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Abstract. Despite the advances achieved by neural models in sequence
to sequence learning, exploited in a variety of tasks, they still make errors.
In many use cases, these are corrected by a human expert in a posterior
revision process. The interactive-predictive framework aims to minimize
the human effort spent on this process by considering partial corrections
for iteratively refining the hypothesis. In this work, we generalize the
interactive-predictive approach, typically applied in to machine transla-
tion field, to tackle other multimodal problems namely, image and video
captioning. We study the application of this framework to multimodal
neural sequence to sequence models. We show that, following this frame-
work, we approximately halve the effort spent for correcting the outputs
generated by the automatic systems. Moreover, we deploy our systems
in a publicly accessible demonstration, that allows to better understand
the behavior of the interactive-predictive framework.

Keywords: Interactive-predictive pattern recognition ·
Multimodal sequence to sequence learning · Deep learning

1 Introduction

The automatic prediction of structured objects is an extensively studied topic
within the pattern recognition field. Many tasks involve the generation of a
structured output, given an input object. As structure we understand a depen-
dency across the elements of the object. Typical structured objects include
sequences, trees or graphs. The application of neural networks to these prob-
lems has recently brought impressive advances. If both input and output objects
are sequences, this problem is referred as sequence to sequence learning [9]. Many
tasks can be posed as a sequence to sequence problem: machine translation [30],
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speech recognition [5] or the automatic description of visual content, known as
captioning [37,38].

Notwithstanding the important breakthroughs achieved in the last years,
these automatic systems are far from being error-free [17]. However, they are use-
ful for providing initial predictions, which are revised and corrected by a human
expert. In some industries, such as machine translation, this revision procedure
is widely used, as it increases the productivity with respect to performing the
task from scratch [13]. This process is known as translation post-editing.

Nevertheless, this correction process can be improved in several ways. Aiming
to increase the productivity of the system and seeking for a symbiotic human–
computer collaboration, the so-called interactive-predictive pattern recognition
was developed [3,8]. Under this paradigm, the user introduces a correction to
the system prediction. Next, the system reacts to this feedback, offering a new
prediction, expected to be better than the previous one, as the system has more
information.

This interactive-predictive paradigm, initially devised for machine transla-
tion, can be extended to several tasks and technologies. In this work, we explore
the application of this framework to several scenarios, which include data source
from multiple modalities. In a nutshell, our main contributions are:

– We successfully apply the interactive-predictive protocol to the automatic
captioning of image and videos and to the machine translation post-editing,
using neural sequence to sequence models. To the best of our knowledge, this
is the first work that delves into this topic.

– We conduct experiments on several datasets, using two common neural archi-
tectures: a recurrent neural network (RNN) with attention and a Transformer
model.

– We deploy our system in a freely accessible demonstration website.
– We release all the code developed in this work, fostering the research on this

topic.

The rest of the manuscript is structured as follows: in Sect. 2 we introduce
the neural sequence to sequence modeling. Moreover, we describe the interactive-
predictive pattern recognition framework and its implementation with neural
models. Next, Sect. 2.2 details the experimental setup followed for assessing our
systems. The evaluation and discussion of such systems are shown in Sect. 3.
Section 4 reviews the related work. Finally, in Sect. 5 we extract conclusions and
set the basis of future works.

2 Interactive-Predictive Multimodal Pattern Recognition

The pattern recognition discipline consists in automatically obtaining a predic-
tion ŷ, given an input object x. A common approach to pattern recognition is
based its statistical formalization. Following this probabilistic framework, the
goal is to obtain the most likely prediction, given the input object:

ŷ = arg max
y

Pr(y | x) (1)
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Fig. 1. Different architectures for sequence to sequence learning: RNN-based (left) and
Transformer models (right). Both models have the same inputs and outputs and differ
on the mechanisms applied for learning their representations. In the first case, the input
sequence is analyzed by an encoder RNN. The output sequence is generated, word by
word, by another RNN. Both RNNs are connected through an attention mechanism.
In the case of the Transformer model, the encoder and the decoder are stacks of multi-
head attention mechanisms that compute different representations of the inputs. Both
models have a vocabulary-sized output layer with a softmax activation, that computes
a probability distribution over the output vocabulary.

Since the true probability distribution is unknown, it is approximated by a
model with parameters Θ. Therefore, the prediction is given according to this
model:

ŷ ≈ arg max
y

p(y | x;Θ) (2)

As aforementioned in the previous section, we are interested in the case in
which both x and y are sequences. In the last years, and framed into the resur-
gence of neural networks, Θ has been frequently implemented as a (deep) neural
network, yielding the so-called neural sequence to sequence modeling. This neu-
ral network is usually trained on an end-to-end manner on large datasets, via
stochastic gradient descent. Moreover, since performing a complete search is
prohibitively expensive, the arg max is solved by applying a heuristic search
method, typically, beam search [30].
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2.1 Neural Architectures for Multimodal Sequence to Sequence
Learning

Most neural models for sequence to sequence learning rely on the encoder–
decoder paradigm: first, a neural encoder computes a representation of the input
sequence. Next, a neural decoder takes this representation is then generates, ele-
ment by element, the output sequence. Alternative architectures for encoder and
decoder have been proposed in the literature. The most popular among them are
those based on RNNs with attention [2] or those based solely on attention mecha-
nisms [34] (the so-called Transformer models). Figure 1 depicts a schematic view
of these systems. However, providing an in-depth review of these models is out
of the scope of this paper. Hence, we refer the reader to the original works for a
detailed explanation of these architectures.

This encoder–decoder paradigm can be applied to sequences from arbitrary
sources. The only requirement is that we need to encode the input object into
a low dimensional, real-valued representation. In this work, we focus on objects
from three different sources: text, images and video. Hence, before being intro-
duced to the encoder–decoder system, we need to compute an adequate repre-
sentation of them. In the computer vision field, this process is known as feature
extraction. Depending on the modality of the input object, we thus apply a
different feature extractor:

Text: each word is mapped to a continuous representation by using an
embedding matrix [30]. Hence, the sequence of input words is con-
verted to a sequence of word embeddings. The embedding matrix is
usually estimated with the rest of the parameters of the model.

Images: convolutional neural networks (ConvNets, [20]) excel in several com-
puter vision tasks [18]. These models are also powerful feature extrac-
tors. We process the image with a ConvNet and use as features the
final representation computed by the ConvNet that preserves posi-
tional information. A complete image is thus seen as a sequence of
image crops. Hence, we can directly apply the sequence to sequence
framework, as done by Xu et al. [37].

Videos: A video is a sequence of images. Therefore, we also rely on the usage
of ConvNet for extracting the features from the each video frame. For
alleviating the computational overload, we compute global features for
each video image. In addition, we subsample the frames introduced to
the system [38], also for reducing the computational load.

2.2 Interactive-Predictive Pattern Recognition

As discussed in the previous section, in an interactive-predictive scenario, the
user introduces corrections to the predictions generated by a pattern recog-
nition system. This correction is introduced as a feedback signal f . The sys-
tems reacts then to the introduction of the feedback, producing an alternative
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hypothesis, compatible with f . Considering this, the interactive-predictive
framework rewrites Eq. (2) for also taking into account the user feedback sig-
nal:

ỹ = arg max
y compatible with f

p(y | x, f ;Θ) (3)

Hence, the goal of an interactive-predictive system is to generate the most
likely prediction that is compatible with the feedback provided by the user.
Depending on the meaning conveyed by f , alternative interactive protocols can
be defined. In this work, we follow the prefix-based interactive protocol. We also
assume that the user introduces the corrections using a keyboard and a mouse.

The prefix-based protocol arguably is the most natural way of work. In this
protocol, the user searches, from the left to the right, for the first error in the pre-
diction given by the system and introduces the correct character. This feedback
signal conveys a two-fold meaning: on the one hand, it states a correct character
at a given position. On the other hand, it also validates the hypothesis up to this
position. Taking this into account, a prefix-based interactive-predictive system
must generate the most likely suffix, to a prefix validated by the user [3].

The implementation of this protocol in neural sequence to sequence systems
requires to constrain the search [26]: the system applies a forced decoding of the
feedback provided by the user. The suffix is obtained then by applying a regular
search. For introducing corrections at a character level, we apply a vocabulary
mask as described by [25], which ensures that the next word generated complies
with the user feedback.

We evaluate our interactive-predictive framework in six different scenarios,
involving three tasks and two different datasets per task. The main figures of
the datasets are shown in Table 1. The tasks under study are:

Machine translation: translation of English sentences to French, on two
datasets1: UFAL and Europarl. The first one belongs to
a medical domain and the latter refers to the translation
of the proceedings from the European parliament.

Image captioning: we tackled two common datasets: Flickr8k [12] and
Flickr30k [27]. The goal is to generate descriptions of
pictures crawled from Flickr users.

Video captioning: we tested our systems on the popular Microsoft
Research Video Description (MSVD) dataset [6], a gen-
eral task, relating the description of YouTube videos
from multiple domains. In addition, we apply our meth-
ods to the EDUB-SegDesc dataset [4], a collection of
egocentric videos and first person captions.

1 Datasets available at: http://statmt.org/wmt18.

http://statmt.org/wmt18
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Table 1. Figures of the different datasets. M denotes millions of elements. The column
#References indicates the number of different references per sample. � denotes a vari-
able number of references. In this case, we report the average references per sample.

Task Dataset #Samples #References

Training Validation Test

Machine translation UFAL 2.8M 1, 000 1, 000 1

Europarl 2.0M 3, 003 3, 000 1

Image captioning Flickr8k 30, 000 1, 000 1, 000 5

Flickr30k 145, 000 1, 014 1, 000 5

Video captioning MSVD 48, 779 100 670 41�

EDUB-SegDesc 2, 652 204 246 3

2.3 Evaluation Metrics

We evaluate two main aspects of our systems. On the one hand, we measure
the quality of the initial predictions provided by the system. This is the most
common scenario in the literature. This evaluation is carried on by comparing
the predictions with the ground-truth references from each dataset. The final
goal of these metrics is to correlate with the human perception of prediction
quality. The metrics range from 0 (worst quality) to 100 (best quality):

BLEU [22]: Computes the geometric mean of the n-gram precision of pre-
diction and references. In includes n-grams from order 1 to 4. It also includes
a penalty for short predictions.
METEOR [19]: Computes the F1 score of precision and recall of matches
between prediction and references words. To this end, it applies linguistic
resources such as stemmers, paraphrase and synonym dictionaries.

On the other hand, under an interactive-predictive framework, our objective is
to reduced the amount of effort spent by the user during the correction process.
We follow the literature and estimate this effort as the number of keystrokes and
mouse actions performed by the user during the correction process. To this end,
we rely on two metrics:

CharacTER [36]: Translation edit rate computed at a character level: min-
imum number of character edit operations (insertion, substitution, deletion
and swapping) that must be made in order to transform the hypothesis into
the reference. The number of edit operations is normalized by the number of
characters.
KSMR [3]: accounts for the number of keystrokes plus mouse actions involved
in the interactive correction process, divided by the number of characters of
the final prediction obtained.
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CharacTER and KSMR are error-based metrics, hence the lower, the better.
Following Zaidan et al. [39], CharacTER is an estimate of the effort of static
post-edition; while the effort of interactive-predictive systems can be assessed
via KSMR [3].

2.4 Usage of the System and User Simulation

Using an interactive-predictive system requires to follow the procedure described
in Sect. 2: the process starts with an automatic prediction given by the sys-
tem to an input object. The user then reviews the prediction, starting and the
interactive-predictive process: the user searches in this hypothesis the first error,
and introduces a correction. The system then reacts, providing an alternative
hypothesis, considering the user feedback. This protocol is repeated until the
user finds satisfactory the hypothesis given by the system. We implemented a
live demonstration of this system2.

Properly assessing interactive-predictive systems involves the experimenta-
tion with human users, which is prohibitively expensive. Hence, during the devel-
opment of such systems, it is common to rely on simulated users [3,26]. We used
the ground-truth samples from the different datasets as the desired outputs by
our simulated users. The simulation is done by correcting the leftmost wrong
character of each hypothesis from the interactive-predictive system, until reach-
ing the desired output.

2.5 Description of the Systems

Our neural sequence to sequence systems3 were developed with NMT-Keras
[24]. This library is built upon Keras4 and works for the Theano and Tensorflow
backends. For each task and dataset, we built two models: one using RNNs with
attention and another one using a Transformer architecture.

The RNN-based systems had long short-term memory units [11]. Encoder and
decoder were bridged together through an additive attention mechanism [2]. We
set all model dimensions to the same value. In the case of machine translation,
all layers had a dimension of 512. In the case of image and video captioning, we
reduced the model size to 256, since we are dealing with smaller datasets.

In the case of the Transformer models, we set two stacks of 6 layers for the
encoder and the decoder. In the case of machine translation, all model dimensions
were 512 and the number of attention heads was 8. This configuration is the same
as the base model described by Vaswani et al. [34]. For the captioning tasks, we
reduced again our model, to 256 dimensions on each layer.

Machine translation and image captioning systems were trained using Adam
[15], with a learning rate of 0.0002. In the case of video captioning, we obtained
better performance using Adadelta [40], in both datasets. In all cases, the batch

2 Accessible at http://casmacat.prhlt.upv.es/interactive-seq2seq.
3 Source code: https://github.com/lvapeab/interactive-keras-captioning.
4 https://keras.io.

http://casmacat.prhlt.upv.es/interactive-seq2seq
https://github.com/lvapeab/interactive-keras-captioning
https://keras.io
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Table 2. Prediction quality for the different tasks, datasets and models. The RNN
column denotes RNN-based system (Fig. 1a) and the Trans. column indicates a Trans-
former model (Fig. 1b)

Task Dataset BLEU [↑] METEOR [↑]

RNN Trans. RNN Trans.

Machine translation UFAL 37.2 37.8 59.6 60.4

Europarl 24.6 26.6 45.7 47.9

Image captioning Flickr8k 22.1 19.6 20.8 19.8

Flickr30k 22.2 19.3 20.0 18.5

Video captioning MSVD 49.6 45.7 33.4 30.7

EDUB-SegDesc 30.4 25.8 21.9 20.3

size was 64. During training, we applied an early-stopping strategy, watching the
BLEU on the development set. At decoding time, we used a beam size of 6.

In the case of machine translation, the word embeddings were randomly ini-
tialized and learned together with the rest of the parameters of the system. In the
case of image captioning, we extracted image features using a NASNet architec-
ture [41], trained on the ImageNet dataset [7]. The video features were extracted
with an Inception v4 network [31], also trained on the ImageNet dataset. Follow-
ing Yao et al. [38], we subsampled the frames from a video, selecting 26 images
per clip. Image and video feature remained static along the training process of
the sequence to sequence model.

3 Results and Discussion

We show and discuss now the results obtained by our systems. First, we will
assess the systems quantitatively, in terms of prediction quality and effort
required during the correction stage. Next, in order to gain some insights into
the behavior of the system, we analyze an image captioning example.

3.1 Quantitative Evaluation

We start by evaluating the systems in a traditional way, assessing their prediction
quality. Table 2 shows the BLEU and METEOR results of the different systems
for all tasks. These results are similar to those reported in the literature for each
task and dataset [4,25,37,38].

It is worth to note that the Transformer model only outperformed the RNN-
based systems in the case of machine translation. This model is more data-eager
than RNN systems. Many of the recent advances yielded with this architecture
leverage huge data collections (e.g. Radford et al. [29]). We also contrasted this
fact in our experimentation: the machine translation datasets were way larger
than the captioning ones (see Table 1. Hence, the Transformer model only was
fully exploited in the machine translation case.
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Next, we evaluate the performance of the interactive-predictive systems. To
that end, we estimate the effort required for correcting the output of a static
system (using CharacTER) and the effort needed by a interactive system (using
KSMR). These results are shown in Table 3. The results obtained in machine
translation are similar to the literature [25]. Due to the novelty of this scenario,
we lack from references in the literature, regarding the other tasks.

Table 3. Effort required for correcting the outputs of static (St.) and interactive-
predictive (Int.) systems, using RNN and Transformer (Trans.) models. The effort
of static systems is measured in terms of CharacTER while the effort required by
interactive-predictive systems is evaluated in terms of KSMR

Task Dataset CharacTER [↓] KSMR [↓]

St. RNN St. Trans. Int. RNN Int. Trans.

Machine translation UFAL 35.7 36.5 19.0 15.9

Europarl 53.6 51.2 30.1 29.4

Image captioning Flickr8k 77.8 79.6 36.6 36.9

Flickr30k 81.7 86.1 36.0 40.0

Video captioning MSVD 58.1 64.1 36.4 40.5

EDUB-SegDesc 72.3 71.4 40.0 38.0

Interactive-predictive systems approximately halved the amount of correc-
tions required for correcting their outputs, with respect to traditional, static
systems. The results were consistent across all tasks and for all models. Hence,
these results indicate that the interactive protocol effectively achieved its goal
of reducing the correction effort.

Moreover, a crucial aspect of the usability of interactive systems is their
response time. Hence, it is important to keep it in adequate values. The average
response time of our systems was always below 0.2 s. This provides the user of a
feeling of almost instant reactivity [21].

Finally, we are aware that properly assessing the usability and effort reduc-
tion brought by these system requires a human evaluation on its usage. In this
paper, we set the first step toward future developments on multimodal neural
interactive-predictive pattern recognition, with positive initial results.

3.2 Qualitative Analysis and Discussion

We show and analyze an image captioning example. Other examples for the
machine translation and video captioning tasks are alike. The example is taken
from our multimodal showcase and shown in Fig. 2.

We can see that the caption generated by the system (at iteration 0) has an
error. The user wants to indicate that the people are sitting on a bench. Hence,
the feedback introduced is the character “b”. The system is able to properly



Interactive-Predictive Neural Multimodal Systems 25

complete the word “bench”, with this single interaction. The same happens when
the user wants to introduce the clause “under a”. With only typing the character
“u”, the system generates this clause. Finally, it is interesting to observe the
behavior of the last interaction. The user introduced the character “n” to the
word “a”. Hence, the next word must start with a vowel. The system is able
to properly account for this concordance and generates the word “umbrella”.
We observe that the systems also handle correctly other concordances, such as
singular/plural clauses.

4 Related Work

Neural sequence to sequence learning has been a widely studied topic since its
reintroduction, framed to the deep learning era [9,30]. As stated above, neural

Fig. 2. Interactive-predictive session example, for correcting the caption generated for
the image. At each iteration, the user introduces a character correction (boxed). The
system modifies its hypothesis, taking into account this feedback: keeping the correct
prefix (green) and generating a compatible suffix. Post-editing this sample in a static
way, would have required the deletion of 4 characters and the addition of 23 characters
(Color figure online)



26 Á. Peris and F. Casacuberta

machine translation [2,34] has meant a revolution in the field. Nowadays, these
systems are standard in research and industry. In addition to machine transla-
tion, different tasks have been tackled following this approach: speech recognition
[5], speech translation [14], syntactic parsing [35], or the already discussed image
and video captioning [23,37,38].

Regarding the interactive-predictive pattern recognition framework, it has
been mainly applied to machine translation. The addition of interactive protocols
for fostering the productivity of translation environments have been studied for
long time, for phrase-based models [3,10] and neural machine translation systems
[16,26].

The interactive-predictive approach has been also previously generalized for
tackling other tasks, involving multimodal signals. This is the case of the inter-
active transcription of handwritten text documents [32], layout detection [28],
among others [33]. None of these works however, involved fully end-to-end neural
multimodal systems.

5 Conclusions and Future Work

In this work, we empirically demonstrated the capabilities of the interactive-
predictive framework applied to multimodal, neural sequence-to-sequence sys-
tems. We tackled a variety of tasks, using two state-of-the-art models and, in
all cases, the interactive-predictive systems were able to decrease the human
effort required for correcting the outputs of the system. We obtained savings of
approximately a 50%. We also analyzed these systems through an online demo
website. We released all source code developed.

These encouraging results open several avenues for future research. The con-
struction of multimodal, interactive-predictive systems allow the application of
this framework to other structured prediction tasks, e.g. tables to text. More
precisely, this framework is directly applicable to the automatic report of medi-
cal images or to the automatic generation of life-loggers. In addition to an end
application, these tools can be used by human annotators, for creating datasets
on a more efficient way.

Moreover, we experimented with multimodal inputs. In a future, we want to
explore the inclusion of multimodal feedback signals. This was already done for
statistical models [1] and we think that neural models are able to exploit this very
effectively. In addition, we used a different system for each task. In a future, we
would like to explore the construction of a single multitask, multimodal system.
The recent advances achieved in multitask learning [29] heavily support this
research direction. Finally, for properly assessing the efficiency of this framework,
we should conduct and experimentation involving human users.
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