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Abstract In this chapter, we introduce some new notions of generalized convex
functionals in normed linear spaces. It unifies and generalizes the many known and
new classes of convex functions. The corresponding Schur, Jensen, and Hermite-
Hadamard type inequalities are also established.
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1 Introduction

Definition 1 A function f : [a, b] → R is called convex if

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2), (1)

∀x1, x2 ∈ [a, b],∀λ ∈ [0, 1].
This classical inequality (1) plays an important role in analysis, optimization

and in the theory of inequalities, and it has a huge literature dealing with its
applications, various generalizations and refinements. Further, convexity is one of
the most fundamental and important notions in mathematics. Convexity theory and
its inequalities are fields of interest of numerous mathematicians and there are many
paper, books, and monographs devoted to these fields and various applications (see,
e.g., [1, 4, 6–14, 16, 18–22] and the references therein).

In this chapter, we introduce some new notions of generalized convex functionals
in normed linear spaces in Section 2. It unifies and generalizes the many known
and new classes of convex functions. Some new basic inequalities are presented in
Section 3. New generalized Hermite-Hadamard type inequalities are presented in
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Section 4. In Sections 5 and 6, strongly convex functional and the corresponding
inequalities in normed linear spaces are also given.

2 Generalized Convex Functionals in Normed Linear Spaces

In what follows, (X, ‖ · ‖) denotes the real normed linear spaces, D be a convex
subset of X, h : (0, 1) → (0,∞) is a given function, whose h is not identical to 0.

In this section, we introduce and study a new class of generalized convex
functionals, that is, (α, β, λ, λ0, t, ξ , h) convex functionals.

Definition 2 A functional f : D → (0,∞) is called (α, β, λ, λ0, t, ξ , h) convex if

f ((λ‖x1‖α + λ0(1 − λ)‖x2‖α)1/α) ≤ {h(tξ )f β(‖x1‖)+ λ0h(1 − t ξ )f β(‖x2‖)}1/β,

(2)
∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], α, β are real numbers, and α, β �= 0.

If λ0 = 1 in (2), that is,

f ((λ‖x1‖α+(1−λ)‖x2‖α)1/α) ≤ {h(tξ )f β(‖x1‖)+h(1−t ξ )f β(‖x2‖)}1/β, (3)

we say that f is a (α, β, λ, t, ξ , h) convex functional.
If ξ = 1 in (3), that is,

f ((λ‖x1‖α + (1 − λ)‖x2‖α)1/α) ≤ {h(t)f β(‖x1‖) + h(1 − t)f β(‖x2‖)}1/β,

we say that f is a (α, β, λ, t, h) convex functional.
For t = λ in (2), that is,

f ((λ‖x1‖α +λ0(1−λ)‖x2‖α)1/α) ≤ {h(λξ )f β(‖x1‖)+λ0h(1−λξ )f β(‖x2‖)}1/β,

(4)
we say that f is a (α, β, λ, λ0, ξ , h) convex functional.

If ξ = 1 in (4), that is,

f ((λ‖x1‖α + λ0(1 − λ)‖x2‖)1/α) ≤ {h(λ)f β(‖x1‖) + λ0h(1 − λ)f β(‖x2‖)}1/β,

(5)
we say that f is a (α, β, λ, λ0, h) convex functional.

For λ0 = 1 in (5), that is,

f ((λ‖x1‖α +(1−λ)‖x2‖α)1/α) ≤ {h(λ)f β(‖x1‖)+h(1−λ)f β(‖x2‖)}1/β, (6)

we say that f is a (α, β, λ, h) convex functional.
In particular, if h(λ) = λs, 0 < |s| ≤ 1 in (6), that is,

f ((λ‖x1‖α + (1 − λ)‖x2‖α)1/α) ≤ {λsf β(‖x1‖) + (1 − λ)sf β(‖x2‖)}1/β, (7)
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we say that f is a (α, β, λ, s) convex functional. If s = 1, then (7) reduces to
(α, β, λ) convex functional.

For α = β = 1 in (2), that is,

f (λ‖x1‖ + λ0(1 − λ)‖x2‖) ≤ h(tξ )f (‖x1‖) + λ0h(1 − t ξ )f (‖x2‖), (8)

we say that f is a (λ, λ0, t, ξ , h) convex functional.
If λ0 = 1 in (8), that is,

f (λ‖x1‖ + (1 − λ)‖x2‖) ≤ h(tξ )f (‖x1‖) + h(1 − t ξ )f (‖x2‖), (9)

we say that f is a (λ, t, ξ , h) convex functional.
In particular, if t = λ in (8), that is,

f (λ‖x1‖ + λ0(1 − λ)‖x2‖) ≤ h(λξ )f (‖x1‖) + λ0h(1 − λξ )f (‖x2‖), (10)

we say that f is a (λ, λ0, ξ , h) convex functional.
If ξ = 1 in (10), that is,

f (λ‖x1‖ + λ0(1 − λ)‖x2‖) ≤ h(λ)f (‖x1‖) + λ0h(1 − λ)f (‖x2‖), (11)

we say that f is a (λ, λ0, h) convex functional.
If λ0 = 1 in (11), that is,

f (λ‖x1‖ + (1 − λ)‖x2‖) ≤ h(λ)f (‖x1‖) + h(1 − λ)f (‖x2‖), (12)

we say that f is an h-convex functional.
In the following Examples 1–6, we make appointment that

X = [0,∞),D ⊂ [0,∞), f : D → [0,∞).

Then (2) reduces to

f ((λxα
1 + λ0(1 − λ)xα

2 )1/α) ≤ {h(tξ )f β(x1) + λ0h(1 − t ξ )f β(x2)}1/β, (13)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], α, β are real numbers, and α, β �= 0.
If ξ = 1 in (13), that is,

f ((λxα
1 + λ0(1 − λ)xα

2 )1/α) ≤ {h(t)f β(x1) + λ0h(1 − t)f β(x2)}1/β, (14)

∀x1, x2 ∈ D,∀λ, t ∈ [0, 1], we say that f is a (α, β, λ, λ0, t, h) convex function.
If t = λ in (14), that is,

f ((λxα
1 + λ0(1 − λ)xα

2 )1/α) ≤ {h(λ)f β(x1) + λ0h(1 − λ)f β(x2)}1/β, (15)

∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say that f is a (α, β, λ, λ0, h) convex function.
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If λ0 = 1 in (14), that is,

f ((λxα
1 + (1 − λ)xα

2 )1/α) ≤ {h(t)f β(x1) + h(1 − t)f β(x2)}1/β, (16)

∀x1, x2 ∈ D,∀λ, t ∈ [0, 1], we say that f is a (α, β, λ, t, h) convex function. If
t = λ in (16), that is,

f ((λxα
1 + (1 − λ)xα

2 )1/α) ≤ {h(λ)f β(x1) + h(1 − λ)f β(x2)}1/β, (17)

∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say that f is a (α, β, λ, h) convex function.
If h(λ) = λs, 0 < |s| ≤ 1 in (16), (17), that is,

f ((λxα
1 + (1 − λ)xα

2 )1/α) ≤ {t sf β(x1) + (1 − t)sf β(x2)}1/β, (18)

f ((λxα
1 + (1 − λ)xα

2 )1/α) ≤ {λsf β(x1) + (1 − λ)sf β(x2)}1/β, (19)

we say that f is a (α, β, λ, t, s), (α, β, λ, s) convex function, respectively.
In particular, if s = 1, then (18), (19) reduce to (α, β, λ, t), (α, β, λ) convex

function, respectively.

Example 1 If α = β = 1 in (13), then

f (λx1 + λ0(1 − λ)x2) ≤ h(tξ )f (x1) + λ0h(1 − t ξ )f (x2), (20)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], we say that f is a (λ, λ0, t, ξ , h) convex function.
In particular, if λ0 = 1 in (20), that is,

f (λx1 + (1 − λ)x2) ≤ h(tξ )f (x1) + h(1 − t ξ )f (x2), (21)

∀x1, x2 ∈ D,∀λ, t, ξ ∈ [0, 1], we say that f is a (λ, t, ξ , h) convex function.
For h(t) = t s , 0 < |s| ≤ 1, ξ = 1 in (21), that is,

f (λx1 + (1 − λ)x2) ≤ t sf (x1) + (1 − t)sf (x2), (22)

∀x1, x2 ∈ D,∀λ, t ∈ [0, 1], we say that f is a (λ, t, s) convex function.
In particular, when s = 1 in (22), that is,

f (λx1 + (1 − λ)x2) ≤ tf (x1) + (1 − t)f (x2), (23)

∀x1, x2 ∈ D,∀λ, t ∈ [0, 1], we say that f is a (λ, t) convex function (see, e.g., [8]).
For t = λ in (20), that is,

f (λx1 + λ0(1 − λ)x2) ≤ h(λξ )f (x1) + λ0h(1 − λξ )f (x2), (24)

∀x1, x2 ∈ D,∀λ, λ0, ξ ∈ [0, 1], we say that f is a (λ, λ0, ξ , h) convex function.
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If ξ = 1 in (24), that is,

f (λx1 + λ0(1 − λ)x2) ≤ h(λ)f (x1) + λ0h(1 − λ)f (x2), (25)

∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say that f is a (λ, λ0, h) convex function. In particular,
when λ0 = 1,(25) reduces to h-convex function (see [4, 19]), that is,

f (λx1 + (1 − λ)x2) ≤ h(λ)f (x1) + h(1 − λ)f (x2). (26)

If h(λ) = λ, then (26) reduces to (1).
If h(λ) = λs, 0 < s ≤ 1 in (26), that is,

f (λx1 + (1 − λ)x2) ≤ λsf (x1) + (1 − λ)sf (x2), (27)

∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say that f is a s-Breckner convex function (see, e.g.,
[4, 5, 8]).

If h(λ) = λ−s , 0 < s ≤ 1 in (26), that is,

f (λx1 + (1 − λ)x2) ≤ λ−sf (x1) + (1 − λ)−sf (x2), (28)

∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say that f is a s-Godunova-Levin function (see [4]). In
particular, when s = 1, (28) reduces to Godunova-Levin function (see, e.g., [5, 8])

If h(λ) = 1 in (26), that is,

f (λx1 + (1 − λ)x2) ≤ f (x1) + f (x2), (29)

∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say that f is a P -function (see, e.g., [5]).
If h(λ) = λs, 0 < |s| ≤ 1, in (24), that is,

f (λx1 + λ0(1 − λ)x2) ≤ λsξf (x1) + λ0(1 − λξ )sf (x2), (30)

∀x1.x2 ∈ D,∀λ, λ0, ξ ∈ [0, 1], we say that f is a (λ, λ0, ξ , s) convex function. In
particular, if ξ = s = 1 in (30), that is,

f (λx1 + λ0(1 − λ)x2) ≤ λf (x1) + λ0(1 − λ)f (x2), (31)

we say that f is a λ0-convex function (that is, m-convex function in [2]).
If λ0 = 0 in (20), then

f (λx) ≤ h(tξ )f (x), x ∈ D. (32)

When t = λ, ξ = 1, h(t) = t in (32), that is,

f (λx) ≤ λf (x), (33)
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we say that f is a starshaped function (see [2])

Example 2 If β = 1 in (13), then

f ((λxα
1 + λ0(1 − λ)xα

2 )1/α) ≤ h(tξ )f (x1) + λ0h(1 − t ξ )f (x2), (34)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], α �= 0, we say that f is a (α, λ, λ0, t, ξ , h)

convex function.
For t = λ in (34), that is,

f ((λxα
1 + λ0(1 − λ)xα

2 )1/α) ≤ h(λξ )f (x1) + λ0h(1 − λξ )f (x2), (35)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], α �= 0, we say that f is a (α, λ, λ0, ξ , h) convex
function. When λ0 = 1, ξ = 1, (35) reduces to (α, h) convex function (that is, (p, h)

convex function in [5]). In particular, if λ0 = 1, ξ = 1, h(t) = t , (35) reduces to
α-convex function (that is, p-convex function in [5, 22] )

Example 3 If α = 1, β = q in (13), then

f (λx1 + λ0(1 − λ)x2) ≤ {h(tξ )f q(x1) + λ0h(1 − t ξ )f q(x2)}1/q, (36)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], q �= 0, we say that f is a (q, λ, λ0, t, ξ , h)

convex function.
For t = λ in (36), that is,

f (λx1 + λ0(1 − λ)x2) ≤ {h(λξ )f q(x1) + λ0h(1 − λξ )f q(x2)}1/q, (37)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], q �= 0, we say that f is a (q, λ, λ0, ξ , h) convex
function. When λ0 = 1, ξ = 1, h(t) = t , (37) reduces to q-convex function (see,
e.g., [8]).

Example 4 If α = 1, β = −1 in (13), then

f (λx1 + λ0(1 − λ)x2) ≤ {h(tξ )f −1(x1) + λ0h(1 − t ξ )f −1(x2)}−1, (38)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], we say that f is a (AH, λ, λ0, t, ξ , h) convex
function, where AH means the arithmetic-harmonic means.

For t = λ in (38), that is,

f (λx1 + λ0(1 − λ)x2) ≤ {h(λξ )f −1(x1) + λ0h(1 − λξ )f −1(x2)}−1, (39)

∀x1, x2 ∈ D,∀λ, λ0, ξ ∈ [0, 1], we say that f is a (AH, λ, λ0, ξ , h) convex
function.

For h(λ) = λs, 0 < |s| ≤ 1, λ0 = ξ = 1 in (39), that is,

f (λx1 + (1 − λ)x2) ≤ {λsf −1(x1) + (1 − λ)sf −1(x2)}−1, (40)
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∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say f is a (AH, λ, s) convex function. In particular, if
s = 1, then (40) reduces to AH convex function.

Example 5 If α = −1, λ0 = 1, h(λ) = λ in (15), then

f (
x1x2

λx2 + (1 − λ)x1
) ≤ {λf β(x1) + (1 − λ)f β(x2)}1/β,

∀x1, x2 ∈ D,∀λ ∈ [0, 1], β �= 0, we say that f is a harmonically β-convex
functions, see [15].

Example 6 If α = −1, β = 1 in (13), then

f ((λx−1
1 + λ0(1 − λ)x−1

2 )−1) ≤ h(tξ )f (x1) + λ0h(1 − t ξ )f (x2), (41)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], we say that f is a (HA, λ, λ0, t, ξ , h) convex
function.

For t = λ in (41), that is,

f ((λx−1
1 + λ0(1 − λ)x−1

2 )−1) ≤ h(λξ )f (x1) + λ0h(1 − λξ )f (x2), (42)

∀x1, x2 ∈ D,∀λ, λ0, ξ ∈ [0, 1], we say that f is a (HA, λ, λ0, ξ , h) convex
function.

For h(λ) = λs, 0 < |s| ≤ 1, λ0 = ξ = 1 in (42), that is,

f ((λx−1
1 + (1 − λ)x−1

2 )−1) ≤ λsf (x1) + (1 − λ)sf (x2), (43)

∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say f is a (HA, λ, s) convex function. In particular,
if s = 1, then (43) reduces to HA convex function.

Example 7 If α = β = −2 in (13), then

f ((λx−2
1 + λ0(1 − λ)x−2

2 )−(1/2)) ≤ {h(tξ )f −2(x1) + λ0h(1 − t ξ )f −2(x2)}−(1/2),

(44)
∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], we say that f is a (HS, λ, λ0, t, ξ , h) convex
function.

For t = λ in (44), that is,

f ((λx−2
1 + λ0(1 − λ)x−2

2 )−(1/2)) ≤ {h(λξ )f −2(x1) + λ0h(1 − λξ )f −2(x2)}−(1/2),

(45)
∀x1, x2 ∈ D,∀λ, λ0, ξ ∈ [0, 1], we say that f is a (HS, λ, λ0, ξ , h) convex
function.

For h(λ) = λs, 0 < |s| ≤ 1, λ0 = ξ = 1 in (45), that is,

f ((λx−2
1 + (1 − λ)x−2

2 )−(1/2)) ≤ {λsf −2(x1) + (1 − λ)sf −2(x2)}−(1/2), (46)
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∀x1, x2 ∈ D,∀λ ∈ [0, 1], we say that f is a (HS, λ, s) convex function, that is, f

is the harmonic square s-convex function. In particular, if s = 1, then (46) reduces
to HS convex function.

Example 8 Let X be a real normed linear space, and D be a convex subset of X,
h : (0, 1) → (0,∞) is a given function. If

λ = t1

t1 + t2
, h(λ) = λ(t1)

λ(t1 + t2)
, 0 < t1, t2 < ∞,

then

1 − λ = t2

t1 + t2
, h(1 − λ) = λ(t2)

λ(t1 + t2)
,

and by (25), we get

f (
t1x1 + λ0t2x2

t1 + t2
) ≤ λ(t1)f (x1) + λ0λ(t2)f (x2)

λ(t1 + t2)
, (47)

∀x1, x2 ∈ D, ∀λ, λ0 ∈ [0, 1], we say that f is a (λ, λ0) convex function. When
λ0 = 1,(47) reduces to λ-convex function (see, e.g., [3, 4]).

Hence, Definition 2 unifies and generalizes the many known and new classes of
convex functions.

3 Some New Basic Inequalities

The classical Schur, Jensen, and Hermite-Hadamard inequalities play an important
role in analysis, optimization and in the theory of inequalities, and it has a huge
literature dealing with its applications, various generalizations and refinements (see,
e.g., [2, 6–9, 11, 12, 18–22], and the references therein). In this and next section, we
present the corresponding inequalities for (α, β, λ, λ0, t, ξ , h) convex functionals.

Definition 3 ([19]) A function h : (0, 1) → (0,∞) is called a super-multiplicative
function if

h(tu) ≥ h(t)h(u), (48)

for all t, u ∈ (0, 1).

Lemma 1 Let g(‖x‖) = f β(‖x‖1/α), x ∈ D,α, β are real numbers, and α, β �= 0.
Then a functional f : D → (0,∞) is (α, β, λ, λ0, t, ξ , h) convex if and only if the
functional g : D → (0,∞) is (λ, λ0, t, ξ , h) convex. In particular, a functional
f : D → (0,∞) is (α, β, λ, λ0, ξ , h) convex if and only if the functional g : D →
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(0,∞) is (λ, λ0, ξ , h) convex, and a functional f : D → (0,∞) is (α, β, λ, h)

convex if and only if the functional g : D → (0,∞) is h-convex.

Proof Setting ‖u‖ = ‖x‖1/α, x ∈ D. Assume that f is (α, β, λ, λ0, t, ξ , h) convex,
then for all x1, x2 ∈ D, we get

g(λ‖x1‖+ λ0(1 − λ)‖x2‖)= g(λ‖u1‖α + λ0(1 − λ)‖u2‖α)

= f β((λ‖u1‖α + λ0(1 − λ)‖u2‖α)1/α)≤ h(tξ )f β(‖u1‖)+ λ0h(1 − t ξ )f β(‖u2‖)
= h(tξ )g(‖u1‖α)+ λ0h(1 − t ξ )g(‖u2‖α)= h(tξ )g(‖x1‖)+ λ0h(1 − t ξ )g(‖x2‖),

which proves that g is (λ, λ0, t, ξ , h) convex.
Conversely, if g is (λ, λ0, t, ξ , h) convex, then

f β((λ‖u1‖α + λ0(1 − λ)‖u2‖α)1/α) = g(λ‖u1‖α + λ0(1 − λ)‖u2‖α)

= g(λ‖x1‖ + λ0(1 − λ)‖x2‖) ≤ h(tξ )g(‖x1‖) + λ0h(1 − t ξ )g(‖x2‖)
= h(tξ )f β(‖x1‖1/α) + λ0h(1 − t ξ )f β(‖x2‖1/α)

= h(tξ )f β(‖u1‖) + λ0h(1 − t ξ )f β(‖u2‖),

which proves that f is (α, β, λ, λ0, t, ξ , h) convex.

First of all, we establish Schur type inequalities of (α, β, λ, h) convex functionals.

Theorem 1 Let f : D → (0,∞) be a h-convex functional and h : (0, 1) →
(0,∞) is a super-multiplicative function, then for all x1, x2, x3 ∈ D, such that
‖x1‖ < ‖x2‖ < ‖x3‖, and 0 < ‖x3‖ − ‖x1‖ < 1, the following generalized Schur
inequality holds:

f (‖x2‖) ≤ h(‖x3‖ − ‖x2‖)
h(‖x3‖ − ‖x1‖)f (‖x1‖) + h(‖x2‖ − ‖x1‖)

h(‖x3‖ − ‖x1‖)f (‖x3‖). (49)

Proof Setting

λ = ‖x3‖ − ‖x2‖
‖x3‖ − ‖x1‖ ,

we have 0 < λ < 1,

1 − λ = ‖x2‖ − ‖x1‖
‖x3‖ − ‖x1‖ ,

and ‖x2‖ = λ‖x1‖ + (1 − λ)‖x3‖. By (12), we get

f (‖x2‖) = f (λ‖x1‖ + (1 − λ)‖x3‖)
≤ h(λ)f (‖x1‖) + h(1 − λ)f (‖x3‖). (50)
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By (48), we get

h(‖x3‖ − ‖x2‖) = h(λ(‖x3‖ − ‖x1‖)) ≥ h(λ)h(‖x3‖ − ‖x1‖).

Hence,

h(λ) ≤ h(‖x3‖ − ‖x2‖)
h(‖x3‖ − ‖x1‖) . (51)

Similarly, we get

h(1 − λ) ≤ h(‖x2‖ − ‖x1‖)
h(‖x3‖ − ‖x1‖) . (52)

Therefore, (49) follows from (50), (51), and (52). The proof is complete.

Using Lemma 1, we get

Corollary 1 Let f : D → (0,∞) be a (α, β, λ, h) convex functional, and h :
(0, 1) → (0,∞) is a super-multiplicative function, then for all x1, x2, x3 ∈ D, such
that‖x1‖α < ‖x2‖α < ‖x3‖α , and 0 < ‖x3‖α−‖x1‖α < 1, the following Schur-type
inequalities holds:

f β(‖x2‖) ≤ h(‖x3‖α − ‖x2‖α)

h(‖x3‖α − ‖x1‖α)
f β(‖x1‖)+ h(‖x2‖α − ‖x1‖α)

h(‖x3‖α − ‖x1‖α)
f β(‖x3‖). (53)

Corollary 2 Let f : (0,∞) → (0,∞) be a (α, β, λ, h) convex function and h :
(0, 1) → (0,∞) is a super-multiplicative function, then for all x1, x2, x3 ∈ (0,∞),
such that xα

1 < xα
2 < xα

3 , and 0 < xα
3 − xα

1 < 1, the following generalized Schur
inequality holds:

f β(x2) ≤ h(xα
3 − xα

2 )

h(xα
3 − xα

1 )
f β(x1) + h(xα

2 − xα
1 )

h(xα
3 − xα

1 )
f β(x3). (54)

Next by using the definition of (λ, t, ξ , h) convex functional and induction, one
obtains the following new generalized Jensen inequality:

Theorem 2 Let f : D → (0,∞) be a (λ, t, ξ , h) convex functional and h :
(0, 1) → (0,∞) is a super-multiplicative function, then

f (

n∑

k=1

λk‖xk‖) ≤
n∑

k=1

h(t
ξ
k )f (‖xk‖), (55)

for any xk ∈ D,λk, tk, ξ ∈ [0, 1], 1 ≤ k ≤ n, with
∑n

k=1 λk = 1 and
∑n

k=1 t
ξ
k = 1.

Proof For n = 2, this is just the definition of (λ, t, ξ , h) convex functional, and for
n > 2 it follows by induction. Assume that (55) is true for some positive integer
n > 2, we shall prove that
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f (

n+1∑

k=1

λk‖xk‖) ≤
n+1∑

k=1

h(t
ξ
k )f (‖xk‖), (56)

for any xk ∈ D, λk, tk, ξ ∈ [0, 1], 1 ≤ k ≤ n + 1, with
∑n+1

k=1 λk = 1 and∑n+1
k=1 t

ξ
k = 1.

To show that (56) is true, we note that

f (

n+1∑

k=1

λk‖xk‖) = f (

n−1∑

k=1

λk‖xk‖ + λn‖xn‖ + λn+1‖xn+1‖)

= f {
n−1∑

k=1

λk‖xk‖ + (λn + λn+1)(
λn

λn + λn+1
‖xn‖ + λn+1

λn + λn+1
‖xn+1‖)}

≤
n−1∑

k=1

h(t
ξ
k )f (‖xk‖) + h(tξn + t

ξ
n+1)f (

λn

λn + λn+1
‖xn‖ + λn+1

λn + λn+1
‖xn+1‖).

(57)

By (48), we get

h(tξn ) = h(
t
ξ
n

t
ξ
n + t

ξ
n+1

× (tξn + t
ξ
n+1))

≥ h(
t
ξ
n

t
ξ
n + t

ξ
n+1

)h(tξn + t
ξ
n+1),

that is,

h(
t
ξ
n

t
ξ
n + t

ξ
n+1

) ≤ h(t
ξ
n )

h(t
ξ
n + t

ξ
n+1)

. (58)

Similarly, we get

h(
t
ξ
n+1

t
ξ
n + t

ξ
n+1

) ≤ h(t
ξ
n+1)

h(t
ξ
n + t

ξ
n+1)

. (59)

Using (9), (58), and (59), we have

f (
λn

λn + λn+1
‖xn‖ + λn+1

λn + λn+1
‖xn+1‖)
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≤ h(
t
ξ
n

t
ξ
n + t

ξ
n+1

)f (‖xn‖) + h(
t
ξ
n+1

t
ξ
n + t

ξ
n+1

)f (‖xn+1‖)

≤ 1

h(t
ξ
n + t

ξ
n+1)

{h(tξn )f (‖xn‖) + h(t
ξ
n+1)f (‖xn+1‖)}. (60)

Hence, (56) follows from (57) and (60). The proof is complete.

Corollary 3 Let f : D → (0,∞) be a (α, β, λ, t, ξ , h) convex functional and
h : (0, 1) → (0,∞) is a super-multiplicative function, then

f ((

n∑

k=1

λk‖xk‖α)1/α) ≤ {
n∑

k=1

h(t
ξ
k )f β(‖xk‖)}1/β,

for any xk ∈ D,λk, tk, ξ ∈ [0, 1], 1 ≤ k ≤ n, with
∑n

k=1 λk = 1 and
∑n

k=1 t
ξ
k = 1.

Corollary 4 Let f : (0,∞) → (0,∞) be a (α, β, λ, t, ξ , h) convex function and
h : (0, 1) → (0,∞) is a super-multiplicative function, then

f ((

n∑

k=1

λkx
α
k )1/α) ≤ {

n∑

k=1

h(t
ξ
k )f β(xk)}1/β,

for any xk ∈ (0,∞), λk, tk, ξ ∈ [0, 1], 1 ≤ k ≤ n, with
∑n

k=1 λk = 1 and∑n
k=1 t

ξ
k = 1.

Corollary 5 Let f : (0,∞) → (0,∞) be a (α, β, λ, t, s) convex function, then

f ((

n∑

k=1

λkx
α
k )1/α) ≤ {

n∑

k=1

t sk f β(xk)}1/β,

for any xk ∈ (0,∞), λk, tk, s ∈ [0, 1], 1 ≤ k ≤ n, with
∑n

k=1 λk = 1, and∑n
k=1 t sk = 1.

Corollary 6 Let f : (0,∞) → (0,∞) be a (λ, t, s) convex function, then

f (

n∑

k=1

λkxk) ≤
n∑

k=1

t sk f (xk),

for any xk ∈ (0,∞), λk, tk, s ∈ [0, 1], 1 ≤ k ≤ n, with
∑n

k=1 λk = 1, and∑n
k=1 t sk = 1.
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4 New Generalized Hermite-Hadamard Type Inequalities

In this section, we present a counterpart of the Hermite-Hadamard type inequality
for (α, β, λ, λ0, h) convex functional. In what follows, we write

En(p)={x=(x1, x2, · · · , xn):xk∈R1, 1≤k≤n, ‖x‖p=(

n∑

k=1

|xk|p)1/p, 1 ≤ p<∞},

B(0, r) = {x ∈ En(p) : ‖x‖p ≤ r}.

In particular, En(2) is an n-dimensional Euclidean space R
n.

Theorem 3 Let B(0, r1) be an n-ball of radius r1 in En(p), E = B(0, r2) −
B(0, r1), 0 < r1 < r2 < ∞. Let f : E → (0,∞) be a (α, β, λ, λ0, h) convex
functional. If

∫
E

‖x‖α−n
p f β(‖x‖p)dx < ∞, and h ∈ L(0, 1), then

1

2h(1/2)
f β((

r
α/p

1 + λ0r
α/p

2

2
)1/α)

≤ αpn−1�(n/p)

(λ0r
α/p

2 − r
α/p

1 )(�(1/p))n

∫

E

‖x‖α−n
p f β(‖x‖p)dx

≤ {f β(r
1/p

1 ) + λ0f
β(r

1/p

2 )}
∫ 1

0
h(u)du, (61)

where �(α) is the Gamma function:

�(α) =
∫ ∞

0
xα−1e−xdx (α > 0).

Proof By transforming the integral to polar coordinates (see [9]), we have

∫

E

‖x‖α−n
p f β(‖x‖p)dx = (�(1/p))n

pn�(n/p)

∫ r2

r1

r(α/p)−1f β(r1/p)dr. (62)

Setting r = (
r2−u
r2−r1

r
α/p

1 + λ0
u−r1
r2−r1

r
α/p

2

)p/α , we have

∫ r2

r1

r(α/p)−1f β(r1/p)dr = p(λ0r
α/p

2 − r
α/p

1 )

α(r2 − r1)

×
∫ r2

r1

f β((
r2 − u

r2 − r1
r
α/p

1 + λ0
u − r1

r2 − r1
r
α/p

2 )1/α)du.

(63)
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By (5) in Definition 2, we get

f β((
r2 − u

r2 − r1
r
α/p

1 + λ0
u − r1

r2 − r1
r
α/p

2 )1/α)

≤ h(
r2 − u

r2 − r1
)f β(r

1/p

1 ) + λ0h(
u − r1

r2 − r1
)f β(r

1/p

2 ). (64)

Thus, by (62), (63), and (64), we obtain
∫

E

‖x‖α−n
p f β(‖x‖p)dx

≤ (�(1/p))n(λ0r
α/p

2 − r
α/p

1 )

αpn−1(r2 − r1)�(n/p)

×{f β(r
1/p

1 )

∫ r2

r1

h(
r2 − u

r2 − r1
)du + λ0f

β(r
1/p

2 )

∫ r2

r1

h(
u − r1

r2 − r1
)du}

= (�(1/p))n(λ0r
α/p

2 − r
α/p

1 )

αpn−1�(n/p)
{f β(r

1/p

1 ) + λ0f
β(r

1/p

2 )}
∫ 1

0
h(u)du

which gives the right-hand inequality in (61).
To show the left-hand inequality in (61), setting u = 1

2 (r1 + r2) + t , then

rα/p = r2 − u

r2 − r1
r
α/p

1 + λ0
u − r1

r2 − r1
r
α/p

2

= 1

2
(r

α/p

1 + λ0r
α/p

2 ) + λ0r
α/p

2 − r
α/p

1

r2 − r1
t. (65)

Setting

‖x1‖p = {1

2
(r

α/p

1 + λ0r
α/p

2 ) − λ0r
α/p

2 − r
α/p

1

r2 − r1
t}p/α,

‖x2‖p = {1

2
(r

α/p

1 + λ0r
α/p

2 ) + λ0r
α/p

2 − r
α/p

1

r2 − r1
t}p/α

we get

‖x1‖α/p
p + ‖x2‖α/p

p = r
α/p

1 + λ0r
α/p

2 .

Thus, by the definition of (α, β, λ, h) convex functional, we have

f β((
r
α/p

1 + λ0r
α/p

2

2
)1/α) = f β((

1

2
‖x1‖α/p

p + 1

2
‖x2‖α/p

p )1/α)

≤ h(1/2){f β(‖x1‖1/p
p ) + f β(‖x2‖1/p

p )}. (66)
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Hence, by (63), (65), and (66), we get

∫ r2

r1

r
α
p

−1
f β(r1/p)dr = p(λ0r

α/p

2 − r
α/p

1 )

α(r2 − r1)

×
∫ (r2−r1)/2

−(r2−r1)/2
f β((

1

2
(r

α/p

1 + λ0r
α/p

2 ) + λ0r
α/p

2 − r
α/p

1

r2 − r1
t)1/α)dt

= p(λ0r
α/p

2 − r
α/p

1 )

α(r2 − r1)

∫ (r2−r1)/2

0
(f β(‖x1‖1/p

p ) + f β(‖x2‖1/p
p ))dt

≥ p(λ0r
α/p

2 − r
α/p

1 )

α(r2 − r1)h(1/2)

∫ (r2−r1)/2

0
f β((

r
α/p

1 + λ0r
α/p

2

2
)1/α)dt

= p(λ0r
α/p

2 − r
α/p

1 )

2αh(1/2)
f β((

r
α/p

1 + λ0r
α/p

2

2
)1/α). (67)

By (62) and (67), we get

∫

E

‖x‖α−n
p f β(‖x‖p)dx = (�(1/p))n

pn�(n/p)

∫ r2

r1

r(α/p)−1f β(r1/p)dr

≥ (�(1/p))n(λ0r
α/p

2 − r
α/p

1 )

2αpn−1h(1/2)�(n/p)
f β((

r
α/p

1 + λ0r
α/p

2

2
)1/α),

which finishes the proof.

Corollary 7 Let f : En(p) → (0,∞) be a (α, β, λ, λ0, h) convex functional. If
h ∈ L(0, 1) and

∫
B(0,r)

‖x‖α−n
p f β(‖x‖p)dx < ∞, then

1

2h(1/2)
f β((

λ0

2
)1/αr1/p) ≤ αpn−1�(n/p)

λ0rα/p(�(1/p))n

∫

B(0,r)

‖x‖α−n
p f β(‖x‖p)dx

≤ {f β(0) + λ0f
β(r1/p)}

∫ 1

0
h(u)du. (68)

Corollary 8 Let f : (0,∞) → (0,∞) be a (α, β, λ, λ0, h) convex function. If
h ∈ L(0, 1), and

∫ b

a
xα−1f β(x)dx < ∞, 0 < a < b < ∞, then

1

2h(1/2)
f β((

aα + λ0b
α

2
)1/α) ≤ α

λ0bα − aα

∫ b

a

xα−1f β(x)dx

≤ {f β(a) + λ0f
β(b)}

∫ 1

0
h(u)du. (69)
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Corollary 9 ([4]) Let f : (0,∞) → (0,∞) be an h-convex function. If h ∈
L(0, 1), f ∈ L[a, b], [a, b] ⊂ (0,∞), then

1

2h(1/2)
f (

a + b

2
) ≤ 1

b − a

∫ b

a

f (x)dx

≤ {f (a) + f (b)}
∫ 1

0
h(u)du. (70)

In particular, if h(t) = t s , 0 < s ≤ 1, then (70) reduces to (25) in [4]; if h(t) =
t−s , 0 < s ≤ 1, then (70) reduces to (26) in [4].

Remark 1 If β = 1 and λ0 = 1, then (69) reduces to Theorem 5 in [5]. For h(t) =
t, λ0 = 1 in (69), we get

f β((
aα + bα

2
)1/α) ≤ α

bα − aα

∫ b

a

xα−1f β(x)dx

≤ 1

2
{f β(a) + f β(b)}. (71)

For α = 1 in (71), we get

f β(
a + b

2
) ≤ 1

b − a

∫ b

a

f β(x)dx

≤ 1

2
{f β(a) + f β(b)}. (72)

If β = 1, then (72) reduces to the classical Hermite-Hadamard inequality:

f (
a + b

2
) ≤ 1

b − a

∫ b

a

f (x)dx ≤ 1

2
{f (a) + f (b)}. (73)

Remark 2 Inequality (72) is proved by Yang Zhen-hang, but he adds the conditions:
β ≥ 1 and f (x), f

′′
(x) > 0. (see [11, P. 12]).

Theorem 4 Let f : (0,∞) → (0,∞) be a (α, β, λ, h) convex function and h :
(0, 1) → (0,∞) is a super-multiplicative function, if [a, b] ⊂ (0,∞) and aα =
xα

1 < xα
2 < · · · < xα

n = bα be equidistant points, then

1

h(1/n)
f β((

xα
1 + xα

n

2
)1/α) ≤

n∑

k=1

f β(xk)

≤ f β(x1)

n∑

k=1

h(1 − λk) + f β(xn)

n∑

k=1

h(λk), (74)

where λk = k−1
n−1 , k = 1, 2, · · · , n, n > 1.
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Proof Since the points xα
1 , · · · , xα

n are equidistant, putting t = xα
n −xα

1
n−1 , we have

xα
k = xα

1 +(k−1)t, k = 1, 2, · · · , n and 1
n

∑n
k=1 xα

k = 1
2 (xα

1 +xα
n ). By Corollary 4,

we get

f β((
xα

1 + xα
n

2
)1/α) = f β((

1

n

n∑

k=1

xα
k )1/α)

≤
n∑

k=1

h(
1

n
)f β(xk) = h(

1

n
)

n∑

k=1

f β(xk),

which gives the left-hand inequality in (74).
To show the right-hand inequality in (74), we note that xα

k = xα
1 + (k − 1)t can

be written as xα
k = (1 − λk)x

α
1 + λkx

α
n , where λk = k−1

n−1 , k = 1, 2, · · · , n. By the
definition of (α, β, λ, h) convex function, we get

f β(xk) = f β(((1 − λk)x
α
1 + λkx

α
n )1/α)

≤ h(1 − λk)f
β(x1) + h(λk)f

β(xn).

Summing up the above inequalities, we get

n∑

k=1

f β(xk) ≤ f β(x1)

n∑

k=1

h(1 − λk) + f β(xn)

n∑

k=1

h(λk),

which finishes the proof.

Corollary 10 Let f : (0,∞) → (0,∞) be an h-convex function and h : (0, 1) →
(0,∞) is a super-multiplicative function. If [a, b] ⊂ (0,∞) and a = x1 < x2 <

· · · < xn = b be equidistant points, then

1

h(1/n)
f (

x1 + xn

2
) ≤

n∑

k=1

f (xk)

≤ f (x1)

n∑

k=1

h(1 − λk) + f (xn)

n∑

k=1

h(λk), (75)

where λk = k−1
n−1 , k = 1, 2, · · · , n, n > 1.

Remark 3 Using Lemma 1, we also obtain Theorem 4 from Corollary 10. For
h(t) = t s , 0 < |s| ≤ 1 in (74), we get

f β((
xα

1 + xα
n

2
)1/α) ≤ 1

ns

n∑

k=1

f β(xn) ≤ 1

(n(n − 1))s
(

n−1∑

k=1

ks){f β(x1) + f β(xn)}.
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In particular, when s = 1, we get

f β((
xα

1 + xα
n

2
)1/α) ≤ 1

n

n∑

k=1

f β(xk) ≤ 1

2
{f β(x1) + f β(xn)}. (76)

If α = β = 1, then (76) reduces to the discrete analogous of the classical Hermite-
Hadamard inequality (73) (see [13]):

f (
x1 + xn

2
) ≤ 1

n

n∑

k=1

f (xk) ≤ 1

2
{f (x1) + f (xn)}.

5 Strongly Convex Functionals in Normed Linear Spaces

Strongly convex functions have been introduced by Polyak [17] and they play an
important role in optimization theory, mathematical economics, and other branches
of pure and applied mathematics. Many properties and applications of them can be
found in the literature (see, for instance, [1, 4, 10, 13, 14, 16, 17], and the references
therein).

In what follows, (X, ‖ · ‖) denotes the real normed linear spaces, D be a convex
subset of X, h : (0, 1) → (0,∞) is a given function and c be a positive constant.

Definition 4 (See [13]) A function f : D → R is called strongly convex with
modulus c, if

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2) − cλ(1 − λ)‖x1 − x2‖2, (77)

∀x1, x2 ∈ D,∀λ ∈ [0, 1].
In this section, we introduce a new class of strongly convex functional with modulus
c in real normed linear spaces, that is, (α, β, λ, t, h) strongly convex functional
with modulus c in real normed linear spaces, and present the new Schur, Jensen,
and Hermite-Hadamard type inequalities for these strongly convex functional with
modulus c. They are significant generalizations of the corresponding inequalities for
the classical convex functions.

Definition 5 A functional f : D → (0,∞) is said to be a (α, β, λ, t, h) strongly
convex with modulus c, if

f β((λ‖x1‖α + (1 − λ)‖x2‖α)1/α) ≤ h(t)f β(‖‖x1‖) + h(1 − t)f β(‖x2‖)
− ch(t)h(1 − t)|‖x1‖α − ‖x2‖α|2, (78)

∀x1, x2 ∈ D,∀λ, t ∈ [0, 1], α, β are real numbers, and α, β �= 0.
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For c = 0 in (78), we get

f ((λ‖x1‖α+(1−λ)‖x2‖α)1/α) ≤ {h(t)f β(‖x1‖)+h(1−t)f β(‖x2‖)}1/β, (79)

that is, f reduces to (α, β, λ, t, h) convex functional in Section 2.
For t = λ in (78), that is,

f β((λ‖x1‖α + (1 − λ)‖x2‖α)1/α) ≤ h(λ)f β(‖x1‖) + h(1 − λ)f β(‖x2‖)
− ch(λ)h(1 − λ)|‖x1‖α − ‖x2‖α|2, (80)

then f is said to be a (α, β, λ, h) strongly convex functional with modulus c. If
c = 0 in (80), then f reduces to (α, β, λ, h) convex functional in Section 2.

If h(λ) = λs, 0 < |s| ≤ 1, then (α, β, λ, t, h), (α, β, λ, h) strongly convex
functional with modulus c reduce to (α, β, λ, t, s), (α, β, λ, s) strongly convex
functional with modulus c, respectively. In particular, if s = 1, then f is said to
be a (α, β, λ, t), (α, β, λ) strongly convex functional with modulus c, respectively.

If D = (0,∞) in (78), that is, if a function f : (0,∞) → (0,∞) satisfies

f β((λxα
1 + (1 − λ)xα

2 )1/α)

≤ h(t)f β(x1) + h(1 − t)f β(x2) − ch(t)h(1 − t)|xα
2 − xα

1 |2, (81)

∀x1, x2 ∈ (0,∞),∀λ, t ∈ [0, 1], α, β are real numbers, and α, β �= 0, then f is said
to be a (α, β, λ, t, h) strongly convex function with modulus c.

For c = 0 in (81), we get

f ((λxα
1 + (1 − λ)xα

2 )1/α) ≤ {h(t)f β(x1) + h(1 − t)f β(x2)}1/β, (82)

that is, f reduces to (α, β, λ, t, h) convex function in Section 2.
If t = λ in (81), that is,

f β((λxα
1 + (1 − λ)xα

2 )1/α)

≤ h(λ)f β(x1) + h(1 − λ)f β(x2) − ch(λ)h(1 − λ)|xα
2 − xα

1 |2, (83)

∀x1, x2 ∈ (0,∞),∀λ ∈ [0, 1], α, β are real numbers, and α, β �= 0, then f is said
to be a (α, β, λ, h) strongly convex function with modulus c.

For c = 0 in (83), we get

f ((λxα
1 + (1 − λ)xα

2 )1/α) ≤ {h(λ)f β(x1) + h(1 − λ)f β(x2)}1/β, (84)

that is, f reduces to (α, β, λ, h) convex function in Section 2.
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If h(λ) = λs, 0 < |s| ≤ 1 in (83), we get

f β((λxα
1 + (1−λ)xα

2 )1/α) ≤ λsf β(x1)+ (1−λ)sf β(x2)− cλs(1−λ)s |xα
2 −xα

1 |2,
(85)

then f is said to be a (α, β, λ, s) strongly convex function with modulus c.
For c = 0 in (85), that is,

f ((λxα
1 + (1 − λ)xα

2 )1/α) ≤ {λsf β(x1) + (1 − λ)sf β(x2)}1/β, (86)

that is, f reduces to (α, β, λ, s) convex function in Section 2.

Remark 4 If α = β = 1, s = 1, then (86) reduces to the classical convex function.
In fact, the notion of (α, β, λ, t, h) strongly convex functional with modulus c

unifies and generalizes the many known and new classes of convex functions, see,
e.g., [1, 10, 13, 14, 16, 17], and the references therein.

6 New Schur, Jensen, Hermite-Hadamard Type Inequalities

In this section, we present the Schur, Jensen, and Hermite-Hadamard type inequali-
ties for (α, β, λ) strongly convex functional with modulus c.

Lemma 2 Let g = {f β − c‖ · ‖2α}1/β with f β(‖x‖) ≥ c‖x‖2α, x ∈ D, then a
functional f : D → (0,∞) is (α, β, λ) strongly convex with modulus c if and only
if the functional g : D → (0,∞) is (α, β, λ) convex.

Proof Assume that f is (α, β, λ) strongly convex with modulus c, then

gβ((λ‖x1‖α + (1 − λ)‖x2‖α)1/α)

= f β((λ‖x1‖α + (1−λ)‖x2‖α)1/α)−c|(λ‖x1‖α + (1−λ)‖x2‖α)1/α|2α

≤ λf β(‖x1‖) + (1 − λ)f β(‖x2‖) − cλ(1 − λ)|‖x1‖α − ‖x2‖α|2
−c|λ‖x1‖α + (1 − λ)‖x2‖α|2
= λf β(‖x1‖) + (1 − λ)f β(‖x2‖) − cλ‖x1‖2α − c(1 − λ)‖x2‖2α

= λgβ(‖x1‖) + (1 − λ)gβ(‖x2‖),
which proves that g is (α, β, λ) convex.

Conversely, if g is (α, β, λ) convex, then

f β((λ‖x1‖α + (1 − λ)‖x2‖α)1/α)

= gβ((λ‖x1‖α + (1 − λ)‖x2‖α)1/α) + c‖(λ‖x1‖α + (1 − λ)‖x2‖α)1/α‖2α

≤ λgβ(‖x1‖) + (1 − λ)gβ(‖x2‖) + c|λ‖x1‖α + (1 − λ)‖x2‖α|2
= λf β(‖x1‖) + (1 − λ)f β(‖x2‖) − cλ(1 − λ)|‖x1‖α − ‖x2‖α|2,

which proves that f is (α, β, λ) strongly convex with modulus c.
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Using Corollary 1 (with h(t) = t) and Lemma 2, and the definition of (α, β, λ)

strongly convex with modulus c, we get

Theorem 5 Let a functional f : D → (0,∞) be (α, β, λ) strongly convex with
modulus c, and h : (0, 1) → (0,∞) is a super-multiplicative function, then for all
x1, x2, x3 ∈ D, such that ‖x1‖α < ‖x2‖α < ‖x3‖α , and 0 < ‖x3‖α − ‖x1‖α < 1,
the following Schur-type inequalities holds:

f β(‖x2‖) ≤ ‖x3‖α − ‖x2‖α

‖x3‖α − ‖x1‖α
f β(‖x1‖) + ‖x2‖α − ‖x1‖α

‖x3‖α − ‖x1‖α
f β(‖x3‖)

− c{‖x2‖2α + (‖x1‖α − ‖x2‖α)‖x3‖α − ‖x1‖α‖x2‖α}. (87)

Using Corollary 3 (with h(λk = λk, tk = λk, ξk = 1)) and Lemma 2, and the
definition of (α, β, λ) strongly convex with modulus c, one obtains the following
new Jensen-type inequality:

Theorem 6 Let a functional f : D → (0,∞) be (α, β, λ) strongly convex with
modulus c, and f β(‖x‖) ≥ c‖x‖2α, x ∈ D, and h : (0, 1) → (0,∞) is a super-
multiplicative function, then

f β((

n∑

k=1

λk‖xk‖α)1/α) ≤
n∑

k=1

λkf
β(‖xk‖)

−c{
n∑

k=1

λk‖xk‖2α − (

n∑

k=1

λk‖xk‖α)2}, (88)

for any xk ∈ D,λk ∈ [0, 1], 1 ≤ k ≤ n, with
∑n

k=1 λk = 1.

We present a counterpart of the Hermite-Hadamard inequality for (α, β, λ, h)

strongly convex functional with modulus c. In what follows, we use the notations in
Section 4.

Theorem 7 Let B(0, r1) be an n-ball of radius r1 in En(p), E = B(0, r2) −
B(0, r1), 0 < r1 < r2 < ∞. Let f : E → (0,∞) be a (α, β, λ, h) strongly convex
functional with modulus c. If

∫
E

‖x‖α−n
p f β(‖x‖p)dx < ∞, and h ∈ L(0, 1), then

1

2h(1/2)
f β((

r
α/p

2 + r
α/p

1

2
)1/α) + c

6
(r

α/p

2 − r
α/p

1 )2

≤ αpn−1�(n/p)

(r
α/p

2 − r
α/p

1 )�n(1/p)

∫

E

‖x‖α−n
p f β(‖x‖p)dx

≤ {f β(r
1/p

1 ) + f β(r
1/p

2 )}
∫ 1

0
h(u)du

−c|rα/p

2 − r
α/p

1 |2
∫ 1

0
h(t)h(1 − t)dt. (89)
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Proof By transforming the integral to polar coordinates (see [9]), we have

∫

E

‖x‖α−n
p f β(‖x‖p)dx = (�(1/p))n

pn�(n/p)

∫ r2

r1

r(α/p)−1f β(r1/p)dr. (90)

Setting r = (
r2−u
r2−r1

r
α/p

1 + u−r1
r2−r1

r
α/p

2

)p/α , we have

∫ r2

r1

r(α/p)−1f β(r1/p)dr = p(r
α/p

2 − r
α/p

1 )

α(r2 − r1)

×
∫ r2

r1

f β((
r2 − u

r2 − r1
r
α/p

1 + u − r1

r2 − r1
r
α/p

2 )1/α)du. (91)

By the definition of (α, β, λ, h) strongly convex with modulus c, we get

f β((
r2 − u

r2 − r1
r
α/p

1 + u − r1

r2 − r1
r
α/p

2 )1/α)

≤ h(
r2 − u

r2 − r1
)f β(r

1/p

1 ) + h(
u − r1

r2 − r1
)f β(r

1/p

2 )

−ch(
r2 − u

r2 − r1
)h(

u − r1

r2 − r1
)|rα/p

2 − r
α/p

1 |2. (92)

Thus, by (90), (91) and (92), we obtain
∫

E

‖x‖α−n
p f β(‖x‖p)dx ≤ (�(1/p))n(rα

2 − rα
1 )

αpn−1(r2 − r1)�(n/p)

×{f β(r
1/p

1 )

∫ r2

r1

h(
r2 − u

r2 − r1
)du + f β(r

1/p

2 )

∫ r2

r1

h(
u − r1

r2 − r1
)du

−c|rα/p

2 − r
α/p

1 |2
∫ r2

r1

h(
r2 − u

r2 − r1
)h(

u − r1

r2 − r1
)du}

= (�(1/α))n(r
α/p

2 − r
α/p

1 )

αpn−1�(n/p)
{(f β(r

1/p

1 ) + f β(r
1/p

2 ))

×
∫ 1

0
h(t)dt − c|rα/p

2 − r
α/p

1 |2
∫ 1

0
h(t)h(1 − t)dt},

which gives the right-hand inequality in (89).
To show the left-hand inequality in (89), setting u = 1

2 (r1 + r2) + t , then

rα/p = r2 − u

r2 − r1
r
α/p

1 + u − r1

r2 − r1
r
α/p

2

= 1

2
(r

α/p

1 + r
α/p

2 ) + r
α/p

2 − r
α/p

1

r2 − r1
t. (93)
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Setting

‖x1‖p = {1

2
(r

α/p

1 + r
α/p

2 ) − r
α/p

2 − r
α/p

1

r2 − r1
t}p/α

‖x2‖p = {1

2
(r

α/p

1 + r
α/p

2 ) + r
α/p

2 − r
α/p

1

r2 − r1
t}p/α

we get

‖x1‖α/p
p + ‖x2‖α/p

p = r
α/p

1 + r
α/p

2

‖x2‖α/p
p − ‖x1‖α/p

p = 2(rα
2 − rα

1 )

r2 − r1
t.

Thus, by (80), we have

f β((
r
α/p

1 + r
α/p

2

2
)1/α) = f β((

1

2
‖x1‖α/p

p + 1

2
‖x2‖α/p

p )1/α)

≤ h(
1

2
)f β(‖x1‖1/p

p ) + h(
1

2
)f β(‖x2‖1/p

p ) − c(h(
1

2
))2|‖x2‖α/p

p − ‖x1‖α/p
p |2

= h(
1

2
){f β(‖x1‖1/p

p ) + f β(‖x2‖1/p
p )} − 4c(h(

1

2
))2(

r
α/p

2 − r
α/p

1

r2 − r1
)2t2. (94)

Hence, by (91), (93), and (94), we get

∫ r2

r1

r(α/p)−1f β(r1/p)dr = p(r
α/p

2 − r
α/p

1 )

α(r2 − r1)

×
∫ (r2−r1)/2

−(r2−r1)/2
f β((

1

2
(r

α/p

1 + r
α/p

2 ) + r
α/p

2 − r
α/p

1

r2 − r1
t)1/α)dt

= p(r
α/p

2 − r
α/p

1 )

α(r2 − r1)

∫ (r2−r1)/2

0
{f β(‖x1‖1/p

p ) + f β(‖x2‖1/p
p )}dt

≥ p(r
α/p

2 − r
α/p

1 )

α(r2 − r1)h(1/2)

∫ (r2−r1)/2

0
{f β((

r
α/p

1 + r
α/p

2

2
)1/α) + 4ch(

1

2
)(

r
α/p

2 − r
α/p

1

r2 − r1
)2t2}dt

= p(r
α/p

2 − r
α/p

1 )

2αh(1/2)
f β((

r
α/p

1 + r
α/p

2

2
)1/α) + c

p(r
α/p

2 − r
α/p

1 )3

6α
. (95)
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By (90) and (95), we get
∫

E

‖x‖α−n
p f β(‖x‖p)dx = (�(1/p))n

pn�(n/p)

∫ r2

r1

r(α/p)−1f β(r1/p)dr

≥ (�(1/p))n(r
α/p

2 − r
α/p

1 )

αpn−1�(n/p)

× { 1

2h(1/2)
f β((

r
α/p

1 + r
α/p

2

2
)1/α) + c

6
(r

α/p

2 − r
α/p

1 )2},

which finishes the proof.

Corollary 11 Let X = R
n, B(0, rk) be an n-ball of radius rk in R

n, E = B(0, r2)−
B(0, r1), 0 < r1 < r2 < ∞. Let a functional f : E → (0,∞) be (α, β, λ, h)

strongly convex with modulus c,
∫
E

‖x‖α−n
2 f β(‖x‖2)dx < ∞, and h ∈ L(0, 1),

then

1

2h(1/2)
f β((

r
α/2
2 + r

α/2
1

2
)1/α) + c

6
(r

α/2
2 − r

α/2
1 )2

≤ α2n−1�(n/2)

πn/2(r
α/2
2 − r

α/2
1 )

∫

E

‖x‖α−n
2 f β(‖x‖2)dx

≤ {f β(r
1/2
1 ) + f β(r

1/2
2 )}

∫ 1

0
h(t)dt − c|rα/2

2 − r
α/2
1 |2

∫ 1

0
h(t)h(1 − t)dt.

(96)

Corollary 12 Let a function f : (0,∞) → (0,∞) be (α, β, λ, h) strongly convex
with modulus c. If

∫ b

a
xα−1f β(x)dx < ∞, 0 < a < b < ∞, and h ∈ L(0, 1), then

1

2h(1/2)
f β((

aα + bα

2
)1/α) + c

6
(bα − aα)2

≤ α

bα − aα

∫ b

a

xα−1f β(x)dx

≤ {f β(a) + f β(b)}
∫ 1

0
h(t)dt − c(bα − aα)2

∫ 1

0
h(t)h(1 − t)dt. (97)

If α = −1, then (97) reduces to

1

2h(1/2)
f β(

2ab

a + b
) + c

6
(
b − a

ab
)2

≤ ab

b − a

∫ b

a

1

x2
f β(x)dx

≤ {f β(a) + f β(b)}
∫ 1

0
h(t)dt − c(

b − a

ab
)2

∫ 1

0
h(t)h(1 − t)dt.
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In particular, if c = 0, h(t) = t , then the above inequality reduces to the mail result
of [15]:

f β(
2ab

a + b
) ≤ ab

b − a

∫ b

a

1

x2 f β(x)dx ≤ 1

2
{f β(a) + f β(b)}.

If α = β = 1, then (97) reduces to the Hermite-Hadamard inequality for strongly
h-convex functions:

1

2h(1/2)
f (

a + b

2
) + c

6
(b − a)2 ≤ 1

b − a

∫ b

a

f (x)dx

≤ {f (a) + f (b)}
∫ 1

0
h(t)dt − c(b − a)2

∫ 1

0
h(t)h(1 − t)dt. (98)

If h(t) = t s , 0 < s ≤ 1, then (98) reduces to:

2s−1f (
a + b

2
) + c

6
(b − a)2 ≤ 1

b − a

∫ b

a

f (x)dx

≤ f (a) + f (b)

s + 1
− c(b − a)2 (�(1 + s))2

�(2(1 + s))
. (99)

If h(t) = t−s , 0 < s < 1, then (98) reduces to:

2−(s+1)f (
a + b

2
) + c

6
(b − a)2 ≤ 1

b − a

∫ b

a

f (x)dx

≤ f (a) + f (b)

1 − s
− c(b − a)2 (�(1 − s))2

�(2(1 − s))
(100)

If h(t) = t, s = 1, then (98) reduces to:

f (
a + b

2
) + c

6
(b − a)2 ≤ 1

b − a

∫ b

a

f (x)dx

≤ f (a) + f (b)

2
− c

6
(b − a)2. (101)

If c = 0, then (101) reduces to the classical Hermite-Hadamard inequality (73).
Hence, the above results are some substantial refinements and generalizations

of the corresponding results obtained by Nikodem [13] and Merentes and Niko-
dem [10].
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