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Preface

Mathematical Analysis and Applications is devoted to the presentation of high-
quality research and survey papers belonging to a broad spectrum of areas in
which Analysis plays a central role. The book in hand provides an insight into
the investigation of several problems and theories in real and complex analysis,
functional analysis, approximation theory, operator theory, analytic inequalities,
Radon transform, nonlinear analysis, and various applications of interdisciplinary
research. The contributing papers have been written by eminent scientists from the
international mathematical community who are experts in the individual subjects.

In this book, some papers are devoted to certain applications as for example in
the three-body problem, finite element analysis in fluid mechanics, algorithms for
difference of monotone operators, a vibrational approach to a financial problem, etc.

This publication provides valuable and up-to-date information as well as research
results which are hoped to be useful to graduate students and researchers working
in Mathematics, Physics, Engineering, and Economics.

It is our pleasure to express our thanks to all the contributors of chapters in this
book who participated in this collective effort.

Last but not least, we would like to acknowledge the superb assistance that the
staff of Springer has provided for the publication of this work.

Athens, Greece Themistocles M. Rassias
Gainesville, FL, USA Panos M. Pardalos
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Exact Solution to Systems of Linear m)
First-Order Integro-Differential G
Equations with Multipoint and Integral
Conditions

M. M. Baiburin and E. Providas

Abstract This paper is devoted to the study of nonhomogeneous systems of linear
first-order ordinary integro-differential equations of Fredholm type with multipoint
and integral boundary constraints. Sufficient conditions for the solvability and
correctness of the problem are established and the unique solution is provided in
closed-form. The approach followed is based on the extension theory of operators.

1 Introduction

Mathematical modeling in the theory of automatic control, the theory of oscillation,
mathematical physics, biology, applied mathematics, and economics, very often,
leads to the study of multipoint boundary value problems for differential, functional-
differential, and integro-differential equations. These types of boundary value
problems and their solutions have been investigated by many researchers, for
example, [1, 2, 5, 8, 9, 21]. Of special interest are the multipoint boundary value
problems for a system of differential equations (DEs) and integro-differential equa-
tions (IDEs), see, for example, [4, 6, 11, 12, 22]. It should be noted that obtaining
exact solutions even to multipoint boundary value problems for a differential, or
an integro-differential equation, is a difficult task. Therefore, usually numerical
methods are employed as in [3, 7, 15] and elsewhere.

Recently, in [6] the solution to a class of boundary value problems for a system
of linear first-order DEs coupled with multipoint and integral conditions has been
obtained in closed-form. Here, we continue this study to systems of linear first-order
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ordinary IDEs of Fredholm type with multipoint and integral boundary constraints.
The method proposed is based on the extension theory of linear operators in a
Banach space, as it has been developed in terms of inverse operators [5, 13] and
in terms of direct operators [14], and has been used to investigate the correctness
properties to some extensions of operators [10, 16, 20] and more recently to
solve exactly initial and two-point boundary value problems for integro-differential
equations [17-19].

We first examine the solvability conditions and then obtain the exact solution
of the following system of IDEs subject to multipoint and integral boundary
conditions:

m 1
() = Ay = Gi(x>/0 Hi()yndt = fx),  x €[0, 1],
i=0

m s ;:] 1
ZAiy(xi)—i-ZBj/ Y Ciywdr =, (1)
i=0 j=0 j

J

where A, A;, Bj are n xn constant matrices, G;(x), H;(x), C;(x) are variable n x
n matrices, whose elements are continuous functions on [0, 1], f(x) is a vector of n
continuous functions on [0, 1], and y(x) is a vector of n sought continuous functions
with continuous derivatives on [0, 1]; the points x;, & j satisfy the conditions 0 =
X0 <X < <Xpol <xp=1,0=%8 <& < <& <&, =1"The
problem (1) may be obtained as a perturbation of a corresponding boundary value
problem for a system of first-order DEs, specifically

Y () = Ay(x) = f(x),

m § §in1
> Aiyi)+ )Y Bj /g " Ciyndr =0, )
i=0 j=0 j

whose solvability and the construction of the exact solution were investigated in [6].

The rest of the paper is organized as follows. In Section 2 some necessary
definitions are given and preliminary results are derived. In Section 3 the two main
theorems for the existence and the construction of the exact solution are presented.
Lastly, some conclusions are drawn in Section 4.

2 Definitions and Preliminary Results

Let X, Y be complex Banach spaces. Let P : X — Y denote a linear operator and
D(P) and R(P) its domain and the range, respectively. An operator P is called an
extension of the operator Py : X — Y if D(Py) € D(P) and Pu = Poyu, for all
u € D(Pp). An operator P : X — Y is called correct if R(P) = Y and the inverse
operator P~! exists and is continuous on Y.
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We say that the problem Pu = f, f € Y, is correct if the operator P is correct.
The problem Pu = f with a linear operator P is uniquely solvable on R(P) if
the corresponding homogeneous problem Pu = 0 has only a zero solution, i.e. if
ker P = {0}. The problem Pu = f is said to be everywhere solvable on Y if it
admits a solution for any f € Y.

Throughout this paper, we use lowercase letters and brackets to designate vectors
and capital letters and square brackets to symbolize matrices. The unit and zero
matrices are denoted by I and [0], respectively, and the zero column vector by 0.

The set of all complex numbers is specified by C. If ¢; € C, i =1, ..., n, then
we write ¢ = (c1,...,cp) € C". By C,[0, 1], we mean the space of continuous
vector functions f = f(x) = (f1(x), ..., fu(x)) with norm

I fllc, = 1Al + 12000+ + 1@l I1fl = max, lfl 3

Let f = f(x) = col (fi(x),..., fu(x)) € C,l0, 1]. Further, let the operators
L,K, H:Cyl0, 1] = C,[0, 1] be defined by the matrices

[ 111(x) - 1 (x) kii(x) -+« kin(x)
L(x) = oL . K(x) = oL ,
L1 (%) <+ D (%) kn1(x) -+ knpn (x)
[ hi1(x) - hig(x)
H(x) = o ,
[ An1 (X)) -+ - g (x)

where lij, k,‘j, h,’j e C[0,1]. Let [y = max|l,-j|, ko = max|kij|, hy = maxlh,-j|,
i,j = 1,...,n. Finally, consider the points éj, j =0,...,5 + 1 satisfying the
conditions0 =6y <& <--- <&, <&, =1

We now prove the next lemma which is used several times in the sequel.

Lemma 1 The next estimates are true
ILfllc, <lonlflic, 4

II/0 L) fdtlc, <lonlflc,, x€I[0,1], ()
IIK()C)/0 L) f(ndtlc, < kolon*| flic,. x €10, 1], (6)

1 X
|I/0 K(X)/O L(1) f(t)dtdx||c, < kolon®| fllc,. (7

§iv1 x
”/g : K(x)/o L(t) f (Hdtdx]|c, < kolon®|| flic,- (®)
J
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1 3
I Hx) fo K@) fo L) f()didE e, < hokolon®| flic,. x €0, 1] (9)

Proof The properties (4)—(6), (8) have been proved in [6]. We prove (7) and (9). Let
¢(x) =col(¢p;(x), ..., ¢, (x)) = f(;‘ L(¢) f(¢)dt. Then, from (5) follows that

I /O 1 K (x) /0 "L fWdrdxlic, = | fo 1 K (x)p(x)dx|c,
< konlop()llc,
= kon|| /0 Lo fwdrle,
< kolon?(| fllc, -

We now prove (9). Let ¢ = col (¢, ..., ¢) = [3 K@) [5 L(t) f(1)drdE. Then,
from (4) and (7) follows that

1 3
1H () fo K /0 L) f(dtdElc, = |H®® e,
< honlidlc,
1 &
— honl /0 K@) /0 LO) f()didE e,
< hokolon®|| fllc, -

The lemma is proved. O

3 Main Results

Let the operator P associated with problem (1) be defined as

m 1
Py =y'(x) = Ay(x) — Z Gi(x)/o Hi(r)y(r)dt,

i=0

m s E_I'-H
D(P) = [y(x) e Clo,1]: ZAiy(xi)—i-ZBj/ Ci(t)y(r)dt =0],

i=0 j=0 J
(10)
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where A, A;, Bj are n x n constant matrices and G; (x), H;(x), C;(x) are variable
n x n matrices with elements continuous functions on [0, 1]; the points x;, & j satisfy
the conditions 0 = xp < x] < -+ < Xp—1 <X =1,0=§; <&, <--- <&, <
&s41 = 1. Note that the operator P is an extension of the minimal operator Py
defined by

Poy = y'(x) — Ay(x),

€41
D(Py) = {y(x) € C,l[O, 1]:y(x) =0, / Ci()ytdr =0,

§;
1
/ Hi(t)y(t)dt=0,i=0,...,m,j=0,...,s}. (11
0
Moreover, we may write the operator P compactly as

Py =y'(x) — Ay(x) — Gz(y),
D(P) = {y(X) e ClO0,11: Ay(x) + By (y) = 0}, (12)

where the composite matrices
G=[GyGi...Gn|. A=[AgA1...A,]. B=[ByBi...Bs].
the compound column vectors

z2(y) = col (zo(¥), 21()s + - Zm(¥)) ,
y(x) = col (y(x0), y(x1), ..., y(xm))
V() = col (Vo). Y1), .... ¥s(),

and the n x 1 vectors
1
zi (y) =f Hi()y®)dt, i =0,...,m,
0

§j+1
wj(y)=/g Ciymdt, j=0,...,s.

J

By using (10) or (12), we can express the system (1) equivalently in the elegant
operator form

Py =f), f(x)eGlO,1]. 13)

Theorem 1 below provides the criteria for the existence of a unique solution to
the problem (13).
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We first consider the n x n matrix e*4 and define the following n x n matrices
1
L= / Hi(t)e'dt,
0
41
Aj = f Cj(ne'dr,
J
Xj
Ax(G) = [ e G,
0

1 X
Vit (G) = / Hi(x) / eYTAG(ndtdx,
0 0

§it1 X
W,-k(G)=/’ cj(x)/o eCAGL(Ddrdx,

J

where i,k =0,...,m, j=0,...,s, and the compound matrices
&4 = col [exOA et ex"‘A] ,
L=col[Ly Ly --- Ly]l, A=collAy A1 --- As],
Ag = [Ai(G)], Vi =1[Vi(G)], Wi =[Wi(G)]. 14

Theorem 1 The problem (13) is uniquely solvable on Cy[0, 1] if

AAG +BWg Ae* +BA

det T = det
Ve — 1 L

} £0. (15)

Proof 1t suffices to show that ker P = {0} if detT # 0. Assume that detT #
0. Consider the homogeneous problem Py = 0 consisting of the homogeneous
equation

Y (x) = Ay(x) — Gz(y) =0, (16)
and the boundary conditions

Ay(x) + By (y) =0. A7)

Let the auxiliary integro-functional equation

Y =etd ey f TG (drzi (), (18)
i—0 0
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or in a compact form
X
v =t et [ MGz, (19)
0

where ¢*4 is a fundamental n x n matrix to the homogeneous differential equa-

tion y'(x) — Ay(x) = 0 and d is an arbitrary column vector with constant
coefficients. It is easy to verify that from (19) follows the homogeneous equa-
tion (16). Therefore every solution of (19) is also a solution of (16). From (18),
we have

) = eihd 4 ey / " e AGL iz (), (20)
k=0""0
H;(x)y(x) = Hy(x)e* d + H;(x)e*" ) / CeAG i), QD)
k=00

m x
Cij(x)y(x) = Cj(x)e* d + Cj(x)e™ Y f e Gr(ndtzi(y),  (22)
0
k=0
fori =0,...,m, j=0,...,s. By integrating (21) and (22), we get
1 1
/ H;(x)y(x)dx = / H; (x)e*dxd
0 0

m 1 ¥
+Z/ Hi(X)EXA/ e Gr(ndidxzi(y),  (23)
k=070 0
S./'H S_H—I A
/ Cj(x)y(x)dx =/ Cj(x)e*"dxd
§; £

m £j11 X
+Z / ' Cj(x)e™ / e "AGr(t)dtdxzi(y). (24)
k=0"5J 0

We rewrite (20), (23), (24) in the compact matrix form

y(x) = *d + Agz(y), (25)
2(y) = Ld + Vgz(y), (26)
Y (y) = Ad+ Wgz(y), (27)

where the matrices ¢¥4, L, A, Ag, Vg, Wg are defined in (14). By utilizing (25)
and (27), the boundary conditions in (17) are written as
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A (eXAd + AGz(y)) + B (Ad + Wgz(y)) = 0. (28)

From (26) and (28) we obtain the system

AAG +BWG A +BA (z()) _ (0
[ Vo — 1 L ](d>_<0>’ )

2z _ (0
(9)-(2)

The assumption that det T # 0 implies z(y) = 0, d = 0. Substituting these values
into (19), we obtain y(x) = 0. Hence ker P = {0} and the operator P is uniquely
solvable. The theorem is proved. O

or

Remark 1 Note that the system of integro-differential equations (1) for G; =
[0], i =0,...,m, degenerates to the system of differential equations (2). By setting
G; =10], i =0,...,m, into (15), we obtain

XA
detT = det[AAg—l—BWgAe +BA]

Vg — 1 L

L XA
-1 L
—  det [Ae"A—i-BA]
m K E.Hl
= det ZA,-ex"A+ZBj/ Cijx)eddx | #0, (31
T ‘7 &
i=0 j=0 J

which is the sufficient solvability condition for the differential problem (2) derived
in [6].

We introduce now the C" vectors

6:(f) = / LA f (1,
0
1 X

vi(f) = / Hi (x) / DA £ (1 dtdx,
0 0
§j+1 x

a)j(f)=/ cj(x)f DA f(1drdx,

0

§j

fori =0,...,m, j=0,...,s, and the combined vectors
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¢ = col@o(f).d1(f) e bu (). vy =colwo(f).....vm(f),
wy = col@(f). ... o5 (). (32)

Theorem 2 Let (15) hold true. Then the problem (13) is correct on Cy,[0, 1] and its
unique solution is given by

y(x) — exA /x eitAf(l‘)dl _ |:exA /X eilAG(t)dl exA:| T71 <A¢f + Bwf> '
0 0 Vr
(33)

Proof The problem (13) encompasses the nonhomogeneous system of integro-
differential equations

Y'(x) = Ay(x) = Gz(y) = f(x), (34)
and the boundary conditions
Ay() + By (y) = 0. (35)

Take the auxiliary integro-functional equation
m X X
y(x) = e*Ad + A Z/ eT"AG (1)dizi(y) 4 €4 / e"Afndr,  (36)
— Jo 0
i=0

or in the compact matrix form

y(x) = |:eXA /Ox e "AG(t)dt e“‘} (Z(dy)> + ¥4 /Ox e A F(1)dt, (37)

for every f(x) € Cy,[0, 1]; *4 is a fundamental n x n matrix to the homogeneous
differential equation y'(x) — Ay(x) = 0 and d is an arbitrary column vector with
constant elements. Observe that differentiation of (37) yields (34). Hence, a solution
of (37) is also a solution of (34). From (36), we get

m o exi Xi
yx) = eitd ety / e " Gr(n)dizi(y) + €4 / e~ f(ydr,
k=00 0
(38)

Hi(x)y(x) = Hi(x)e**d + H;(x)e" Y f A G 0diz(y)
k=00

+Hj (x)e¥4 /x e " f(n)dt, (39)
0
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Ci()y(x) = Cj(ned+Cjx)et / e Grndiz(y)
k=00

+Cj(x)e? /0 ’ e F(1)dt, (40)

fori =0,...,m, j=0,...,s. By integrating (39), (40), we obtain
1 1
/ H; (x)y(x)dx = / H; (x)e**dxd
0 0

m 1 X
+3 [ et [Tt
k=070

X
0

1
+ / Hj(x)e™ / e " f(t)drdx, (41)
0
3

§j41 j+1 "
/ Cj(0)y(x)dx = / Cj(x)eAdxd
§j &

m §it1 X
+> f ' Cj(x)e™ / e "Gt dtdxzi (y)
& 0
k=0

J

i1 x
+ / Cj(x)e™ / e A f(t)drdx, (42)
& 0

fori =0,...,m, j=0,...,s. We rewrite (38), (41), (42) in the compact matrix
form

yx) = e*d+ Agz(y) + ¢, (43)
z(y) = Ld+ Vgz(y) + vy, (44)
Y () = Ad + Wgz(y) + wy, (45)

where the matrices €¥4, L, A, Ag, Vg, Wi are defined in (14) and the vectors
¢, vy, @ are given in (32). By utilizing (43) and (45), the boundary conditions
in (35) are recast as

A (Md+ Agz() + 1) +B (Ad+ Woz(y) + o) = 0. (46)
From (44) and (46), we obtain the system

|:AAG +BWG A + BA} <z(y)> _ <A¢f + Bwf) @7

Ve —1 L d 10
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or

T(z(y))z_(Ad)f—i-Bwf). 48)
d l)f

Since det T # 0 by hypothesis, we have

zZMY\ _ o1 (A¢s+Boy
(&)= (M) )

Substitution of (49) into (37) yields the solution (33) to the problem (34)—(35). Since

this solution holds for all f(x) € C,[0, 1], then the system (34)—(35) is everywhere

solvable. Thus, (33) is the unique solution to the nonhomogeneous problem (13)

which can be denoted conveniently as y(x) = P -1 f(x). To prove the correctness

of the problem (13) it remains to show that the inverse operator P! is bounded.
Let r = m + 1 and write the matrix T conveniently as

Tlr Tll
= |:Trr Trl :| ’ (50)

where T = AAGg + BWg, T!! = Ae* + BA, T = Vg — I and T"! = L. Let
also the analogously partitioned matrix

1 [Adc+BWe Ae* +BA
n Vg — I L

Hrl 7"
-1
m=r =|:H11 le]’ (51)
where
! g - 11,
lez[l—[&r.unr}[]’ Hr1= , o’ = ,
(52)
and I7!1, 171.1’, H{I, lekr i,k=0,...,maren x n matrices. Then,
i rl rr
7 (A%r+Bos _ 17ll (A¢>f+13wf)+17l LAY 53)
Vs m'" (A¢; +Boys) + T vy

Substitution of (53) into solution (33) yields
X
v = [ pwar
0

* rl . rr
_ / e(x_t)AG(t)dt ot A H”(A¢f +B60f) +H1 vy
0 I1 (A¢>f+Bwf)+1'[’vf



12 M. M. Baiburin and E. Providas

_ /x e(x_t)Af(l)dt
0

X X
_ / eWDAG()AIT (Ag ; + Bory) — / CUTOAG (LT v s
0 ’ 0

—" 1" (Ap; +Bwy) — e T vy (54)

Let the maxima absolute elements (ae) for each of the following n x n matrices be
denoted by

k@ = max _e"A] ,  kj =max [BjCj (x)eXA] . 19 = max [e"‘A] ,
L ae

ae ae

ae

-
1D = max / Z e(x_’)AG,-(t)Hi”dt:| , ll.(z) = max [Aie(x"_’)A] ,
0 i—0 ae

ae ae

—_—
1 =max | > / e<“>AG,-(t)17{,jdt] l<4>=max[e“‘n“],
0
i=0

hy = max -Hk(x)eXA] ., hj = max [e"AHilr] . (55)
ae L ae

Notice that the elements of the above matrices are continuous functions on [0, 1]
since the elements of the fundamental matrix ¢*4 and the inverse matrix e 4 are
continuous functions.

We now find some estimates for the terms appearing in (54). First, note that
Ad; +Bwy € C", since both A;¢;(f) and Bjw;(f) € C", and by the triangle
inequality and properties (5), (8), we have

IA¢; +Borllc, < |Adsllc, + [Boylic,

=11>_Aigi(Dlle, + 1Y Bjw;j(Hlc,

i=0 j=0
m Xi
s}jnf A4 fydic,

S §it1 X

+Z||/’ Bjc,-(x)e“‘/ e~ f(tdidx||c,
— " Je. 0
j=0 J

m S
2
<SPl fle, + > kIO flic,
=0

j=0
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m S
2
=n (D 1P +193 k| 1 fllc,-
i=0 j=0

By means of (6), we obtain

X X
I / YDA F(nydtc, = lle¥ f e A fndtllc, < kQ1OR% flc,.
0 0

Utilization of (4) and the relation (56) produces
X
I / TG (Ad ; + Bay)llc,
— | f Z TG (0T dt (A s +Bag)lc,
<1Vn||A¢; + Boylc,
m S
<hn® [ 12 + 193 ki | 1 flle,-
i=0 j=0
From (4) and (7) follows that

X
I / CTAG)d T v |,
0

13

(56)

(57)

(58)

=||/0 e(x_[)A<ZGi(t) [()’,...,ZGi(t)Hi’,f,>dtcol Wo(f)s - s vm (e,
i=0 i=0

m

<y |Z f C=DAG; ()T divi(f)llc,
k=0

<> i nlve(Hllc,
k=0
m 1 X

=Y (3)n||/ Hk(x)e"A/ e f(t)drdx|c,
k=0 0 0

<N 1Pkt On| fllc,

Ms

x~
Il
[}

m
=192 1Pl f e, -

k=0

(39)
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Further, by using property (4) and the relation (56), we acquire

le AT (Ag; +Bwpllc, < DnllAd; +Borllc,
m N
<192 3P 1903 ki | 1 flle,- (60)
Finally, by employing (9), we get

m
Al A 1
lle* 1T rvf”Cn = [le* E Hirvi(f)”Cn
i=0

IA

le* A v (Hlle,

M= I

Il
=}

1 §
le*A T fo H;(§)e" /0 e A f(n)dtdg|c,

L
m

<19y hihill flc, - (61)
i=0

From (54) and (57)—(60), follows that

m ) m
ly@le, < [ k1O + 140> | S 1P +190 k| +1903 Y 10y
i=0 j=0 k=0

m

s m
HO2 0D 1003 kg | 41933 kil | 1 £l
i=0 =0 i=0

= vllflc,- (62)

where y > 0. The last inequality proves the boundedness and correctness of the
operator P and problem (13). The theorem is proved. O

4 Conclusions

We have studied a class of nonhomogeneous systems of n linear first-order ordinary
Fredholm type integro-differential equations subject to general multipoint and inte-
gral boundary constraints. We have established sufficient solvability and uniqueness
criteria and we have derived a ready to use exact solution formula. The method
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proposed requires the knowledge of a fundamental matrix of the corresponding
homogeneous system of first-order differential equations. The solution process can
be easily implemented to any computer algebra system.
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A Variational Approach to the Financial )
Problem with Insolvencies and Analysis ik
of the Contagion

Giorgia Cappello, Patrizia Daniele, Sofia Giuffre, and Antonino Maugeri

Abstract In this chapter we improve some results in literature on the general
financial equilibrium problem related to individual entities, called sectors, which
invest in financial instruments as assets and as liabilities. Indeed the model, studied
in the chapter, takes into account the insolvencies and we analyze how these
insolvencies affect the financial problem. For this improved model we describe a
variational inequality for which we provide an existence result. Moreover, we study
the dual Lagrange problem, in which the Lagrange variables, which represent the
deficit and the surplus per unit, appear and an economical indicator is provided.
Finally, we perform the contagion by means of the deficit and surplus variables.
As expected, the presence of the insolvencies makes it more difficult to reach
the financial equilibrium and increases the risk of a negative contagion for all the
systems.

1 Introduction

The term “insolvency” is often used to denote that an individual or an organization
can no longer meet its financial obligations with its lender. Usually, before getting
involved in insolvency proceedings, some informal arrangements with creditors are
attempted. Insolvency can be caused by poor cash management, a reduction in cash
inflow forecasts or by an increase in expenses.

When insolvent, the credit loans are revoked both at the credit institution
concerned and at all the institutions and banks to which the customer has had debts;
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further, it becomes impossible for the client/company to obtain liquidity from other
institutions.

In the USA the number of bankruptcies decreased to 23,106 companies in the
first quarter of 2018 from 23,157 companies in the fourth quarter of 2017. According
to The Guardian, the number of people who went bankrupt in 2017 in the United
Kingdom rose to the highest level after the financial crisis, revealing the devastating
toll of rising debts for the families. According to the Insolvency Service 99,196
people were declared insolvent in 2017, with an increase of 9.4% with respect
to the year before and very close to the peak recorded during the recession. Lots
of households (about 59,220 in 2017) are turning to “bankruptcy-lite” debt deals,
where individuals reschedule their debts and agree to much lower payments. Italy
confirms the unenviable leadership in the ranking of companies in difficulty among
the main Western European countries. According to the surveys of Coface, a group
at the top in credit insurance, in Italy there are 7.2% of companies in difficulty,
in Spain 6.3%, in France 5.7%, and in Germany 4.9%. The percentage takes into
account the insolvent companies and those indebted, unprofitable, who struggle
to honor the payments at maturity. In Italy, the current levels of insolvency are
more than double that of 2007, with one of the worst performances recorded at the
European level. In general, the trend of insolvencies at global level is almost stable
in 2017. The modest decline that was expected last year, equal to about a —1%, is
in fact the weakest result since 2009.

Some financial network models have already been studied in the literature. The
first authors to develop a multi-sector, multi-instrument financial equilibrium model
using the variational inequality theory were Nagurney et al. [35]. Recently, in [1, 7,
8, 11] more general models have been studied allowing that the data are evolving
over time.

In this chapter we improve the previous results, including the insolvencies of the
financial institutions.

We obtain such a result, considering in the utility function the presence of the

n
term Z ri(@)(1 —7;;())cj@®)(1+ hj(t))yij(t), which represents, by means of the
j=1
insolvency coefficients c¢;(¢), the portion of liabilities that are not reimbursed. Since
a big number of critic situations have been caused by the fact that the banks or
the financial institutions were not able to recover a part of their debts, we focus
our attention on this more complete model, deriving the variational formulation,
applying the infinite-dimensional duality theory and examining the contagion effect
on the economy. In this context, a particular attention is devoted to the problem
of the contagion, in order to know when it happens and also to establish how the
insolvencies contribute to the occurrence of the contagion. We are able to control the
contagion, using the dual Lagrange problem and the dual Lagrange variables, which
represent the deficit and the surplus per unit, arising from instrument j. Considering
the dual problem, we can examine the financial model both from the Point of View
of the Sectors and from the System Point of View (see Section 3.3) and we can
clearly see that liabilities from the point of view of the sectors are investments for
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the economic system, namely a positive factor, upon which to base the development
of the economy. As expected, the presence of the insolvencies, that we are able to
quantify, makes it more difficult to reach the financial equilibrium, since reduced
income has to balance all the expenditure of the system.

The chapter is organized as follows: in Section 2 we present the detailed financial
model, together with the evolutionary variational inequality formulation of the
equilibrium conditions, and an existence result is provided; in Section 3 we apply the
duality to the general financial equilibrium problem, deriving the Deficit Formula,
the Balance Law, and the Liability Formula, we give the dual formulation of the
financial problem, we study the regularity of the Lagrange variables, deficit and
surplus, and we analyze, by means of these variables, the financial contagion; in
Section 4 we provide a numerical financial example and, finally, in Section 5 we
summarize our results and conclusions.

It is worth mentioning that the methods applied in this chapter may be used in
the study of many other equilibrium problems [4, 5, 10, 19-26, 34].

2 The Financial Model and the Equilibrium Conditions

2.1 Presentation of the Model

For the reader’s convenience, we present the detailed financial model (see also [1]).
We consider a financial economy consisting of m sectors, for example households,
domestic business, banks and other financial institutions, as well as state and local
governments, with a typical sector denoted by i, and of » instruments, for example
mortgages, mutual funds, saving deposits, money market funds, with a typical
financial instrument denoted by j, in the time interval [0, T']. Let s;(¢) denote the
total financial volume held by sector i at time ¢ as assets, and let /; (¢) be the total
financial volume held by sector i at time ¢ as liabilities. Further, we allow markets of
assets and liabilities to have different investments s; (¢) and /; (¢), respectively. Since
we are working in the presence of uncertainty and of risk perspectives, the volumes
s; (t) and /; (t) held by each sector cannot be considered stable with respect to time
and may decrease or increase. For instance, depending on the crisis periods, a sector
may decide not to invest on instruments and to buy goods as gold and silver. At
time ¢, we denote the amount of instrument j held as an asset in sector i’s portfolio
by x;;(¢) and the amount of instrument j held as a liability in sector i’s portfolio
by yi;(z). The assets and liabilities in all the sectors are grouped into the matrices
x(t), y(r) € R™" respectively. At time r we denote the price of instrument j held
as an asset and as a liability by r;(¢) and by (1 + h;(¢))r;(¢), respectively, where
h; is a nonnegative function defined into [0, 7] and belonging to L°°([0, T], R).
We introduce the term /() because the prices of liabilities are generally greater
than or equal to the prices of assets. In this manner we describe, in a more realistic
way, the behavior of the markets for which the liabilities are more expensive than
the assets. We group the instrument prices held as an asset and as a liability
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into the vectors r(¢) = [r1(t), ra(t), ..., ri(®), ..., rn,@®)]T and (1 + h())r(t) =
[+ ~1@)ri(@), (1 + ha(O)ra (@), ..., 1+ hi@)ri(0), ..., (1 + ha()ra()]”,
respectively. In our problem the prices of each instrument appear as unknown
variables. Under the assumption of perfect competition, each sector will behave as
if it has no influence on the instrument prices or on the behavior of the other sectors,
but on the total amount of the investments and the liabilities of each sector.

We choose as a functional setting the very general Lebesgue space

T
L?([0, T],R?) = {f : [0, T] — R? measurable : / ||f(t)||f,dt < +oo} ,
0

with the norm

1
T 2
||f||Lz<[o,n,Rp)=( /0 ||f<t)||$,dr> :

Then, the set of feasible assets and liabilities for each sectori =1, ..., m becomes

P= {(x,-a), yi(0) € L*([0, T1, R¥") :

Z yij(t) = 1; () ae. in [0, T]}

Y xij(0) = si@),
j=1

and the set of all feasible assets and liabilities becomes
P ={@m, y@) € L2q0, TLR*™) : (xi(0), i) € Py i =1, om].

Now, we introduce the ceiling and the floor price associated with instrument j,
denoted by 7; and by r respectively, with 7 (t) > r; (t) = 0,a.e.in [0, T]. The
floor price r;(¢) is determined on the basis of the official interest rate fixed by the
central banks, which, in turn, take into account the consumer price inflation. Then
the equilibrium prices r;’f (t) cannot be less than these floor prices. The ceiling price
7 j (1) derives from the financial need to control the national debt arising from the
amount of public bonds and of the rise in inflation. It is a sign of the difficulty on
the recovery of the economy. However it should be not overestimated because it
produced an availability of money.

In detail, the meaning of the lower and upper bounds is that to each investor a
minimal price r ; for the assets held in the instrument j is guaranteed, whereas each
investor is requested to pay for the liabilities in any case a minimal price (1 +4;)r ;.
Analogously each investor cannot obtain for an asset a price greater than 7; and as
a liability the price cannot exceed the maximum price (1 + ;)7 ;.

We denote the given tax rate levied on sector i’s net yield on financial instrument
J» as T;j. Assume that the tax rates lie in the interval [0, 1) and belong to
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L*°([0, T], R). Therefore, the government in this model has the flexibility of
levying a distinct tax rate across both sectors and instruments.

We group the instrument ceiling and floor prices into the column vectors 7(¢) =
Tj@®)j=1,.,nandr () = (r; (t)) j=1,....n, respectively, and the tax rates 7;; into the
matrix 7(¢) € L2([0, T], R™<").

The set of feasible instrument prices is:

#={r e L’(0,TL.R") : r;(t) <rj(t) <7;(1), j=1,....n, ae. in[0,T]},

where r and 7 are assumed to belong to Lz([O, T1, R").

In order to determine for each sector i the optimal distribution of instruments held
as assets and as liabilities, we consider, as usual, the influence due to risk-aversion
and the optimality conditions of each sector in the financial economy, namely the
desire to maximize the value of the asset holdings while minimizing the value of
liabilities. In the current economic situation there is a serious problem caused by the
suffering that undermines the whole system. For this reason we intend to address
the study of the financial problem in the presence of insolvencies.

Hence, in order to meet this need, we take into account the non-performing loans,
introducing the insolvency coefficients ¢;(¢), j = 1,...,n. We assume that the
insolvency coefficients c;(¢) lie in the interval [0, 1) and belong to L°°([0, T'], R).

Then, we introduce the utility function U; (¢, x;(t), y; (t), r(t)), for each sector i,
defined as follows:

Ui, xi(8), yi(6), r(0)) = ui(t, i (1), yi (1)
+ (1 =i )i (1) — (1= cj(O)(A + h (1) yij ()],
j=1

where the term —u; (¢, x; (¢), y; (t)) represents a measure of the risk of the financial
agent, the term Z?:l ri@®) (1 — ;i (0)[x;; (@) — (1 + hj(2))yi;j(t)] represents the
value of the difference between the asset holdings and the value of liabilities, and

n
the term er (1 = 7;(®))c; (@)1 + hj(t))yij(t) represents, by means of the
j=1
insolvency coefficients ¢ (¢), the portion of liabilities that are not reimbursed. Such
a term appears as a positive contribute for sector i and a loss for the system.
We suppose that the sector’s utility function Uj (¢, x;(¢), y; (t)) is defined on
[0, T] x R" x R", is measurable in 7, and is continuous with respect to x; and

ou; u;j . .
y;. Moreover we assume that —— and —— exist and that they are measurable in ¢

axij ay,-j
and continuous with respect to x; and y;. Further, we require that Vi = 1, ..., m,
Vj=1,...,n,and a.e. in [0, T'] the following growth conditions hold true:

lui(t, x, M| < ;O llxlllyl, Vx,y eR", (1)
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and

du;(t,x,y)

8 [ t! 9
‘:zgz;ﬂ <yl )
9yij

| = O, |
where o;, 8; j» Vij are nonnegative functions of L ([0, T'], R). Finally, we suppose
that the function u; (¢, x, y) is concave.

An example of measure of the risk aversion is given by a generalization to
the evolutionary case of the well-known Markowitz quadratic function based on
the variance-covariance matrix denoting the sector’s assessment of the standard
deviation of prices for each instrument (see [31, 32]). This evolutionary measure of
Markowitz type can be refined in such a way that it can incorporate the adjustment
in time which depends on the previous equilibrium states.

In Section 2.4 we define a utility function of Markowitz type.

2.2 The Equilibrium Flows and Prices

Now, we establish the equilibrium conditions for the prices, which express the
equilibration of the total assets, the total liabilities, and the portion of financial
transactions per unit F; employed to cover the expenses of the financial institutions,
including possible dividends and manager bonus. Indeed, the equilibrium condition
for the price r; of instrument j is the following:

(1 =) [0 = (L= )+ )50 ] + Fi(0)

i=1
>0 ifr;f(f) =r;()
=0ifr;(1) < r;.‘(t) <7 ®)
< 0if 5 =75 (1)

where (x*, y*, r*) is the equilibrium solution for the investments as assets and as
liabilities and for the prices. In other words, the prices are determined taking into
account the amount of the supply, the demand of an instrument, and the charges
F;, namely if there is an actual supply excess of an instrument as assets and of the
charges F; in the economy, then its price must be the floor price. If the price of
an instrument is greater than the floor price, but not at the ceiling, then the market
of that instrument must clear. Finally, if there is an actual demand excess of an
instrument as liabilities in the economy, then the price must be at the ceiling.

Now, we can give different but equivalent equilibrium conditions, each of which
is useful to illustrate particular features of the equilibrium.

Definition 1 A vector of sector assets, liabilities, and instrument prices
(x*(@), y*(t), r*(t)) € P x % is an equilibrium of the dynamic financial model if
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andonlyifVi=1,...,m,Vj=1,...,n, and a.e. in [0, T], it satisfies the system
of inequalities
dui(t, x*, y*)
S I (= o)) — V@) 2 0, @)
axij
ou; (t, x*, y*
—% + (1= 7)1 = e DA +h; O 0 = (0 = 0, (5)
ij

and equalities

8 i , *’ * .
kaj(t)[ _ Aty (ta)z_j ) _ (A =T — pl” (t)] =0, (6)

3 i , *’ k .
yi}<f>[—”a+_jy)+<1—r,-,-<t))<1—c,-<t>><1+h,-<r)>r;‘f<r>—u,@ 0] =o0.

(7
where MEI)*(I), ,ul@*(t) € L2([O, T1,R) are Lagrange multipliers, and verifies
conditions (3) a.e. in [0, T'].

We associate with each financial volumes s; and /; held by sector i the functions
MEI)*(I) and M(Z)*(t), related, respectively, to the assets and to the liabilities and

i
which represent the “equilibrium disutilities” per unit of sector i. Then, (4) and (6)
mean that the financial volume invested in instrument j as assets xl.*j is greater than
. ou; (¢, x*, y*
or equal to zero if the j-th component —% (-1 (t))r}k(t) of the
x,J
du; (1, x*, y*)

disutility is equal to /Lfl) *(t), whereas if — P
x,-j

(I = 1;Nr;@) >
Mgl)*(t), then xi*j (t) = 0. The same occurs for the liabilities.

The functions "% (¢) and p®*

1 1

n n
in [0, T'] with the constraints Zx,-j (1) — si(t) = 0 and Z yij () — Li(t) = 0,
j=1 j=1
respectively. They are unknown a priori, but this fact has no influence because we
will prove in the following theorem that Definition 1 is equivalent to a variational

inequality in which ufl)*(t) and Mgz)*(t) do not appear (see [1, Theorem 2.1]).

(#) are the Lagrange multipliers associated a.e.

Theorem 1 A vector (x*,y*,r*) € P x Z is a dynamic financial equilibrium if
and only if it satisfies the following variational inequality:
Find (x*, y*,r*) € P x Z%:

m.oo. on oui(t, xF(t), y; (1)) .
;/0 {;[_ dx;j -1 - ‘L’,'j(t))rj (t)]

X [xij (1) = x75()]
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u du;(t, x} (1), y; (1)) *
w0 o (1= Ty = @O0 +hj0)]

x[yij () — yf‘j(t)]}dt

n

+Z /0 Z (1= 74 O) [0 = (= ¢, + )50 | + Fi)

x[rj@) = ri®O]dt 20, V(x.y.r) € P x Z. )

Remark 1 We would like to explicitly remark that our definition of equilibrium
conditions (Definition 1) is equivalent to the equilibrium definition given by a vector
(x*, y*,r*) € P x Z# satistying 3) and, Vi = 1,...,m :

T n
m}fleo {Mi(l, xi (1), yi (1)) + Z(l =i O)rF Olxij () — (1= c; )1 + hj(f))yz'j(l)]}dl =

i j:1

T
/0 e 57 @0, 57 @) + 300 = 2 O OIS0 = (= ¢ O) +hj )01 }de

j=1

We prefer to use Definition 1, since it is expressed in terms of equilibrium
disutilities.

2.3 Existence Theorem

Now, we would like to give an existence result. First of all, we remind some
definitions. Let X be a reflexive Banach space and let K be a subset of X and X* be
the dual space of X.

Definition 2 A mapping A : K — X™* is pseudomonotone in the sense of Brezis
(B-pseudomonotone) iff

1. For each sequence u, weakly converging to u (in short #,, — u) in K and such
that lim sup,, (Au,, u, — v) < 0 it results that:

liminf(Au,, u, —v) > (Au,u —v), VYvelk.
n

2. For each v € K the function u — (Au, u — v) is lower bounded on the bounded
subset of K.
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Definition 3 A mapping A : K — X* is hemicontinuous in the sense of Fan (F-
hemicontinuous) iff for all v € K the function u — (Au, u — v) is weakly lower
semicontinuous on K.

The following existence result does not require any kind of monotonicity
assumptions.

Theorem 2 Let K C X be a nonempty closed convex bounded set and let A : K C
E — X* be B-pseudomonotone or F-hemicontinuous. Then, variational inequality

(Au,v—u) >0 Vvek (&)

admits a solution.

In the following subsection we shall present an example of a function, which
satisfies the above assumptions.

2.4 An Example of a Markowitz-Type Risk Measure

We generalize and provide an evolutionary Markowitz-type measure of the risk
proposed with a memory term. This function is effective, namely an existence
theorem for the general financial problem holds (see [17]). In this way we cover
a lack, providing the existence of a significant evolutionary measure of the risk. The
particular, but significant, example of utility function is:

u; (x; (1), yi (£))

T T
xi(r)} ,»[x,-m} /’[xi(r—z)} i[xi(r—z)}
= 0 + Q dz, (10)
[yz'(t) yi (1) o Lyitt—2) yi(t —2)
where Q' denotes the sector i’s assessment of the standard deviation of prices for
each instrument j.

In [17] it has been proven that Markowitz function verifies all the assumptions of
the existence theorem, hence a problem with a function like this admits solutions.

3 The Duality for the Financial Equilibrium Problem

In this section we study the duality for the financial equilibrium problem (see also
[6]).

To this end, for reader’s convenience, we recall here some definitions and results
of the infinite dimensional duality theory.
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3.1 The New Infinite-Dimensional Duality Theory

In order to obtain the strong duality, we need that some delicate conditions, called
“constraints qualification conditions,” hold. In the infinite dimensional settings the
next assumption, the so-called Assumption S, results to be a necessary and sufficient
condition for the strong duality (see [3, 9, 12, 13, 33]).

Letf:S—>R,g:5—Y, h:S — Zbe three mappings, where S is a convex
subset of a real normed space X, Y is a real normed space ordered by a convex cone
C, Z is areal normed space and consider the optimization problem:

S (x0) = min f(x)

Y
x0eK={xeS:gx)e—-C, h(x) =0z},
where 60 7 is the zero element in the space Z.
Its Lagrange dual problem is:
max inf [f(x) + (&, g(x)) + (1, h(x))], (12)

LeC*, neZ* xe$

where
C*:={ueY*:(uy) =0, VyeC}

is the dual cone of C and Z* is the dual space of Z. Then, we say that the strong
duality holds for problems (11) and (12) if and only if problems (11) and (12) admit
a solution and the optimal values coincide.

Some classical results due to Rockafellar [36], Holmes [27], Borwein and Lewis
[2] give sufficient conditions in order that the strong duality between problems (11)
and (12) holds, which use concepts such as the core, the intrinsic core, the
strong quasi-relative interior of C. Such concepts (see [2, 27, 29, 36]) require the
nonemptiness of the ordering cone, which defines the cone constraints in convex
optimization and variational inequalities. However, the ordering cone of almost all
the known problems, stated in infinite dimensional spaces, has the interior (and all
the above generalized interior concepts) empty. Hence, the above interior conditions
cannot be used to guarantee the strong duality.

Only recently, in [12] the authors introduced a new condition called S, which
turns out to be a necessary and sufficient condition for the strong duality and really
useful in the applications. This condition does not require the nonemptiness of the
interior of the ordering cone. This new strong duality theory was then refined in
[9, 13, 15, 28, 33].

Now we present in detail these new conditions.

Let us first recall that for a subset C € X and x € X the tangent cone to C at x
is defined as

Tcx)={yeX:y =n1_i)rgo/\n(xn —-x), Ay >0, x, € C, nli)rgoxn = x}.
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If x € clC (the closure of C) and C is convex, we have
Tc(x) = clcone(C — {x}),

where the coneA = {Ax : x € A, A € R} denotes the cone hull of a general
subset A of the space.

Definition 4 (Assumption S) Given the mappings f, g, & and the set K as above,
we shall say that Assumption S is fulfilled at a point x¢ € K if it results to be

T330,07,62) 1 (1= 00, 01x (6} x (62}) = 4, (13)
where
B = ((F () = f(x0) + e g() +y.h(x) : x € S\K. @20, y € C}.

The following theorem holds (see Theorem 1.1 in [13] for the proof):

Theorem 3 Under the above assumptions on f, g, h, and C, if problem (11) is
solvable and Assumption S is fulfilled at the extremal solution xo € K, then also
problem (12) is solvable, the extreme values of both problems are equal, namely, if
(x0, A*, u*) € K x C* x Z* is the optimal point of problem (12),

S (x0) = min f(x) = f(xo) + (A%, g(x0)) + (1", h(x0))

= max inf{f(x) + (A, g(x)) + (u, h(x))} (14)
Aegi xeS
ne

and, it results to be:

(1%, g(x0)) = 0.

3.2 Existence of Lagrange Multipliers

Now, we can apply the infinite-dimensional duality for the financial equilibrium
problem expressed by variational inequality (8), which ensures the existence of the
Lagrange multipliers. To this end, let us set:

T m
f(X,y,'”)Z/O {Z

i=1j=1

n

Z[_w

0x;j

- —Tij(t))r}‘(t)}

x [xij (1) = x5 (0]
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m n

Buy (1, 2 (1) y* .
£33 :[——”’(’ "ay(f; YO e —c-j<r>>(1+h,-(z>>rj(z)]
i=1j=1 !

x [yij () = ¥ 0]
£y [Z(l 1) [0 = (1 = ;) + g o] + Fj(r)}

x [rj® =¥ o] }dz

Then, the Lagrange functional is

L,y W00 w0 @ p W p@y = f£x,y,r)

—ZZ/ w (0xij () di — ZZ/ WD yij (o) dr

i=1 j=1 i=1 j=1

—Z / P le,m—s,(r) dr (15)

_Z/ 2)(0 ZYI](I) Li(t) ] dt

n T n T
+Zf0 P, 0) —r;(r))dr+2f0 pP (1) = Fj () dt,
j=1 j=1

where (x, y,r) € L2([0, T], R>m+my 5D 3@ e L2(10, T1, RT™), D, u@ €

L2([0,T1, R™), pD, p@ e L2([0,T],R%) and 2D, 2@, p<1> p? are the

Lagrange multipliers associated, a.e. in [0, T] with the sign constraints x; () > 0,

yi®) 20, r;@)— r; (t) >0,7;(t) —r;(t) = 0, respectively, whereas the functions

u(l)(t) and u(z) (t) are the Lagrange multipliers associated, a.e. in [0, T'], with the
n n

equality constraints Z x;j(t) —si(t) =0and Z vij(t) — 1; (t) = 0, respectively.
j=1 j=1
Applying the new strong duality theory, the following theorem holds.

Theorem 4 Let (x*, y*,r*) € P x X be a solution to variational inequality (8)
and let us consider the associated Lagrange functional (15). Then, the strong duality
holds and there exist \\D*, A®* € L2([0, T], R™), u(”’i u@* e L*([0, T], R™),
p W p@* e L2([0, T, RY) such that (x*,y*,r*, 2% 2@ W @
p D, p(z)*) is a saddle point of the Lagrange functzonal, namely
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Lo, y* o AW A@ D @M p@)y
< L%, y*, 2 0F 0@ Dy @ phx p@%) =0 (16)
< L,y r, ADF % (Dx D (D% @)y

V(x,y,r) € L*([0, T],R¥+my i) 0@ e 12([0, T1,RY™), Yu®, n@ e
L*([0, T1,R™), VoD, p@ e L2([0, T1, R") and, a.e. in [0, T1,

G x*(t), y*(@@))

* (1)* (1)*
oxij — (=1 @)rr@) =2 @0 = 0 =

Qui (1, x*(@0), y* (1)

T +(1=c; () A=Ti; () A+ () (=1 O) —pP* (1)=0,
ij

m

> (=) [0 = (A = ¢; @)1+ Ay 0 [+ Fi 0+ 0= 8 0),
- (17)
Vji=1,...,n;

MO0 =00 Oy =0, Yi=1,...m Vji=1,...,n (18)

w (@) Zx,,(r) sit) | =0, w0 Zy,,(r)—zm =0, (19

Jj=1 Jj=1
Vi=1,...,m

(2%

PO () —rf0) = 0. PP T —F (1) =0, Yj=1,....n. (20)

Formula (17) represents the Deficit Formula. Indeed, if p(l)* (1) is positive, then
the prices are minimal and there is a supply excess of 1nstrument J as an asset and
of the charge F;(t), namely the economy is in deficit and, for this reason, pi.l)*(t)
is called the deficit variable and represents the deficit per unit.

Analogously, if ,05.2)* (t) is positive, then the prices are maximal and there is
a demand excess of instrument j as a liability, namely there is a surplus in the
economy. For this reason ,o(,.z)*(t) is called the surplus variable and represents the
surplus per unit. '
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From (17) it is possible to obtain the Balance Law
n
Zl (1) = Zsl (1) - ZZrU(r) [0 = y50]
i= 1 j= 1

=33 A =i )0y + Z Z(l — i (0)e; (O + k(D)) (6)

i=1 j=1 i=1 j=I

+ Z Fi(t) - Z Py (0 + Z P o).

(21)

Finally, assuming that the taxes 7;;(¢), i = 1,...,m, j = 1,...,n, have a
common value 0(t), the increments k;(¢), j = 1,...,n, have a common value
i(t), and the insolvency coefficients c;(z), j = 1,...,n, have a common value

c(t), otherwise we can consider the average values (see Remark 7.1 in [1]), the
significant Liability Formula follows

(1-6®) Zsz () + Z Fi(t) — me*(,) n Zp(z)*(t)

(=c(t) Y li(t) = 1 — 0 + z(t))

i=1

(22)

From (22) we can deduce that in this situation to reach the equilibrium is even

more difficult than in the case of absence of insolvencies, because only a portion of
liabilities must balance all the expenses.

3.3 The Viewpoints of the Sector and of the System

The financial problem can be considered from two different perspectives: one from
the Point of View of the Sectors, which try to maximize the utility and a second point
of view, that we can call System Point of View, which regards the whole equilibrium,
namely in respect of the previous laws. For example, from the point of view of the
sectors, [; (t), fori = 1, ..., m, are liabilities, whereas for the economic system they
are investments and, hence, the Liability Formula, from the system point of view,
can be called “Investments Formula.” The system point of view coincides with the
dual Lagrange problem (the so-called shadow market) in which ,o( )(t) and p(z) (1)
are the dual multipliers, representing the deficit and the surplus per umt arising from
instrument j. Formally, the dual problem is given by
Find (o, p®*) € L2([0, T], R%") such that

nooLT
> /0 05 @) = p§F ) (1) — 3 ()t (23)
j=1
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n T
+y fo 07 @) = pPF )3 (1) = Fj(1)dt <0,
j=I

V(pD, p®) e L*([0, T1, RY").

Indeed, taking into account inequality (16), we get

m n T m n T
=D /0 AP0 =2 0 de =30 /0 O = Ay @) de

i=1j=1 i=1 j=1
- /0 (@) = w7 | Do x50 = sio) | dr
i=1 j=1

m T n
- /0 WO = w@ ) [ Yoy~ 6 | a
i=1 j=1
n T
Y /0 PV = o W) 0 = rEw) di
j=1
nooeT
+3y /0 (0@ = p PO (1) = F () dt <0
j=1

vaha@ e L2(0, TR, w®M, u® e L2(0,T1,R™), oM, p® ¢
L2([0, T],R™).

Choosing A = ) Dx 3@ — ) @* /L(l) = pb* u(2) = /L@)*, we obtain the
dual problem (23)

Note that, from the System Point of View, also the expenses of the institutions
F;(t) are supported from the liabilities of the sectors.

Remark 2 Let us recall that from the Liability Formula we get the following index
E(t), called “Evaluation Index,” that is very useful for the rating procedure:

(A=) Y L@
E(t) = i~ (24)

m n

Yo sO+ Y Fi@)
i=1 j=I1

where we set

si (1)
1+i(t)

Fj(®)

si(t) = . .
(I +i@)d —06())

Fi(t) =
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From the Liability Formula we obtain

n
1
>0
j=1

E(=1-
A=0@)A+in) | D 5w+ Fi@
i=1 j=1
>
+ = (25)
A=0O)A+i0) | D 5+ > Fi)
i=1 j=1

If E(¢) is greater than or equal to 1, the evaluation of the financial equilibrium is
positive (better if E(¢) is proximal to 1), whereas if E(¢) is less than 1, the evaluation
of the financial equilibrium is negative.

m
The term (1 — c(t)) Zli (t) in (24) represents the effective liabilities (or the
i=1
effective investments from the system point of view). The evaluation index (25)
is less than the one in the model in [1], where the insolvency coefficients are not
considered, and this means that, in presence of insolvency, it is more difficult to
reach the financial equilibrium.

3.4 Regularity Results

In [16] a regularity result of pg.l) (@), pS.Z) *(t), has been proved. Let us set

F(t) = [Fi(t), F2(1), ..., Fa)];

A(t,v)=([—M—(l—ru(r))q(r)} e

i=l,..., m
Jj=l,....n

|:_ u;(t,x,y)

3 + @ =7;;()d —c; @) +hj(l))rj(l)] . (20
yij i=1

j=1,...n
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i=1

.....

|:Z(1 —7ij @) (xij @) — A = ;)X +h;([®)yi; (1)) + Fj(t)j| );
j=1 n

A — L%([0, T], RZmmy,
with
H =P xX2A.

Let us note that .7 is a convex, bounded, and closed subset of L2([O, T], Rz’"”*").
Moreover assumption (2) implies that A is lower semicontinuous along line
segments.

The following result holds true (see [16, Theorem 2.4]):

Theorem 5 Let A € CO([0, T], R¥"™t") be strongly monotone in x and vy,
monotone in r, namely, there exists a such that, fort € [0, T],

(A1, v1) = A1, v2), vi —v2)) = a(llxi — x2l” + [Iy1 = »2 ), 27

Yvi = (x1, y1,71), V2 = (X2, Y2, 12) € R2Zmn+n

Letr (1), 7(t), h(t), F(t) = [F1(t), Fa(t), ..., F,)17, Ct) = [c1(), e2(0), ...,
e )O1F € €0, 171, R%), let (1) € CO([0, T1. R™) and let s, 1 € CO([0, T], R™),
satisfying the following assumption (B):

e there exists §1(t) € L2([0, T)) and c1 € R such that, for a.a. t € [0, T]:
sl = é1(t) + c1:

e there exists 5,(t) € L2([0, T]) and ¢, € R such that, foraa.t €[0,T]:
IO = 82(2) + c2.

Then the Lagrange variables, p(V*(t), p®*(t), which represent the deficit and
the surplus per unit, respectively, are continuous too.

3.5 The Contagion Problem

In this section we want to show that it is possible to establish when the economy
becomes negative by means of the dual variables pWV*(@1), p@*(t) (see also [14]).
Contagion can be explained as a situation when a crisis in a particular economy or
region spreads out and affects others (see [18] for a complete survey on the financial
contagion). The Lehman Brothers’ failure in the USA is an example of contagion.
Fundamental problems in the contagion are to try to know when it can happen, to
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give a measure of it, and to understand why it occurs. In the particular financial
problem we are dealing with, which is based on portfolio flows and investment
positions, namely on assets and liabilities of different sectors, we perform the
contagion by using the deficit and the surplus variables as well as the balance
law. Specifically, we recall that p(])*(t) represents the deficit variable and p(z)*(t)
represents the surplus variable. For our purpose it is useful to recall also the balance
law:

D0 =Y s 0+ 3D w0 [x50 - 350
i=1 i=1 i=1j=1

+Y Y A=)y =Y D (A =i )e; (O +hj0)yf ) = Y Fi@)

i=1j=1 i=1j=1 j=1
S (D S 2)*
== "0+ 00
j=1 j=l1

(28)
We realize that when the left-hand side is negative, it means that the sum of
the liabilities, namely the investments of the system, cannot cover the expenses
incurred. The sign of the left-hand side depends on the difference

n n
1 2
=Y p O+ e
j=1 j=1

When such a difference is negative, from (28) it follows that the whole system is at a
loss. In this case we say that a negative contagion is determined and we can assume
that the insolvencies of individual entities propagate through the entire system. It
is sufficient that only one deficit component pj.l) *(t) is very large to obtain, even
if the other ,05.2)* (t) are lightly positive, a negative balance for the whole system.
In addition, if even only one pi.l)*(t) is positive, then for that instrument j all the
sectors are already in crisis.
When

n

PO ED IO}

j=1 j=1

namely the sum of all the deficit exceeds the sum of all the surplus, we get E(¢) < 1
and, hence, also E(t) is a significant indicator that the financial contagion happens.
Causes of contagion are the lack of investments, the financial insolvency, or the
excess in the expenses.



A Variational Approach to the Financial Problem with Insolvencies. . . 35
4 A Numerical Example

Let us analyze a numerical financial example in which we consider as the risk
aversion function an evolutionary measure of Markowitz type, which expresses
at each instant ¢+ € [0, T] the risk aversion by means of variance-covariance
matrices denoting the sector’s assessment of the standard deviation of prices for
each instrument.

Let us consider an economy with two sectors and two financial instruments, as
shown in Figure 1, and choose as variance-covariance matrices of the two sectors
the following ones:

1 0-05:0 1 0 0 0
Loy 01 0 0 > |0 1 -05t0
ow= —-05:0 1 0}’ o0 = 0-05 1 0
0 0 0 1 0 0 1

We define the feasible set as follows:

K = { 110, %1200, 5200, 22200, 3110, Y1200, 3210, y22 00, 71 (0, 72(0)) € L2(10, 11 RY)
x11(8) +x12(t) =t +2, x21(t) + x22(t) =2t + 3, ae. in[0, 1]

yi1(®) + yi2(t) = 2t, y21(t) + y22(¢) = 3t, ae. in[0, 1]

Sectors

Asset
Subproblems

xll(t) xlz(l‘) le(z‘) xzz(l‘)

() yi2(t) y21(2) y2(t)
Liability
Subproblems
Li(r) h(r)

Sectors

Fig. 1 Two sectors and two financial instruments network a.e. in [0, 1]
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4 <r (1) <5t +12, 1 <r(t) <6 +5, ae. in[0, 1]}.
Let us assume that

3 t

hi(t) = =t, and hp(t) = —.

1(1) 2 2(2) >

Finally, let us consider

t 3 t t
T11(t) = X T12(t) = é_lt’ T21(1) = 7 To0(t) = 1

and
c1(®) =0.1 () =0.15.

Then, variational inequality (8) becomes:
1
/0 {[2x;‘1 (t) — 1y}, (1) — <1 - %) ri®](x11() — x{; ()
3
+[2x3 () — (1 — Zt) 3 ()] (x12(0) = x35(1))
+[2x3, (1) - <1 - %) rT (O] (21 () = x5, 1))
k k t k *
+[2x3, () — 13, (1) — <1 - Z) r5 (1)) (x22(1) = x3,(1))
3
+[2y, () — tx}; (1) + 0.9 (1 + Et> (1 - %) ri O] @) =y @)
. t 3 « *
~|—[2y12(t) +0.85 (1 + E) (1 - Zt) r (f)]()’lz(l‘) —yi2(®)
* * 3 ! * *
+[2y21(t) —txy () +0.9 (1 + EI) <1 - z) T (f)](yZI(t) —¥51(1))

+[2y5,(t) +0.85 (1 + %) (1 — %) 3 (0] (y22(t) — y3,(1)

r\ t\ . 3
+[ (1 - 5) X @+ (1 - 5) x31(1) — 0.9 (1 + §t>

[(1 - g) Vi + (1 - ;) yzw)} + F0] (@) =)
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3 ¢ ;
+[ (1 - ;g) X (1) + (1 — Z) x5 (1) —0.85 (1 + E)
3
[(1 — Zt) Y () + (1 — 2) yé“z(t)} + Fa()](r2(1) — r;(t))]dt >0,

Yx,y,r) e K. 29)
Using the direct method we get the following solution:

3811% — 6101> — 6001> + 32001 + 2560 381r% — 450r% — 2801% + 6401 — 2560

X (1) =— 3 ;o = 5
160(r2 — 16) 160(2 — 16)

. 0 —415¢* 4+ 22013 — 212017 + 4480r + 3840 ® —415¢* + 54213 — 16401> — 640t — 3840
X = — ;X =

21 160(:2 — 16) 2 160(:2 — 16)

' () = 33173 — 41012 + 360t ‘6 = 41113 — 41012 — 920¢
= 4002 —16) TR0 — 16)

‘) = 48513 — 5021% + 760t s ) = 6051> — 5021 — 1160t
Yl = 0@ —16) 2= 00 16
rr(t) = 4t; () =t

N . : @y D 30)
Since r](t) e r; () are the floor prices then o™ (t) = p, () = 0 . From the Deficit

2
Formula (17) we obtain that:

oW = &[2220.2:4 —799.6¢3 + 2742.4t% — 1824t — 3200] + Fy(t),
! 160(z2 — 16)
() _ 5_ 4 _ 3 2 _

Py (1) = 7160(12 — 16)[(2396.6[ 2932¢ 17320.817 +4259.2¢“ + 39808t — 25600)] + F>(1).

pil)*(t) is strictly positive for each Fj(r) > 0, whereas, for each F;(¢)
nonnegative, pi"*(r) is positive in the interval [0,7] 7 = 0.827636. In such an
interval the solution of the problem is given by (30).

The deficits can be reduced only if Fi(¢) and F>(¢) decrease, even if we cannot
obtain the financial equilibrium.

In the interval [?, 1] it is possible that the financial equilibrium can be reached
obtaining also a surplus. A suggestion in this sense is given by the Evaluation
Index, which gives complete information on the behavior of the economy and of
the contagion.

Actually we have

9(t)=%; it)=1t; c@t)=0.125;

2 2
Dliy=5t > si(t)=3t+5;
i=1

i=1
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2 2
L 3t+5 = . _ O+ RO
izzlsl(r)— e ;F‘/(t)_—(l—{-t)(l—% :

Thus, the Evaluation Index is:

2
(1= (1)) El 1i(1) (4.3750)(1 + )2 — 1)

EO =3 2 S eohGrmt2h0+hao) OV
Ysi()+ Y Fi(n)
i=1 j=1
V5721 — 11
In the interval — 1 | (where 372 + 11t — 40 > 0), the economy has

a positive average evaluation, if the condition
2—t )
Fi(t) + F»(1) < T (35t" + 11t — 40)

is verified.

This result has been obtained considering the average 6(¢) and i(¢), however it
seems convenient and desirable that the data 7;;(¢) and & (¢) are not too different.

In our model, which takes into account the insolvencies, the Evaluation
index (31) is less than the one obtained in [1], in which the insolvencies are
not considered. Then, as expected, in the presence of insolvencies the economy gets
worse. If we do not take into account the insolvencies, the Evaluation index (31)
coincides with the one in [1].

5 Conclusions

In the chapter, we assessed the influence of the insolvencies on the financial model
and on the financial contagion. Our results show that the risk of contagion increases
with the presence of insolvencies, with decreasing investments and increasing
expenditure. Then, our conclusion is that it is necessary to focus on these three
factors, in order to improve the financial equilibrium. The suggestion to the
governments, that follows from our analysis, is to reduce the insolvencies, deferring
in time the payment of the liabilities, and supporting the sectors.
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Fixed Point Theorems for a System m)
of Mappings in Generalized b-Metric s
Spaces

Stefan Czerwik and Themistocles M. Rassias

Abstract In this paper we present some results of both global and local type on the
existence of fixed points for a system of mappings in generalized b-metric spaces.
In particular, we obtain a strict generalization of the Banach contraction principle
for mappings in ordinary complete metric spaces.

Mathematics Subject Classification (2010) 47H10, 54E99, 46-99

1 Introduction

We shall utilize the idea of a generalized b-metric space (gbms shortly). For details
see [1]. Assume that X is a nonempty set. A functiond : X x X — [0, oo] is said
to be a generalized b-metric on X, iff for x, y, z € X it holds:

1. d(x,y) =0iff x = y,
2.d(x,y) =d(y, x),
3. d(x,y) <s[d(x,z)+d(z, y)], where s > 1 is a fixed real constant.

A pair (X, d) is called a generalized b-metric space with a generalized b-metric d.
Forany f : X — X, by f" we denote the n-th iterate of f, defined by

o)y =xforxe X, f"'=f", neNo.
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By Np, N, R, R, as usual, we denote the set of all nonnegative integers, the set of
all natural numbers, the set of all real numbers, or the set of all nonnegative real
numbers, respectively.

One can find more about b-metric spaces, for example, in [4, 5] (see also [13, 14]
for related topics).

Let’s note also the following (see [1, 6]) theorem, which will be used later on.

Theorem 1 Let (X, d) be a complete b-metric space and T : X — X satisfy

d(T(x), T(y)) < ¢ldx, )], x,ye€X,

where ¢ : Ry — R is a nondecreasing function such that
lim ¢"(t) =0
n— oo
foreacht > 0. Then T has exactly one fixed point u € X, and
lim d[T"(x),u] =0
n— oo

foreach x € X.

2 Main Results

2.1 Basic Theorem

In this section we prove the result for a system of mappings in generalized b-metric
spaces (we apply the ideas of [7]).

Theorem 2 Let (X;,d;),i = 1,...,n be complete generalized b-metric spaces.
Assume that there exist nonnegative real numbers a; x, i,k =1,...,n such that
the mappings T; - X1 x ... x X, = X;, i=1,...,n satisfy

n
di(Ti(x1, %), Ti@1s e 20)) < Y i kdi (K, 20), (1
k=1
for xi, zk € Xi, d(xk, zk) <00, k=1,...,n.
Moreover, there exists a system of positive real numbers ri,i = 1,...,n

satisfying the inequalities

n

Zr,-ai,kwk, k=1,...,n. )
i=1
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For any fixed x° € X = X| x ... x X, consider the sequence of successive
approximations
=T M), m=0,1 i=1 n (3)
ST =T X)), =0,1,..., =1,...,n.

Then either

(A) for any non-negative integer v there exists ani € {1, ..., n} such that

di(x/, Ti(x],...,x,)) = o0,

or

(B) there exists a non-negative integer v such that for everyi =1, ..., n,
di(x}, x"h) < 0. 4)
In (B) the sequence x™ = (x{", ..., x,}) given by (3) converges to a fixed

pointu = (uy,...,up) € Xof T =(T1, ..., Ty), i.e.
Ti(uy,...,uy) =u;,i =1,...,n.
In the space K = K1 X ... x K,, where
Ki={xi e Xj:di(x},x;j) <o0}, i=1,...,n, 5)

the point u is the unique fixed point of T.
Proof In (B) by (4) we getfori =1,...,n,

n
di (Ti(x"), Ty (")) < anadi (e, x¢ 1) < oo,
k=1

and consequently by induction d; (x ) < oo for all
leNg, i=1,...,n.

Consider the number

iv+l’ xiv+l+1

Clearly
0<a<1 (6)

and

n
Zriai,k<ark, k=1,...,n. (7
i=1
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Now we verify that T : K — K.Forifx € K,

die(xy, Tie(0)) < sicldie (xy, Tie(x")) + die(Tie(x"), Tie(x))]

n
1
< sulde e, P + ) aradi (), xp)] < oo
=1

Define

n

D(x,y) =Y ridi(xi,y), xyeKk. ®)

i=1

We can show that D is a b-metric in K with s = max(s;) > 0. It is also easy to
1

prove that (K, D) is a complete b-metric space (see also [7]).
Now we prove that T is a contraction mapping in K. In fact, for x,z € K we
obtain

D(T(x), T(@) = Y _ ridi(T;(x), T;(2))
i=1

n n

<Y o [ ai kdi (xg., Zk)]
1

i=1 k=

n

<Y ( i riai,k>dk (xk, 2)

k=1 i=1
n

<Y andi(xi. k) = aD(x, 2),
k=1

which means that
D(T(x),T(z)) <aD(r,z), x,z€K.

Since by (6), 0 < « < 1, T is a strict contraction in K.

Eventually, in view of Theorem 1 for ¢ () = «t, t > 0, T has in K exactly
one fixed point # which is the limit of successive approximations with any initial
element from K (and hence T has a fixed point in X). This concludes the proof.

We can also prove the following.

Corollary 1 Let the assumptions of Theorem 2 be satisfied. If, moreover,

sa < 1, )
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then

N
D(y,u) <

1 D(y,T(y)), »ye€B. (10)
— S

Proof For (B)and y € K, (u = T (1)) one has

D(y,u) < s[D(y, T(y)) + D(T(y), T (w))]
<s[D(y, T(y) +aD(y, u)]

whence

S
D(y,u) <

7 D(y,T(y)), ye€Kk.
— S

Corollary 2 Let the assumptions of Corollary 1 be satisfied. If, moreover, d;, i =
1, ..., n, are continuous (with respect to one variable), then

m

D(T"(y),u) <

1 D(y,T(y)), »ye€B. (1)
— S

Proof From Theorem 1, for p(t) = «at, t >0, z e K and continuity of D, one
gets

D(T"(2),u) < Y s"'¢" D, T(2))]
k=0
=3 D, @) = D, T,
paard 1 —s«a

i.e., the inequality (11), which completes the proof.
Remark 1 A function D (b-metric) may not be continuous (cf. [15]).

Remark 2 From Theorem 2 we get theorem of Diaz, Margolis [8], Luxemburg [10],
Banach [2], Matkowski [11], Czerwik [4, 5].

2.2 Local Theorems

First of all we present the local result for a system of mappings in generalized b-
metric spaces. Namely, we have

Theorem 3 Suppose that (X;,d;),i =1, ..., m are complete generalized b-metric
spaces. Assume that there exist non-negative real numbers a; , i,k =1,...,n
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and ¢ > 0 such that the mappings T; : X1 X ... x X,, — X;, i=1,...,nfulfill
the inequalities

n
di(Tix1, -, %), Ti@1s -5 20) < ) aigdi Ok, 20) (12)
k=1
for di(xk,zk) < ¢, and xp,zx € Xk, k = 1,...,n. Additionally, let the
characteristic roots d;, i = 1, ..., n of the matrix [a; k] satisfy
o=max{|d;| :i=1,...,n} < 1. (13)

Let x' € X = X| x ...X, be arbitrarily fixed. Consider the sequence of
successive approximations (3). Then the following alternative holds: either

(C) forany v € Ny there existsani € {1, ...,n} = A such that
di(x}, Ti(x!,....x)) > c, (14)
or
(D) there exists a non-negative integer v such that for everyi =1, ..., n,
dl-(xlp,xivﬂ) <c. (15)

In the case (D), if, moreover, the numbers in (15) are sufficiently small and (9)
holds true, then T = (T4, ..., Ty,) has a fixed point u € X.

Proof According to the result of Perron-Frobenius ([9, pp. 354-355]) the number
given in (13) is the characteristic root of the matrix [a; ] with the eigenvector
r1,...,r),ri >0,i=1,...,n,ie.

n
Zai,krk=ari, i=1,...,n. (16)
k=1

Since the equations (16) are homogeneous, also ary,...,ar,, a > 0is a

solution of (16). So we can assume that

c

ri<Z, i=1,...,n. 17
By the assumptions, suppose that
Tk
di(Ti(x"), x) S L —as)—, k=1,....n. (18)
Sk
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Define
By = {zk € X di(zi, x}) <}, k=1,...,n. (19)

Let B = By x ... x By. For z € B, by (12), (17), (19), (16) and (18), we get
(k=1,...,n):

di(Ti(2), x3) < sild(Ti(2), Ti (xV)) + di (T (x¥), x)]

n
< Sk[ Z ar,1di(z1, x7') + di (T (x), x;'i)]
=1
Tk
< sk[ark + — - ozrk] =r.
Sk
Thus Ty(z) € Bx, k = 1,...,n which means that T(z) € B for z € B, i.e.
T(B) C B.
Note that also the matrix [a,-,k]T has exactly the same characteristic roots as
[a; k], so by the Perron-Frobenius theorem there exists a system of positive numbers

&;, i=1,...,n, which is the solution of the system of equations (inequalities)
n
Y ain <o k=1,....n (20)
i=1
Define
n
D(x,y) =Y &di(xi,y), x,y€B 2

i=1

and consider the space (B, D). Then (B, D) is a b-metric space with s = max(s;).
1

For any x,y € B, we have fork = 1, ..., n (see (17))
di (xie, o) < sildi (xx, x8) + die (x5 vl

c
<selre + 1] < 2Sk2— <ec.
A

Therefore, by (12), (21), and (20), for x, y € B, we can verify that (see the proof
of Theorem 2):

D(T(x),T(y)) <aD(x,y)forx,y e B. (22)

Consequently for any x € B, {T"(x)} C B that is a Cauchy sequence. Indeed,
we have
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D(T(x), T*(x)) < aD(x, T (x)),
and by the induction principle
D(T™(x), T" ' (x)) < «"D(x, T(x)), m > 1. (23)
Consequently, for m, [ € Ny, by (23) and (9) one gets

D(T™(x), T" M (x)) < sD(T™(x), T" T (%)) + ... + ' DT (%), T (x))
<sa™D(x, T(x) + ...+ sla™ " 'D(x, T(x))

<sa[1 4 (sa) + ... + (s0) " ID(x, T(x))

X D(x. T(x)).
SO

<
1—

Eventually, for x € B and m, [ € Ny,

s

D(T™(x), T" " (x)) < ; D(x, T(x)). (24)

— S

Hence, it follows that {7 (x)} is a Cauchy sequence for x € B.

Since Xy, k = 1, ..., n are complete, there exist uy € Xy, k=1,...,nsuch
that
T"(x) > ux, k=1,...,nasm — oo.
Therefore fori = 1, ..., n, m sufficiently large and € > 0

di (T; (), u;) < sildi (T; (w), T;(x™)) + di (T; (x™), u;)]

n
< Si[zai,kdk(uks )+ di (' Mi)]
k=1

n
< Si[zai,kG —l—e]
k=1
n
<se[2ai,k+1] — 0ase — 0.

k=1

Therefore we get fori = 1, ..., n the following:

di(Ti(u),u;j) =0= Ti(w) =u; = Tu) = u,
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which means that u € X is a fixed point of 7, and this concludes the proof of the
theorem.

Remark 3 The pointu = (uy, ..., u,) satisfies the condition
di(ug, x{) <sgrx, k=1,...,n. (25)
In fact, we have for m € N sufficiently large, ¢ > 0 and x € B:

di (ug, xp) < seldi (ug, T (@) + di(T{" (), x})]

< sile +ry] — sgry ase — 0,

whence we get (25).

Remark 4 1t is an open question whether this result is true without the assumption
that 7' does not displace the center of the ball B too far.

Remark 5 In B, the mapping T may have at most one fixed point. Indeed, assume,
on the contrary, that u,w € B, u # w, and T(#) = u, T(w) = w. Note that
(see (17))

di(ug, wy) <c, k=1,...,n,

and hence by (12) and (16), we obtain fork = 1, ..., n and
&= maX<ldk(uk, wk)>,
k r'k

di (e, wi) = di (T ), Te(w)) <Y a pdy (g, wy)
=1

n n
1
< Zak,l”l . r—dz(ul, wy) <& Zak,m <éary.
=1 ! =1
Similarly,

n n
2
di (e, w) =Y agadi(ui, wy) < Y ag gar; < Ea’ry.
1=1 =1

By induction one gets

di(ug, wy) < &a™rp, meN, k=1,...,n.
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Thus, in view of (13), one has
dk(ukvwk):(), k=1,...,n:>u:w’

and the proof is completed.
Remark 6 For some conditions equivalent to the condition (13) cf. [3, 12].

In the sequel we prove a similar result for systems of mappings in b-metric
spaces.

Theorem 4 Let (X;,d;),i = 1,...,n be complete b-metric spaces with s; > 1,

i =1,...,n Suppose that a;y > 0, i,k = 1,...,n and the characteristic roots

Aiyi =1,...,n of the matrix [a; ;] satisfy (13). Consider any
LeXix...xX, =X

and set

By = {zk eXk:dk(zk,x,?) <, k=1,...,n,

and B = By X ... X By, wherery > 0,k =1, ..., n satisfy (16).
Assume that Ty : B — Xy, k=1,...,n satisfy

n

A (Te(x), Te()) < Y _axsdi(xi, y1),  x,y € B. (26)
=1
If, moreover,
d(Te(x%), x0) < (1 —ask)Z—Z, k=1,....n, 27)
and
as <1, s= miax(s,-), (28)

then T = (Ty, ..., T,) has a fixed point in X.

Proof We verify that T(B) C B. By (26), (16) and (27), it can be carried through
exactly as in the proof of Theorem 3.

Next, consider numbers £, > 0, k = 1,..., n, fulfilling inequalities (20) and the
number « satisfying inequality (13).

Consider the b-metric defined by

D(x,y) =Y &di(xi, ), x,y € B. (29)
k=1
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Then (B, D) is a b-metric space with s = max(s;). Also T : B — Bis a
1
contraction: for x, y € B, we have by (29), (26), and (20),

D(T(x),T(y)) < aD(x,y), x,y€B.

Therefore, for any x € B, {T"(x)} is a Cauchy sequence (see (28)). The rest of the
proof follows the same arguments as in the proof of Theorem 3.
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Inequalities and Approximations for the )
Finite Hilbert Transform: A Survey of ik
Recent Results

Silvestru Sever Dragomir

Abstract In this paper we survey some recent results due to the author concerning
various inequalities and approximations for the finite Hilbert transform of a function
belonging to several classes of functions, such as: Lipschitzian, monotonic, convex
or with the derivative of bounded variation or absolutely continuous. More accurate
estimates in the case that the higher order derivatives are absolutely continuous are
also provided. Some quadrature rules with error bounds are derived. They can be
used in the numerical integration of the finite Hilbert transform and, due to the
explicit form of the error bounds, enable the user to predict a priori the accuracy.

1 Introduction

Let 2 = (—1,1) where 1 < p < o0, the usual £P-space with respect to the
Lebesgue measure A restricted to the open interval £2 will be denoted by £7 (£2).

We define a linear operator T (see [24]) from the vector space £1(£2) into the
vector space of all A-measurable functions on §2 as follows. Let f € £! (£2). The
Cauchy principal value

1
1oy [ F®

t—e 1
. f @
T 1 r—tdr_sg%l+[/_1 +/I+Jﬂ(f—t)dt M

exists for A-almost every ¢ € £2.

We denote the left-hand side of (1) by (T f) (¢) for each t € §2 for which (Tf) ()
exists. The so-defined function T f, which we call the finite Hilbert transform of f,
is defined A-almost everywhere on §2 and is A-measurable; (see, for example, [2,
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Theorem 8.1.5]). The resulting linear operator 7 will be called the finite Hilbert
transform operator or Cauchy kernel operator.

It is known that £! (£2) is not invariant under 7, namely, T (£! (22)) ¢ £! (2)
[19, Proof of Theorem 1 (b)].

The following basic results are well known and their proofs may be found in
Propositions 8.1.9 and 8.2.1 of [2], respectively.

Theorem 1 (M. Riesz) Let 1 < p < oo. Then T (£P (£2)) C £P (2) and the
linear operator

Ty: f=>Tf, fell(2)

on £P (£2) is continuous.

Theorem 2 (Parseval) Let1 < p < coand g = %. Then

1
/ (fTe+ T =0 @)

forevery f € £P (§2) and g € £1 (£2).
We introduce the following definition.

Definition 1 A function f : £ — C is said to be «a-Hdlder continuous
(0 < o < 1) in a subinterval §2p of £2 if there exists a constant ¢ > 0, dependent
upon £2¢, such that

[f()—f®l<cls—t*, s, tef. (3)

A function on £2 is said to be locally a-Holder continuous if it is o-Holder
continuous in every compact subinterval of £2. We denote by Hf . (£2) the space
of all locally e-Holder continuous functions on §2.

The class of Holder continuous functions on 2 is independent because the finite
Hilbert transform of such a function exists everywhere on £2 (see [18, Section 3.2]
or [23, Lemma II.1.1]).

This is in contrast to the A-almost everywhere existence of the finite Hilbert
transform of functions in £' (£2).

There are continuous functions f € £! (£2) such that (T f) (r) does not exist at
some point ¢ € §£2. An example is given by the function f defined by (see [24])

0 if -1 <t <0,
f@=
It readily follows that (T f) (0) does not exist.

In paper [24] it is proved amongst others the following result.
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Theorem 3 (Okada-Elliot [24]) The space £P (£2) N H, . (82) is invariant under
the finite Hilbert transform operator T and the restriction of T to that space is
continuous whenever 1 < p < oo. This, however, is not true when p = 1.

Allover this paper, we consider the finite Hilbert transform on the open interval
(a, b) defined by

o [P /@
(Tf) (@ b1) = ;PV/a t—tdt ._821(1)1+|:/a /+gi|ﬂ(t_t) !

for t € (a, b) and for various classes of functions f for which the above Cauchy
principal value integral exists.

For several recent papers devoted to inequalities for the finite Hilbert transform
(Tf), see [20-22, 25] and [26].

In this paper we survey some recent results due to the author concerning
various inequalities and approximations for the finite Hilbert transform of a function
belonging to several classes of functions, such as: Lipschitzian, monotonic, convex
or with the derivative of bounded variation or absolutely continuous. More accurate
estimates in the case that the higher order derivatives are absolutely continuous,
are also provided. Some quadrature rules with error bounds are derived. They can
be used in the numerical integration of the finite Hilbert transform and, due to the
explicit form of the error bounds, enable the user to predict a priory the accuracy.

2 Inequalities for Some Classes of Functions

2.1 Some Estimates for o-Holder Continuous Mappings

We say that the function f : [a, b] — R is a-H-Holder continuous on (a, b), if
lf ()= f@)| <HI|t—s|* forallt, s € (a,b), 4)

where @ € (0,1], H > 0.
The following theorem holds.

Theorem 4 (Dragomir et al. [13]) If f : [a, b] — R is a-H-Hdlder continuous
on (a, b), then we have the estimate

(Tf) (a bt)—ml < )‘
t—a

H
o [t —a)* + (b —1)*] ®)

21—04
H®b—a),
b4

IA

forallt € (a, b).
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Proof As for the mapping f : (a,b) — R, f (t) = 1,1 € (a, b), we have

1

1 | b
= — lim |:/ dr+/ dr:|
T e—>0+ | Jg T—1 e T — 1

I . -
=—££rg+[ln|r—tllie+ln(f f)lt+g]

drt

1 b
(Tf)(a,b;f)=—PV/
T a

T
I

=— lim [Ine—In(t —a)+In(b —1) —In¢]
T e—>0+
1 b—t

=—ln( > te(ab).
T t—a

Then, obviously

@O-fO+f®

1 b
(Tf) (a,b;t) = —PV/

T—t
b
:—PV b - f(t)dr+f(t)PV/ Ldr
b4 a T—t b4 a T—t

from where we get the equality

b f@) - f@ .,

(Tf) (a,b; t)—ml ( ) —PV ©6)
t—a bid p T—t
for all ¢t € (a, b).
By (6) and by the modulus properties, we have
‘(Tf)( bt)—ml ( ) (N
r—a
b _ b _
_1lipy f @ f(t)drglPV/ f @ f(t)d
T a T—1 T a T—1

1 blr — ¢ 1 b ar
<—PV dt=-pPV | ———.
14 . T —1 b4 a lt—1t]'7¢

However,

b dt . 1—e dt b dt
PV — g = lim —a + PN
a |lt—1t'"7" e=>0+1 J4 t—1)* t+e (T—1) ¢
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-0 b
= lim
t+¢e

e—>0+ o
_ o _ Lo b_ o __ Lo
— lim |:(t a) ) +( 1) ) ]

t—e& o
T—1
L@
o

a

e—>0+ o o

_ -0+ b-0"
_ : .

Using (7), we get the first inequality in (5).
Consider the mapping ¢ (¢) := (t —a)* + (b — )%, @ € (0, 1], ¢ € [a, b]. Then,
obviously

R R )
[t —a)(b—D)]'

¢ (1) =

We observe that ¢/ (1) = 0iffr = 2 and ¢’ (t) > 0if ¢ € (a, “F2) and ¢’ (1) < O
ifr e (#, b), which shows that

ma§¢(:)=¢<“+b>=2<b_“) —21=2 () _ g)®

t€la,b] 2 2

and the last part of (5) is proved.
The following two corollaries are natural.
Corollary 1 Let f : [a,b] — R be an L-Lipschitzian mapping on [a, b], i.e., f
satisfies the condition
lf @) —fI=Llt—s| forallt,s € la,b], (L>0). (®)

Then we have the inequality

'uvxmbn>—ff)m(b_t>zst_“)

r—a

9

T

forallt € (a, b).

Corollary 2 Let f : [a, b] — R be an absolutely continuous mapping on [a, b]. If
f' € Ly [a, b), then, forallt € (a, b), we have

b—rN [/ ® =)
< :

t—a M4

%Tf>w,bn>—-f;”1n( (10)

where || f ||Oo = eSSUP;¢(q.p) |f’ (t)| < 00.

The following result also holds.
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Corollary 3 Let f : [a,b] — R be an absolutely continuous mapping on [a, b]
whose derivative f' € Lyla,bl, p € (1,00). Then for all t € (a, b) we have

’(Tf)(a b r)—%l (b_t>

t—a

(1)

p

< <
“(p—Dm

(c=0F 00T |Ir], = 2 0-0T |11,

= (fab |f (t)|pdt>% < 00.

Proof As f is absolutely continuous on [a, b], we can state that

y

/ fr(nde] <
y ok
/dt

1
1 b P 1
< |y —xl7 (/ ./ (r)|”dt> =ly—xv|f,

lf )= f Ol = 12)

y
|f ()| dt

1

y ?

= |f" (0| dt ! (by Holder’s inequality)
X

where p > 1’%"'37:1'
Thus, f is a-H-Holder continuous with o = é = ijl € (0,1)and H = “f’”p.
1

Applying Theorem 4 we get the desired result (11).
The particular case for euclidean norms may be useful.

Corollary 4 If f is absolutely continuous on [a, b] and f' € L; [a, b], then for all
t € (a, b) we have

‘(Tf)( bt)_f:) <t_a)‘ (13)
<2 (ma Vi) sl = 22,
T

2.2 Some Results for Monotonic Functions

The following result holds.

Theorem 5 (Dragomir et al. [13]) Ler f : [a,b] — R be a monotonic
nondecreasing (nonincreasing) function on [a, b). If the finite Hilbert transform
(Tf)(a,b,-) exists in every t € (a, b), then
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1 b—
(T @bin = () —f O (: _;) (14)

forallt € (a,b).
Proof Using the equality (6) we have

(Tf)(mbn)—%ln(f__;) (1)
b
i [0 fw
T g T—1t
—¢ _ b _
1 hm[ Sr-sw, "o f(t)d’}
7 e>0+ | J, T—t e T—t

If we assume that f is nondecreasing, then for both t € [a,t —e]and T € [t + ¢, D]
we have

fO-f0 _,
T—1 o
which shows that the right side of (15) is positive and hence the inequality (14)
holds.
The following result can be useful in practice.

Corollary 5 Let f : [a,b] - Rande : [a,b] — R, e(t) =t such that f — me,
Me — f are monotonic nondecreasing, where m, M are given real numbers. If
(Tf)(a,b,-) exists in every point t € (a, b), then we have the inequality

(b—a)ym
b4

< (Tf) (a. b: r)—%f(r)ln(b_t) L -aM

t—a T (16)

forallt € (a, b).

Proof We simply apply Theorem 5 for the mappings f — me and Me — f which
are monotonic on [a, b].
For example, for the first mapping f — me we get

T(f—me)(a,b;r)z%[f(r)—mt]ln(b_t) a7

t—a

forall ¢ € (a, b).
However,

T(f —me)(a,b;t) =T (f)(a,b;t) —mT (e) (a, b; 1)
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and as

T (e)(a,b:1)

8-

t—e b
lim [/ ‘ d‘L’—I—/ ! dr]
e—0+ | J, T—t f4e T — 1
t—e ¢ b t
lim |:/ (l—l——)dr—i—/ <l+—>dt:|
e—0+ | .J, T—t the T—t

t—e ¢ b ¢
lim |:t—8—a+/ —dt—i—b—t—a—i—/ dr:|
e—>0+ a T—1 t+e T — 1

(b—a+tT (1)(a,b; 1))

:b—a-l-tT(l)(a,b;t) :l[b—aﬂln(b_t)}
b

4 t—a

8=

)= 8=

then by (17) we get

T(f) (a’b;t)_w_m_tln (E) > lf(t)ln <E>_m_t1n (b_t)
T i t—a T t—a

/4 t—a

and the first inequality in (16) is obtained.
The second inequality goes likewise by applying Theorem 5 to the mapping Me—

f.

Remark 1 If the mapping is differentiable on (a, b), the condition that f — me,
M e— f are monotonic nondecreasing is equivalent with the following more practical
condition

m< f'(t) <M forallt € (a,b). (18)
Remark 2 From (16) we may deduce the following approximation result

M M —
A o < b a.
27 27

19)

1 b—
(Tf) @by = —f O)n (t _;)

forallt € (a, b).

The above procedure for estimating the finite Hilbert transform can be extended
as follows.

Theorem 6 (Dragomir et al. [13]) Let f, g : [a,b] > Rand y, I' € R be such
that f — yg, I'g — f are monotonic on [a, b]. If (Tf) (a,b,-) and (Tg) (a, b, -)
exist in every point t € (a, b), then we have the inequality:

_t)] (20)
—a

1 b
Y [T (&) (a,b;t) — —8 () In (t
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1 b —
= (TN @bin=—fOh (i)

1 b—t

forallt € (a, b).

Proof As above, we apply Theorem 5 for the monotonic nondecreasing function
f —vgtoget

1 b—
T(f—vg(ab;n)=—[f({)—yg(®]ln (—t> 21)
T t—a

and as, by the linearity of 7', we have

T(f=ve)a,b;t) =T (f)(a,b;t) =yT (g)(a,b;1),
then, by (21) we obtain the first inequality in (20).
The second inequality goes likewise and we omit the details.
Remark 3 1f we assume that the mappings f, g are differentiable on (a, b), g’ (t) >
0O on (a, b) and

J0] J0)
in I' = sup
" i@ g (1) re(b) & g’

then the inequality (20) holds.

2.3 Some Results for Convex Functions

Now, if we assume that the mapping f : (a,b) — R is convex on (a, b), then it
is locally Lipschitzian on (a, b) and then the finite Hilbert transform of f exists in
every point ¢ € (a, b).

The following result holds.

Theorem 7 (Dragomir et al. [13]) Let f : (a,b) — R be a convex mapping on
(a, b). Then we have

[f (t)1n< >+f(t) —fl@+1@) (b—t)] (22)
= (Tf)(a,b;1)
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< l|:f(f)1n<u)+f(b)—f(t)+l(t)(t—a)],
v t—a

where | (s) € [fL (), fi (s)], s € (a, b).

Proof By the convexity of f we can state that for alla < ¢ < d < b we have

f (@

O 0. (23)
d—c
where [ (¢) € [fl ©, fi (C)]-
Using (23), we have
t—¢ _ 1—¢
Md‘f > / I[(t)dt (24)
g t—1 a
and
b _ b
Mdrz/ [(t)dr =1(t)(b—1 — &) (25)
t+e Tt i+

and then, by adding (24) and (25), we get

i [ TfO-f@®
im _

e—>04+

b —
dr + f () f(t)dr}

r—1 e T —1
zsgr(l)lJr[/at_Sl(r)dr+l(t)(b—t—8):|
:/atl(t)dr—i—l(t)(b—t)=f(t)—f(a)+l(t)(b—t)

Consequently, we have
pv/h—f(’r):tf(’)dr > f (- f@+10) (B -1

and by the identity (6), we deduce the first inequality in (22).
Similarly, by the convexity of f we have fora <c <d <b

f@d—f©
Q.

—C

[(d) = (26)

where [ (d) € [/ (), f} (d)].
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Using (26) we may state

o - f@

u t—1

t—
drg/ IHdt=11@t)({t—¢e—a)

and
b _ b
Mdr < / l(-[)d-[
t+e T—1 t+e

Now, in the same manner as that employed above, we may obtain the second part
of (22).

Corollary 6 Let f : (a,b) — R be a differentiable convex function on (a, b). Then
we have the inequality

1 b—
;[f(t)ln<t_t)+f(t)—f(a)+f/(t)(b—t)} @7

a

=(Tf)(a,b;1)

si[fmln(b_t
T t—a

forallt € (a,b).

>+f(b)—f(t)+f/(t)(t—a)}

3 Inequalities of Trapezoid Type

3.1 Trapezoid Type Inequalities

The following theorem holds.
Theorem 8 (Dragomir et al. [14]) Let f : [a, b] — R be such that ' : (a, b) —

R is absolutely continuous on (a, b). Then we have the bounds

‘T(f)(a,b;r)—%lng__;

1 /
)—E[f(b)—f(a)Jrf ®) (b —a)]

(28)
” 2 2 .
Lol [ 02 4 (¢ — a32)”]. if £ € Loola, b]:
" +1 +1
|, [(t_a)"q -|-(b—t)qqi| if f7 € Lyla.b],
- | 27(g+1) T
p>1, %—i— % =1;
= 11—
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" 2
I ee®a” = i 7 € Lo [a, b1
_arne-o
= —CH’ lff ELP[Cl,b],
2n(g+1) 9
p>1, 4 +1=1
1
3 A FCRD)
Jor all 't € (a,b), where |||, are the usual Lebesgue norms in L, [a, D]

(I <p=<o0).

Proof We start with the following elementary identity which can be proved using
the integration by parts formula

8 g
/ ¢ (u) du wﬁ—a)—i—/ <#—u>g’(w)du, (29)

provided that g is absolutely continuous on the interval [«, 8] if @ < 8 (or [B, ] if

B <.
As for the mapping f : (a,b) - R, f(t) =1, t € (a, b), we have

1 b—t
(Tf)(a,b;ty=—In| —— |, t € (a,b)
T t—a
then obviously

—fO+fO

T—1

b
(Tf) (a, b; 1) = %PV/ f @

PV

T a T—t

b
bf@ - f(t)dHf:)PV/ dr

T—1

from where we get the equality

(Tf) (@, bt)—ml (b_t> an "I r0, (30)

t—a T—1

Using (29), we obtain

”f(r)—f(t)

T—1

_PVf ft f(u)du dt

T—1

PV
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F@OF 0 :
:PV/b o (B e,

g T—t

’ b [T (ifT _ 1
:%/ [f/(r)+f/(t)]dr+pv/ Ji (5 T»:)tf wdu
b [T (£ _ ”
=%[f(b)—f(a)+f/(t)(b—a)]+pvf S (5 Tbi)tf (u)dud‘r

and then, by (30), we can state the identity

Q) (b—

1
T (f) (a, bt)——l ; t)——[f(b)—f(a)Jrf/(t)(b—a)]
—a 2

€29

T T—1t

1 b [T (L —u) £ (u)du
=_PV/f’(2 ) S dr
a
Using the property of modulus

1
‘(Tf)( bty — 104 (—)——[f(b)—f(a)+f’(t)(b—a)]
T —a 21

t

(32)
1 b T (t+T _ " d
S—PV/ S (5 —u) 17 G du dr =: A(a. bi1).
T " T—t
Now, it is obvious that
Tt
/ < +T—u>f//(u)du < " +t—u du
t 2 u€la,b]
= ||f”|| | , forall t,7 € (a,b).
Then
b Vi t_f
A(a,b;t) < — PV[ Mc[r
T a 4

=% lim [/t_g(t—r)dr+/b (r—t)dr:|
4 e—~>0+ | Jg t+e

1" ) > DY) 2
e [(r a & (b1 g}

4 em>04 2 2 2 2
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e ¢ =+ o -0?
4 2

[/ [(, _atb)*, =0
= t— + .
47 2 4
Using Holder’s integral inequality, we can state for p > 1, % +% = 1 that
Tt
/ < tr —u)f//(u)du
t 2
1
v ‘/‘T r+1
t
1
b > gr ¢ q T ¢ q
5([ \f”(u)|pdu) / ( +T—u) du+/ <u— +T> du
a ¢ 2 4t 2

2

q

q
du

| @)|” du

1
q

q+1
= Hf”” —1 forallt, t € (a,b).
2(g+De
Then
/IVW
Aa,b;t) < —PV
A YR
f//
—&PV‘/ It — 7|9 "dt
27 (g + 1)¢

|| =& -1 b -1
= —pl lim [/ t—1)7 dr+ / (t—1)! dtj|
27 (g + 17 70 La +e

|| f””,, i (r — a)‘fl“ _gq 1 N b — ,)q"+1 _ a1
= 1m
2t (g + 1)7 £+ g ' +1 g~ +1
L1, [(r — @)+ (b —z)qlﬂ}
T 1
21 (g + 1)4 g +1

q”f””p[(t—a) T b-nT ]

g+1
2r(g+1) 4

and the second bound in (28) is proved.
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Finally, we observe that

/tt <t—}2—r —u) f" (u)du

T
|1 wldu

< sup
ue(t,t]

| " 4
S wla= T

Consequently,

1 b1 1
Al bin) < EPV/a S de = 517 @ -

and the theorem is proved.

Remark 4 1t is obvious that for small intervals (a, b), the approximation provided
by (28) is accurate.

The best inequality we can get from the first and second part of (28) is the one

fort = #, and thus we can state the following corollary.

Corollary 7 With the assumptions of Theorem 8, we have

b 1 +b
‘(Tf)<a,b; i)—g[f(b)—f(a)+f ( )(b—a)” (33)

2
1 _ 2
170goer if " € Loola, b
= 1 !
- qf// g+1 .
ﬁ(b—a)q ’lffNELp[a,b],p>1’%+%=1‘

27 (g+) T 7

The following result also holds.

Theorem 9 (Dragomir et al. [14]) Let f : [a, b] — R be such that " : (a, b) —
R is absolutely continuous on (a, b). Then we have the bounds

1
‘(Tf)( bt)—f(” ( t)—g[f(b>—f<a)+f’<t)<b—a>]

t—a
(34)

1" 2
177 o (b=a) [(”]5‘) +(t—%)2], if /" € Loo la, b];

127

1
qll "1 ,[Blg+1.q+1)]7 2 2417 .
52 TD [(b N2+t —a) +,,]7 if f € L,la,bl,

1 1 _ 1.
p>1, ;+§—1,

IA

1l [ e—a)? b\2
87 [( 7 +(t_%)]
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m _ 3
s ”3057(7}7 o if " € Lo [a, b];

qllr”|l |B<q+1,q+1)1q
D (b— Jif f" € Lyla,bl,

P>1,;+5—1§

IA

1
16w “Ter (b

Jorall't € (a,b), where ||-||,, are the usual p-norms and B (-, ) is Euler’s Beta
mapping

1
B(a,ﬁ):/ “ta—=nfldr, a,8>0. (35)
0

Proof Using the integration by parts formula, we obtain the equality:

B 1 8
/g(u)d M(ﬂ )_E/ —a)(B—u)g" ) du,

2
(36)
where g is such that g’ is absolutely continuous on [e, 8] (if « < B), or on [B, «]
(if B < ).

By a similar procedure to that in Theorem 8, we have

1
(Tf) (a, bt)——f(t)l( t>——[f(b)—f(a)Jrf’(t)(b—a)]
t—a 2

(37

b [T _ _ "
_ipv/ [T =@ —w " wdu

2 T—t

Using the property of modulus, we have

b— 1
‘(Tf)( br)—f(t) (—t>—E[f(b)—f(a)Jrf’(t)(b—a)]’

t—a
1
§—PV/
2w a

Firstly, let us observe that

[Fu—0 @ —u " wdu

T—1

dt =: B(a,b;t).

/T w—10)(—u)f” wdu
t

T
< sup If/”(u)l‘/ u—tl|t —uldu
t

u€lt,t]

It —?
6

=1/



Inequalities for the Finite Hilbert Transform 69

and then

B (a, b;t)

A

" b
—”f ”°°PV/ It — 7% dt
127 a

N =0+ -a)?
T 127 3

M- [e-a? , ( a+b)
o 127 12 2 ’

which proves the first part of (34).
For the second part, we apply Holder’s integral inequality to obtain

T
/ lu —t|7 |t —ul|?du
t

<71t =0 (B (g + 1.g + Div

v
=<

1 T
q ‘/ |f///(u)|l7du
t

/‘f (u—1t)y(t —u) f/// (u) du
t

forallz, T € (a, b).
Indeed, if we assume that T > ¢, then, by u = (1 —5) ¢ + 57,5 € [0, 1], we get

T T
/ |u—t|‘1|r—u|qdu:[ u—-—01(—-uwldu
t t

1

=(r —t)2q+1/ 57 (1 —s)ds
0

=T -0 ""B@g+1,q+1).

Consequently, we have

|71, 1B (g +1.q + D)7

B(a,b;t) <
(a ) o

b "
PV/ It —t|' 7 dr
a

1
[ 771, 1B@+1,a+ D1 5 — >0 4 —a)*ta
2 ' 1+

a7, B G+ 1 g+ D1
B 2 2 + 1)

[(b - a)2+$]

and the second part of (34) holds.
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For the last part, we observe that

[ w=n@=w " wa <mxia—n -l [ 15" w]d
t u t

(-1
"
<1, 45
since a simple calculation shows that
2
r—1
max |(u—t)(r—u)|=( ).
uelt, 7] 4

(uelt,t])
Thus, we can write the following inequality
£l [
Blabin = Ly [l cldr
8 a

L e=0*+a—a?
T 8n 2

_ L [(b—a)2 +<t_a+b)2}
8 4 2

Remark 5 Tt is obvious that if (b —a) — 0, then (34) provides an accurate
approximation for the finite Hilbert transform.

and the theorem is proved.

Taking into account the fact that all the mappings depending on ¢ from the

right-hand side of (34) are convex on the interval (a, b), it is obvious that the best

inequality from (34) is that one for which r = #

Corollary 8 Let f be as in Theorem 9. Then we have the inequality

b 1 b
’(Tf) (a,b; at ) - [f ) — f @+ f' (i) b —a)” (38)
T 2

2
" oo(b_ )3 .
NSty if £ € Loola, bl
1
m B(qg+1,q+1D19 1
_ s |2|i[l WA~ a)* 0 if f € Ly a.b].
279w (2g+1) 1 1
/ 2 p>1, 7 + 7 =1;
71l —a)

32
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3.2 Agarwal-Dragomir Type Inequalities

In [1], R. P. Agarwal and S. S. Dragomir proved the following trapezoid type
inequality

2
) —g@-—mb-alMb-a) —g® +g@]
- 2(M —m) (b —a)
M =—m)(b—a)

b
‘bia/ cGydx_ L@+ ® 39

— 8 9
provided that g : [a,b] — R is absolutely continuous on [a,b] and M =
sup g’ (x) <oo,m= inf g’ (x) > —ocoand M > m.
x€(a,b) x€(a,b)

Using the above inequality, we can state and prove the following theorem.

Theorem 10 (Dragomir et al. [14]) Let f : [a, b] — R be such that f' : (a,b) —
R is absolutely continuous on (a, b) and

I'= sup () < oo, y—mf f”(t)> —oo, I' > y. (40)
te(a,b)

Then we have the bound:

1
‘(Tf)( bt)—ml ( >—E[f(b)—f(a)Jrf’(t)(b—a)]

t—a
(41)
2 2 2
T =n[(,_axb) ¢-a?|_T-no-a?
- 8n 2 4 - 167
forallt € (a, b).
Proof Applying the inequality (39) written for f’ (-) in the following version:
1 4 ! (¢ r—y)lt—
' /f,(u)du_f(r)Jrf() _C=nl=7]
T—tJ; 2 8
we can state the inequality
! !/ _ _
‘f(f) f@o [ffoO+f0 < (I =yt —tl @)
T—t 2 8

forall¢, T € [a, b], t # 7.
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The following property of the Cauchy-Principal Value follows by the properties
of integral, modulus and limit,

b b
'PV/ A, s)ds| < PV/ |A (¢, 5)| ds, (43)

holds, assuming that the PV involved exist for all t € (a, b).
Using (31) and (32), we may write

b b g/ ’
‘PV f(t)_f(t)d‘[—PV/ ffo+f (t)dr‘ (44)
a T—1 2
b / ’
§PV/ f(f)—f(t)_f(f)+f(t)d
a T—t 2

b
' —y)|t—
SPV/ T=plt=,
a

8
and as
b _
Loy [T 1O Oy - L (P2,
= ’ p— t—a
b g7 ’ 1
v/ wm:_n[f(b)—f(a)+f/(f)(b—“)]
and

b N2 2 2 N2
lPV/ PRSP Gl i Gk =l[<t—a+b> I a)]
T a 2w b4 2 4

then by (44) we deduce the desired inequality (41).

It is obvious that the best inequality we can get from (41) is that one for which
we have t = ‘l+b , obtaining the following result.

Corollary 9 Under the assumptions of Theorem 10, we have the inequality:

b
‘(Tf)<aba+ )—%[f(b) f(a)+f( )(b— )” 43)

_T=ne-a?
- 32
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3.3 Compounding Trapezoid Type Inequalities

The following inequality concerning the trapezoid inequality for absolutely contin-
uous functions holds (see, for example, [9, p. 32]).

Lemmal Letu : [a, b] — R be an absolutely continuous function on [a, b]. Then
one has the inequalities:

b
/ MS”PM(IJ—@ (46)
a
b — 2
O e i€ Ll b1
b—a)ti
= (2< 1)1)7 |4/l " € Lpla, b,
q q
p>1, 5 +5=1
(b—a)
2 ”u/”[a,b],l'

A simple proof of this fact can be done by using the identity

b b
/ u(s)ds—w(b—a)z—/ (s—a;b>u’(s)ds, 47)

2

and we omit the details.
The following lemma holds.

Lemma 2 Letu : [a, b] — R be an absolutely continuous function on [a, b]. Then
foranyt,t € [a,b],t 1 andn € N, n > 1, we have the inequality:

1 ‘ 1A . T—t . T—1t
r—t/, M(S)ds—ﬂg[uG—i-l‘ - )—l—u(t—i—(l—i—l)'T)]‘

0

(48)
T —1t], , L .
R Hzt limoo iU € Loola, bl;
|t —1]v
el KA [T

_ ifu' € Lyla,b],
2(@q+Din

IA

p>1, %+ é =1;
1
" ”u/”[t,t],l;
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where
4100 = €500 [ )]
elt,7]
(s€[z,t])
and
T » %
l o I
iy o= | [ 017 s
for p > 1.
Proof Consider the equidistant division of [¢, T] (if 1 < t) or [7, ¢] (if T < 1) given
by
. Tt —
E,: xi=t+1i- , 1 =0,n.

If we apply the inequality (46) on the interval [x;, x;4+1], we may write that

fxmu(s)ds—”(Hi'TT_t)Jr”(H(iH)'TT_[).f_’
X; 2 n

(t —1)?

2 | [oixi1 00 ifu' € Lo [a, b];

-t .
1 1 1 “u ||[x,- Xl'+1]p lfu GLP [a’b]’
2n'Ta (g 4 1)9 T

IA

p>1, %+ cl, =1;
It —1]
n ||u/H[x,~,x,-+1],l;

from where we get

1 Xit+1 1 T —t . T—1
u(s)yds — —|ult+i- +ult+G+1)  ——
Tt Jy 2n n n

Tt —1l ,
anz | ||[xi,xi+1],oo

1
|t — |7

. 1
2" (g + 1)a

IA

||u/ || [x,-,x,-H],p

1

2”1 ”ul H [xi,xi+|],1 :
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Summing over i from 0 to n — 1 and using the generalized triangle inequality, we
may write

n—1
1 f 1 . T . T—1
T_t[M(S)dS—EE [u(t—}—z- p )—}-u(r#—(l—f-l)'T)}‘

i=0
— Xit1 1 T—t . r—¢t
Z / u(s)ds——[u<t+z- )—i—u(t—i—(l—}-l)'—):H
1T —t 2n n
|7,' _ l| n—1
4n? Z Hu’” [xi,%i41].00
i=0
l -1
= m 1+1 7 (g + ['I ; ”[x, Xit1]
1 n—1
2
i=0
However,

n—1
2 N oo = 7 1 o0
i=0

n—1

MNETEDS

1

Xi 1

/‘ i+1 |M/ (s)|pds P
Xi
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and

n—1
Z ”M/ ” [x,‘,x,url],] S
i=0

= ‘/T|u’(s)‘ds
'

The following theorem in approximating the Hilbert transform of a differentiable
function whose derivative is absolutely continuous holds.

Theorem 11 (Dragomir et al. [16]) Ler f : [a,b] — R be a differentiable
function such that its derivative f' is absolutely continuous on [a, b]. If

= H”/ ”[Z,t],l

=l oy
Z/ |u' ()| ds
i=0 v

and the lemma is proved.

fF® - f@+f®®-a

T, (f; )= (49)
2nm
b—a'2 I—a b—t
N r— ° .’ t -0 3
+ nmw lz_; [f n hE n l]
then we have the estimate
t b—t
’(Tf) @biny— LD (—) ~ T, (fi0) (50)
T t—a

Tan [Tlt (b—a)* +(t - C%b)z] ||f//||[a,b],oo if /" € Lo la, b];
1 1
< m [(r —a)"T b - z)”q] 1" a0y, i £ € Lpla. ],
p>1, %—}- ql =1;
e [% (b—a)+|r— #” ”f//H[a,b],l
o (0 —a)’ ”f//”[a,b],oo if " € Lo la,bl;
1
< e &=y, S € Lplaib],

2wn(g+1)' 7 .
p>1, »te= 1;

1
17 O =) | " {aor1
forallt € (a, b), where [ f; c, d] denotes the divided difference

_fo-f@

[fic.d]: p—
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Proof Applying Lemma 2 for the function f’, we may write that

fo-fo 1], = -1
'f—_z—z[f o+ x5

n—2
+ Y f (t+(l+l) —>+f (z)”

i=0

4

if /"€ Loola,bl;

[t —1]s

IA

2(q+ 1)1 17 ey 177 & pla
q n
p>1, ;+3=1;

1
1 -

However,

n—2

) Zf <r+(z+1) —)

Zf/(t-‘rl

and then, by (51), we may write

fO-fo [FoOo+fr@ 15, 1—t
‘ T—1 _|: 2n +;Zf <t+l. n )jH

[t — 1|
S ey
k4 —tl
1 ",
2(g+Dan
1
el LA

forany ¢, t € [a, D], t # T.
Consequently, we have

71

(G

(52)
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b ’ ’
PV/ f(r) (t) _lPV/ [f (1) + f (1) (53)
T a 2n

1 b
bV [ e

! PV/blt—tI; -
a trlp ™7’

IA

1
2r(g+ 1) n

1 b
4
PV 1 e

Since

b / / n—1 _
PV/ [—f Wr7r@ 1 f’(r+i-f t):|dr
a 2n n 4 n
t—e b / ’ n—1 _
= lim (f +/ )(—f(tHf(T)Jrl f/(t—l—i'T t))dt
e—>0+ \Jq t+e 2n n= n

b -a)+ fb)— f(a)
- 2n

_ffOb—a)+ f )~ f(a)
- 2n

1= T—t
*Z lim T' <t+l >
n “ e—>0+ n

i=1
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b -a+ fB) - f@ 1 bt Ca—t
= > +;Z [ <t+l- . )—f<t+z-

i
i=1

n—

’ 1
zf(f)(b—a)+f(b)—f(a)+b a [f fyi. bnt,t—l—i-a_t},
1

2n

i=

and

b b
PV [l =001y @ = 1 o PV [ 12 il
a a

7 (t_a)2+(b_t)2
= ”f H[u,b],oo 2

79

)

. 1 a+b\?
1 | 5024 (1= 52)]

b 1 b 1
Pv/a EEREN vl P L W PV/a |t —t]7 dt

) ¢ —a)*1 + (b —n'te
= ”f H[a,b],p 1+%

o
g+

1 1
r—a)ti - t)”a]

and

b t b
PV [ 1 e =2V [ [ 15 Ve [ 171 007]
<1 g @ =+ 1y =

<max (= a,b =0 [| Ny + 17" 1]

a+b

~[50-a+ -2 17 e,

then, by (53) we get
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Toy b f@) - f(t)dr_f/(t)(b—a)-i-f(b)—f(a) (54)

14 a T—t 2nmw

h—a t—a b—t
— ;t——-',t )
nmw Z[f n it n lj|

i=1

1" eb\2] i g

Tnh[( a)* + (—%b)] if f" € Loola,b];

915" sy [
1

t—a)tT+ (b —n't ]1ff”eL [a, b],
2 g+ 1) Tan

IA

1 1 _ 1.
, p > 1, F—i-a—l,
[

2nn

[ (b—a)+ |t — ”+”|].

On the other hand, as for the function fy : (a, b) — R, fo (t) = 1, we have

(Tfo)<a,b;z>=11n(b‘t>, { € (ab)
b4 t—a
then obviously
b —
(Tf) (a, b; t):lpV/ f® f(t)+f(t)dt
T T —1
b
Z—PV bf(r)— f(t)dr—i—f(t)Pvf dt |
T a T—1t1 T ., _'L'—l‘

from where we get the equality:

b f@) - S,

(Tf) (a, b; t)—ml ( ) —PV (55)
t—a T p T—1t

Finally, using (54) and (55), we deduce (50).

Before we proceed with another estimate of the remainder in approximating the
Hilbert transform for functions whose second derivatives are absolutely continuous,
we need the following lemma (see, for example, [9, p. 39]).

Lemma 3 Let u : [a,b] — R be a function such that its derivative is absolutely
continuous on [a, b]. Then one has the inequalities
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b b
/zunds—ﬁﬁﬂiillw—a) (56)
p 2
(b —a)’ ,
12 ||u//||[a,b],oo ifu” € Lo [a, b];
241
b—a)y 1 .
< ——7r—ﬂBW+Lq+DVWﬂmMmJMeLﬂmm,
1 1 _ 1.
p > 17 F + a —_ 1’
b-a?, ,
s Ju ”[a,b],l :

where B (-, -) is the Beta function

1
BmﬂyzﬁtW%Lﬁﬁ”m,mﬂ>Q

A simple proof of the fact can be done by the use of the following identity:

b b
/u(s)ds—w(b—a)z—%/ b-s)s—a)yu’ (s)ds, (57)

and we omit the details.
The following lemma also holds.

Lemmad Letu : [a, b] — R be a differentiable function such thatu’ : [a, b] — R
is absolutely continuous on [a, b). Then for any t,t € [a,b], t # Tt andn € N,
n > 1, we have the inequality:

T n—1 . .
l_t/ u(s)ds—%Z[u(t—i—i-rn t>+u<t+(i+l)~TTt>]‘

T ! i=0

(58)

It —1]?

1212 Hu””[z,r],oo ifu” € Looa,b);

1
|‘L' _ t|l+g
2n?

[t — 1]
) H“N H [t,7],1°

IA

1 .
B+ 1.q+ D1 |l , ifu" € Lyla.bl.
p>1 5+a=1

where B (-, -) is the Beta function.
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Proof Consider the equidistant division of [¢, t] (or [z, 7])

. Tt —
E,: xi=t+1i- , 1 =0,n.
n

If we apply the inequality (56), we may state that

/Xiﬂu(s)ds i g )+u2(t+(l+1) )'t;t

It —¢?

12n3 ”M ” [xi,xi41],00 ifu” € Lo [a, b];

-1 :
< T [B (@+1.q+ D7 |4y iy, p 1 4" € Lpla. b1,
s 1 1
p>1, ;-i-a:l;
o 1P

8112 ||I/t//|| [xi,xi+|],l :

Dividing by |t — ¢| > 0 and using a similar argument to the one in Lemma 2, we
conclude that the desired inequality (58) holds.

The following theorem in approximating the Hilbert transform of a twice
differentiable function whose second derivative f” is absolutely continuous also
holds.

Theorem 12 (Dragomir et al. [16]) Ler f : [a, b] — R be a twice differentiable
Sfunction such that the second derivative f” is absolutely continuous on [a, b]. Then

‘(Tf)( b ) - f ®, (ﬁ) T (1) (59)

1 _(b — a)2 atb ? "
121’127[ |: 12 + (t - ) ) ] (b - a) ”f || [a,b],00

if "€ Loola,bl;

1
gIB(@+1,q+1]s
22q + D n’x

IA

[(t - a)2+$ + (b — f)zﬁ] I f”/”[a,b],p
iff///ELp[avb]v p> + :1’

1 | (b—a)? a+b\>
87m2[ 4 +<t_ 2 >}”fm”[a,b],1

Ll L
P g
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(b " o)

367;”2 “f ”[a bl, if f7 € Lo la,b];

qIB(q+1.q+D]7 (b—a)ta
21 (2g + 1) n?

IA

||f"’||a,, tff”’eL la,b],

f///
o

forallt € (a,b), where T, (f; t) is defined by (48).

Proof Applying Lemma 4 for the function f”, we may write that (see also

Theorem 11)
fO-fo [Ffo+ro 1S (. t—1
‘ —[ o —i—;;f <t+l- )” (60)

T—1

12]’1 Hf///”[t 7],00 if /" € L la, b];

< |":_t|lJr " m

= - [B@+1q+4)|U|mﬂpﬁf € Lpla,bl,
o1 P>la;+3—1;
el A TR

forall¢, 7 € [a, b], t # 7.
Consequently, we may write

b ’ ’
PV b f(r) - f(t)dr_%PV/ [f (1) + f (1) ©1)

b4 a T—t 2n
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1 b
om0 LI Vi P

IA

1+ “ f/// “

T,

n2

[B(q+1 q+1)] PV/ B
tr]p

! b
gl—zPV/a W—HHWWMﬂJdt

Since

b
PV/ Ll Vil P
a

b 3 3
(t—a) +(b—1)
3 Vi . PV/a = tPdr = | "0 pyoc [ 3 }

" (b—a)2 a+b\?

b b
141 141
PV/; |t —¢|' T4 ||f/”||[t’r],pdr < ||f”’||[a’b]vaV/a It —t|'T7 dr

b -0+ —a)*"

=”ﬂ%mm 2+$
4 ” " ” la,b], p 241 241
:W[(b—l) q—i—(t—a) ‘1:|
and
b
PV [ ety 7
a
b 2 2
t—a)y+®-1
o P R LA TOF

(b_a)2 a+b 2 "
= |: 4 + <t - 2 ) i| ”f ”[a,b],l .

Then by (61), we deduce the first part of (59).
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4 Inequalities of Midpoint Type

4.1 Midpoint Type Inequalities

The following result holds.

Theorem 13 (Dragomir et al. [15]) Assume that the function f : [a,b] — R is
such that f' : [a,b] — R is absolutely continuous on [a, b]. Then we have the
inequality:

‘T(f)(a b; r)—&l ( )—%[f<w)_f<t+a>]‘ ©2
t—a b4 2 2
L7l [ — agpy? 4 0] if /" € Loo la. b]:
< WL o a5 v @0 i1 e Lyla.bl,
27 (g+1) "4
p>1, %—i-ql:l;
10— g,
||f ||OO (b_a)2 l.f‘f” (S] Loo [asb]’
8
q|lf”
< ”—”I”](b_a)Héiff”eLp[a,b],
7(q+ D't
1 p>1 1+1=1
= 1o -,

foranyt € (a, b). The ||-||p, p € [1, oo] denote the usual norms, i.e.,

lglloo := essup |g (1) if § € Lo la, D]
t€la,b)

and

lgll, == (/lgmwm) if g€ Lyla.bl, p=1.
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Proof As for the mapping fo : (a,b) — R, fo(t) =1, € (a, b), we have

1 b—t
T(fo)(a,b;t)=—ln( ),te(a,b),
b4 a
then, obviously

—fO+rO

T—1

b
(Tf) (a, b; ,)ZLPV/ /@

PV
B p T—t

bf) - f(t)dr+f(l)PV/bd_f
T p ’

T—1

from where we get the identity

t—a T—1

(Tf) (a, bt)—ml( ) an M(ir. (63)

If we use the known identity, which can easily be proved using the integration by
parts formula,

B +B B
/ g(u)du=g< )(/3— )+f K () g () du, (64)
where

u—(xifue[a,#]
K (u) :=
u—ﬂifue(#,ﬂ]

and g is absolutely continuous on [a, b], we may write

PV/ f(f) f(t) PV/ f,f(u)du iz

T—1

T—1

b b T
:PV/ f(T;_ )d +PV/ (%/ K(u)f”(u)du)dt
b T
=2[f(bT+t>—f(a;”)}+PV/ <%_tf K(u)f”(u)du)dr

=PVf [f’(%) -0+ K(u)f”(u)du:|dt
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Consequently, by (63), we obtain the identity

(Tf)(bt)—&l< >—z[f(b—+t>—f<t+a>} 65)
t—a T 2 2

1 ! ‘ "
:_PV/ (—/ K@) f (u)du)dr,
T a \T—1J;

where

u—t ifue[t,%"]
K (u) =

u—r1fue(’;’ r]

Using the properties of modulus, we get, by (65), that

2 b
e L0u(2) 22 (5] o

1 bl
< —PV
b a | T —

—fTK(M)f//(M)dM
tJ:

dt =: D (a,b;t).

Now, it is obvious that

/tK(u)f"(u)du < ” K(u)du
t u€la,b)
=" (u—t)du+f (t — u)du
2
ot —1)?
=" :
Then
1 b
Dabin<—|f pv/ it —tldr
4 e a

e =0+ 0 -0?
 4n 2

4 2 2
_ 1 [(t_a+b> L - ]
4 2 4
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Using Holder’s integral equality, we have

q

’ ‘/ |K (w)|? du
'

1

q

<

/ |f// (u)’P du
t

/T K ) f" (u)du
'

<10, | [ 1k o a

1

T+t q

=71, /T(u—t)"dwrfr (t — u)? du
t T+t

2

_“f//” _|‘L'—t|q+1i|;_ Hf””p|t_f|1+%
Pl27@+1D 2(q4r1)ql
forallz, T € (a, b).
Then
1 ” b |t_'L'|ql
D(a,b;t)y < —|f”| PV/ —dr

T I3 a 2( 7

g+

all s, [e-a" 0+ b -n"7)

1
27 (g + 1)1+5

proving the second part of the first inequality in (62).
Finally, we observe that

< sup ol [ ool = 10—
t

uelt,t]

T
/ K W) f" (u)du
t
and then
1 " b 1 "
Dabin < |7 Py [dr= o1 -,

proving the last part of the second inequality in (62).
The last part of (62) is obvious.

The best inequality we can get from (62) is embodied in the following corollary.

Corollary 10 With the assumptions in Theorem 13, we have

.a—i—b 2 a+3b 3a+b
an(en )2 (50)- ()] @
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1

rr=d Ll ICEO% if /" € Loo la. bl
= q " Lo

Mg g+ 't |71, @ —a) e if f" € Lyla. bl

1 1 _ 1.
p>1, ;4‘3—1,

Remark 6 1t is also obvious that if b — a — 0, then both the inequalities (62)
and (67) provide accurate approximations.

4.2 Other Midpoint Type Inequalities

The following result holds.

Theorem 14 (Dragomir et al. [15]) Assume that the function f : [a,b] — R is
such that " : [a,b] — R is absolutely continuous on [a, b]. Then we have the
inequalities:

- L20(220) 2[4 ()]
b t—a T 2 2

111 —a)? 2 /
Lo b — ) [L52 4 (1 = 42)?] if £ € Loc la, b1
" l l
5 q||f—||lp+l[(b_t)2+;+(t_a)2+a] if /"€ Lpla,bl,
8r(2q+1) "4
L1y [ b—ar? +h)?
S [Ta+(t_a7) ]
S —_ 3
WIL# if f € Loo[a, b];
" 2+l
_ L aro-0ttt

if f" €Lpla,bl],

1 1 _ 1.
p>1 ;+g—1,

T
87 (2q+1)' "7

L1l (o—a)®
167 .

Proof If we use the identity (63) and the following identity, which can be proved
by applying the integration by parts formula twice,
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B 1 8
/g(u)du=g(#>(ﬁ—a)+§/ L () g" (u)du,

where

(u —oz)2 ifue [a, #]
L (u) :=
u—p)ifuec (#,ﬂ]

and g is such that g’ is absolutely continuous on [«, 8], then we get

(Tf) (@ br)—&1< )
t—a
:lPV/”{f’(%“)(r—r)%ﬁ’L(u)f’”(wdu}dt
T a T—1

2 b+t t+a 1 bro1 4 ”
) () [ [ s woaa

Consequently, we have the identity:

(Tf) (a bt)—f(” (b_t>—3[f(b—+t)—f<t+“>} 69)
t—a T 2 2

1 b 1 ’ "
= —PV/ |:—/ L) f (u)du:| dt
27 « LT—tJ;

where

w—0?*ifuelt, 3]
L (1) .
w—1)*ifue (B, 7]

Using the modulus properties, we may write, by (69), that
0) b—t 2 b+t t+a
t—a b4 2 2
1 /
<—PV
2w a

Now, observe that

dt =: E(a,b;t).

—/ L @)l | £ )| du
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T T+t
‘/ IL @) |f" @)|du| <|f"| N (u—1)*du —l—/ (t —u)* du
t =
Vi
12
and then
/// " h— 3 3
ST i Ry PR Vo N EE
24m 24m 3
[/l | 0= a+b\*
= — b—a),
247 ot (t 2 ) b-a)
giving the first part of the first inequality in (68).
Using Holder’s inequality, we may write that
T R T q
V Ll wldu < |77, | [ =2 [ 1= ul?
' Ea
1
2 . t—t 2q+1 q
— Hf///”p { 2 | — 1 1 Hf///Hp ¢
2q +1 4Qq+ )7
and then
f/// b
<l IPvf 0 — 7|4 dr
8w 2 + )4 a
M, e-oT e —as
87 (2q + 1)1 e
q f///
———J—J——kb 0+ — )]
8w (2g + 1)4

which proves the second part of the first inequality in (68).
Finally,

’/|mef%mwu
t

7/ |t - T| "
L = —
< uil[lfﬂl @l £, — Il

241
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giving

E (a,b;1)

IA

—”melPV/bU—rldr I e=n?ra-a?
8 a 8 2

" 2 2
|7 ||][<b—a> +<,_a+b)]’
8w 4 2

which proves the last part of the first inequality in (68).

The best inequality we may obtain from (68) is embodied in the following
corollary.

Corollary 11 With the assumptions of Theorem 14, we have
b 2 3b 3a+b
@ (ab: 52) - 2] (22 - p (22 )
2 T 4 4

| £ | oo & — @)?
288

if f € Logla, bl;

gl s, ®-a’

IA

i — if f" € Lyla, bl,
16-29mw 2q + 1)
p>1, 5+2=1

L], 0 = a)?
327 ’

4.3 Compounding Midpoint Type Inequalities

Before we point out the quadrature formula for the finite Hilbert transform, we need
the following two technical lemmas:

Lemma 35 Letu : [a, b] — R be an absolutely continuous function on [a, b]. Then
we have the midpoint inequalities:

b
/ u(s)ds—u(#) (b—a)‘ (72)
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b— 2
O e i€ Lol B
b—a)ti

<flza ¢ f”u’H[aYb]’pifu/eLp[a,b],
2(q + 1) o

p>l,—+—:l’
b-a), P Tyq
2 | [a,b],1°

A simple proof of this fact can be done by using the identity (see, for example,

(9, p. 34]):
b a+b
/ u(s)ds —u <T> b —a) (73)

a+b b

:—/T(s—a)f’(s)ds+ﬁ+b (s —b) f' (s)ds.

2

We omit the details.
The following lemma also holds.

Lemma 6 Letu : [a, b] — R be an absolutely continuous function on [a, b]. Then
foranyt,t € [a,b],t Z1tandn € N, n > 1, we have the inequality:

1T 1l I\ Tt
r—t/ u(s)ds—;Zu(t—i—(l—i-E) . >‘ (74)

! i=0

|t —1]

4}’1 ||l/i/H [t,T],00 l:fl/l/ € LOO [a’ b] 5

e

—t
e =4 ifu' € Lyla,b],

IA

u
Z(q N l)ql " H ”[t,r],p 1 1
p>1, » + 7= L;

1 ’
L v .

where

H“/“[z,z],oo = essup |u’ (1)
telt, 7]

(te[r,t])
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and

1
P

ey = | [ o 001 as

for p > 1.

Proof Consider the equidistant division of [¢, 7] (if t < 7) or [z, ¢] (if T < 1) given
by

T—1

E,: xi=t+1i- , 1 =0,n.

If we apply the inequality (72) on the interval [x;, x; 1], we may write that
Xitl T—t oI\ Tt —1t
/ u(s)ds — cult+ i+ =
i 2 n

(t—1)? _
T ||u/||[Xi,Xi+1],OO lf Ll/ € LOO [av b]7

1
|‘L' —t|1+‘1

IA

- / . /

't (¢ + 1)5 ] [xi.xit1].p ifu el Ea’ b]l’
Tt )
2n [xixig1].1°

from where we get

1 Yitl 1 o INT—1
u(s)ds ——-ult+i+ =
T—1tJy n 2

n

T —t|, , _
W ||M “[x,-,xH_]],OO ’

1
|t — ]9

IA

T

1
Z ||I/t/ || [x,-,xlurl],l ’

foralli =0,n — 1.
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Summing over i from 0 to n — 1 and using the generalized triangle inequality, we

may write
1 T 1l 1\ t—1t
ds — — t i 4+~
o B (1))

i=0

1 Xit1 1 o1\ Tt—1¢
u@)ds——-ult+i+ =
—tJy n 2 n

4]12 lZ H ” x, )C,'Jrl],OO;

n—1

=)
T

i=0

1
IT—tI

<
= q(q+ )q l;) “ ”[x, x,+1]p
1 n—1 ,
E i;) ||M | [xi,x,-+1],] :
However,
n—1
2 oo = 1 ey oo
i=0
nolyexigg b
anmw_zﬁlwmws
Nak
n—1 . L r
Sn% (Z /XH |u/(s)|pds p)
i=0 'V
1 p 1 1 /
ot [ o as) =ut u'l
and

n—1

Z “ ” [xixig1] 1 — Z

and the lemma is proved.

= [l ep.

Xit1
/ |u’ (s)| ds
Xi

= ‘/T |u’(s)|ds
t
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The following theorem in approximating the Hilbert transform of a differentiable
function whose derivative f” is absolutely continuous holds.

Theorem 15 (Dragomir et al. [17]) Let f : [a,b] — R be a differentiable
function such that its derivative f' is absolutely continuous on [a, b]. If

n—1
M, (f; t)——(b—a)Z[f t+<l+;)b;t t—<i+%>t;a]

i=0
(75)
then we have the estimate:
f(l) —1
'(Tf)( bit) ——In{ —— | =M, (f;1) (76)
b4 t—a
1 1 a+b .
m[z(b—a)%r( ) }Hf”H[ab if f" € Loola, b];
1 1 .
< ﬁ [(r —a) T+ - t)l+q] ||f”||[a’b]’p if f" € Lpla,bl,
T q
e p>1 14 L—q
P q
1 1 +b
5@+ = 21
1 2 " . "
rmd CRatOR Wil PRSP if " € Loola, bl
q 1+1 " ool
< l(b_a) q”f ”[a’h]’plff GLp[a’b],
| 2nn (g + 1)1
1 1 _ 1.
. p>1, P + 7= I;
n &—a | la.b],1°

forallt € (a, b), where [ f; c, d] denotes the divided difference

[f;c’d] = M'
c—d

Proof Applying Lemma 6 for the function f’, we may write that

1

f(r) f(t) 1% ( ( )(r—r))‘
—_ f
n 5 2 n

i=
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"

|T
—||f”||
2q+in T

IA

1
_n Hf//”[t,t],l ’

forany ¢, t € [a, D], t # T.
Consequently, we have
—1
i ) dt

PFO-f®, 1 1
PV ————dt - ZPV/ <t+(l+§> -

a

77
if £ € Loola,bl; 77

¥ [y
1 " 4
< PV Ir—th F'l . pdrit £ € Lyla,b],
27 (g + )qn a
PV [ e
Since

—t
! )dr

()
[LCEE

= lim

e—>0+ te
—&
. n oI\ t—1t n oI T—1t
= lim | - ]f<t+(l+*> > + - ]f(t-i-(l-i‘*) >
e=>0+ | i+ 5 2 n i+ 3 2 n te
. b—t
)-f(t)}

) sfen 1))
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and

b b
L T Vi P Vi N 1 NERIP
a a

” 1 a+b\>
:”f “[a,b],oo |:Z(b_a)2+<[_ 2 >:|’

b b
PV/a Ir—tléuf”H[l)r]’pdrfHf””[ayb]’pPV/; T — 1|7 dv

1 s

1 1
- —a)1+3+(b—t)1+3]
q

and

b t b
PV [ 1 e = 2V [ [ 17 ide+ [ 157 007]

<({t—a) ||f//”[a,t],1 + b —1) Hf””[t,b],l

<max (= a,b =0 [| £ Ny + 17" 11 ]

a+b

( (b—a)+ |1 - —— ) 1" 1.1

then by (77) we obtain

b _
lpV/ TO=T®O 0w (ri
b4 a T—t

(78)

1|1 a+b\? ,
| [

1 1 .
e [(z —a)'ti 4 (b—t)]+q] 1" p i £ € Lpla. b1,
2nn (g + 1)4 -
p > l, ;—i-a:l,
1 b 1
ol Lo-w+ f—— (K SRR

On the other hand, as for the function fy : (a, b) — R, fo (t) = 1, we have

1 b
(Tfo)(a.b;t) = —1In <t

—1
>, te(a,b),
—a
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then obviously

b J—
(Tf)(a,b;t)zlpvf fO-fO+1O
T a T—1
b
Ly [LOS0 S0y [
i ¢ tot T a T—1

from where we get the equality:

(TF) (a, b: t)—ml (b t) Loy [(fO-F®, (79)
r—a 4 a T—1

Finally, using (78) and (79), we deduce (76).

Before we go further and point out another estimate of the remainder in
approximating the Hilbert transform for functions whose second derivatives are
absolutely continuous, we need the following lemma.

Lemma 7 Letu : [a,b] — R be a function such that its derivative is absolutely
continuous on [a, b]. Then one has the inequalities

b

[uoras—u(5) 0ol (50)
a

(b —a)’ ,

24 ”u ||[a,b],oo l‘fl/t// € LOO [av b]v
241

b—
< | a| ‘il ””//”[ab lfu//EL [a,b],

8Q2qg + 1)« 1

b—a

)
s ”” || la,b],1

A simple proof of this inequality may be done by using the identity:

b
/ u(s)ds—u(a_; >(b—a) (81)

1 %8
_2/a

We omit the details.

b
(s —a)? f" (s)ds + %[Hb (b—9)% f" (s)ds.
e
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The following lemma also holds.

Lemma 8 Letu : [a, b] — R be a differentiable function such thatu’ : [a, b] — R
is absolutely continuous on [a, b]. Then for any t,t € [a,b],t € Tandn € N,
n > 1, we have the inequality:

1 T ln—l 1 1
ds =~ t{its): 82
r—t,/,u(s)s n§u<+<l+2) " ) (82)
(t —1)? ,
24”2 Hu//”[t,t],oo lf‘u// € LOO [a’ b]’
1+1
[t —t] e .
S ||u//||[[,r]’p l‘fl/l// € Lp [a’ b]’

8 (2 + 1)1 n2
p>1, %—}- é =1;
|t —1]
8n2 [ e

Proof Consider the equidistant division of [¢, 7] (or [z, ¢])

T—1

E,:xi=t+1i- , 1 =0,n.

If we apply the inequality (80), we may state that
Xitl T —t oI\t —1t
/ u@)yds— ——ult+i+ -
% n 2 n

(t—1)°
241’13 ||M//|| [xl-,xi+1],00

if u” € Loo[a, b];

241
[t —¢t|7 "4 .
ifu” € L,[a,b],

IA

1 51 ”u//” [xi.xit1].p
8(2g + )7 n*tu
p>1, % + % =1
[z —1?
81’12 “u// || [x,-,x,-Jrl],l :

Dividing by |t — #| > 0 and using a similar argument to the one in Lemma 6, we
conclude that the desired inequality (82) holds.

The following theorem also holds.
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Theorem 16 (Dragomir et al. [17]) Let f : [a, b] — R be a twice differentiable
function such that the second derivative f" is absolutely continuous on [a, b). Then

kww bn—fm (;i)—Mﬂﬁﬂ (83)

1 [ (b-a)? a+b\>
247tn2|: 12 T\~ 2 Gl )“fWHab if f € Lo la, bl;
1
< —12[(t—a)2+‘1+(b ]”f”’”lahlp if £ € Lyla, b,
8Q2qg + )4 mn
p>1, %-i— é =1
1 (b — a)? a+b\? .
8 n? |: 4 + <t - 2 ) H fl””[ayb]gl ;
1 " e
727 n? b ”f ”[a,b],oo if [ € Lo la, b];
1 2+ "
=< —l(b_a) ”[ab l.ff eLp[a5b]a
— ] 8QRqg+1)7 7n?
1,1
p>1, —+_-=1
||f///” p q
la,b], 1 2
—_— A b_ .
167rn? b-a)

Proof Applying Lemma 8 for the function f”, we may write that (see also
Theorem 15)

1

f@O-f@® 1<, I RN
LOTO 2y r(+(i+3) )‘ 84

n
i=0

(r

24}’12 ” f///” [, 7] if fm € L la, D];

T

8 (2q + 1)@ n?

IA

17,1 1 S € Lp La. B,

1,1 _
p>1, p—i—q_l

"

” [t,t],1°

forall¢,t € [a, b], t # 7.
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Consequently, by (84), we may write that

L [P f@—f0 L [P 1\ T—t
;PV/H Tdf-gZPV\/ﬂf(t"{‘(l"’z) )dT

n
i=0

1 b 85
vt LRl VA 8
e 7]
—PV/ [t —t] e || f"” dt
S\ sreg+nin  Ja ke
LPv/b|r—t|||f”’|| dt
87‘[712 p [z, 7],1 .
Since

b b
L I Vi Y VA P 2 R
a a

” t—aPX+0b-13
e [ }

3

" (b—a)2 a+b\?
=|f ||[a,b],oo|: 12 +<t_ > >:|(b—a),

b b
PV/ T —"Fa ”f”’”[t)r]’pdtf”f’””[a’b]’pPV/ it — 17 dr
a a

_ q HfWH[a,b],p [(l

_ 2+ b_t2+g]
2+ 1 a) +( )

and

b b
g Il VYL VL PR g LT
a a

" (t— a)2 + (b — t)z
P =ik,

” (b—a)2 a+b 2
1 | 255 (=452
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then, as in Theorem 15, by (85) we deduce the first part of (83). The second part is
obvious.

5 Estimates for Derivatives of Bounded Variation

5.1 Some Integral Inequalities

We start with the following lemma proved in [3] dealing with an Ostrowski type
inequality for functions of bounded variation.

Lemma9 Letu : [a, b] — R be a function of bounded variation on [a, b]. Then,
forall x € [a, b], we have the inequality:

b b
u(x)(b—a)—/a u (t) dt sB(b—aH’x—#H\a/(u), (86)

where \/Z (u) denotes the total variation of u on [a, b].
The constant % is the possible one.

Proof For the sake of completeness and since this result will be essentially used in
what follows, we give here a short proof.
Using the integration by parts formula for the Riemann-Stieltjes integral we have

/x(t—a)du(t)=u(x)(x—a)—/xu(t)dt

and

b b
/(t—b)du(t):u(x)(b—x)—f u(t)dte.

If we add the above two equalities, we get

b X b
u(x)(b—a)—/ u(t)dt:/ (t—a)du(t)—i—/ (t —b)du (¢) 87)

a

for any x € [a, b].
If p : [c,d] — R is continuous on [c¢,d] and v : [c,d] — R is of bounded
variation on [c, d], then:

d
< sup Ip@I\/ @), (88)

x€le,d]

d
/ p (x)dv (x)
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Using (87) and (88), we deduce

b b
u(x)(b—a)—/ u(t)de| < + / (t —=b)du (1)

a

/X (t —a)du (1)

X b
<@x-a\/w+b-x\/w
X b
<max{x —a,b— x} |:\/(u)+\/(u):|

b
:[%(b—a)-l— x—#u\a/(u)

and the inequality (86) is proved.
Now, assume that the inequality (87) holds with a constant ¢ > 0, i.e.,

b b
u(x)(b—a)—/ u(t)dt x—#u\/(u) (89)

< |:c(b—a)+

forall x € [a, b].
Consider the function ug : [a, b] — R given by

0if x € [a, b] \ {442}
up (x) =
Lif x = 442,

Then ug is of bounded variation on [a, b] and

b b
\/ (uo) =2, / ug (1)dt = 0.

If we apply (89) for ug and choose x = #, then we get 2¢ > 1 which implies that
c> % showing that % is the best possible constant in (86).
The best inequality we can get from (86) is the following midpoint inequality.

Corollary 12 With the assumptions in Lemma 9, we have

b
‘u(a—;b)(b—a)—/ u () dt

The constant % is best possible.

b
< %(b—a)\‘/(m. (90)
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Using the above Ostrowski type inequality we may point out the following result
in estimating the finite Hilbert transform.

Theorem 17 (Dragomir [4]) Let f : [a,b] — R be a function such that its
derivative ' : [a,b] — R is of bounded variation on [a, b]. Then we have the
inequality:

f@&). (b—t\ b-a
‘(Tf)(a,b;t)— .- ln< )— — [fs A+ (L =0b A+ (1= Na]

t—a

< L1 + A ! : ® )+
=712 2112
foranyt € (a,b) and ) € [0, 1), where [ f; o, B] is the divided difference, i.e.,

f @) —f(B)
oa—pB '

oD

v,

a

[fia, B]:=

Proof Since f' is bounded on [a, b], it follows that f is Lipschitzian on [a, b] and
thus the finite Hilbert transform exists everywhere in (a, b).
As for the function fy : (a, b) — R, fo (t) = 1,t € (a, b), we have

(Tfo)(a,b;t)zlln(b_t>, te(ab),
T t —
then obviously
_ b opeoy
T @bt -1 Dn (b t) _lpy [(fOZTO 92)
T t—a T g T—1t

Now, if we choose in (86), u = f/, x = Ac+ (1 —A)d, A € [0, 1], then we get

|[f@d)—f)—(d—0o f e+ 1-1)ad)

d

V()

c

1
§|:§|d—c|+

d
Ac+(1—k)d—cg H

where ¢, d € (a, b), which is equivalent to

f@d)—f©

) 1 1
T (xc+(1—x)d)'5[§+'x—-u

forany c,d € (a,b),c #d.
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Using (93), we may write

IA

IA

IA

b
PV/ M %PV/ ff+A-=11)dr

1
T
1
T
1
T

1
T

E—
L 2_
B
- 2_
B
- 2_
B
- 2_

Since (for A # 1)

(94)

V)a
_ [ (\/ (f’)) ar+ | b (\/ (f’)) dt}

b
(t—a)\/ )+ -0\ (f }

t

r—#ﬂ\b/(f’)-

a

_%(b—a)—k

b
%PV/ fot+0-01)dt

b
813& [/ /t+g] (f i+ =21 1)dT)

Q|-

8=

1
b4
b—

lim
e—>0+

t—e

+ﬁf()\t+(l—)\)t)

b
t+e

a

SO-—fM+d-MNa+fM+A=1D)— ()

11—

Using (94) and (92), we deduce the desired result (91).

It is obvious that the best inequality we can get from (91) is the one for A = %
Thus, we may state the following corollary.

Corollary 13 With the assumptions of Theorem 17, we have

‘(Tf)(a b l)_f(t) (b—t)_b—a[f;tjtb a+t:|

1

27

l(b
[2 —a)+

, 95
t—a 2 2 ©5)

b
2y

T
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The above Theorem 17 may be used to point out some interesting inequalities for
the functions for which the finite Hilbert transforms (7' f) (a, b; t) can be expressed
in terms of special functions.

For instance, we have

1. Assume that f : [a, b] C (0,00) — R, f (x) = % Then

(b—1t)a

1
(Tf)(@.bi) = —1n [—(t T

i|, te(a,b),

b—a
— [+ A =2)b, At + (1 —2)a]
T

l b—a
7 [+ (1 —a)bl[A+ (1 =) a]

b b b2 — g2
\/(f’)=/u £ @] dr = T2

Using the inequality (91) we may write that

1 |:(b—t)a:| 1 (b—t) b—a
—In|——|——1n +

Tt (t—a)b Tt t—a a[rat+ {1 —=2bl[MM+ (1 —X)a]
<l l_{_‘)h_l‘ l(b— + a~|—b‘ b2 — 42
=72 220~ '

2 a’b?
which is equivalent to

l‘_

b—a 1 b
——In( - (96)
[At+ (1 —A)b][AMt+ (1 —A)a] ¢ a
1 1T a+b|] b>—a?
<|=+Ar—==|||=0B- t— :
—[2+‘ z”[z( @+ 2 ] a2b?
If we use the notations
b—a . .
L(ab):=— (the logarithmic mean)
Inb—1na
Ap(x, ) :=xx+0=N)y (the weighted arithmetic mean)
G (a,b) :=+~ab (the geometric mean)
a+b

A(a,b) = — (the arithmetic mean)
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then by (96) we deduce
1 1
Ay (1,0) Ay (t,a) tL(a,b)
1 11 2A (a, b)
<|z4+Ar—=|||z0®—- t—Aab)|| —F,
‘[2+‘ zu[z( arl-aw )'] G (a. b)
giving the following proposition:
Proposition 1 With the above assumption, we have
[tL (a, D) — Ay (1, b) Ay (2, a)] o7
2A(a,b) [1 1 1 a+b
< —|=4+rA—=—=||| =0 - t— ——||tA, (t,b) A, (t,a)L(a,b
_G4(a,b)|:2+‘ 2][2( a) + 5 } (D) Ay (t,a) L (a, b)

foranyt € (a,b), A € [0, 1).

In particular, for t = A (a, b) and A = %, we get

A(a,b) L (a,b) — (A (a,b)+a)4(A (a,b) +b) o8)
(A (a,b) + a)4(A (a,b) +b) Lah.
2. Assume that f : [a, b] CR — R, f (x) = exp (x). Then

Ul A2 (a, b)
~2 G4(a,b)

(TF) (@, bs 1) = exiﬁwi (b—1)— Eia—1)],

where

Z

Ei(z) = PV/ exp (1)

oo

dt, zelR.

Also, we have

b—a

[exp; At + (1 —=X) b, At + (1 — A)a]

1 expat+ (A —=21)b) —exp (At + (1 — A)a)
B 1—A ’
b

b
\/(f’)=/ | f" ()| dt = exp (b) — exp (a).

a
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Using the inequality (91) we may write

exp (t) [Ei (b—1t)— Ei (a—t)—ln(f_t):| (99)

—a

B exp(AMt+ (1 —A)b) —exp(At 4+ (1 —A)a)
1—A

<1 ‘A l‘ 1b
_|:§+ —§:||:§( —a)+

for any t € (a, D).

t — #H [exp (b) — exp (a)]

The reader may get other similar inequalities for special functions if appropriate
examples of functions f are chosen.

5.2 A Quadrature Formula for Equidistant Divisions

The following lemma is of interest in itself.

Lemma 10 Let u : [a, b] — R be a function of bounded variation on [a, b]. Then
foralln > 1,A; €[0,1) i=0,...,n—1)andt,t € [a,b] witht # t, we have
the inequality:

n—1

rl—t/ u(s)ds—%Zu[t—f—(i—i—l—)»i)rT_tj” (100)

! i=0

1
)\,'—5

Proof Consider the equidistant division of [¢, 7] (if t < t) or [7, ¢] (if T < 1) given
by

T

\/ @)

t

11
<-—-|=z-+ max
n|2  i=0n-1

T—1

E,:xi=t+i- , i=0,n. (101)

n
Then the points §; = A; [t +i- =L+ (1 —2) [+ G +1) - 5] (i €10, 1],
i=0,n— 1) are between x; and x;41. We observe that we may write for simplicity
g =1+ +1—2x)=L (i =0,n—1). We also have

Xi + Xit1 T—t T—1t
fi- T = (=200 & i = (=)
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and

T—1

Xig1 =& =X

foranyi =0,n — 1.
If we apply the inequality (86) on the interval [x;, x;4+1] and the intermediate
point &; (i =0,n— 1) , then we may write that

T —1 Xit+1
u(t+(i+ i )—/ u(s)ds
n X;
] Xi+1

(102)

\/ ).

L= (1 —2)
12 n 2n

Summing, we get

z _ln—l _y
M(S)dS—T—Zu[t+(i+l—ki)r—i|
n izo n

|‘L' . t| n—1 Xit+1
< —— > +n-241\ w
- xi
[t —1t] |1 I
= — 4+ max |A; — = )|,
n [2 i=0,n—T \/

which is equivalent to (100).

We may now state the following theorem in approximating the finite Hilbert
transform of a differentiable functions with the derivative of bounded variation on
[a, b].

Theorem 18 (Dragomir [4]) Let f : [a, b] — R be a differentiable function such
that its derivative f’ is of bounded variation on [a, b]. If A = ()\,-)izm, Ai €
[0, 1) (i =0,n— 1) and

n—1
b — b—t —t
S (fihen) = 23 [f;a+1—Ai>—+z,<i+1—xi>—“ +z]
an iz n n

(103)

then we have the estimate:

‘(Tf)(a,b t)—&l <t—a>_S (f: A1) (104)
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Ai ! ]b
1_5‘ |:E( —a)+

Proof Applying Lemma 10 for the function f’, we may write that

n—1
‘ (105)

FO-f0 12T T
‘T—zgf [’”‘“_MT}

foranyt,t € [a,b],t # T.
Consequently, we have

n—1

b . b _
Loy Mdf_LZPV/ f/[t+(i+1—)»,-)r ti|dt
n p n

s p T—t

i=0
(106)
S A 1’ PV/b\T/(f’)d
<—|= max |A; — = T
nw |2 ioa-t| 2 a |
1 [1 1r1 a+b[1\
< —|= Ai— = —(b— t— ).
= — [2+i=rf)l,ix_1 i 2”[2( a) + 7 H\a/(f)
On the other hand
b T—t
PV/ f/[t+(i+1—ki) i|dt (107)
p n
t—e b T —1t
= lim [/ +[ i|<f’[t+(i+1—)\,~)—i|dr>
e=>0+1Jq4 t+e n

t—e

I Y P Y
= 1m P e— l — A
e—0+| I +1—A; ' n

4" f<t+('+1 ,\)T_t>b
— l J— .
i+ 12 R

a
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n . b—t . a—t

=(b—a)[f;z+(i+1—)\i)?,(wrl—x,-)“nlﬂ]

Since (see, for example, (92)),

1 b —f@ t b—t

THabn=rpy [ LD f()dr+f()1n( )
T a T—t T t—a

for ¢ € (a, b), then by (106) and (107) we deduce the desired estimate (104).

Remark 7 For n = 1, we recapture the inequality (91).

Corollary 14 With the assumptions of Theorem 18, we have

f @) (b—t

(Tf)(a,b;t) =——1n —) + lim S, (f;X,¢) (108)
b4 t—a n—00

uniformly by rapport of t € (a, b) and A with 1; € [0, 1) (i € N).

Remark 8 1f one needs to approximate the finite Hilbert transform (7 f) (a, b; t) in
terms of
t b—t
IO, (—) S (i)
b4 t—a

with the accuracy ¢ > 0 (¢ small), then the theoretical minimal number 7, to be
chosen is

b—a ,
ne :=[ — \/(f):|+1 (109)

a

where [«] is the integer part of «.

It is obvious that the best inequality we can get in (104) is for A; = %
(i =0,n— 1) obtaining the following corollary.

Corollary 15 Let f be as in Theorem 18. Define

n—1
M, (f;1) :=%Z[f; (i—%—%)bT_t—i-t, <i+%)a;t+t:|. (110)
i=0
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Then we have the estimate

'(Tf)(a,b r)—ml (f’_—a)—Mn<f;z) (111)
b—a a+b[1\
<G 200+ =SV

a

foranyt € (a, b).

5.3 A More General Quadrature Formula

We may state the following lemma.

Lemma 11 Let u : [a, b] — R be a function of bounded variation on [a, b], 0 =
o < My < - < Upy_1 <M, =1landv; € [Ml-,uiﬂ], i =0,n — 1. Then for any
t,T € [a, b] witht # t, we have the inequality:

T n—1
- t/ w(s)ds — Y (i — wi) ul(1 = vi) 1+ vit] (112)
o i=0
1
< |38 0+ max vy - K
2 i=0.n—1
where Ay (1) := max (i1 — i;)-
i=0,n—1
Proof Consider the division of [, t] (if t < ) or [7, ¢] (if T < t) given by
Lj:xi=(1—p)t+wt (i=0,n). (113)

Then the points &; := (1 —v;) t +v;T (i = 0,n — 1) are between x; and x; ;1. We
have

Xip1 —xi = (g — i) (@t —1) (i =0,n—T)
and
£ - Xi +2xi+1 _ (Vi MK +2Mi+1) (t —1) (i — m

Applying the inequality (86) on [x;,x;4+;] with the intermediate points &;
(i=0,n—1), we get
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Xi+1
/ u(s)ds — (uiv1 — i) (T —Dul(1 —vi)t 4+ vi7]

}

for any i = 0, n — 1. Summing over i, using the generalized triangle inequality and
dividing by |t — 7| > 0, we obtain

Xi+1

\ @

Xi

M+ iy
2

1
= |5 (isr =) It =l 17—l Jvi =

n—1

1 b
/ u(s)ds — Z (MH—] — u,») ul(l—v)t+vt]

vt i=0

<Z[ (Rig1 — i) +
\/(u)

i +/’Lz+1

The following theorem holds.

Theorem 19 (Dragomir [4]) Let f : [a, b] — R be a differentiable function such
that its derivative [’ is of bounded variation on [a,b]. If 0 = g < pu; < -+ <
Hp_1 < U, =1landv; € [;L,-, Mi+1]r (i =0,n— 1) , then

(Tf) (a. bt)—ml ( _a>+ On (W, v, 0) + Wy (v, 1) (114)

\/()

Vi —

Xi+1 ‘

+
v — i /"Ll+1

1
<|z4x(m)+ max
2 i=0,n—1

and the inequality (112) is proved.

foranyt € (a, b), where

On (p,v,1) (115)
n—2

= f Ob-a)+b-a)) { (141 — 111)
i=1

x[fs (I —=vi)t+vib, (1 —vi) 1+ vial } + (1= 1) If B) = £ (@)]

if‘)OZO’ Vo1 =1,

n—1

On (v, 1) =i f' () (b —a) + (b —a) Y (i1 — i) (116)

i=1

x[fiA=vi)t+vib, (1 —v))t+v;a]
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ifvo=0,v,—1 <1,

n—2
On (v, 1) :=(b—a) Y (i1 — 14;)

i=1

X[ A =vi)t+vib, (1 —=vi)t +vial + (1 = py) [f B) — f @] (117)

ifvo>0,v,-1 = 1land

n—1

0 (kv 0) = (b= @) Y (i — ) LFs (L= vi) £+ i, (1= v) £ + vja]
= (118)

:| (119)

ifvgo>0,v,-1 < 1.
In all cases, the remainder satisfies the estimate:

Wi+ i1
2

111
IWn(IL,v,t)|§;|: Ap () + max |v; —

i=0,n—1

t_a—i—bu\b/

-]

b
1
— A& -a)\/(f)

X

[%(b—a)—f-

b

Vi

siAn(m[ b—a)+
T

IA

Proof 1f we apply Lemma 11 for the function f’, we may write that

n—1

- Z(Mi+1 — ;) 1A = v) 1+ vit]

e -

‘f(r)—f(t)

T—1

T

V(7

t

+
;i — Mi /’Ll-‘rl

i=0,n—1

1
< [EA" (w) + max

foranyt,t € [a,b],t # 7.
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Taking the PV in both sides, we may write that

PV Mdr (120)
T a T—1t

n—1

1 b
—;PV/ (Z(MH‘I wi) f’ [(I—V)t+vzf]>

i=0
b
PVf
a

T

V (£)]d

t

Mi + g
2

V; —

111
< —|z4,(n)+ max
|2 i=0,n—1

Ifvg=0, v,_1 =1, then

p [n—1
/ (Z iyl — f[(l—v)t+vr])
a i=0

n—2

b b
=2V [ s Odr+ Y (i =) PV [ 0= w01+ viride

i=1

b
+ (1= 1) PV/ f(mdr

n—2

= f O b=a)+b—a) Yy (1 — me) Lfs A= vi) 1 +vib, (1 = vi)  + via]
i=1

+ (1= pusy) [f ) = f(@)].
Ifvg =0, v,—1 < 1, then

n—1

b
PV/ (Z (ip1 — ;) f11Q —V,')t-i-vit]) dt

i=0
n—1
= f @ b—a)+b—a)d (g — w) Lfs A= vi)t +vib, (1 = vi) t + vial.
i=1
If vg > 0, v,—1 = 1, then

b [n—l
PV/ <Z (ig1 — ) 1A =)t + vn:]) dr

i=0

(bw)Z Mivt = 1) U5 (L= vi) t 4+ vib, (1= vi) 1 +vial + (1 = 1) [f (B) = f(@)].

and, finally, if vo > 0, v,_1 < 1, then
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n—1

b
PV/ (Z (i1 — i) £1Q _Vi)[+vit]> dt

i=0
n—1

:(b—a)Z(u[_H—/Li)[f;(l—v,')t—i-vib, (1 —vj)t+vjal.

i=1

Since

and

b _ _
(Tf) (a, b; t):%PV f(fr)_tf(t)dwr f:) In (f_;)

then by (120) we deduce (114).

6 Estimates for Absolutely Continuous Derivatives

6.1 Ostrowski Type Inequalities

For the sake of completeness, we state and prove the following lemma providing
some Ostrowski type inequalities for absolutely continuous functions (see [10, 11]
and [12]).

Lemma 12 Let u : [a,b] — R be an absolutely continuous function on [a, b] .
Then we have

b
u(x)(b—a)—/ u (t)de (121)

1 +b\?
[Z(b—a>2+<x—a2 )}Hu’ﬂ[a,b]m if u' € Loola, bl

1 1
1 T [(X_a)1+q —|—(b—x)1+q:|||u/“[ab]pifu/€Lp [a,b],
(g+D1 ,bl,

IA

1 1 _ 1.
p>1, ;*l—;—l,

b
o= I Wl v eLian

1b
[5( —a)+
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where |||, (r € [1, oo]) are the usual Lebesgue norms, i.e., for c < d

17lljc.d1.00 := ess sup |h(2)]
tefe,d]

and

1
d ¥
1 lle.an.r == (/ |h(r)|’dr) > 1.
C

Proof Using the integration by parts formula, we have
X X
/ (t—a)u’(t)dt:u(x)(x—a)—/ u (t)dt
a a
and
b b
/ (t—b)u/(t)dtzu(x)(b—x)—/ u (t)dt.
X X

If we add the above two equalities, we get

b X b
u(x)(b—a)—/ u(t)dt:/ (t—a)u’(t)dt+/ (t —byu' ()dr (122

for any x € [a, D].
Taking the modulus, we have

b X b
u(x)(b—a)—/ u (t) dt 5/ (r—a)|u’(z)\dz+f (t —b) |u' ()] dt

a

=M (x).

Now, it is obvious that

X b
M = Wy [ €@t 4 il gy [ @1

(x —a)® (b —x)?
= Hu/H[a,x],oo ’ 2 + ”u/H [x,b],00 ’ 2

(x —a)> + (b —x)?
el | O
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1 a+b\*
:Hu/”[a’b]m|:Z(b—a)2+<x— 5 )}

proving the first part of (121).
Using Holder’s integral inequality, we may write

1
X 7 b q
Al@)snwmmﬂp(é a—aﬂd0q+wwwmmW<£ w—mﬂdo

1 1
(x — )7+ (b— x)i+1]
Wl | ST W | S

1 = S
S ||u/||[u,b],p —l [(X - a)l+; + (b — )C)l+;:| s
(g + D

proving the second part of (121).
Finally, we observe that

M (x) < (x —a) ||M’H [ax].1 4+ (b —x) H”/” [x,b].1

< max = a,b— ) [,y + 1 ]

1

1 b
= |:§(b—a)+‘x—a;
and the lemma is proved.

The best inequalities we can get from (121) are embodied in the following
corollary.

Corollary 16 With the assumptions of Lemma 12, we have

b
u(a;b>(b—a)—f u(t)dt

(123)

1
1 b—a) ||| —_— if ' € Lo la.bl:
1+1 )
= 2(qi1)é (b—a)™s ”u/”[a,b],p if ' eLpla,b],
| p>1 y+o=1
E(b_a) ”u/”[u,b],l' ifu' € La,b]

The following theorem providing an estimate for the finite Hilbert transform
holds.
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Theorem 20 (Dragomir [S5]) Let f : [a,b] — R be a function so that its
derivative f' : [a,b] — R is absolutely continuous on [a, b). Then we have the
inequalities

‘(Tf)(a,b;t)—f:)ln<f__;>—b;a[f;)\z+(1—)\)b,,\z+(1—/\)a]'
(124)
S ESA 2
x z*( ‘5)
1 a+b 2 . o
X|:4(b—a)2+<t_ ) >i|||f ”[a,b],oo lff ELoo[a,b];
= LN [x”iﬂl-x)”%]
1
T+t
x[(t—a) q—i—(b :I“f//”ab]p if f"€Lyla,b],
p>1 S+o=1
! 1 1 +b " "
n[ﬁ‘“zm (b—a)+ |- }Hf s - i7" € Lla. ]

foranyt € (a,b) and ) € [0, 1), where [ f; «, B] is the divided difference, i.e.,

(o) = f(B)

a—p
Proof Since f’ is bounded on [a, b], it follows that f is Lipschitzian on [a, b]
and thus the finite Hilbert transform exists everywhere in (a, b). As for the function

fo:(a,b) >R, fo(t) =1,t € (a,b), we have

1 b—t
(Tfo)(a,b;t)=—ln( ),te(a,b),
T r—a
then, obviously,
b —
(Tf)(a,b;t)zlpvf fO-fO+fO
T T —1
b
PV "r@- f(t)df+ f(t)PV/ dt ’
T a T—1 T ; T—_t

from where we get the identity

(Tf) (a, bt)—ml( ) nPV Mdt. (125)

r—a T—1
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Now, if we choose in (121), u = f',x =ic+ (1 —A)d, A € [0,1],¢,d € [a, b]
then we get

lfd)—f@—@—0)f e+ A—-1)a)
2 1 1 2 Vi . 17 .
@=o? 24 (2= 5 ) |1/ e if f" € Lola,bl;

1
|d—C|1+‘1

(g + 17

U T
d=cl |5+ =3 [17" e

which is equivalent to

IA

[)»”5 +(1 - A)Hﬂ ‘Hf//”[c,d]vp‘ it f7eLyla.bl.

1 1 _ 1.
p>1, ;+E_1’

’

f@d)—f(©)

— f e+ (1 =2) d)‘ (126)
d—c

! 1 ? ” . 1
ld —cl 4 G 5 |7 ”[c,d],oo it f" € Lla,bl;

1
d—c|e 1 1

| |l I:)\,l'i‘q —+ (1 —k)1+q] ’“f//”[c’d]’p‘ if f// c Lp [Cl,b],
(q+ s

L2 21 b

Using (126), we may write

IA

1 1 _ 1.
p>1, ;+5—1,

b _ b
Lpy Mdr—lPV/ fOot+1=01)dr (127)
T a T—1t T p
(-l ’ pv [’ ” d
il il El Ja |f—f|‘||f Un,f],oo‘ 4
1 1

IA

1 1 1
——— [x”? ra —A)1+5]Pvfub It — |4
- T

(g + 1D«

1771 p| 47

1 1 1 b
;[f‘“zu”fa 177" ey 47
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11 1 .,
i G 3) [V e 2010

1 1 ' ' '
S [x”fi +a —)\)”3] 15 s BV 210~ t]i dr

T (q+1)e

) 1
2t ‘A - 2” PV [ ead+ 1 ey 7]

1 N, 1 a+b\?
4 (=3 |1 b o (252 ]

1 141 141
— [x (-2 +q] 1 wo0.»
(g + 1

q
X
(g+1D

1[1+A 1 1b
o B S| O

SEp-

SEp-

[(r —a)'ti 4 - z)”ﬂ

a+b

t_

1 -

Since (note that A # 1)

b
%PV] f (4 (1 =0)1)dr

b
LE%[/ /m](f (At + (1 =2 1)dr)

1—e

1 1 1
;Sgr(r)l+|:jf()»t+(l—k)r)a + S A=)

1

1

b
t+e¢

lfo-—fu+d-Na+fu+d-MNa)—-fQ@)
T 1—X

b—a
T[f;kt+(1—)\)b,)»t—i—(l—)»)a],

then by (125) and (127) we deduce the desired inequality (124).

The best inequality one may obtain from (124) is embodied in the following
corollary.
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Corollary 17 With the assumptions of Theorem 20, one has the inequality

‘(Tf)(a,b;t)— f(t) <,_a>_b_a[f;t+b’a+t]

b4 2 2
111 +b
= {4 (b—a)2+( = ) }Ilf”ll[ab i 1" € Loola. bl
1 q "
S Erpwentl CaaSAU U I L
| p>1,;+5:1;
271[ (b—a>+t——]||f”||ab if f" € Lla,bl;

(128)

foranyt € (a,b).

6.2 A Quadrature Formula

The following lemma is of interest in itself.

Lemma 13 Lef u : [a,b] — R be an absolutely continuous function on [a, b].
Then foralln > 1, A; € [0,1) (i =0,...,n—1)andt,t € [a,b] witht # T, we
have the inequality

n—1

1 T 1 ) T—t
T_t[ u(s)ds—r—lzu[w(zﬂ—,\i)T]’ (129)

! i=0

1
—tla | 1n=l 7
< It — |4 |:_ (A,I ‘7+(1—)»)1+>i| ”"‘H[tr
(g +17n ["i=0
p>1
’P q
L e P T
213 ) t,t],1°
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|t — |
n ””/ ” [t,‘L'],OO;

1
It —zlv

< u’ p>1, 1 + 1 _ 1;

e G

1

n ”u/”[t,r],l’
where

t v
Hu/”[t,'[],p = ‘[ |M/ (S)|pdS , P > 1

and

”“/“[z,r]’oo 1= ess sup |u/ (s)| .
selt,t]
(s€[z,1])

Proof Consider the equidistant division of [¢, T] (if t < t) or [7, t] (if T < 1) given
by

—t .
Enixi=t+i-2—L i=0n. (130)
n

Then the points &; := A; [t +i - =]+ (1 =A) [+ G+ D - L] €10, 1),
i=0,n— 1) are between x; and x;41. We observe that we may write for simplicity

gi=t+(G+1—1)=L (i =0,n—1). Wealso have

T—1

Xi + Xi+1 T—t (1
R (——Ai);si—xi=(1—m

2 n 2 n

and

T—1

Xigl =& =X -
foranyi =0,n — 1.

If we apply the inequality (121) on the interval [x;, x;+1] and the intermediate
points &; (i =0,n— 1) , then we may write that

T —t ) T—t Xit1
ult+@G@+1-2x) — u(s)ds
n n i

(131)
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1t—1)?2 (t—1)? 2 e,
|:4 2 + ) (1=23)% | u ”[x,—,xl-ﬂ],oo if W' € Loola, b],

IA

1+ 1+1
1 lt—zl "9 +g lt—tl 4 (R e
{ 1+ o T+ T (I=x) "4 | |u ”[XiaXiJrl]’P if u' € Lpla,bl,

(q+1)$ n % n
p>1 %4» % =1;
Tle—t  Jr—t|1 N , )
R il T PRE
Summing (123), we get
’ T -t T—1
/ u@ﬁh-————i:uP+wi+1—xg } (132)
t n - n
i=0

(t— T)2 n=l 1 1 2 ’
) i;) |:Z + <)\i - E) :| ”u ” [x,-,xiJrl],OO;

|t — 'L'| q n—1 1+l 1+l
= g — s /
- (g + 1)% nl"% Eo |:)Li (4 =%) q:| Hu ” [xixiv1].p
p>1, 5+2=1
It — 7| nzl l_,_ N 1 1l
no iZoL2 2 [xixi41],1°
However,
n—1 2
1 1
Py |:Z + (M - 5) :| ”u/ || [x;.xi41].00 (133)
= “u/” [t,7],00 |:Zn + 2(; <)»,' — 5) :| ,
i=
n—1 141 o
I:)”i A=) +"] ||u’”[x,.,x,.+1],p (134)
i=0

n—1 141 1+4 1 é - P %
< |:)‘1 1 + (1 - )"l) qi| Z ||M ||[x,-,x,'+1],p
i—0 i=0

1=l

1

n—1 1ol 1\¢ q
= ”u/”[t,r],p |: ()‘iJrq + —)»i)l+q>
i=0
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and
n—1
> |5+ =5l 139)
. 2 2 [X,,x,+1],]
i=0
1 17, ,
= 2+max Z” ”[x, x,+|]1 +max )\’_5 ”u ||[t 7],1

Now, using (132)—(135), we deduce the first part of (129).
The second part is obvious.

We may now state the following theorem in approximating the finite Hilbert
transform of a differentiable function whose derivative is absolutely continuous.

Theorem 21 (Dragomir [5]) Let f : [a,b] — R be a differentiable function so
that its derivative f’ is absolutely continuous on [a, b]. If > = (Ki)izm, Ai €
[0, 1) (i =0,n— 1) and

n—1

S (fi A1) = bn—naZ[f l‘+(l+1—)»)—t t—(l—i—l—k)—a]

i=0
(136)
then we have

f(t) ( )
(Tf)(a,b;t) = —2 — + 8, (fi 2, 0)+ Ry (f3 A, 0) (137)

and the remainder R, (f; A, t) satisfies the estimate:

IRy (f: 2, 1) (138)
1 [ n=l 1\?
,1[4Jr Z( 2)}
a+b : " ) 7
><|:4(b—a)2+<t— 5 )}Hf lia.51.00 if "€ Loola,bl;
- 1 p 1
— X n—1 1 q
- l L |:1 Z (}L3+q +(1 _)Li)1+ql) i|
" (q+1>q*' "=
1
x[(t— "1+ (b — ?]||f”||[a,b].p if " €Lylabl,
171 1T1 +b pltast
a 1"
;[§+max M_EH [g(b—“VF t—— } 17" .1
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1 .
“ 1" g pp.00 & — @7 if f"€Lela,bl;
1 q b— 1+ i e L b 1 L1y
< —x o b—a)"a|f ”[a,b],p’ff €Lpla,bl, p>1 5+ =1
T [ (@+De n

1
n (b—a) H fNH la,b],1°

Proof Applying Lemma 13 for the function f’, we may write that

-1
()= f(@ 15 . T—1
‘%—;Zﬁ G T =) — (139)
i=0
t—z| |1 112l N1, ., .
" Z+;EO =5 ) 1 o0
1 q 1
<] lt—rtj7 | 1n=l/ 141 AL
o 1 [; )\'l ‘1+(1 )") ! ”f//”[t,r],p
(g+1Dan 7 i=0
111 1
HERT AR [V
forany ¢, t € [a,b],t #t.
Taking the PV, we may write
1 bra)— 1 b —1
—PV Mdr——ZPV/ f’[t+(i+1—ki)r—:|dr
T a T—1t nmw s a n
(140)

11 1n 1\*
. Ln 2 (Af - 5) }PV/;“_ﬂ 177 ey.00 47

IA
8-

1
1 1 n—=1 1+1 141 g1 b 1
x —_— [ > <Ai C (1= 1) +q) PV [t —t|u ||f”||[m]’pdt
n(g+ e L"i=0

1 1+

— | = max
nil2

1
|
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However,

b b
Il Vi P A VL ) TP
a a

p (t—a)+®b—1)°
1 | I,

b b
PV [ 1t l0 | £y d7 < |7 gy PV [ V=17
a a

1 1
(t— a)?+1 + (b — t)?Jrl
1
- +1

= /" lia.61.5

__ 4
g+1

b t b
PV [ 1 e = PV [ [ 15 e+ [ 15 7]

<max{t —a,b—t} HfNH[ab]l

1 N

and using the inequality (140) we obtain the desired estimate (138).

[(l‘ - a)éﬂ + (b - t)%+1:| ”f// ” [a,bl,p

t__

|: b—a)+

The following particular case which may be easily numerically implemented
holds.

Corollary 18 Let f be as in Theorem 21. Define

n—1
b—a . 1\ b—t . I\ t—a
SM*”(f’”;FZ_O[JC’H(“LE)T’t_(““E) -

Then we have the representation:

(1) (@. bt)_Ml( >+5Mn(f £+ Ryn (3 1)

and the remainder Ry , (f; t) satisfies the estimate

|Rvn (f31)] (141)
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111 b
4[4<b—“)2+< - )]Hf”llab if f" € Loola,bl;

1 1 ' 1
<l [(z—a)”q + (b—t)”q] 1"y O € Lpla.bl,

1 1 _ q.
P>1,;+3—1,

1[1

+b
21 N

foranyt € (a,b).

7 Inequalities for Convex Derivatives

7.1 An Inequality on the Interval (a, b)

The following result holds.

Theorem 22 (Dragomir [6]) Assume that the differentiable function f : (a,b) —
R is such that f' is convex on (a, b). Then the Hilbert transform (T ) (a, b; -) exists
in every pointt € (a, b) and

() ()] e () 142
T 2 2 T t—a

=(Tf)(a,b;1)

[f (&) - f(a>+<b—a>f/(r>]+%Mf—t)

1
2 —a
foranyt € (a,Db).

Proof The existence of the Hilbert transform in each point ¢ € (a, b) follows by the
fact that f is locally Lipschitzian on (a, b).
Since f’ is convex, we have, by the Hermite-Hadamard inequality, that

1 (H__T> < ;/T ' (u)du < M (143)
2 T—tJ; 2

forallt, T € (a, b), t # t, giving

(144)

f/(t+f)§ f@—f@ < o+ f (0
2 T—t 2

forallt,t € (a,b),t # .
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. . . . t—e b
Applying the PV int, i.e., ggr(r;Jr (fa +ft+8) (), we get

b b _ b g/ /
PV/ f’(—lzf>dzspvf —f(fr)_tf(t)drspvf Fo+1r© (t);f @ e

‘ ‘ ‘ (145)
Since

o ([ )0 (5) )
[ (5 e [ ()]
-2 (0 (557) - (59)) - ((57) -+ (559)]
[ (57) (5]

—& b / /
lim (/t +/ )[f O+ s (T)dri|
e—~>0+ \Ja t+e 2

1
=5 hm [f Ot—e—a)+fOb—t—e)+ [ —e)— f@+fb)—f@+e)]

=5[f(b)—f(a)ﬂb—a)f/(r)],

then by (145), we may state that:

z[f<ﬂ>_f<t+a>]fl /f(r) AUPE (146)
i 2 T T—t

1

< —[fO-f@+b-af o]

for all ¢t € (a, b).
As for the function fy (r) = 1, ¢ € (a, b), we have

b—t

(Tf)(a,b;t):%ln( ), t € (a,b),

then obviously
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(Tfo) (a,b; 1) pV/ f (@ — f(t)+f(t)dr

T—1
_ PV/ f@- (t)dt+f(t)ln<b_t>
T—t b4 t—a
for any ¢ € (a, b).

Finally, by (146) and (147), we may obtain (155).

(147)

The inequality (142) in Theorem 22 may be used to obtain different analytic
inequalities for functions f : [a, b] — R whose derivatives are convex on (a, b)
and the Hilbert transform (T f) (a, b; -) is known.

For example, the following proposition holds.

Proposition 2 (Dragomir [6]) For any a,b € R, a < b andt € (a, b), we have

the inequality:
b—t bt a—t
ln(t_a>+2(e2 —ez) (148)
<EOb-t)—-E(a—1)

b—1t 1 b—t a—t
§ln(t_a)+§[e —e +(b—a)],

where E; is defined in (149).

Proof 1f we consider the function f () = €', t € (a, b), then f’ is convex on
(a,b),

t

(Tf) (a. b 1) =%[Ei (b—1)—Ei(a—n],

where E; is defined by

Z t
Ei(z) = PV/ %a’t, zeR, (149)

—00

2 t+b t+a f@ b—t
() (5] 5 ()
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and
1 b —
e -r@re-ar o+ I 0n (=)
T T t—a
1 b a e! b—t
:E[e —e —i—(b—a)et]—i—;ln(t_a).

Using (142) and dividing by ¢, we deduce (148).
The following inequality also holds.

Proposition 3 (Dragomir [6]) For any x > 0, we have the inequality
1
2 <e%x _ e*%X) < B (0) = Ei(=x) = 5 [¢" —e " +2x]. (150)

Proof If in (148) we put t = #, then we deduce

b—a _b-a b—a b—a
2(64 —e 4)§E,‘ —Ei |-
2 2

If we denote x := }%, then we get
1
2 <e%x _ e—%X) < B (0) = Ei(=x) = 5 [¢" e +2x]. (151)

If we choose another function, for instance, f : (a,b) C (0,00) — R, f(¢) =
—%, then obviously f” is convex on (a, b), and we may state the following result as
well.

Proposition 4 (Dragomir [6]) For any 0 < a < b andt € (a,b), we have the
inequality:

2:1G? 12 +2At + G2
<I< -

i =r= 7 , forany t € (a,b), (152)

where A = #, G =+aband L = anﬁ (the logarithmic mean).

Proof For the function f : (a,b) —> R, f (t) = —%, we have

1 b b—t
(Tf)(a,b;t) = — |:1n (Z) —1In (t_a>],
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2 t+b t+a f@ b—t
;[f(7>‘f< 2 ﬂ* - ln(r—a)

4 b—a 1ln b—t
T x (t+a)t+b)  wt t—a)’

and

i{fw)—fwy+w—axﬂaﬂ+f§3m<b")

2 t—a

b—all +1 11 b—t
= — 4+ —-|—-——1In }
27 |ab @ t? Tt t—a

Now, if we use (142), we may write

4 b—a 1 b—t 1 b 1 b—t
- ——— — —1n <—In{-)——In
T (t4+a)(t+b) wt t—a wt a wt t—a

which is equivalent to

4¢ Inb—Ina >+ab
< < .
t+a)@t+b)~ b—a — 2tab

Using the fact that L := lnzﬁ, we deduce (152).

Corollary 19 We have the inequality

G+ A
G<L< ; . (153)

Remark 9 The first inequality is a well-known result as the following sequence of
inequalities hold:

G<L=<I<A
The second inequality is equivalent with
2

L@JUSP%JEJQJ (154)

which is interesting in itself.
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7.2 An Inequality on an Equidistant Division of (a, b)

The following lemma is interesting in itself.

Lemma 14 Let g : [a, b] — R be a convex function. Then forn > 1 and t,t €
[a, b], t # T, we have the inequality:

SANROES
—/ g (u)du
—Z[ <z+z >+g(t+(i+ .T;’ﬂ.

Proof Consider the equidistant partitioning of [#, t] (if r < 7) or [7,¢] (if T < 1)
given by

| A

I A

—t .
E,:xi=t+i —" i=0.n. (156)
n

Then, applying the Hermite-Hadamard inequality, we may write that:

. . Xi4+1 . .
g (X’ +xl+l> <! f ¢ () du < 8L T8 i)
2 Xiv1 — Xi Jy, 2

o1 t—1 n Yitl
glt+\i+=)- < g (u)du
2 n Tt Jy
1 T —t . T—t
<—-|glt+i- +glt+G+1)- .
2 n

Dividing by n and summing over i from O to n — 1, we deduce the desired
inequality (155).

The following generalization of Theorem 22 holds.

Theorem 23 (Dragomir [6]) Assume that f : (a, b) — R fulfills the hypothesis of
Theorem 22. Then for all n > 1, we have the double inequality:
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n—1
b_aZ[f;t—<i+l>-t_a,t—i-(i—i-l)~b_t}+f(t)ln(b_t)
nw = 2 n 2 n b4 t—a

. (157)

=(Tf)(a,b;1)

’ . . n—1 - .
SO-f@+f OG- b az[f;t_i_t a b t]

1
2nm ni n ti n
t —
L0 (021
b4 t—a

. - . fO—fd)
foranyt € (a, b), where [ f; c, d] denotes the divided difference ‘CT.

i=1

Proof 1f we write the inequality (155) for f’, then we have

1! , 1 T—t
;;f[t+(z+§>~ - }
_fO-f®

- T—t

1l , T —t , ) T—t
55.5 [f <t+l~ - )—l—f(t—l—(z—i—])-T)]
1 , n! , Tt n2 , . T—t ,
=5 f(t)+i§:1f<r+z. - >+§ f<t+(l+1)-T)+f(t)

i=0

1 . ) n—1 ) Tt
=E|:f(t)+f(r)+22f <t+l~ - )] (158)

i=1
since it is obvious that

n—2

"_1/ T —t , ) T—1t
gf (t+l~ p ):;1‘ <t+(z+1)-7).

Applying the PV over t, ie., li%l (fatﬂg —i—ftlig) to the inequality (158), we
e—>0+

deduce

i b, o1\ Tt
i v [ [ (i g) e (159)
n = a 2 n
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b —
fO-f®

u T—t

<PV

gzi / [f(t)+f(r)+22f <t+l t)}df.

PV/bf [t+<i+%>~f;t}dr
([ [ )0 (eg) )
i[O (43) ) - (4 (+2) )
A 5 A )

and
b n—1 —
PV/ [f’(t)+f’(r)+22f’<r+i~ . ):|dr
a i=1

. t—¢ b , ) n—1 / R

= lim [f Ot—e—a)+f OG—t—e)+ft—e)=f@+fB) ~f@t+e)

PRIl et o)

n—1

=f(b)—f(a)+f’(t)(b—a)+2(b—a)2[f;t—i~t_a,t+i‘b_t},
n n

i=1

then by (159) we deduce
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n—1
b;aZ[f-t—(' %)-t;a,t—i-(i—}-%)-b;t} (160)

<Pvf fO-f0,

T—1

FO—f@+f Ob-a) b—a Ct—a | b—t
< > +— Z[f;t—z~ R }

n
i=1

Using the identity (147) and the inequality (160), we obtain the desired result (157).

7.3 The Case of Non-equidistant Partitioning

The following lemma holds.

Lemma 15 Let g : [a, b] — R be a convex function on [a, b] and t, T € [a, b] with
t#£T. If0=X <A <--- < Ay—1 < Ay = 1, then we have the inequality:

n—1

Ai A Ai +A;
Z()\H—l_)\i)g[(l_ l+2 H_l)t—{— z+2 i+1 __L_i| (161)
i=

l T
< _/ g (u) du

n—1

52 Git =2 LA = A+ dyel + g (L= Aip) £ + A ]}
i=0

A

Proof Consider the partitioning of (¢, t] (if t < ) or [7, ¢] (if T < 1) given by
Liixi=(—=A)t+rt, (i=0n).

Then, obviously,

Xi + Xt :(l_)»i+)»i+1)t+)»i+)»i+1 (=00 =T)

2 2 2
and
Xig1 —Xi = (T =) (hiz1 —A), (=0,n—1).

Applying the Hermite-Hadamard inequality on [x;, x;41] (i =0,n— 1), we may
write that



138 S. S. Dragomir

Ai + A A+ A
g|:(l— 1+21+1>t+ l+21+l'fj|

1 Xitl

<
T (T =0 RAir1 —A)

g (u)du

1
< > el =2t +rt]+gld—AirD)t+Aiprt])

foranyi =0,n — 1.
If we multiply with ;41 — X; > 0 and sum over i from 0 to n — 1, we deduce
the desired inequality (161).

The following theorem holds.

Theorem 24 (Dragomir [6]) Assume that f : (a, b) — R fulfills the hypothesis of
Theorem 22. Then for alln > 1, and 0 = Ly < A1 < -+ < A1 < Ay = 1, we
have the inequality

—1
f@) . (b—t b—a X
| Aitl — A
. n PR + . Z(hLl i)
i=0
Ai + A Ai + A Ai + A Ai + A
X|:f;(1— z+t+l)t+ l+l+l‘b,<1— l+l+l>t+l+l+l'ai|

2 2 2 2
= (Tf)(a, b;1)

1
2—{?»1 b—a) f &)+ =t [f B) = f (@]}
boalS 0
+7§(m1 = M) Lf5 (L= ) 4 Aib, (1= At + Aial + == 1In (t_a>
(162)
foranyt € (a,Db).
Proof 1f we write the inequality (161) for f’, then we have
n—1
Z Guist — i) f |:<1 i +2)»i+1 ) - Ai +2)»i+1 ~r:| (163)
i=0
< f@—-f@

T—1
n—1

1
<> ; Gt — ) {F 1A =)t + ATl + F/ 10 = A1) £+ higr7]}
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1 n—1
=3 [xlf/ (t) + Z] (hit = 2) [/ LA = A) 1 + it
=

n—2
+ D Qg =) f 1A = i) £+ ATl + (1= A1) f (T):|

i=0

1 n—1
=5 |:)»1f/ O+ Qi = 2) £ 1A = M)t + A

i=1

n—1
+ D0 = die) I = At + ATl (L= ) f (r)}

i=1

n—1
[Mf (t)-i-Z(le—?»)f [(I=AD)r+ 2]+ 1= Ao f (T)}

i=1

Applying the PV over t, ie., li%l ( [7+ .[tlj,—s) to the inequality (163), we
e—>0+

deduce

n—1
A4 A A4 A
Z(Ml ,\)Pv/ f’[(l— l+2’“>r+ l+2'+1-r]dt (164)

<PV/ f@-10,

T—1

n—1
gl[xl(b—a)f (t)+Z(k,+1—A)PV/ F I =)t +Atlde

i=1
+ (1= 2n—1) (f (b) —f(a))}

Since

b A 4 A A 4 A
PV/ f/|:<1_ i+ z+l>t+ it l+1-fi|d1’
g 2 2
2 Ai A Ai A
_ <f|:<1— l+l+l)[+ l+l+1.bi|
A+ A4 2 2

_y [(1 A +2?»1+1)t+ A +2)»i+1 a])

Ai +Aiq Ai +higl Ai +higl Ai + g1
=0~ -2 b (11— t :
( a)[f( > ) + 2 2 + > a
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and
b
PV[ FIIA =)t +ritldr = (b —a)[f; (1= i)t + kb, (1 =)t + Aal,
a

then by (164) we deduce the desired inequality (162).

Remark 10 1t is obvious that for A; = ’ll— (i = O,_n) , we recapture the inequal-
ity (157).

The following corollary also holds.

Corollary 20 Assume that f : (a,b) — R fulfills the hypothesis of Theorem 22.
Then for n > 1 we have

f (@) <b—t)
LA™
T t—a
b—al 1 [, 1 1 1 1
e U ) e ) e
b—a'"Zt 1 3 3 3 3
+ T Zznfl |:f’ (1_ 2ni)t+ znfib’ <1_F>[+ 2nia]

=(Tf)(a,b:1)

1 b— ! 1
—{(;#+§[f(b)—f(a)]}

b—a( 1 . I I 1 I
+ 2T 2n—2_1 f’ 1_2"_1 t+2n—lb’ 1_2n—1 t+2n—la
b—a'=2 1 1 1 1 1
+3- o Zm[ﬂ<l_2ni>t+2"ib’<l_2ni)t+2"ia:|
i=

IO (E) O 65)
T a

foranyt € (a, b).

The proof follows by Theorem 24 applied for Ag = 0, A; = %—:,, i =1,n We
omit the details.
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8 Inequalities for Products

8.1 Some Basic Inequalities

The following lemma holds.
Lemma 16 (Dragomir [7]) If f and g are locally Holder continuous on [a, b],
then fg is also locally Holder continuous on [a, b] and
T (fg)(a,b;1) (166)
=fWT @ @b t)y+g0)T(f)(a, b;t)
_ b _ _
f ) + lPV/ (f ()= f @) (g(7) g(t))dt

T—1

1
- —f(t)g(t)1n<
b1

t

a

foranyt € (a,b).

Proof Assume that for a subinterval [c, d] C [a, b], we have
|f(s)—f@|<Li|s—ul|" forany s,u € [c,d]; (167)
lg (s) —g )| < Ly|s —ul™? forany s,u € [c,d]. (168)

Then

1f(s)g(s)—f@g@)l=1f(s)gls)— f(s)g)+ f(s)gw)— f(u)g )l

SIfFOlg) —g@+1g@lIf ) — f @l
<MLi|s —ul" + MLy|s — u|™

<|s—ul" [MiLi|s —ul"™" 4+ MaLy|s —ul”""]
<lIs—ul" [M\Li|d—c|"™" + MLy |d —c|”"]
=M|s —ul

where

My := sup |f(s)|, Mp:= sup |g(u)|, r=min(ry,72),
s€lc,d] u€lc,d]

and
M=MLi|d—c|" " 4+ MLy |d—c|?",

proving that fg is locally Holder continuous on [a, b] .
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Now, for any ¢, T € [a, b], we may write that

f@O=fNE@-g)=FfOg@+fOgO—-fO)g@®—f(D)g®)

giving
(e — ) ()Jr - f(f) fg
T—1 —1 T—1
n (f(@—-f®) @@ —g(t))
T—1

foranyt,t € [a,b], t # 7.
Consequently,

T (fg) (a.b;1)

PV f(f)g(f)
. a T—1t

=%f(t)PV/ 80 g gty - PV[

a

f(f)

b - —
—ifa)g(z)Pv/ ar +_pv/ f@-fO) @D —g®)
d a T-I T—t

=fOT @ @b t)+g®T(f)(a,b;t)
_ f(t)g(t)ln<f—l>+lPV/b (f(f)—f(t))(g(f)—g(t))dT
—a bid a

T T—1t

for any ¢ € (a, b) , and the identity (166) is proved.

Theorem 25 (Dragomir [7]) Assume that f is of L1 — r1-Holder type and g is of
Lo — ry-Hélder type on [a, b], where L1, Ly, > 0, r1,r2 € (0, 1]. Then we have
the inequality:

T(fg)(a,b;t)—f(@)T (g)(a,b;t) (169)
=)
—a
2L1Ly (b —a)'
7 (r1+r2)

1 b
—8(WT(f)(a, b; t)+;f(l)g(t)1n<t

LiL,
EAGES)

[(b _ [)r1+r2 + (Z _ a)r1+r2] <

foranyt € (a,b).
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Proof Taking the modulus in (166), we may write

‘T(fg) (@.b:t)— £ O T (g) (@ bi 1)
1 b—t
—eOT (@bt + ;f(t)g(t)ln(t_ )’

f @ = f®) (@) —g®) ‘ PV /b LiLolt — 7 dr

T—1t

1 b
S—PV/
s a

_ Lily [(b ) R e a)”*’z}

T ri+nr
and the first part of inequality (169) is proved. The second part is obvious
The best inequality we can get from (169) is embodied in the following corollary

Corollary 21 With the assumptions in Theorem 25, we have
b
at ) (170)

a+b a-+b _
) (0 re et

—g<a+b>T(f)(a,b;a;b>‘

2

‘T (fg) <a, b

LiLy(b—a)"t"
T 7w (r) +rp) 20+l

The following corollary also holds.
Corollary 22 If f and g are Lipschitzian with the constants K| and K;, then we

=)

(171)

have the inequality

‘T(fg)(a b t)—f(t)T(g)(a,b:t)—g(t)T(f)(a,b;t)Jrﬂf(t)g(t)lrI(

nN\*| Kk
a+ ):|S 1 2(b—a)2
27

KKy |1
<=2 [—(b—a)%r(t—
b4 4

# , we have

a+b +b +b +b +b
‘T(fg)<abT> f<“2 )T(g)(a,b;“T>—g(“2 )T(f)(a,b;“2 )‘

foranyt € (a, b) . In particular, fort =

< K;Kz b —ay. (172)
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8.2 Further Estimates

The following theorem also holds.

Theorem 26 (Dragomir [7]) Assume that f and g are absolutely continuous on
[a, b]. Then we have the inequality:

’T(fg) (a,bit) = f ()T (g) (a, b 1) 173)

=)

1 b
- g(l)T(f)(a,b;t)—l—;f(t)g(t)ln(t
1 +b\%, ., ,
0= (=) | i Wl
if f'€Loola,bl, g" € Loola,bl;

[(b—t)H%Jr(f “)1+ ]”f ”[a bl,00 ”g/”[a,h],y

S+1
if f'€Loolabl, g eLlylabl, y>1, £ +3§=1

b =a) [ ']l 1461,00 18 la50,1 if /' €Loola,b], g €Lyla,bl;

B 1+% 144
[0 =0 1 I o
if f'eLyla,b], a>1, E+E:1’ and g’ € Lo [a, b];

IA
8-

Bs
733 [P 4 0 1

if f'eLyla,b], a>1, &—I—B:l, and g’ €Lyla,b], y>1, %-}-%:1;

ﬁ[(b—t)ﬂ +(t—a)ﬂ]||f Hah r4 “ab]l

lff € Lyla,b], a>1, =1 andg € Lila,b];

Q\—
m\

6= 17 a1 18 Do i 5 € Lilab]. g € Loclas b1

[ =0"F 4+ =" 5] £ it 18y

if f'€Lila,bl, g €Lyla,bl, y>1 5+

|
S| —
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Proof Since f and g are absolutely continuous on [a, b], we may write that
T T
F@=r0= [ fwdiad g@-g0= [ ¢ wad
t 1
which implies:
1/ sp0 17 = 11 i £ € Loola. b1

1,
f @O = FOI= 1 | jegelt =117 if /€ Lala,bl, (174)
a>1, z+5=1,

17 .01

and

Hg/H[r,[],oo |T - tl if g/ € LOO [Cl, b]7

L,
g (@) =g <1 |8z, 17 =115 if &' € Ly [a,b], (175)
y>1 S+5=1

'l

Using the identity (167), we get

‘T (fe)(a,b;t) = f ()T (g)(a, b 1) (176)

1 b —
—g(r)T(f)(a,b;rH;fa)g(t)ln( f)‘

t—a

(f (©) = f@®) (g (1) —g“))‘df 7

1 b
§—PV/
Fid g T—t

Then we have, by using (174) or (175), that
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b
PV\/‘; ||f/||[‘[’t],oo ”g/”[r,t],oo |T - t| drt
b 1
PV [ 17 e 18]y 17 =11 e
b
2 A P Y
b 1
PV [ 1 o 1 g 17 = 11 7
b 1,1 4
I<—x pv/ 1 iy 18]y, 17— 1173 (177)
a
b / / 11
2 N T P S
b
PV [ 17 s 18] 0

b 1
PV/a ||f/||[f,t],l ||g/“[r,z],y |t —t[s~'dr

b
PV [ 15 18 17

However,

b
PV/[; Hf/H[r,t]‘oo ||g/||[t,t],oo|.[_t|df

) ) (b —1)?*+(t —a)?
<1 1,00 18 11,00 [ 3 }

) , 1 a+b 2
= Hf H[u’b]’oo ”g ”[a,b],oo |:4_1 (b—a)+ (z - ) :| ,

b 1
PV/‘; ||f/||[f’[]’oo ||g/||[1-’t]’a|7:_t|3d‘[
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b -0 4 —a)lts
<17l 1€ [ }
[a,b], [a,bl,y %‘f‘l

1
= 1 o 1y [ =01+ @ =],

b
) TR P O P PR Ry

b 1
PV [ 1 N I8 ey 17 = 17

B 1 1
< Napra 18 lam loo B4 [(b t)ﬂ“+(t—a)ﬂ“],

b 141
PV/a Hf/H[f,t],a ||g/||[f,l‘],y It — )Pt de

141 141
= ”f/H[a,b],a ”g/”[a,b]y 1 + 1 [(b—t)ﬂ+6 + (1 —a)ﬂ+5]
B 8

4P fav')
= i 1 e 18 iy | =07 4 =0 .

b 1_
PV [ 17 iy 8 g 17 =017

<5 N 18 N B[ =07 + ¢ =]

b
PV f [ N1 18 e oo 47 = @ =) [ g 1 18 000

and

b 1
PV/a ”f/”[r,t],l ||g/||[”]qy It — 3 de
L R [(b —n 4 — a)1+%] .

For the last inequality we cannot point out a bound as above.
Using (176) and (177), we deduce the desired inequality (173).

The following lemma also holds.
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Lemma 17 (Dragomir [7]) Let f : [a, b] — R be locally Holder continuous on
[a,b] and g : [a,b] — R so that g’ is absolutely continuous on [a, b]. Then we

have the identity:
T (fg)(a,bi1)
1 b—
=fOT @ @b)+g®T(f)(a,b;t)— ;f(ﬂg(t)ln(t_

1 b
+;|:f f(t)dr—(b—a)f(t)]g’(t)

b _ T
f@—f@ ( / w1 du) -
t

T p T—t
foranyt € (a,b).
Proof We use the following identity:

B B
/fp(u)du=<p(a)(ﬂ—a)—/ (— )¢ (u)du

which holds for any absolutely continuous function ¢ : [«, 8] — R.
Then we have

1 b
;PV/ Lf (r) — f ()] [— (g(r) — g(l))} dr

1 b 1 T
=—PV/ [f(r)—f(t)][—f g’(u)du}dr
T a T—1J;

1 b 1 T
=—PV/ [f(r)—f(t)][g’(t)——/ (u—r)g”(u)du}dr
b4 a T—1J;

1 b
Zgl:g/(t)/ f(@dr—(b—a) f@)g ()
b
_PV/ —f(ft) A0 (/( t)g”(u)du) :|

1, b 1 ,
=8 (t)/ f(r)dr——(b—a)f(t)g ()

b
—lPV/ —f(r) AY) <f w—1)g" (u)du>
b4 a T —

Using (166), we deduce (178).
The following theorem holds.
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Theorem 27 (Dragomir [7]) Assume that f : [a, b] — Ris of H — r-Holder type
and g : [a, b] — R is such that g’ is absolutely continuous on [a, b] . Then we have
the inequality:

‘T (fe)(a,b;t) = f ()T (g) (a,b:1) —g ()T (f) (a, b3 1) 179)

1 b—t 1[[? ,
+—f(t)g(t)1n<—) ——[/ f(r)dr—(b—a)f(t)}g ()
T t—a 7T | Ja

2(r1+2) [G=0""+ @ —a)*] ”g//”[a,b],oo if 8" € Lo la, b];
14q 14 .
< H — [(b —y et g —ay et ] ngH[a . if " €Lyla,bl,
| (rg+g+Dg+DH? o

p>1, % + é =1;
ﬁ (-0 + @ —a) ] |g” “[a,b],l :

Proof Using the identity (178), we deduce that the left side in (179) is upper
bounded by

1

dt
T —¢]

1 b
Izz_pv/ 1f (@) — £ (@)
T a
b
§£PV/ It — ¢!
T a

We observe that

/T u—1)8" () du
t

dt =: J.

/t w—1)g" (w)du
1

(t—0°
= ”g// ” [t,T],00 2

T
/ (u—1) g// (u)du
t
if g” € Ly [a, b],

q+1
_-C|q

T 1
/ [t —7|?dt
t

q |t
= ”g// ” [t,t],p (

/r (—1)g" (u)du
t

< g//
” ”[z,r],p g+ 1)5

if ¢” € L, [a, b] and, finally,

<|t—r1| ||g”||[z,r]71 ’

/t —1)g" (wdu
1

Consequently, we have
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b
PV/ o= g de
a
— 7] —
]SEX PV/ |t t| t t| || //“[tr]pd‘r
4 (q+1)7 o
b
Py [ et el
a
L, b=+ —a)*?
5”8 “[a,b],oo r4+2
H 1 b—ny it 4 —ay it
< —X T ”gN”[a,b],p ( ) 1 —
, b=t + -
ls ”[a,h],l' rF+ 1 ’

which proves the inequality (179).
The following lemma also holds.

Lemma 18 Assume that f and g are as in Lemma 17. Then we have the identity:

T (fg)(a,b;1) (180)

=

1 b
=fOT @ @bn+g®T(f)(a,b; t)—;f(t)g(t)ln<t

1 b
+;[f f(T)g/(T)dT—[g(b)—g(a)]f(f)}

b _ T
—lPVf f@—f@ (/ (u_t)g//(u)du>dr
b4 a T—t P

foranyt € (a,b).

Proof In this case, we use the following identity:

B B
/(/)(M)du=¢(ﬁ)(ﬁ—a)—/ (—a)¢' (u)du

which holds for any absolutely continuous function ¢ : [, f] — R.
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Then, as above, we have

1 b 1
;PV/ [f ()= f®] [— (g(r)—g (t))} dr

T—1

1 b 1 T
=—PV/ [f(r)—f(t)][—/ g/(u)du]dr
b4 a T—1J;

1 b 1 T

=—PV/ [f ()= f@)] |:g/(t)——/ (M—T)g”(u)du}df
T a T—1J;
1 b b

=;[f f(r)g/(r)dr—f(t)PV/ ¢ (1) dr

b _ T
— PV fO-/® </ w—1g" (u)du) dr]
t

B T—t

1 b
=;[/ f(@g (®)dr —[g(b)—g@]f @)

b _ T
— PV M(/ (u—t)g”(u)du)dr],
t

B T—t

proving the identity (180).
The following result also holds.

Theorem 28 (Dragomir [7]) With the assumptions in Theorem 27, we have

'T (fe)(a.bin)y—f(OT (@) (a,b;t) =g )T (f)(a,bi1) (181)

b—t

1 1 b
+—f(t)g(t)ln( )——U f(r)g’(r)dr—[g(b)—g(a)]f(t)”
T t—a 7 [ Ja

2(%2) [(b—1)y 2+ —a)*?] ngH[u,b]m if 8" € Lo la,bl;

149 14 .
%[(b—[)rqujL +(t_a)r+q+ ] Hg//”[a,b]yp lf g//eLp [a,b],
(rg+q+D(g+1 7

IA

Nz

p>1, %-i— é =1;
ﬁ (G- + (@ —a)y™] ”g//”[a,b],l :

Proof The proof follows in a similar manner to the one in Theorem 27 by the use
of Lemma 18. We omit the details.
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9 Estimates via Taylor’s Expansion

9.1 Inequalities on the Whole Interval [a, b]

The following result holds.

Theorem 29 (Dragomir [8]) Let f : [a, b] — R be such that f®~V (n > 1) is
absolutely continuous on [a, b]. Then we have the bounds:

b— 1o b— Y & (D (7 — )
(Tf)(a’b;t)_f(t)ln&_;)_zfk'(o_[( ¥ + ( k) (t —a) }
2 h

=1

(182)

1/ i 1,00

[6—0"+ @ —a)"], if f™ € Lola,bl;
n-n.

q|LfM)maﬁLP[(b__ﬂn_l+%<+(t_”ﬂn_l+$]

= — Lif f™ € Lyla,bl,
(n—Dn—1)g+ 11" o
o) et
[a,b],l —1 n—1
b—1t)" r— ,
=D = e ]
b—a) )
n-n! ”f(n) ”[a,b],oo ’ if f(n) € L la, b];
1
(b—a)"'a _
< : gy i F® € Lplasbl,

(n—D(n—1)q+1]""7
p>1 5+=1

1
b =a)" [ f g1

n=1)-(n—=1!

foranyt € (a, b).

Proof Start with Taylor’s formula for a function g : / — R ({ is a compact interval)
with the property that g1 (n > 1) is absolutely continuous on I, then we have

n— l(x
g(x) = <k><>+

k=0

1 f @ =" g™ @,
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where a, x € I (i is the interior of 7). This implies that

n—1 k X
N NG DA ;/ ot |
g =Y s @] = g | k] ¢ ()] ar
J— 1 M
= MW

foranya,x € I.
Before we estimate M (x) , let us introduce the following notations

/x |h ()|P dt

a

1
r .
”h”[a,x],p = if p > 1

and

”h”[a,x],oo ‘= ess  sup | ()],
tela,x]
te([x,al)

wherea, x € I.
It is obvious now that
lx —al"

X
M@= swp [¢" 0 / e — 1Pt de| = | g
tela,x) a [a,x],00 n!
(telx,al)
forany a, x € I.
Using Holder’s integral inequality, we may state that
1 1 1
X P P X q — n71+5
M) < / ¢ )| ar / A e P el 7T
a a XL [0~ 1) g + 119
foranya,x € I.
Also, we observe that
X
M(x) < |x —al"! / ‘g(”) (f)‘dt - Hg(”) lx —al""!
a [a,x],1

foralla, x € I.
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In conclusion, we may state the following inequality which will be used in the
sequel

n—1 (x a)k
WA
g -y Y@ (183)
k=0
|x —al" . .
I’l' ||g(") || [a,x],00 lf g(n) € LOO(I)a
,]+l
lx —al'" T4 . o
| w-nim-ng+ms [8“ 0,01, 1 8™ € Lp(D,
n — fln = q q
p>1, s+2=1

|x _ a|n71
NTEEE 18 0.1

foranya, x € i.
Now, let us note for the function fy : [a, b] — R, fo () = 1, we have that

(Tfo)(a,b;t)=1n( _t>,t€(a,b),
t—a
and then
b J—
(Tf)(a,b;t) = pV/ /(@ Tf_([z—i_f(t)dt

b _ —
B —t t—a

giving the equality

t—a T—1

_ b _
(Tf)(a,b;t)—f(t)ln(b t):PV SO=/0, (184)

Writing (183) forg = f, x =1, a =t, we get

_ n—1 k=1
f (rr) - tf ) Z (r kt') £® () (185)
k=1 ’
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IA

|‘L' _ t|"_l
T Hf(n) ” [t,7],00

_oq 1
|‘L' _t|n 2+q

mn-—D'rn-1)qg+ l]é

It — t|n—2
TR [FAs] e

foranyt,t € (a,b), t # .
If we take the PV in (185), then we may write

IA

IA

IA

However,

b
PV/
a

b n—1 () b
f@—f@ Z S _
PVL Tdf— TPVL (T—t)k ldT

k=1

EAR PP

@

n—l1 k—1
f@O—-f® (t—1)
T—t -2 k!

k=1

1 _
PV [ =t O o dt

1
(n— D[ — g+ 117

(n—-1)!

1
n! ”f(n) ”[a,b],oo PV fab |t — 1" dt

1
n—D'[n—-1)g+1]

Q=

1
(n—-1!

if f" € Lo [a,b];

it f™ eLpla,b],

1 1 _ 1.
P>1,;+5—1,

drt

PV [} 17— ("2 FA P

PV fab lo — "2 ] f™ ”[z,r],l dr

17 o1 PV [Pl =1 ar

| £ oy PV [Pl =12 dx.

155

(186)
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b
1
PV/ le — 1" Ve = = [(b—0)" + (t —a)"],
a n

PV/-b v t|n—2+é dr = # [(b _ t)n—l—i-ql e _a)n_1+ql]
a [(m—1Dgqg+1] ’

b 1
PV/ It — " 2dr = —— [(b e —a)"—‘]
a n—1

and

b
PV/ (t —t)f dr = [(b — ok 4 (=D ¢ — a)k]

1=

and then by (186) we deduce the desired result (182).

It is obvious that the best inequality one would deduce from (182) is the one for
t = “'H’ , getting the following corollary.

Corollary 23 With the assumptions of Theorem 29, we have

a+b ! (b — a)k k1] 0 (@D
o (an30) - D tnl e v (457

b )
m”f(")ﬂllaqm’ if f € Loola, bl;

q (b —a) N )
2n—2+$ (ﬂ—l)'[(n—l)q+l]l+l ”f ”[a,b],p’lff €Lyla,b],

IA

1 1 _
(b_a)n—l
22 =1 (n=1)!

17 1.1

(187)

It is important to note that for small intervals, we basically have the following
representation:

Corollary 24 Assume that f € C®[a,bland 0 < b —a < 1. Then

fP0 [ e=0+ =D e -a)t
(Tf)(abt)—f(t)ln< a)+}; o -

and the convergence is uniform on [a, b].
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9.2 The Composite Case

The following lemma holds.

Lemma 19 Let g : [a, b] — Rbe such that g~V (n > 1) is absolutely continuous
onla, b]. Then for anym € N, m > 1, we have the inequality:

m—1 n (b—a) b—ua
E:E: k—1 :
—a/ 8 (w)du = mkk! ( )<a+l. m >‘ (188)

a i=0 k=1

(b

(b )n 1+

IA

8™ sy if 8™ € Lpla,bl,
m'n!(ng 4 1)¢

1,1 _q.
p>1 ,+,=0

(b — a)n—l

i) ||g(n) ”[a,b],l :

Proof Write Taylor’s formula with the integral remainder for ¢ (x)= f ; g (u) du and
then choose x = B, to get

p
/g(u)du Z(ﬂk O g1 @) (189)
o 1 |
F=el o W |
W” | proos if 8" € Loola, b1
1
B—al'Ta '
Voo or 18 sy 1087 < Lylo.o).
H q 1 1_ |
p>1 5+,=1
1B —al”
o e Rl

for any «, B € [a, b].
Now, if we consider the division

a
L, xi=a+1i- , 1 =0,m,
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and apply (189) on the intervals [xl-,x,ur]] (i =0,m — 1), we can write

X+l 2\ (b —a) b—a
— 2 k=D j .
/x,-, g (w)du Z v g <a+1 - )

k=1

(b _ a)n+1 @
W+ D! g™ | [xixi41],00°

41
s _O=0TF e
m"Fin (ng + 1) Lexiil.p?
(b—a)
mnn! ||g(n)||[x,'_xi+]],1

Summing over i from O to m — 1 and using the generalized triangle inequality, we
deduce (189).

The following main result holds.

Theorem 30 (Dragomir [8]) Let f : [a,b] — R be such that f™ (n > 0) is
absolutely continuous on [a, b]. Then for any m € N, m > 1, we have

(Tf)(a,b;t)=f(t)1n(b >+Anm(f 1)+ Rym (f. 1),

where
Apm (f1) (190)
O @y [ —of + () —a)f g
_Z ekl k +&- “)sz
k= i=1 k=1

[f(k DI — (=1, t——(t—a)]
e ()T (k—l)'[ft+ -0, r——(r—a)]}

and the remainder R, ,, (f, t) satisfies the estimate
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IA

IA

|Rum (f, )]

|7 .00
m*(n+1D!-(mn+1)

g[0-0" 4+ —a)7]

m"n! (nq + 1)1+4

1
p
[EA Y

m'n!-n

[b—0"+(—a)];

(b—a)"'“
m'(n4+1)-(n+ 1!

O oo i FOFD € Loola, b1

b n+
mnnf(n )1) 1 ||f( 1)||[a ’ lf‘ f(l 1] e LO[Q,I;],
(k n+
- npl . ||f( 1)”

Proof We have (see (184)) that:

b —
(Tf)(a,b;t)—f(t)1n<t_

T—t

If we write the inequality (188) for g = f/, we get

m—1 n
fO-f@ (t = (k)( ..r—t>
T—t 12(;]; mkk! S Lt m
T —

m' (n + 1)'

14l
|‘L' . t|n 1+

IA

1
m'n! (ng + 1)4
1 1 _ 1.

p>1, ;‘I‘g—l,

|‘C—l|n71

m'n!

[P e

”f(n_H)” [t,t].p’ if f(n_H) € LP [a’ b] ’

b -
;) oy [ —f®

[F P o I S € Loola, b1

159

(191)

[6—" + @ -], if OV € Lyla,bl;

T ||f(n+l) ” eblp if f0th e Lyla,bl,

(192)



160 S. S. Dragomir

If we apply PV to (192), we may write that:
b
l —
fo-f@ de

'PV (193)
a .[_t
m—1 n b k—1
(r—1) *) LTt
_ZZPV/ Wf t+1i- - dt
i—=0 k=1 a ’
1 b (n+1)
prysr sLAG LTIl DA TS
qal
< PV [ e =" a e d

1
m"n! (ng + 1)4

1 b » 1
m"n!PVf“ LEtin P )”[t,r],ldr’
! b
el AR I ML
: 1l
< — “f(nJrl)“[a’b]’p PV ]ab Iz — t|n 1+1 dr.
m'n! (ng + 1)
L, PV S 1=
m'n! [a,b],1 a )
; Hf(n-H) ” b—0)" 4 (1t —a)*t!
m" (n + 1)! la,b],00 p— ,
= ! b -0+t — a7

-1 ||f(n+l)H[a,h],p 1
m"n!(ng + 1)4 ntg

. (b=0"+(t —a)
17D | ]

m'n! n

Now, let us denote

b .
Lig = PV/ (r — k=1 f®) (z +Ll@— t)) dr,
a m

wherei =0,....m—1,k=1,...,n.
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For i = 0, we have

b -0+ (=D —a)t

b
Iog =PV / -0 O @yde = O @) -

k
foranyk=1,...,n.
Fork=1,...,nandi =1,...,m — 1, we have
t—¢& l
Lix = lim U (t =kt f® |:t+—(t—t):| dt (194)
e—>0+ | J, m

b .
+ / (r — k=1 f® [r + Ll @— z)} dr
t m

+e

. t—e&
S S e P
t—¢ .
- "—,1/ k—1) (t — )2 p&=D |:t + L@ t):| dt
I Jg m

. b
+ 2 feD [r += (- r)} (r =t
1 m

t+e

m b i
- = k=1 (t — )2 p&=D [r + (- r)} dt]

U Jite

Y F A T P |
l m m

m b i
—— (k-1 PV/ (t — k=2 f&=D (t + (- z)) dt
! a

= —a) [f<"‘”;r+’—<b—t>,r—’—(r—a)]—"—.1<k—1>1,»,k_1
m m 1
forany k =2,...,n.
For k = 1, we have

b .
PVf i (t—i—l—(t—t))dr
4 m

mf[f[t+i(b—t)}—f[z—i(t—a)ﬂ
l m m

(b—a)[f;z+'—(b—t),r—i(z—a)].

Iiq

m m



162 S. S. Dragomir

Using the recursive relation (194), we may write
ik (195)

= [ﬂk Dt b, t_’_(t_@} (%) k=D liar
m m l
— [f(k Dipy (b—t)t——(t—a)] (%) &=

><|:(b a)[f(k D4 L (b—t)t——(t—a)] (l,)(k—z)li,k_z}

=(b—a)[f<k—1>;t+i(b—z),z—i(r—a)]

m m

—(b—a)(”i)(k—1>[f(k‘2>;r+i<b—r>,r—i(r—a)}
l m m

i (”:’_)2 (k=1 (k—2) I

k—1

=b-a)y (=)' k=1 (k=) (’lnf)v_l

v=I

[f(k V4 — (b—t) t——(z—a)}+( Dt~ ‘(l.)k_l(k—l)”i,l

k—1
- R ()
= a)[Z( Dk =D k=0 (T)

v=1

[f(k Vit 4 — (b—t) t——(t—a)i|

+(—1)"*1(’Zi)k (k—l)!|:ft—|— (b—t)t——(t—a)j|

Replacing I; x in (193), we deduce the estimate (191) with A,, , as defined by (190).
The theorem is thus proved.
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On Hyperstability of the Two-Variable )
Jensen Functional Equation on e
Restricted Domain

Iz-iddine EL-Fassi

Abstract We present a method that allows to study approximate solutions to the
two-variable Jensen functional equation

2 (520 = reon + )

on a restricted domain. Namely, we show that (under some weak natural assump-
tions) functions that satisfy the equation approximately (in some sense) must be
actually solutions to it. The method is based on a quite recent fixed point theorem
in some functions spaces and can be applied to various similar equations in many
variables. Our outcomes are connected with the well-known issues of Ulam stability
and hyperstability.

2010 Mathematics Subject Classifications Primary 39B82, 39B62; Secondary
47H14, 47H10

1 Introduction

In this paper, N, R, and R, denote the sets of all positive integers, real numbers, and
non-negative real numbers, respectively; Ny := NU {0}. Moreover, X and Y always
stand for normed spaces. The next definition describes the notion of hyperstability
that we apply here (A8 denotes the family of all functions mapping a set B # ¢ into
aset A # ().

Definition 1 Let A be a nonempty set, (Z, d) be a metric space, x : A" — Ry,
B C A" be nonempty, and .Z|, .%, map anonempty Z C Z* into ZA". We say that
the conditional equation
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F1o(xX1, ..., %) = Frp(x1, ..., X), (x1,...,xy) € B, (1)
is x-hyperstable provided every ¢, € Z, satisfying

d(ylwo(xlv"'5xn)5g\2(p0(x]5"'7x}’l)) S X(xla"‘yx}’l)7 (xlv"'5xn) € Ba
2

is a solution to (1).

That notion is strictly connected with the well-known issue of Ulam’s stability for
various (e.g., difference, differential, functional, integral, operator) equations. Let
us recall that the study of such problems was motivated by the following question
of Ulam (cf. [24, 39]) asked in 1940.

Ulam’s question Let (G, -) and (G2, -) be two groups andd : G, X G, — [0, 00)
be a metric. Given € > 0, does there exist§ > 0 such that if a mapping g : G1 — G2
satisfies the inequality

d(g(xy), g(x)g(y)) <o

for all x, y € G1, then there is a homomorphism h : G| — G with
d(g(x), h(x)) <e€

forallx e G?

In 1941, Hyers [24] solved the well-known Ulam stability problem for additive
mappings subject to the Hyers condition on approximately additive mappings. The
following theorem is the most classical result concerning the Hyers-Ulam stability
of the Cauchy equation

fx+y)=fx)+ f), x,y€X. 3

Theorem 1 Let f : X — Y satisfy the inequality

IfGxe+y) = fG) = fDI = 0dlxlI” + IylIP) C))
forall x,y € X\{0}, where 0 and p are real constants with > 0 and p # 1. Then
the following two statements are valid.

(@) If p = 0 and Y is complete, then there exists a unique solution T : X — Y
of (3) such that

0
Ifx) =T = T x1”, x € X\{0}. ®)

2=l

() If p <O, then f is additive, i.e., (3) holds.
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Note that Theorem 1 reduces to the first result of stability due to Hyers [24] if
p =0, Aoki [3] for 0 < p < 1 (see also Th.M. Rassias’ paper [35] in which it is
proved for the first time the stability of the linear mapping). Afterward, Gajda [22]
obtained this result for p > 1 and gave an example to show that Theorem 1 fails
whenever p = 1. Also, Rassias [36] proved Theorem 1 for p < 0 (see [38, page 326]
and [7]). Now, it is well known that the statement (b) is valid, i.e., f must be additive
in that case, which has been proved for the first time in [32] and next in [8] on the
restricted domain. For related results, concerning stability of the homomorphism
equation on restricted domains, we refer to [1, 13-16, 25, 26, 29, 30, 34, 37, 38].

We say that a function f : X — Y satisfies the Jensen equation if

xX+y
2

26 () =r@H ), xyeX. ©)
The stability of the Jensen equation has been investigated at first by Kominek
[31]. In 2006, Bae and Park [4] obtained the generalized Hyers-Ulam stability of
a bi-Jensen function. Moreover, the stability problem for the bi-Jensen functional
equation was discussed by a number of authors (see [27, 28]).

Recently Aghajani and Zahedi [2] investigated stability of the two-variable
Jensen functional equation of the following form:

x+z yt+w
272

2£( )=f@n+faw,  xyzweX. ™
The term hyperstability was used for the first time probably in [33]; however, it
seems that the first hyperstability result was published in [6] and concerned the ring
homomorphisms. For further information concerning the notion of hyperstability
we refer to the survey paper [11] (for recent related results see, e.g., [5, 8-10, 17—
21, 23)).

The purpose of this work is to prove hyperstability results for the equation of the
form (7) on restricted domains, that is some conditional versions of that equation.
The method is based on a quite recent fixed point theorem in some functions spaces
from [12]. In the same way, we can study approximate solutions on restricted
domains to various functional equations (in many variables) that are sufficiently
similar to (7).

Let U be a nonempty subset of X. We say that a function f : U> — Y fulfills
equation (7) on U (or is a solution to (7) on U) provided

x+z yt+w
272

2£( ) = £+ fw), ®)

x+z yt+w
,—— €U;
2 2

x,y,z,weU,

if U = X, then we simply say that f fulfills (or is a solution to) Equation (7).
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We consider functions f : U? — Y fulfilling (8) approximately, i.e., satisfying
the inequality

[2r (2 228 - rwn - e w]| s v vz, ©)
xX+z yt+w

2 7 2

x,y,z,we U, e U,

with a given y : U* — R,. We prove that, for some natural particular forms
of y (and under some additional assumptions on U), the conditional functional
equation (8) is y-hyperstable in the class of functions f : U> — VY, i.e., each
f : U? — Y satisfying inequality (9) with such y must fulfill Equation (8).

2 Auxiliary Results

One of the methods of proof is based on a fixed point result that can be derived from
[12]. To present it we need the following three hypothesis:

(H1) W is a nonempty set, Y is a Banach space, f1,....fx : W — W and
Ly,....Ly : W — Ry are given.
(H2) .7 : YW — YW is an operator satisfying the inequality

k
1.78(x) = Tu@l < ZLi(x) IECfi) = n(fiol,  &ner? xew.

i=1

(H3) A:R.Y — R, W is alinear operator defined by

k
A8(x) =Y Li(0)S(fi(x)), seRY, xew.

i=1
The mentioned fixed point theorem is stated in [12] as follows.

Theorem 2 Let hypotheses (H1)—(H3) be valid and functions ¢ : W — Ry and
¢ : W — Y fulfill the following two conditions:

IT7e(x) — @)l < ex), xew,

o0
g (x) := ZA”s(x) < 00, xew.
n=0
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Then, there exists a unique fixed point ¥ of 7 with

lox) — ¥ < e*(x), xeWw.

Moreover
Y(x) = lim J"¢(x)
n—0oo

forallx e W.

3 Hyperstability Results for Equation (8)

The following theorems are the main results in this paper and concern the y-
hyperstability of (8). Namely, for

y (v, zw) = x|y l?lzll" fwl*,
with suitable ¢, p, ¢, r, s € R, and
Yy, zow) = c(llx P+ Iy P2 + 1zl + w] P

with suitable c, p1, p2, p3, p4,t € R, under some additional assumptions on
nonempty U C X, we show that the conditional functional equation (8) is y-
hyperstable in the class of functions f mapping U? to a normed space.

In the remaining part of the paper, X and Y are normed spaces, X¢ := X \{0}, and
N,,, denotes the set of all positive integers greater than or equal to a given mg € N.

Theorem 3 Assume that U C X is nonempty and there is my € N, mg > 3, with
—x,nx €U, xeU,neN,n>my— 1. (10)

If f :U x U — Y satisfies

X+z yt+w
21 (555 220) - e = few)| < P Iyl i,
x,y,z,wel, %,HTUJGU,

with some ¢ > Qand p,q,r,s € Rsuchthat p+r < 0orq+s < 0, then (8) holds.

Proof Without loss of generality we can assume that Y is complete, because if
this is not the case, then we can simply replace Y by its completion. Assume that
p +r < 0 (the case g + s < 01is analogous) and fix [ € N,,.



170 I.-i. EL-Fassi

Replacing (x, z, y, w) by (mx, (2 —m)x,ly, (2 —1)y) in (11), we get

H %f(mx, ly)—i—%f((Z —m)x, 2 = Dy) — f(x, ) H

_emP(m =219 = 2)°
= 2

P )9t (12)
forallm € Ny, and x, y € U. Fix m € N,,, and write

1 1
I (x,y) = F§mx. Iy) + 582 —m)x. (2= Dy).

cmP(m —2)"19(l — 2)*

> 1Py lle+s

em(x,y) =
forevery £ € Y UxU and x, y € U. Then inequality (12) takes the form
[T fx,9) = f, 0| <emx,y),  x,yeU.
Let

1 1
Apd(x,y) = ES(mx, ly) + 58((2 —m)x,(2—-10)y)

forx,y € U and § € R.Y*V. Then the operator A,, has the form described in
(H3) with k = 2,

Silx, y) = (mx, ly), L, y) =(@2—m)x, 2-Dy),
Li(x,y)=La(x,y)=1/2
for all x, y € U. Moreover, for every &, u € YY*V and x, y € U, we obtain
|- T (x, )= Tupaix, y)|
1 1
=|3&0mx.19) + 6@ = mx. 2= Dy
1 1
— SHm1y) = 3@ = m)x. 2= D)|

=<

1
1 = wyGmx, Iy) | + SNE = (@2 —m)x, 2 = Dy)l

(S

2
D Lite, | = w(fitx, )|
i=1
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with (6§ — ) (x,y) = &(x, y) + u(x, y). So, (H2) is valid for .7;,. Note yet that
Apem(x,y) < amem(x,y), m € Ny, x,y €U, (13)
with
1 1 .
am = EmP”ﬂ“ + 5(m — 2)PHT (] — 2)4FS,
Clearly, there is m| € N,,,, such that
a, <1, m € Ny, .
Therefore, by (13), we obtain that

(6, ) =Y Anen(x,y) < En(x,y) Y (am)"

n=0 n=0

_ em(x,y)

, x,yeU, meN,.
1—ay,

Thus, according to Theorem 2, for each m € N, the function J,, : U x U — Y,
given by Jy,, (x, y) = lim,, o J, f(x, y) for x, y € U, is a unique fixed point of
T, 1.e.,

1 1
Jn(x,y) = E-lm(mx» ly) + E-Im((z —m)x,(2—=10y)
for all x, y € U; moreover

em(x,y)

Hjm(x’ }’) - f(x’ y)” =< 1
—ap

, x,yeU.

We show that

x+z y+w
2 72

27 1( )= T ) = T faw)| < caly Ix? 119 N2l flwl®

(14)

for every n € Np and x, y, z, w € U with 3%, # eU.
Clearly, if n = 0, then (14) is simply (11). So, fix n € Ny and suppose

that (14) holds for n and every x,y,z,w € U with %, ”Tw € U. Then, for

every x, y, z, w € U with XTH HTw eU,
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szn-‘rlf(x —I—Z y 42‘ w) — T e, y) — T w)”

Pl ) s

—l)y + w>)
1
- Eﬂrff(mx,ly) - 5%”}‘((2 —m)x,(2—=1)y)

1 1
— 5Tz, 1w) = 27 f(2 = m)z. 2= Dw) H

<5 |2 (™52 25 = 72 ) = 7 pmz )|

+ ley,,';f((z—m)x ;FZ, (2—1)y;w) — (2 —m)x, 2 —D)y)

— Taf(@=m)z Q= Dhw)|

< Scay lmx||” [y mz]" Nlwll*

| =

1
+5canll @ =mx|PI2 =Dyl E = mzI" 12 = hw]®

1 1
= cap, [ SmP I 4 2 m = 27 @ = 2 P I 2

1 R
= can)" T 1Py I Dzl wl°

Thus, by induction, we have shown that (14) holds for all x, y, z, w € U such that
e, y+w € U and for all n € Ny. Letting n — oo in (14), we obtain that

+z y+
20 (S5 I = I 3) + I w) (15)

for every x, y, z, w € U with 22, X% e U,

In this way, for each m € Nmo, we obtain a function J,, such that (15) holds for
x,y,z,w € U with £, Hw € U and

1 y) = dn o) < La”

, x,yeU, meNy,,.
— Um

Since

lim a, =0, lim &,(x,y) =0, x,yeU,
m—00 m—0Q

it follows, with m — oo, that f fulfills (8).

In a similar way we can prove the following theorems.
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Theorem 4 Assume that U C X is nonempty and there is my € N, with

1 1 1

—x,—(l—l——)er, xeU,neN,n>my. (16)
n 2 n

If f : U x U — Y satisfies (11) with some ¢ > 0 and p,q,r,s € R such that

"p4+r>1landg+s>0"or"g+s > 1land p+r > 0", then (8) holds.

Proof Without loss of generality we can assume that Y is complete, because if
this is not the case, then we can simply replace Y by its completion. Assume that
p+r > 1withg+s > 0 (the case ¢ +s > 1 with p 4+ r > 0 is analogous) and fix
I € Npy,.

Replacing (z, w) by (;711)" %y) in (11), we get

c

m’ls

HZf(m+1 I+1

P Iy 4ts (17
iy I 27 Nyl (17)

) -sen-i(E )]

2m
for all m € Ny, and x, y € U. Fix m € Ny, and we define
m+1 [1+1 Xy

Tné(x, ) =26 (T, ) —E (S, 2), ey
2m 21 m 1

c

s Py

em(x,y) =

m+1 [+1 Xy UxU
A8 (x, :=25< —) 3(-,—, 5 € RUX
md(x y) 2mx21y+ml) +

for every x, y € U. Then inequality (17) takes the form

||<%nf(-xvy)_f(xvy)”ng(xvy)’ xﬂyEUv
and the operator A,, has the form described in (H3) with k = 2,

m+1 [+1
mEl IEly

ey = (5—x =

Ay =(52).

Li(x,y) =2, Ly(x,y) =1

YU><U

for all x, y € U. Moreover, for every &, u € and x, y € U, we obtain

| T (2, 9) = T e, m| < 2| =0 (free, )| + [ = w(falx, )|

2
= Y Litx, )| E —wfitx, ).

i=1
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So, (H2) is valid for .7,. Note yet that
Amem(x,y) < bmem(x, y), m € Ny, x,y €U, (18)

with

b 14+ m\ptr /1 4 [\a+s 1
me= ( 2m ) ( 21 ) +mP+VM+S'

Clearly, there is m| € N, such that
by < 1, m € Ny, .

Therefore, by (18), we obtain that

e y) =D Alen(x,y) < Em(x, Y)Y (@n)"
n=0 n=0
— Em(x, )’)

1 —b, x,yeU, meN,.

Hence, according to Theorem 2, for each m € Ny, the function J,, : U x U — Y,
given by J,, (x, y) = lim,—.o 7} f(x, y) for x, y € U, is a unique fixed point of
T, 1.€.,

Il+m 141 Xy
I (x,y) = 2Jm(—x, —y) - Jm(—, —)
2m 21 m
for all x, y € U; moreover

em(x,y)

, ,yeU.
1= b, Y

[T, y) = fx, )| <

Similarly as in the proof of Theorem 3, we show that

x+z ytw
2 72

l271( ) = TGy = T few)| < bl Il 11 el

19)

foreveryn € Nand x, y, z, w € U with £$%, HT’” elU.
Moreover, we obtain a function J,, satisfies (8) and

em(x,y)

b, x,yeU, meN,.

£, y) = I, 0| <
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Since p + r > 1, one of p, r must be positive, let » > 0, then we obtain

lim b, <1, lim ¢,(x,y) =0, x,yeU,
m—00 m—0o0
it follows, with m — oo, that f fulfills (8). O

Theorem 5 Assume that U C X is nonempty and there is my € N, with
1 1
(2+—>x,——x,eU, xeU,neN, n>my. 20)
n n
If f:UxU — Y satisfies (11), with some ¢ > 0 and p,q,r,s € R such that

"O<p+r<landqg+s <0"or"0<qg+s <landp+r <0, then (8) holds.

Proof Assume that Y is complete, 0 < p+r < 1 and g + s < 0 (the case
0 <g+s < 1and p+r < 0is analogous) and fix / € N,,,. Then, one of p, r must
be positive, let p > 0.

Replacing (x, 2, y, w) by (—4x, @+ H)v, =}y, @+ }y) in (11), we get

H%f(_ = -0+ %f((2+ %)x (2+ %)y) — fe )|

o (2 l)r(2 + %) bl P flyfats @1)

<
— 2mPl4 m

forallm € Ny, and x, y € U. Fix m € N,;,, and similarly as previously we define

Tk, = 56( - 20+ (2 nll)x (2+ ;)y) £ yUsU

1\ I
2+ =) (2+7) IxI7* e
m [

em(x,y) = TPl

And(x, y) = %5( - % —%) n %5((2 n %)x (2+ ;)y) 5 e RUXV

for every x, y € U. Then inequality (21) takes the form

| T fx,y) = fx. )| <emlx,y),  x,y€eU.
Obviously A, has the form described in (H3) with k = 2,
- Xy _ 1 1
A =(==-2)  pe=(2+)x (2+7)y).

Li(x,y)=La(x,y) =1/2
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YU><U

for all x, y € U. Itis clear that, for every &, u € and x, y € U, we obtain

2
| T (. 3) = T, )| < D LiCe, 0| & = ) (fix, y)).

i=1
So, (H2) is valid for .7,. Note yet that
Apem(x,y) < dpem(x,y), meNy, x,yeU, (22)

with

d'—12 1p+r21q+s 1
m-—z( W) (+7) Y et

Clearly, there is m| € N, such that
d, <1, m € Ny, .

Therefore, by (22), we obtain that

o0
Em(x,y)
en(r, ) Sen(r, ) Y (an)" =, x,yeU, meNy,.
n=0 m
The remaining reasonings are analogous as in the proof of that Theorem 3. O

Remark 1 Letc > O and p,q,r,s € Rsuchthat p4+¢g 47 +s5 € R\{0, 1}. If
U = Xopand f : X — Y satisfies (11) on X, then f satisfies (8) on Xj.

Theorem 6 Let U be a nonempty subset of X\{0} fulfilling condition (10) with
some mg € N. Let ¢ > 0 and pi1, p2, p3, pa,t € R be such that tp; < 0 for
i=1,2,3,4If f : U* — Y satisfies the functional inequality

x+z yt+w
127 (555 557) = £ = F@w)| < eQxI? + 1317 + 12 + w7,
23)

xX+z yt+w

27 2

x,y,z,wel, eU,

then (8) holds.
Proof As in the proof of Theorem 3, without loss of generality we can assume that

Y is complete. Write p(m) = m'P° for m € N3, where

max{pi, p2, p3, pa} ift > 0;
min{p1, p2, p3, pa} ift <O.
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Clearly, if t > 0, then p; < Ofori =0, ..., 4 and consequently

max {mP', mP2 mP3 mP4} = m?, m € N3. 24)
Analogously, if t < 0, then p; > 0fori =0,...,4 and

min {mP', mP2, mP3, mP*} = m?0, m € Nj. (25)

Replacing (x, z, y, w) by (mx, (2 — m)x, my, (2 — m)y) in (23), we get

|5 onemy) + 3 7@ = mix, @ = myw) — £z, )|

C
=< 5( lmx |71+ [lmy |72 + 12 — m)x |7 + (|2 = m)y[|P*)'
(26)

forallx,y € U and m € Ny, Let

c
em(x,y) = 5( lmx |71+ lmy |72 + [[2 = m)x |75 + 12 — m)y[|P)',

1 1
T (x) = F8(mx,my) + 2§(2 —m)x, 2 —m)y)

forx,y € U,m € Ny, and & € YY*U_ Then, by (24) (if t > 0) and (25) (if t < 0),
we get

em(£mx, £my) < p(m)e(x, y), x,yeU,me Ny, 27
and inequality (26) takes the form
[T f(x,y) = F, DI = emlx, y), x,y €U,m € Npy,.
Write

1 1
Amd(x, y) = Z8(mx, my) + 58(2 —m)x, (2 —m)y)

forx,y e U,m e N, andé € R+Y*V Then, for each m € N,,,, operator A,, has
the form described in (H3) with k = 3 and

fix, y) = (mx, my), o lx,y) = (2 —m)x,( 2—m)y), Li(x,y) =La(x,y) =1/2.

Moreover, for every &, u € YUXU e N, and x, y € U, we have
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3
1 TmE (6, 3) = Tpa (e I < Y LiGe, y) 16 — ) (fi (x, )1 -

i=1
So, (H2) is valid. Next, it is easily seen that, by induction on n, from (27) we obtain
Al em(x,y) < oe(x,y), n,me Ny, x,yeU, (28)
where «,, := %p(m) + %p(m — 2). Note that we can find m; € N, with
oy < 1, m € Ny,
which means that

em(x,y)
1—a,

En(x,y) =Y Ane(x,y) <em(x,y) Y (@n)" =

n=0 n=0

forallx,y € U andm € N,,.
Similarly as in the proof of Theorem 3, we show that

xX+z ytw
27 (555 250 ) - p ) = Z few)|
< cap (IxNP + Iy 172 + [1zI17 + lw]|P4) (29)
for every n € N and x,y,z,w € U with %, HT“’ € U. Also the remaining
reasonings are analogous as in the proof of that theorem. O

The next theorem shows the hyperstability of the two-variable Jensen functional
equation on the set containing 0.

Theorem 7 Assume that Y is complete and U C X is nonempty with 0, such that
2UCUand%UCU.Iff:UXU—>Ysatisﬁes

x+z ytw

£ (55252 - reeon = few| = Pl el 30y
x+z yt+w

s, —— €U,

2 2

x,y,z,we U,

with some ¢ > 0 and p,q,r,s > 0 such that p +q +r + s # 1, then (8) holds.

Proof Putting z = w = 0 in (30), we obtain

2/(53) = f@ D+ 0.0, xyel.
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i.e.,

2(£(5:3) — £0.0) = ) = 0.0 xyeU.

Thus g defined as g(x, y) = f(x, y) — f(0, 0) satisfies (30) and

Xy

2%(5.3) =@y, xyeu. 31)
2°2

Next we divide the proof into two cases.

Casel: p+qg+r+s < 1. Using (31) to (30) we can prove by induction that for
every n € Ny

x4z y+w 2P AT \n
[26(57 220 - st = 8w | = e S——) I Iy 12 ol
2 2 2
(32)
x,y,z,weU, X;Z,M_TweU,

Indeed, if n = 0, then (32) is simply (30). So, fix n € Ny and assume that (32)
holds for n. Then using (31) to (32) we have

(575 ) o) (3 B = (B e

x+z y+w
27 2

x,y,z,welU, e U,

dividing by 2 and replacing (x, y, z, w) by (2x, 2y, 2z, 2w) in the last inequality
we obtain

x+z y+w 2PFHqHrEs | 4l
l26(*5= 257) — s m =g w)| < e(F=—)" W21 T,
(34)
x,y,z,weU, X;Z,HTLUGU,

s0 (32) holds for everyn € Nog. As p+¢q +r +s < 1, lettingn — oo in (32),
we obtain that g satisfies (8) on U. Obviously f satisfies (8) on U, too.
Case2: p+qg+r+s > 1. Replacing (x, y) by (2x,2y) in (31) we get

2g(x,y) = g(2x,2y), x,yeU. 35)
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Similarly as in 1) using (30), (35) and induction we obtain

x+z ytw 2 n
J2s( ) = 8603 = 2w = e(Spmmr ) IKIP IV I T,

2 72
(36)
x+z ytw
U —eU
X, y, L, wel, ) ev,
for every n € Ny. With n — o0 in the last inequality we have

2 (% erTw) =g, »+gz, w), x,y,z,weU, x;rz, erTw eU
Thus f also satisfies (8) on U. =

4 Some Applications and Examples

The above theorems imply in particular the following corollary, which shows their
simple application.

Corollary 1 Let U C X be nonempty and F : U* — Y be a function such that
F(x0, Y0, 20, wo) # 0 for some xo, yo, 20, wo € U with 2520 0F0 ¢ 1 gnd

xX+z yt+w
IF Gy, z,wll < cllxlPiyl?izl™ izl x, v, z,we U, 5 €U
(37
or
IF Gy, zow)ll < (P + Iy 172 + 1121172 + llw]7),
xX+z y+w

£ £ 9 G Ua E) G U,

YL 2 2
(38)

where c > 0and p,q,r,Ss, p1, p2, P3, P4, t € R. Assume that one of the conditions
(1)—(@v) is valid in a case F satisfies (37) and (v) is valid in a case F satisfies (38),
where

1) p+r<0orq+s<0,0¢ U, and (10) holds with some mqy € Ny,
i) p+r>1landg+s>0(rqg+s>1land p+r > 0),0 ¢ U and (16) holds
with some mg € N,
(i) O < p+r<landgq+s <0(r0<qg+s<landp+r <0),0¢ U
and (20) holds with some mqg € N,
@iv) p,q,r,s >Osuchthatp+q~|—r+s;éI,OEU,ZUCUand%UC U,
V) tpi <0fori =1,2,3,4,0¢ U and (10) holds with some my € N\{1, 2}.
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Then the functional equation

x+Z y+w

(5

T5) = fole ) + folz w) + Flx, v, 2 w), (39)

xX+z y+tw
2 72

x,y,z,welU eU,

has no solution in the class of functions fo: U — Y.

Proof Suppose that there exists a solution fy : U — Y to (39). Then (11)
or (23) holds, and consequently, according to the above theorems, fy is a solution
to (8), which means that F(xq, yo, 2o, wo) = 0 for some xg, yo, zo, wo € U with

%, W—Two € U. This is a contradiction. ]

Now, we give some examples which show that in the above theorems the
additional assumption on U are necessary.

Example ] LetX =Y =R, U =[—1, 1]\{0}, p.q.r.s <0,c=4and f : U? —
R be defined by f(x, y) = |x + y|. Then f satisfies

}Zf(x_‘_z yt+w

S55) - fee = few)| S APyl ol xy.zw e U

but f is not a solution of equation (8) on U. We see that 0 ¢ U and U does not
satisfy the assumption of Theorem 3 .

Example2 Let X =Y =R, U =[1,00), p,q,r,s >0,c =4 and [ : U? >R
be defined by f(x, y) = )lC + % Then f satisfies

)2f<x+z y+w

> ) —fx,y) = fw| <4xPlylz|" |wl®, x,y,z,welU

but f is not a solution of equation (8) on U. It is easy to check that the assumptions
of Theorems 4, 5, and 7 are not satisfied.

In this example, we show that the condition —x € U for every x € U in
Theorem 6 is necessary.

Example 3 Let X =Y =R, U =(0,00),t =1,pi =p <O0fori=1,...,4,and
f : U* = R be defined by f(x, y) = xP + yP. Then f satisfies

x+z y+w
2

‘2f< ) — f,y) = f@w)| <2"7Px|P + |y + 1z2]P + [w]P),

x,y,z,welU

but f is not a solution of equation (8) on U, which shows that in Theorem 6 the
assumption that —x € U for every x € U is necessary.

We end the paper with an open problem.
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Remark 2 For the cases p +r = qg+s = 0andtp; = O0fori = 1,...,4, the
method used in the proofs of the above theorems cannot be applied, thus this is still
an open problem.
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On the Study of Circuit Chains m)
Associated with a Random Walk with e
Jumps in Fixed, Random Environments:
Criteria of Recurrence and Transience

Chrysoula Ganatsiou

Abstract By considering a nonhomogeneous random walk with jumps (with steps
—1 or +1 or in the same position having a right-elastic barrier at 0) we investigate
the unique representations by directed circuits and weights of the corresponding
Markov chains (circuit chains) in fixed, random environments. This will give us
the possibility to find suitable criteria regarding the properties of recurrence and
transience of the above-mentioned circuit chains in fixed, random environments.

2010 AMS Mathematics Subject Classification 60J10, 60G50, 60K37

1 Introduction

In recent years a systematic research has been developed (Kalpazidou [10], Mac-
Queen [12], Qian Minping and Qian Min [13], Zemanian [16] and others) in
order to investigate representations of the finite-dimensional distributions of Markov
processes (with discrete or continuous parameter) having an invariant measure, as
decompositions in terms of the circuit (or cycle) passage functions

.. 1, if i, j are consecutive states of c,
Je@, j) = .
0, otherwise,
for any directed sequence ¢ = (iy,i2,...,1y,i1) (or ¢ = (iy,i2,...,1y)) of

states, called a circuit (or a cycle), v > 1 of the corresponding Markov process.
This research has stimulated a motivation towards the representation of Markov
processes through directed circuits (or cycles) and weights in terms of circuit (or
cycle) passage functions in fixed or random environments as well as the study
of specific problems associated with Markov processes in a different way. The
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representations are called circuit (or cycle) representations while the corresponding
discrete parameter Markov chains generated by directed weighted circuits are called
circuit chains [1, 10].

In parallel, random walks are one of the most basic and well-studied topics in
probability theory and one of the most fundamental types of stochastic processes
formed by successive summation of independent, identically distributed random
variables. For random walks on the integer lattice Z¢ the main reference is the
classic book by F. Spitzer [15]. They have a long rich history [2, 3, 8] which has
been advanced according to many directions of investigation. The term “random
walk” was coined by Karl Pearson [14], and the study of random walks dates
back to the “Gamblers Ruin” problem analyzed by Pascal, Fermat, Huygens,
Bernoulli, and others. Theoretical developments of random walks have involved
mathematics (especially probability theory), computer science, statistical physics,
operations research, and more. Random walk models have also been applied in
various domains, ranging from locomotion and foraging of animals, the dynamics
of neuronal firing and decision-making in the brain to population genetics, polymer
chains, descriptions of financial markets, rankings systems, dimension reduction,
and feature extraction from high-dimensional data (e.g., in the form of “diffusion
maps”), sports statistics, prediction of the arrival times of diseases spreading on
networks, etc.

Usually they are studied from the Markov chain point of view, where the random
mechanism of spatial motion is determined by the given transition probabilities
(probabilities of jumps) at each state in a non-random (fixed) environment. Although
random walks provide a simple conventional model to describe various transport
processes in many cases, the medium where the system evolves is highly irregular
due to many irregularities (defects, fluctuations, etc.) known as random environ-
ments which lead to the choice of the local characteristics of the motion at random
according to certain probability distribution. Such models are referred to as random
walks in random environments. The definition of these random walks involves two
special ingredients: the environment (randomly chosen but still fixed throughout the
time evolution) and the random walk (whose transition probabilities are determined
by the environment) [8].

It is known also that in various applications (physics, chemistry, genetics, etc.)
we are led to study Markov chains obtained by restricting the motion of a “particle”
which performs a random walk. This is done by introducing barriers. In this case
the Markov chain defined in this way having no longer independent increments
is called a random walk with barriers while its state space is a proper subset of
Z. Furthermore except for the homogeneous random walks with independent and
identically distributed increments there is a class of random walks formed by suc-
cessive summation of independent random variables which are no longer identically
distributed. This means that they still have independent increments which are no
longer identically distributed. These random walks are called nonhomogeneous and
they can be investigated from the Markov chain point of view which in general
coincides with that for chains with independent increments.
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Let us consider the nonhomogeneous random walk with state space S=N, right-
elastic barrier at O [7] and transition probabilities given by p;; = 0,if [i — j| > 1,
Pii—1 = qis Pii = Tis Pii+l = Pi> i +qi +ri = 1,0 > 1, poo = ro, po1 =
po=1—ro, pi >0,qi+1 > 0,r; > 0,i > 0, which expresses the movement of
a particle depending on the time that the particle begins to move. It is obvious that
all states form an essential class. It is known that regarding the classification of the
states through the use of proper theorems ensuring a bounded solution of the system
of equations

oo
%= ZPiij, i=1
j=1

we have that: the states are positive recurrent if and only if

1
Zr, = +00 and — < 400
i=1 i=1 Tipi
and null recurrent if and only if
0 © g
Zrizz = +00 where rizu, i>1[9]
~ " Zriepi pi--pi

The main purpose of this work is to bring together the two subjects—random
walks and circuit chains—by discussing their interconnection. In particular follow-
ing the context of the theory of Markov processes’cycle-circuit representation, the
present work arises as an attempt to study the circuit and weight representation of
the above-mentioned nonhomogeneous random walk with jumps in fixed, random
environments as well as to investigate proper criteria regarding recurrence and
transience of the corresponding “adjoint” Markov chains (circuit chains) describing
uniquely the above-mentioned random walk by directed circuits and weights in
fixed, random environments giving a new perspective in the whole study and
especially in the classification of states.

The work is organized as follows. In Section 2, we give a brief account of certain
concepts of circuit-cycle representation theory of Markov processes that we shall
need throughout the paper. In Section 3, the above-mentioned nonhomogeneous
random walk with jumps (having one right-elastic barrier at 0) is considered and
the unique representations by directed circuits and weights of the corresponding
Markov chains (circuit chains) are investigated in fixed, random environments.
These representations will give us the possibility to find proper criteria regarding
positive/null recurrence and transience of the above-mentioned circuit chains in
fixed, random environments [4-6], as it is described in Section 4.
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Throughout the paper, we shall need the following notations:

N={0,1,2,...}, N-={1,2,...}, Z={..=1,0,1,...},
Z*+={1,2,3,,,,}, Zi={,—2,—1}

2 Preliminaries

Let S be a denumerable set. The directed sequence ¢ = (i1, iz, ..., iy, i1) modulo
the cyclic permutations, where iy, i2,...,i, € S,v > 1, completely defines a
directed circuit in S. The ordered sequence ¢ = (i1, 2, ..., i) associated with
the given directed circuit c is called a directed cycle in S. A directed circuit may be
considered as ¢ = (c(m),c(m + 1), ...,c(m 4+ v — 1), c(m + v)), if there exists an
m € Z,suchthatiy = c(m+0),is = c(m+1),...,i, = c(m+v—1),i; = c(m+v),
that is a periodic function from Z to S. The corresponding directed cycle is defined
by the ordered sequence ¢ = (c(m),c(m + 1),...,c(m + v — 1)). The values
c(k) are the points of ¢, while the directed pairs , (c(k), c(k + 1)), k € Z, are the
directed edges of c. The smallest integer p = p(c) > 1 satisfying the equation
c(m + p) = c(m), for all m € Z, is the period of c. A directed circuit ¢ such that
p(c) = 1is called a loop. (In the present work, we shall use directed circuits with
distinct point elements.)

Let a directed circuit ¢ (or a directed cycle ¢) with period p(c) > 1. Then we
may define by

I™G, )= 1, if there exists an m € Z such thati = c(m), j = c(m+n),m € Z
¢ 0, otherwise

the n-step passage function associated with the directed circuit ¢, for any i, j €
S,n>1.

We may also define by
. 1, if there exists an m € Zsuch that i = c¢(m),
Je(i) = .
0, otherwise

the passage function associated with the directed circuit c, for any i € S. The above
definitions are due to MacQueen [12] and Kalpazidou [10].

Given a denumerable set S and an infinite denumerable class C of overlapping
directed circuits (or directed cycles) with distinct points (except for the terminals)
in § such that all the points of S can be reached from one another following paths
of circuit-edges, that is, for each two distinct points i and j of S there exists a
finite sequence c1, ¢y ..., ck, k > 1, of circuits (or cycles) of C such that i lies
on ¢ and j lies on ¢, and any pair of consecutive circuits (¢, c,+1) have at least
one point in common. We may assume also that the class C contains, among its
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elements, circuits (or cycles) with period greater than or equal to 2. With each
directed circuit (or directed cycle) let us associate a strictly positive weight w. which
must be independent of the choice of the representative of c, that is, it must satisfy
the consistency condition, weo, = W, k € Z, where f; is the translation of length k.

For a given class C of overlapping directed circuits (or cycles) and for a given
sequence (w,)cec of weights we may define by

Y we- I, )
pii = ceC 2.1)

YUY we 1

ceC

the elements of a Markov transition matrix on S, if and only if Z we - Jo (i) < 00,

ceC
for any i € §. This means that a given Markov transition matrix P = (p;;),i, j € S

can be represented by directed circuits (or cycles) and weights if and only if
there exists a class of overlapping directed circuits (or cycles) C and a sequence
of positive weights (w¢).cc such that the formula (2.1) holds. In this case, the
representation of the distribution of Markov process (with discrete or continuous
parameter) having an invariant measure as decomposition in terms of the circuit
(or cycle) passage functions is called circuit (or cycle) representation while the
corresponding discrete parameter Markov chain generated by directed circuits (or
cycles) is called circuit (or cycle) chain with Markov transition matrix P given
by (2.1) and unique stationary distribution p (a solution of p.P = p) defined by

pGi) = we-Je(@).i €.

ceC

It is known that the following classes of Markov chains may be represented uniquely
by directed circuits (or cycles) and weights:

(1) the recurrent Markov chains [13],
(i) the reversible Markov chains.

3 Circuit and Weight Representations

3.1 Fixed Environments

Let us consider the Markov chain (X,),eny on N (X, expresses the location of a
particle at time n, n € N) which describes the nonhomogeneous random walk with
jumps having a right-elastic barrier at 0, with transitions k — (k+ 1),k — (k— 1)
and k — k, in a fixed environment, whose elements of the corresponding Markov
transition matrix (transition probabilities) are defined by
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Po P1 P2 Pea
——"‘-._-_-_‘-"‘\_‘ _'_.-—-—_—‘--\‘
0 O 0@ o-

qu . q s Qs S - q, Q

Fig. 1 The Markov chain (X},),cN (fixed environments)

P(Xpt1=0/Xn =0) = ro,
P(Xn41=1/Xn=0) = po, po=1—r9
PXpp1=k+1/Xy=k)=pi, k=1
P(Xp+1 =k/Xn=k) =rk, k> 1
P(Xnt1=k—=1/Xy =k) =gk, k= 1

such that py +qx + 1 = 1, pr > 0,qk+1 > 0,7 > 0, for every k € N, as it is
shown in Figure 1.

Assume that (pr)reny and (rr)ren are arbitrary fixed sequences with 0 < pg =
1 —r9g < L,prk > 0,gk41 > 0,1 > 0, for every k € N. If we consider the
directed circuits ¢, = (k,k + 1,k), c,’( = (k,k),k € N and the collections of
weights (we, )keny and (wc,’()ke ~ respectively, then we may obtain the corresponding

transition probabilities

Wy
Pk = s
Wey_y + Wey + We;
with
We,
pPo= ——
Wey + Wel
and
Wer Wey
gk = ) Tk =
Wep_y + Wy + Wei Wey_y + Wey + Wer
. ch)
such that py +gx + 1 =1 ,forevery k > 1, withrg =1 — pg = ———.
Wey + wc6

Here the class C (k) contains the directed circuits ¢y = (k, k + 1, k), c;C = (k, k)
andcp_1 =(k—1,k, k—1).
Equivalently the transition matrix P = (p;;) with
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Z Wey Jc(kl)(iv ])

keN

pij = , fori # j, 3.1)
> [wck e )+ wgy - Ty (i)]
keN
Y we Jc(;j)(i, i)
Pii = kel , (3.2)
> [wck e () + wey - Ty (i)]

keN

where Jfkl )(i, Jj) = 1,1if i, j are consecutive points of the circuit ¢, J, (i) =1, if i
is a point of the circuit ¢, and JC;( (i) = 1, if i is a point of the circuit c,/c, expresses
the representation of the Markov chain (X,,),cy by directed circuits and weights.
Furthermore let us consider also the “adjoint” Markov chain (X]),eny on N
whose elements of the corresponding Markov transition matrix are defined by

P(X, 1 =0/X, =0)=rg

P(X, 1 =1/X,=0)=qp.qy=1-r5

P(Xpp =k—=1/X, =k = pp. k=1,

PX\y =k/X, =k =rf, k> 1,

P(X,=k+1/X, =k =q;. k=1
such that p; +¢; +r; =1 ’P;<+1 > 0,g; > 0,r; > 0forevery k € N, as it is shown
in Figure 2.

Assume that (q,/{)ke N> (i’//c)ke w are arbitrary fixed sequences with 0 < gy =1 —
ry < 1, pk+1 > 0,q; > 0,r, > 0, for every k € N. If we consider the directed

circuits ¢ = (k+ 1,k,k + 1), ¢/ = (k, k) k € N, and the collections of weights
(wc,’(’)ke N, (w 1’!/) keNs respectlvely, then we may have that

wc//
qr = ‘ :
Wejl_y + Wy + Wy
with
q; ’
P! ; P

Fig. 2 The “adjoiont” Markov chain (X},),en (fixed environments)
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w
r_ g
do = w4+ w,n
€0 €0
and
w w
;o Ck—1 ’ 4
pk_w// —|—w//+w///, rk_u)// + w,. + w.m
Ck—1 Ck Ck Ck—1 Ck Ck
wc///
such that p; +¢g; +r; = 1,forevery k > 1, withryg =1 — g5 = S —
w, + wm
0 0

Here the class C’(k) contains the directed circuits ¢} = (k + 1, k, k+ 1),c]_, =
(k,k —1,k) and ¢;" = (k, k). As a consequence, the transition matrix P’ = (plfj)
with elements equivalent to that given by the above-mentioned formulas (3.1), (3.2)
expresses also the representation of the “adjoint” Markov chain (X),),en by directed
circuits and weights.

Consequently we have the following:

Proposition 1 The Markov chain (X,)nen defined as above has a unique represen-
tation by directed circuits and weights.

Proof Let us consider the set of directed circuits ¢; = (k, k+ 1, k) and c,’{ = (k, k),
for every k € N, since only the transitions from k to k + 1,k to k — 1 and k to k
are possible. There are three circuits through each point k > lck—1, ck, c,’(, and two
circuits through 0 : co, .

The problem we have to manage is the definition of the weights. We may
symbolize by wy the weight w, of the circuit c; and by w; the weight wer of
the circuit c,’c, for any k € N. The sequences (wk)keN,(w,’()keN must be a solution of

w . w
pkz—k/,kzl with poz—o/,
W1 + wg + wy wo + W,
wy, ) w,
rp=——t—— k> 1 with rg = —>—,
Wk—1 +wk+wk wo—i—wo

gk =1—px—ri, k> 1.

Wik wy
Let us take by by = Ve =
Wk—1 Wy

,k > 1. As a consequence we may have

r _
_Pe__ Pk Tk Pkl for every k > 1.

bk - ) yk
a1 —pr—rk -1 Pk



Circuit Chains associated with a Random Walk: Recurrence and Transience 193

Given the sequences (pi)keny and (ri)ken it is clear that the above sequences
(br)k>1,(y 1 )k>1 exist and are unique. This means that the sequences (wk)keN,(w,’c)keN
are defined uniquely, up to multiplicative constant factors, by

wr =wo - by...bg,

/ /
W =Wy Vy---Vk

(the unicity is understood up to the constant factors wy, w).

Proposition 2 The “adjoint” Markov chain (X|)nen defined as above has a unique
representation by directed circuits and weights.

Proof Following an analogous way of that given in the proof of Proposition 1
the problem we have also to manage here is the definition of the weights. To this

direction we may symbolize by w;’ the weight w,y of the circuit ¢ and by w;” the

weight w.» of the circuit ¢;” , for every k € N. The sequences (w;)xen,(w; ken

must be solutions of

VA 14
w w
/ k . ! 0
qx = Jk>1 with gh = ——,
AT T
n "
w w
/ k . I 0
r, = k>1 with ry= ——————
k " " mo = 0 1" ">
wy_ +w, +wy wy + wy
p,@:l—q,’c—r;{, k>1
B Wi wi
By considering the sequences (sg)k,(fx)x Where sy = ——,tx = — .,k > 1 we
w w
k k
may obtain that
1— q/ — r/_ q/
Sk = k k,tk: k=l Ak - Sk, for every k> 1.

I / i
qx e k-1
For given sequences (q;)ken, (r;)ken it is obvious that (sg)x=1,(fk)x=>1 exist and
are unique for those sequences, that is, the sequences (W} )ken,(w; )ken are defined
uniquely, up to multiplicative constant factors, by

"

/" wo
wk e
S1 82 ... 8k

"

" Wy
wk =
ftr... 1

(the unicity is based on the constant factors w, wy' )
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3.2 Random Environments

Let us consider the random walk on Z, with transitions k — (k+1), k — (k—1) and
k — k whose transition probabilities (pi)kez , (Tk)rez constitute stationary ergodic
sequences. A realization of these stationary ergodic sequences is called a random
environment for this random walk. In order to investigate the unique circuit and
weight representation of this random walk in random environments, for almost every
environment, let us consider a probability space (2, .#, ), a measure preserving
ergodic automorphism of this space m : 2 +— £2 and the measurable functions
p: 2 (0,1),7r: 2 +— (0,1) such that every w € §2 generates the random
environment p; = p(mkw), e = r(m*w), k € Z. Since m is measure preserving
and ergodic, the sequences (pr)rez, (Fk)kez are stationary ergodic sequences of
random variables.

Let also S = Z" be the infinite product space with coordinates (X,,),en. Then
we may define a family (P?),ecq; of probability measures such that, for every
w € £2, the sequence (X,) ey forms a Markov chain on Z whose elements of
the corresponding Markov transition matrix are defined by

P?(Xo=0) =1,

PO (X1 =k +1/X, = k) = pm*o),

P (Xps1 = k/ Xy = k) = r(m*w),

P (Xpp1 =k —1/Xy =k) = 1 — p(m*o) — r(m* o) = g(m* o). k € Z,
as it is shown in Figure 3.

We have the following:

Proposition 3 For u almost every environment w € 2 the chain (X,),en has a
unique circuit and weight representation.

Proof Following an analogous way of that given in Section 3.1, let us consider the
set of directed circuits ¢, = (k, k + 1, k) and c,/( = (k, k), for every k € Z, since
only the transitions from k to k + 1, k to k — 1 and k to k are possible. There are
three circuits through each point k € Z : cx—1, ¢y and c,’(.

The problem we have to manage is the definition of the weights of the circuits.
We may symbolize by wy(w) the weight of the circuit ¢ and by wy (w) the weight

rim>m) rim™=m) nm'm) nm’m) rm'm) nm-m) nmm)

pim™ ) O p(m°e) m p(m'm) O p(mm) m

0W-O0WO0W O W-0WOWO

qum=m) qumTm) qim-m) qim'm) qim m) qimm)

Fig. 3 The Markov chain (X},),en (random environments)
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of the circuit ¢ , for every k € Z. For the definition of weights let us consider the
sequences (br(®))kez, (¥ (@))kez defined by

_ wi(w) _ w(w)
br(w) = @)’ Yi(w) = —w,/{,l(w)’k eZ.
As a consequence, we may have
_ p(m*w) _pm*e) _p oy
br(w) = 1= pnfe) — rimfe) — gunfe) — g (m"w), (3.3)
k k—1
Yi(w) = rmw)  pln” o) - by (w), forevery k € Z. (3.4)

T ormw) p(m*w)

Given the stationary ergodic sequences (px)kez,(rk)kez, for which every w € 2
generates the random environment p; = p(mka)), ry = r(mka)), k € 7Z, we have
that the preceding equations (3.3), (3.4) give a unique definition of the sequences
(br(w))kez, (Vi (@))kez for p-almost every w, by the ergodicity of m. Then the
sequences of weights (wi (w))kez and (w,/C (w))kez are defined uniquely by

wi (@) = wo(w)b (@) - ba(w) ... br(w), k € Z7,

wo(w)

ke Z*,
bo(@) - b_1(w) - b2 (@) - - - bry1 ()

wi(w) =

and

wy (@) = wy(@)y (@) - yo(@) -y (w), k € 27,
w(w)

JkelZr.
Yolw) - y_1(@) - Y (@) -+ Yy (@)

wi(w) =

(the unicity of the weight sequences (wi(®))kez, (w,’((a)))kez is understood up to
the constant factors wqo(w) and w6 (w)).

Let us now introduce the ‘“adjoint” random walk in random environment
(X))nen. For every w € 2 and for the family (P®),ep of probability measures,
the sequence (X)) en is a Markov chain on Z whose elements of the corresponding
Markov transition matrix are defined by

P(Xy =0) =1,

PY(X) =k —1/X, =k = pm*o),

P(X, ., =k/X| = k) = r(m*o),

PO(X) =k +1/X, =k =1— pm*w) — r(m*e) = g(m* o), k € Z,

as it is shown in Figure 4.



196 C. Ganatsiou

nm-w) nm-m) nm-'m) nmm) HJI'I nm T‘I'Il"'i

ey e Tl oo Sl g T se L oo 6
WO C@CG)

plm™~m) p(mm) plm-m) p(m'm) plmrm) plmra

Fig. 4 The “adjoint” Markov chain (X},),en (random environments)

So we have the following:

Proposition 4 For u almost every environment w € 2, the chain (X))nen has a
unique circuit and weight representation.

Proof As in Proposition 3, the problem we have also to manage here is the definition
of the weights of the circuits. To this direction we may denote by w} () the weight
of the circuit ¢ = (k + 1, k, k 4 1) and by w}(w) the weight of the circuit ¢/ =
(k, k), for every k € Z. By using an analogous way of that given before for the chaln
(Xun)nen, let us consider the sequences (£x(w))kez, (tk (w))kez, defined by

_wf @) _w@
Li(w) = W (@ ti(w) = ,/,( )
such that
(@) = p(m*w) _ pmfw) N 35
k“’_1—pw%»—Mm%»_qm%»=Em“” )
k—1 _ kN k
(@) = r(m“~'w) 1— pm*w) — r(m“w) (). (3.6)

r(mkw) 1 — pm*=lw) — r(m*1w)

for every k € Z.
Then the sequences of weights (w} (®))kez, (W}’ (w))kez are defined uniquely by
"
wj (@) = v () ke,
(o) - b () - L3(w) - - L (w)
wy () = wy (@) - Lo(@) - -1 (@) - £2(@) - £p33(@) - Ly 12(w) - by1(@), k € ZF

and
///(a))
H(w) b))

wy () = wy (@)tg(@) - 11 (@) - t_2(®) - - - 3 (@) - tr2(w) - fry1 (@), k € ZE

wy (w) = kelZi

(the unicity of the welght sequences (w} (w))kez, (W} (w))kez is understood up to
the constant factors wy (w), wy’ (w)).
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4 Recurrence and Transience

4.1 Fixed Environments

We have that for the chain (X,),en there is a unique invariant measure up to a
multiplicative constant factor 1 = wi—1 + wi +wy, k > 1, o = wo + wy, , while
for the chain (X,@)neN, Mﬁc = u{,’(’_.l +w) +w! k 2 1 with g = wg + w(’)”.. In
the case that an irreducible chain is recurrent there is only and only one invariant
measure (finite or not), so we may obtain the following:

Proposition 5

(i) The chain (Xn)nen defined as above is positive recurrent if and only if

S oo

1
> (biby... be) < +oo<0r_.zwk - +oo>,
k=1 wo k=1
o0 1 00
Y wivave) <+°°(OVJ'ZWJQ <+oo).
k=1 0 x=1

(ii) The chain (X)nen defined as above is positive recurrent if and only if

1  J—
- 00 . VA 00 ,
Sk<+ (orw// ](Z:‘:wk<+ )

WK

k:1 Sl .Sz-.- 0
Z—<+oo or ,,,-Zw,@”<+oo .
=1 t] 't2"'tk wO =

In order to obtain recurrence and transience criteria for the chains (X, )nen, (X))nen
we shall need the following proposition [11]:

Proposition 6 Let us consider a Markov chain on A which is irreducible. Then if
there exists a strictly increasing function that is harmonic on the complement of a
finite interval and that is bounded, then the chain is transient. In the case that there
exists such a function which is unbounded the chain is recurrent.

Following this direction we shall use a well-known method-theorem based on the
Foster-Kendall theorem ([11]) by considering the harmonic function g = (g, k >
1). For the chain (X,,),¢n this is a solution of

po- 81+ 71080 = &o,
Dk - 8k+1+ qk - 8k—1+ Tk - 8k = 8k k > 1.
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Since Agr = gk — gk—1, for every k > 1, we obtain that

Pk - 8k+1 1 Gk - 8 — qk - 8k + Gk - 8k—1 + Tk - 8k = 8k

or
Pk - (Agk+1 + 8k) + Gk - 8k — Gk * 8k + qk - 8k—1 + Tk - 8k = 8k
or
Pk Agk+1 + (Pk + gk +71) - 8k — qk - 8k + Gk - 8k—1 = &k
or
Pk - Agk+1 — qk - (8k — 8k—1) =0
or

Pk + Agk+1 = qk - Agk-

A
If we put oy = A 8k we get oy = Pk (with pr = 1 — g — 1),k > 1,

k+1 k

which is the equation of the definition of the sequences (sx)i>1 and (t)x>1 (as a
multiplicative factor of the (sy)x=1 ) for the chain (X}),en such that ¢, = gz,
r; = r, for every k > 1. This means that the strictly increasing harmonic functions
of the chain (X,),ecn are in correspondence with the weight representations of the
chain (X),)nen such that

G =PX,  =k+1/X,=k) = P(Xpy1 =k —1/X, =k) = qx,

n=PX, =k/X,=k) = P(Xyp1 =k/Xp=k) =rr, 4.1)

pe=1—q.—r.=1—qx—rc= pk, for every k > 1.
To express this kind of duality we shall call the chain (X),),en, the adjoint of the
chain (X,)nen and reciprocally in the case that the relation (4.1) is satisfied.

Equivalently for the chain (X},),eny the harmonic function ¢' = (g, k > 1)
satisfies the equation

o 80+ a0 81 = 8o
912'812+1+P;/<'g;/(_1+r,i~g,’(=g,’(,kz1.

Since Ag, = g, — g;_,. forevery k > 1, we have that

G - (A8iyr + 80 + Pl 8k — Pic- 8k + Pl - 8kt + 7% 8k = 8k
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or
(Pr+qk + 1) 8+ Gk A8k — P 8+ P 8k—1 = 8k
or
G- A1 = Pi - (8 — 8k—1) = Pi - Agy-
If we put 8; = Agl/('fl we get B, = :—I} (with g, = 1 — p; —rp).k > 1, which is the

equation of the definition of the sequer];ces (br)k>1 and (¥ )k>1 (as a multiplicative
factor of the (bx)r=1 ) for the chain (X,)nen such that p; = pi,r; = ri for
every k > 1. By considering a similar approximation of that given before for the
chain (X,),ey We may say that the strictly increasing harmonic functions of the
chain (X),),en are in correspondence with the weight representations of the chain
(Xn)nen such that equivalent equations of (4.1) are satisfied.

So we may have the following:

Proposition 7 The chain (X,)nen defined as above is transient if and only if the
adjoint chain (X))nen is positive recurrent and reciprocal. Moreover the adjoint
chains (Xp)nen, (X, nen are null recurrent simultaneously.

In particular

(i) The chain (X,)nen defined as above is transient if and only if
— Z w) < 400 and —; 7 Z wy < 4o0.
Yo i Yo i
(ii) The chain (X)nen defined as above is transient if and only if
Zwk<+ooand Zwk<+oo
k=1 w k=1
(iii) The adjoint chains (X,)nen,(X))nen are null recurrent if
1 1 = , 1 IR
DT B DSyt G
0 k=1 Yo o Yo 1o Yo =

Proof The proof of Proposition 7 is an application mainly of Proposition 6 as well
as of Proposition 5.
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4.2 Random Environments

Regarding the criteria of recurrence and transience in the case of fixed environments,
we have already proved that the behaviors of recurrence and transience for the
“adjoint” chains (X,)nen,(X,)nen are tied together and depend on the convergence
or not of the series

S Sl Y S
k=1 k=1 k=1 k=1

In the case of random environments the recurrence and transience are properties
which are true for p almost every environment w € £2 or for p almost no
environment, because the system (§2, %, u, m) is supposed to be ergodic. This is
true in general for a random walk in a random environment which is irreducible.

In order to investigate suitable criteria for the transience and recurrence of
the corresponding uniquely defined circuit chains describing the above-mentioned
random walk with jumps in a random environment, we may use the criteria given in
the study for fixed environments for the chains (X,)nen , (X),)nen restricted to the
half-lines [i, +00) with reflection in i. According to the criterion in the case that

+00 +00
Zwk(a)) < 400 and Z w(w) < 400, pu—ae.
k=1 k=1

we have that the restricted chain (X;,),en is positive recurrent on [i, +00), while the
restricted “adjoint” chain (X,),en i transient on [, +00), since it is known that the
chain (X} ),en defined as above is positive recurrent if and only if its “adjoint” chain
(X!)nen is transient and reciprocal. An analogous result is obtained in the case of
the half-lines (— o, j] with reflection in j.

Therefore we have the following:

Proposition 8 The random walk (X,),en in random environments defined as
above is transient, for @ — a.e. environment w € $2, if and only if its “adjoint”
random walk (X))yen is positive recurrent and reciprocal. Moreover the adjoint
random walks (Xp)nen and (X)) nen are null recurrent simultaneously.

Proof Taking into account the Birkoff’s ergodic theorem for the sequences
(br(@))kez, (Vi (@))kez for p-almost every w (see relations (3.3), (3.4)), we may
write

k
wi(@) = wo(@) [ Jba@) ~ e, k e 27,
d=1

—kt1) -

wi(@) =wo(@) | [] boalw)| ~e ™. kez?,
d=0
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wy (w) —wo(a))l_[yd(a)) ~ ek ke rr,
d=1

—(k+1)
wy () = wy(w) 1_[ v_q(@) ~e ke ke

for the sequences of weights (wi(®))kez, (w,/c (w))rez of the chain (X,),ecn.
Following an analogous way for the “adjoint” chain (X,),en We have

X —1
wi (@) = wj (o) {]‘[ Ed(a)):| ~e R ke,

d=1
—(k+1)

w (@) = wi(@) [] t-alw) ~e* kez”,
d=0

-1

wy () = wy' (@) |:l_[ td(a)):| ~eke ke Z?,

d=1
—(k+1)
w)' (@) =wg' (@) [] ta)~e kezr,
d=0

for the sequences of weights (w) (w))kez, (W} (®))kez., of the chain (X}),en. We
take into account the following cases:

(i) ¢ < 0. We get

Zwk(w) < 400, Z wi(w) < 400, Zwk(w) < 400, Z wk(a)) < 400,

k=1 k=—o00

k=—00
+00 0 +00 0
Y wl(@) =400, Y wi(w) =+00, Y w(@) =+oco, Y w{(w)=
k=1 k=—o00 k=1 k=—o00

By using the criterion given in subsection 4.1 for the chains (X,)nen and (X))nen
restricted

(a) to the half-lines [i, + o) with reflection in i, we have that the restricted chain
(Xy)nen is positive recurrent on [, + ), while the restricted chain (X),),en is
transient,

(b) to the half-lines (— o, j] with reflection in j, we have also that the restricted
chain (X,),en 1S positive recurrent on (— o, j], while its adjoint chain
(X )nen is transient.
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@ii) ¢ > 0. We get

+00 0 +o0 0
Y (@) =+o0, Y wi(w) =+00, Y wi(w) =+00, Y wi(w)=+oo,
k=1

k=—00 k=1 k=—o00

+o00 0 +00 0
Zw,f(a)) < 400, Z wy (w) < +oo,z w! (®) < 400, Z w (w) < +00.
k=1

k=—o00 k=1 k=—o00

Regarding the criterion given in subsection 4.1 for the chains (X,,)nen and (X))nen
restricted

(a) to the half-lines [i, + o) with reflection in i, we have that the restricted chain
(Xn)nen is transient on [, + ), while the restricted chain (X),),en is positive
recurrent,

(b) to the half-lines (— o, j] with reflection in j, we have also that the restricted
chain (Xp),en is transient on (— o, j], while its adjoint chain (X))nen is
positive recurrent.

(iii) ¢ = 0. Regarding the ergodic theorem, it is well-known that the averages
k—1

% Z(fom" ) take infinitely many values greater than the limit and infinitely many

n=0
values smaller than the limit. This means that in the sequences of weights

(wi(@)kez, (W (@)kez, (W} (@)kez, (W} (®))kez,

for a.e. w € £2, infinitely many values in both directions are greater than 1. As a
consequence, we may have that

+00 0 +o00 0
Y wk(@) =400, Y wi(@) =400, Y wi(w) =+oo, Y wi(w) = +oo,
k=1

k=—00 k=1 k=—o00

400 0 +o00 0

Z w] (w) = +00, Z w} (w) = —+—oo,z w} (@) = +00, Z w} (@) = +o0.
k=1 k=—00 k=1 k=—00

By using the criterion of null recurrence for the chains (X,),en, (X),)nen restricted
to the half-lines [i, +00) and (— , j] with reflection in i, j respectively, in the case
of fixed environments, we may have also that both chains are null recurrent on Z,
foru —a.ew € £2.
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On Selections of Some Generalized )
Set-Valued Inclusions ik

Bahman Hayati, Hamid Khodaei, and Themistocles M. Rassias

Abstract We present some results on the existence of a unique selection of a set-
valued function satisfying some generalized set-valued inclusions.

1 Introduction

For a nonempty set Y we denote by §o(Y) the family of all nonempty subsets of Y.
In a linear normed space Y we define the following families of sets:

ccl(Y) :={A € §o(Y) : Aisclosed and convex set} ,
cclz(Y) :={A € §o(Y) : Ais closed and convex set containing 0},
ccz(Y) :=={A € §o(Y) : A is compact and convex set containing 0} .
The diameter of a set A € §o(Y) is defined by
8(A) :=sup{lla—>b|: a,b e A}.
Let K be a nonempty set. We say that a set-valued function F : K — Fo(Y) is
with bounded diameter if the function K > x + & (F(x)) € R is bounded. Finally

recall that a selection of a set-valued map F : K — §o(Y) is a single-valued map
f : K — Y with the property f(x) € F(x) forallx € K.
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Smajdor [1] and Gajda and Ger [2] proved that if (S, +) is a commutative
semigroup with zero and Y is a real Banach space, then F : § — ccl(Y) is a
subadditive set-valued function; i.e.,

F(x+y)C F(x)+ F(y), x,y€S,

with bounded diameter admits a unique additive selection (i.e., a unique mapping
f:8— Ysuchthat f(x +y) = f(x)+ f(y) and f(x) € F(x) forall x,y € §).
In 2001, Popa [3] proved that if K # ( is a convex cone in a real vector space X
(i.e.,sK+tK C K foralls,t > 0)and F : K — ccl(Y) (where Y is areal Banach
space) is a set-valued function with bounded diameter fulfilling the inclusion

F(ax+ By) CaF(x)+ BF(y), x,y €K,

for o, B > 0, @ + B # 1, then there exists exactly one additive selection of F.
Set-valued functional equations have been investigated by a number of authors
and there are many interesting results concerning this problem (see [4—14]).
We determine the conditions for which a set-valued function F : K — Fo(Y)
satisfying one of the following inclusions

oy Flax)+8a ' F(x) C 207" (0, F(x) + 0, F(x)) + 4aF (x),
0y Fox) +8F(x) C2(0yF(x) + 0. F(x)) + 4a’F (x),
oy F(ax) +8aF(x) C 2u (0yF(x) + 0, F(x)) + 4’ F (x),

oy Flax) + 40 QF(x) + F(y) + F(2)) € 20* (0 F(x) + 0. F (x))
+20.F(y) +4a*F(x) (1)

for all x, y, z € K and any fixed positive integers « > 1 admits a unique selection
satisfying the corresponding functional equation. Here o, F'(x) denotes o F(x) =

Fx+y)+F(x—y),andoy F(x)denoteso,  F(x) =0, (ayF(x)) =0, F(x+
V) +oFlx—y).

2 Selections of Set-Valued Mappings

In what follows we give some notations and present results which will be used in
the sequel.
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Definition 1 Let X be a real vector space. For A, B € §o(X), the (Minkowski)
addition is defined as

A+B={a+b: aecA, be B}
and the scalar multiplication as
M ={ a: a € A}

for A € R.

Lemma 1 (Nikodem [15]) Let X be a real vector space and let A, u be real
numbers. If A, B € §o(X), then

AMA 4+ B) = LA + AB,

A+ WA C LA+ LA
In particular, if A is convex and A > 0, then

A+ wA =r1A+ uA.

Lemma 2 (Radstrom’s Cancelation Law) Ler Y be a real normed space and
A, B, C € §o(Y). Suppose that B € ccl(Y) and C is bounded. If A+ C C B + C,
then A C B.

The above law has been formulated by Radstrom [16], but the proof given there
is valid in topological vector spaces (see [17, 18]).

Corollary 1 Let Y be a real normed space and A, B, C € §o(Y). Assume that
A, B € ccl(Y), C is bounded, and A+ C = B+ C. Then A = B.

Nikodem and Popa in [9] and Piszczek in [12] proved the following theorem.

Theorem 1 Let K be a convex cone in a real vector space X, Y a real Banach
space and o, B, p,q > 0. Consider a set-valued function F : K — ccl(Y) with
bounded diameter fulfilling the inclusion

F(ax+ By) C pF(x) +qF(y), x,y € K.

If o + B < 1, then there exists a unique selection f : K — Y of F satisfying the
equation

flax+By) =pf(x)+qf(y), x,y K.

Ifa + B > 1, then F is single valued.
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The case of p + g = 1 was investigated by Popa in [14], Inoan and Popa in [5]. By
means of the inclusion relation, Park et al. [7, 11] investigated the approximation of
some set-valued functional equations.

We now present some examples. A constant function F : K — ccl(Y), F(x) =
M for x € K, where K C X is a cone and M € ccl(Y) is fixed, satisfies the
equation

F(ax +By) =pF(x)+qF(y), x,y €K,

and each constant function f : K — Y, f(x) = m forx € K, wherem € M is
fixed, satisfies

flax +By) = pf(x)+4qf (), x,y€K.
The set-valued function F' : R — ccl(R) given by
Fx)=[x—-1,x+1], xeR,

satisfies the equation

b 9 GR’
2 2 Y

F(x—i—y) _Fx)+F(y)
and each function f : R — R,
fx)=x+c, xekR,

where ¢ € [—1, 1] is fixed, is a selection of F and satisfies

f<X+y) )+ fy)
2 o 2

, x,y€R.

In the rest of this paper, unless otherwise explicitly stated, we will assume that
(K, +) is a commutative group, Y is a real Banach space, and k is a positive integer
less than or equal to 3.

Theorem 2 Let F : K — cclz(Y) be a set-valued function with bounded
diameter.

ON/

> o, Fax) +8F(x) C2(0yF(x) + 0, F(x)) +4a’F(x),  (2)

forall x,y,z € K, then there exists a unique selection f : K — Y of F such
that, forall x,y € K, (i) f(x +y) = f) + f) ifk = 1; (i) oy f(x) =
2f(x)+2f(y) ifk =2; (iii) oy f(2x) =20, f(x) + 12 f(x) ifk = 3.
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@ I
2(0yF(x) + 0. F(x)) + 40’ F(x) C a* *o, . F(ax) + 8F (x) (3)

forallx,y,z € K, then F is single-valued.
Proof
(1) Letting y = z = 01in (2), we have

a2 K (F(ax) + F(ax) + F(ax) + F(ax)) + 8F(x)
C2(F(x)+ F(x) + F(x) + F(x)) + 42 F (x)

for all x € K. Since the set F(x) is convex, we can conclude from Lemma 1
that

40> FF(ax) + 8F (x) € 8F (x) + 40 F (x)
for all x € K. Using the Radstrom’s cancelation law, one obtains
F(ax) C (xkF(x)
for all x € K. Replacing x by o"x, n € N, in the last inclusion, we see that
a KD B+ C ok E (ol x)

for all x € K. Thus (@ ¥ F (oz”x))neNO is a decreasing sequence of closed
subsets of the Banach space Y. We also get

) (ot_k”F((x”x)) =a ks (F(ot"x))
for all x € K. Now since sup,.x 6 (F(x)) < 400, we get that

lim & (ofk"F(a"x)) =0

n——+00

for all x € K. Hence

: —kn n _ —kn n .
nl}I—iI-looa Fa"x) = Q o ""F(a"x) = f(x)
nelNg

is a singleton. Thus we obtain a function f : K — Y which is a selection of F.
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We will now prove that f for m = 1, 2, and 3 is additive, quadratic, and
cubic, respectively. We have

Otsz(nJrl)Ua"y,a"zF(Oln+1x) + QoK1 F(a"x)

C 207k (g any F(@"x) + 0 gn. F(@"x)) + 4o *" 2 F (o x)
forall x, y,z € K and n € N. By the definition of f, we get
a> Koy flax) +8f(x)
= > Fogny anz Npen, @ ¥ F @) + 8, ey, @ ¥ F(@x)
= Mpeny (@Ko gny qn, F (@ x) + 8074 F (o))

C Mueny (2074 (o qny F(0"x) + 0gn. F (0" x)) + 4K 2 F (o' x))
for all x, y, z € K. Thus we obtain

le? oy o fax) +8f(x) =20y f(x) — 20 f(x) — 4a® f (x) |
<$§ (Za’k” (oanyF(a"x) 4+ 0on.F(a"x)) + 4a’k”+2F(a"x))
=26 (a’k”aanyF(oz”x)) + 28 (oz’k"oanzF(a”x)) + 4028 (ofk"F(ot”x))

which tends to zero as n tends to co. Thus
> oy flax) =2(o, f(x) + o, f(x)+4 <a2 - 2) fx) 4)

for all x, y,z € K. Setting x = y = z = 0in (4), we have f(0) = 0. Putting
y = 01in (4) and using f(0) = 0, one gets

o fax) =0 f@ +2(a? ~ 1) F@)

for all x, z € K. Based on Theorem 2.1 of [19] (also see [20, 21]), we conclude
that, forall x,y € K, if k = 1, then f(x + y) = f(x) + f(y), if k = 2, then
oy f(x) =2f(x)+2f(y)andif k =3, theno, f(2x) =20, f(x) + 12 f(x).

Next, let us prove the uniqueness of f. Suppose that f and g are selections
of F. We have (kn) f(x) = f(knx) € F(knx) and (kn)kg(x) = g(knx) €
F(knx) for all x € K and n € N. Then we get

kn)* || f (x) — gl = || kn)* £ (x) — (kn)rg(x) ||
= || f (knx) — g(knx)||
< 268 (F(knx))
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forall x € K and n € N. It follows from sup, g § (F(x)) < 400 that f(x) =
g(x) forallx € K.

(2) Letting y = z = 0in (3) and using the Radstrdm’s cancelation law, one gets
F(x) € a %F(ax) forall x € K. Hence,

F(x) Ca™™F@"x) Ca*"VF@" ')

for all x € K. It follows that (a_k"F (oz"x))neNO is an increasing sequence of
sets in the Banach space Y. It follows from sup, . ¢ 8 (F(x)) < +oo that

lim § (a_k”F(o/‘x)) _

n——+00

lim o "8 (F(a"x)) =0

n—-+o0o

forall x € K. Then, foralln € Ny and x € K, a %" F (a"x) is single-valued
and

C(z_kO'y’zF(le) =2 (oyF(x) + chF(x)) +4 (a2 — 2) F(x)

for all x,y,z € K. By adopting the method used in case (1), we see that,
forall x,y € K,if k = 1, then F(x + y) = F(x) + F(y), if k = 2, then
oyF(x) =2F(x)+2F(y)andif k = 3, then o, F(2x) = 20, F (x) + 12F (x).

Theorem 3 Let F : K — cclz(Y) be a set-valued function with bounded
diameter.

(1) If F satisfies the inclusion (1), then there exists a unique selection f : K — Y
of F suchthatoy f(2x) =40, f(x) +24f(x) —6f(y) forallx,y € K.
@ If

20 (0y F(x) + 0, F(x)) + 20, F(y) + 4a* F (x)
Coy Flax)+ 40 QF(x) + F(y) + F(2)) (%)

forall x,y,z € K, then F is single-valued.
Proof
(1) Letting y =z = 01in (1), we have

F(ax) + F(ax) 4+ F(ax) + F(ax) + 402 QRF(x)+ F(0) + F(0))
C 202 (F(x) + F(x) + F(x) + F(x)) + 2 (F(0) + F(0)) 4+ 4a*F (x)

for all x € K. Hence, from the convexity of F(x) and Lemma 1, we see from
that

F(ax) +20%F(x) + 20> F(0) € 2aF (x) + F(0) + o* F(x) (6)
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for all x € K. Setting x = 0 in (6), we have
(42 +1) FO) < (o* + 202 4+ 1) F(O),
and using the Radstrom’s cancelation law, one obtains
{0} € F(0). (N
Again applying (6) and the Radstrom’s cancelation law, one gets
F(ax) 4+ 2a? — 1)F(0) C a*F(x) (8)
for all x € K. It follows from (7) and (8) that
F(ax) C F(ax) + 2a> = )F(0) C o’ F(x)
for all x € K. Hence
Q=D F ) € o F (o x)

for all x € K. In the same way as in Theorem 2, we obtain a function f : K —
Y which is a selection of F and

0y flax) =202 (0, f(0) +0:f () +2(a? =2) f()
+2(0fm=2(2) f0) 4?1 O

forall x,y,z € K. Setting x = y = z = 01in (9), we have f(0) = 0. Putting
y = 01in (9) and using f(0) = 0, one gets

o flax) =a’o f(x) + 2@ = 1) f(x) +2(1 —a?) f(2)
for all x, z € K. Based on Theorem 2.1 of [22], we conclude that f is quartic;
ie,o,f(2x) =40, f(x)+24f(x) —6f(y) forallx,y € K.

(2) Letting y = z = 0 in (5) and using the convexity of F(x) and the Radstrom’s
cancelation law, we obtain

o F(x) + F(0) C F(ax) + 2> F(0)
for all x € K. Substituting x, y, and z by zero in (5) yields

F(0) < {0}.
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From the last two inclusions, it follows that
«*F(x) € F(ax) + 2a* — )F(0) C F(ax)
for all x € K. Hence,
F(x) € a ™ F(a"x) C a4+D po"x)

for all x € K. In the same way, as in Theorem 2, we deduce that F is single-
valued and o F(2x) =40 F(x) + 24F(x) — 6F(y) forall x, y € K.

3 Set-Valued Dynamics and Applications

In this section we present a few applications of the results presented in the previous
sections.

Theorem 4 If W € ccz(Y) and f : K — Y satisfies
00 f(@x) =20, f(1) = 20.f (1) +4 (2= o?) fx) € W (10)
forallx,y,z € K, then there exists a unique function T : K — Y such that
aoy  T(ax) =2(0yT(x) +0,T(x))+4(«? —2) T(x),
1
T(x)— f(x) (S mw

forallx,y,z € K.
Proof Let F(x) := f(x) + mw for x € K. Then

0oy Flax) +8F(x) = a0y - fx) + 81 (x) + ;525 W
C 20, f(x) +20.f(x) +4>f(x) + ;L2 W + W
=2 (oyf(x) + mw) +2 <0zf(x) + m‘@

4o (f(x) + mW)

=2(0yF(x) +0.F(x)) + 40’ F (x)
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for all x, y, z € K. Now, according to Theorem 2 with k = 1, there exists a unique
function 7 : K — Y such that

aoy  T(ax) =2 (oyT(x) + O'ZT()C)) +4 <a2 — 2) T(x)

forall x,y,z € K and T(x) € F(x) forallx € K.

Corollary 2 Suppose W € ccz(Y) and f : K — Y satisfies (10) forall x, y, z €
K. Then there exists a unique additive function T : K — Y such that, forall x € K,

1
T(x)— —W
() = fx) € 12 )
We recall that a semigroup (S, +) is called left (right) amenable if there exists a
left (right) invariant mean on the space B(S, R) of all real bounded functions defined
on S. By a left (right) invariant mean we understand a linear functional M satisfying

ingf(X) < M(f) <sup f(x),
xXe

xes§

and

M f)=M(f) M(fa) =M(f))

for all f € B(S,R) and a € S, where ,f (f,) is the left (right) translate of f
defined by , f(x) = f(a + x), (fa(x) = f(x +a)), x € S.If, on the space
B(S, R), there exists a real linear functional which is simultaneously a left and right
invariant mean, then we say that S is two-sided amenable or just amenable.

One can prove that every Abelian semigroup is amenable. For the theory of
amenability see, for example, Greenleaf [23]. Finally, let us see a result in [24].

Theorem 5 Let (S, +) be a left amenable semigroup and let X be a Hausdorff
locally convex linear space. Let F : S — Fo(X) be set-valued function such that
F(s) is convex and weakly compact for all s € S. Then F admits an additive
selection if, and only if, there exists a function f : S — X such that

fls+1) = f@t) € Fs) 1)

foralls,t € S.
As a consequence of the above theorem, we have the following corollaries.

Corollary 3 Let (S, +) be a left amenable semigroup and let X be a reflexive
Banach space. In addition, let p : § — [0,00) and g : S — X be arbitrary
functions. Then there exists an additive function a : S — X such that

[ha(s) —g@s) < p(s) 12)
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forall s € S, if, and only if, there exists a function f : S — X such that

I fls+0)—f)—g(s) lI< p(s) 13)

foralls,t € S.
Proof Define a set valued map F : S — §o(X) by

Fs)={xeX: [[x—g@) = ps)}

for all s € S. Then, due to the reflexivity of X, F' has weakly compact nonempty
convex values. It follows from (12) that a is a selection of F, and (13) is equivalent
to (11). Now, the result follows from Theorem 5.

Corollary 4 (Ger [25]) Let (S,+) be a left amenable semigroup, let X be a
reflexive Banach space, and let p : S — [0, 00) be an arbitrary function. If the
function f : S — X satisfies || f(s+1t)— f(s) — f@) |< p(s) forall s,tin S,
then there exists an additive function a : S — X such that | f(s) —a(s) ||< p(s)
holds for all s in S.
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Abstract The fractional integral and differential operators involving the family
of special functions have found significant importance and applications in various
fields of mathematics and engineering. The goal of this chapter is to find the
fractional integral and differential formulas (also known as composition formu-
las) involving the extended incomplete generalized hypergeometric functions by
using the generalized fractional calculus operators (the Marichev—Saigo—Maeda
operators). After that, we established their image formulas by using the integral
transforms like: Beta transform, Laplace transform and Whittaker transform. More-
over, the reduction formulas are also considered as special cases of our main
findings associated with the well-known Saigo fractional integral and differential
operators, Erdélyi-Kober fractional integral and differential operators, Riemann-
Liouville fractional integral and differential operators and the Weyl fractional
calculus operators.
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1 Introduction

Throughout the chapter let C, R™, N and Z be the sets of complex numbers,
positive real numbers, positive integers and non-positive integers, respectively and
let Rg :=RT U {0}, Ng := NU {0} and " (%) is the familiar Gamma function.

The fractional calculus is nowadays one of the most rapidly growing subjects of
mathematical analysis in spite of the fact that it is nearly 300 years old. Yet the giants
of mathematics, G.W. Leibnitz and L. Euler, thought about the possibility to perform
differentiation of non-integer order. The real birth and far-reaching development of
the fractional calculus is due to numerous attempts of mathematicians during the
nineteenth century to beginning of twentieth century. It is practically impossible to
name all important contributions made in construction of early stages of building of
the fractional calculus (see the project by the Frac. Calc. Appl. Anal. [1-3]). New
era in the development of this branch of mathematical science began 40-50 years
ago due to numerous applications of fractional-type models and is continued up to
now. One can mention a large list of areas of applications, in particular, continuum
mechanics [4, 5] ( viscoelasticity [6], thermodynamics [7] and anomalous diffusion
[8]), astrophysics [9], nuclear physics [10], nanophysics and cosmic physics [11,
12], statistical mechanics [13], fractional order systems and control [14—16], finance
and economics [17].

Among the monographs developing the theory of fractional calculus and pre-
senting some applications, we have to point out monographs by Diethelm [18],
Kiryakova [19], Kilbas, Srivastava and Trujillo [20], Miller and Ross [21], Oldham
and Spanier [22], Podlubny [23], and of course “the Bible of fractional calculus”,
monograph by Samko, Kilbas and Marichev [24]. Interested reader can find in these
books an extended list of publications on the theory and applications of fractional
calculus (see also, for example, [3, 25-30]). A rich literature is available revealing
the development of fractional calculus involving various special functions (see [31—
36]).

A special role of the incomplete hypergeometric functions in the fractional
calculus has been discovered by many scientists from different point of view. The
theory of the incomplete Gamma functions, as a part of the theory of confluent
hypergeometric functions, has received its first systematic exposition by Tricomi
[37] in the early 1950s. Musallam and Kalla [38, 39] considered a more gener-
alized incomplete gamma function involving the Gauss hypergeometric function
and established a number of analytic properties including recurrence relations,
asymptotic expansions and computation for special values of the parameters as
well as some researchers have shown that incomplete Gamma functions can be
used in closed form solutions to several problems in heat conduction with time-
dependent boundary conditions. Following the line of the above-mentioned works
several investigations related to this function, its generalizations and related special
functions have been done at the beginning of this century. Nowadays this function
and its numerous generalizations are involved in the different fractional models (see
monographs listed above). Special role of the incomplete hypergeometric function
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was pointed out by Srivastava [40—42], including it into the class of special functions
for fractional calculus.

Due to this exceptional role of the incomplete hypergeometric functions any
new exact result involving these functions seems very interesting. This chapter
is devoted to the properties of the so-called Marichev—Saigo—Maeda generalized
fractional calculus operators, i.e. integral transform of the Mellin convolution type
with the Appell (or Horn) function F3. This operator was introduced nearly 40
years ago by Marichev [43] and studied in some recent papers, including the
papers by Saigo and Maeda [44] and by Saigo and Saxena [45]. The aim of the
present chapter is to establish fractional integral and differential formulas (also
known as composition formulas) involving the extended incomplete generalized
hypergeometric function by using the generalized fractional calculus operators (the
Marichev—Saigo—Maeda calculus operators). After that, we present their image
formulas by using the integral transforms like: Beta transform, Laplace transform
and Whittaker transform. Moreover, the reduction formulas are also considered as
special cases of our main findings associated with the well-known Saigo fractional
integral and differential operators, Erdélyi-Kober fractional integral and differential
operators, Riemann-Liouville fractional integral and differential operators, and the
Weyl fractional integral and differential operators, respectively.

2 Fractional Calculus Operators and Their Formulas

In this section we recall some known facts about the Marichev-Saigo-Maeda
generalized fractional calculus operators and their special cases. Let us begin with
few notions and facts related to the fractional calculus operators.

In 1974, Marichev [43] introduced fractional integral operators as Mellin type
convolution operator with the Appell function F3 in their kernel. In the middle of the
1990s, these fractional integral operators were rediscovered and studied by Saigo
[46—48] and which was later on extended and studied by Saigo and Maeda [44]
and by Saigo and Saxena [45] as generalizations of the celebrated Saigo fractional
integral operators.

The generalized fractional calculus operators (the Marichev—Saigo—Maeda oper-
ators) involving the Appell’s function or the Horn’s F3(-) function in the kernel are
defined as follows:

Definition 1 Leto,o’,v,v,n € Cand x > 0, then for R(n) > 0

o,0' v,V
(IO’X ) (x)

P , A @.1)
/ x=0"Y%"F(o,0,v,vin1——1==) f@)dt
L) Jo X t

and



220 P. Agarwal et al.

0,0’ vV,
(") @

X7 /oo(z Y=l F ol =21 =L oy ar

— X 0,0 ,V, y s ) - - 5
rm J, ’ T T
2.2)

provided the function f(¢) is so constrained such that the integrals in Equations (2.1)
and (2.2) exist.

In Equations (2.1) and (2.2), F3(.) denotes Appell’s hypergeometric function [49]
in two variables defined as:

F3(o,0', v,V n;x, )

o) (o) £ 27 2.3)
_ S O (max{|x], lyl} < D).
o (n)m-i-n m: n!

Then the above fractional integral operators in Equations (2.1) and (2.2) can be
written as follows:

o,0',v,V _ i ¢ 0,0’ ,v+k,V' n+k
(Iosx )(x) - (dx (10”‘ f ) ), 2.4)
M) = 0;k =[N0 + 1]

and

’ ’ d k ’ ’
(1 o = (4 ) (12 ) oo

M) =0k =[=NR(n) + 1D).

2.5)

Remark 1 1tis interesting that the Appell function defined in Equation (2.3) reduces
to the Gauss hypergeometric function 7 F as given in the following relations:

F(o,n—o,v,n—vinx,y) =2F1(0,vin;x +y—xy), (2.6)
also we have
F3(0,0,v,V, n:x,y) = 2F1(0, v 15 X) (2.7)
and

F3(0,0", v,V n;x,y) =2F1(a’,V'; 03 y). (2.8)
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The corresponding Marichev—Saigo—Maeda fractional differential operators are
given as follows:

Definition 2 Leto,o’,v,v,n € Cand x > 0, Then

(Dg’,xo’,v,v/,n )(x) ( —o',—o,—V,—v, —nf) (x)

d k —o',—o,—V' +k,—v,—
:<E) (o7 o ) @, @l > 0k =[G+ 1)
2.9

o k— 10
F(k—n)< )” /(x 2

x F3 (—O'/, —a,k—v’,—v;k—n;l—— l——> f@)dt

and

(D;r’,g;,v,u’)n ) (x) = (];g;‘f(r,fu’),v,*’lf) (x)

d g —o’,—o,—Vv,—v+k,— :
- <‘E> (a7 ) @ o) > 0k =[]+ )

1 o knl
F(k—n)( dx) 0 / €=x

x F3 (—U’, —o, =V, k—vik—m1—-=,1- —) f@®)dtr.
(2.10)

In view of the above reduction formula as given in Equation (2.7), the generalized
fractional calculus operators reduce to the Saigo operators [46] defined as follows:

Definition 3 Letx > 0,0, v,n € C and R(o) > 0, then

(”" )(x) T / (x—1)7" 12F1<0+v —1n;0 1——>f(t)dt
@2.11)

and

o,V 1 o o—1l ,—o—v
(17" f) ) = %/ t—x)"'t R (o+v,—n;o; 1 —f) f(dt.
(2.12)
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where the 5 F1(.), a special case of the generalized hypergeometric function, is the
Gauss hypergeometric function and function f(¢) is so constrained that the integrals
in Equations (2.11) and (2.12) converge.

Remark 2 The Saigo fractional integral operators, given in Equations (2.11) and
(2.12) can also be written as:
Letx > 0,0,v,n € C, then

(=) (e gy,

M(o) =0; k=[N(=0)]+ 1D

and

o,V _ d g 1°= —k,v—k,n
(IS5 F) (x) = (—5) (17875 p) o, ot
MN) <0; k=[N(—0o)]+1).

And the corresponding Saigo fractional differential operators are defined as:

Definition 4 Leto,v,n € Cand x > 0. Then

( DoV )(x) ( —0,—v, U+"f) ) = (%)k (I(;§+k,—v—k,a+n—kf) (x).

M) >0 k=[N0)]+ 1
(2.15)

and

( Do nf) (x) = ( [0 cr+;7f> @) = < CZC)/‘ (I;go+k,fv7k,a+nf) (x).

M(o) > 05k = [NR(o)] + D),
(2.16)
where [x] denotes the greatest integer less than or equal to the real number x.

If we take v = 0 in Equations (2.11), (2.12), (2.15) and (2.16), we get the so-
called Erdélyi-Kober fractional integral and derivative operators defined as follows
[9, 50]:

Definition 5 Let x > 0, 0, n € C with 9i(o) > 0, then (see [20, 24])
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o, x 1
’ = o=l 2.17
(onx ) ® =T / x—0° L f () di (2.17)
and
(DL f) (x) = TG )/ (t —x)° 07 £ (1) dt, (2.18)
provided that integrals in Equations (2.17) and (2.18) converge.
The corresponding derivative operators are defined as:
Definition 6 Letx > 0, 0, n € C with 5i(o) > 0, then (see [20, 24])
(D“’" ) (x)=x7" a4 ‘ v /X " (x — D (1) dt
0.x dx) Tk—-o0) )y
d k —o+k,—o,0+n—k n
= <a> (17 f@, =R+,
(2.19)
and
(DL f) () =577 (L L / T — ke payar
oo dx) T(k—o)J,
_ k d k —o+k,—o,0+n o
=D =) (v 1)), (k =[R(@)]+1).
dx
(2.20)

When v = —o, the operators in Equations (2.11), (2.12), (2.15) and (2.16) give
the Riemann-Liouville and the Weyl fractional integral operators (see [9, 22]) are

defined as follows:

Definition 7 Let x > 0, 0 € C with R(o) > 0, then

1 X
(Ié’,xf) (x) = m/(; (x =0 f@yde
and
o — 1 > _ yo—1
() ) = 15 / (t =07 foyr,

provided both integrals converge.

The corresponding derivative operators are defined as follows:

2.21)

(2.22)
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Definition 8 Let x > 0, o0 € C with R(o) > 0, then

o _ d k 1 * k—o—1
(Do,xf) (x) = <E) m/o (x—1) f@)dt
L (2.23)
d k—o o
= (E) (1637 7) ), (k = [B(@)]+1)
and
M — (=1 i ¢ 1 /OO _ k—o—1
(DS 0o f) ) = (=D) (dx) Ty ). (VT fwar
— (4 ' 1k k=[N 1
= (-1) (a) (F2f)@,  Gk=Dl+D,
(2.24)

For detail of such operators along with their properties and applications, one may
refer [9, 20, 24, 51, 52].

Power functions formulas of the above discussed fractional operators required
for our present study are given in the following lemmas (see [44—46]):

Lemmal Leto,o’,v,v,nand p € C,x > 0 be such that R(n) > 0, then the
following formulas hold true:

(I(c)r’f’,v,v',ntp—l) (x)
_ _TF@r+n—0—oc —nl+v -0 Lpn-o—o'~1 (2.25)
Clo+VT'(p+n—0—-0)(p+n—0"—v) ’
M(p) > max{0, R(c + " +v—nR’' =)}

and

(121 @)

_Id=p—lFl-—p-—n+o+dT1-p—n+o+V)

T —p)ll—p—n+o+o" +v)I'd—-—p+0c—v)
R(p) < 1+ min{R(—v), R0 + 0" —n), R +v' —n)).

p— — /_
xp+n o—0 17

(2.26)

Lemma?2 Leto,o’,v,v',nand p € C,x > 0 be such that R(n) > 0, then the
following formulas hold true:
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(pg =)
__T@r=-nto+o +vIl(p—v+o) cP-ntota’-1 (2.27)
C(o—vI(p—n+0+d(p—n+o+V) ’
N(p) > max{0,R(n —o — o' =), RV —0)})

and

(DZ&m 1) (o)
_Td-p+ VIFA—p+n—0 -0\l —-p+n—0o' — V)xp—n+o+a/—1
rl—pld—p+n—0c—o0' =)' —p—0c'+V) ’
R(p) < 1+ minfRO'), R — o —a"), R — o’ —v)}).

(2.28)

Lemma3 Leto,v,n,p € C,x > 0 be such that R(c) > 0, then the following
formulas hold true:

’

T T(e—-wl(p+n+o) (2.29)
(M(p) > max{0, R(v — n)}.

and

(Ify.‘g”tpfl)(x)z 'd—p+v)I'd—p+n) xPvl
’ Fl—pl'd—p+n+o+v) (2.30)
M(p) < 1+ min{R(), R(n)}).

Lemmad Leto,v,n,p € C, x > 0 be such that W(o) > 0, then the following
formulas hold true:

(Da,v,ntp_l) @) = F(p'p+n+o+ V)xpﬂ_l’
0.x C(p+mT(p+v) (2.31)
(R(p) > —min{0, R(o + v+ n)})

and
F(l —pP— V)F(l —p+o+ n)xp+u—l
rd—=p+n—v)I'l —p) ’

M) < 1 +min{R(—v —n), R +0)} and n = [R(o)] + 1).
(2.32)

(DZ&m ™) ) =
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Lemma5 Let o,n,p € C, x > 0 be such that W(o) > 0, then the following
formulas hold true:

o o I'(p + _
(met”1)(x)==;;;%};i?;;xﬂ Lo @33)
and
e Pd=p+n
1 p—1 _ p—1
(K2 ) o= m gy @) < TR,
(2.34)

Lemma 6 Let o,n,p € C, x > 0 be such that W(o) > O, then the following
formulas hold true:

Fp+n+o) ,

9 —9)
T+ ) R(p) > =R +0))

(2.35)

(Dg,}?fp_l) (x) =

and

T(l—p+n) (2.36)

M) <14+NRM+0)—n and n =[R(o)] +1).

Lemma 7 Leto, p € C, x > 0be such that (o) > O, then the following formulas
hold true:

o -1 _ F('O) +o—1
(onxtp ) @ = o™ R(p) > 0) (2.37)

and

_ rd—-p _U)xp+0—l

o -1 SY — %
(Ix’ootp )(x) = , 0 < R(o) < 1 —R(p)).

(2.38)

Lemma 8 Leto, p € C, x > 0be such that W(o) > O, then the following formulas
hold true:

r
(Dg,xtp—l) (x) = %x”_“_l, R(p) > R(o) > 0) (2.39)

and
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’ INCE (2.40)

M) <14+N0o)—n and n =[NR(o)]+1).

3 Incomplete Gamma Functions and Their Generalizations

The incomplete gamma functions y (%, x) and I'(A, x), both of which are certain
generalizations of the classical gamma function I'(x), given in Equations (3.1)
and (3.2) respectively, have been investigated by many authors. The incomplete
gamma functions have proved to be of great importance for physicists and engineers
as well as mathematicians. For more details, one may refer to the books [20, 49, 53—
60] and the recent papers [40, 41, 61-64] and [65, 66] on the subject.

The familiar incomplete gamma functions y (A, x) and I'(X, x) are defined by
(see [63])

Definition 9 For t(A) > 0; x >0
X
y(A, x) = / e ds. (3.1)
0
Definition 10 For x > 0; R(A) >0 when x =0
o
C(x,x) = / e s, (3.2)
X

respectively, satisfying the following decomposition formula
y(h,x) + T, x) =T®R), @) > 0).

where I"(4) is the well-known Euler’s gamma function defined by (see [67-69]).
Definition 11 Let A € C; %(A) > 0, then

() = / - e dt. (3.3)
0

We also recall the Pochhammer symbol (1), [69] defined by
Definition 12 Let A € C, then
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2 1 (n=0; A€ C\ {0}
W = AL+ D - (htn—1) (neN; »eC)
_TG+n) _
= (L € C\Zy).
(3.4)

where Z, denotes the set of non-positive integers (see, €.g., [70, p. 2 and p. 5]).

Very recently, Srivastava et al. [63] introduced and studied some fundamental
properties and characteristics of a family of two potentially useful and generalized
incomplete hypergeometric functions, defined as follows:

Definition 13 Letz,a1---a, € C: by ---by € C\ Zy;r, s € Ny, then

(@1, x), a2, -+, ar; s (a1; X)n@)n -+ (ar)n 2"
Vs = - 35
g |: bl’ -+, by Z:| nX:(:) (bl)n(bs)n n! ( )
and
(@, %), az, -+, ar; o [an; Xa(@)n - (@) 2"
rLs = = 3.6
[ b, by Z} 2:(:) O Ga 1l G0

where (ap; x), and [a;; x], are interesting generalizations of the Pochhammer
symbol (1),, in terms of the incomplete gamma type functions y (1, x) and I'(A, x)
defined as follows (see [63]):

Definition 14 Let A, k € C; x > 0, then

_ Y +kx)

(A X = TS (3.7)
and
) T +k,x)
[A; x]g = T (3.8)

These incomplete Pochhammer symbols (A; x)x and [X; x]i satisfy the following
decomposition relation

A 0k + [ xle = W)k, M keCx=>0).
In Equations (3.1), (3.2), (3.5), (3.6), (3.7) and (3.8), the argument x > O is

independent of the argument z € C which occurs in the result (3.5) and (3.6) and
also in the results presented in this chapter (see, e.g., [63, p. 675]).



Certain Fractional Integral and Differential Formulas Involving the Extended. . . 229

We repeat the remark given by Srivastava et al. [63, Remark 7] for completeness
and an easier reference.

Remark 3 Since
[(A; X)nl < [(W)nl and [[A; x]n] < [(A)n] neNpreCx=>0), 39

the precise (sufficient) conditions under which the infinite series in the defini-
tions (3.5) and (3.6) would converge absolutely can be derived from those that are
well-documented in the case of the generalized hypergeometric function , Fy (r, s €
Np) (see, for details, [69, pp. 73-74] and [49, p. 20]; see also [57]).

The p-extension of the familiar incomplete Gamma functions y (A, x) and
I'(A, x) presented by Chaudhary and Zubair in [71] is given as:

Definition 15 For R(A) > 0; x > 0; RN(p) >0; p=0:

X
y O, x; p) = f L= 7 dt. (3.10)
0

Definition 16 For i(1) > 0; x > 0; NR(p) > 0:

(0.¢]
LA, x; p) ::/ t)‘fleﬂ*gdt, (3.11)
X
respectively, satisfying the decomposition formula given by:

Yy, x; p)+ T, x; p) =Tp(0)

(3.12)

o
= / e =T dr = 2p*2 K, (24/p). R(p) > 0).
0

where K (x) denotes the familiar modified Bessel function [54, 66].

The generalized form of the Pochhammer symbols (&; x, p); and [X; x, plk
(M k € C;p = 0), in terms of the generalized incomplete Gamma functions
y (A, x; p) and T (A, x; p) given in Equations (3.10) and (3.11), are defined as [71]:

Definition 17 Let A,k € C; x > 0; p > 0, then

. _ v +k x;p)
s x, ph = T (3.13)
and
(A x, ple = er—k’x;p). (3.14)

T(h)
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These forms of the Pochhammer symbols (; x, p)x and [A; x, pli satisfy the
following decomposition relation:

T, +k
% R(p) > 0; A,k € C)
G, P+, ple= G = o P .
Pk == T gt (M(p) > 0)
0

(3.15)

where (; p) is the generalized Pochhammer symbol [66, 71].
In the view of relations (3.10), (3.13) and (3.11), (3.14), we have the integral
representations of the extended forms of the Pochhammer symbols given as:

1 X
(A x, phe = mf Prk=le=1=F gy (3.16)
0

and

P

1 o0
(A x, ple = m/ PRl e = T gy (3.17)
X

In terms of the extended incomplete forms of the Pochhammer symbols
(A; x, p)k and [A; x, pli defined, respectively, in Equations (3.13) and (3.14), two
families of the extended incomplete generalized hypergeometric functions , 3% (z)
and ,T'?(z), respectively, involving r-numerator and s-denominator parameters are
defined as [66]:

Definition 18 Letz, a1, - ,a, € C: By,---, B, € C\Z; r, 5 € Ny, then

BBl T Ba B !
(3.18)

o0
01, X5 D)2, e, Oy (a1; x, pna)y -+ - (@)n 2"
er(Z)=rV§7[(l p). 2 : Z:|_Z 2 - e

and

P :rrf[(al,x;p),az,..-,ar; ]: o 005 %, (@) (@) 2"
© Biooi By 2 Bon Bon 1!
(3.19)

where the series on the right-hand side of Equations (3.18) and (3.19) are conver-
gent.

These families of extended incomplete generalized hypergeometric functions
satisfy the following decomposition relation:
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(a1, x;p),az, ..., ap } (a1, x;p),az, ...,
Y, |: Z|+ F z
res Bi.-... By e Bi.-... By
o0

zz(al;p)n(az)nm(ar)ni: P |:(051,P)»O[2,~~,ar;
B+ Bsn n! e Bis--ws Bss

(3.20)

n=0

If we take r = 2 and s = 1, we get extended incomplete Gauss hypergeometric
function o'} (z) given as:

P [@uxip) s ] o Lo x, pla@a)n 2"
2T (2) —2F1|: 5 z} —nz:;) B, b (3.21)

and the corresponding extension of the confluent (Kummers) hypergeometric
function 1I‘f (z) can be expressed as:

poy_ o [xip) ] e lex pli2”
1F1(Z)—1F1[ ﬁ;Z}—’; Byl (3.22)

4 Fractional Integral Formulas Involving Extended
Incomplete Generalized Hypergeometric Functions

In this section, we consider composition of the fractional integral operators
(Igf il ’nf> (x) and (I;’;)’U’U ’”f) (x) given in Equations (2.1) and (2.2),
respectively with the extended incomplete generalized hypergeometric functions
+vP(z) and ,T'Y(z) defined in Equations (3.18) and (3.19), respectively. Some
special cases involving well-known fractional integral operators are also presented.

Theorem 1 Letx > 0,a,0,0’,v,v,n,p € Cand a1, ...,0r € C,By,..., B €
C\ Z, be such that %(n) > 0, NR(a) > 0and R(p +n) > max{0, R(o + o' +v—
1), R(o’ — V")), then the following fractional integral formula holds true:

.0 vV L p—1 (ar, x5 p)yo, ..., ap;
(IO,X e ryf [ . . ati|> (x)
Bis -5 By

F(P(p+n—o0—0o —v)I'(p+V —0)

— xp+n—<r—a’—]
Co+v)T'(p+n—0—0)T(p+n—0"—v)
(a1, x;p),as,....ar,p,p+n—0—0 —v,p+1v —0';
Xr+37/5_,_3|: P ! ’ ’ ’ AR
ﬂl""’ﬂsﬂp+vap+n_a_avp+n_a_v7

.1)
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Proof For convenience, we denote the left-hand side of the result (4.1) by ..
Then by using Equation (3.18) and then interchanging the order of integration and
summation, we have

o i:) (@1; X, Pla(@2)n -+ (@) a" (

G (T @@

using the result (2.25), the above Equation (4.2) reduces to

o (015 X, P (@) -+ (o) a"
I = —
nzz(:) Bn B n!
Fo+ml(p+n+n—oc—oc —vV)I'(p+n+Vv —0o') 4.3)
Fo+n+V)I'(p+n+n—o—ol(p+n+n—0'—v)

— — /7
Xxp+n+r) o—o'—1

after simplification, the above Equation (4.3) reduces to

FT(p+n—0—0o —v)l'(p+1v -0
Co+V)I(p+n—0o—0)l(p+n—0"—v)

7 = xp+r)faf<r’71

o0

(o1; x, p)n (c2)p -+ - (r)n
<2 Bin- B

(4.4)

n=0
Pnp+n—0—0" —=v)(p+Vv -0y (ax)"

+vVio+n—o—0c)p+n—0 —v), n!

’

the above Equation (4.4), in view of Equation (3.18), gives the required result. O

Theorem 2 Letx > 0,a,0,0’,v,v',n,p € Canday,...,a, € C,By,...,8 €
C\ Z, be such that %(n) > 0, R(a) > 0 and R(p + n) > max{0, R(o + o' +v —
n), W(o' — ")}, then the following fractional integral formula holds true:

o0 v p—1 (a1, x;p)yon, ..., ap;
(Io’x Tge rI‘Sp|: "at| ) (x)
Bis---s Bss

_ ptn—o—o'—1_L@T(0+n—0- o' —v)l'(p+1V -0
Clo+V)I'(p+n—0—0)(p+n—0"—v)

o1, X; 02, o, Oy, ) + _G_J/_V, +V/_U/;

Xr+3rf+3|:( ?) ! ,0/ Pl ’ P ’ L ax .
Bis-- s BsptVipt+tn—o—o,ptn—o —v;

4.5)

Theorem 3 Letx > 0,a,0,0’,v,v,n,p € Cand a1, ...,0, € C,By,..., B €

C\ Zy be such that %(n) > 0, R(a) > 0and R(p —n) < 1 + min{R(-v), R(o +
o' —n), R(o + V' —n))}, then the following fractional integral formula holds true:
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" p— (a1, x;p),az,...,ap; a
ety | @
< ﬁl?"'?ﬂs; t

_xp_H]_U_U/_lF(l—p—v)l"(l—p—r]—l—a—l—a’)f‘(l—p—n—ko—l—l/)
rl—plrd—p—n4+o+o +v)'d—p+o—v)

14 (a17x;p)7a2""7ar7
Xr+3ys+3|: B, B
s eees Mgy

l—p—v,l=p—n+o+o,1-p—n+o+ria
l—p,1—p—n+o+o' +V,1—p+o—-v; x|’
(4.6)

Theorem 4 Letx > 0,a,0,0’,v,v',n,p € Canday,...,a, €C,By,...,8, €
C\ Z be such that R(n) > 0,NR(a) > 0and R(p —n) < 1 +min{R(—v), R(o +
o’ —1n), R(o + V' — n)}, then the following fractional integral formula holds true:

"o, p— (a1, x;p),an,...,0p; G
A lrrf[ ~|) @
( Bi,-- Bs 8

_xp+n_g_a/_1I‘(1—p—v)I‘(l—p—n—i—a +o Il —p—n+o+)
rt—plrfd—p—n+o+o" +v)'d—p+o—v)

p [(al,x;p),az,...,a,,

s+3 131""51337
l—p—-v,l—p—n+o+ao,1-p—nt+o+rsa
l—p,l—p—n+o+o' +vV,1—p+o—v; x|
4.7)

X r430

Proof The proof of Theorems 2—4 would run parallel to Theorem 1. We, therefore,
choose to skip the details involved. O

The following corollaries are easy consequences of the results involved in
Theorems 1, 2, 3 and 4, respectively

4.1 Special Cases

It is interesting to mention some special cases by choosing suitable values of the
parameters o,0’, v,V and n. If weputo = o +v,0'  =vV =0,v=—-nn=o0
in Theorems 1, 2, 3 and 4, we get certain interesting results concerning the Saigo
fractional integral operators given by the following corollaries.

Corollary 1 Letx > 0,a,0,v,n,0 € Canday,...,a, €C, By,..., B, € C\Z,
be such that (o) > 0,N(a) > 0 and R(p + n) > max{0, R(v — n)}, then the
following fractional integral formula holds true:
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<15’;C"”’t”‘lry§’ [(al,x; P, ... mD )
’ Bi.---. B

zxpfvfl F(P)F(P+77—V) (4 8)
C(p—=v'(p+n+o0) '

p | (a1, x;p)oan, .o 00 0,0+ —v;
X ax | .
”+2ys+2|: ﬁ]v"'sﬁsvp_vip+n+g; }

Corollary 2 Letx > 0,a,0,v,n,p € Canday,...,a, € C, By,..., 85 € (C\Za
be such that R(o) > 0,N(a) > 0 and R(p + n) > max{0, R(v — n)}, then the
following fractional integral formula holds true:

(Ig;u,ntplrrf [(al,x; p),zz, . (;r m]) )
Is+-+sPgs

_ o1 LT+ n—v) 4.9)
L(p—v)['(p+n+o0) ’

Xr+2FP |:(Otl,x;P),az,...,a,,p,p+n_v;ax:|.

s+2 ,31,.._,/33’,0_”,:04'77"‘0;

Corollary 3 Letx > 0,a,0,v,n,0 € Canday,...,a, €C, By,..., B, € C\Z,
be such that R(o) > 0, N(a) > 0and R(p —n) < 1 + min{N(v), N(n)}, then the
following fractional integral formula holds true:

. -a
7OV pp—1 yp [(al,xa D), a2, ..., 0; _:|) (x)
<Xs00 T ﬁl?"'sﬂs;t

_ v LU =p+ LA —p+n) “.10)
B Fl—pTd—p+o+v+n) '

< a2y’ (@, x;p)y@z, ..., 0, Ll —p+v,1—p+na .
a Bi,...Bs, 1 —p, 1 —p+o+v+n; x

Corollary 4 Letx > 0,a,0,v,n,p € Canday,...,a, €C, By, ..., B, € C\Z;
be such that R(o) > 0, R(a) > 0and R(p —n) < 1 +min{R©), R(n)}, then the
following fractional integral formula holds true:

_ o, X P), A, ..., 0y A
(I;ggntp P |:( 1, X; p) /32 Igr- ;}> @)
1s-+-sPgs

_ o1 LA =—ptwld—p+n @1
rd—pld—p+o+v+n) '

P |:(al,x§p)»0527~--’0lr’1_P+Va1_,0+77;C_li|

s+2 Biy.onBol—p,l—p+o+v+n; x|

Xyl
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By setting v = 0 in Corollaries 1-4, the Saigo fractional integrals formulas
reduce to the Erdélyi-Kober type fractional integral formulas given as follows:

Corollary 5 Letx > 0,a,0,n,p € Canday, ..., € C,Bq,..., B, € (C\Za
be such that R(o) > 0,N(a) > 0 and R(p + n) > —NR(©), then the following
fractional integral formula holds true:

I(T,r}tpfl yApI:(alv-x;p)aaZ"-'aar;at}) (x)

(O’X T ﬂl""’ﬂs;

_t _Tetm [(al,x;p),az,...,ar,p+n;ax}_
T(p+o+n " "5t Bi.--Byp o+

(4.12)

Corollary 6 Letx > 0,a,0,n,p € Canday, ..., € C,8q,..., B, € (C\Zg
be such that R(o) > 0,N(a) > 0 and R(p + n) > —NR(n), then the following
fractional integral formula holds true:

(Ig;(ntp_lrrf [(al,x; P, . m]) )
’ B By

1 To+mn) a1, X3 p),a, ..., 0, p+1;
= xP 1 r+1FSp_H (e p), a2 rs P 77. ax |.
C(p+o+n) Bis--sBs,p+ 0o+

(4.13)

Corollary 7 Letx > 0,a,0,n,p € Canday,...,ar € C,By,...,B, € C\Z;
be such that W(o) > 0,N(a) > 0and R(p —n) < 1 + NR(n), then the following
fractional integral formula holds true:

_ a1, X p), a2, ..., 0 a
(ﬁ&wlwfp‘ P h—Dcm

Bir.s Byt
_pt _F=ptm |:(0517x§P),052,~--,05r’1_,0+77;C_l:|
I‘(l—,o+0+r))r+ s+l Bis-- s By l—p+o+mn; x|
(4.14)

Corollary 8 Letx > 0,a,0,n,p € Canday, ..., € C,8q,..., B € (C\ZO_
be such that (o) > 0, N(a) > 0and R(p —n) < 1 + N(n), then the following
fractional integral formula holds true:

(ot phes el
155> DPg>»

et LA =ptm) [(al,x;p),az,...,ar,1—p+n;g].
Tl—p+o+n' " Bir-osBssl—p+o+m x
(4.15)
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Further, by setting v = —o in Corollaries 14, then the Saigo fractional integrals
formulas reduce to the following Riemann-Liouville and the Weyl type fractional
integral formulas as given below:

Corollary 9 Letx > 0,a,0,p € Cand ay,...,a, € C,Bq,..., B, € (C\Zabe
such that f(o) > 0,N(a) > 0 and NRN(p + n) > 0, then the following fractional
integral formula holds true:

_ o1, X, P), 0D, e, O
<[&ti lryfli( 1 P) 2 r.ati|> (x)

Bi,---s By @.16)
1 T o1, X5 P), A2, e, Uy, P -
— oo IF v (@1, x; p), a2 TP gy
(p+0) Bis---s By p+o0:

Corollary 10 Let x > 0,a,0,p € Cand ay,...,a, € C,By,...,B;, € C\ Z;
be such that (o) > 0, R(a) > 0and R(p + n) > 0, then the following fractional
integral formula holds true:

<1&xt"‘1rFf [(al’x; p)’ZT’ v ;’;_ at:|> (%)
9 st S

1 T 1, X5 D)y 02, ooy Oy P
— ypto lr—r+l ’ (o1, x5 p), a2 r P' ax |
(p+o0) Bi,-sBs,pt+0;

4.17)

Corollary 11 Letx > 0,a,0,p € Canday,...,a, € C, By, ..., B, € C\Z; be
such that R(o) > 0,NR(a) > 0and 0 < RN(o) < 1 — NR(p — n), then the following
fractional integral formula holds true:

o o=t p| @Lxip)en,. o d
(x,oo rYs Bivo Byt (x)

_ ,O+(771F(1_’0_O-) p (a15'x;p)5a25"~7ar71_p_o—;a
- (1 — r+1Y 541 1— o I
( 10) :315-‘~7/35" P X
(4.18)

Corollary 12 Letx > 0,a,0,p € Cand oy, ...,a, € C, B4,..., B € (C\Zg be
such that R(o) > 0,R(a) > 0and 0 < N(o) < 1 — R(p — n), then the following
fractional integral formula holds true:

_ oA, X, P), 02, .., 0 A
(ra o)
ooy By

_ oD =p—0) [(al,x;p),az,...,ar,l—p—a;a}
=X =1~ r+ilgyg . N E
) BroooBul—pi  x
(4.19)
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5 Fractional Differential Formulas Involving the Extended
Incomplete Generalized Hypergeometric Functions

In this section, we consider composition of the fractional differential operators
(Dg,’xg e ’"f) (x) and (D;’go’”’” ’"f) (x) given in Equations (2.9) and (2.10),
respectively with the extended incomplete generalized hypergeometric functions

r)/f (z) and ;' (z) defined in Equations (3.18) and (3.19), respectively. Some spe-
cial cases involving well-known fractional differential operators are also established.

Theorem 5 Letx > 0,a,0,0’,v,v,n,p € Cand a1, ...,0r € C,By,..., B €
C\ Z be such that R(n) > 0, NR(a) > 0and R(p +n) > max{0, R(n —o — o' —
V), R(v — o)}, then the following fractional derivative formula holds true:

PRI DY (a1, x5 p),az, ..., o,
(DO,X P r)/f[ Tat| ) (x)
By By

_ xpfn+(r+<7’fl F'(p)T(p—n+o+o +V)I'(p—v+o0)
Flo—v)l'(p—n+o+oHl'(p—n+o+V)

X riay? [(al,x;p),az,...,ar,p,p—n+0+o’+v’,p—v+a;ax}
7543 BirooisBgp—v.p—n+o+o p—n+o+v; |
(5.1)

Proof For convenience, we denote the left-hand side of the result (5.1) by Z. Then

by using (3.18) and interchanging the order of differentiation and summation, we
get

o (@13 X, pla@2)n -+ (@) a"

QZZ A1 X, P)nlO2)n - - - Uy na_

T Ba e Bon 0!

o,0 vV, ptn—1
x (DG et (o,

(5.2)

applying the result (2.27), the above Equation (5.2) reduces to

(@15 X, Pha(@2)n - (@) a”
7 a
LT G Bon

Fo+nm)T(p+n—n+o+o +V)['(p+n—v+o) (5.3)
Flo+n—v)'(p+n—n+o+o)'(p+n—n+o+)

— /_
Xxp+n n+o—+o 1,

after simplification, the above Equation (5.3) reduces to
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G — xPp—nto+o’—1 F'(pI'(p—n+o+d +V)I(p—v+o0)
Flo—v)l'(p—n+o+oHl'(p—n+o+V)

]

(13 %, PIn(@2)n - (@)n

Pn(p—n+o+d" +V)(p—v+0o) (ax)"
(:0 - V)n(p —n+o +0/)n(p —n+o +v), n!

’

the above Equation (5.4), in view of Equation (3.18), gives the required result. O

Theorem 6 Letx > 0,a,0,0’,v,v',n,p € Canday,...,a, €C,By,...,B5 €
C\ Zy be such that %(n) > 0, R(a) > 0 and R(p +n) > max{0, N(n —o — o' —
V'), N(v — o)}, then the following fractional derivative formula holds true:

o0’ vV p—1 (ar, x5 p)yog, ..., o,
(DO,X Tp=tr? |: "at| ) (x)
Bi, ..., B

— xPpntoto’-1 F'(p)T(p—n+o+0o +V)I(p—v+o0)
F(p—v)l'(p—n+o+o'(p—n+o+V)

. _ / / _ .
xr+3Fp |:(a1»x»l7),a2,-~-,0!r,p,,0 n+o+o +v,p v—l—a,ax}

s+3 BirosBsop—vip—n+ot+a,p—n+o+;
(5.5)

Theorem 7 Letx > 0,a,0,0’,v,v,n,p € Canday,...,0, € C,By,..., B €
C\ Zy be such that %(n) > 0,R(a) > 0 and R(p —n) < 1+ min{R "), R(n —
o —0'), R(n—o' —v)}, then the following fractional derivative formula holds true:

0.0 v p—1 (@1, x; p),az,...,ap; @
<Dx,oo t? erI: r. =)&)
Bi,.... B t

_ oot 1 TA=p+IFA —ptn—0—0ld-p+n—0'—v)
ra —prd—p+n—oc—-—o" —v)I'd —p—o’ +v)

(al,X;P)’OlZmuyar,

Bi. .-, By,
l—p+V,1=p+n—0c—od' 1-p+n—0' —v;a
l—p,l—p+n—0—-0'—v,1—p—0'+v; x|
5.6)

p
X r+3ys+3 |:

Theorem 8 Lerx > 0,a,0,0’,v,v,n,p € Cand a1, ...,0r € C,By,..., 85 €
C\ Zy be such that R(n) > 0,%(a) > 0 and R(p —n) < 1 + min{R("), Ry —
o —0o'), R(n—0o’ —v)}, then the following fractional derivative formula holds true:
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o0 w0 p—1 (a1, x;p),az,...,ap a
(Dx,oo "tP rrs”[ )
B, B t

:xp_n+o+a/_1F(l—p—i—v’)F(l—p+n—a—o/)1"(l—,o+r/—a/—v)
r‘t—plridl—p+n—c—-—o" —v)I'd—p—0c’+v)

a1, X, 0 2 P 0 72
X pial? [(1 D), a2 r

s Bis---s By

l—p+V,1l=p+n—0o—-o',1-p+n—-0o'—v;a
l—p,l—p+n—0c—0'—v,1—p—0o’'+v; x|
5.7

Proof The proof of Theorems 6—8 would run parallel to Theorem 5. We, therefore,
choose to skip the details involved. O

5.1 Special Cases

By settingo = o + v,0’ = v = 0,v = —n,n = o in Theorems 5-8, we get
certain interesting results concerning the Saigo fractional derivative operator given
in the following corollaries.

Corollary 13 Let x > 0,a,0,v,n,p € Cand oy,...,0, € C,By,...,B; €
C\Z, be such that (o) > 0, N(a) > 0 and RN(p +n) > —min{0, R(o +v +1n)}
then the following fractional derivative formula holds true:

<ng;v77tﬂ—lry§7 |:(a17-X; p)v O,y vy Op; at:|) (.X)
’ Bir--os B

— vl T'()T(p+n+o0+v)
C(o+mI(p+v)

(5.8)

p | (i, x5p)oan, .. 00, 0, p+n+0 40
X .
r+2y‘v+2[ B Bs,p+n,p+; “

Corollary 14 Let x > 0,a,0,v,n,p € Cand oy,...,0, € C,By,..., B, €
C\Zy be such that R(o) > 0, N(a) > 0 and RN(p +n) > —min{0, R(o +v +n)},
then the following fractional derivative formula holds true:
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(Dg’):)’ntp_lrrf I:(a17 X3 p)v O,y ve, Op; at}) (x)
’ Bis--os By

— vl C(p)'(p+n+0o+v)
C(o+mT(p+v)

p [(a17X;p)9a25""ar’p7p+n+a+v;a'x}
s+2 . '
Bi.-- Bsptm 0+

(5.9
Xyl

Corollary 15 Let x > 0,a,0,v,n,p € Cand ay,...,0, € C,By,...,B; €
C\ Zy be such that R(o) > 0,N(a) > 0 and R(p —n) < 1+ min{R(—v —
nx), W(n + o)} and nx = [R(o)] + 1, then the following fractional derivative
formula holds true:

. -a
DUstUtp—l P (a17‘x7 p)7a27"'1ar1 - X
< x,00 rVs ﬂl,'..’ﬁs; : (x)

_ P =p—I—pto+mn
rd-—prd—p+n-—v)

% 12y (a1, x;p),az, ..., 1l=p—v,1—p+o+na '
o B, B, 1 —p, 1 =—p+n—v; x

(5.10)

Corollary 16 Let x > 0,a,0,v,n,p € Cand oy,...,0, € C,8y,...,B; €
C\ Zy be such that R(o) > 0,N(a) > 0 and RN(p —n) < 1+ min{R(—v —
nx), W(n + o)} and nx = [R(o)] + 1, then the following fractional derivative
Jformula holds true:

5 ;a
<Dg:g<’>ntp—lrr§7 |:(a11 X3 p)a(ZZa ";ri 7]) (.X)
1s---5Pgs

:xp+v71F(1—P—V)F(l—p-i-G-i-n)
Fl—pl'd—p+n—v)

p |:(05],X§P)a012,---705r71_P_V,1_,0+U+7I§z:|
s+2 :317'°'7ﬂs’1_p31_p+77_v; X

X py2l

(.11

Further, on setting v = 0 in Corollaries 13—16, the Saigo fractional differential
formulas reduce to the following fractional differential formulas as given below:

Corollary 17 Letx > 0,a,0,n,p € Canday,...,a, € C, By,...,B5 € C\Za
be such that (o) > 0,N(a) > 0and R(p + n) > —NR(n + o), then the following
fractional derivative formula holds true:
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<D3;ft"‘1,y§’ [(al,x; P), 02, .., Oy m]) )
’ ﬂl""’ﬁs;
_ et lotnto) oy [(al,x;p),az,...,ar,p+n+6;ax]
Tp+n 7! Bir-oBsrp + 5
(5.12)

Corollary 18 Letx > 0,a,0,n,p € Canday, ...,a, € C, By,...,B5 € C\ZO_
be such that (o) > 0, N(a) > 0and R(p + n) > —NR(n + o), then the following
fractional derivative formula holds true:

(Dgftplrl—‘f [(om,x; Pz, ..., alD )
’ ,31’~--7ﬁs;
_xp_lF(/O-f-??-I—a) T |:(ot1,x;p),a2,...,a,,p+n+a;axi|
= — T .
T(p+n) s+ Bir--s B+ 105
(5.13)

Corollary 19 Letx > 0,a,0,n,p € Canday, ...,a, € C, By,...,B, € C\ Z,

be such that W(o) > 0,N(a) > 0and R(p —n) < 1 4+ N + o) — nx and
nx = [N(o)] + 1, then the following fractional derivative formula holds true:

_ oA, X P), A, ..., 0 d
(et yp [ i d) g

Blsos Byt
_ T —ptotn  p [(al,x;p),az,...,ar,l—p+o+n;a]
= + - .
FPd—p+n " 7H B B l—ptm  x
(5.14)

Corollary 20 Letx > 0,a,0,n,0 € Canday,...,a, € C, By,...,B, € C\ Z,
be such that X(o) > 0,R(a) > 0and R(p —n) < 1+ R+ 0) — n*x and
nx = [N(o)] + 1, then the following fractional derivative formula holds true:

(Dg:gotplrrsp |:(011,x; D), @2, ..., O a]) )

Bi,-- Bsi t
_ 1 Td—ptotn P [(al,x;p),az,...,ar,1—p+o+n; a}
= + - .
Fl—p+n Tt Bio-osBssl—p+m  x
(5.15)
Further, if we set v = —o in Corollaries 13-16, then these Saigo fractional

derivatives reduce to the following Riemann-Liouville and the Weyl type fractional
derivative operators as given below:



242 P. Agarwal et al.

Corollary 21 Letx > 0,a,0,p € Cand ay,...,a, € C,By,...,B;, € C\ Z;
be such that (o) > 0,R(a) > 0 and R(p +n) > RN(o) > 0, then the following
fractional derivative formula holds true:

_ oL, X P), 00, ..., Oy
(Dg‘xtp 1”/5[(1 D), a2 V-MD(X)

B,y By 5.16)
—o—1 T'(p) (@1, X3 p), o, ..., 0, p; '
— xP O 1 +1Vp |: s Ay , , s Uy ' ax
T(p—o) "5t Bi.--- By p—o0:

Corollary 22 Letx > 0,a,0,p € Cand ay,...,a, € C, By,...,B8, € C\Z,
be such that R(o) > 0,N(a) > 0 and R(p +n) > R(o) > 0, then the following
fractional derivative formula holds true:

<Dg,xf”_1rl“§’ [(al,x; p),zzi,.--,;r;-mD )
soos Bs

_x,O—U—l (’0) )4 (a15'xa p)aa27 705r’,0,axj|

(5.17)
B F(p_g)r+1 S+1|: ﬂl?""ﬁxvlo_a;

Corollary 23 Letx > 0,a,0,p € Canday,...,a, € C, By, ..., B, € C\Z; be
suchthat R(o) > 0, N(a) > 0and R(p—n) < 1+R(0) —nxand nx = [R(o)]+1,
then the following fractional derivative formula holds true:

. -a
DG’ tp_l )4 (Ot],x, [7)7052’--~aar, s X
< x,00 rVs BBy (%)

_ p—a—lr(l_p+0) p (x1,x; p),oa,...,op, 1 —p+4o0;a
=X _F 1 — r+l7/s+1 1—p — 1.
( 10) ﬁ]s"'vﬂsv 03 X
(5.18)

Corollary 24 Letx > 0,a,0,p € Canday,...,a, €C, By, ..., B, € C\Z; be
such that (o) > 0, N(a) > 0and R(p—n) < 1+R(0)—nxandnx = [R(o)]+1,
then the following fractional derivative formula holds true:

_ a1, X, p), A2, ..., 0 a
N ] R et | [
s ey Mgy

=xp_a_1F(1—,0+6) T [(al,x;p),ozz,...,ot,,1—,o+0;gi|
Tl -p) s Bioooi B l=p;  x
(5.19)
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6 Integral Transform Formulas of the Extended Incomplete
Generalized Hypergeometric Functions

In this section, we established certain theorems involving the results obtained in
the previous sections associated with the integral transforms like Beta transform,
Laplace transform and Whittaker transform.

6.1 Beta Transform

Definition 19 The Beta transform of function f(z) is defined as [72]:

1
B{f(z):1,m} = / 271 = 2" F(2)dz (6.1)
0

Theorem 9 Letx > 0,a,0,0’,v,v,n,p € Cand oy, ...,0, € C,By,..., B €
C\ Z, be such that %(n) > 0, N(a) > 0and R(p +n) > max{0, R(o + o' +v—
1), R(o’ — V")), then the following formula holds:

B {(Ig;ca/,v,v/,ntpflryf |: (a1, x; p),az, ..., o, atz]) x): 1, m}
’ /317"":8&;

_ pn—o—a'-1 B, m)C(p)T(p+n—0—0' —v)['(p+V —0d’)
Flo+v)I(o+n—0—0c)(p+n—0'—v)

(al,x;p),az,...,ar,p,p+n—0—6’—v,p+v’—o/,l;ax]
Bis-- Bsp+V.p+n—o—o p+n—o —v,l+m '
6.2)

p
X r+4Y 544 |:

Proof Denote the left-hand side of the result (6.2) by %. Using definition of beta
transform as given in Equation (6.1), we get

1
:@ — / Zl—l(l _ Z)m_l
0

y {(]gfl’”’”/’"tp_lryf [ (o1, x5 p)y o, ..o\ 0y atZ]) (x)} dz,
» Bi.--.. B

(6.3)

using the result (4.4), the above Equation (6.3) reduces to
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B = /1 Jan=1q _ gyt gpn—o—o'-1_LOT(+n—0 -0+ —0)
0 T(p+V)L(p+n—0—0)T(p+n—0 —v)

i (o x, Ph(@2)n - @)n  (Palp+n—0—0"=v)(p+Vv —0"), (ax)"

dz,
o Bn - Bsdn OtV tn—0 -0V tn—o —v) nl

(6.4)

Interchanging the order of integration and summation, we have

5 — ptn—o—a'—1_L @0 +n—0— o' =l (p+v —o')
Co+V)I(p+n—0—0)(p+n—0"—v)

e¢]

« Z (a1: X, pIa(a2)n -+ (@r)n (Pn(p+n—0 —0" =),

2 B Bon Vot n—0 —o) ©>
(p+v' =0 (ax)" /1 I4n—1 m—1
1— dz,
Gan—o—v, m Jy o UTPE
after simplification, we have
B — yppn—o—a'-1 B, m)T (o) (p+n—0c—0c —v)I'(p+v —0o)
Fo+Vv)I'(p+n—0—0)(p+n—0"—v)
o (@13 X, (@) -+ (@)
6.6
L o ©0

Pnp+n—0—0" —v)u(p+v —0")uDy (ax)"
(o +Vip+n—0c—0)p+n—0 —v)l+m), n!

interpreting the above equation, in view of (3.18), we have the required result. O

Theorem 10 Letx > 0,a,0,0',v,V,n,p € Canday,...,a, €C,B,...,B; €
C\ Z, be such that Rt(n) > 0, NR(a) > 0and R(p +n) > max{0, R(o + o' +v—
n), R(o’ — ')}, then the following formula holds:

B {(Ig;f/%v’»ﬂtp—lrrf [ (a1, X; p), o2, ..., 0 mz]) ) :l,m}
’ Bis--s By

_ pin—o—o'-1 BU,m)T(0)T'(p+n—0—a" —v)['(p+V —0o)
Fo+v)T(p+n—0—0)T(p+n—0'—v)

<y oal? (a1, x;p) s, ...,ar,p,p+n—0—0' —v,p+Vv —0',1; ax
e BivoBsp+V.ptn—oc—a ptn—o —vi+m |
6.7)

Theorem 11 Letx > 0,a,0,0',v,V,n,p € Canday,....,a, €C,B;,..., B, €

C\ Zy be such that %(n) > 0, R(a) > 0.and R(p —n) < 1 + min{R(-v), R(o +
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o’ —1n), R(o + V' — n)}, then the following formula holds:

P ; ; a
B {([;’o%’v’v ’nlp_lr]/.é) |: (ay, x; p), a2, 7Olr7. 7Z:|) (x) ;]’m}
Bi,...,Bs 8

s

=xp+n_a_a/_lB(l,m)l"(l—p—v)F(l —p—n+o+o A —p—n+o+v)
rM—pld—p—n+o+oc" +vV)I'r'd—p+o—v)

(@1, x; p),az, ..., o,

Bi--os By

p
X r+4V s1a |:

l—p—v,l—p—n+o+o,1-p—n+o+v,[;a
l—p,l—p—n+o+o' +vV,1—p+o—v,l4+m x|
(6.8)

Theorem 12 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C, By,..., B, €
C\ Zy be such that %(n) > 0, R(a) > 0.and R(p —n) < 1 + min{R(—v), R(o +
o' — 1), R(o + V' —n)}, then the following formula holds:

/ / 5 , az
B {(I;,:O,v,u ,Tltp—lrl—wf |: (a1, x; P)y o, 7ar7. 7]) (x) : l,m}
Bi,...,Bs 8

_xp+n_”_”/_1B(Z,m)l"(l—p—v)F(l—p—n+a+a’)f‘(1—p—n+a+v’)
ri—-pld—p—n+o+o +v)rl—p+o—v)

p [(ahx;p),az,...,ar,
s+ ﬂlv“”ﬂs’

X pyal’

l—p—v,l=p—n+o+o,1-p—n+o+v. la
l—-p,l—p—n+o+o'+v,1—p4+o—-v,l4+m x|

(6.9)

Proof The proof of Theorems 10-12 would run parallel to Theorem 9, so we omit
the details involved. |

Theorem 13 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C, By,..., B, €
C\ Z, be such that R(n) > 0, R(a) > 0 and R(p + n) > max{0, R(n —o — o’ —
V'), N(v — o)}, then the following formula holds:

5 {(Dgf/’”’v/’"tp_lr)/f [ (a1, x; p)ya2, ..., atz}) (x) : l,m}
’ ﬂla ---vﬂs;

_ ppmtoto’-1 B(l,m)[ ()T (p —n+0o+0o"+V)I'(p—v+o0)
Flo—v)I'(p—n+o+o)l'(p—n+o+v)

X raay? (@1, x;p), a2, ..., p,p—n+o+o' +V,p—v+o,l; .
L Bl Bpp—vip—nt+o+o p—n+o+v,1+m;

(6.10)
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Proof Denote the left-hand side of the result (6.10) by 4, then using definition of
beta transform as given in Equation (6.1), we have

1
<@==/‘ﬂ_%l—zf“l
0

5 {(Dg’x",’”’”,’"tp_lr)/f |:(a1,x; D) 02y ooy Oy atz}) (x)} dz,
5 /317‘-'5:35‘;
6.11)

using the result (5.4), the above Equation (6.11) reduces to

é%Zsz%%hﬂwA{WﬂmHMANmF@_n+a+d+w)
0 Lo —v)l'(p—n+o+0')

e ¢]

'p—v+o) Z(Oll;xa Pn(@2)y -+ (o)
F'(p—n+o+v) Bn - B

(P)n(p_n+0+0/+v/)n(p_v+0)n (ax)n}dZ
(p—Vn(p—n+o+0)p—n+o+Vv), nl ’

n=0

(6.12)
interchanging the order of integration and summation, we have
%:xp_n'ﬂf-ﬁ—a’—l F(p)F(,O—n+0+o’+v’)r(p—v+o)
F(o=v)I(p—n+o+o(p—n+o+V)
XféwummAm»~wm»mnw—n+a+d+{n 613
= Bn - (Bson (p—VIn(p—n+0+0),

(p -V + G)n (a'x)n : l+n—l(1 _ )m—ld
(o—nto+ ) al Jo© o

after simplification, we have

B — yPNtoto’—1 B(U,m)T(p)T(p—n+o+o +V)I'(p—v+o0)
F(o—v)I'(p—n+o+o)'(p—n+o+)
o

(oeq; x, p)n (o2)p -+ (ar)n
> Bon B

(o —n+0+0" +V)(p —v+0)Dn (ax)"
(p—=vin(p—n+0o+0)p—n+o+v)(Il+m), n!

n=0

b

(6.14)

interpreting the above equation, in view of (3.18), we have the required result. O
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Theorem 14 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C, B, ..., B, €
C\ Zy be such that R(n) > 0, R(a) > 0 and R(p +n) > max{0, R(n —o — o' —
V), R(v — o)}, then the following formula holds:

B {(Dg,xd/,v,v/,ﬂtplrrf [(a15X; p)’a27 e 7ar; atz}) (x) . l,m}
’ Bir-s Bss

_ pontotol 1 B, m)T'(p)I'(p—n+o+oc +V)['(p—v+o0)
Fo—v)l(p—n+o+o(p—n+o+V)

. _ / ’ _ .
« yoal? [(al,x,p),az,...,ar,p,p n+o+ao +v,p ”+U’l’ax]

s+ ﬁl:---»ﬁs»ﬂ—V7,0—77+<7+<7/»/0—71+C7+V/,l+m;
(6.15)

Theorem 15 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C, By,..., B85 €
C\ Zy be such that R(n) > 0,N(a) > 0 and R(p —n) < 1+ min{RW"), R(n —
o —0'),R(n — o’ — )}, then the following formula holds:

’ / N e ; a
B {(D;y:go,v,u ,ntp_lryf |:(Ollax» D), a2, ,Olr’. Z]) (x) : l’m}
ﬁla“'alBS’ t

_ p-ntotol-1 B(l,m)I(1—p+V)NI(1—p+n—0—0)
Frd—-pr'd—p+n—0—-0'—v)

Frl—p+n—0'—v) ’ [(al,x;P),az,-~~,ar,
T(l—p—o +v) 'TH s+ Bis---» Bs

l—p+V,1=p+n—0o—-oc' 1-p+n—0c' —vl a
l—-p,l—p+n—0c—-—0c —v,1—p—0c'+V,l+m;x
(6.16)

Theorem 16 Letx > 0,a,0,0',v,v.,n,p e Canday,...,a, €C, By,..., B, €
C\ Zy be such that R(n) > 0,N(a) > 0and R(p —n) < 1+ min{R©W"), R(n —
o —0'),R(n — o’ — )}, then the following formula holds:

"o ; ; a
B {(Dg’,go,v,v ,ﬂtp—lrl—'f [(alaxa p)7a27 7“}“9 Z}) (x) . l,m}
,31,...,,35; t

_ oot 1 BUmIT( —p+ )T —ptn—0—0')
r‘t —prrd—p+n—0—0’ —v)

Frl—p+n—0o' —v) 7 [(al,x;p),az,...,ar,
T(l—p—o +v) T st4 Bis---s Bs

l—p+Vv,l=p+n—0—-o l-p+n—0o' —vlia
l-p,l—p+n—0o—o0' —v,1—p—o'+V,[+m;x]|
(6.17)
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Proof The proof of Theorems 14—16 would run parallel to Theorem 13, so details
are omitted here. |
6.2 Laplace Transform

Definition 20 The Laplace transform of f(z) is defined as [72, 73]:

LUf ) = fo e F(2)dz 6.18)

Theorem 17 Letx > 0,a,0,0',v,V,n,p € Canday,...,0a, €C,By,..., B, €
C\ Zy be such that %(n) > 0, R(a) > 0 and R(p +n) > max{0, R(o + o' +v—
n), R(o’ — V'), then the following formula holds:

. {Zl—l <I&;U/’V’V/’”[p_lryf |: (ozl,x; p), an, ...,0; atz]) (x)}

Bi,--s B
B xPH1= =L P (D (p)T(p+n—0 —0' —v)T(p+V — )
B ot F(p+Vv)T(p+n—0—0)(p+n—0 —v)
p | @Lxsphos ..o lp,p+n—0—0" —v,p+V —0'; ax
X r+4Y 543 ’ P e
BioonBsop+V,p+n—0—-0o,p+n—0"—v; o

(6.19)

Proof Denote the left-hand side of the result (6.19) by .Z. Using definition of
Laplace transform as given in Equation (6.18), we have

00
P — / e—wzzl—l
0

% {(Igf/’v’v/’ntp_lryf |: (a1, x; p), @z, ..., 0, atz:|> (x)} dz.
’ Bi,---, By
(6.20)

using the result (4.4) and interchanging the order of integration and summation, the
above Equation (6.20) reduces to

F(e)T(p+n—0—0o —nl(p+v —o)

7. xp-l—n—a—a/—l
Fo+VIF(p+n—0—-o)(p+n—0'—v)

o0

Z (ar; x, phn(a)n -+ - (@r)n
BDu(Bon

n=0

(On(p+n—0—0" =v)a(p+Vv =0y (ax)" /00 zl+n—le—wde
p+vip+n—oc—cD(p+n—oc —v), n' Jo ’

6.21)
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after simplification, we have

T TON (04 —0 o' —WT(p+V — o)
T W Te+VITptn—o-o)lp+r—o —v)

(e¢]

(oeq; x, p)n (o2)y -+ - (ap)n
2 Bon B

6.22)
n=0

DnPnp+n—0 —0" —=v)(p+v' —0"), (ax)" 1

w+vip+n—0o—od(p+n—0'—v)y \w n!’

interpreting the above equation, in view of Equation (3.18), we have the required
result. O

Theorem 18 Letx > 0,a,0,0',v,V,n,p € Canday,...,a, €C, By,..., B, €
C\ Z, be such that R(n) > 0, R(a) > 0 and R(p + n) > max{0, R(o + o' +v —
n), R(o’ — V")), then the following formula holds:

; {le (1(‘)’;"/’”’”/’%’051“.5 [ (a1, x; p),aa, ..., 0 atz]) (x)}
) ﬁ]a ~~-7ﬁs;

_ e I DON (o)l (p+ 17— 0 — 0’ — vl (p+' — o)
o Lo+ v)L(p+n—0—-0)(p+n—0" —v)

p |, x;p) oz, o l,p,p+n—0—0c' —v,p+V —0';ax
X’+4rs+3 / / ’ R
:317---7,3.w,0+v’,0+77—0—0,P+77_0—V» w
(6.23)
Theorem 19 Letx > 0,a,0,0',v,V,n,p € Canday,...,a, €C,B,...,B; €

C\ Zy be such that %(n) > 0, R(a) > 0.and R(p —n) < 1 + min{R(-v), R(o +
o' — 1), R(o + V' — 1)}, then the following formula holds:

o : . ap; az
; {zl_l (1;&’”’”’"#’_1,)/? [(al,x, p), a2, ,otri _]) (x)}

Bir-on By t
_xme T PP = p =D —p—n+0 +0)
B o' Frl—pTd—p—n+o+o +V)

Fl—p—n+o+v) ar? [(al,x;p),az,..-,ar,
r
Fl—p+o—v) s+3 Bis---s By
Ll—-p—v,l=p—n+o+o 1-p—n+to+Vv; a
l-p,1—p—n+o+o'+v,1—p+o—v;, wx]|
(6.24)

Theorem 20 Letx > 0,a,0,0',v,V,n,p € Canday,...,a, €C,B,...,B; €
C\ Zy be such that R(n) > 0,%R(a) > 0 and R(p —n) < 1 +min{R(-v), RN(o +
o' —n), R(o + V' — n)}, then the following formula holds:
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o : L0y az
I {Zl_l (I;,go,v,v ,ntp—lrrsp |:(0l1’ X; p),az, » O3 _:|) (X)}
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,31, "'7ﬂs; t
_ X PO - p (1 —p—n+0 +0)
- ! rA—pld—p—n+o+o +)

LA —p—nto+) » [(al,x;p),az,...,ar,
rM—p+4+o—-vw) Bi, ..., By,
IL1—-p—v,l—p—n+o+o,1—p—n+o+; a]

l—p,l—p—n+o+oc' +VvV,1—p+o—-v;, wx

(6.25)
Proof The proof of Theorems 18-20 would run parallel to Theorem 17, so we omit
the details involved. O
Theorem 21 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C,B4,..., B, €

C\ Zy be such that %(n) > 0, R(a) > 0 and R(p +n) > max{0, N(n —o — o —
V), N(v — o)), then the following formula holds:

. {zl_l (Dg’;/‘”’”/’"tp_lr)/f [ (a1, x; p),oz, ..., ar; atz]) (x)}
, Bis---s B

_xP e PO ()P (p = n+ 0 + 0" + V)T (p —v +0)
! F(p—v)F(p—n+0o+0)T(p—n+oc+V)

P
X ri4
r+y”3[ Bi,sBsp—vip—n+o+o,p—n+to+v;

(6.26)

(al,x;p),ocz,...,ar,l,p,p—n+a+a’+v’,p—V+a;@]

Proof Denote the left-hand side of the result (6.26) by .Z. Using definition of
Laplace transform as given in Equation (6.18), we have

00 ’ / . .
K% :f e~ 2 {Zl—l (Dg,;r U,V ,ntp_1ry§7 |: (OlI,X, P),Olz, e, Oy atz:|> (x)} dz,
0 ’ Bis---s By
(6.27)

using the result (5.4), the above Equation (6.27) reduces to

@ — p-ntoto’—1_L@T(0—n+o+ o' +V)I'(p—v+o0)
C(o—v(p—n+o+o)(p—n+o+)

o]

(a1;x, plua)n - -+ (@)
* 20 B Bon

(o —n+o+o" +V)(p—v+o), (ax)" I4n—1 —wz
z e “tdz,
(p=vin(p—n+o+o)p—n+o+v), n J
(6.28)
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after simplification, we have

XTI IO (0~ 040 40’ + V)T (p v +0)
B ! C(p—v)T(p—n+o+0)T(p—n+o+)

e9]

(oeq; x, p)n(O[Z)n <o (o)
> Bon- Bon

(6.29)
n=0

Dn(Pnp—n+0o+0"+V)(p—v+o0), (ax)" 1

(o—=vnp—n+o+oh—n+o+v) \w n!’
interpreting the above equation, in view of Equation (3.18), we have the required

result. m]

Theorem 22 Letx > 0,a,0,0',v,V,n,pe Canday,....,a, €C,By,....,B €
C\ Zy be such that R(n) > 0, R(a) > 0 and R(p +n) > max{0, R(n —o — o —
V'), W(v — o)}, then the following formula holds:

. {szl <Dg,f o 1 [ (a1, x; p), o, .. .,Olr;. atz]) (x)}

Bis---. B
_xPTmet e PO (0P (p —nt 0 + 0"+ V)T (p —v +0)
- o C(p—v)T(p—n+0o+0o)(p—n+o+V)
p | @x;p) e, e lp,p—nt+o+o +V, p—v+o;ax
Xl s ’ [
Bi,....Bgp—v,p—n+o+o,p—n+o+Vv; w
(6.30)
Theorem 23 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C,By,..., B, €

C\ Zy be such that Ri(n) > 0,N(a) > 0 and R(p —n) < 1+ min{R®W"), R(n —
o —0'),R(n — o' — v)}, then the following formula holds:

o : 0y Az
L {Zl_l (D;’go%u Myl P |:(a1,x, D), o2, ,Olr,- :|) (x)}
Blr--s B t

_xPTer Sl P (1= p+ V)P (1= p+n—0 =0
B w! r‘t —prdl—p+n—0—0o’"—v)

rl—p+n—0' —v) v, (1, x; p), o, ..., 0y,
T(l—p—o +v) T s+3 Bi---s By
Ll—p+V,l=p+n—0o—-o,l—p+n—0o'—v; a
l—p,1l—p+n—0—-0'—v,1—p—0c'+v; wx]|
(6.31)

Theorem 24 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C, B4,..., B, €
C\ Zy be such that R(n) > 0,R(a) > 0and R(p —n) < 1+ min{R©W"), N(n —
o —0'),R(n — o’ — )}, then the following formula holds:
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o : ey a2
I {Zl_l (Dg’,go,v,v ,171‘,0—1rl—~§7 I:(al» X3 P), a2, , Oy _i|) (X)}
Bi,-...Bs

_xPTHe ()P — p+ V)Tl —p+—0 —0)
- o' rA—p)ld—p+n—0—0' —v)

Frl—p+n—0' —v) A7 [(al,x;p),az,...,ar,
Frl—p—o +v) T3 Bis---» Bss

L1—p+V,1—p+n—0—-0',1—p+n—0'—v; a:|

l—p,1—p+n—0—-0c"—v,1—p—0'+V; wox
(6.32)

Proof The proof of Theorems 2224 would run parallel to Theorem 21, so details
are omitted here. O

6.3 Whittaker Transform

Definition 21 Whittaker Transform is defined as [72]:

o0 ra/2 HIra/2 — l
/ A1 P W, L (di = 124 p+DrA2—-pn+ ). (6.33)
A * T(1/2—%+1)
Theorem 25 Letx > 0,a,0,0',v,V,n,p € Canday,...,a, €C,By,..., B, €

C\ Zy be such that %(n) > 0, R(a) > 0 and R(p +n) > max{0, R(o + o' +v—
n), R(o’ — V")), then the following formula holds:

R ! ’ . .
/ e 2w, L, (82) {(Igf WVpe=t P [ (@1, x: p), 02, .. .,a,,. atz:|> (x)} dz
0 ] ﬂl""’ﬂss

xP1=0= =L (/2 4+ DI (1/2 — p + DT (p)

st IraA/2—x+DT(p+v)
XF(p+n—0—0’—v)F(p+v’—6’) p [(al,x;p),az,...,ar,
Tp+n—0—o)T(p+n—o —v) Vst B B

124 p+0,12—pu+1Lp,p+n—0—0" —v,p+v —0o';ax
12—A+lLp+V,p+np—0c—0c,p+n—0o —v; s |
(6.34)

Proof Denote the left-hand side of the result (6.34) by #. Using definition of
Whittaker transform as given in Equation (6.33), we have
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oo -1 _—6z/2
/4 :/0 Z1e0 Wi, 1 (82)

y {(1&;,")&,%1)_1”5 [(ou, X, p),az, ...,Olr;. atZD (x)} dz,

Bis---s By
(6.35)
using the result (4.4), the above Equation (6.35) reduces to
 — cptn—o—o'—1_L @@ +n—0—-0"—n'(p+v' -0d")
Flo+VII'(p+n—o0—0)l'(p+n—0"—v)
i (@15 %, PIa(@2)n - @)n (P)ulp +11—0 =0’ —v), 636
= Bn--- (Bsn (o +Vin(p+n—0—0") '
r_ n 0
o /G bn_ (@) / e 2w, L (82)dz,
(p+n—0o'—v), nl Jo
by substituting §z = y and after little simplification, we have
_xPmr= L rp)N(p -0 —o' —v)T(p+v — o)
B s T+v)I(p+n—0—0)(p+n—0 —v)
i (@15 %, Pn(@2)n - @) (Pa(p+1—0 =0’ =), 637
= Bn- (B (0 +Vnlp+n—0—0"),
(p+v —0')y gax\n 1 /'OO I+n—1,—y/2
—) — W, dy,
(p+n—o/—v)n<5) P A y e oy
by using the integral formula involving Whittaker function, we have
X T A2 e DEA/2 = i D)
B 8! L(1/2—x+1)
F(p)l'(p+n—0—0o —v)['(p+1v -0
Fo+VIl(p+n—o—-o)T'(p+n—0"—v)
00 (6.38)
y Z (ar;x, pha(@)n - (ar)n (1/24+ p+Dp(1/2 = p 4Dy
= (B B (1/2= %+ D

On(p+n—0—0" —v)(p+v —0o'), (g)" 1
(10 + V/)n(p + n—o— 0’);1(,0 + n— o/ — V)n

’

8

n!

interpreting the above Equation (6.38), in view of Equation (3.18), we have the
required result. O
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Theorem 26 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C,B,..., B, €

C\ Zy be such that %(n) > 0, R(a) > 0 and R(p +n) > max{0, R(o + o' +v—
1), R(o’ — V")), then the following formula holds:

] ’ ’ : s
/0 e, (52) {(1&;’ v o=t pp [ (o1, x5 p), 0/632], c O/;ra. atzD (x)} dz

CxPTe DA 4+ DE(A2— p D) T(p)
= T1/2—%+1) Plo+v)

y Fpo+n—o—0oc —v)I'(p+Vv —0') +5Fp [(al,x;p),az,...,a,,
r—+5 o
To+n—0—0T(p+n—o' —v) 7 5+ Bis--s By

1/2+u+l,1/2—u+l,p,p+n—0—0’—V,P+”,_U,;E}

12—A+Lp+Vv,p+n—0c—-0,p+n—0 —v; 8
(6.39)

Theorem 27 Letx > 0,a,0,0',v,V,n,p e Canday,...,a, €C,B,...,B; €
C\ Zy be such that %(n) > 0, R(a) > 0and R(p —n) < 1 + min{R(-v), R(o +
o' — 1), R(o + V' —n)}, then the following formula holds:

o
/ e 2w, L (82)

0
IU,a’,v,v’,ntpfl p (a1, x5 P), a2, ..., Oy, Cl_Z d
X {( X,00 rVs B, ”.7ﬂs; : (x)pdz
xS (12 4+ DE(1/2 — e+ D)
N st r(1/2—r+10)
» Frl—p—-—v)Id—p—n+o+o)I'(l—-p—-n+o+V)
rM—pldl—p—n4+o+o +vV)I'd—-—p+0—v)

S (@1, x;p)yan, .. o, 124w +1,1/2—u+1,
s+ Bis--s B, 1/2 —A+1,

l—p—v,l—p-—n+to+o l-p—n+o+r;a
l—-p,1—p—n+o+o' +VvV,1—p+o—v; x|
(6.40)

Theorem 28 Lerx > 0,a,0,0',v,V,n,p e Canday,...,a, €C,By,...., B €
C\ Z be such that R(n) > 0,R(a) > 0.and R(p —n) < 1 +min{R(—v), RN(o +

o' — 1), N(o + V' — n)}, then the following formula holds:
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oo
/ Zlfleféz/ZWA’M(SZ)
0
« {(1;’,32””’"/’%/’—1»5’ [(“l’x; P) Q2. - 0 a—ZD (x)}dz
ﬁ],...,ﬂs; t
_xPH NP2 4 DE(1/2 — D)

B st FA/2—xr+1)
Fl—p—-vIl=p—n+o+o)I'(l-p—-—n+o+V)
r‘a—plrdd—p—n+o+o" +vH)I'd—p+o —v)

% TP (a1, x;p),az,...,ap, 1/24+pu+1,1/2 — p+1,
RN Brooos B 12 — A +1,
l—,o—v,l—p—n—}—o—i—a’,l—p—n—}—a—i—\/;i
l-p,l—p—n+o+o' +vV,1—p+o—v; x|
(6.41)

Proof The proof of Theorems 2628 would run parallel to Theorem 25, so details
are omitted here.

O
Theorem 29 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C,B4,..., 85 €
C\ Zy be such that R(n) > 0, R(a) > 0 and R(p +n) > max{0, R(n —o — o —
V), R(v — o)}, then the following formula holds:
o0
/ Zl—le—52/2wkyﬂ(az)
0
N {<D(<)7,xo’,v,v/,ntp_1ry§7 [(al,x; P, ..., mZD (x)} dz
’ Bi-oos Bss
_xPTHOr D2 4+ DT(1/2 — e+ )
B st T(/2=xr+1)
L@ (p—n+o+o +V)I(o—v+o0)
F(o=v)'(p—n+o+o)(p—n+o+V)
X P (Ollyx;l’)ony-nsara1/2+M+l,1/2_ll+l,
TV 54 Brveo B 1/2—A+1,
p,p—n+o+o +Vv,p—v+o; ﬂi|
p—v,p—n+o+ao,p—n+o+v; 4
(6.42)

Proof Denote the left-hand side of the result (6.42) by # . Using definition of
Whittaker transform as given in Equation (6.33), we have
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oo
W = / e W L (52)
0
y {(DS;C"””‘”/'"tﬂ—l,yf |:((x1,x; D)0, ..., Ay atz}) (x)}dz,
’ Bir--os By
(6.43)

using the result (5.4), the above Equation (6.43) reduces to

F(@I'(p—n+o+o +V)I(p—v+o0)
Co—v(p—n+o+o)(p—n+o+)

W — xp777+0+(r’71

e 9]

Z (ar; x, pPlula)y - (o) (P —n+o0 + o'+ V/)n
(ﬁ])n"‘(ﬂs)n (o —=vp(p—n+o0o+0),

(p—v+o) (ax)"
(o—n+o+v), nl

(6.44)
n=0

o
/ e 2wy L (82)dz,
0

by putting §z = y and after little simplification, we have

3 xP—nto+o'~1 C(e)T(o—n+o+d +V)I'(p—v+o0)
8 T—wl(p—n+0o+0)(p—n+o+)

o0

(ot1; %, phn(a2)n - (@)n (PIn(p —n+0 +0" +V),
X

(6.45)
B (Bon (p=v(p=n+0+0

n=0

(p—vtod caxyt 1 (% i, yp
(p—n+o+v), (?) E/O Y e Wi (y)dy,

by using the definition of Whittaker transform, we have
_xPTHOr D2 4+ DT(1/2 — e+ 1)
B 8! T(1/2—xr+1)

F'(@I'(p—n+o+o +V)I(p—v+o0)
Flp=—v)I'(p—n+o+o)l'(p—n+o+V)

V4

(6.46)

]

Z (@13 X, PIn@)n - (@r)n /24 pn+Dn(1/2 = 1+ Da
Bn--Bon (1/2 =2+ Dn

n=0

(On(p—n+0+0" +V)u(p—v+0), (@)nl
(o=vn(p—n+o+ol(p—n+o+v), \ 3

Ev

the above Equation (6.46) in the view of Equation (3.18) gives the required result.
O
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Theorem 30 Letx > 0,a,0,0',v,V,n,peCanday,...,a, €C,By,....,B €
C\ Zy be such that R(n) > 0, R(a) > 0 and R(p +n) > max{0, R(n —o — o —
V), N(v — o)}, then the following formula holds:

oo
/ Zl—le—(SZ/zWA’M(SZ)

0
« {(D(Oy,;/,v,v/,ntp—lrl—-sp |:(O[1,X; p). o2, ....ar atz]) (x)} dz
, Bis---, By
_xPTHOF D2 4+ DD(/2 — e+ 1)
= 5! ra/2—r+10

F(@I(p—n+o+o +V)I(p—v+o0)
Clop—v(p—n+o+o)(p—n+o+V)

p [ @ux;p)an, e, 1240 +1,1/2—pn+1,
o Bisows B 1/2 =2 +1,

p,p=n+o+o +v,p—v+o; ax]

X r+5F

p—v.p—n+o+o.p—n+o+v; 4
6.47)

Theorem 31 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C,By,..., 85 €
C\ Zy be such that R(n) > 0,N(a) > 0 and R(p —n) < 1+ min{R®W"), R(n —
o —0'),R(n — o’ — )}, then the following formula holds:

o0
/ Zlileiaz/ZW)h,M(SZ)

0
x {zl_l (Dﬁ::gé’”*”“"tp—‘,yf [("”’x; Pl e, ar “—ZD (x)} dz
ﬂl?"'les; t
_xPTHOR D2 4+ D12 — e+ 1)
B 8! TA/2—xr+1)
Frl—p+ V)Nl -p+n—0—-0Tl-p+n—0o —v)
FrA—pTd—p+n—0—0' —v)[(1—p—0c’ +V)
[(al,x;p),az,...,ar,1/2+,u—|—l,1/2—u+l,
Biveo By 1/2 =M +1,
l—p+V,1=p+n—0o—-d' 1-p+n—0c' —v; a
l—p,1—p+n—0—o —v,1—p—0o'+v; x|
(6.48)

p
X r+5Y 544
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Theorem 32 Letx > 0,a,0,0',v,v,n,p e Canday,...,a, €C,B,..., B, €

C\ Zy be such that () > 0,R(a) > 0and R(p —n) < 1+ min{RO"), N(n —
o —0'),R(n — o' — )}, then the following formula holds:

oo
f 21_16_82/2WA,H(8Z)

0
{Zl—l (D;ygo/,‘)s‘/’"tp—lrrf [(al,x; p),az, ey Oy %]) (x)}dz
B, B
_xPTIOH T D+ DT(1/2 — o+ 1)
= st ra/2—r+10

Frl—p+VvVYIrd—p+n—0—-0l—p+n—0'—v)
ri—plrd—p+n—c—-—o —v)I'd—p—0c’+v)

p [, x;p), a0, o, 1240 +1,1/2—pn+1,
al Biroos Bsn 1/2 =241,

X r+5F

l—p+Vvil=p+tn—-0o—-od' 1-p+n—0o'—v; a
l—p,l—p+n—0c—0'—v,1—p—0c'+v; x|
(6.49)

Proof The proof of Theorems 30-32 would run parallel to Theorem 29, so details
are omitted here. ]

7 Fractional Kinetic Equations

Fractional kinetic equations gained remarkable interest due to their applications not
only in mathematics but also in physics, dynamical systems, control systems and
engineering and to create the mathematical model of many physical phenomena.
Especially, the kinetic equations describe the continuity of motion of substance. For
the extensions and generalizations of fractional kinetic equations involving many
fractional operators, see the available literature [74-92].

In view of the effectiveness and a great importance of the fractional kinetic equa-
tions in certain astrophysical problems, the authors develop a further generalized
form of the fractional kinetic equation involving extended incomplete generalized
hypergeometric functions.

If an arbitrary reaction is described by a time dependent quantity N = N(¢),
then the fractional differential equation between rate of change of the reaction,
the destruction rate and the production rate of N was established by Haubold and
Mathai in [85] is given as follows:
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dN

= —d(Np) + p(Nyp), (7.1)

where N = N(t) denotes the rate of reaction, d = d(N) is the rate of destruction,
p = p(N) denotes the rate of production and N; denotes the function defined by

N(@tH=N@—1"), t">0. (7.2)
The following differential equation gives the special case of Equation (7.1), when

spatial fluctuations and inhomogeneities in the quantity N (¢) are neglected:

dN

— =GN, (7.3)

such that N;(+ = 0) = Ny is the number density of the species i at time ¢ = 0 and
¢; > 0 constant.
The solution of equation (7.3) is given as [93]:

N;(1) = Noe“i". (7.4)

If we remove the index i and integrate the standard kinetic equation (7.3), we
have

N(1) — Nog = —coD; 'N (1), (71.5)

where ¢ is a constant and oD, Uis the special case of the Riemann-Liouville
fractional integral operator ¢ D, ¥ defined as:

1

oDV f(1) = m

t
/ ¢t —w)' ! fuydu, (>0, RW) > 0). (7.6)
0

The fractional generalization of the standard kinetic equation (7.5) is given by
Haubold and Mathai [85] as follows:

N(t) — No = —c"oD; "N (1). (7.7)
They obtained the solution of equation (7.7) given as follows:

N(t) = No Z % (ct)’k . (7.8)
k=0

The exponential solution given in Equation (7.4) of standard kinetic equa-
tion (7.3) can be obtained by taking v = 1 in Equation (7.8).
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Further, Saxena and Kalla [90] considered the following fractional kinetic
equation:

N(t) — Nof(t) = —c"oD;"N(1), M) >0,c > 0), (7.9)

where N (¢) denotes the number density of a given species at time ¢, No = N (0) is
the number density of that species at time ¢t = 0, ¢ is a constant and f € £(0, c0).
In available literature, there are several integral transforms which are extensively
used to solve fractional kinetic differential equations. One of them is Laplace
transform.
Let f(z) be a real or complex valued function of variable ¢t and p is a real or
complex parameter, then Laplace transform of f (¢) is defined as (see [94]):

o]

F(p)=L{f®);p}= fo e P f(tydt, M(p) > 0). (7.10)

The Laplace transform of Riemann-Liouville fractional integral operator is given
as (Erdelyi et al. [95], Srivastava and Saxena [52]):

L{oD;"f(0); p} = p~"F(p), (7.11)

where F (p) is defined in Equation (7.10).
By applying the Laplace transform to Equation (7.9), we have (see [86]):

F
L{N(@); p} = Nowrc(—i)rv
o0 (7.12)
= No (Z(—c“)”p”") F(p), (n € No, % < 1) :
n=0

8 Solution of Generalized Fractional Kinetic Equations
Involving Extended Incomplete Generalized
Hypergeometric Functions

In this section, we investigated the solutions of the generalized fractional kinetic
equations involving the extended incomplete generalized hypergeometric functions.

Remark 4 The solutions of the fractional kinetic equations in this section are
obtained in terms of the generalized Mittag-Leffler function E, g(x) (Mittag-
Leffler[96]), which is defined as:
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n

ad Z | ;
Eyp(z) = 2:(:) Fan ¥ B’ N() > 0, R(B) > 0. (8.1)

Theorem 33 [fa > 0,d > 0,0 > 0,1, - ,0, € Cand B,---, B, € C\Z,,
then the solution of the equation

N(t) — N()ryf [(als X5 p)7a27 sy O datai| _aUODt—O'N(t) (8.2)
Bis---. By
is given by
> (or1; x, p)n(aZ)n () N(on+1) (d(rto)n 0.0
N(t) = N Es on+1(—a’t?).
O =), Bon - Bon ar Foom (GO

(8.3)

where Eq g(x) is a generalized Mittag-Leffler function [96] defined in Equa-
tion (8.1).

Proof Applying Laplace transform to both sides of Equation (8.2), we have

L{N(t); u}

= NoL {,yf |:(a1,x; P02, s d”t":| ; u} —a’L{oD;7N(t); u},
Bir--o By
(8.4)

using the result as given in Equation (7.11), we have

o . .
N(u) = NO/ eul P [("“’x’ )@z, ... ar; d"t"} dt —a®u~" N(u),
0 ﬁ]s '-'7/33;
(8.5)

using Equation (3.18), we have

e (@13 X, PIa@2)n - (@) (A7) _
N@) = N ut dt | —a’u" " N(u),
w 0(/0 D D Sy W t) N

(8.6)

after little simplification, we have

N@w)+au °N@u) = N()Z @13 %, PIn(@2)n - (@) (@7) / e ot
o 0

B (Bn n!
8.7)
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using the result (6.18), we have

U\~ e @i x, pla@2)n - (@)y (@) T(on + 1)
<1+(;) )N(u)—Norg G T

(8.3)
after simplification, we have
o (15 X, Pla(@a)y -+ (0r)y (d°)"
Nu) = N,
o OZ;: BonBon nl
N l (8.9)
—(on+1) _ E -
xF(an+l){u ;[ <a) }}
taking Laplace inverse of Equation (8.9) and by using
o—1
e ety P : 8.10
L~ Hu% 1t} = Ty (R(o) > 0), (8.10)
we have
_ o (@15 X, Pla(@2)y -+ (o) (d7)"
L™ {Nw} =N
(NG =M 2 =g e
N (8.11)
X F(Gn + 1)L_1 {Z(_l)lao'lu—[d(n+l)+l]} ,
1=0
after simplification, we have
. o (@15 X, Pa(@2)n -+ (o) (d°)"
.. N(t) =N
e NO=No) S s
(8.12)
r 1 S a7
X (an—i— ) g(_ )(l m s
that implies
o (@15 X, Pa(@2)n -+ (o) (d71%)"
N@) =N
O =M e
(8.13)

Sy @
xF(an+1){Z( l)r(cm-kal—i-l)}’

=0
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the Equation (8.13) can be written as

(@15 X, PIn(@2)y -+ - (@) D(on + 1) (d71)"
N =No) Bin - Bom T

Ed‘on+l(_aat0).
n=0
(8.14)

O

Theorem 34 [fa > 0,d > 0,0 >0, a1, - ,0, € Cand B,---, B, € C\ Z,,
then the solution of the equation

N(l) — N()rrf I:(als X, p)vZZ, . v(‘;ridata} _aUODt—UN(t) (815)
155 Py

is given by

o [on; x, pla(@2)y -+~ (@)l (on + 1) (d71°)"
NO=Nod Bin - Bom pr

Ea, on+1 (_a”ta)-
n=0
(8.16)

Proof The proof of Theorem 34 would run parallel to Theorem 33, so we omit the
details involved. |

Theorem 35 Ifd > 0,0 > 0,a1,---,0, € Cand B, -+ , B e(C\Za, then the
solution of the equation

N(@t) = No,y? [(m’x; P2, .- 0 d"z“} —d°D;° N (1) (8.17)
Bis--s By
is given by
o (15 X, Plp(@)n - (@) (on + 1) (d71°)" o
N(t) = N Es oni1(—d .
O =), Bn - Bon ar Poonst ()

(8.18)
Proof Applying Laplace transform to both sides of Equation (8.17), we have
L{N(t); u}

— N()L {ryf I:(als-X;p)vaZv -'-7ar;do't0i|;u} _dO'L{ODt—(TN(t)’u}’
Bis--os By
(8.19)

using the result as given in Equation (7.11), we have
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oo . .
Nu) = Nof ey P [(“l’x’ P) @2, s 0 d"t"] dt —d°u=° Nu),
0 Bis--s Bl
(8.20)

using Equation (3.18), we have

A (@15 X, Pa@2)y - (@) (A1) _
N = N ut d _ d(T (TN ,
" " (/O ‘ r;) B (Bon n! t) ! (@)

(8.21)

interchanging the order of integration and summation in Equation (8.21) and after
little simplification, we have

00
5 n nee @)y dO) [0
N@) +d%uo Nw) = No 3 S5 2@ () (@) / ey,
n=0 0

(,Bl)n"'(,Bs)n n!
(8.22)

using the definition of Laplace transform as given in Equation (6.18), we have

u\—o e @ x, pla@)n - (@)a (d°)" T(on + 1)
(1+(3) )N(”)_NO,;) Bn-+ (Bon nl ot

(8.23)
after simplification, we have
o (@13 X, Pa(@2)n -+ (o) (d°)"
Nu) = N
“ OHX:(:) B Bonnl
- ) (8.24)
XF(UYZ+1) {u—(o'l‘l—i-l)z[_ Z —O':| }’
()
taking Laplace inverse of (8.24) and by using
B s to—l
LM u 7t} = o) (R(c) > 0), (8.25)
we have
_ o (@15 X, Pu(@)n -+ (o) (d°)"
L™ {Nw)} =N
) ",; Bon—Bon !
(8.26)

o
X F(O'l’l + l)L—l {Z(_l)lddlu—[g(l’l-‘rl)-Fl] ,
=0
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after simplification, we have

. (@15 X, PIn(@2)y -+ (@) (dO)
e NO=No) —— o s

"= (8.27)
] o0 ! lda’l tU(n+1)
x ['(on+1) ;(— ) m )
that implies
A (@ x, pla@)y e (@) (10"
VO =N TG T o !
(8.28)

o (dato)l
xI‘(on+1){ (—l)l—},
g 'on+ol+1)

the Equation (8.28) can be written as

N@) = No Z (@r; x, Pua)y - - (o) '(on + 1) (dto)n Ea‘an+l(_d0t0)-
n=0

B (Bon n!
(8.29)
O
Theorem 36 Ifd > 0,0 >0, a1, - ,ar € Cand By, ---, B; € C\ Z, then the
solution of the equation
N(t) — N()rrf |:(alv-X; p)’O[Z, e ,ar; dato'] _dO'ODt—UN(t) (830)
Bis .- By
is given by
oo
lar; x, pla(a)n -+ (ap)ul(on + 1) (d7t7)"
N(t) = Ny E,, 1(—=dt%).
g Bn - (B i 0T
(8.31)

Proof The proof of Theorem 36 would run parallel to Theorem 35, so we omit the
details involved. |

Theorem 37 Ifd > 0,0 >0, a1, -+ ,0, € Cand B, -+ , B e(C\Z(;, then the
solution of the equation
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N(t) — NOer |:(051, X3 P), a2, ..., 0p; ti| _dJODt—GN(t) (832)
ﬁla"'7ﬂs;
is given by
> (@13 %, php(a)n - (@) 1"
N() = N, Es ni1(—=d°t%). 8.33
O =No) =55 50, et =) (833

Proof Applying Laplace transform to both sides of Equation (8.32), we have
L{N(1); u}

— NoL {rysp [(al,x; p),az,...,ar;t};u} _dPL{oD O N(): u)
Bis--os Bss
(8.34)

using the result as given in Equation (7.11), we have

oo . .
N(u):NO/ eulryf[(alvx9 p)’a2"~-’arat] dt_dguf(rN(u)’
0 ﬁ]v""ﬁs;
(8.35)

using Equation (3.18), we have

e > (ar;x, pa(a)n - - (@ )q t" —
N = N ut —dt | —d°u° N(u),
(=" </0 D e R AT t) N

(8.36)

interchanging the order of integration and summation in Equation (8.36) and after
little simplification, we have

oo
5 X, 1 0 _
N@) +d7u o N () = Ny 3 5 P (@2 (“’)”—/ e 1" dt,
0
n=0

Bn -+ (Bon n!
(8.37)

using the definition of Laplace transform as given in Equation (6.18), we have

uy\—o N (@13 X, PIa@)n - (@)y 1 T+ 1)
(1+<E> >N(”):N°,§ Bon- Bow nl wrtl

(8.38)

after simplification, we have
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e @i pla@)a @ | ) o [ u a}l
N(u) = N (= ,
0= No ) = o {“ 2 (2)

(8.39)
taking Laplace inverse of (8.39) and by using
| tu—l
L™ {u %t = —, R 0), 8.40
W1l = 5y (R(0) > 0) (8.40)

we have

L~V NG} = No i (a1;x, phno2)n -+ (Olr)nL—l {i(_l)ldalu—[al+n+l]} ’
n=0

(ﬂl)n (IBs)n 1=0
(8.41)
after simplification, we have
> CTIER P)n(a2)n s (@) > | ol tal+n
N(@®) = N S { —
O =N =55 o !§< S e
(8.42)

that implies

- (a1 x, pInle2)y - - - (otp)nt" — i (datg)l
N(t) = N S DL L A
0= No 2 = B :Z( ’ }

Py Fel+n+1
(8.43)
the Equation (8.43) can be written as
o (@13 %, pla(@2)n -+ (@ )nl"
N(t) = Ny AR Akt o Eooni1(—dt9). 8.44
;) Bin - B ot 844
O
Theorem 38 Ifd > 0,0 >0, a1, -+ ,0, € Cand B¢, -+ , B e(C\Za, then the
solution of the equation
N(t) — NOrFf |:(051,x; p)922, e ,(;r;. t] _ d(TOD;O'N(t) (845)
15+ Pgs

is given by
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> lors x, pla(a2)n - - (@p)n t" 0,0
N(t) = N Es ny1(—=dt?). 8.46
O =No ) == HEde (640

Proof The proof of Theorem 38 would run parallel to Theorem 37, so we omit the
details involved. O

9 Conclusion

Recent developments in the theory of fractional calculus show its importance
(see, for example, [45, 97-105]). Therefore, the fractional integral and differential
formulas (of Marichev-Saigo-Maeda type) involving the extended generalized
incomplete hypergeometric functions established in this chapter will be useful for
investigators in various disciplines of applied sciences and engineering. We are
also trying to find certain possible applications of these results presented here to
some other research areas due to presence of the extended incomplete general-
ized hypergeometric functions ,y¥(z) and ,T'Y(z) defined by (3.18) and (3.19),
respectively, possess the advantage that a number of incomplete gamma functions
and hypergeometric function happen to be the particular cases of these functions.
Further, applications of these functions in communication theory, probability theory
and groundwater pumping modeling are shown by many authors. Therefore, we
conclude this investigation by noting that the results deduced above are significant
and can lead to yield numerous other fractional integral and derivative formulas and
integral transforms involving various special functions by suitable specializations
of arbitrary parameters in the main findings. More importantly, they are expected
to find some applications in probability theory and to the solutions of differential
equations.
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On the Stability of the Triangular )
Equilibrium Points in the Elliptic Sk
Restricted Three-Body Problem with

Radiation and Oblateness

Vassilis S. Kalantonis, Angela E. Perdiou, and Efstathios A. Perdios

Abstract The elliptic restricted three-body problem when the primary is a source
of radiation and the secondary is an oblate spheroid is considered and the stability of
the triangular equilibrium points is studied. The transition curves separating stable
from unstable regions are determined in the parametric space both analytically and
numerically. Our results show that the oblateness and radiation parameters do not
cause significant changes on the topology of the stability regions in the parametric
plane defined by the mass parameter and eccentricity. However, in the remaining
parametric planes, we observe that by increasing the values of the parameters which
are kept fixed stability gives place to instability.

MSC 70F07; 70F15; 70K20; 70K42

1 Introduction

The restricted three-body problem is the most widespread problem in Celestial
Mechanics and during the past of the last ages too many works have been
devoted for its study either from mathematical or from practical point of view
([8, 11, 17, 20, 31, 35, 46], among many others). This problem consists of two
bodies, known as primaries, which rotate around their common center of mass
and a massless body which moves in the plane of motion of the primaries under
their gravitational attraction and does not affect their motion. If the two primaries
track circular orbits around their center of mass, it is called circular restricted three-
body problem (CR3BP), while if they describe elliptic orbits, it is called elliptic
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(ER3BP). A major difference that exists for the study of these two problems is
that although the CR3BP possesses the well-known Jacobi integral, the ER3BP
does not and this makes the investigation of the latter more complicated. However,
both the CR3BP and the ER3BP admit five equilibrium points, three of which are
located on the Ox-axis joining the primaries and the remaining two form equilateral
triangles with them. Due to their immediate connection with real applications, e.g.,
in space mission design, the dynamics around them is of special importance (see,
for example, [14, 19], and the references therein).

In the framework of the CR3BP, various modifications have been proposed
in which additional forces are incorporated so as to make the models of our
Solar system more accurate. These variants take into account the oblateness of
the primary bodies and/or the radiation pressure when the primaries are radiation
sources ([1, 3, 4, 10, 15, 32, 37, 38, 42, 45], among others). For example, Oberti
and Vienne [30] have shown that the inclusion of the oblateness effect of the primary
bodies provides significant improvements in the theory of motion of the Lagrangian
satellites Telesto, Calypso, and Helene in the Saturn-Tethys or Saturn-Dione and a
satellite three-body systems. An interesting variant of CR3BP has been proposed
recently by Bosanac et al. [6] in which an additional coupled three-body interaction
effect is considered. In addition, Zeng et al. [44] dealt with a rotating mass dipole
with oblateness of one primary in order to approximate accurately the potential
distribution of nearly axisymmetrical elongated celestial bodies.

On the other hand, in relation to the ER3BP certain amount of work has
been done during the past. Some of these works deal with its periodic orbits
such as the work by Broucke [7] where he systematically studied these orbits
together with their stability, the work by Markellos [21] where, through periodic
solutions, he extensively studied the stability regions of retrograde satellites or
that by Perdios [33] in which doubly asymptotic orbits at the unstable equilibrium
points were determined both analytically and numerically. Also, Haghighipour
et al. [13] studied 1:2 resonant periodic orbits, Voyatzis et al. [43] considered the
Hill limiting case of the ER3BP and determined a large set of families of periodic
orbits together with their stability and more recently, Antoniadou and Libert [2]
computed periodic orbits of the ER3BP by originating from periodic solutions of
the CR3BP. Additionally, several studies in the ER3BP discuss about the dynamics
around the triangular equilibrium points. The main results can be found in the
works by Danby [9], Bennett [5], Nayfeh [29], and Meire [25] where the linear
stability of the triangular equilibrium points was investigated focusing especially
on the transition curves separating regions of stability and instability in the (u, e)
parametric plane. Also, Valente et al. [41] considered the non-linear stability zones
around the triangular points, Erdi et al. [12] investigated the size distribution of
their stability region while Kovacs [18] presented the stability chart of the triangular
points using the energy-rate method.

With regard to certain modifications of the ER3BP we may refer here that for
the photogravitational version of the ER3BP Markellos et al. [22-24] studied the
linear stability of the Lagrangian points as well as that of the inner equilibrium
point by determining the stability regions in the space of the parameters of the
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problem. Also, in the case where the first primary is an oblate luminous and the
second one an oblate non-luminous body Narayan and Kumar [27, 28] investigated
the effects of radiation and oblateness to the location and stability of the triangular
equilibrium points while Singh and Umar [39] provided the critical mass ratio for
which the triangular points change their stability properties in the framework of the
ER3BP where the primary is an oblate and the secondary a luminous body. Recently,
Ruth and Sharma [36] considered the ER3BP when the larger primary is a source
of radiation and the smaller one an oblate spheroid and studied the positions and
stability of all equilibria as well as tadpole orbits. They used the mean anomaly to
average the distance between the primaries and they approximated the mean motion.
By making use of those approximations, semi-analytical formulae for the positions
of the triangular equilibrium points were derived and based on them they obtained
the transition curves in the (i, e) parametric plane with an accuracy of order two.

So, in view of our previous discussion and based on the work by Ruth and
Sharma [36] we consider in our study the latter version of the ER3BP and extend
their results by presenting analytical expressions for the positions of the triangular
equilibrium points and by determining accurately the stability boundaries which
separate the stability regions in all parametric planes. An analytical solution is given
for one of the transition curves (they are three in total) which depends only on
the parameters of the problem. The remaining two transition curves which delimit
the stability of motion around the triangular equilibrium points, in any parametric
plane, are computed numerically by applying Floquet theory for a system with
periodic coefficients. The nature of instability is also presented in all the considered
cases. Our work is organized as follows. In Section 2 the equations of motion of
the considered problem are recalled and the positions of the triangular equilibrium
points are presented. In Section 3 the stability of motion of the test particle around
the respective equilibria is studied analytically and numerically while in Section 4
our numerical results are shown by illustrating the determined transition curves in
several parametric planes. Finally, our paper ends in Section 5 with some concluding
remarks.

2 Equations of Motion and Triangular Equilibrium Points

We consider a rotating pulsating non-dimensional system x, y, where two primary
bodies with masses m; = 1 — w and my = u, with u = my/(m; + my) < 0.5
being the mass parameter, have fixed positions at the Ox —axis and move in elliptic
Keplerian orbit. Also, the more massive primary m is considered to be a source
of radiation and the secondary m, an oblate spheroid. The equations describing the
motion of a third body of negligible mass which always moves in the same plane
with the two primaries and does not affect their motion are [27]:

" . 052 . . a2
¥—=2y=00)—, V+2x =0(0)—, ey
ox ay
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where 2 is the potential function given by:

2 =

X2+yr 1| (- A
S Gt DL [ )

2 n? " r 2r23

while

n= oy = e - 1242 3

are the distances of the third body from the two primaries, respectively, and:

5 34, 1

=1+ —, ) = ——.
" + a® 1+ e cos6

> “)

The true anomaly 6 is the independent variable and the dots in system (1) denote
differentiation with respect to 6, i.e. d/d@, n is the perturbed mean motion and e is
the eccentricity of the elliptical orbits of the primaries. Also, A; is the oblateness
coefficient of the second primary defined by the formula A, = (R% - R%) /5R?
where Rgp and Rp are the equatorial and polar radii of the said primary body,
respectively, and R is the distance between the primaries while g1 = 1 — F),/F,
stands for the mass reduction factor with F, and F), being the gravitational and
radiation pressure forces, correspondingly. Note that for g = 1 and A, = 0 the
problem reduces to the purely gravitational elliptic three-body problem and by also
considering e = 0 it becomes the classical circular restricted three-body problem.
The partial derivatives of the potential function £2 involved in (1) are:

082 Il —w)x+wp)  pax+p—1  3pdr(x+p—1)
8_ =X- _2 3 + 3 + 5 )
X n ri T3 2ry
082 L 1 gi(l—wy wy  3pAzy
Oy YT 2 3 3 5| o)
y n r ry 2r;
or equivalently
¢ = Bix + Bou(l — ), 2y = By, (6)
where we have set for abbreviation:
1 fgi(1—p 2 3Au
Bi=l-G1"F3+3+53
n ri ry 2r3
(7
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Thus, the equations of motion (1) are finally written in the form:

¥ =2y =0(0)[Bix + Bapn(1 — w1,

¥+ 2x = o (0)Byy. ®)

The positions of the classical equilateral triangle Lagrangian equilibrium points
Ly s, for which x, y # 0, are determined by the conditions:

Bix + Bou(1 — ) =0, B; =0, €)

which also give that B, = 0. With the help of the latter equation, the second equation
of (9) gives the following relation for the distance of the Lagrangian equilibrium
points Ly s from the first primary:

\N1/3
n=(%)", (10)
n
from which, evidently, we obtain that the triangular equilibrium points exist only
for g1 € [0, 1]. The second equation of (9) also gives that:

1 2A
=+ 22, (11)
ry 2r3

and after some simple calculations leads to:
=1, (12)

which means that the distance between L4 5 and the second primary is always
fixed to one, independently of the parameters of the problem. It is now easy
from (3) to obtain analytically the exact coordinates of the positions of the triangular
equilibrium points L4 s in the form:

1 /qin\2/3 1 /qin1/3 gi\2/3
— (T, =:t—(—) 4_(—) . 13
o (nz) H Y0 2 \n? n? (13)

Note here that for Ay = 0 in (13) we get the positions of the triangular equilibrium
points of the photogravitational problem:

1 253 1 153 2/3
X0=§6]1/ — yoziqu/ 4—qP°, (14)

which conform with those given by Markellos et al. [22] with non-luminous
secondary. If we also set g1 = 1 the corresponding positions (xg, yo) = (1/2 —
w, £+/3/2) for the classical problem are obtained.
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3 Stability of the Triangular Equilibrium Points

By setting x = xo + & and y = yo + n we transfer the origin of the coordinate
system at the equilateral equilibrium point L4 5 introducing thus the new variables
& and 7 in the equations of motion (8):

§—2n=0()[Bi(xo+ &)+ Bou(1 — )],

Al 15)
i +25 =0(0)Bi(yo+n).
By linearizing system (15) with respect to the new variables we obtain:
E=A®)Z, (16)
where & = (&, 1, &, 7)" and:
o I
A@®) = , 17
©) |:O'(9)C ZD} a7

with the corresponding blocks:

0 5O
00 10 2% 2 01
0= . , C=| 7% "t | D= . 18
[oo] [01] [Qf’g) 2 -10 (18)

The superscript in the partial derivatives of the potential function involved in C
block above denotes that the corresponding derivatives have been evaluated at the
triangular equilibrium points (xp, yg) and are given by the following analytical
formulae depending only on the parameters of the problem:

4/3 2/3
O _ 6n)@n® + g/ 13— 3n® — 8ulg)’
g — 4n14/3 - 47,10/3 ’
2 2/3
© _|3—=1p  2p  pGn”—2)q;
“n _[ 2 T2 201073 o 4

(231 —3)n> —8u] 23 (5n° —=2)p 43

0) _ — RC—.
Q - 3(1 M) + 4”10/3 q] 4”14/3 ql ’

while we note that 29 = .Qé?y)

The determination of the stability of motion around the triangular equilibrium
points can be accomplished through the computation of the characteristic roots of
the variational equations (16). The study of the nature of these roots allows us
to configure the regions of stability and instability in any parametric plane, e.g.
(u, e), and the corresponding transition curves which separate these regions can be
computed numerically using the classical Floquet theory. Following [5], [34] as well
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as [16], we will briefly describe here this technique. The four sought characteristic
roots Ay, k =1, 2, 3, 4, are the solutions of the characteristic equation:

det(B — AI) =0, (20)

with I = diag[1, 1, 1, 1] being the 4 x 4 identity matrix and B = X_I(Q)X(Q +T),
where X(0) is a fundamental solution of equations (16) while T is the period of
the coefficients of (16) which is equal to 2. Without loss of generality, we can
set in the latter equation X(0) = I which means that for matrix B we obtain the
form B = X(T). If the roots of the characteristic equation (20) are distinct, there
are four independent solutions & satisfying the property &, (t + T) = A& (1),
k =1, 2,3, 4, and obviously a solution is periodic if Ay = 1, while the case |Ax| <
1 means that the motion is bounded and the case |Ax] > 1 denotes unbounded
motion. The corresponding characteristic equation is quartic and can be written as
the product of two quadratic factors:

M +ar+DA>+ar+1) =0, (1)
with
1 1
a=s(p+VD). a=s(p-vD). D=pi-4p-2. @

where we have abbreviated:

4 4
pi=-TrB,  py= Y > (biibj; —bijbji), (23)
j=i+li=1

and b;j, i, j = 1,2, 3, 4 are the elements of matrix B. So, for stability we have the
following conditions:

D > 0, lai| < 2, lar| < 2, 24)

while the cases D = 0, |aj| = 2 and |az| = 2 form the required transition
curves which define the stability regions of motion around the triangular equilibrium
points in a specific parametric plane. We recall here that our studied problem admits
the four parameters u, e, g1, and A, which means that in order to determine the
corresponding transition curves on a particular parametric plane we have to fix the
values of two of them.

It is worth to mention here that the transition curve which corresponds to the case
D = 0 may be determined analytically as follows [26]. Using the transformation:

_|RO - | cos¢ —sing
X= [O R‘l] = R= |:sin¢ COS¢i|’ (25)
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where R is the two-dimensional rotation matrix, we can compute the angle ¢:

1 20{)
¢ = 5 arctan |:—:| (26)

for which the matrix C is diagonalized in the form:

C: 0
C* = , 27
[ 0 Cz} @7
with
(PN ©) O _o0p 2
o= |29 + 20 F 129 - 2P + 42l (28)

By substituting the positions of the triangular equilibrium points (13) in the latter
coefficients, which correspond to the elements of matrix C*, these obtain, after some
calculations, the following special form:

3
Cra=510FV1-g"), (29)

where

o nay”> (1= @=5n% 4y

3n10/3 on 5,8 2# uAn*(3—10p)—n* (12—171) +V/G (1—-n*

(30)
with
G =[n2Bu —3) — 2ul? + 30> g (1 — w(5n® — 2). (31)

Note here that, in case where we consider that the second primary is not an oblate
spheroid, i.e. Ay = 0 which also means that n = 1, we obtain g** in the following
simplified form:

g =pu(l—w@—q, (32)

which is in agreement with the corresponding results given by Markellos et al. [22]
for the photogravitational case where only the first primary is luminous. In addition,
if we also consider that g; = 1, i.e. we have the classical gravitational case, the
above quantity g* obviously reduces to:

g =3pnd —pw), (33)

as this was given by Tschauner [40].
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We consider now System (16) where its block C has been diagonalized as
it is given by the relation (27). By setting Y = [&, 5] and introducing the
transformation provided by Meire [26]:

Y] [11][<
[T’}_[Slsz}[gz]’ G4

the equations of motion around the triangular equilibrium points become:

!/
Q4 S1 0 Q4
= , 35
[92} [0 52][92} G
where S1 and S are the solutions of a Riccati matrix differential equation (see [26])

which produces the following analytical expression:

4
1 —9g™ +2¢% +

=0, (36)

1 — g*

for the transition curve which corresponds to the case D = 0 and depends only on
the four parameters of the problem. The analytical form of this curve is equivalent
with that given by Meire [26], for the classical case, as well as with that by Markellos
et al. [22], for the photogravitational problem, with the difference that g and g* in
those papers are replaced now by the coefficient (30), respectively. Equation (36)
may provide the transition curve D = 0 in any parametric plane if the remaining
two parameters are kept fixed.

4 Numerical Results

For the numerical determination of the transition curves in any parametric plane, say
the (i, e) plane, we use the stability conditions (24) and look either for the stability
parameters a;, i = 1 or 2, to obtain the critical values 32 or for the discriminant D
to be equal to zero. Since these, in general, do not hold we seek corrections 5 and
de such that:

ai(u+68u, e+ de) ==+£2 or D(u+ 8, e+8e) =0, 37

and by linearizing we obtain:

da; da; aD aD
—iu+ —3B8e=42—aq; or —déu + —d8e=—D, (38)
o de ol de

i = lori = 2, from which we can construct the relevant corrector-predictor

algorithms. For example, by keeping constant the value of the mass parameter, i.e.
3 = 0, we obtain from (38) the corresponding corrections for the eccentricity:
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+2 — a; —-D
je = ——— or de = ,
da;/de dD/de

(39)

while in case where the conditions (37) have been satisfied with the desired
accuracy, by slightly varying the value of the mass parameter, i.e. 5 = €, the
corresponding predictions for the eccentricity:

_aai/a,u _dD/op

Ae = € e =
da;/de aD/de

€, (40)

are obtained from (38), respectively. This procedure has to be applied successively
for all the admissible values of the corresponding parameters in order to obtain
the requested transition curves in the (u, e) parametric plane. Note that, a similar
procedure can be implemented for any other selected plane of the parameters of the
problem.

In our study, the transition curve corresponding to the critical value D =
0 has been determined, for all the considered cases, by using the analytical
expression (36), and not from the previous described numerical technique, while
the remaining two transition curves have been computed by applying the aforemen-
tioned predictor-corrector algorithms. The stability regions, as they separated by
the transition curves, are presented in several parametric planes of the initial four-
dimensional parametric space (u, e, g1, Az) of the considered problem.

In Figure 1 we present the transition curves in the (u, e) parametric plane for
certain values of the remaining parameters g and A of the problem which are given
in the figure’s caption. The isolated point A in this figure is of special importance
since at this point simultaneously holds |a;| = 2 and |az| = 2 which also means
that the discriminant of the characteristic equation is zero, i.e. D = 0. The numbers
2, 3, and 4 in this figure represent the nature of instability and correspond to the
cases |az| > 2, |laj| > 2 and D < 0, respectively, while S denotes the regions where

0.5 0.5

0.0 T 0.0 T 0.0 T
0.00 0.05 H 0,10 0.00 0.05 H 010 0.00 0.05 H o010

Fig. 1 The transition curves in the (i, ¢) parametric plane for (a) g; = 0.5, A, =0, (b) g1 = 1,
Az = 0.2, and (¢) g1 = 0.5 and Ay = 0.2. In all frames, the numbers 2, 3, and 4 represent the
instability type corresponding to |az| > 2, |aj| > 2 and D < 0, respectively. Point A represents
the case for which simultaneously holds |a;| = 2, |a2| = 2 and D = 0. Letter S stands for stability
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Fig. 2 The transition curves in the (u, Ay) parametric plane for (a) g; = 0.5, ¢ = 0.005, (b)
q1 = 0.5, e = 0.05, and (¢) g1 = 0.5, ¢ = 0.5. The numbers 2, 3, and 4 represent the instability
type corresponding to |az| > 2, |aj| > 2 and D < 0, respectively. Letter S stands for stability
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Fig. 3 The transition curves in the (g1, A2) parametric plane for (a) u = 0.025, e = 0.005, (b)
n = 0.025, e = 0.05, and (c) u = 0.025, ¢ = 0.1. In all frames, the numbers 2 and 4 represent
the instability type corresponding to |az| > 2 and D < 0, respectively. The instability type arising
from the condition |a;| > 2 does not appear in these cases. Letter S stands for stability

the motion of the test particle in the vicinity of the triangular equilibrium points
is stable. As we may observe, the transition curves in this plane are not evidently
affected by the radiation factor ¢ and the oblateness parameter A, and the occupied
stability regions preserve their form.

Figure 2 shows the respective stability regions in the (i, Ap) parametric plane
for the specific values of the parameters g; and e which are provided in its caption.
The notations in this figure are the same as they were described previously. We see
now that by changing the values of the eccentricity from lower to higher values,
the leftmost transition curve corresponding to the critical value |ap| = 2 shifts left
while the corresponding rightmost curve shifts right; the stability regions shrink
giving space to instability of type 2.

A similar behavior with the latter one is observed in Figure 3 where the
parametric plane (g1, A2) has been chosen to be presented. It is clearly shown, in
this figure, that increasing the values of the eccentricity parameter results in the
reduction of the stability region and the instability of type 2 occupies the larger part
of the parametric plane. In addition, the stability region S, frame (a) of this figure,
existing approximately for values of the radiation factor g; > 0.5 and for values of
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the oblateness parameter A; < 0.1 for e = 0.005 has been lost for the eccentricity
value e = 0.1 as shown in frame (c).

5 Conclusions

We considered the elliptic restricted three-body problem when the primary is a
source of radiation and the secondary is an oblate spheroid and studied the motion
of the massless body around the triangular equilibrium points. This problem may be
considered more appropriate for solar system applications than that of the classical
one, since our Sun radiates and many planets are sufficiently oblate. We showed that
the positions of the triangular equilibrium points are given by analytical formulae
in which only the parameters of the problem are involved. Their linear stability was
determined both analytically and numerically. With regard to the analytical solution
of the respective boundary curve which separate the regions of stability it was
shown that it depends only on the four parameters of the problem. The numerical
determination of the remaining criticality conditions was accomplished by certain
predictor-corrector algorithms. For each studied case the nature of instability was
also investigated.

A natural extension of the present work would be to study the case where both
primaries are oblate luminous bodies in order to obtain the corresponding results
for the motion of dust particles around two companion stars of a binary system.
Furthermore, a suitable extension of our current results is to investigate the periodic
orbits around the triangular equilibrium points. These solutions together with the
present results will provide the basic dynamical features of the considered problem
and we intend to do it so in a future correspondence.
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Some Different Type Integral Inequalities  m)
and Their Applications Sk

Artion Kashuri and Rozana Liko

Abstract In this article, we first present some integral inequalities for Gauss-Jacobi
type quadrature formula involving generalized-m-((h’, hg); (n1, n))-convex map-
pings. Secondly, an identity pertaining twice differentiable mappings defined on
m-invex set is used. By using the notion of generalized-m-((h’, hg); 1, 1m))-
convexity and the obtained identity as an auxiliary result, some new estimates
with respect to Hermite-Hadamard, Ostrowski, and Simpson type inequalities via
fractional integrals are established. It is pointed out that some new special cases can
be deduced from main results. At the end, some applications to special means for
different positive real numbers are provided as well.

1 Introduction

The following notations are used throughout this paper. We use I to denote an
interval on the real line R = (—o00, +00). For any subset K € R", K° is the
interior of K. The set of integrable functions on the interval [a, b] is denoted by
Lla, b].

The following inequality, named Hermite-Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1 Let f : I € R — R be a convex function on I and a,b € I with
a < b. Then the following inequality holds:

b
f<a+b)s—iaf f(x)dxs—f(a);f(b). (1)

2

This inequality (1) is also known as trapezium inequality.
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The trapezium type inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. For other recent results which
generalize, improve, and extend the inequality (1) through various classes of convex
functions interested readers are referred to [1-47].

Also the following result is known in the literature as the Ostrowski inequality
[33], which gives an upper bound for the approximation of the integral average

1 b
h—a / f(t)dt by the value f(x) at point x € [a, b].
—al,

Theorem 2 Let f : I —> R, where I < R is an interval, be a mapping
differentiable in the interior 1° of I, and let a,b € 1° witha < b. If | f'(x)| < M
forall x € la, b], then

_ M)z

<m0l g+ Goat

b
‘f(x)—L/ Flde ] Veclabl.
b—a /),

The following inequality is well known in the literature as Simpson’s inequality:

Theorem 3 Let f : [a,b] —> R be four time differentiable on the interval
(a, b) and having the fourth derivative bounded on (a,b), that is | f® | =

Supxe(u,b) |f(4)|
< 00. Then, we have

b b—al fa)+ f(b) a+b 1w 5
/Hf(t)dt— 3 [ 7 +2f<T>]‘smllf oo (b —a)”.
3

Inequality (3) gives an error bound for the classical Simpson quadrature formula,
which is one of the most used quadrature formulae in practical applications.

In recent years, various generalizations, extensions, and variants of such inequal-
ities have been obtained. For other recent results concerning Ostrowski type
inequalities, see [21, 33]. For other recent results concerning Simpson type inequal-
ities, see [32, 38].

Gauss-Jacobi type quadrature formula [40] is defined as follows:

b +00
[ = -0t fwdx = - Buaf o + RS )

k=0

for certain By, k, y; andrest R}, | f|. In [31], Liu obtained integral inequalities for P-
function related to the left-hand side of (4), and in [48], Ozdemir et al. also presented
several integral inequalities concerning the left-hand side of (4) via some kinds of
convexity.

Let us recall some special functions and evoke some basic definitions as follows:

Definition 1 The Euler beta function is defined for a, b > 0 as
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1
Bla,b) = / 11— b lar. 5)
0

Definition 2 ([34]) Let f € Lla, b]. The Riemann-Liouville integrals J;, / and
Ji_ f of order o > 0 with a > 0 are defined by

1 X
JE fx) = mf (x =0V f(de, x>a

and

1 b 1
) = s [ =0 w0, b
+00
where I' () =f e “u*'du. Here JO, f(x) = J)_f(x) = f(x).
Note that @ = 1,0the fractional integral reduces to the classical integral.

Definition 3 ([49]) A set.S € R”" is said to be invex set with respect to the mapping
n:SxS— R" ifx+1tn(y,x) e Sforevery x,y € Sand ¢ € [0, 1].

The invex set S is also termed an n-connected set.
Definition 4 ([S0]) Let 4 : [0, 1] — R be a non-negative function and & # O.

The function f on the invex set K is said to be h-preinvex with respect to 7, if

Fx+my,x)) <h(1—1) f(x) +h(t) f(y) (6)

foreachx,y € K and ¢ € [0, 1] where f(-) > 0.

Clearly, when putting s (¢) = t in Definition 4, f becomes a preinvex function [51].
If the mapping n(y, x) = y — x in Definition 4, then the non-negative function f
reduces to h-convex mappings [52].

Definition 5 ([53]) Let S € R” be an invex set with respectton : § x § — R”".
A function f : § — [0, 4-00) is said to be s-preinvex (or s-Breckner-preinvex)
with respect to n and s € (0, 1], if for every x, y € Sand ¢ € [0, 1],

flr+m@.0) < A= f@x)+5f (). (7

Definition 6 ([54]) A function f : K —> R is said to be s-Godunova-Levin-
Dragomir-preinvex of second kind, if

fx+my. )<A= f) +1t7F(), (8)

foreachx,y € K, € (0,1) and s € (0, 1].
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Definition 7 ([S5]) A non-negative function f : K € R — R is said to be zgs-
convex on K if the inequality

F(A=0Dx +1y) <t =Df () + fF()] €))

grips forall x,y € K andt € (0, 1).

Definition 8 ([33]) A function f : I € R — R is said to M T-convex functions,
if it is non-negative and V x, y € I and ¢ € (0, 1) satisfies the subsequent inequality

Vi V-t
2V/1—1 NG
Definition 9 ([38]) Let K € R be an open m-invex set respecting  : K x K —> R

and A1, hy : [0, 1] —> [0, +00). A function f : K —> R is said to be generalized
(m, h1, hy)-preinvex, if

fax+ A =0y = —F———fx)+ ——F—F. (10)

f(mx +tn(y, mx)) < mhy (1) f(x) + ha(t) f () (11)

is valid for all x, y € K and ¢ € [0, 1], for some fixed m € (0, 1].

The concept of n-convex functions (at the beginning was named by ¢-convex
functions), considered in [14], has been introduced as the following.

Definition 10 Consider a convex set / C R and a bifunction  : f(I) x f(I) —
R. A function f : I — R s called convex with respect to n (briefly n-convex), if

FOx+ A =0)y) < fFO) +an(f ), F), 12)

is valid forall x, y € I and A € [0, 1].

Geometrically it says that if a function is n-convex on I, then for any x,y € I,
its graph is on or under the path starting from (y, f(y)) and ending at (x, f(y) +
n(f(x), f(3))).If f(x) should be the end point of the path for every x, y € I, then
we have n(x, y) = x — y and the function reduces to a convex one. For more results
about n-convex functions, see [7, 8, 13, 14].

Definition 11 ([1]) Let / € R be an invex set with respectton; : [ x I — R.
Consider f : I — Rand n, : f(I) x f(I) —> R. The function f is said to be
(71, np)-convex if

Fx 4+, 0) < )+ An(f), (X)), (13)

is valid for all x, y € I and A € [0, 1].

Motivated by the above literatures, the main objective of this article is to establish
in Section 2 integral inequalities using two lemmas as auxiliary results for the left-
hand side of Gauss-Jacobi type quadrature formula and some new estimates on
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Hermite-Hadamard, Ostrowski, and Simpson type inequalities via fractional inte-
grals associated with generalized-m-((h”, hg); (11, np))-convex mappings. Also,
some new special cases will be deduced. In Section 3, some applications to special
means for different positive real numbers will be given as well. In Section 4, some
conclusion and future research are given.

2 Main Results

The following definitions will be used in this section.

Definition 12 Let m : [0, 1] —> (0, 1] be a function. A set K € R”" is named as
m-invex with respect to the mapping  : K x K — R, if m(#)x+£&n(y, m(t)x) €
K holds foreach x, y € K and any ¢, £ € [0, 1].

Remark 1 In Definition 12, under certain conditions, the mapping n(y, m(¢)x) for
any ¢, & € [0, 1] could reduce to n(y, mx). For example, when m(¢) = m for all
t € [0, 1], then the m-invex set degenerates an m-invex set on K.

We next introduce the concept of generalized-m-((h”, hg); (11, np))-convex map-
pings.

Definition 13 Let K € R be an open m-invex set with respect to the mapping
n:KxK— Randm: [0, 1] — (0, 1]. Suppose k1, k> : [0, 1] —> [0, +-00)
and ¢ : I — K are continuous. Consider f : K — (0, +00) and 1, : f(K) %
f(K) — R. The mapping f is said to be generalized-m-((h%, h); (ny, n2))-
convex if

F(m@0)ex) + 0y (9(y), m()g(x)))

~ =

< [m@RYE) fF(x) +h3En(f" (). fTx)]7, (14)

holds forallx,y € I, r #£0, t,& € [0, 1] and any fixed p,q > —1.

Remark 2 In Definition 13, if we choosem = p = ¢ =r = 1 and ¢(x) = x, then
we get Definition 11.

Remark 3 In Definition 13, if wechoosem=p=q=r =1, h1(t) =1, ha(t) =
1, me(y), m@®)ex)) = ¢(y) —m@)e(x), n2(f" (), f1(x)) =n(f ), fH(x)
and ¢(x) = x, Vx € I, then we get Definition 10. Also, in Definition 13, if we
choosem =p=qg=r=1, hi(t) =1, ho(t) =t and p(x) = x, Vx € I, then
we get Definition 11. Under some suitable choices as we have done above, we can
get also the Definitions 5 and 6.
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Remark 4 Let us discuss some special cases in Definition 13 as follows:

(D If taking h1(t) = h(l — t) and ho(t) = h(t), then we get generalized-m-
((h? (1 = 1), h9(1)); (111, n2))-convex mappings.

(II) If taking hy(z) = (1 — t)* and hy(r) = ¢* for s € (0, 1], then we get
generalized-m-(((1 — 1)*7, *9); (n;, n,))-Breckner-convex mappings.

(II) If taking hy(t) = (1 — )™ and hp(t) = ¢t~ for s € (0, 1], then we
get generalized-m-(((1 — 7) ™57, t=%9); (ny, n,))-Godunova-Levin-Dragomir-
convex mappings.

(IV) If taking hi1(t) = ho(t) = t(1 — t), then we get generalized-m-((z(1 —
1), (¢(1 = 1))*); (i1, ,))-convex mappings.

1 _
(V) If taking h1 (1) = —Vzﬁt and iy (1) = 2\/%

((( 21/;’>p, (2\/‘%)[1) s (s nz))—convex mappings.

It is worth to mention here that to the best of our knowledge all the special cases
discussed above are new in the literature.

Let us see the following example of a generalized-m-((h?, hg); (11, n2))-convex
mapping which is not convex.

, then we get generalized-m-

Example 1 Letustakem =r = %, hi@) =1t ha(r) = ¢S foralll, s € [0, 1], any
fixed p, g > 1 and ¢ an identity function. Consider the function f : [0, 4+00) —>
[0, +00) by

x, 0<x<1;

2, x> 1.

f(x):{

Define two bifunctions n; : [0, +00) x [0,400) —> R and 5, : [0, +00) X

)=y, 0=y=1;
nl('x9y) - {X+y, y > 1,
and
X+, X =y
xX,y) =
M. ) {2(x+y), x> y.
Then f is generalized %-((tll’ , t°9); (n1, ny))-convex mapping. But f is not prein-
vex with respect to n; and also it is not convex (consider x = 0,y = 2 and
t € (0, 1].

We claim the following integral identity.

Lemmal Let ¢ : I —> K be a continuous function and m : [0,1] —>
(0, 1]. Assume that f : K = [m(t)p(a), m(t)p(a) + n(eb), m(t)p(a))] —
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R is a continuous function on K° with respect ton : K x K — R for
n(pd), m(t)p(a)) > 0and V't € [0, 1]. Then for any fixed p, q > 0, we have
m(H)p(a)+n(ebd).m1)¢(a))
/ (x —m(t)p(a))”

m(t)p(a)

x (m()p(a) +n(pd), m(t)p(a)) —x)? f(x)dx
1
= 77””“((0(17),m(t)w(a))/O EP(1 =87 f(m(D)p(a)+En(p®), m(1)p(a)))dé.

We denote

v m(N)g(a)+n(pb).m@)¢(a))
7790 g miab) = [ (x—m@Op@)”  (15)
m(t)p(a)

x(m(t)p(a) + n(pb), m(t)p(a)) — x)? f (x)dx.
Proof We observe that

T{(n, ¢, m; a, b)

1
= n(p(b), m(t)so(a))/O m()g(a) + En(pb), m(t)p(a)) —m()e(a))?

x (m()p(a) + n(pd), m()p(a)) —m()e(a) — En(p(b), m(t)¢(a)))?
x fm@)0(a) +EAE D), m(1)0(a)))dé

1
= P (p(b), m(1)g(a)) /0 EP(1 — &)1 fm()p(a)+En(pb), m(t)p(a)))dé.

This completes the proof of the lemma.

Remark5 In Lemma 1, if we choose m(f) = 1 for any + € [0,1],

n(lp), m(t)p(a)) = eb) — m(t)p(a) and ¢(x) = x for all x € I, then we
get the left-hand side of (4).

With the help of Lemma 1, we have the following results.

Theoremd4 Letk > 1,0 <r < 1and p1, pop > —1. Suppose h1, hy : [0,1] —
[0, 400), ¢ : I —> K are continuous functions and m : [0,1] — (0, 1].
Assume that f : K = [m(t)p(a), m(t)p(a) + n1(pb), m(H)¢p(a))] —> (0, +00)
is a continuous mapping on K° with respect to n; : K x K —> R for
N1 (@), m(t)p(a)) > 0 forallt € [0,1] and 1, : f(K) x f(K) — R.If
fkkj is generalized—m-((h{71 , hgz); (11, na))-convex mapping on an open m-invex
set K, then for any fixed p, q > 0, we have
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7700, 0, m3 a0, 0)| <0l @) mOe@) VBl + kg + 1D (16)

1

<[ S @1 @) m @)z prr) s (£ FET@) I ha@): )]

where

I m

1 r1 P2
1 (&), mE): pr.r) :=f0 mFEh s, [(h(E): pa.r) :=/0 hy (€)dE.

Proof Since fkle is genemlized-m-((h{71 , hgz); (11, np))-convex mapping on K,
combining with Lemma 1, Holder inequality, Minkowski inequality, and properties
of the modulus, we get

1

1 k
7701 mia,b)| < |n1<¢<b>,m<r>¢<a>>|f’+q+1[ fo g a —s>"qu}

k—1
_k_ T
k1d$i|

< P (o), mD)p(@)/Blhkp + 1, kg + 1)

1
X [/O ’f(m(t)w(a) + &n1(pb), m(1)p(a)))

k—1

k

1 T
x [ /0 [m@©R & £ @ +h5 @y (£ @), f7 @) | ds}

< T @), m()p@)Bkp + 1. kg + 1)
1 Pi r
x{ ( /O mi@)h((e)fkkl(a)dé)

L rk rk P2 r %
([ (o rf) ] e) |
0

= "1 (@(b), m()p(a)Bkp + 1, kg + 1)

k—1

r

Tk rk_ rk_
<[ FET @1 (@) m©): pror)+ s (FET0). FIT@) 1 (o€ pa.r)

So, the proof of this theorem is completed.

We point out some special cases of Theorem 4.
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Corollary 1 In Theorem 4 for k = 2, we get

T2 g mia,b)| = 0 @), mg@)VBRP + 124+ (A7)

X 2{/fz’(a)lr(hl(é), m(&); p1, )+ (f¥B), [¥ (@) I"(ha(§); p2, 7).

Corollary 2 In Theorem 4 for h1(t) = h(1 —t), hao(t) = h(t) and m(t) = m €
0, 1] forall t € [0, 1], we get

7000, 0, m; a,b)| <0l T @), mp@) VBUp + L kg + 1) (18)

k=1
rk

Tk rk_ rk_
x[mfET @1 0 = €); prory 4+ (TG, FET@) 17 ((E); p2.1)]

Corollary 3 In Corollary 2 for h1(t) = (1 — t)* and ha(t) = t°, we get

T, 9, m3 a,b)| <l T @), mp@) VBUp + L kg + 1 (19)
1

x[mfk’"l(a)( . )r+nz(fk”‘l<b> fk”‘l(a))( ’ )}
r+spi ’ r+sp2

Corollary 4 In Corollary 2 for hi(t) = (1 — )7, ho(t) = t™ and r >
s - max{pi, p2}, we get

T2 g mia, )| < oM @), mp@)VBUp + 1 kg + D 20)

k=1
<t () s (e o) ()
r —S8p1 r—Ssp»

Corollary 5 In Theorem 4 for h1(t) = ha(t) =t(1 —t) and m(t) = m € (0, 1] for
allt € [0, 1], we get

77 poms @ b)| < 0l @), mp@)VBhp + kg + D D)

k=1
X[mf%@ﬁf (14 2004+ 2y oy (fk’f"l(bxf%(a))ﬁ’ (1+¥,1+%)} k
V11—t t
s ha(r) = vt

Corollary 6 In Corollary 2 for hi(t) = ——— _
y ry 2 for hy(t) Wi Wi

1
andr>i~

max{pi, p2}, we get
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‘T]{”‘I(nl, @, m;a, b)‘ < nfﬂﬂ((p(b),m(p(a)){/ﬂ(kp +1,kg+1) (22)
%

rk rk
o (1= 8re B)en (o @) (-2 ) |7

Theorem 5 Let! > 1,0 < r < 1 and p1, p» > —1. Suppose hy, hy : [0,1] —

[0, +00), ¢ : I —> K are continuous functions and m : [0,1] — (0, 1].
Assume that f : K = [m(t)p(a), m(t)p(a) + n1(eb), m(t)¢(a))] —> (0, +00)
is a continuous mapping on K° with respect to n; : K x K —> R for
n(pd), m(t)p(a)) > 0 forallt € [0,1] and ny, : f(K) x f(K) — R. If f*
is generalized-m-((hfl, hgz); (11, n2))-convex mapping on an open m-invex set K,
then for any fixed p, q > 0, we have

T miab)| < @B, mp@)BT (p+1g+ D 23

< 1@ T (1 ). mE): p.q. pr.r) +np (f71B). f1@) I (2 €): p.g. p2.7).

where
1 P
J(hi(§),m&); p.q, p1,7) :=/0 m%(E)S”(l —&)h" (§)dE;
1 )2}
Ja®): prg. par) :=/0 §7(1— £)1hy (£)dE.

Proof Since f! is generalized-m-((hf L hgz); (11, np))-convex mapping on K,
combining with Lemma 1, the well-known power mean inequality, Minkowski
inequality, and properties of the modulus, we get

77, 0, m: a,0)| = [ (0 B), m)p(@)

1
/ [era-e9] " [S”(l—S)q]lf(m(t)qo(a)+$m(<p(b),m(t)w(a)))dé‘

-1

1
< Ini(p(b), m(t)p(a))|P+H! [/0 £7(1 —"E)qd&‘]
1

1 i 7
X|:/(; £P(1 —S)‘f‘f(m(t)w(a) +Em(<ﬂ(b),m(t)<p(a)))( dé}

< ob), m)p@)NB T (p+ 1.9 + 1)
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1 1
x [ [ era—e[ment' @ 1@+ w2 m (0. @) | ds}
=M o). me@)IB T (p+1.q+ 1)

{(/ m ()57 (1 — )qh (é)f (a)d§>

w ([ era-omd @i (7o f”(a))ds) I

= P (k) m(p@)B T (p+ 1.4 + 1)

X r\Vf’l(a)J’(hl(E), m();p, g, pr, 1)+ (fr1b), fr1(@) I (h2(§);p, 4, P2, 7).

So, the proof of this theorem is completed.
Let us discuss some special cases of Theorem 5.

Corollary 7 In Theorem 5 forl = 1, we get

7000, 0, m3 0, 0)| < 0l 0 0), mDp(@) (24)

X/ [T (@7 (h1(€), mE); p,q, pr,r) + 02 (f7 (), f7(@) I (h2(€); p, q, pa, 1)

Corollary 8 In Theorem 5 for h1(t) = h(1 —t), hao(t) = h(t) and m(t) = m €
0, 1] forallt € [0, 1], we get

-1
77, 0,m3 a,)] <0l (@), mp@)BT (p+1,g + 1) (25)

< mfr@)J7 (h(L = &): p.q. pr.r) +m (F710). (@) J7(hE): p.q. pa.r).

Corollary 9 In Corollary 8 for h1(t) = (1 —1t)*, ho(t) =t and 0 < s < r, we get

77,0, msa, )| <0l @), me@)B T (p+ g+ Q6)

X ’\/mf%)ﬂ’ (p+1q+ ? +1) (£, @) B (g + 1 p+ % +1).
Corollary 10 In Corollary 8 for h1(t) = (1 —t)~° and ho(t) =t=5, we get

Ty pomsa b <0l @), me@)BT (pH Lg+ ) @D
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x g/mf”(awf (p+1a=2 4 1) +m (r1®). @) p (g +1,p = L2 41).
r r

Corollary 11 In Theorem 5 for hi(t) = ha(¢t) = t(1 —t) and m(t) = m € (0, 1]
forallt € [0, 1], we get

T2 g mia )| <l @), me@)B T (p+1g ) @8)

x[mf”(a)ﬂ’ (p+ % T1,q+ % + 1)

1

0 (1@, @) B (4 2 1g + 2 0) ]

V11—t t
Corollary 12 In Corollary 8 for h1(t) = and hy(t) = 2\/\1/—Tt’ we get
=1
‘Tf'q(m, g.m;a, b)) <P o(b), mp@)BT (p+1,q+ 1) (29)
Ay (p— P P
x[mrt@p (p— 2+ 1.g+ 2 41)

1
+1, (f”(b), f’l(a)) B (p + P22y 1)]'q.
2r 2r
For establishing our second main results regarding generalizations of Hermite-
Hadamard, Ostrowski, and Simpson type inequalities associated with generalized-

m—((hf 1, hgz); (n1, np))-convexity via fractional integrals, we need the following
lemma.

Lemma2 Let ¢ : I —> K be a continuous function and m : [0, 1] — (0, 1].
Suppose K = [m(t)p(a), m(t)p(a) +n(eb), m(t)p(a))] C R be an open m-invex
subset with respect ton : K x K —> R and let n(¢(b), m(t)p(a)) > 0 for all
t € [0, 1]. Assume that f : K —> R be a twice differentiable mapping on K° and
f" € L(K). Then for any A € [0, 1] and a > 0, the following identity holds:

A—1
n(p(b), m(t)p(a))

{n““(so(xx m()g(a)) f'(m@)p(a) + n(p(x), m)e(a)))

+7* (o), m()eB)) [ (m()p(b) + n(p(x), m(t)fp(b)))}

n l4+a—AX
n(p(b), m(t)p(a))

+1%(p(x), m()p D)) f (m(t)p(®) + n(p(x), m(t)f/)(b)))}

{100, m)g@) D@ + e, mDp@))
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A
T @), mDe@)
X {n"‘ (p(x), m()p(a)) f(m(t)p(a)) + n*(p(x), m(t)w(b))f(m(t)w(b))}

a+2) 3
T o), mOe@) > [ (m()p(@-+n(p ). m(p@y - MDP@)

o
Hm@e) o) mwemy)-F )‘P(b))]

_ 1P o). m()¢(a))
n(pb), mt)p(a))

(30)

1
X/O EQ =& fm(De(a) + En(p(x), m(t)¢(a)))dé

%2 (p(x), m(t)p(b))
n(p(b), m(t)p(a))

1
Xfo E— &) f"(m()) + En(p(x), m(t)p(b)))ds.
We denote

a+2
A%, g, mi A x, 0, b) = n“(p(x), m(1)p(a)) 31)

n(pb), m(t)p(a))

1
X/O E—EN) " (m(t)p(a) + Enpx), m(t)g(a)))dE

12 (p(x), m(t)g(b))
1(p(b), m(1)¢p(a))

1
/O EQ =& " m()e(®) + En(p(x), mt)p(b)))dE.

Proof A simple proof of the equality (30) can be done by performing two
integration by parts in the integrals above and changing the variables. The details
are left to the interested reader. This completes the proof of our lemma.

Using Lemma 2, we now state the following theorems for the corresponding version
for power of second derivative.

Theorem 6 Let O < r < 1 and p1, p» > —1. Suppose hy,hy : [0,1] —
[0, 400), ¢ : I —> K are continuous functions and m : [0,1] — (0, 1].
Let K = [m(t)p(a), m(t)p(a) + ni(p), m(t)p(a))] S R be an open m-invex
subset with respect ton; : K x K — R and let n;(¢(b), m(t)p(a)) > 0 for all
t €[0,1]and ny : f(K) x f(K) — R. Assume that f : K —> (0, +00) be a
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twice differentiable mapping on K°. If ' is generalized-m-((hy", h%?); (1, n2))-
convex mappingon K, ¢ > 1, p~' + ¢~ = 1, then for any » € [0, 1] and & > 0,
the following inequality for fractional integrals holds:

{D(a, r, p)

AG (1, @ ms hx,a,b)| < ——
A%, 0.m3 0 x,a,b)| < 7 @0), mD (@)

x {ml(ga(x),m(t)w(a)n“”

x V(@) I (h(€), m©E); pror) +ny ((f" )9, (f"@)79) 17 (ha(§); p2. 1)

+ 11 (@), m(D)p(b))[* T2

x V(" ONIT(hy(€), m(E); pr, 1)+ 0y (7)) 4, (f () 49) I" (ha(§); pa, V)},

(32)
where

1
Dia. . p) = fo £ — £)|PdE

and I (h1(&), m(&); p1,r), 1(ha(§); pa, r) are defined as in Theorem 4.

Proof Using relation (31), generalized-m-((h}", h}?); (n;, n,))-convexity of "4,
Holder inequality, Minkowski inequality, and properties of the modulus, we have

01 (p(x), m(1)p(a))|**?
In1(¢(), m(t)p(a))|

}A‘;(nl5 (p9 m; )‘"xa a, b) S

1
X/o G = EDIIf" Mg (@) + &0y (p(x), mB)p(a)))|dé

1 (p(x), m()p(b))|*+2
[n1(¢(b), m(t)p(a))

1
X/o &G = EDIf"mMD(B) + £y (p(x), m(D)p(b)))|dE

In1 (@ (x), m(t)p(a))|**2 [ ! . 1
= T (pb), m(g(a)) (fo 1§ —§ )|Pdg>

1

1
x ( [0 (f"m()p(a) + & (p(x), mt)p(a))))? ds)

71 (p (o). m(D)g(b)[*+2 (! SR
). me(@) </() 50— dé)
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1
q

1
x (/0 (f"m®)ed) + &n (9(x), m)e(b))))? dé)

a+2
- . mOp@)I*2 o

n1(@(b), m(t)p(a))

1

1 1
x ( /O [m@©R © (@) +hEEma (1 @) (1 (@)"7) ]’d&) q

|771(§0(x),m([)¢(b))|a+2 ,
D(a, A,
i n1(p(b), m(t)p(a)) {Die. 1. p)

q

1 1
x ( /O (MR © "GN+ ©ma ()7, (1 B)) ]’dé)

171 (p(x), m(t)g(a))|*+?
YD(a, A,
= B mg@) VP@R P

1 1 r
x{ ( fo m7 (&)hy (E)(f”(a))"d$>
L p 1 -
+( /O hy E)n} ((f”(X))’q,(f”(a))"f)d§> }
In1 (p(x), m(t)g(b))|*+?
"/D(a, A,
* n1(e®), m(t)p(a)) D, p)

1 r r
x{ ( /0 m? ©)hy (é)(f”(b))qd€>

1

1 p 1 "y
+</0 hi @ ((f”(x))’q,(f”(b))”’)d€> }

YD, A, p)
n1(p(D), m(t)p(a))

x {|m<<o<x),m(z)go<a))|“+2

x V(@) 4T (h(€), mE); pr,r) + 0y ((f )1, (f"(@) ) 1T (ha(§); p2. 1)

+ 71 (@(x), m(D)gp(b))[* 2

x VTGN (hy (€), m(E); pror) + 0 ((f7 )M, (f(0)9) 17 (ha (§); pa, r)}-

So, the proof of this theorem is completed.

Let us discuss some special cases of Theorem 6.
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Corollary 13 In Theorem 6 for p = q = 2, we get

1 22 1 2\

Ay omidx.ab)<—0 |
‘ poeomdx.a b)) < eV 3 T 213 at3

x {ml(w(x), m(t)p(a))|“+?

< Y@ 17y €).mE): pr.r) +ny ((F7 DY (F7@)) 17 (ha©): pa.r)

+ N1 (@), m()p(b)[* 2

x 2{/(f”(b))zrlr(hl(é),m(é);Pl,r)+772 (7N, (f"(B))?r) 1’(h2($);172,r)}.
(33)

Corollary 14 In Theorem 6, if we choose 1n1(¢(y), m(t)p(x)) = ¢(y) — m(t)p(x)
and A = m(t) = 1,Vt € [0, 1], we get the following generalized Hermite-

Hadamard type inequality for fractional integrals:

o, _ a _ o _ o
Af«p,Lx,a,b)\—‘@(b)_w(a»{(w(x) P(@) + (@(b) — 9(x)") f(9(x))}

- — o@)® o)
b= o 160 @) Fe@) + 6 0) — e f 9 o)

I'(a+2)
o=ty * i F0@ + T st000)]

- 1 ) o
T (D) —p@) V 2(x +2)

x { (p(x) — (a)*?

x N (f" (@)1 (h(€); pr,r) + my ((F7 ()4, (f"(@) ) 17 (ha(€); pa, 1)
+ (p(b) — p(x))*+?

X VO (hyE); pror) +my ()9, (f B I (ha(§); pa, r)}.
(34)

Corollary 15 In Theorem 6, if we choose n;(¢(y), m(t)p(x)) = @(y) —m(t)p(x),
A=0andm(t) = 1,Vt € [0, 1], we get the following generalized Ostrowski type

inequality for fractional integrals:

Aof‘((p;O,x,a,b)
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1
= 'm[ (@) = p@)**" + (@®) — o)™ 1t

14+«
. — o b _ o
o) — gy | (@0 = @) + 6B = p ) )f(<p(x))}

I'(a+2) " .
T o) —pla) [J(W(X”‘f (@@ + gy~ 1 (9"(1’))]‘

- 1 ’ 1
() —9@) | pla+1)+1

x { (p(x) — @(a))* >

x (@) I (hi(€); p1,r) + 1o ((F7 ()9, (F7(a) ) I (ha(€); pa, T)
+ (p(b) — p(x))*+?

X O (i (€); pror) +my ((F7 ()4, (f7 () ) I (ha(8); pa, r)}-
(35)

Corollary 16 In Theorem 6, if we choose n1(¢(y), m(t)p(x)) = ¢(y) —m(t)p(x),
b
and m(t) = 1,Vt € [0, 1], we get the following generalized Simpson

X =
type inequality for fractional integrals:

a+b A—1
Aa ;A’f 9 9 b = = <, <
f (q’ 2 ¢ )‘ (@(b) — (@)

(57 ) (e (5)) (o (55)

n l+a—A
(p(b) — ¢(a))

(e (57) o)+ (oo (557)) ) (¢ (557)]
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b o b\ \ ¢
x{ (w (“; ) - w(a)) Flo@) + (w(b) _p (%)) f(so(b))}

I'a+2)
T@+d ot .
@b —p@) [J(w(a;b)) TO@) + I 0y T ))]‘

D, % p)

< -7
~ (@(b) — ¢(a)
a +b a+2 y , .
(6 (222) w0 [

2
1
b\\"? g
+nz<<f”(a; )) ,(f%anm)lﬂhﬂsxpzrﬁ (36)
a +b a+2 " r r
+ (fp(b) - <T>> [(f ®NI"(h1(§); p1,71)

b\\' zl
+m2 <<f” <%)) ) (f//(b))rq) 1" (ha2(8); p2, V)j| }

Corollary 17 In Theorem 6 for h1(t) = h(1 —t), h(t) = h(t) and m(t) = m €
(0, 1] for all t € [0, 1], we get the following inequality for generalized-m-((hP! (1 —
1), hP2(1)): (1. m))-convex mappings:

YD, A, p)

A%y, oom; A x,a,b)| < —Y L D)
A5 01 (@(b). mo(a))

x {|m<<p<x>,mso(a>>|“+2

x Nm(f"(@) 41" (h(1 = &); pr, 1)+ ((f7())49, (f"(@)9) 17 (h(€); pa. 1)

+ 11 (@(x), me(b))|*+?

x m(f" )1 (h(1 = €); pr,r) +ma ((f7 )4, (f"(b)9) I (h(E); pa. r)}.
(37
Corollary 18 In Corollary 17 for hi(t) = (1 — t)* and ha(t) = t°, we get

the following inequality for generalized-m-(((1 — t)SP1, t*P2); (ny, 5))-Breckner-
convex mappings:
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Y D(a, A, p)

A%y, @, m; k,x,a,b)‘ < e
‘ P 1 (p(b), mp(a))

x { 11 (p(x), mp(a))|* >

X’\‘/m(f”(a))’q< d )+n2(<f”<x>)rq,(f”(a))rq><L) (38)
r+spi r+sp2

+1n1 (p(x), mp(b))|* >

x ’\”/m(f”(b))”f< : ) + 115 ((f”(x))”l,(f”(b))”f)( - ) }
r+spi r+sps

Corollary 19 In Corollary 17 for hi(t) = (1 — )75, ho(t) = t=° and
r > s - max{p, p2}, we get the following inequality for generalized-m-
(1 = 5)y=sPr t=5P2); (n1, n2))-Godunova-Levin-Dragomir-convex mappings:

YD(w, A, p)
n1(eb), mp(a))

A‘;(nl5 (p5m; )Laxvaab)‘ S

x { 11 (p(x), mp(a))|* >

XN\/m(f”(a))”f< : )+n2((f”(x)>rq,(f”(a))w)(L) (39)
r—sp2

r—spi

+n1 (p(x), mp(b))|* 2

x"dm(f”(b))’q< ’pl) +nz((f”(x))”1,(f”(b))’q)< . )}

r—s r—sp2

Corollary 20 In Theorem 6 for h1(t) = ha(t) =t(1—t) and m(t) = m € (0, 1] for
allt € [0, 1], we get the following inequality for generalized-m-((t (1—1))*P', (¢t (1—
1))’P2); (01, np))-convex mappings:

a , YD@. % p)

R N Ty

x {Im(w(x), me@)*[m(f"@yip (1+ 2,1+ 2) @0
r r

1

(P @y ) g (14 21+ 2) |7
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+ G0, me@NI (£ @yapr (14 241+ 2L
r r
1
" r 7 r r P2 P2\ 17
(0 ) g (14 21+ 22)] }

Vi-t Vi

— () = ——— and r >
N N
1

5 - max{py, p2}, we get the following inequality for generalized-m
—\ P q ;
((( 21;) , (2\/‘%) ) ; (1, nz))—convex mappings:

YD, A, p)
n1 (@), mp(a))

Corollary 21 In Corollary 17 for hi(t) =

‘A(;(n]’ §0st A‘vxvavb)‘ S

x {ml(so(x), m¢<a>>|“+2[m<f”<a>>"fﬁ’ (1 - % 1+ %)
1" r " r r P2 D2 i (41)
+ 0y ((F" )™, (f"(@)") B (1 -2 5”

+ 1 (). mp () "2 m(F @) (1= T2 1+ 2

1
" r " r r D2 P2 q
0 (£ (o)) B (1= B2 1+ £2) ] }

Theorem 7 Let 0 < r < 1 and p1, p» > —1. Suppose hi,hy : [0,1] —
[0, +00), ¢ : I —> K are continuous functions and m : [0,1] — (0, 1].
Let K = [m(t)p(a), m(t)p(a) + n1(pb), m(t)p(a))] € R be an open m-invex
subset with respect to n; : K x K — R and let n;(¢(b), m(t)p(a)) > 0 for all
t €[0,11and ny : f(K) x f(K) — R. Assume that f : K —> (0, +00) be a
twice differentiable mapping on K°. If f"1 is generalized-m-((h%", h5?); (1, n2))-
convex mapping on K and q > 1, then for any ) € [0, 1] and o > 0, the following
inequality for fractional integrals holds:

i (o, )
N (), m(t)p(a))

‘Aofl(nla (pa m; )\'5 X, d, b)‘ E

X {Im(w(X), m(t)w(a))l"‘“[(f”(a))’qF’(hl(é), m(€); A, o, pi,r)

x 42
+ 1o ((F7 @), (f"(@)) F" (h2(§); &, @, p2, r)] @

+ [ (e (x), m(t)<p(b))|°‘+2[(f”(b))”1F’(hl(g), m(§); A, p1,7)

12 ((F . (BN 9) F (2(§): vt par) | }
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where

arltE 41 A
Clt) == %

1 r
F(h1(§),m@&); x,a, p1,r) = /0 mr ()& — E"‘)Ihfl(é)dé;

1 ”n
F(ha(&); M, a, p2,71) i=/0 |E(L — EM)|hy (§)dE.

Proof Using relation (31), generalized-m-((h{", h5?); (n{, n,))-convexity of ",
the well-known power mean inequality, Minkowski inequality, and properties of the
modulus, we have

In1(p(x), m(t)p(a))|*+2
11 (p(b), m(t)p(a))|

A% .m0 v, a, )| <

1
X/o 1§ = DI (m@)p(a) + £y (p(x), m(1)p(a)))|dE

171 (p(x), m(t)p(b))|*+?
In1(p(b), m()gp(a))]

1
x /0 (= ENILF"m@)p®) + Eny(p(x), M) (b)) |dé

1—1
In1 (@), m(t)p(@)|®t2 [ ! . 1
= n1(e(b), m(t)p(a)) (/0 1§ —&7)1d¢

1

1 q
x ( [O £ — &N (f"m)p(@) + Eny (9(x), m(t)p(a))))? dé)

1

@x m(z7 b a+2 1—=

1
q

1
x ( /0 1€ — & (f"m@B)p D) + Enp (p(x), m()e(b)))? ds)

- 1 (0(x), m()g(a))|* 2 1_%(0[,”
n1 (), m#)p(a))

1

1 1 q
x ( /O 1§G. = £ [m@R} @ (1" @) + @y ((F" @), (" @)') ]’ds)
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171 (@(x), m(1)p(b))|*+2 1_5(06 .
n1(p(d), m(t)p(a)) ’

1

1 1 q
x ( /O 1§G. = 1 [m@r} @ ("GN + 5 @y ((F" )9, (f”(b))’q)]’d$>

- Im(rp(x),m(t)w(a))|a+2cl_%(a7A)
n1(e(b), m#)p(a))

1 P '
><{ (/0 mr (§)[EG — £ (E)(f”(a))qd‘?)

1

1 2} 1 " rq
+ (/0 lE —EN) Ry Ems ((F7 )™, (f”(a))”’)dé) } !

|n1(<p(X),m(t)<p(b))|“+2clfé(a .
N1 (p(®), m(t)p(a)) ’

1 jan g
x{ ( /0 m (§)[E0. — £)[h)" @)(f“(b»qu)

L

1 ”n 1 "
+< /0 lE —ENhy (E)ns ((f”(x))’q,(f”(b))’q)ds) } !

i (@, )
n1(e(d), m(t)p(a))

x {ml(w(x), m(O)¢@) "2 (@) F (1 €), m(©); 2, pr.r)

1

12 (£, (F1 @) ) F (ha €3 3, p2, )|

+ 1 (0, MmO G (£ B (1 (€), mE): A, pr. 1)
1 (P79 (F/ ) F (h2(§): 2t p2. 1)) }

So, the proof of this theorem is completed.

Let us discuss some special cases of Theorem 7.
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Corollary 22 In Theorem 7 for g = 1, we get

1
N1 (¢b), m()p(a))

‘A?(nla (pa m; )\'5 X, d, b)‘ S

X {Im(w(x),m(t)w(a))l"‘”[(f”(a))’F’(hl(é),m(é); Ao, pi,r)

1 ((F @) (@) ) F (ha(©): e par) | )

+ 1 (). m(OP®) [ ("GN F (11 (§). m(E): Aot pr. )
02 (10D (S B)) F (o) het, pa) || }

Corollary 23 In Theorem 7, if we choose 11 (¢ (y), m(t)p(x)) = ¢(y) —m(t)p(x)
and A = m(t) = 1,Vt € [0, 1], we get the following generalized Hermite-
Hadamard type inequality for fractional integrals:

o >1; 1
2(x +2) (@) — ¢(a))

A%(pi 1, x,a,b)| < (

x {«p(x) — 0@ [ (S @) F I ©); 1, o, pr.1)

7 44
+ 02 ()™, (f"(@)™) F" (ha(8): 1. @, p2, r)] @

+ (@(b) = ) [ (F G F (i (§): L, pr. 1)
1
1 (Y (" O)) F (a(®): 1t par) | }

Corollary 24 In Theorem 7, if we choose n1(¢(y), m(t)p(x)) = ¢(y) —m(t)p(x),
A=0andm(t) = 1,Vt € [0, 1], we get the following generalized Ostrowski type
inequality for fractional integrals:

o ! 1 ! 1
A5(p:0.x.a.b)| = (a +2> () = (@)

x {(w(x) — (@) (/@) F (1 (€); 0.0, p1, 1) (45)

1
1 (7N, (@) F (h2(6): 0, @, p2. )|
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+ (@ (b) = g 2| (£ BN F (1 (€): 0., pr 1)
1 (£ (F1 B ) F (ha(6): 0, p2, )] }

Corollary 25 In Theorem 7, if we choose n1(¢(y), m(t)p(x)) = ¢(y) —m(t)p(x),

b
X = and m(t) = 1,Vt € [0, 1], we get the following generalized Simpson

type inequality for fractional integrals:

a+b i@ )
Aa ;A" _7 ’b — <, <
! (“” 2 ¢ )’ = ) — 9(@)

a +b o " r r
A (6(=2) o) [

2
1
b\\" 74
tm <(f (%)) , (f”(a))’q> Fr (1 (8); b t, pa, r)] (46)
b a+2
+ (q)(b) . (%)) [(f”(b))qu’(hl@); ha, pi.r)

b\) 0
+m2 <(f”<a—; )) ,(f//(b))rq> Fr(hl(E);)»,Ot,Pz,V)} }

Corollary 26 In Theorem 7 for h1(t) = h(1 —t), ha(t) = h(t) and m(t) = m €
(0, 1] for all t € [0, 1], we get the following inequality for generalized-m-((h?! (1 —
1), hP2(1)); (11, my))-convex mappings:

1-1
C a(a,))

[ajnpmirox.a | = SEElTS
x {ml(go(x), mp(@)|“*2[m(f" @) F (h(1 = §); ha, pi.r)

- 47
+ 1y ((F7 )™, (f"(@)™) F(h(§); A, @, pa, r)] @

11 0o), mp () 1“2 m (£ B)F (W1 = §): 2, pr, 1)

13 ((F G, (7 ®)) ) F (h(€): bt p2. )] }
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Corollary 27 In Corollary 26 for hi(t) = (1 — t)* and hy(t) = t°, we get
the following inequality for generalized-m-(((1 — t)°P1, t°P2); (ny, n,))-Breckner-
convex mappings:

-1
C a(a,))

A5y gomi x| < 1 (p(b). mo(a))
x {ml(w(x), mp(@)“F2m(f" @) F (1 =€) e, pr.r)

! 48
12 (£, (F @) ) F (65 2, pa, )| )

+ 1 (0, me NI m(F "GN F (1= )3 hva, pr)
1
2 (£ (F/ B ) F (63 hva, pr, )| }

Corollary 28 In Corollary 26 for hi(t) = (1 — t)™5 and hy(t) = t—°, we get the
following inequality for generalized-m-(((1 — t)™5P1, t75P2); (ny, n,))-Godunova-
Levin-Dragomir-convex mappings:

1-1
C a(a,))

A5 01.g.mix.a.0)| < 1 @(b). mp(@))
x {Im(cp(x), (@) (@Y FT (1~ &) b, pr.r)

e 49
1 (£, (f1 @) 9) FF (€ 0, pa )] @

+ 100, me[* 2 m(F G (=) b e, pr.r)
1
1 (£, (F1 O ) FP 6 b, o) | }
Corollary 29 In Theorem 7 for h1(t) = ha(t) = t(1—t) and m(t) = m € (0, 1] for
allt € [0, 1], we get the following inequality for generalized-m-((t (1—1))*P', (t(1—

1)72); (11, 1))-convex mappings:

-1
C a(a,))

A%y, 0 mix,a,b)| < —— 27
’ 70 @, m3 2 %, @ )‘ 1 (p(b), mg(a))

x {ml(go(x), mp(@)"2[m(f" @) F (1 = €); hct, pr.7)
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1 (G, (@) ) FP 6 = §): e, o)™

111 (P ), mo )2 m(f B F € (1 = ); h e, pr ) (50)

12 (£ (F/ B ) FP 6 (1 = )i d par) | }

\/21__t[ and hy(t) = 2 ﬁ_
the following inequality for genemlized-m-((( 21\/_;)11, <2J‘/1%>q) 5 (15 772))-

convex mappings:

Corollary 30 In Corollary 26 for h(t) = , we get

]

i)
n1(p (), mp(a))

x { 171 (0 (x), mp(@))[#+2 [m(f”(a))"’F’ ( V;J;) A, m,r>

)A‘}(m,w,m;k,x,a,b)‘ <

%
+ 0y (7', (@) ) F” ((%) Phoa pa, r) } eb

T 101 (@(x), mp(B)) |+ [m(f”(b))’qF’ (( V;J;) A, pl,r>

o ((F7 Y (fB)9) FT ((w%) koo, pa, r) } }

Remark 6 For @« = 1, by our Theorems 6 and 7, we can get some new special
Hermite-Hadamard, Ostrowski, and Simpson type inequalities for classical integrals
associated with generalized-m-((h‘i7 ' h§ ); (11, n2))-convex mappings.

Remark 7 Also, applying our Theorems 6 and 7, for different values of A € (0, 1),
for different values of pi, po > —1, for different choices of function m(z) and if
0 < f’(x) < L forall x € I, we can get some new special Hermite-Hadamard,
Ostrowski, and Simpson type inequalities for fractional integrals associated with
generalized-m-((h’, hgz); (n1, np))-convex mappings.

3 Applications to Special Means

Definition 14 A function M : Ri —> Ry is called a Mean function if it has the
following properties:
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. Homogeneity: M (ax,ay) =aM (x,y), foralla > 0,

. Symmetry: M (x, y) = M(y, x),

. Reflexivity: M (x, x) = x,

. Monotonicity: If x < x’ and y < y’, then M (x, y) < M(x', y’),
. Internality: min{x, y} < M (x, y) < max{x, y}.

O N N B S R

We consider some means for different positive real numbers «, .

1. The arithmetic mean:

a+p

A=A, B) = >

2. The geometric mean:

G =G p) = Jep.

3. The harmonic mean:

2
H:=H(x,p) = i 1
« TR
4. The power mean:
1
r r T
PrzzPr(a,ﬂ)=<“ ;’3> Crzl
5. The identric mean:
1 ﬁ)
=1 ) = e(aa ,a#E B
o, =8
6. The logarithmic mean:
Li=L@p)=—P"%
Ing—Ina

7. The generalized log-mean:

ﬁerl _ ap+1

—p; R\ {1, 0}.
(p+1)(ﬁ—a)} peRA-LO

Ly:=Lya, B)= [

It is well known that L, is monotonic nondecreasing over p € R with L_| := L
and Lo := I. In particular, we have the following inequality H < G < L <[ < A.
Now, let a and b be positive real numbers such that a < b. Let us consider
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continuous functions ¢ : I — K, n; : K x K — R, n,: f(K) x f(K) — R
and M = M(p(a), o) : [pa), p(a) + ni(p®), p@)] x [¢a), pa) +
n1 (), p(a))] — R4, which is one of the above-mentioned means. Therefore
one can obtain various inequalities using the results of Section 2 for these means
as follows. If we take m(¢z) = 1, V¢ € [0, 1] and replace n;(¢(x), m(#)p(y)) =
M(p(x), ¢(y)) for all x, y € I for value m = 1, in (32) and (42), one can obtain
the following interesting inequalities involving means:

Y D(a, A, p)
M

‘A‘;‘C(M, ©; A, X, a, b)‘ <

x {M“”(go(x), p(a))

x N (f" @)1 (h(€); pr,r) + my ((F7 ()4, (f" (@) ) 17 (ha(€); pa, 1)
+ M* T (p(x), ¢(b))

X VO (hiE); pror) +my ((F7 )9, (fB)) I (ha(§); pa, r)},

1 (52)
=7
| A%, g5 3, x,a,b)]| < ¢ )
X {M"‘”(so(xx w(a))[(f”(a))”fF’(hl(é); A o, pi,r)
e 53
0 (7. (F/@Y9) F (ha®): 2t pa. )] 9
+ MO (p(x), <p(b))[(f”(b))”’ F'(h1(§); A, e, p1,7)
1
+ 00 ((F" )™, (f" (8)) ) F (h2(§); &, e, p2, r)] " }
Letting M = A,G,H, P.,I,L,L, in (52) and (53), we get the inequal-

ities involving means for a particular choices of f”¢ that are generalized-1-
(A", h5?); (ny, n,))-convex mappings.

Remark 8 Also, applying our Theorems 6 and 7 for appropriate choices of functions
hy and hy (see Remark 4) such that f”7 to be generalized-1-((h{", h%?); (1, 12))-
convex mappings (for example f(x) = x%, where « > I,Vx > 0; f(x) =
)lc, Vx > 0etc.), we can deduce some new inequalities using above special means.
The details are left to the interested reader.
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4 Conclusion

In this article, we first presented some integral inequalities for Gauss-Jacobi type
quadrature formula involving generalized-m-((h”, hg); (11, n))-convex mappings.
Secondly, an identity pertaining twice differentiable mappings defined on m-invex
set is used for derived some new estimates with respect to Hermite-Hadamard,
Ostrowski, and Simpson type inequalities via fractional integrals associated with
generalized—m—((hf v hgz); (n1, np))-convex mappings. Also, some new special
cases are given. At the end, some applications to special means for different positive
real numbers are provided as well. Motivated by this interesting class we can indeed
see to be vital for fellow researchers and scientists working in the same domain.
We conclude that our methods considered here may be a stimulant for further
investigations concerning Hermite-Hadamard, Ostrowski, and Simpson type inte-
gral inequalities for various kinds of convex and preinvex functions involving local
fractional integrals, fractional integral operators, Caputo k-fractional derivatives, g-
calculus, (p, g)-calculus, time scale calculus, and conformable fractional integrals.

References

1. S.M. Aslani, M.R. Delavar, S.M. Vaezpour, Inequalities of Fejér type related to generalized
convex functions with applications. Int. J. Anal. Appl. 16(1), 38-49 (2018)

2. F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via
Riemann-Liouville fractional integrals. Ital. J. Pure Appl. Math. 33, 299-306 (2014)

3. Y.-M. Chu, M.A. Khan, T. Ali, S.S. Dragomir, Inequalities for a-fractional differentiable
functions. J. Inequal. Appl. 2017(93), 12 (2017)

4. Y.-M. Chu, G.D. Wang, X.H. Zhang, Schur convexity and Hadamard’s inequality. Math.
Inequal. Appl. 13(4), 725-731 (2010)

5.Y.-M. Chu, M.A. Khan, T.U. Khan, T. Ali, Generalizations of Hermite-Hadamard type
inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 9(5), 43054316 (2016)

6. Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional inte-
gration. Ann. Funct. Anal. 1(1), 51-58 (2010)

7. M.R. Delavar, S.S. Dragomir, On n-convexity. Math. Inequal. Appl. 20, 203-216 (2017)

8. M.R. Delavar, M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities.
SpringerPlus 5, 1661 (2016)

9. S.S. Dragomir, J. Pecari¢, L.E. Persson, Some inequalities of Hadamard type. Soochow J.
Math. 21, 335-341 (1995)

10. T.S. Du, J.G. Liao, Y.J. Li, Properties and integral inequalities of Hadamard-Simpson type for
the generalized (s, m)-preinvex functions. J. Nonlinear Sci. Appl. 9, 3112-3126 (2016)

11. G. Farid, A.U. Rehman, Generalizations of some integral inequalities for fractional integrals.
Ann. Math. Sil. 31, 14 (2017)

12. G. Farid, A. Javed, A.U. Rehman, On Hadamard inequalities for n-times differentiable
functions which are relative convex via Caputo k-fractional derivatives. Nonlinear Anal. Forum
22(2), 17-28 (2017)

13. M.E. Gordji, S.S. Dragomir, M.R. Delavar, An inequality related to n-convex functions (II).
Int. J. Nonlinear Anal. Appl. 6(2), 26-32 (2016)

14. M.E. Gordji, M.R. Delavar, M. De La Sen, Ong-convex functions. J. Math. Inequal. Wiss
10(1), 173-183 (2016)



316 A. Kashuri and R. Liko

15. A. Igbal, M.A. Khan, S. Ullah, Y.-M. Chu, A. Kashuri, Hermite-Hadamard type inequalities
pertaining conformable fractional integrals and their applications. AIP Adv. 8(7), 18 (2018)

16. A. Kashuri, R. Liko, Some different type integral inequalities pertaining generalized relative
semi-m-(r; hy, hp)-preinvex mappings and their applications. Electron. J. Math. Analysis
Appl. 7(1), 351-373 (2019)

17. A. Kashuri, R. Liko, On Hermite-Hadamard type inequalities for generalized (s,m, ¢)-
preinvex functions via k-fractional integrals. Adv. Inequal. Appl. 6, 1-12 (2017)

18. A. Kashuri, R. Liko, Generalizations of Hermite-Hadamard and Ostrowski type inequalities
for M T, -preinvex functions. Proyecciones 36(1), 45-80 (2017)

19. A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for generalized
(r; s, m, @)-preinvex functions. Eur. J. Pure Appl. Math. 10(3), 495-505 (2017)

20. A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for twice differ-
entiable generalized (s, m, ¢)-preinvex functions. Konuralp J. Math. 5(2), 228-238 (2017)

21. A. Kashuri, R. Liko, Some new Ostrowski type fractional integral inequalities for generalized
(r; g, s, m, g)-preinvex functions via Caputo k-fractional derivatives. Int. J. Nonlinear Anal.
Appl. 8(2), 109-124 (2017)

22. A. Kashuri, R. Liko, Hermite-Hadamard type inequalities for generalized (s, m, ¢)-preinvex
functions via k-fractional integrals. Tbil. Math. J. 10(4), 73-82 (2017)

23. A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for M T, ,)-
preinvex functions. Stud. Univ. Babes-Bolyai Math. 62(4), 439-450 (2017)

24. A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for twice differ-
entiable generalized beta-preinvex functions. J. Fract. Calc. Appl. 9(1), 241-252 (2018)

25. M.A. Khan, Y.-M. Chu, A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral
inequalities for M T, ,¢)-preinvex functions. J. Comput. Anal. Appl. 26(8), 1487-1503
(2019)

26. M.A. Khan, T. Ali, S.S. Dragomir, M.Z. Sarikaya, Hermite-Hadamard type inequalities for
conformable fractional integrals. Rev. Real Acad. Cienc. Exact. Fis. Natur. Ser. A. Math. (2017)
https://doi.org/10.1007/s13398-017-0408-5

27. M.A. Khan, Y.-M. Chu, A. Kashuri, R. Liko, G. Ali, New Hermite-Hadamard inequalities for
conformable fractional integrals. J. Funct. Spaces 2018, 9. Article ID 6928130

28. M.A. Khan, Y.-M. Chu, T.U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type
for s-convex functions with applications. Open Math. 15, 1414-1430 (2017)

29. M.A. Khan, Y. Khurshid, T. Ali, N. Rehman, Inequalities for three times differentiable
functions. J. Math. Punjab Univ. 48(2), 35-48 (2016)

30. M.A. Khan, Y. Khurshid, T. Ali, Hermite-Hadamard inequality for fractional integrals via -
convex functions. Acta Math. Univ. Comenian. 79(1), 153-164 (2017)

31. W. Liu, New integral inequalities involving n-function via P-convexity. Miskolc Math. Notes
15(2), 585-591 (2014)

32. WJ. Liu, Some Simpson type inequalities for h-convex and (o, m)-convex functions. J.
Comput. Anal. Appl. 16(5), 1005-1012 (2014)

33. W. Liu, W. Wen, J. Park, Ostrowski type fractional integral inequalities for MT-convex
functions. Miskolc Math. Notes 16(1), 249-256 (2015)

34. W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for MT-convex functions via
classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 9, 766-777 (2016)

35. C. Luo, T.S. Du, M.A. Khan, A. Kashuri, Y. Shen, Some k-fractional integrals inequalities
through generalized Ag,,-M T -preinvexity. J. Comput. Anal. Appl. 27(4), 690-705 (2019)

36. S. Mubeen, G.M. Habibullah, k-Fractional integrals and applications. Int. J. Contemp. Math.
Sci. 7, 89-94 (2012)

37. 0. Omotoyinbo, A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for
convex functions. Int. J. Sci. Innov. Tech. 1(1), 1-12 (2014)

38. C. Peng, C. Zhou, T.S. Du, Riemann-Liouville fractional Simpson’s inequalities through
generalized (m, hy, hy)-preinvexity. Ital. J. Pure Appl. Math., 38, 345-367 (2017)

39. E. Set, Some new generalized Hermite-Hadamard type inequalities for twice differentiable
functions (2018) https://www.researchgate.net/publication/327601181


https://doi.org/10.1007/s13398-017-0408-5
https://www.researchgate.net/publication/327601181

Some Different Type Integral Inequalities and Their Applications 317

40.

41.

42.

43.

44.
45.
46.

47.

48.
49.
50.
51.
52.
. Y. Wang, S.H. Wang, F. Qi, Simpson type integral inequalities in which the power of the

54.

55.

D.D. Stancu, G. Coman, P. Blaga, Analiza numerici si teoria aproximarii. Cluj-Napoca: Presa
Universitard Clujeana 2 (2002)

E. Set, A. Gozpinar, J. Choi, Hermite-Hadamard type inequalities for twice differentiable m-
convex functions via conformable fractional integrals. Far East J. Math. Sci. 101(4), 873-891
(2017)

E. Set, S.S. Karatag, M.A. Khan, Hermite-Hadamard type inequalities obtained via fractional
integral for differentiable m-convex and («, m)-convex functions. Int. J. Anal. 2016, 8. Article
ID 4765691

E. Set, M.Z. Sarikaya, A. Gozpinar, Some Hermite-Hadamard type inequalities for convex
functions via conformable fractional integrals and related inequalities. Creat. Math. Inform.
26(2), 221-229 (2017)

H.N. Shi, Two Schur-convex functions related to Hadamard-type integral inequalities. Publ.
Math. Debrecen 78(2), 393—403 (2011)

H. Wang, T.S. Du, Y. Zhang, k-fractional integral trapezium-like inequalities through (4, m)-
convex and («, m)-convex mappings. J. Inequal. Appl. 2017(311), 20 (2017)

X.M. Zhang, Y.-M. Chu, X.H. Zhang, The Hermite-Hadamard type inequality of GA-convex
functions and its applications. J. Inequal. Appl. (2010), 11. Article ID 507560

Y. Zhang, T.S. Du, H. Wang, Y.J. Shen, A. Kashuri, Extensions of different type parameterized
inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals. J. Inequal.
Appl. 2018(49), 30 (2018)

M.E. Ozdemir, E. Set, M. Alomari, Integral inequalities via several kinds of convexity. Creat.
Math. Inform. 20(1), 62-73 (2011)

T. Weir, B. Mond, Preinvex functions in multiple objective optimization. J. Math. Anal. Appl.
136, 29-38 (1988)

M. Mattoka, Inequalities for h-preinvex functions. Appl. Math. Comput. 234, 52-57 (2014)
R. Pini, Invexity and generalized convexity. Optimization 22, 513-525 (1991)

S. Varosanec, On h-convexity. J. Math. Anal. Appl. 326(1), 303-311 (2007)

absolute value of the first derivative of the integrand is s-preinvex. Facta Univ. Ser. Math.
Inform. 28(2), 151-159 (2013)

M.A. Noor, K.I. Noor, M.U. Awan, S. Khan, Hermite-Hadamard inequalities for s-Godunova-
Levin preinvex functions. J. Adv. Math. Stud. 7(2), 12-19 (2014)

M. Tung, E. Gov, U. Sanal, On rgs-convex function and their inequalities. Facta Univ. Ser.
Math. Inform. 30(5), 679-691 (2015)



Extensions of Kannappan’s and Van Vleck’s m)
Functional Equations on Semigroups ik

Keltouma Belfakih, Elhoucien Elqorachi, and Ahmed Redouani

Abstract This paper treats two functional equations, the Kannappan-Van Vleck
functional equation

p) f(xt(y)z0) £ fxyzo) =2f () f(y), x,y €S

and the following variant of it

nw(y) f(r(y)xzo) £ f(xyzo) =2f(x) f(y), x,y €S,

in the setting of semigroups S that need not be abelian or unital, T is an involutive
morphism of S, u : § — C is a multiplicative function such that u(xt(x)) = 1
for all x € S and zg is a fixed element in the center of S.

We find the complex-valued solutions of these equations in terms of multiplica-
tive functions and solutions of d’ Alembert’s functional equation.

1 Introduction

Van Vleck [1, 2] studied the continuous solutions f : R —> R, f # 0, of the
following functional equation

fx—y+z0)—fx+y+z0)=2f)f(), x,y €R, 9]

where zg > 0 is fixed. He showed that any continuous solution of (1) with minimal
period 4zg is f(x) = cos(Z”TO(x —20)),x € R.
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Stetker [3, Exercise 9.18] found the complex-valued solutions of equation

Fxytz0) — fxyzo) =2f () f(), x,y € G, 2)

on groups that need not be abelian and z is a fixed element in the center of G.
Perkins and Sahoo [4] replaced the group inversion by an involution t: G — G
and obtained the abelian, complex-valued solutions of the equation

fOxt(y)zo) — flxyzo) =2f(x) f(), x,y € G, 3

by means of d’Alembert’s functional equation

glxy) +gxt(y) =2g(x)g(y), x,y € G. €]

Stetker [5] extended the results of [4] about equation (3) to semigroups and derived
an explicit formula for the solutions in terms of multiplicative maps. In particular,
Stetkeaer proved that all solutions of (3) are abelian. So, the restriction to abelian
solutions in [4] is not needed.

D’ Alembert’s classic functional equation

gx+y)+glx—y) =2g(x)g(y), x,y € R (@)

has solutions g: R — C that are periodic, for instance g(x) = cos(x), and
solutions that are not, for instance g(x) = cosh(x).
Kannappan [6] proved that any solution of the extension of (5)

fx=y+z0)+ fx+y+z0)=2f0)f(). x,y €R, (6)

where zg # 0 is a real constant has the form f(x) = g(x — z9), where g: R — C
is a periodic solution of (5) with period 2z¢.

Perkins and Sahoo [4] considered the following version of Kannappan’s func-
tional equation

Fxyzo) + f(xy~'20) =2 () f(), x,y €G (7)

on groups and they found the form of any abelian solution f of (7).
Stetkaer [7] took zg in the center and expressed the complex-valued solutions of
Kannappan’s functional equation

flxyzo) + f(xt(Mz0) =2fx) f (), x,y €S (8

on semigroups with involution 7 in terms of solutions of d’Alembert’s functional
equation (4).

In the very special case of zg being the neutral element of a monoid S equation (8)
becomes (4) which has been solved by Davison [8].
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Here we shall consider the following functional equations

fxyzo) + u(y) f(xt(¥)z0) =2fx) f(y), x,y €S, )

fxyzo) +u() f(x()xz0) =2f () f(y), x,y €S, (10)

w(y) fxt()z0) — f(xyzo) =2f(x) f(y), x,y €S (11)
and

uw) f(x(Mxzo) — fxyzo) =2f () f(y), x,y €S, (12)

where S is a semigroup, t is an involutive morphism of S. That is, 7 is an involutive
automorphism: 7(xy) = t(x)t(y) and 7(r(x)) = x for all x,y € S or t is an
involutive anti-automorphism: t(xy) = t(y)t(x) and t(r(x)) = x forallx, y € S.
The map p : § — C is a multiplicative function such that u(x7(x)) = 1 for all
x € § and zo is a fixed element in the center of S. By algebraic methods:

(1) We find all solutions of (11) and (12). Only multiplicative functions occur in
the solution formulas.

(2) We find the solutions of (10) for the particular case of t being an involutive
automorphism and

(3) We express the solutions of (9) and (10) in terms of solutions of d’ Alembert’s
pn-functional equation

glxy) +u(y)gkxt(y) =2g(x)g(y), x,y €8S. (13)

Of course we are not the first to consider trigonometric functional equa-
tions having a multiplicative function w in front of terms like f(xt(y)) or
f(T(y)x). The u-d’ Alembert’s functional equation (13) which is an extension
of d’Alembert’s functional equation (4) has been treated systematically by
Stetkaer [3, 9] on groups with involution. The non-zero solutions of (13) on
groups with involution are the normalized traces of certain representation of S
on C2.

Stetkar [10] obtained the complex-valued solution of the following variant of
d’ AAlembert’s functional equation

Fey) + f@(x) =2fx)f(y), x,y €S, (14)

where 7 is an involutive automorphism of S.
Elqorachi and Redouani [11] proved that the solutions of the variant of
d’ Alembert’s functional equation

Fey) + W fEx) =20 f(), x,y €S 15)

are of the form f(x) = , x € §, where t is an involutive
automorphism of S and x: § — S is a multiplicative function.

X (x)+M(§)X ()
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Bouikhalene and Elqorachi [12] obtained the solutions of (11) for involutive
anti-automorphism t. In the same paper they also found the solutions of (11) for
involutive automorphism t, but on monoids only.

Throughout this paper S denotes a semigroup with an involutive morphism t:
S —> S, u: § — C denotes a multiplicative function such that p(x7(x)) = 1 for
all x € S and zp a fixed element in the center of S.

In all proofs of the results of this paper we use without explicit mentioning the
assumption that zo is contained in the center of S and its consequence t(zp) is
contained in the center of S.

2 Solutions of Equation (9) on Semigroups

In this section we express the solutions of (9) in terms of solutions of d’ Alembert’s
functional equation (13). The following lemma will be used later.

Lemmal If f: S —> C is a solution of (9), then for all x € S

f@) = p@) f ), (16)
F(x7(z20)20) = (T (20)) f (20) f (x), (17)
f(xzg) = () f (z0). (18)
f(z0) #0 & f #0. (19)

Proof Equation (16): By replacing y by t(y) in (9) and multiplying the result
obtained by w(y) and using u(yt(y)) = 1 we get by computation that

w2 (x) f(T(y) = u(y) f(xT(y)z0) + n(yT(y) f(xyzo0)
= pu() fxT(y)z0) + f(xyzo) =21 (x) f(y),
which implies (16).

Equation (17): Replacing x by t(z0) in (9) and using (16) two times we get by a
computation that

F(@(zo)yzo) + n(y) f(t(zo)T(¥)z0) =21 ((20)) f (¥) = 2u(x(20)) f (z0) £ ()
and
(T zo)yzo) + n(y) f(x(zo)T(¥)z0) =21 (t(z0)) f ()

= f(t(z0)yzo) + n(Y)u(r(zo)T(¥)z0) f (z(z0)yz0) = 2 f(t(20)¥20)-

This proves (17).
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Equation (18): Putting y = z¢ in (9) and using (17) we obtain (18).
Equation (19): Assume that f(zo) = 0. By replacing x by xzo and y by yzo in (9)
and using (17) and (18) we get by a computation that

2£(x20) f (yz0) = f(xz0Y23) + n(yz0) f (x20T(¥)7(20)20)

= f(z0) f(xyz0) + n(y) f(z0) f (xT(¥)z0) = 0 forall x,y €S,

which implies that f(xzg) = O for all x € S. So, from equation (9) we get
2f(x)f(y) = 0forall x,y € S, and then f(x) = O for all x € S. Conversely,
it’s clear that f(x) = O for all x € S implies that f(zg) = 0.

For the rest of this section we use the following notations [7].

— «f consists of the solutions of g : § — C of d’Alembert’s functional
equation (13) with g(zo) # 0 and satisfying the condition

g(xzp) = g(z0)g(x) forall x € S. (20)

— Toany g € & we associate the function Tg = g(z0)g : S — C.
— X consists of the non-zero solutions f : § — C of Kannappan’s functional
equation (9).

In the following main result of the present section, the complex solutions
of equation (9) are expressed by means of solutions of d’Alembert’s functional
equation (13).

Theorem 1
(1) T is a bijection of </ onto ¥ . The inverse T™': # — 4 is given by the

Sformula

f(xzo0)

™! =
(T Hx) 7o)

forall f € X and x € S.
(2) Any non-zero solution f: S — C of the Kannappan’s functional equation (9)
is of the form f = T (g) = g(z0)g, where g € /. Furthermore,

S(x) = g(xz0) = n(z0)g(xt(20)) = g(z0)g(x)

forallx € S.

(3) fiscentral i.e. f(xy) = f(yx) forall x,y € S if and only if g is central.

(4) f is abelian [3, Definition B.3] if and only if g is abelian.

(5) If S is equipped with a topology, then f is continuous if and only if g is
continuous.
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Proof For any g € </ and for all x, y € S we have
T(g)(xyzo) + n(MT () (xT(y)z0) = gzo)[g(xyzo) + n(y)g(xt(y)zo)l
= 8(z0)°[8(xy) + n(MExT(M)] = 28(20)g(x)g(z0)g(y) = 2T (&) ()T () ().
On the other hand, 7'(g)(z0) = g(z0)> # 0, so we get T (/) C 7 .
By adapting the proof of [7, Lemma 3] T is injective. Now, we will show that T
is surjective. Let f € 2. Then from (19) we have f(z9) # 0 and we can define the

function g(x) = f(xzz") In the following we will show that g € &7 and T(g) = f.
By using the definition of g and (17)—(18) we have

F@0)*[8(xy) + u(Mgxt(YN] = f(z0) f(xyz0) + 1 (¥) f (z0) f (xT(¥)z0)
= f(xyzg) + n()(z0) f (xXT(¥)20°T(20))
= f(x20¥2020) + 11(y20) f (x20T (¥20)20) = 2f (x20) f (¥z0) = 2f (20)*g(X)g(»)
for all x,y € S. This shows that g is a solution of d’Alembert’s functional
equation (13).
By replacing x by xz3 and y by zo in (9) we get
F(xzd) + p(zo) f (x737(20)) = 2f (x25) f (20).- 1)
By replacing x by xzo and y by z3 in (9) we have
F(rzg) + 1(z5) f (257 () = 2 (25) f (x20). (22)
From (17) and (18) we have
F(xz57(20)) = (T (20)) f () (f (20))°
and
F(rz5T (@) = (T (20))* £ () (f (20))>.

In view of (21) and (22) we deduce that f(zg)f(xz()) = f(xz(z))f(z()). So, by using
the definition of g we obtain g(xzg) = g(x)g(zp) for all x € S. In particular,

2
8(z) = g(z0)? = LGz _ JG)IG0) — f(z0) 5 0. Furthermore, T(g)(x) =

S (zo0) f(zo0)
( )
2(0)g(x) = g(xzg) = LD = LOIEO — p(r),

The statements (2)—(5) are 0bv1ous This completes the proof.

Now, we extend Stetker’s result [7] from anti-automorphisms to the more general
case of morphism as follows.
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Corollary 1 Let zo be a fixed element in the center of a semigroup S and let T
be an involutive morphism of S. Then, any non-zero solution f: S — C of
the functional equation (8) is of the form f = g(zo)g, where g is a solution of
d’Alembert’s functional equation (4) with g(z9) # 0 and satisfying the condition
8(xzo) = g(z0)g(x) forall x € §.

We will in the following propositions determine all abelian (resp. central) solutions
f of Kannappan’s functional equation (9).

Proposition 1 Let zg be a fixed element in the center of a semigroup S. Lett: § —>
S be an involutive anti-automorphism of S and let w: S — C be a multiplicative
function such that u(xt(x)) = 1 for all x € S. The non-zero abelian solutions of
Kannappan’s functional equation (9) are the functions of the form

Fo) = x(x) +M(ZX)X(T(X))X(ZO), res.

where x : S — C is a multiplicative function such that x(zo) # 0 and
n(z0) x (t(z0)) = x (zo)-

Proof Verifying that the function f defined in Proposition 1 is an abelian solution
of (9) consists of simple computations that we omit.

Let f: § —> C be a non-zero solution of (9). From Theorem 1(2) and (4) the
function f has the form f = g(z9)g where ¢ € & and g is abelian. From [3,
Proposition 9.31] there exists a non-zero multiplicative function x: S — C such
that g = W Since g € 7, it satisfies (20). If we replace x by zg in (20) we
get g(z%) = g(z0)%, which via computation gives that x (zo) = w(zo) x (t(zo)). This
implies that f has the desired form. This completes the proof.

By using [11, Lemma 3.2] and the proof of the preceding proposition we get

Proposition 2 Let zg be a fixed element in the center of a semigroup S. Let tT:
S —> S be an involutive automorphism of S and let u: S —> C be a multiplicative
function such that u(xt(x)) = 1 for all x € S. The non-zero central solutions of
the Kannappan’s functional equation (9) are the functions of the form

_ X +pE)x (X))
2

fx) x(z0), x € S,

where x : S — C is a multiplicative function such that x(z0) # 0 and
u(zo) x (t(zo)) = x (o).
3 Solutions of Equation (10) on Semigroups

In this section we determine the complex-valued solutions of (10) for any involutive
morphism 7: § —> S. By help of Theorem 1 we express them in terms of solutions
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of d’Alembert’s functional equation (13). We first prove the following two useful
lemmas.

Lemma?2 If f: S —> C is a solution of (10), then for all x € S

f&x) = px) f(rx)), (23)
F(x7(z20)20) = (T (20)) f (20) f (%), (24)
f(xz) = f(x) f(z0). (25)
fzo) #0 < f #0. (26)

Proof Equation (23): Interchanging x and y in (10) and multiplying the two
members of the equation by u(z(y)) we get

m@pEO) f(Ex)yzo) + u@m) f(yxzo) =2f(Ouy)f(©), x,y €S.
27
Replacing y by 7(y) in (10) we obtain

() f(yxzo) + f(xt(y)z0) = 2f(x) f(z(y)), x,y €. (28)

By subtracting (28) from (27) we get

uxt()) f(T(x)yzo) — f(xT(¥)z0) =2/ O f () — f(T(M], x,y € S.
(29)
By replacing x by t(x) in (29) we have

(T )T()) f(xyz0) — f(T()T(Mz0) =2/ (T NIREON () — (D], x,y € S.
(30)
Replacing y by t(y) in (29) and multiplying the two members of the equation by
wu(t(y)T(x)) we obtain

SE@Tz20)—pTx)T()) f(xyz0) = 2f ()L () —pn@O))fD], x,y €S.
(€29)

Now, by adding (30) and (31) we get [f(r(x)) — p(r(x))f (OIS ((y) —
w(@(y)f(y)] =0forall x,y € S. This proves (23).
Equation (24): Taking x = 7(z¢) in (10) and using (23) we get
w(y) f(T(y)t(zo)zo) + f(t(z0)yzo0) = 2 (t(z0)) f (z0) £ (¥)
= f(t(z0)yz0) + n(Mu(T(¥)T(20)z0) f (T (z0)y20) = 2f(7(20)¥20),

which implies (23).



Extensions of Kannappan’s and Van Vleck’s Functional Equations on Semigroups 327
Equation (25): By replacing y by zo in (10) and using (24) we obtain
1(z0) f (x(20)x20) + f (x20°) = 2 (20) f (x)

= 1(z20) (T (20)) f (z0) f (%) + f(x207).

So, we deduce (24).
Equation (25): The proof is similar to the proof of (19).

Lemma 3 Let ./ consist of the solutions g: S —> C of the variant d’Alembert’s
functional equation (15) with g(zo) # 0 and satisfying the condition (20). Let NV
consist of the non-zero solutions f: S —> C of the variant Kannappan’s functional
equation (10); Then

(1) The map J: M —> N defined by Jh := h(zo)h: S —> C is a bijection. The
inverse J='; N —> 4 is given by the formula (J ™' f)(x) = ’}(fzzoo)) =g(x)
forall x € S and for all f € . Furthermore,

(2) If t: S —> S is an involutive automorphism, the function g has the form g =
W, where x : S —> C, x # 0, is a multiplicative function.

(3) If t: S —> S is an involutive anti-automorphism, the function g satisfies the
d’Alembert’s functional equation (13).

Proof For all h € .# we have

Jh(xyzo) + u(y) Jh(z(y)xz0) = h(z0)h(xyz0) + n(y)h(zo)h(z(y)x20)
= h(z0)°[h(xy) + p(Mh (T ()X)] = 21 (20)h(X)h(z0)h(y) = 2Th(x) Th(y).

Furthermore, Jh(zo) = h(zo)? # 0. So, Jh € .. By adapting the proof of [7,
Lemma 3] J is injective. Now, let f € .4 and let g(x) := L020) for x € §. By

using the definition of g, equations (10), (24), and (25) we get

f(zo0)

f(20)°[8(xy) + pn(»)g(x(y)x) — 28(x)g(»)]
= f(zo) f (xyzo) + n(y) f (zo) f (z(y)xz0) — 2 f (xz0) f (¥z0)
= f(xy2025) + n()(E0) f (T (¥)x207 (20)20) — 2 (x20) f (y20)
f (xz0yz0z0) + n(yzo) f(t (yzo)xzozo) — 2f (xz0) f(yz0) = 0.

Since f(zp) # O then g satisfies (15). By using similar computations as in the proof
of Theorem 1 we get that g(xzp) = g(z0)g(x) forall x € §S.

(2) If : S — S is an involutive automorphism then from [11, Lemma 3.2] g has
the form g = w where x : § —> C, x # 0, is a multiplicative function.
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(3) If r: § — S is an involutive anti-automorphism then by adapting the proof
of [11, Theorem 2.1(1)(i)] for § = 0 we get that g satisfies the d’Alembert’s
functional equation (13).

Theorem 2

(1) Let t: S —> S be an involutive automorphism. The non-zero solutions f :
S —> C of the functional equation (10) are the functions of the form

_ X tuxor

/ 2

x (zo), 32)

where x : S —> C is a multiplicative function such that y(zo) # 0 and
n(z0) x (t(20)) = x(20)-

(2) Let t: S —> S be an involutive anti-automorphism. The non-zero solutions
f S — C of the functional equation (10) are the functions of the form
f = g(zo0)g, where g is a solution of d’Alembert’s functional equation (13)
with g(zo0) # 0 and satisfying the condition g(xzo) = g(z0)g(x) forall x € §.

Proof Let f: S —> S be a non-zero solution of equation (10). From Theorem 1(2)
f = g(zo)g(x) = g(xzo), where g is a solution of d’Alembert’s functional
equation (4). We will discuss two possibilities.

(1)  is an involutive automorphism of S. From Lemma 3, there exists x : S — C
a multiplicative function such that g = W% So,

xtuxor x(z0) + n(zo)x 0 T(z0) X +px ot
f=28@)=—F—"¢8ko)= :
2 2
(33)
By using g(z%) = g(z0)> we get after simple computation that x(z9) =

m(zo) x ((zo)). This proves (1).
(2) t is an involutive anti-automorphism of S. Combining Theorem 1 and
Lemma 3(2) we find (2). This completes the proof.

4 Solutions of Equation (11)

The solutions of the functional equation (11) with 7 an involutive anti-
automorphism are explicitly obtained by Bouikhalene and Elqorachi [12] on
semigroups not necessarily abelian in terms of multiplicative functions. In this
section we obtain a similar formula for the solutions of the functional equation (11)
when 7 was an involutive automorphism. The following lemma is obtained in [12]
for the case where 7 is an involutive anti-automorphism. It still holds for the case
where 7 is an involutive automorphism.
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Lemma 4 Let f # 0 be a solution of (11). Then for all x € S we have

fx) = —px) f(zx), (34)

f(zo) #0, (35)

@) =0, (36)

JF(xT(20)20) = p(t(20)) f (x) f (z0), (37)

f(xz) = —f(z0) f (), (38)

wu(x) f(t(x)z0) = f(xz0)- (39)

The function g(x) = J}Fg‘zf)? is a non-zero solution of d’Alembert’s functional

equation (13).

Now, we are ready to prove the main result of this section.

In [12] we used [3, Proposition 8.14] to prove that the function g defined in
Lemma 4 is an abelian solution of (13), where 7 is an involutive anti-automorphism
of §. This reasoning no longer works for the present situation. We will use another
approach.

Theorem 3 The non-zero solutions f : S —> C of the functional equation (11),
where T is an involutive morphism of S are the functions of the form
T—X

f = xS (40)
where x : S —> C is a multiplicative function such that x(zo) # 0 and
m(z0) x (t(20)) = —x (z0)-

If S is a topological semigroup and that T : § — S, u : S — C are
continuous, then the non-zero solution f of equation (11) is continuous if and only
if x is continuous.

Proof Let f be a non-zero solution of (11). Replacing x by xzo in (11) and
using (38) we get

—u fxr(y) + fxy) =2f(gk), x,y €S, (41)

where g is the function defined in Lemma 4.
If we replace y by yzo in (11) and use (37) and (38) we get

nyzo)u(t(ze) fxt () + f(xy) =2f(x)g(y) = () f(xt(y)) + f(xy), x,y € S.

(42)
By adding (41) and (42) we get that the pair f, g satisfies the sine addition law

flxy) = f0)g(y) + f(y)glx) forall x,yeS.
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Now, in view of [13, Lemma 3.4], [3, Theorem 4.1] g is abelian. Since g is a non-
zero solution of d’Alembert’s functional equation (13), then from [3, Proposition
9.31] there exists a non-zero multiplicative function y: S —> C such that g =
X'H;&. The rest of the proof is similar to the one used in [12].

5 Solutions of Equation (12)

The solutions of (12) were obtained in [12] on monoids for t an involutive

automorphism. In this section we determine the solutions of (12) for the general

case where S is assumed to be a semigroup and t an involutive morphism of S.
The following useful lemmas will be used later.

Lemma 35 Ler f: S —> C be a solution of equation (12). Then forall x,y € S we

have
) = —px) f(r(x)). (43)
[ #0 f(z0) #0, (44)
u) f()x) = —ulx) f(z(x)y), (45)
F(x7(z20)20) = (T (20)) f (20) f (x), (46)
fxzg) = = f(z0) f (x), (47)
1(x) £ ((x)z0) = £ (xz0). (48)
f(xT(20)) = p(x) f (T ()7 (20)), (49)
£z = f(zot(20)) = 0. (50)

Proof Equation (44): Let f # 0 be a non-zero solution of equation (12). We
will derive (44) by contradiction. Assume that f(zg) = 0. Putting y = z¢ in
equation (12) we get
w(zo) f (t(z0)x20) — f(xz020) = 2/ (x) f(20) =0 (51
Replacing y by yzo in (12) and using (51) and (12) we get
n(yzo) f (t(y)xz07(20)) — f(xyzozo) = 21 (x) f(yzo0)

= u(y) f(r(y)xz0z0) — f(xz0¥z0)

=2f(y)f(xz0).
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So, we deduce that f(y) f(xz9) = f(x) f(yzo) forall x, y € S. Since f # 0, then
there exists @ € C such that f(xz9) = « f(x) for all x € S. Furthermore, o # 0,
because if « = 0 we get f(xzp) = O for all x € § and equation (12) implies that
f = 0. This contradicts the assumption that f # 0.

Now, by substituting f(xz9) = « f(x) into (12) we get

2
w fEx) — fxy) = ;f(X)f(y) forall x,y € S. (52)

Switching x and y in (52) we get

2
—fOX) +p)f(rx)y) = —f)f). x.y €S. (53)

If we replace y by t(y) in (52) and multiplying the result obtained by n(y) we get

2
—puMfxT(y) + fyx) = &f(x)u(y)f(r(y)), x,y €S. (54)

By adding (54) and (53) we obtain

2
—HWFET()) +p) X)) = —f Ol fEGN+ FO] x, v €S.
(55)
By replacing x by t(x) in (55) and multiplying the result obtained by i (x) we get

2
SOy) = ) fr@)T () = —p) f O fEGD + FO] 66)

By replacing y by t(y) in (55) and multiplying the result obtained by u(y) we get

2
w(xy) f(T(x)T(y) — fxy) = Ef(X)[f(y) +u) f@)] (57
By adding (56) and (57) we obtain

Lf () + n) f@DIe) f() + f()N]=0, x,y €S. (58)

So, u(x) f(r(x)) = —f(x) for all x € S. Now, we will discuss the following two
cases.

(1) 7 is an involutive anti-automorphism. By using u(x) f(z(x)) = — f(x) for all
x € Swe get f(r(y)x) = —u(r(y)x) f(z(x)y) for all x, y € S. Substituting
this in equation (52) we obtain

—f)

o

fay) + ) f(tx)y) =2

F), x,y€S. (59)
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(@)

By replacing x by t(x) in (59) and multiplying the result obtained by w(x)
we deduce that f(x) = w(x)f(r(x)) for all x € S. So, we have f(x) =

—u(x)f(r(x)) = —f(x), which implies that f = 0. This contradicts the
assumption that f # 0.
T is an involutive automorphism. Then from wu(x) f(r(x)) = —f(x) for all

x € Sweget f(r(y)x) = —pu(r(y)x) f(yr(x)) for all x, y € S. Substituting
this in equation (52) we obtain

—f()

o

) +nx) fyrx)) =2

f(y) forall x,y e S. (60)

By replacing x by 7(x) in (60) and multiplying the result obtained by p(x) and
using p(x) f(r(x)) = — f(x) we get

h(yx) + u(x)h(t(x)y) = 2h(x)h(y) forall x,y € S.
where h = g So, from [11] u(x) f(zr(x)) = f(x) for all x € S. Consequently,

ux)f(tx)) = f(x) = —f(x) for all x € S, which implies that f = 0. This
contradicts the assumption that f # 0 and this proves (44).

Equation (45): By replacing y by yzo in (12) we get

n(yzo) f (T (y)xz07(20)) — f(xyzoz0) = 2f(x)f(yz0)- (61)

Replacing x by xzg in (12) we get

n) f(r(y)xzozo0) — f(xyzozo) = 2f(y) f(xz0). (62)

Subtracting these equations results in

m(yzo) f(T(¥)xz07(20)) — 1 (y) f(t(¥)xz020) (63)

=2f@) f(yzo) = 2f () f (xz0)-

On the other hand, from (12) we have

w(yz0) f(t(¥)xz07(20)) — n(y) f(t(¥)xz2020)
= u([(zo) f(t(zo)T(¥)x20) — f(t(¥)x2020)]

=2u(y) f(z0) f(r(¥)x).

This implies that

F @) f(yzo) = f(3) fxzo) = n(y) f(z(y)x) f(z0) (64)
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forallx, y € S. Since f(x) f(yz0)— f(y) f(xz0) = —=[f (V) f (x20) = f (x) f (yz0)],
then we deduce u(y) f(r(y)x) f(z0) = —p(x) f(t(x)y) f (z0). Now, by using (44)
we deduce (45).
Equation (49): By replacing x by x7(zp) in (12) we get
pn) f (@ (y)xt(zo)zo) — f(xyT(20)z0) (65)
=2f(y)f(x7(0))-

From (45) we have (7 (x)) f(xyt(z0)z0) = wn(r(x))f(r(r(x))(yr(20)20)) =
—u(y) f(r(y)T(x)T(20)20) and then equation (65) can be written as follows:

F@(xt(z0)z0) + n(x) f(z(y)T(x)T(20)20) (66)
=2f(MnrE())f(x1(20)-
By replacing x by t(x) in (66) and multiplying the result obtained by w(x) and

using f # 0 we get (49).
From equations (45) and (49) we have

n(T(x)) f(xz0) = —u(zo) f(t(zo)T (X))
= —u(zo)u(t(x)) f(xt(20)) = f(r(x)z0).

This proves (48).
Equation (43): Replacing x by 7(x) in (12) we get

n) f((T(x)z0) — f(T(x)yzo) = 2f(z (X)) f(y), x,y € S. (67)

We will discuss the following two possibilities.

(1) tis an involutive automorphism. From (48) we have
FEt(x)z0) = f(T(yx)20) = p(t(yx)) f (yxz0)
and in view of (67) we obtain
p(T () f(yxz0) — f(t(X)yz0) =2f(x(x) f (), x,y € S.

Since

p(E ) f(yxz0) = f(T(N)yz0) = =T (DU f (T (¥)yz0) = f (¥x20)]
= —u((x)2f ) f(x),

then we deduce that
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=2uT ) f) f) =2f()f)

forall x, y € S. Since f # 0 then we have (43).
(2) t is an involutive anti-automorphism. Using (48) we have

FE(T(x)z0) = f(T(xy)z0) = n(r(yx))f(xyz0)

and f(t(x)yzo) = u(r(x)y) f(r(y)xzp). Now, equation (67) can be written as
follows:

w(t(x)) f(xyzo) — n(r(x)y) f(t(y)xz0) = 2f (x(x)) £ ()
= —pu (D) f(t(¥)xz0) — f(xyz0)]
= —u(Tx)2fx)f ().

Since f # 0 then we obtain again (43).
Equation (46): Putting x = t(zp) in (12), using (43) we get

pn) f(T(y)T(zo)zo) — f(t(z0)yzo) =21 (y) f(z(20))
= =2/ (o) f(z0).
Since
) f(T(1(z0)z0) = —p(T(20)20) f (¥20T(20)) = — f (¥z07(20))
then we obtain

f(t(zo)yzo) = n(x(z0)) f () f(z0)

for all y € S. We see that we deal with (46).
Equation (47): Replacing y by z¢ in (12) and using (46) we get

1 (zo) f (T (z0)xz0) — f(xz020)
=2f(x)f(z0) = f(x)f(z0) — f(xz020),
which proves (46).

Equation (50): By replacing x by z¢ in (48) we get u(zo) f(t(z0)z0) = f(z%).
From (43) we have f(t(z0)z0) = — f (t(20)z0), then we conclude that

f(t(z0)20) = f(z3) = 0,

which proves (50). This completes the proof.
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Lemma 6 Let f: S —> C be a non-zero solution of equation (12). Then

(1) The function defined by

_ J(xz0)

$0) =)

forx e S

is a non-zero solution of the variant of d’Alembert’s functional equation (15).
(2) The function g from (1) has the form g = w, where x : S — C, x #0,
is a multiplicative function.

Proof
(1) From (46), (47), (12) and the definition of g we have

(f 2o)*[8(xy) + n(MET ()] = fEOu(y) f (T (»)xz20) + f(z0) f (xyz0)
= p((z0) f (t(3)x207 (20)20) — f (x¥2025)
= n(yzo) f (t(yz0)(xz0)z0) — f ((x20)(¥z0)20)
=2f(xz0) f(yz0)-
Dividing the last equation by (f(z0))? we get g satisfies the variant of

d’Alembert’s functional equation (15). In view of (47) and the definition of
g we get

’ f(z023)
8@ =50
—f(z0) f(z0)
= o 0.
7o) f(z0) #

Then g is a non-zero solution of equation (15).
(2) By replacing x by xzg in (12) we get

) f(x(xz3) — fxyzd) = 2f () f (xz0)- (68)

By using (47), equation (68) can be written as follows:

—uMfEOx)+ fxy) =2f()gkx), x,y €S, (69)

where g is the function defined above. If we replace y by yzp in (12) we get

n(yzo) f(r(y)x7(20)20) — f(xyz0z0) = 2f (x) f(yz0). (70)
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By using (46), (47) we obtain

wM fEx) + fxy) =2f(x)g(y), x,y €. (71)

By adding (71) and (69) we get that the pair f, g satisfies the sine addition law

fxy) = fx)g(y) + f(y)gx) forall x,y € S.

Now, in view of [13, Lemma 3.4.] g is abelian. Since g is a non-zero solution
of d’Alembert’s functional equation (15) then from [3, Proposition 9.31] there
exists a non-zero multiplicative function x: § — C such that g = W
This completes the proof.

The following theorem is the main result of this section.

Theorem 4 The non-zero solutions f : S —> C of the functional equation (12)
are the functions of the form

BEXOTZ Xy (0. (72)

f= 2

where x : S —> C is a multiplicative function such that x(z0) # 0 and
w(z0) x (t(20)) = —x (o).

If S is a topological semigroup and that t : S — S and u: S — C are
continuous, then the non-zero solution f of equation (12) is continuous if and only
if x is continuous.

Proof Simple computations show that f defined by (72) is a solution of (12).
Conversely, let f : § —> C be a non-zero solution of the functional equation (12).
By putting y = z¢ in (12) we get

m(zo) f(t(z0)xz0) — f(xz0z0)
= 73
fx) 27 (o) (73)

1
= 5 ((z0)8(r(z0)x) — g(x20)),

where g is the function defined by g(x) = L8290 and that from Lemma 6 has

f(zo)
the form g = MZXM, where x : S — C, x # 0 is a multiplicative function.

Substituting this into (73) we find that f has the form

_ x(z0) — m(zo)x(t(z0)) ux ot — % .

f 2 2

(74)

Furthermore, from (48) f satisfies w(x) f(t(x)z0) = f(xzo) for all x € S. By
applying the last expression of f in (48) we get after computations that
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[ (z0) x (t(z0)) + x(zo)l[x —mx o] =0.

Since x # wx o t, we obtain 1(zo) x (t(z0)) + x(zo) = 0 and then from (74) we
have

_ HXoT—

f . X ¥ (z0).

For the topological statement we use [3, Theorem 3.18(d)]. This completes the
proof.
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Recent Advances of Convexity Theory )
and Its Inequalities G

Jichang C. Kuang

Abstract In this chapter, we introduce some new notions of generalized convex
functionals in normed linear spaces. It unifies and generalizes the many known and
new classes of convex functions. The corresponding Schur, Jensen, and Hermite-
Hadamard type inequalities are also established.

Mathematics Subject Classification 26A51, 39B62

1 Introduction

Definition 1 A function f : [a, b] — R is called convex if

fOx1+ 0 =2x2) < Af(xp) + (1 —2) fx2), ey

Vxi1, x2 € [a, b], VA € [0, 1].

This classical inequality (1) plays an important role in analysis, optimization
and in the theory of inequalities, and it has a huge literature dealing with its
applications, various generalizations and refinements. Further, convexity is one of
the most fundamental and important notions in mathematics. Convexity theory and
its inequalities are fields of interest of numerous mathematicians and there are many
paper, books, and monographs devoted to these fields and various applications (see,
e.g., 1,4, 6-14, 16, 18-22] and the references therein).

In this chapter, we introduce some new notions of generalized convex functionals
in normed linear spaces in Section 2. It unifies and generalizes the many known
and new classes of convex functions. Some new basic inequalities are presented in
Section 3. New generalized Hermite-Hadamard type inequalities are presented in
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Section 4. In Sections 5 and 6, strongly convex functional and the corresponding
inequalities in normed linear spaces are also given.

2 Generalized Convex Functionals in Normed Linear Spaces

In what follows, (X, || - ||) denotes the real normed linear spaces, D be a convex
subset of X, & : (0, 1) — (0, 00) is a given function, whose 4 is not identical to O.

In this section, we introduce and study a new class of generalized convex
functionals, that is, («, 8, A, Ao, £, &, h) convex functionals.

Definition 2 A functional f : D — (0, 0o) is called («, B8, A, Ao, t, &, h) convex if
FODx I 4+ 2o(1 = D2l < {h(5) P lxr D) + 2ok (1 —15) £P (lxal)}/P,

2
Vx1,x2 € D,VA, A, t, & € [0, 1], a, B are real numbers, and «, 8 # 0.

If Ao = 1 in (2), that is,
FONx 1%+ A=) 19Y) < (h@®) £ QD+ A—15) FPAx D}, (3)

we say that f is a («, B, A, t, &, h) convex functional.
If £ = 1in (3), that is,

SOl + @ =Wl < (@ LA + A =0 £ (D},

we say that f is a («, 8, A, t, h) convex functional.
For t = A in (2), that is,

FODx I+ 200 =) X2l %) < (RS £ lxr D)+ 2ok (1= 25) £2 (lxal)} /2,
)
we say that f is a («, B, A, Ao, &, h) convex functional.
If € = 1in (4), that is,

FNx® 4 o1 = D lx2D %) < () P (lxr D) 4 Aok (1 — 1) F2(Ixal)}VE,
)
we say that f is a («, 8, A, Ao, h) convex functional.
For Ao = 1 in (5), that is,
FONx I+ A= lx207*) < (hG) FEUx 1) +RA=2) P12}, (6)

we say that f is a («, B8, A, h) convex functional.
In particular, if 2(A) = A%, 0 < |s| < 1 in (6), that is,

FODx I + (=)l < A FAAxl) + =20 FPdxi?, )
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we say that f is a («, B, A, s) convex functional. If s = 1, then (7) reduces to
(a, B, 1) convex functional.
Fora = 8 = 1in (2), that s,

FOQxl + 2o = W) x2l) < AE) Fxnl) + 2ok (1 — ) f (21D, (8)

we say that f is a (A, Ao, t, &, h) convex functional.
If Ao = 1 in (8), that is,

FOQxill 4 (1 =) lxal) < hE) FlxilD 4+ 20 = 5) £ (x2l), 9)

we say that f isa (A, t, &, h) convex functional.
In particular, if r = A in (8), that is,

FONxil 42001 =0 lx2ll) < hGE) £ lxal) + Aok (1 = 2%) £ (Ix2), (10)

we say that f is a (A, Ao, &, h) convex functional.
If € = 11in (10), that is,

JAlxtll + 201 = M llx2l) = AQ) fAlxtlD) + 2ok (1 = 4) f(lIx21), (1)

we say that f is a (A, Ao, h) convex functional.
If o = 1in (11), that is,

SOl + 4 =) lx2l) = A flxlD) + A0 = 2) flx21D, 12)

we say that f is an h-convex functional.
In the following Examples 1-6, we make appointment that

X =10,00), D C[0,00), f : D — [0, 00).
Then (2) reduces to
FOXE 4 2o(1 = W)Yy < (1(5) fP(x1) + roh(1 — 5) FPOVE, (13)

Vx1,x2 € D,VA, Ao, t, & € [0, 1], o, B are real numbers, and «, 8 # 0.
If &£ = 1in (13), that is,

FOXE 4 201 = WxHY®) < {(h() fP(x1) + 2ok (1 — ) fFP)}VB, (14)

Vxi,x2 € D, VA, t € [0, 1], we say that f is a («, B, A, Ao, ¢, h) convex function.
If t = Ain (14), that is,

FOXE 4 201 = 0)xHY®) < (RO P (x1) + roh(1 — 1) fP)}VE, (15)

Vx1,x2 € D,VA € [0, 1], we say that f is a («, 8, A, Ao, h) convex function.
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If Ao = 1 in (14), that is,
FOXE + A = 0xHY) < {h@) P o) + h(1— 1) fP(x)) VP, (16)

Vx1,x2 € D,VA,t € [0, 1], we say that f is a («, B8, A, t, h) convex function. If
t = X in (16), that is,

FOXE+ A = xHY) < (hQ) £P (er) +h(1 = 1) £P (x2)} VP, (17)

Vxi,x2 € D, VA € [0, 1], we say that f is a («, B, A, h) convex function.
IfA(A) = A5,0 < |s| < 1in (16), (17), that is,

FOXS + (=203 < (£ P ) + (= 0)* fP )} /P, (18)
FQOXF 4+ A =0x)V*) < P o) + (=0 fP )} VP, (19)
we say that fisa («, 8, A, t, s), («, B, A, s) convex function, respectively.

In particular, if s = 1, then (18), (19) reduce to (o, 8, A, 1), («, B, 1) convex
function, respectively.

Example 1 Tf« = 8 = 1in (13), then
FOx1 4201 — A)x2) < h(t®) f(x1) + Aok (1 —15) f(x2), (20)

Vx1,x3 € D, VA, ho, t, & € [0, 1], we say that f isa (A, Lo, t, &, h) convex function.
In particular, if A9 = 1 in (20), that is,

FOx1+ (1= x2) < h(t®) fx) + (1 —15) f(x2), 1)

Vx1,x2 € D,VA, t, & € [0, 1], we say that f is a (A, t, &, h) convex function.
Forh(t) =t%,0 < |s| < 1,& = 1in (21), that is,

FOxi+ 1 =Mx) =7 fx) + 1= 1) f(x2), (22)

Vxi,x2 € D,VA,t € [0, 1], we say that f isa (X, , s) convex function.
In particular, when s = 1 in (22), that is,

JOx1+ A =Mx2) =tf(x) + 1 —1) f(x2), (23)

Vx1,x2 € D,VA,t € [0, 1], we say that f is a (A, ¢) convex function (see, e.g., [8]).
For t = A in (20), that is,

FOx1 4 Aol — A)x2) < h(A5) f(x1) + Aok (1 — A5) f(x2), (24)

Vx1,x2 € D, VA, Ao, & € [0, 1], we say that f is a (A, Ao, &, k) convex function.
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If &€ = 1in (24), that is,

FOxr+2o(1 = 2)x2) < h(A) f(x1) + oh(1 — 1) f(x2), (25)

Vx1,x2 € D,VA € [0, 1], we say that f isa (A, A, ) convex function. In particular,
when Ay = 1,(25) reduces to h-convex function (see [4, 19]), that is,

Jxr 4+ (1 = Mx2) < h(A) f(x1) +h(1 = 1) f(x2). (26)

If h()) = A, then (26) reduces to (1).
Ifh(A) = A%,0 <s < 1in(26), that is,

FOxr + (1 =M)x2) < A% f ) + (1= 1) f(x2), (27)
Vx1,x2 € D,VA € [0, 1], we say that f is a s-Breckner convex function (see, e.g.,
(4,5, 8D).
Ifh(d) =17%,0 < s < 1in (20), that is,

FOx1+ (1 =Mx2) <A77 f(x) + (1= 27" f(x2), (28)
Vx1,x2 € D, VA € [0, 1], we say that f is a s-Godunova-Levin function (see [4]). In
particular, when s = 1, (28) reduces to Godunova-Levin function (see, e.g., [5, 8])

If h(A) = 1 in (26), that is,

fOxi+ 0 =2x2) < flx) + fx2), (29)

Vx1,x2 € D, VA € [0, 1], we say that f is a P-function (see, e.g., [5]).
IfA(A) =A5,0 < |s| < 1,in (24), that is,

FOx1 4201 — M)x2) < A% f(xp) +r0(1 — A5)* f(x2), (30)

Vxi1.x2 € D, VX, Ag, & € [0, 1], we say that f is a (A, Ao, €, s) convex function. In
particular, if £ = s = 1 in (30), that is,

JOxr+2o(1 = M)x2) < Af(xr) + Ao(l —2) f(x2), €29

we say that f is a Ag-convex function (that is, m-convex function in [2]).
If .o = 0 in (20), then

fOx) <h(@®)f(x), x € D. (32)
Whent =X, & =1, h(t) =t in (32), that is,

FOx) < Af(x), (33)
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we say that f is a starshaped function (see [2])

Example 2 If B = 1 in (13), then
FIOXS + 201 = 0DV < h(1%) f(x1) + 2ok (1 — 1) f(x2), (34)

Vx1,x2 € D, VA, Ao, t, & € [0, 1], # 0, we say that f is a («, A, Ao, ¢, &, h)
convex function.
For t = A in (34), that is,

FOxXE + 201 =0V < h(A5) £ (x1) + ok (1 — 15) f(x2), (35)

Vx1,x2 € D, VA, Ao, 1, & € [0, 1], ¢ # 0, we say that f is a («, A, Ag, &, h) convex
function. When Ao = 1, & = 1, (35) reduces to («, h) convex function (thatis, (p, &)
convex function in [5]). In particular, if Ag = 1,& = 1, h(r) = t, (35) reduces to
a-convex function (that is, p-convex function in [5, 22])

Example 3 Ifa =1, 8 = g in (13), then
FOx1 4201 — W)x2) < (A5 f9(x1) + roh(1 — 15) f9(x2)}4, (36)

Vxi1,x2 € D,YA, Ao, t, & € [0,1],9g # 0, we say that f is a (g, A, Xo, ¢, &, h)
convex function.
For t = A in (36), that is,

FOx1 4201 = M)x2) < (RO £9(x1) + roh(1 — 25) f4(x2)}/4, (37)

Vxi,x2 € D,VA, Ao, t, & € [0, 1], g # 0, we say that f is a (g, A, Ao, &, h) convex
function. When 1y = 1,& = 1, h(¢) = ¢, (37) reduces to g-convex function (see,
e.g., [8]).

Example 4 Ifa =1, 8 = —1in (13), then

FOx1+ 201 = W)x2) < (h(e5) f~ xn) + 2oh(1 = 5) f~ )}, (38)
Vx1,x2 € D,VA, Ao, t, €& € [0, 1], we say that f is a (AH, A, Ao, t, &, h) convex
function, where A H means the arithmetic-harmonic means.

For t = A in (38), that is,

FOx1 +20(1 = )x2) < (RAS) 1) + 2oh(1 =25 f o)} (39)
Vxi1,x2 € D,VA, 1o, & € [0,1], we say that f is a (AH, A, Lo, &, h) convex
function.

For h(A) = 5,0 < |s| < 1, A9 = £ = 1 in (39), that is,

FOx1+A=x) <A e+ A =0 ey (40)
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Vx1,x3 € D, VA € [0, 1], we say f isa (AH, A, s) convex function. In particular, if
s = 1, then (40) reduces to AH convex function.

Example 5 Ifa = —1, 19 = 1, h(X) = X in (15), then

I b B B 1/8
J‘"()\)QJF(1 _/\)xl)i{kf (xp)+ A =2 fP(x2)} 7,

Vxi,x3 € D,VA € [0,1], 8 # 0, we say that f is a harmonically S-convex
functions, see [15].

Example 6 If « = —1, 8 = 11in (13), then

FOxT 201 = 0)x D™ < k(@) fF(x1) + 2ok (1 —15) f(x2), (41)

Vx1,x2 € D,VA, Xo,t,& € [0, 1], we say that f isa (HA, A, Ao, t, &, h) convex
function.
For ¢t = A in (41), that is,

FOxT + 201 = 0xH™H < h(E) £ (x1) + roh(1 = 25) f(x2), (42)

Vxi1,x2 € D,VA, 1o, & € [0, 1], we say that f is a (HA, A, Ao, &, h) convex
function.
For h(A) =A%, 0 < |s| < 1,20 =& = 1in (42), that is,

FOXT + A =0x )™ <27 FO) + (1= 1) f(x), (43)

Vx1,x2 € D,VA € [0, 1], we say f isa (HA, A, s) convex function. In particular,
if s = 1, then (43) reduces to H A convex function.

Example 7 If o« = B = —2 in (13), then

FOXT+ 2001 = 0x32) VD) < (h(F) £ 2 (1) + hoh (1= 15) £ 2 (x)) 12,
(44)
Vxi1,x2 € D,VYA, Ao, t, & € [0, 1], we say that f is a (HS, A, Ao, t, &, h) convex
function.
For t = A in (44), that is,

FOTE 4 201 = 0x3 D~ < (hGE) £~ 1) + hoh(1 = 25) 2 a2)) "2,
(45)
Vxi1,x2 € D,VA, xo,& € [0, 1], we say that f is a (HS, A, Lo, &, h) convex
function.
For h(A) =A%, 0 < |s| < 1,X0 =& = 1in (45), that is,

FOXT2+ A =0x D) )y < 8 2D + A =2 F 20 V2, @46
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Vx1,x3 € D,V € [0, 1], we say that f is a (HS, A, s) convex function, that is, f
is the harmonic square s-convex function. In particular, if s = 1, then (46) reduces
to H S convex function.

Example 8 Let X be a real normed linear space, and D be a convex subset of X,
h:(0,1) — (0, 00) is a given function. If

3| Aty)
= h(AD) = ————, 0< 1, <00,
fh+n Aty +12)
then
15 At
T WL T S GV
H+n A+ 1)

and by (25), we get

11x1 + Aotaxo - A1) f(x1) + Aor(2) f(x2)

i H+1n - Aty +12)

, (47)

Vx1,x2 € D, VA, Ay € [0, 1], we say that f is a (A, Ag) convex function. When
Xo = 1,(47) reduces to A-convex function (see, e.g., [3, 4]).

Hence, Definition 2 unifies and generalizes the many known and new classes of
convex functions.

3 Some New Basic Inequalities

The classical Schur, Jensen, and Hermite-Hadamard inequalities play an important
role in analysis, optimization and in the theory of inequalities, and it has a huge
literature dealing with its applications, various generalizations and refinements (see,
e.g., [2,6-9, 11, 12, 18-22], and the references therein). In this and next section, we
present the corresponding inequalities for (o, 8, A, Lo, t, &, k) convex functionals.

Definition 3 ([19]) A function 4 : (0, 1) — (0, 00) is called a super-multiplicative
function if

h(tu) > h(t)h(u), (48)

forall#,u € (0, 1).

Lemmal Lerg(||x|) = f(Ix)1Y%), x € D, a, B are real numbers, and e, B # 0.
Then a functional f : D — (0, 00) is («, B, A, Lo, t, &, h) convex if and only if the
functional g : D — (0,00) is (A, ho, t, &, h) convex. In particular, a functional
f:D — (0,00) is («, B, A, Ao, &, h) convex if and only if the functional g : D —



Recent Advances of Convexity Theory and Its Inequalities 347
(0, 00) is (A, Ao, &, h) convex, and a functional f : D — (0,00) is («, B, A, h)
convex if and only if the functional g : D — (0, 00) is h-convex.
Proof Setting |u| = ||x||'/%, x € D. Assume that f is (&, B, A, Ao, , €, h) convex,
then for all x1, xo € D, we get
g lxrll +2o(1 = 1) [Ix2]l) = g (Aluey [|* + Ao (1 — A) [l [|*)
= PO Nurll® + 201 = M) [lua |V < k() £P (lur]) + roh(1 = £5) £P (Jual)
=h(®)g(lur]|*) + roh(1 — t)g(lual*) = h(t*)g(lx1 1) + 2oh (1 — 15)g(x21),
which proves that g is (A, Ag, £, &, h) convex.
Conversely, if g is (A, Ao, ¢, &, h) convex, then
SO + 201 = W) luz[V*) = gllur[* + Ao (1 — 1) [luz[|)
= g llx1ll 4+ 201 = MlIx2ll) < ~E)glxilD) + roh(1 — t5)g([lx21])
= h(t®) £ 1) + roh (1 = %) £P (a9
= h(t®) fP(lurll) + 2oh(1 — %) £P (lluz ).

whi