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Abstract This paper treats two functional equations, the Kannappan-Van Vleck
functional equation

μ(y)f (xτ(y)z0) ± f (xyz0) = 2f (x)f (y), x, y ∈ S

and the following variant of it

μ(y)f (τ(y)xz0) ± f (xyz0) = 2f (x)f (y), x, y ∈ S,

in the setting of semigroups S that need not be abelian or unital, τ is an involutive
morphism of S, μ : S −→ C is a multiplicative function such that μ(xτ(x)) = 1
for all x ∈ S and z0 is a fixed element in the center of S.

We find the complex-valued solutions of these equations in terms of multiplica-
tive functions and solutions of d’Alembert’s functional equation.

1 Introduction

Van Vleck [1, 2] studied the continuous solutions f : R −→ R, f �= 0, of the
following functional equation

f (x − y + z0) − f (x + y + z0) = 2f (x)f (y), x, y ∈ R, (1)

where z0 > 0 is fixed. He showed that any continuous solution of (1) with minimal
period 4z0 is f (x) = cos( π

2z0
(x − z0)), x ∈ R.

K. Belfakih · E. Elqorachi (�) · A. Redouani
Department of Mathematics, Faculty of Sciences, University Ibn Zohr, Agadir, Morocco

© Springer Nature Switzerland AG 2019
T. M. Rassias, P. M. Pardalos (eds.), Mathematical Analysis
and Applications, Springer Optimization and Its Applications 154,
https://doi.org/10.1007/978-3-030-31339-5_11

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31339-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-31339-5_11


320 K. Belfakih et al.

Stetkær [3, Exercise 9.18] found the complex-valued solutions of equation

f (xy−1z0) − f (xyz0) = 2f (x)f (y), x, y ∈ G, (2)

on groups that need not be abelian and z0 is a fixed element in the center of G.
Perkins and Sahoo [4] replaced the group inversion by an involution τ : G −→ G

and obtained the abelian, complex-valued solutions of the equation

f (xτ(y)z0) − f (xyz0) = 2f (x)f (y), x, y ∈ G, (3)

by means of d’Alembert’s functional equation

g(xy) + g(xτ(y)) = 2g(x)g(y), x, y ∈ G. (4)

Stetkær [5] extended the results of [4] about equation (3) to semigroups and derived
an explicit formula for the solutions in terms of multiplicative maps. In particular,
Stetkær proved that all solutions of (3) are abelian. So, the restriction to abelian
solutions in [4] is not needed.

D’Alembert’s classic functional equation

g(x + y) + g(x − y) = 2g(x)g(y), x, y ∈ R (5)

has solutions g: R −→ C that are periodic, for instance g(x) = cos(x), and
solutions that are not, for instance g(x) = cosh(x).

Kannappan [6] proved that any solution of the extension of (5)

f (x − y + z0) + f (x + y + z0) = 2f (x)f (y), x, y ∈ R, (6)

where z0 �= 0 is a real constant has the form f (x) = g(x − z0), where g: R −→ C

is a periodic solution of (5) with period 2z0.
Perkins and Sahoo [4] considered the following version of Kannappan’s func-

tional equation

f (xyz0) + f (xy−1z0) = 2f (x)f (y), x, y ∈ G (7)

on groups and they found the form of any abelian solution f of (7).
Stetkær [7] took z0 in the center and expressed the complex-valued solutions of

Kannappan’s functional equation

f (xyz0) + f (xτ(y)z0) = 2f (x)f (y), x, y ∈ S (8)

on semigroups with involution τ in terms of solutions of d’Alembert’s functional
equation (4).

In the very special case of z0 being the neutral element of a monoid S equation (8)
becomes (4) which has been solved by Davison [8].
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Here we shall consider the following functional equations

f (xyz0) + μ(y)f (xτ(y)z0) = 2f (x)f (y), x, y ∈ S, (9)

f (xyz0) + μ(y)f (τ(y)xz0) = 2f (x)f (y), x, y ∈ S, (10)

μ(y)f (xτ(y)z0) − f (xyz0) = 2f (x)f (y), x, y ∈ S (11)

and

μ(y)f (τ(y)xz0) − f (xyz0) = 2f (x)f (y), x, y ∈ S, (12)

where S is a semigroup, τ is an involutive morphism of S. That is, τ is an involutive
automorphism: τ(xy) = τ(x)τ (y) and τ(τ (x)) = x for all x, y ∈ S or τ is an
involutive anti-automorphism: τ(xy) = τ(y)τ (x) and τ(τ (x)) = x for all x, y ∈ S.

The map μ : S −→ C is a multiplicative function such that μ(xτ(x)) = 1 for all
x ∈ S and z0 is a fixed element in the center of S. By algebraic methods:

(1) We find all solutions of (11) and (12). Only multiplicative functions occur in
the solution formulas.

(2) We find the solutions of (10) for the particular case of τ being an involutive
automorphism and

(3) We express the solutions of (9) and (10) in terms of solutions of d’Alembert’s
μ-functional equation

g(xy) + μ(y)g(xτ(y)) = 2g(x)g(y), x, y ∈ S. (13)

Of course we are not the first to consider trigonometric functional equa-
tions having a multiplicative function μ in front of terms like f (xτ(y)) or
f (τ(y)x). The μ-d’Alembert’s functional equation (13) which is an extension
of d’Alembert’s functional equation (4) has been treated systematically by
Stetkær [3, 9] on groups with involution. The non-zero solutions of (13) on
groups with involution are the normalized traces of certain representation of S

on C2.

Stetkær [10] obtained the complex-valued solution of the following variant of
d’ĄAlembert’s functional equation

f (xy) + f (τ(y)x)) = 2f (x)f (y), x, y ∈ S, (14)

where τ is an involutive automorphism of S.
Elqorachi and Redouani [11] proved that the solutions of the variant of

d’Alembert’s functional equation

f (xy) + μ(y)f (τ (y)x)) = 2f (x)f (y), x, y ∈ S (15)

are of the form f (x) = χ(x)+μ(x)χ(τ(x))
2 , x ∈ S, where τ is an involutive

automorphism of S and χ : S −→ S is a multiplicative function.
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Bouikhalene and Elqorachi [12] obtained the solutions of (11) for involutive
anti-automorphism τ . In the same paper they also found the solutions of (11) for
involutive automorphism τ , but on monoids only.

Throughout this paper S denotes a semigroup with an involutive morphism τ :
S −→ S, μ: S −→ C denotes a multiplicative function such that μ(xτ(x)) = 1 for
all x ∈ S and z0 a fixed element in the center of S.

In all proofs of the results of this paper we use without explicit mentioning the
assumption that z0 is contained in the center of S and its consequence τ(z0) is
contained in the center of S.

2 Solutions of Equation (9) on Semigroups

In this section we express the solutions of (9) in terms of solutions of d’Alembert’s
functional equation (13). The following lemma will be used later.

Lemma 1 If f : S −→ C is a solution of (9), then for all x ∈ S

f (x) = μ(x)f (τ(x)), (16)

f (xτ(z0)z0) = μ(τ(z0))f (z0)f (x), (17)

f (xz2
0) = f (x)f (z0), (18)

f (z0) �= 0 ⇐⇒ f �= 0. (19)

Proof Equation (16): By replacing y by τ(y) in (9) and multiplying the result
obtained by μ(y) and using μ(yτ(y)) = 1 we get by computation that

μ(y)2f (x)f (τ(y)) = μ(y)f (xτ(y)z0) + μ(yτ(y))f (xyz0)

= μ(y)f (xτ(y)z0) + f (xyz0) = 2f (x)f (y),

which implies (16).
Equation (17): Replacing x by τ(z0) in (9) and using (16) two times we get by a

computation that

f (τ(z0)yz0) + μ(y)f (τ(z0)τ (y)z0) = 2f (τ(z0))f (y) = 2μ(τ(z0))f (z0)f (y)

and

f (τ(z0)yz0) + μ(y)f (τ(z0)τ (y)z0) = 2f (τ(z0))f (y)

= f (τ(z0)yz0) + μ(y)μ(τ(z0)τ (y)z0)f (τ (z0)yz0) = 2f (τ(z0)yz0).

This proves (17).
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Equation (18): Putting y = z0 in (9) and using (17) we obtain (18).
Equation (19): Assume that f (z0) = 0. By replacing x by xz0 and y by yz0 in (9)

and using (17) and (18) we get by a computation that

2f (xz0)f (yz0) = f (xz0yz2
0) + μ(yz0)f (xz0τ(y)τ (z0)z0)

= f (z0)f (xyz0) + μ(y)f (z0)f (xτ(y)z0) = 0 for all x, y ∈ S,

which implies that f (xz0) = 0 for all x ∈ S. So, from equation (9) we get
2f (x)f (y) = 0 for all x, y ∈ S, and then f (x) = 0 for all x ∈ S. Conversely,
it’s clear that f (x) = 0 for all x ∈ S implies that f (z0) = 0.

For the rest of this section we use the following notations [7].

– A consists of the solutions of g : S −→ C of d’Alembert’s functional
equation (13) with g(z0) �= 0 and satisfying the condition

g(xz0) = g(z0)g(x) for all x ∈ S. (20)

– To any g ∈ A we associate the function T g = g(z0)g : S −→ C.
– K consists of the non-zero solutions f : S −→ C of Kannappan’s functional

equation (9).

In the following main result of the present section, the complex solutions
of equation (9) are expressed by means of solutions of d’Alembert’s functional
equation (13).

Theorem 1

(1) T is a bijection of A onto K . The inverse T −1: K −→ A is given by the
formula

(T −1f )(x) = f (xz0)

f (z0)

for all f ∈ K and x ∈ S.

(2) Any non-zero solution f : S −→ C of the Kannappan’s functional equation (9)
is of the form f = T (g) = g(z0)g, where g ∈ A . Furthermore,

f (x) = g(xz0) = μ(z0)g(xτ(z0)) = g(z0)g(x)

for all x ∈ S.

(3) f is central, i.e. f (xy) = f (yx) for all x, y ∈ S if and only if g is central.
(4) f is abelian [3, Definition B.3] if and only if g is abelian.
(5) If S is equipped with a topology, then f is continuous if and only if g is

continuous.
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Proof For any g ∈ A and for all x, y ∈ S we have

T (g)(xyz0) + μ(y)T (g)(xτ(y)z0) = g(z0)[g(xyz0) + μ(y)g(xτ(y)z0)]

= g(z0)
2[g(xy) + μ(y)g(xτ(y))] = 2g(z0)g(x)g(z0)g(y) = 2T (g)(x)T (g)(y).

On the other hand, T (g)(z0) = g(z0)
2 �= 0, so we get T (A ) ⊆ K .

By adapting the proof of [7, Lemma 3] T is injective. Now, we will show that T

is surjective. Let f ∈ K . Then from (19) we have f (z0) �= 0 and we can define the
function g(x) = f (xz0)

f (z0)
. In the following we will show that g ∈ A and T (g) = f .

By using the definition of g and (17)–(18) we have

f (z0)
2[g(xy) + μ(y)g(xτ(y))] = f (z0)f (xyz0) + μ(y)f (z0)f (xτ(y)z0)

= f (xyz3
0) + μ(y)μ(z0)f (xτ(y)z0

2τ(z0))

= f (xz0yz0z0) + μ(yz0)f (xz0τ(yz0)z0) = 2f (xz0)f (yz0) = 2f (z0)
2g(x)g(y)

for all x, y ∈ S. This shows that g is a solution of d’Alembert’s functional
equation (13).

By replacing x by xz2
0 and y by z0 in (9) we get

f (xz4
0) + μ(z0)f (xz3

0τ(z0)) = 2f (xz2
0)f (z0). (21)

By replacing x by xz0 and y by z2
0 in (9) we have

f (xz4
0) + μ(z2

0)f (xz2
0τ(z2

0)) = 2f (z2
0)f (xz0). (22)

From (17) and (18) we have

f (xz3
0τ(z0)) = μ(τ(z0))f (x)(f (z0))

2

and

f (xz2
0τ(z2

0)) = (μ(τ(z0)))
2f (x)(f (z0))

2.

In view of (21) and (22) we deduce that f (z2
0)f (xz0) = f (xz2

0)f (z0). So, by using
the definition of g we obtain g(xz0) = g(x)g(z0) for all x ∈ S. In particular,

g(z2
0) = g(z0)

2 = f (z2
0z0)

f (z0)
= f (z0)f (z0)

f (z0)
= f (z0) �= 0. Furthermore, T (g)(x) =

g(z0)g(x) = g(xz0) = f (xz2
0)

f (z0)
= f (x)f (z0)

f (z0)
= f (x).

The statements (2)–(5) are obvious. This completes the proof.

Now, we extend Stetkær’s result [7] from anti-automorphisms to the more general
case of morphism as follows.
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Corollary 1 Let z0 be a fixed element in the center of a semigroup S and let τ

be an involutive morphism of S. Then, any non-zero solution f : S −→ C of
the functional equation (8) is of the form f = g(z0)g, where g is a solution of
d’Alembert’s functional equation (4) with g(z0) �= 0 and satisfying the condition
g(xz0) = g(z0)g(x) for all x ∈ S.

We will in the following propositions determine all abelian (resp. central) solutions
f of Kannappan’s functional equation (9).

Proposition 1 Let z0 be a fixed element in the center of a semigroup S. Let τ : S −→
S be an involutive anti-automorphism of S and let μ: S −→ C be a multiplicative
function such that μ(xτ(x)) = 1 for all x ∈ S. The non-zero abelian solutions of
Kannappan’s functional equation (9) are the functions of the form

f (x) = χ(x) + μ(x)χ(τ(x))

2
χ(z0), x ∈ S,

where χ : S −→ C is a multiplicative function such that χ(z0) �= 0 and
μ(z0)χ(τ(z0)) = χ(z0).

Proof Verifying that the function f defined in Proposition 1 is an abelian solution
of (9) consists of simple computations that we omit.

Let f : S −→ C be a non-zero solution of (9). From Theorem 1(2) and (4) the
function f has the form f = g(z0)g where g ∈ A and g is abelian. From [3,
Proposition 9.31] there exists a non-zero multiplicative function χ : S −→ C such
that g = χ+μχ◦τ

2 . Since g ∈ A , it satisfies (20). If we replace x by z0 in (20) we
get g(z2

0) = g(z0)
2, which via computation gives that χ(z0) = μ(z0)χ(τ(z0)). This

implies that f has the desired form. This completes the proof.

By using [11, Lemma 3.2] and the proof of the preceding proposition we get

Proposition 2 Let z0 be a fixed element in the center of a semigroup S. Let τ :
S −→ S be an involutive automorphism of S and let μ: S −→ C be a multiplicative
function such that μ(xτ(x)) = 1 for all x ∈ S. The non-zero central solutions of
the Kannappan’s functional equation (9) are the functions of the form

f (x) = χ(x) + μ(x)χ(τ(x))

2
χ(z0), x ∈ S,

where χ : S −→ C is a multiplicative function such that χ(z0) �= 0 and
μ(z0)χ(τ(z0)) = χ(z0).

3 Solutions of Equation (10) on Semigroups

In this section we determine the complex-valued solutions of (10) for any involutive
morphism τ : S −→ S. By help of Theorem 1 we express them in terms of solutions
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of d’Alembert’s functional equation (13). We first prove the following two useful
lemmas.

Lemma 2 If f : S −→ C is a solution of (10), then for all x ∈ S

f (x) = μ(x)f (τ(x)), (23)

f (xτ(z0)z0) = μ(τ(z0))f (z0)f (x), (24)

f (xz2
0) = f (x)f (z0), (25)

f (z0) �= 0 ⇐⇒ f �= 0. (26)

Proof Equation (23): Interchanging x and y in (10) and multiplying the two
members of the equation by μ(τ(y)) we get

μ(x)μ(τ(y))f (τ (x)yz0) + μ(τ(y))f (yxz0) = 2f (x)μ(τ(y))f (y), x, y ∈ S.

(27)
Replacing y by τ(y) in (10) we obtain

μ(τ(y))f (yxz0) + f (xτ(y)z0) = 2f (x)f (τ(y)), x, y ∈ S. (28)

By subtracting (28) from (27) we get

μ(xτ(y))f (τ (x)yz0) − f (xτ(y)z0) = 2f (x)[μ(τ(y))f (y) − f (τ(y)], x, y ∈ S.

(29)
By replacing x by τ(x) in (29) we have

μ(τ(x)τ(y))f (xyz0) − f (τ(x)τ(y)z0) = 2f (τ(x))[μ(τ(y))f (y) − f (τ(y)], x, y ∈ S.

(30)
Replacing y by τ(y) in (29) and multiplying the two members of the equation by
μ(τ(y)τ (x)) we obtain

f (τ(x)τ(y)z0)−μ(τ(x)τ(y))f (xyz0) = 2f (x)μ(τ(x))[f (τ(y))−μ(τ(y))f (y)], x, y ∈ S.

(31)
Now, by adding (30) and (31) we get [f (τ(x)) − μ(τ(x))f (x)][f (τ(y)) −
μ(τ(y))f (y)] = 0 for all x, y ∈ S. This proves (23).

Equation (24): Taking x = τ(z0) in (10) and using (23) we get

μ(y)f (τ(y)τ (z0)z0) + f (τ(z0)yz0) = 2μ(τ(z0))f (z0)f (y)

= f (τ(z0)yz0) + μ(y)μ(τ(y)τ (z0)z0)f (τ (z0)yz0) = 2f (τ(z0)yz0),

which implies (23).
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Equation (25): By replacing y by z0 in (10) and using (24) we obtain

μ(z0)f (τ (z0)xz0) + f (xz0
2) = 2f (z0)f (x)

= μ(z0)μ(τ(z0))f (z0)f (x) + f (xz0
2).

So, we deduce (24).
Equation (25): The proof is similar to the proof of (19).

Lemma 3 Let M consist of the solutions g: S −→ C of the variant d’Alembert’s
functional equation (15) with g(z0) �= 0 and satisfying the condition (20). Let N
consist of the non-zero solutions f : S −→ C of the variant Kannappan’s functional
equation (10); Then

(1) The map J : M −→ N defined by Jh := h(z0)h: S −→ C is a bijection. The
inverse J−1; N −→ M is given by the formula (J−1f )(x) = f (xz0)

f (z0)
= g(x)

for all x ∈ S and for all f ∈ N . Furthermore,
(2) If τ : S −→ S is an involutive automorphism, the function g has the form g =

χ+μχ◦τ
2 , where χ : S −→ C, χ �= 0, is a multiplicative function.

(3) If τ : S −→ S is an involutive anti-automorphism, the function g satisfies the
d’Alembert’s functional equation (13).

Proof For all h ∈ M we have

Jh(xyz0) + μ(y)Jh(τ(y)xz0) = h(z0)h(xyz0) + μ(y)h(z0)h(τ (y)xz0)

= h(z0)
2[h(xy) + μ(y)h(τ(y)x)] = 2h(z0)h(x)h(z0)h(y) = 2Jh(x)Jh(y).

Furthermore, Jh(z0) = h(z0)
2 �= 0. So, Jh ∈ N . By adapting the proof of [7,

Lemma 3] J is injective. Now, let f ∈ N and let g(x) := f (xz0)
f (z0)

for x ∈ S. By
using the definition of g, equations (10), (24), and (25) we get

f (z0)
2[g(xy) + μ(y)g(τ (y)x) − 2g(x)g(y)]

= f (z0)f (xyz0) + μ(y)f (z0)f (τ (y)xz0) − 2f (xz0)f (yz0)

= f (xyz0z
2
0) + μ(y)μ(z0)f (τ (y)xz0τ(z0)z0) − 2f (xz0)f (yz0)

f (xz0yz0z0) + μ(yz0)f (τ (yz0)xz0z0) − 2f (xz0)f (yz0) = 0.

Since f (z0) �= 0 then g satisfies (15). By using similar computations as in the proof
of Theorem 1 we get that g(xz0) = g(z0)g(x) for all x ∈ S.

(2) If τ : S −→ S is an involutive automorphism then from [11, Lemma 3.2] g has
the form g = χ+μχ◦τ

2 , where χ : S −→ C, χ �= 0, is a multiplicative function.
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(3) If τ : S −→ S is an involutive anti-automorphism then by adapting the proof
of [11, Theorem 2.1(1)(i)] for δ = 0 we get that g satisfies the d’Alembert’s
functional equation (13).

Theorem 2

(1) Let τ : S −→ S be an involutive automorphism. The non-zero solutions f :
S −→ C of the functional equation (10) are the functions of the form

f = χ + μχ ◦ τ

2
χ(z0), (32)

where χ : S −→ C is a multiplicative function such that χ(z0) �= 0 and
μ(z0)χ(τ(z0)) = χ(z0).

(2) Let τ : S −→ S be an involutive anti-automorphism. The non-zero solutions
f : S −→ C of the functional equation (10) are the functions of the form
f = g(z0)g, where g is a solution of d’Alembert’s functional equation (13)
with g(z0) �= 0 and satisfying the condition g(xz0) = g(z0)g(x) for all x ∈ S.

Proof Let f : S −→ S be a non-zero solution of equation (10). From Theorem 1(2)
f = g(z0)g(x) = g(xz0), where g is a solution of d’Alembert’s functional
equation (4). We will discuss two possibilities.

(1) τ is an involutive automorphism of S. From Lemma 3, there exists χ : S −→ C

a multiplicative function such that g = χ+μχ◦τ
2 . So,

f = g(z0) = χ + μχ ◦ τ

2
g(z0) = χ(z0) + μ(z0)χ ◦ τ(z0)

2

χ + μχ ◦ τ

2
.

(33)
By using g(z2

0) = g(z0)
2 we get after simple computation that χ(z0) =

μ(z0)χ(τ(z0)). This proves (1).
(2) τ is an involutive anti-automorphism of S. Combining Theorem 1 and

Lemma 3(2) we find (2). This completes the proof.

4 Solutions of Equation (11)

The solutions of the functional equation (11) with τ an involutive anti-
automorphism are explicitly obtained by Bouikhalene and Elqorachi [12] on
semigroups not necessarily abelian in terms of multiplicative functions. In this
section we obtain a similar formula for the solutions of the functional equation (11)
when τ was an involutive automorphism. The following lemma is obtained in [12]
for the case where τ is an involutive anti-automorphism. It still holds for the case
where τ is an involutive automorphism.
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Lemma 4 Let f �= 0 be a solution of (11). Then for all x ∈ S we have

f (x) = −μ(x)f (τ(x)), (34)

f (z0) �= 0, (35)

f (z2
0) = 0, (36)

f (xτ(z0)z0) = μ(τ(z0))f (x)f (z0), (37)

f (xz2
0) = −f (z0)f (x), (38)

μ(x)f (τ(x)z0) = f (xz0). (39)

The function g(x) = f (xz0)
f (z0)

is a non-zero solution of d’Alembert’s functional
equation (13).

Now, we are ready to prove the main result of this section.
In [12] we used [3, Proposition 8.14] to prove that the function g defined in

Lemma 4 is an abelian solution of (13), where τ is an involutive anti-automorphism
of S. This reasoning no longer works for the present situation. We will use another
approach.

Theorem 3 The non-zero solutions f : S −→ C of the functional equation (11),
where τ is an involutive morphism of S are the functions of the form

f = χ(z0)
μχ ◦ τ − χ

2
, (40)

where χ : S −→ C is a multiplicative function such that χ(z0) �= 0 and
μ(z0)χ(τ(z0)) = −χ(z0).

If S is a topological semigroup and that τ : S −→ S, μ : S −→ C are
continuous, then the non-zero solution f of equation (11) is continuous if and only
if χ is continuous.

Proof Let f be a non-zero solution of (11). Replacing x by xz0 in (11) and
using (38) we get

− μ(y)f (xτ(y)) + f (xy) = 2f (y)g(x), x, y ∈ S, (41)

where g is the function defined in Lemma 4.
If we replace y by yz0 in (11) and use (37) and (38) we get

μ(yz0)μ(τ(z0))f (xτ(y)) + f (xy) = 2f (x)g(y) = μ(y)f (xτ(y)) + f (xy), x, y ∈ S.

(42)
By adding (41) and (42) we get that the pair f, g satisfies the sine addition law

f (xy) = f (x)g(y) + f (y)g(x) for all x, y ∈ S.
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Now, in view of [13, Lemma 3.4], [3, Theorem 4.1] g is abelian. Since g is a non-
zero solution of d’Alembert’s functional equation (13), then from [3, Proposition
9.31] there exists a non-zero multiplicative function χ : S −→ C such that g =
χ+μχ◦τ

2 . The rest of the proof is similar to the one used in [12].

5 Solutions of Equation (12)

The solutions of (12) were obtained in [12] on monoids for τ an involutive
automorphism. In this section we determine the solutions of (12) for the general
case where S is assumed to be a semigroup and τ an involutive morphism of S.

The following useful lemmas will be used later.

Lemma 5 Let f : S −→ C be a solution of equation (12). Then for all x, y ∈ S we
have

f (x) = −μ(x)f (τ(x)), (43)

f �= 0 ⇐⇒ f (z0) �= 0, (44)

μ(y)f (τ(y)x) = −μ(x)f (τ(x)y), (45)

f (xτ(z0)z0) = μ(τ(z0))f (z0)f (x), (46)

f (xz2
0) = −f (z0)f (x), (47)

μ(x)f (τ(x)z0) = f (xz0), (48)

f (xτ(z0)) = μ(x)f (τ(x)τ (z0)), (49)

f (z2
0) = f (z0τ(z0)) = 0. (50)

Proof Equation (44): Let f �= 0 be a non-zero solution of equation (12). We
will derive (44) by contradiction. Assume that f (z0) = 0. Putting y = z0 in
equation (12) we get

μ(z0)f (τ (z0)xz0) − f (xz0z0) = 2f (x)f (z0) = 0 (51)

Replacing y by yz0 in (12) and using (51) and (12) we get

μ(yz0)f (τ (y)xz0τ(z0)) − f (xyz0z0) = 2f (x)f (yz0)

= μ(y)f (τ(y)xz0z0) − f (xz0yz0)

= 2f (y)f (xz0).
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So, we deduce that f (y)f (xz0) = f (x)f (yz0) for all x, y ∈ S. Since f �= 0, then
there exists α ∈ C such that f (xz0) = αf (x) for all x ∈ S. Furthermore, α �= 0,
because if α = 0 we get f (xz0) = 0 for all x ∈ S and equation (12) implies that
f = 0. This contradicts the assumption that f �= 0.

Now, by substituting f (xz0) = αf (x) into (12) we get

μ(y)f (τ(y)x) − f (xy) = 2

α
f (x)f (y) for all x, y ∈ S. (52)

Switching x and y in (52) we get

− f (yx) + μ(x)f (τ(x)y) = 2

α
f (x)f (y), x, y ∈ S. (53)

If we replace y by τ(y) in (52) and multiplying the result obtained by μ(y) we get

− μ(y)f (xτ(y)) + f (yx) = 2

α
f (x)μ(y)f (τ(y)), x, y ∈ S. (54)

By adding (54) and (53) we obtain

− μ(y)f (xτ(y)) + μ(x)f (τ(x)y) = 2

α
f (x)[μ(y)f (τ(y)) + f (y)], x, y ∈ S.

(55)
By replacing x by τ(x) in (55) and multiplying the result obtained by μ(x) we get

f (xy) − μ(xy)f (τ(x)τ (y)) = 2

α
μ(x)f (τ(x))[μ(y)f (τ(y)) + f (y)]. (56)

By replacing y by τ(y) in (55) and multiplying the result obtained by μ(y) we get

μ(xy)f (τ(x)τ (y)) − f (xy) = 2

α
f (x)[f (y) + μ(y)f (τ(y))]. (57)

By adding (56) and (57) we obtain

[f (x) + μ(x)f (τ (x))][μ(y)f (τ(y)) + f (y)] = 0, x, y ∈ S. (58)

So, μ(x)f (τ(x)) = −f (x) for all x ∈ S. Now, we will discuss the following two
cases.

(1) τ is an involutive anti-automorphism. By using μ(x)f (τ(x)) = −f (x) for all
x ∈ S we get f (τ(y)x) = −μ(τ(y)x)f (τ(x)y) for all x, y ∈ S. Substituting
this in equation (52) we obtain

f (xy) + μ(x)f (τ(x)y) = 2
−f (x)

α
f (y), x, y ∈ S. (59)
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By replacing x by τ(x) in (59) and multiplying the result obtained by μ(x)

we deduce that f (x) = μ(x)f (τ(x)) for all x ∈ S. So, we have f (x) =
−μ(x)f (τ(x)) = −f (x), which implies that f = 0. This contradicts the
assumption that f �= 0.

(2) τ is an involutive automorphism. Then from μ(x)f (τ (x)) = −f (x) for all
x ∈ S we get f (τ(y)x) = −μ(τ(y)x)f (yτ(x)) for all x, y ∈ S. Substituting
this in equation (52) we obtain

f (xy) + μ(x)f (yτ(x)) = 2
−f (x)

α
f (y) for all x, y ∈ S. (60)

By replacing x by τ(x) in (60) and multiplying the result obtained by μ(x) and
using μ(x)f (τ(x)) = −f (x) we get

h(yx) + μ(x)h(τ(x)y) = 2h(x)h(y) for all x, y ∈ S.

where h = f
α

. So, from [11] μ(x)f (τ(x)) = f (x) for all x ∈ S. Consequently,
μ(x)f (τ(x)) = f (x) = −f (x) for all x ∈ S, which implies that f = 0. This
contradicts the assumption that f �= 0 and this proves (44).

Equation (45): By replacing y by yz0 in (12) we get

μ(yz0)f (τ (y)xz0τ(z0)) − f (xyz0z0) = 2f (x)f (yz0). (61)

Replacing x by xz0 in (12) we get

μ(y)f (τ(y)xz0z0) − f (xyz0z0) = 2f (y)f (xz0). (62)

Subtracting these equations results in

μ(yz0)f (τ (y)xz0τ(z0)) − μ(y)f (τ(y)xz0z0) (63)

= 2f (x)f (yz0) − 2f (y)f (xz0).

On the other hand, from (12) we have

μ(yz0)f (τ (y)xz0τ(z0)) − μ(y)f (τ(y)xz0z0)

= μ(y)[μ(z0)f (τ (z0)τ (y)xz0) − f (τ(y)xz0z0)]

= 2μ(y)f (z0)f (τ (y)x).

This implies that

f (x)f (yz0) − f (y)f (xz0) = μ(y)f (τ(y)x)f (z0) (64)
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for all x, y ∈ S. Since f (x)f (yz0)−f (y)f (xz0) = −[f (y)f (xz0)−f (x)f (yz0)],
then we deduce μ(y)f (τ(y)x)f (z0) = −μ(x)f (τ(x)y)f (z0). Now, by using (44)
we deduce (45).

Equation (49): By replacing x by xτ(z0) in (12) we get

μ(y)f (τ(y)xτ(z0)z0) − f (xyτ(z0)z0) (65)

= 2f (y)f (xτ(z0)).

From (45) we have μ(τ(x))f (xyτ(z0)z0) = μ(τ(x))f (τ (τ (x))(yτ(z0)z0)) =
−μ(y)f (τ(y)τ (x)τ (z0)z0) and then equation (65) can be written as follows:

f (τ(y)xτ(z0)z0) + μ(x)f (τ(y)τ (x)τ (z0)z0) (66)

= 2f (y)μ(τ(y))f (xτ(z0)).

By replacing x by τ(x) in (66) and multiplying the result obtained by μ(x) and
using f �= 0 we get (49).

From equations (45) and (49) we have

μ(τ(x))f (xz0) = −μ(z0)f (τ (z0)τ (x))

= −μ(z0)μ(τ(x))f (xτ(z0)) = f (τ(x)z0).

This proves (48).
Equation (43): Replacing x by τ(x) in (12) we get

μ(y)f (τ(y)τ (x)z0) − f (τ(x)yz0) = 2f (τ(x))f (y), x, y ∈ S. (67)

We will discuss the following two possibilities.

(1) τ is an involutive automorphism. From (48) we have

f (τ(y)τ (x)z0) = f (τ(yx)z0) = μ(τ(yx))f (yxz0)

and in view of (67) we obtain

μ(τ(x))f (yxz0) − f (τ(x)yz0) = 2f (τ(x))f (y), x, y ∈ S.

Since

μ(τ(x))f (yxz0) − f (τ(x)yz0) = −μ(τ(x))[μ(x)f (τ(x)yz0) − f (yxz0)]
= −μ(τ(x))2f (y)f (x),

then we deduce that
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−2μ(τ(x))f (x)f (y) = 2f (τ(x))f (y)

for all x, y ∈ S. Since f �= 0 then we have (43).
(2) τ is an involutive anti-automorphism. Using (48) we have

f (τ(y)τ (x)z0) = f (τ(xy)z0) = μ(τ(yx))f (xyz0)

and f (τ(x)yz0) = μ(τ(x)y)f (τ(y)xz0). Now, equation (67) can be written as
follows:

μ(τ(x))f (xyz0) − μ(τ(x)y)f (τ(y)xz0) = 2f (τ(x))f (y)

= −μ(τ(x))[μ(y)f (τ(y)xz0) − f (xyz0)]

= −μ(τ(x))2f (x)f (y).

Since f �= 0 then we obtain again (43).

Equation (46): Putting x = τ(z0) in (12), using (43) we get

μ(y)f (τ(y)τ (z0)z0) − f (τ(z0)yz0) = 2f (y)f (τ(z0))

= −2f (y)μ(τ(z0))f (z0).

Since

μ(y)f (τ(y)τ (z0)z0) = −μ(τ(z0)z0)f (yz0τ(z0)) = −f (yz0τ(z0))

then we obtain

f (τ(z0)yz0) = μ(τ(z0))f (y)f (z0)

for all y ∈ S. We see that we deal with (46).
Equation (47): Replacing y by z0 in (12) and using (46) we get

μ(z0)f (τ (z0)xz0) − f (xz0z0)

= 2f (x)f (z0) = f (x)f (z0) − f (xz0z0),

which proves (46).
Equation (50): By replacing x by z0 in (48) we get μ(z0)f (τ (z0)z0) = f (z2

0).

From (43) we have f (τ(z0)z0) = −f (τ(z0)z0), then we conclude that

f (τ(z0)z0) = f (z2
0) = 0,

which proves (50). This completes the proof.
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Lemma 6 Let f : S −→ C be a non-zero solution of equation (12). Then

(1) The function defined by

g(x) := f (xz0)

f (z0)
for x ∈ S

is a non-zero solution of the variant of d’Alembert’s functional equation (15).
(2) The function g from (1) has the form g = χ+μχ◦τ

2 , where χ : S −→ C, χ �= 0,
is a multiplicative function.

Proof

(1) From (46), (47), (12) and the definition of g we have

(f (z0))
2[g(xy) + μ(y)g(τ (y)x)] = f (z0)μ(y)f (τ(y)xz0) + f (z0)f (xyz0)

= μ(y)μ(z0)f (τ (y)xz0τ(z0)z0) − f (xyz0z
2
0)

= μ(yz0)f (τ (yz0)(xz0)z0) − f ((xz0)(yz0)z0)

= 2f (xz0)f (yz0).

Dividing the last equation by (f (z0))
2 we get g satisfies the variant of

d’Alembert’s functional equation (15). In view of (47) and the definition of
g we get

g(z2
0) = f (z0z

2
0)

f (z0)

= −f (z0)f (z0)

f (z0)
= −f (z0) �= 0.

Then g is a non-zero solution of equation (15).
(2) By replacing x by xz0 in (12) we get

μ(y)f (τ(y)xz2
0) − f (xyz2

0) = 2f (y)f (xz0). (68)

By using (47), equation (68) can be written as follows:

− μ(y)f (τ(y)x) + f (xy) = 2f (y)g(x), x, y ∈ S, (69)

where g is the function defined above. If we replace y by yz0 in (12) we get

μ(yz0)f (τ (y)xτ(z0)z0) − f (xyz0z0) = 2f (x)f (yz0). (70)
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By using (46), (47) we obtain

μ(y)f (τ(y)x) + f (xy) = 2f (x)g(y), x, y ∈ S. (71)

By adding (71) and (69) we get that the pair f, g satisfies the sine addition law

f (xy) = f (x)g(y) + f (y)g(x) for all x, y ∈ S.

Now, in view of [13, Lemma 3.4.] g is abelian. Since g is a non-zero solution
of d’Alembert’s functional equation (15) then from [3, Proposition 9.31] there
exists a non-zero multiplicative function χ : S −→ C such that g = χ+μχ◦τ

2 .
This completes the proof.

The following theorem is the main result of this section.

Theorem 4 The non-zero solutions f : S −→ C of the functional equation (12)
are the functions of the form

f = μχ ◦ τ − χ

2
χ(z0), (72)

where χ : S −→ C is a multiplicative function such that χ(z0) �= 0 and
μ(z0)χ(τ(z0)) = −χ(z0).

If S is a topological semigroup and that τ : S −→ S and μ: S −→ C are
continuous, then the non-zero solution f of equation (12) is continuous if and only
if χ is continuous.

Proof Simple computations show that f defined by (72) is a solution of (12).
Conversely, let f : S −→ C be a non-zero solution of the functional equation (12).
By putting y = z0 in (12) we get

f (x) = μ(z0)f (τ (z0)xz0) − f (xz0z0)

2f (z0)
(73)

= 1

2
(μ(z0)g(τ (z0)x) − g(xz0)),

where g is the function defined by g(x) = f (xz0)
f (z0)

and that from Lemma 6 has

the form g = χ+μχ◦τ
2 , where χ : S −→ C, χ �= 0 is a multiplicative function.

Substituting this into (73) we find that f has the form

f = χ(z0) − μ(z0)χ(τ(z0))

2

μχ ◦ τ − χ

2
. (74)

Furthermore, from (48) f satisfies μ(x)f (τ(x)z0) = f (xz0) for all x ∈ S. By
applying the last expression of f in (48) we get after computations that
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[μ(z0)χ(τ(z0)) + χ(z0)][χ − μχ ◦ τ ] = 0.

Since χ �= μχ ◦ τ , we obtain μ(z0)χ(τ(z0)) + χ(z0) = 0 and then from (74) we
have

f = μχ ◦ τ − χ

2
χ(z0).

For the topological statement we use [3, Theorem 3.18(d)]. This completes the
proof.
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