed from

ΔU = ΔU∗ − M−1Δt

[
QT (pn + θ2Δp) + Δt

2
Ppn

]
, (62)

and this is the third step of the process .
Finally, the last step is to solve the equation for the energy,

ΔE = −Δt
[
CE

n + KTn + f
n

e − Δt(KuE
n + f

n

e )
]
. (63)

More details about the method and the terms used can be found in [77, 98]. For
incompressible problems the algorithm can be used in the semi-implicit form. This

form is conditionally stable if θ1, θ2 ∈
[

1
2 , 1

]
, where θ1, θ2 are variables coming

from the discretization at steps two and three. For the fully explicit form we can set
θ2 = 0 and θ1 will be the same as in the semi-implicit form.

Another method based on splitting is the two step algorithm [48, 94]. The idea
comes from the two level method where two different type of meshes are used, a
coarse mesh for solving a nonlinear system and a fine mesh for the linear system.
The two-step method is based on solving Navier–Stokes equation in two different
ways but using the same computational mesh. The first step is solving a Navier–
Stokes problem using a lower order element pair (P1 −P1) and the projection of the
pressure onto a piecewise constant space. In step two a general Stokes problem is
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solved with a higher order elements (P2 − P2) using the projection of the pressure
gradient onto the same space. The purpose of the first step is to find a prediction
of the solution and step two is a correction for the initial approximation. The
convergence for both the velocity and pressure is of order O(h2). Huang et al.
compare the method with the P1 − P1 and P2 − P2 stabilized method, analyzed
before. They report that the two-step method timewise is between the other two but
the error is similar with the P2 − P2 stabilized method [48].

5.4 Gradient Smoothed Method (GSM)

The gradient smoothed method (GSM) was developed by combining the meshfree
methods with the FEM approach [64, 65]. The main idea in the GSM is to use
a finite element mesh to construct numerical models of good performance. Liu
and collaborators introduced the GSM for the solution of steady-state and transient
incompressible fluid flow problems [95]. The proposed method is based on irregular
cells and thus can be used for problems with arbitrarily complex geometrical
boundaries.

In the GSM, derivatives at various locations, such as at nodes, cell centroids, and
cell–edges midpoints, are approximated using gradient smoothing operation over
relevant gradient smoothing domains. For a two dimensional problem the gradients
of a field variable u, at a point of interest, xi , in the domain Ωi can be approximated
in the form,

∇u(xi ) ≈
∫

Ωi

∇u(x) w̄(x − xi )dA, (64)

where ∇ is the gradient operator and w̄ is a smoothing function. For simplicity,
the smoothing function can be set to be a piecewise constant over the smoothing
domain. Integrating by parts or using Gauss divergence theorem and utilizing the
properties of the smoothing function over the smoothing domain the following
equations is obtained for the gradient,

∇u ≈ 1

Ai

∮

∂Ωi

u n̄ ds, (65)

where n̄ is the unit normal vector on ∂Ωi and Ai is the area of the smoothing domain.
Equation (65) provides a simple way to approximate gradients at a point by area-
weighted integral along the boundary of a local smoothing domain, Ωi . Similarly,
by applying the gradient smoothing technique for the second-order derivatives the
Laplace operator at a point of interest, xi , can be approximated as
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∇ · (Δui) ≈ 1

Ai

∮

∂Ωi

n̄ · Δuds. (66)

The spatial derivatives at any point of interest can be approximated over a
smoothing domain that needs to be properly defined for a purpose, as presented
above. The GSM can tackle the incompressible Navier–Stokes equations enhanced
with artificial compressibility, in which the spatial derivatives are approximated
by consistent and successive use of gradient smoothing operation over smoothing
domains at various locations [66, 95, 96]. A favorable GSM scheme corresponding
to a compact stencil with positive coefficients of influence has been derived in [95].
In this study, pseudo-time advancing approach is used for solving the governing
equations with mixed hyperbolic–parabolic properties. The dual time stepping
scheme and implicit five-stage Runge–Kutta method are implemented to enhance
the efficiency and stability in the solution procedure. The obtained results show
good agreement with literature [95].

5.5 Discontinuous and Adaptive Galerkin Method

In the last decades, discontinuous Galerkin (DG) methods form a class of numerical
methods that combine features of the finite element and the finite volume frame-
work, successfully applied to PDEs from a wide range of applications. An overview
to DG method for elliptic problems and research directions can be found in [5, 26].

In order to use the equal order interpolation functions for velocity and pressure,
the Navier–Stokes equations can be decoupled to distinct equations through the split
method. The obtained equations are nonlinear hyperbolic, elliptic, and Helmholtz
equations, respectively. The hybrid method combines DG and FE methods. There-
fore, DG method is concerned to accomplish spatial discretization of the nonlinear
hyperbolic equation to avoid using stabilization approaches in FEM. The split
methods due to their decoupled schemes allows choosing equal order basis functions
for velocity and pressure [32, 41, 44]. Marchandise and Remacle used an implicit
pressure stabilized FEM to solve the Navier–Stokes equations, and DG method was
employed to deal with the level-set equation [69]. They calculated the velocity and
pressure in the coupled momentum equation together with adding stabilization terms
for studying two-phase flows. Pandare and Luo proposed a coupled reconstructed
discontinuous Galerkin (rDG) method and continuous Galerkin method for the
solution of unsteady incompressible Navier–Stokes equations [80] .

In the paper by Gao et al., the main goal is to take full advantage of DG method
and FEM on the basis of a split method [37, 58] to deal with the incompressible
Navier–Stokes equations [41]. For the spatial discretization, they treat the nonlinear
convection term through DG method, which can guarantee stability, accuracy and
also avoid stabilization techniques used in FEM. Lomtev and Karniadakis in their
study present a new DG method for simulating compressible viscous flows with
shocks on standard unstructured grids [67]. This method is based on a discontinuous
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Galerkin formulation both for the advective and the diffusive terms. High-order
accuracy is achieved by using a recently developed hierarchical spectral basis. This
basis is formed by combining Jacobi polynomials of high-order weights written
in a new coordinate system. It retains a tensor-product property, and provides
accurate numerical quadrature. Their formulation is conservative, and monotonicity
is enforced by appropriately lowering the basis order and performing hp-refinement
around discontinuities [67].

Bassi and Rebay introduce a high-order DG method for the numerical solution
of the compressible flows [7]. The method combines two main ideas, the physics
of wave propagation, accounted for by means of Riemann problems and accuracy
being obtained by high-order polynomial approximations within elements. The
method is suited to compute high-order accurate solution of the Navier–Stokes
equations on unstructured grids. Klaij et al. in their study present a conservative
arbitrary Lagrangian Eulerian (ALE) approach to deal with deforming meshes
utilizing DG method for optimal flexibility on the local mesh refinement and
adjustment of the polynomial order in each element (hp-adaptation) [60]. The
numerical method allows for local grid adaptation as well as moving and deforming
boundaries. Persson and colleagues introduced a method for computing time-
dependent solutions to the compressible Navier–Stokes equations on variable
geometries [81]. The transport equations are written as a conservation law for the
independent variables in the reference configuration, the complexity introduced
by variable geometry is reduced to solving a transformed conservation law in a
fixed reference configuration. The spatial discretization is carried out using the DG
method on unstructured meshes, while time integration is performed by a Runge–
Kutta method. The problem under consideration was altered by adding an equation
for the time evolution of the transformation Jacobian to the original conservation law
and correcting for the accumulated metric errors. Results are discussed to present
the capability of the approach to handle high-order approximations on complex
geometries [81].

6 Conclusions

Finite element method (FEM) has gained substantial momentum in the last decades.
FEM was initially introduced as an answer to solid mechanics problems while the
progress in fluid mechanics was slower due to the non-linearities and instabilities
in the solution. In this review we analyzed FEM providing the theoretical basis
of the approach mainly focusing on parabolic type of problems, applied in fluid
mechanics. Initially, we focused on basic FEM analysis for the Stokes problem. We
further discussed FE approaches for the solution of the advection–diffusion equation
such as the stabilized FEM, the variational multiscale method, and the discontinuous
Galerkin method. Finally, we extended the analysis on the non-linear transport
problems and discussed how FEM are utilized for the solution of the Navier–Stokes
equations.
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