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Abstract This paper is devoted to the study of nonhomogeneous systems of linear
first-order ordinary integro-differential equations of Fredholm type with multipoint
and integral boundary constraints. Sufficient conditions for the solvability and
correctness of the problem are established and the unique solution is provided in
closed-form. The approach followed is based on the extension theory of operators.

1 Introduction

Mathematical modeling in the theory of automatic control, the theory of oscillation,
mathematical physics, biology, applied mathematics, and economics, very often,
leads to the study of multipoint boundary value problems for differential, functional-
differential, and integro-differential equations. These types of boundary value
problems and their solutions have been investigated by many researchers, for
example, [1, 2, 5, 8, 9, 21]. Of special interest are the multipoint boundary value
problems for a system of differential equations (DEs) and integro-differential equa-
tions (IDEs), see, for example, [4, 6, 11, 12, 22]. It should be noted that obtaining
exact solutions even to multipoint boundary value problems for a differential, or
an integro-differential equation, is a difficult task. Therefore, usually numerical
methods are employed as in [3, 7, 15] and elsewhere.

Recently, in [6] the solution to a class of boundary value problems for a system
of linear first-order DEs coupled with multipoint and integral conditions has been
obtained in closed-form. Here, we continue this study to systems of linear first-order
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ordinary IDEs of Fredholm type with multipoint and integral boundary constraints.
The method proposed is based on the extension theory of linear operators in a
Banach space, as it has been developed in terms of inverse operators [5, 13] and
in terms of direct operators [14], and has been used to investigate the correctness
properties to some extensions of operators [10, 16, 20] and more recently to
solve exactly initial and two-point boundary value problems for integro-differential
equations [17–19].

We first examine the solvability conditions and then obtain the exact solution
of the following system of IDEs subject to multipoint and integral boundary
conditions:

y′(x) − Ay(x) −
m∑

i=0

Gi(x)

∫ 1

0
Hi(t)y(t)dt = f (x), x ∈ [0, 1],

m∑

i=0

Aiy(xi) +
s∑

j=0

Bj

∫ ξj+1

ξj

Cj (t)y(t)dt = 0, (1)

where A, Ai, Bj are n×n constant matrices, Gi(x), Hi(x), Cj (x) are variable n×
n matrices, whose elements are continuous functions on [0, 1], f (x) is a vector of n

continuous functions on [0, 1], and y(x) is a vector of n sought continuous functions
with continuous derivatives on [0, 1]; the points xi, ξ j satisfy the conditions 0 =
x0 < x1 < · · · < xm−1 < xm = 1, 0 = ξ0 < ξ1 < · · · < ξs < ξs+1 = 1. The
problem (1) may be obtained as a perturbation of a corresponding boundary value
problem for a system of first-order DEs, specifically

y′(x) − Ay(x) = f (x),

m∑

i=0

Aiy(xi) +
s∑

j=0

Bj

∫ ξj+1

ξj

Cj (t)y(t)dt = 0, (2)

whose solvability and the construction of the exact solution were investigated in [6].
The rest of the paper is organized as follows. In Section 2 some necessary

definitions are given and preliminary results are derived. In Section 3 the two main
theorems for the existence and the construction of the exact solution are presented.
Lastly, some conclusions are drawn in Section 4.

2 Definitions and Preliminary Results

Let X, Y be complex Banach spaces. Let P : X → Y denote a linear operator and
D(P ) and R(P ) its domain and the range, respectively. An operator P is called an
extension of the operator P0 : X → Y if D(P0) ⊆ D(P ) and Pu = P0u, for all
u ∈ D(P0). An operator P : X → Y is called correct if R(P ) = Y and the inverse
operator P −1 exists and is continuous on Y .
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We say that the problem Pu = f , f ∈ Y, is correct if the operator P is correct.
The problem Pu = f with a linear operator P is uniquely solvable on R(P ) if
the corresponding homogeneous problem Pu = 0 has only a zero solution, i.e. if
ker P = {0}. The problem Pu = f is said to be everywhere solvable on Y if it
admits a solution for any f ∈ Y .

Throughout this paper, we use lowercase letters and brackets to designate vectors
and capital letters and square brackets to symbolize matrices. The unit and zero
matrices are denoted by I and [0], respectively, and the zero column vector by 0.

The set of all complex numbers is specified by C. If ci ∈ C, i = 1, . . . , n, then
we write c = (c1, . . . , cn) ∈ Cn. By Cn[0, 1], we mean the space of continuous
vector functions f = f (x) = (f1(x), . . . , fn(x)) with norm

‖f ‖Cn = ‖f1(x)‖ + ‖f2(x)‖ + · · · + ‖fn(x)‖, ‖f (x)‖ = max
x∈[0,1] |f (x)|. (3)

Let f = f (x) = col (f1(x), . . . , fn(x)) ∈ Cn[0, 1]. Further, let the operators
L,K,H : Cn[0, 1] → Cn[0, 1] be defined by the matrices

L(x) =
⎡

⎢⎣
l11(x) · · · l1n(x)

... · · · ...

ln1(x) · · · lnn(x)

⎤

⎥⎦ , K(x) =
⎡

⎢⎣
k11(x) · · · k1n(x)

... · · · ...

kn1(x) · · · knn(x)

⎤

⎥⎦ ,

H(x) =
⎡

⎢⎣
h11(x) · · · h1n(x)

... · · · ...

hn1(x) · · · hnn(x)

⎤

⎥⎦ ,

where lij , kij , hij ∈ C[0, 1]. Let l0 = max |lij |, k0 = max |kij |, h0 = max |hij |,
i, j = 1, . . . , n. Finally, consider the points ξj , j = 0, . . . , s + 1 satisfying the
conditions 0 = ξ0 < ξ1 < · · · < ξs < ξs+1 = 1.

We now prove the next lemma which is used several times in the sequel.

Lemma 1 The next estimates are true

‖Lf ‖Cn ≤ l0n‖f ‖Cn, (4)

‖
∫ x

0
L(t)f (t)dt‖Cn ≤ l0n‖f ‖Cn, x ∈ [0, 1], (5)

‖K(x)

∫ x

0
L(t)f (t)dt‖Cn ≤ k0l0n

2‖f ‖Cn, x ∈ [0, 1], (6)

‖
∫ 1

0
K(x)

∫ x

0
L(t)f (t)dtdx‖Cn ≤ k0l0n

2‖f ‖Cn, (7)

‖
∫ ξj+1

ξj

K(x)

∫ x

0
L(t)f (t)dtdx‖Cn ≤ k0l0n

2‖f ‖Cn, (8)
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‖H(x)

∫ 1

0
K(ξ)

∫ ξ

0
L(t)f (t)dtdξ‖Cn ≤ h0k0l0n

3‖f ‖Cn, x ∈ [0, 1]. (9)

Proof The properties (4)–(6), (8) have been proved in [6]. We prove (7) and (9). Let
φ(x) = col(φ1(x), . . . , φn(x)) = ∫ x

0 L(t)f (t)dt . Then, from (5) follows that

‖
∫ 1

0
K(x)

∫ x

0
L(t)f (t)dtdx‖Cn = ‖

∫ 1

0
K(x)φ(x)dx‖Cn

≤ k0n‖φ(x)‖Cn

= k0n‖
∫ x

0
L(t)f (t)dt‖Cn

≤ k0l0n
2‖f ‖Cn.

We now prove (9). Let φ = col
(
φ1, . . . , φn

) = ∫ 1
0 K(ξ)

∫ ξ

0 L(t)f (t)dtdξ . Then,
from (4) and (7) follows that

‖H(x)

∫ 1

0
K(ξ)

∫ ξ

0
L(t)f (t)dtdξ‖Cn = ‖H(x)φ‖Cn

≤ h0n‖φ‖Cn

= h0n‖
∫ 1

0
K(ξ)

∫ ξ

0
L(t)f (t)dtdξ‖Cn

≤ h0k0l0n
3‖f ‖Cn.

The lemma is proved. �	

3 Main Results

Let the operator P associated with problem (1) be defined as

Py = y′(x) − Ay(x) −
m∑

i=0

Gi(x)

∫ 1

0
Hi(t)y(t)dt,

D(P ) =
⎧
⎨

⎩y(x) ∈ C1
n[0, 1] :

m∑

i=0

Aiy(xi) +
s∑

j=0

Bj

∫ ξj+1

ξj

Cj (t)y(t)dt = 0

⎫
⎬

⎭ ,

(10)
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where A, Ai, Bj are n×n constant matrices and Gi(x), Hi(x), Cj (x) are variable
n×n matrices with elements continuous functions on [0, 1]; the points xi, ξ j satisfy
the conditions 0 = x0 < x1 < · · · < xm−1 < xm = 1, 0 = ξ0 < ξ1 < · · · < ξs <

ξs+1 = 1. Note that the operator P is an extension of the minimal operator P0
defined by

P0y = y′(x) − Ay(x),

D(P0) =
{

y(x) ∈ C1
n[0, 1] : y(xi) = 0,

∫ ξj+1

ξj

Cj (t)y(t)dt = 0,

∫ 1

0
Hi(t)y(t)dt = 0, i = 0, . . . , m, j = 0, . . . , s

}
. (11)

Moreover, we may write the operator P compactly as

Py = y′(x) − Ay(x) − Gz(y),

D(P ) = {
y(x) ∈ C1

n[0, 1] : Ay(x) + Bψ(y) = 0
}
, (12)

where the composite matrices

G = [
G0 G1 . . . Gm

]
, A = [

A0 A1 . . . Am

]
, B = [

B0 B1 . . . Bs

]
,

the compound column vectors

z(y) = col (z0(y), z1(y), . . . , zm(y)) ,

y(x) = col (y(x0), y(x1), . . . , y(xm)) ,

ψ(y) = col
(
ψ0(y), ψ1(y), . . . , ψs(y)

)
,

and the n × 1 vectors

zi(y) =
∫ 1

0
Hi(t)y(t)dt, i = 0, . . . , m,

ψj (y) =
∫ ξj+1

ξj

Cj (t)y(t)dt, j = 0, . . . , s.

By using (10) or (12), we can express the system (1) equivalently in the elegant
operator form

Py = f (x), f (x) ∈ Cn[0, 1]. (13)

Theorem 1 below provides the criteria for the existence of a unique solution to
the problem (13).
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We first consider the n × n matrix exA and define the following n × n matrices

Li =
∫ 1

0
Hi(t)e

tAdt,

Λj =
∫ ξj+1

ξj

Cj (t)e
tAdt,

Δik(G) =
∫ xi

0
e(xi−t)AGk(t)dt,

Vik(G) =
∫ 1

0
Hi(x)

∫ x

0
e(x−t)AGk(t)dtdx,

Wjk(G) =
∫ ξj+1

ξj

Cj (x)

∫ x

0
e(x−t)AGk(t)dtdx,

where i, k = 0, . . . , m, j = 0, . . . , s, and the compound matrices

exA = col
[
ex0A ex1A . . . exmA

]
,

L = col [L0 L1 · · · Lm] , Λ = col [Λ0 Λ1 · · · Λs] ,

ΔG = [Δik(G)] , VG = [Vik(G)] , WG = [
Wjk(G)

]
. (14)

Theorem 1 The problem (13) is uniquely solvable on Cn[0, 1] if

det T = det

[
AΔG + BWG AexA + BΛ

VG − I L

]

= 0. (15)

Proof It suffices to show that ker P = {0} if det T 
= 0. Assume that det T 
=
0. Consider the homogeneous problem Py = 0 consisting of the homogeneous
equation

y′(x) − Ay(x) − Gz(y) = 0, (16)

and the boundary conditions

Ay(x) + Bψ(y) = 0. (17)

Let the auxiliary integro-functional equation

y(x) = exAd + exA
m∑

i=0

∫ x

0
e−tAGi(t)dtzi(y), (18)



Exact Solution to Systems of Linear IDEs with Multipoint and Integral Conditions 7

or in a compact form

y(x) = exAd + exA

∫ x

0
e−tAG(t)dtz(y), (19)

where exA is a fundamental n × n matrix to the homogeneous differential equa-
tion y′(x) − Ay(x) = 0 and d is an arbitrary column vector with constant
coefficients. It is easy to verify that from (19) follows the homogeneous equa-
tion (16). Therefore every solution of (19) is also a solution of (16). From (18),
we have

y(xi) = exiAd + exiA
m∑

k=0

∫ xi

0
e−tAGk(t)dtzk(y), (20)

Hi(x)y(x) = Hi(x)exAd + Hi(x)exA
m∑

k=0

∫ x

0
e−tAGk(t)dtzk(y), (21)

Cj (x)y(x) = Cj (x)exAd + Cj (x)exA
m∑

k=0

∫ x

0
e−tAGk(t)dtzk(y), (22)

for i = 0, . . . , m, j = 0, . . . , s. By integrating (21) and (22), we get

∫ 1

0
Hi(x)y(x)dx =

∫ 1

0
Hi(x)exAdxd

+
m∑

k=0

∫ 1

0
Hi(x)exA

∫ x

0
e−tAGk(t)dtdxzk(y), (23)

∫ ξj+1

ξj

Cj (x)y(x)dx =
∫ ξj+1

ξj

Cj (x)exAdxd

+
m∑

k=0

∫ ξj+1

ξj

Cj (x)exA

∫ x

0
e−tAGk(t)dtdxzk(y). (24)

We rewrite (20), (23), (24) in the compact matrix form

y(x) = exAd + ΔGz(y), (25)

z(y) = Ld + VGz(y), (26)

ψ(y) = Λd + WGz(y), (27)

where the matrices exA, L, Λ, ΔG, VG, WG are defined in (14). By utilizing (25)
and (27), the boundary conditions in (17) are written as
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A
(
exAd + ΔGz(y)

)
+ B (Λd + WGz(y)) = 0. (28)

From (26) and (28) we obtain the system

[
AΔG + BWG AexA + BΛ

VG − I L

](
z(y)

d

)
=
(

0
0

)
, (29)

or

T
(

z(y)

d

)
=
(

0
0

)
, (30)

The assumption that det T 
= 0 implies z(y) = 0, d = 0. Substituting these values
into (19), we obtain y(x) = 0. Hence ker P = {0} and the operator P is uniquely
solvable. The theorem is proved. �	
Remark 1 Note that the system of integro-differential equations (1) for Gi ≡
[0], i = 0, . . . , m, degenerates to the system of differential equations (2). By setting
Gi = [0], i = 0, . . . , m, into (15), we obtain

det T = det

[
AΔG + BWG AexA + BΛ

VG − I L

]

Gi=[0]= det

[ [0] AexA + BΛ

−I L

]

= det
[
AexA + BΛ

]

= det

⎡

⎣
m∑

i=0

Aie
xiA +

s∑

j=0

Bj

∫ ξj+1

ξj

Cj (x)exAdx

⎤

⎦ 
= 0, (31)

which is the sufficient solvability condition for the differential problem (2) derived
in [6].

We introduce now the Cn vectors

φi(f ) =
∫ xi

0
e(xi−t)Af (t)dt,

νi(f ) =
∫ 1

0
Hi(x)

∫ x

0
e(x−t)Af (t)dtdx,

ωj (f ) =
∫ ξj+1

ξj

Cj (x)

∫ x

0
e(x−t)Af (t)dtdx,

for i = 0, . . . , m, j = 0, . . . , s, and the combined vectors
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φf = col(φ0(f ), φ1(f ), . . . , φm(f )), νf = col(ν0(f ), . . . , νm(f )),

ωf = col(ω0(f ), . . . , ωs(f )). (32)

Theorem 2 Let (15) hold true. Then the problem (13) is correct on Cn[0, 1] and its
unique solution is given by

y(x) = exA

∫ x

0
e−tAf (t)dt −

[
exA

∫ x

0
e−tAG(t)dt exA

]
T−1

(
Aφf + Bωf

νf

)
.

(33)

Proof The problem (13) encompasses the nonhomogeneous system of integro-
differential equations

y′(x) − Ay(x) − Gz(y) = f (x), (34)

and the boundary conditions

Ay(x) + Bψ(y) = 0. (35)

Take the auxiliary integro-functional equation

y(x) = exAd + exA
m∑

i=0

∫ x

0
e−tAGi(t)dtzi(y) + exA

∫ x

0
e−tAf (t)dt, (36)

or in the compact matrix form

y(x) =
[
exA

∫ x

0
e−tAG(t)dt exA

](
z(y)

d

)
+ exA

∫ x

0
e−tAf (t)dt, (37)

for every f (x) ∈ Cn[0, 1]; exA is a fundamental n × n matrix to the homogeneous
differential equation y′(x) − Ay(x) = 0 and d is an arbitrary column vector with
constant elements. Observe that differentiation of (37) yields (34). Hence, a solution
of (37) is also a solution of (34). From (36), we get

y(xi) = exiAd + exiA
m∑

k=0

∫ xi

0
e−tAGk(t)dtzk(y) + exiA

∫ xi

0
e−tAf (t)dt,

(38)

Hi(x)y(x) = Hi(x)exAd + Hi(x)exA
m∑

k=0

∫ x

0
e−tAGk(t)dtzk(y)

+Hi(x)exA

∫ x

0
e−tAf (t)dt, (39)



10 M. M. Baiburin and E. Providas

Cj (x)y(x) = Cj (x)exAd + Cj (x)exA
m∑

k=0

∫ x

0
e−tAGk(t)dtzk(y)

+Cj (x)exA

∫ x

0
e−tAf (t)dt, (40)

for i = 0, . . . , m, j = 0, . . . , s. By integrating (39), (40), we obtain

∫ 1

0
Hi(x)y(x)dx =

∫ 1

0
Hi(x)exAdxd

+
m∑

k=0

∫ 1

0
Hi(x)exA

∫ x

0
e−tAGk(t)dtdxzk(y)

+
∫ 1

0
Hi(x)exA

∫ x

0
e−tAf (t)dtdx, (41)

∫ ξj+1

ξj

Cj (x)y(x)dx =
∫ ξj+1

ξj

Cj (x)exAdxd

+
m∑

k=0

∫ ξj+1

ξj

Cj (x)exA

∫ x

0
e−tAGk(t)dtdxzk(y)

+
∫ ξj+1

ξj

Cj (x)exA

∫ x

0
e−tAf (t)dtdx, (42)

for i = 0, . . . , m, j = 0, . . . , s. We rewrite (38), (41), (42) in the compact matrix
form

y(x) = exAd + ΔGz(y) + φf , (43)

z(y) = Ld + VGz(y) + νf , (44)

ψ(y) = Λd + WGz(y) + ωf , (45)

where the matrices exA, L, Λ, ΔG, VG, WG are defined in (14) and the vectors
φf , νf , ωf are given in (32). By utilizing (43) and (45), the boundary conditions
in (35) are recast as

A
(
exAd + ΔGz(y) + φf

)
+ B

(
Λd + WGz(y) + ωf

) = 0. (46)

From (44) and (46), we obtain the system

[
AΔG + BWG AexA + BΛ

VG − I L

](
z(y)

d

)
= −

(
Aφf + Bωf

νf

)
, (47)
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or

T
(

z(y)

d

)
= −

(
Aφf + Bωf

νf

)
. (48)

Since det T 
= 0 by hypothesis, we have

(
z(y)

d

)
= −T−1

(
Aφf + Bωf

νf

)
. (49)

Substitution of (49) into (37) yields the solution (33) to the problem (34)–(35). Since
this solution holds for all f (x) ∈ Cn[0, 1], then the system (34)–(35) is everywhere
solvable. Thus, (33) is the unique solution to the nonhomogeneous problem (13)
which can be denoted conveniently as y(x) = P −1f (x). To prove the correctness
of the problem (13) it remains to show that the inverse operator P −1 is bounded.

Let r = m + 1 and write the matrix T conveniently as

T =
[

AΔG + BWG AexA + BΛ

VG − I L

]
=
[

T1r T11

Trr Tr1

]
, (50)

where T1r = AΔG + BWG, T11 = AexA + BΛ, Trr = VG − I and Tr1 = L. Let
also the analogously partitioned matrix

Π = T−1 =
[

Πr1 Πrr

Π11 Π1r

]
, (51)

where

Π1r =
[
Π1r

0 · · · Π1r
m

]
, Πr1 =

⎡

⎢⎣
Πr1

0
...

Πr1
m

⎤

⎥⎦ , Πrr =
⎡

⎢⎣
Πrr

00 · · · Πrr
0m

... · · · ...

Πrr
m0 · · · Πrr

mm

⎤

⎥⎦ ,

(52)
and Π11, Π1r

i , Πr1
i , Πrr

ik , i, k = 0, . . . , m are n × n matrices. Then,

Π

(
Aφf + Bωf

νf

)
=
(

Πr1
(
Aφf + Bωf

)+ Πrrνf

Π11
(
Aφf + Bωf

)+ Π1rνf

)
. (53)

Substitution of (53) into solution (33) yields

y(x) =
∫ x

0
e(x−t)Af (t)dt

−
[∫ x

0
e(x−t)AG(t)dt exA

](
Πr1(Aφf + Bωf ) + Πrrνf

Π11(Aφf + Bωf ) + Π1rνf

)
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=
∫ x

0
e(x−t)Af (t)dt

−
∫ x

0
e(x−t)AG(t)dtΠr1(Aφf + Bωf ) −

∫ x

0
e(x−t)AG(t)dtΠrrνf

−exAΠ11(Aφf + Bωf ) − exAΠ1rνf . (54)

Let the maxima absolute elements (ae) for each of the following n × n matrices be
denoted by

k(0) = max
ae

[
exA

]
, kj = max

ae

[
BjCj (x)exA

]
, l(0) = max

ae

[
e−xA

]
,

l(1) = max
ae

[∫ x

0

m∑

i=0

e(x−t)AGi(t)Π
r1
i dt

]
, l

(2)
i = max

ae

[
Aie

(xi−t)A
]
,

l
(3)
k = max

ae

[
m∑

i=0

∫ x

0
e(x−t)AGi(t)Π

rr
ik dt

]
, l(4) = max

ae

[
exAΠ11

]
,

ĥk = max
ae

[
Hk(x)exA

]
, h̃i = max

ae

[
exAΠ1r

i

]
. (55)

Notice that the elements of the above matrices are continuous functions on [0, 1]
since the elements of the fundamental matrix exA and the inverse matrix e−xA are
continuous functions.

We now find some estimates for the terms appearing in (54). First, note that
Aφf + Bωf ∈ Cn, since both Aiφi(f ) and Bjωj (f ) ∈ Cn, and by the triangle
inequality and properties (5), (8), we have

‖Aφf + Bωf ‖Cn ≤ ‖Aφf ‖Cn + ‖Bωf ‖Cn

= ‖
m∑

i=0

Aiφi(f )‖Cn + ‖
s∑

j=0

Bjωj (f )‖Cn

≤
m∑

i=0

‖
∫ xi

0
Aie

(xi−t)Af (t)dt‖Cn

+
s∑

j=0

‖
∫ ξj+1

ξj

BjCj (x)exA

∫ x

0
e−tAf (t)dtdx‖Cn

≤
m∑

i=0

l
(2)
i n‖f ‖Cn +

s∑

j=0

kj l
(0)n2‖f ‖Cn
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= n

⎛

⎝
m∑

i=0

l
(2)
i + l(0)n

s∑

j=0

kj

⎞

⎠ ‖f ‖Cn. (56)

By means of (6), we obtain

‖
∫ x

0
e(x−t)Af (t)dt‖Cn = ‖exA

∫ x

0
e−tAf (t)dt‖Cn ≤ k(0)l(0)n2‖f ‖Cn. (57)

Utilization of (4) and the relation (56) produces

‖
∫ x

0
e(x−t)AG(t)dtΠr1(Aφf + Bωf )‖Cn

= ‖
∫ x

0

m∑

i=0

e(x−t)AGi(t)Π
r1
i dt (Aφf + Bωf )‖Cn

≤ l(1)n‖Aφf + Bωf ‖Cn

≤ l1n
2

⎛

⎝
m∑

i=0

l
(2)
i + l(0)n

s∑

j=0

kj

⎞

⎠ ‖f ‖Cn. (58)

From (4) and (7) follows that

‖
∫ x

0
e(x−t)AG(t)dtΠrrνf ‖Cn

= ‖
∫ x

0
e(x−t)A

(
m∑

i=0

Gi(t)Π
rr
i0 , . . . ,

m∑

i=0

Gi(t)Π
rr
im

)
dtcol (ν0(f ), . . . , νm(f ))‖Cn

≤
m∑

k=0

‖
m∑

i=0

∫ x

0
e(x−t)AGi(t)Π

rr
ik dtνk(f )‖Cn

≤
m∑

k=0

l
(3)
k n‖νk(f )‖Cn

=
m∑

k=0

l
(3)
k n‖

∫ 1

0
Hk(x)exA

∫ x

0
e−tAf (t)dtdx‖Cn

≤
m∑

k=0

l
(3)
k nĥknl(0)n‖f ‖Cn

= l(0)n3
m∑

k=0

l
(3)
k ĥk‖f ‖Cn. (59)
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Further, by using property (4) and the relation (56), we acquire

‖exAΠ11(Aφf + Bωf )‖Cn ≤ l(4)n‖Aφf + BωF ‖Cn

≤ l(4)n2

⎛

⎝
m∑

i=0

l
(2)
i + l(0)n

s∑

j=0

kj

⎞

⎠ ‖f ‖Cn. (60)

Finally, by employing (9), we get

‖exAΠ1rνf ‖Cn = ‖exA
m∑

i=0

Π1r
i νi(f )‖Cn

≤
m∑

i=0

‖exAΠ1r
i νi(f )‖Cn

=
m∑

i=0

‖exAΠ1r
i

∫ 1

0
Hi(ξ)eξA

∫ ξ

0
e−tAf (t)dtdξ‖Cn

≤ l(0)n3
m∑

i=0

ĥi h̃i‖f ‖Cn. (61)

From (54) and (57)–(60), follows that

‖y(x)‖Cn ≤
⎡

⎣k(0)l(0)n2 + l1n
2

⎛

⎝
m∑

i=0

l
(2)
i + l(0)n

s∑

j=0

kj

⎞

⎠+ l(0)n3
m∑

k=0

l
(3)
k ĥk

+l(4)n2

⎛

⎝
m∑

i=0

l
(2)
i + l(0)n

s∑

j=0

kj

⎞

⎠+ l(0)n3
m∑

i=0

ĥi h̃i

⎤

⎦ ‖f ‖Cn

≤ γ ‖f ‖Cn. (62)

where γ > 0. The last inequality proves the boundedness and correctness of the
operator P and problem (13). The theorem is proved. �	

4 Conclusions

We have studied a class of nonhomogeneous systems of n linear first-order ordinary
Fredholm type integro-differential equations subject to general multipoint and inte-
gral boundary constraints. We have established sufficient solvability and uniqueness
criteria and we have derived a ready to use exact solution formula. The method
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proposed requires the knowledge of a fundamental matrix of the corresponding
homogeneous system of first-order differential equations. The solution process can
be easily implemented to any computer algebra system.
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