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Abstract. Public safety in public areas is nowadays one of the main
concerns for governments and companies around the world. Video surveil-
lance systems can take advantage from the emerging techniques of deep
learning to improve their performance and accuracy detecting possible
threats. This paper presents a system for gun and knife detection based
on the Faster R-CNN methodology. Two approaches have been compared
taking as CNN base a GoogleNet and a SqueezeNet architecture respec-
tively. The best result for gun detection was obtained using a SqueezeNet
architecture achieving a 85.44% AP50. For knife detection, the GoogleNet
approach achieved a 46.68% AP50. Both results improve upon previous
literature results evidencing the effectiveness of our detectors.
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1 Introduction

The use of weapons in public places has become a major problem in our soci-
ety. These situations are more frequent in countries where weapons are legally
purchased or their use is not controlled [10]. Crowded places are specially vul-
nerable. Unfortunately, mass shootings have become one of the most dramatic
problems we face nowadays [20].

Video surveillance systems, typically based on classic closed circuit television
(CCTV) are especially useful for intruder detection and remote alarm verification
[6]. However, these systems need to be continuously supervised by a human
operator. In this respect, it is estimated that the concentration of a security
guard watching a camera panel decreases catastrophically after 20 min.

Security can be increased applying artificial vision algorithms on images
obtained from video surveillance systems. Another advantage of these algorithms
is the possibility of monitoring larger spaces using fewer devices thus requiring
less dependence on the human factor.

Machine learning techniques have been widely used in the field of video
surveillance. The prevalent paradigm of deep learning has but increased the
potential of machine learning in automatic video surveillance. The objective of
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this work is the development of two novel weapon detectors, for guns and knives,
applying deep learning techniques and assess their performance.

This paper is organised as follows. Section 2 describes related work for video
surveillance. The datasets used are detailed in Sect. 3 where gun and knife
datasets are described in detail. Section 4 presents the object detector approaches
and Convolutional Neural Networks (CNNs) used for this work. Results for gun
and knife detection are shown in Sect. 5. Finally, Sect. 6 is devoted to the Con-
clusions.

2 Previous Work

The applications of the deep learning paradigm for weapon detection are still
rather limited. The seminal work of Olmost et al. [14] presented an automatic
handgun detection system for video surveillance. This system was based on a
Faster R-CNN with a VGG16 architecture trained using their own gun database.
Results provided zero false positives, 100% recall and a precision (IoU = 0.5)
value of 84.21%.

In Valldor et al. [17] a firearm detector for application to social media was
presented. The detector employed a Faster R-CNN and an Inception v2 network
for feature extraction. A public database of images containing several firearms
was manually labelled and used for training. Benchmarking was performed on
the COCO dataset obtaining a ROC curve that showed usable results.

Verma et al. [18] used the Internet Movie Firearm Database (IMFDB) to
generate a handheld gun detector. For that purpose, a Faster R-CNN based on
a VGG16 architecture was applied only for feature extraction. Classification was
performed using three different classifiers: a Support Vector Machine (SVM),
a K-Nearest Neighbor (KNN) and a Ensemble Tree classifier. The best result
achieved was 93.1% accuracy, using a Boosted Tree classifier. We have to note
that the IMFDB dataset contains mostly profile images of pistols and revolvers at
high resolution with homogeneous background, which is not a realistic situation.

The work of Akcay et al. [5] presented a detection and classification system for
X-ray baggage security imagery. The work explored the applicability of multiple
detection approaches based on sliding window CNN, Faster R-CNN, Region-
based Fully Convolutional Networks and YOLO. Their system was composed
by images divided into six classes: camera, laptop, gun, gun component, knife
and ceramic knife. The best results for firearm detection were achieved with a
YOLO architecture obtaining a 97.4% AP50. For knife cases, the best results
were obtained using a Faster R-CNN based on a ResNet-101 architecture with
a 73.2% AP50.

Finally, in Kanehisa et al. [11] the YOLO algorithm was applied to create a
firearm detection system. The firearm dataset used for this study was extracted
from the IMFDB website. Detection results obtained a 95.73% of sensitivity,
97.30% of specificity, 96.26% of accuracy and 70% of mAP50.

Regarding knife detection, the most relevant results have been obtained in
the context of the COCO (Common Objects in Context) Challenges. COCO is a
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large-scale object detection dataset focused on detecting objects in context [13].
Each year COCO launches a challenge based on any of the following artificial
vision tasks: detection, segmentation, keypoints or scene recognition. The last
object detection challenge using bounding boxes was released in 2017 where the
best result for knife detection was obtained by the Intel Lab team. Employing
a Faster R-CNN and a HyperNet architecture this team achieved 36.6% AP50.
In Yuenyong et al. [19] knife detection was explored using a dataset of 8,527
infrared (IR) images. A GoogleNet architecture was applied to classify IR images
as person or person carrying hidden knife. The classification accuracy reported
was 97.91%.

In summary, the Faster R-CNN seems to be the prevalent deep architecture
for gun and knife detection. This work also focuses on that architecture. As a
novelty, this paper uses other CNNs not previously applied for this purposed and
focused on the generation of lightweight models specially tailored for embedded,
constrained and distributed systems operating in real environments with noisy
and sometimes missing data.

3 Materials

In this section we describe the training and test datasets used for both object
detection tasks. The data augmentation techniques used are also described.

3.1 Training Datasets

The gun dataset has been extracted from [14]. The dataset is composed by
3,000 images of guns from different views and scenarios. In order to increase
the accuracy of the detector, a data augmentation technique was applied to the
dataset. The aim is to perform transformations that simulate realistic views of
the object to be detected, see Fig. 1:

– Increasing brightness (10%) in order to simulate different illuminations
– Image scaling to simulate different distances to the object
– Mirroring and rotations (5◦) to create different canonical views of the object

With these transformations, the dataset was increased to a total of 15,000
images.

Fig. 1. Data augmentation transformations for the gun dataset
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On the other hand, the COCO 2017 dataset [1] has been used to train the
knife detector. COCO is a large dataset for object detection and segmentation
tasks. The full dataset has a total of 330,000 images with 1.5 million objects
divided into 80 classes, one of them knives. In the dataset there are a total
of 4,326 images of knives, with a total of 7,770 knives labelled. This dataset
has been extended by applying mirroring and scaling transformations for data
augmentation so that a total of 12,978 knife images were obtained.

3.2 Benchmarking Datasets

The gun test set was generated leveraging several existing gun datasets with a
total of 1,303 images:

– The Olmos et al. test set [14] which is composed by a total of 608 images and
304 weapon images.

– The small gun category of the Gupta dataset [4] with a total of 80 images of
guns.

– The handgun class of the Open Images Dataset V4 [3] with 89 images of guns
[12].

– Finally, 526 random images from the COCO dataset [1] without weapon
instances.

Regarding knives, the test set was generated using 169 images from the knife
and kitchen knife classes of the Open Images Dataset V4 [3,12] and 526 random
images from the COCO dataset [1] without knives. Thus, the knife test dataset
had a total of 695 images.

4 Methodology

As mentioned above, the main objective of this work is the development of
an object detector that efficiently locates guns and knives in real-time video.
For that purpose, an approach based on deep learning techniques and more
specifically through the Faster R-CNN methodology will be adopted. This object
detection approach uses internally a CNN and a Regional Proposal Network
(RPN) for the classification and location processes respectively. In order to better
understand this methodology, a brief description of its evolution and performance
is described below.

4.1 Evolution of R-CNN Object Detectors

The Regions-CNN method was developed in 2014. The processing of a R-CNN
can be divided into three steps [8]. Firstly, an algorithm called selective search
generates approximately 2,000 region proposals (or regions of interest). These
region proposals are independent divisions of the image where an object could
be located. Secondly, a CNN extracts features individually from each region
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proposal. Finally, the object is classified using a Support Vector Machine (SVM)
methodology. Region proposals are considered as positive when their Intersection
over Union (IoU) measure against the ground truth exceeds an arbitrary value.
Later, the object bounding box localization is calculated by overlapping the
selected region proposals.

One of the main disadvantages of the R-CNN was its slow execution time.
Fast R-CNN was proposed in 2015 as an improvement of R-CNN [7]. Fast R-CNN
is twenty five times faster than its predecessor mainly due to two modifications.
Feature extraction is performed using a CNN on the whole input image. Region
proposals are selected as in the R-CNN approach by an external selective search
method and included in the last layers of the network as projections on the
feature map. The SVM classifier in this approach is replaced by a softmax layer.
Although the Fast R-CNN was a breakthrough compared to the R-CNN, it still
relied on algorithms such as the selective search that formed bottlenecks and
slowed down the execution time of the detector.

In 2016 the Faster R-CNN method introduced a new region proposal extrac-
tion method called Regional Proposal Network (RPN) [15]. The idea of a RPN is
to take advantage of the convolutional layers to obtain region proposals directly.
Consequently, a sliding window is applied on the CNN feature map in order to
extract region proposals of different sizes. The RPN is not responsible for clas-
sifying localized objects, this task is subsequently carried out by a Fast R-CNN.
Therefore, a Faster R-CNN is a Fast R-CNN plus a RPN.

4.2 Faster-CNN Base Architectures

The CNN selected as Faster R-CNN base architecture should depend on its
final purpose. Many CNNs employ a very deep architecture with the aim of
obtaining a higher accuracy at a high computational cost. On the other hand,
other architectures can be used that sacrifice precision in order to obtain models
that can be integrated into embedded systems. In this work, GoogleNet and
SqueezeNet CNN architectures have been tested and compared with the purpose
of exposing their advantages and disadvantages for our task of weapon detection
in video.

GoogleNet. The GoogleNet network [16] is a CNN developed in 2014. This net-
work demonstrated high accuracy for object detection in the ImageNet contest
Large-Scale Visual Recognition Challenge 2014, being the winning architecture
with a 6.66% error rate. The architecture of this CNN is mainly composed by
Inception layers which are based on covering large image areas while keeping
a high resolution for small areas with high feature density. For that, the net-
work applies convolutions in parallel with different filter sizes. The GoogleNet
architecture is composed by a total of 22 layers, see Table 1.

Training using GoogleNet for the Faster R-CNN was carried out applying a
stochastic gradient descent optimization algorithm with a momentum of 0.9 to
accelerate gradient vectors, a L2 regularization method and an initial learning
rate of 1e−3. The optimization was run for 30 epochs.
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Table 1. GoogleNet architectural dimensions [16]

Layer

name/type

Output size Filter

size/stride

Depth #1 × 1 #3× 3

reduce

#3 × 3 #5× 5

reduce

#5 × 5 Pool

proj

Params Ops

Convolution 112 × 112 × 64 7 × 7/2 1 2.7K 34M

Max pool 56 × 56 × 64 3 × 3/2 0

Convolution 456 × 56 × 192 3 × 3/1 2 64 192 112K 360M

Max pool 28 × 28 × 192 3 × 3/2 0

Inception 28 × 28 × 256 2 64 96 128 16 32 32 159K 128M

Inception 28 × 28 × 480 2 128 128 192 32 96 64 380K 304M

Max pool 14 × 14 × 480 3 × 3/2 0

Inception 14 × 14 × 512 2 192 96 208 16 48 64 364K 73M

Inception 14 × 14 × 512 2 160 112 224 24 64 64 437K 88M

Inception 14 × 14 × 512 2 128 128 256 24 64 64 463K 100M

Inception 14 × 14 × 528 2 112 144 288 32 64 64 580K 119M

Inception 14 × 14 × 832 2 256 160 320 32 128 128 840K 170M

Max pool 7 × 7 × 832 3 × 3/2 0

Inception 7 × 7 × 832 2 256 160 320 32 128 128 1072K 54M

Inception 7 × 7 × 1024 2 384 192 384 48 128 128 1388K 71M

Avg pool 1 × 1 × 1024 7 × 7/2 0

Dropout

(40%)

1 × 1 × 1024 0

Linear 1 × 1 × 1000 1 1000K 1M

Softmax 1 × 1 × 1000 0

SqueezeNet. The SqueezeNet network [9] is a CNN developed in 2016. The
main goal of this network was the deployment of a small CNN architecture with
fewer parameters instead of improving the accuracy. SqueezeNet achieved the
same accuracy than AlexNet on the ImageNet dataset obtaining a model size
with 50x fewer parameters. Therefore, it is a valuable alternative for embedded
systems, field-programmable gate arrays (FPGAs) and other constrained sys-
tems. The SqueezeNet architecture follows three strategies to reduce the number
of parameters while maintaining the accuracy level:

– Most convolutions replace 3× 3 filters for 1× 1 filters. As a consequence, the
number of parameters is reduced 9× by convolution

– Decrease the number of channels using squeeze layers
– Downsample late in the network so that convolution layers have large acti-

vation maps. Downsampling is performed reducing the size of the input data
or selecting those layers in which downsampling is going to be carried out.
Most of the layers have a stride of 1 and layers with stride larger than 1 are
accumulated at the end of the network. That produces large activation maps
improving accuracy levels

SqueezeNet applies fire modules to achieve the previous strategies. A fire
module is composed by a squeeze convolution layer (1×1 filters) and an expand
layer (mixture of 1 × 1 and 3 × 3 convolution filters). Three parameters are
included in a fire module: s1 × 1 (from squeeze layer), e1 × 1, and e3 × 3 (from
expanded layer). All are related to the number of filters used in these layers.
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Table 2. SqueezeNet v1.0 architectural dimensions [9]

Layer

name/type

Output size Filter

size/stride

Depths1 × 1

(#1 × 1

squeeze)

e1 × 1

(#1 × 1

expand)

e3 × 3

(#3 × 3

expand)

1 × 1

sparsity

e1 × 1

sparsity

e3 × 3

sparsity

Parameter

after

pruning

Convolution 111×111×967 × 7/2(×96) 1 100% (7 × 7) 14,208

Max pool 55 × 55 × 96 3 × 3/2 0

Fire 55× 55× 128 2 16 64 64 100% 100% 33% 5,746

Fire 55× 55× 128 2 16 64 64 100% 100% 33% 6,258

Fire 55× 55× 256 2 32 128 128 100% 100% 33% 20,646

Max pool 27× 27× 2563 × 3/2 0

Fire 27× 27× 256 2 32 128 128 100% 100% 33% 24,742

Fire 27× 27× 384 2 48 192 192 100% 50% 33% 44,700

Fire 27× 27× 384 2 48 192 192 50% 100% 33% 46,236

Fire 27× 27× 512 2 64 256 256 100% 50% 33% 77,581

Max pool 13× 13× 5123 × 3/2 0

Fire 13× 13× 512 2 64 256 256 50% 100% 30% 77,581

Convolution 13×13×10001×1/1(×1000)1 20% (3 × 3) 103,400

Avg pool 1 × 1 × 1000 13 × 13/1 0

Softmax 1 × 1 × 1000 0

Fire module sets that s1 × 1 must be less than the sum of e1 × 1 and e3 × 3, so
the squeeze layer helps to limit the number of input channels to the 3× 3 filters.
The SqueezeNet architecture is composed by a total of 13 layers, see details in
Table 2.

In this approach, training using a SqueezeNet for the Faster R-CNN was
carried out applying a stochastic gradient descent optimization algorithm with
a momentum of 0.9 to accelerate gradient vectors, a L2 regularization method
and an initial learning rate of 1e−4. As with the GoogleNet approach, 30 epochs
were used to train the classifier.

5 Results

In a detection task there are two possible results, positive and negative. Some
positive cases can be classified as negative and vice versa. These cases are called
false positives (type I error) and false negatives (type II error), respectively.
Thus, the following four cases are considered: True Positive (TP), True Nega-
tive (TN), False Positive (FP) and False Negative (FN). However, in an object
detection task object localization must be considered too. The accuracy achieved
in an object detector is commonly evaluated using the mean average precision
(mAP). This measurement is defined as the average of the maximum precisions
at different recall values. Therefore, the three main concepts considered within
this measurement are: precision, recall and Intersection over union (IoU).

– Precision measures the likelihood of a positive case being classified as such.
This value is estimated using the amount of real positive cases which were
classified as positive. Then, it is the percentage of correct positive predictions.
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Precision is calculated as in Eq. 1.

Precision =
TP

TP + FP
(1)

– Recall (or sensitivity) measures the likelihood of classifying the object as
positive. In other words, it measures how good is the network finding positives
cases, see Eq. 2.

Recall =
TN

TN + FP
(2)

– The Intersection over Union (IoU) quantifies the overlapping between 2
regions. This measures how valuable the prediction is with respect to the
ground truth (the real object boundary). A prediction is usually considered
to be correct when the IoU is equal or greater than 0.5.

– The Precision-Recall Curve summarizes the trade-off between precision and
recall values using different probability thresholds. The area under this curve
is known as average precision (AP), a value between 0 and 1 which evalu-
ates the quality of the model. When there is more than one object to be
detected, the average precision is calculated for each object resulting in the
mean average precision (mAP).

For the problem of gun detection, Faster R-CNN trained using GoogleNet
obtained a 55.45% of AP50 (AP at IoU = 0.50). Faster R-CNN using a
SqueezeNet obtained 85.44% of AP50, a significant difference over GoogleNet.
The precision-recall curve acquired for SqueezeNet is shown in Fig. 2. This detec-
tor achieved good results, obtaining similar or even improving upon previous
results described in the literature. A comparison between our results and another
similar work are shown in Table 3.

Table 3. Results comparison for weapon detection based on a Faster R-CNN

Gun Detector performance measurement

Our approaches Olmos et al. [14]

Faster R-CNN methodology GoogleNet SqueezeNet VGG16

AP50 55.45% 85.44% 84.21%

Knife Detector performance measurement

Our approaches COCO Challenge17 (Intel Lab) [2]

Faster R-CNN methodology GoogleNet SqueezeNet HyperNet

AP50 46.68% 1.1% 36.6%

Regarding knife detection, Faster R-CNN based on GoogleNet achieved
an AP50 of 46.68% and a 1.1% using SqueezeNet, being these results much
lower than expected. Nevertheless, results obtained using GoogleNet architecture
improve previous knife detection results reported in the literature, see Table 3.
Figure 3 shows the precision-recall curve for the GoogleNet approach.
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Fig. 2. Precision-recall curve for gun detection using Faster R-CNN and SqueezeNet
architecture v1.1

Fig. 3. Precision-recall curve for knife detection using Faster R-CNN and GoogleNet
architecture

Some visual results obtained for weapon detection are shown in Fig. 4. These
results demonstrate the capability of our weapon detectors to locate guns and
knives on the test dataset.



450 M. M. Fernandez-Carrobles et al.

Fig. 4. Scores obtained for gun (Faster R-CNN/SqueezeNet) and knife (Faster R-
CNN/GoogleNet) detectors

6 Conclusions

Public and crowded areas are still the target of many violent acts. Video surveil-
lance can be helped by automatic image analysis using artificial vision. This
paper describes the implementation of several weapon detectors for video surveil-
lance based on Faster R-CNN methodologies. Several previous studies have
applied the Faster R-CNN methodology but, as far as the authors know, none
of them have been actually focused on the development of lightweight mod-
els that could be later used in constrained and real-time devices. GoogleNet
or SqueezeNet are architectures for that purpose. For training, gun and knife
images from the work of Olmos et al. and COCO dataset have been used. Sev-
eral transformations such as rotations, scaling or brightness were applied in order
to augment the datasets. Detectors were developed using the GoogleNet and
SqueezNet architectures as CNN base on a Faster R-CNN. The best result for
gun detection was obtained using a SqueezeNet architecture achieving a 85.44%
AP50. For knife detection, GoogleNet approach accomplished a 46.68% AP50.
Both detector results improve upon previous literature from similar studies evi-
dencing the effectiveness of our detectors.
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