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Abstract. We summarise our recent research results on developing effi-
cient and scalable control methods for gene regulatory networks modelled
as asynchronous Boolean networks. Our methods compute a minimal
subset of nodes of a given Boolean network, such that (different types
of) perturbations of these nodes, in one step or a sequence of steps, can
drive the network (from an initial state) to a target steady state.

1 Introduction

The ground-breaking discovery of cell reprogramming has overturned the con-
ventional thinking that cell differentiation was irreversible. With cell reprogram-
ming techniques, it is possible to reprogram cell fates in many different ways,
such as trans-differentiation, de-differentiation, retro-differentiation, etc. This
has opened up a great opportunity for regenerative medicine to treat the most
devastating diseases, such as Parkinson’s disease, Alzheimer’s disease, etc.

A big obstacle for the application of in vivo cell reprogramming is the effec-
tive identification of target genes. Numerical-experimental methods are infeasi-
ble [13], due to the combinatorial complexity of target genes and high experi-
mental costs. This gives rise to the need of computational modelling of gene reg-
ulatory networks (GRNs), which makes it possible to analyse GRNs with formal
reasoning and tools. Among various modelling frameworks, Boolean networks
(BNs) have distinct advantages: being simple and yet able to capture impor-
tant properties of nonlinear dynamical GRNs [2]. In BNs, genes are modelled as
binary nodes, being either ‘expressed’ or ‘not expressed’. Activation/inhibition
regulations between genes are described by Boolean functions. The updating of
nodes can be either synchronous or asynchronous. The steady states of GRNs
are described as attractors, to one of which the system eventually settles down.

Asynchronous BNs are considered more realistic than synchronous BNs,
because only the asynchronous updating allows for the biological processes occur-
ring on different time-scales [7]. Owing to the non-determinism of asynchronous
BNs, the control methods for synchronous BNs [3,15] are not applicable to asyn-
chronous BNs. Recently, a stable motif based method was developed to control
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asynchronous BNs [14]. However, this method does not guarantee the minimality
of the control sets, which may result in unnecessary experimental costs.

The limitations of the existing methods motivate us to develop scalable,
efficient and practical methods to control asynchronous BNs.

2 Control Problems in Boolean Networks

Attractors of a BN characterise cell phenotypes, which are biologically observ-
able states [2]. Only the control of attractors is meaningful. Thus, the control
objective for GRNs, in the context of asynchronous BNs, can be described as:
finding a subset of nodes, called driver nodes, such that the control of these
nodes can drive the network (from a source attractor) to a target attractor. If
the source state is known, we call it source-target control; otherwise, we call it
target control.

The control (perturbation) of a node means to change the expression of the
node to either ‘1’ or ‘0’. Based on the amount of time that the control is applied,
we distinguish the following three types of controls:

(a) instantaneous control – the control is applied instantaneously;
(b) temporary control – the control is applied for finite steps and then released;
(c) permanent control – the control is applied for all the following time steps.

Thanks to the rapid advances in cell reprogramming, these three controls can be
realised in biological experiments with different bimolecular tools. In particular,
for the source-target control, based on the number of control steps, we also have:

(a) one-step control – perturbations are applied simultaneously for one step;
(b) sequential control – perturbations are applied in a sequence of steps.

3 Results

The major challenge in the control of asynchronous BNs lies in the infamous
state space explosion problem: the state space grows exponentially with respect
to the number of nodes of a BN. It prohibits the efficiency, scalability and mini-
mality of the control methods. To cope with this problem, we employ the ‘divide
and conquer’ strategy to explore both the structural and dynamical properties
of a BN. As shown in Table 1, we have developed efficient methods to solve the
minimal one-step source-target control with instantaneous, temporary and per-
manent perturbations [8,9,11], the minimal sequential source-target control with
instantaneous perturbations [4,5], as well as the target control with instanta-
neous perturbations [1]. Among these methods, sequential source-target control
identifies a sequence of intermediate states and the associated perturbations. At
each control step, we apply a set of perturbations, wait until the network reaches
the intermediate state and then apply another set of perturbations. Based on the
status of intermediate states, we have developed a general sequential control [5],
where any state (transient states or steady states) can act as intermediate states,
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Table 1. Different control strategies for asynchronous BNs.

Instantaneous
control

Temporary
control

Permanent
control

Source-target control One-step control [8,9] [11]

Sequential control [4,5]

Target control One-step control [1]

and an attractor-based sequential control [4], where only steady states can play
the role of intermediate states.

Our methods are implemented as part of the software ASSA-PBN [6]. We
have evaluated our methods on a variety of real-life biological networks.1 The
results show that our methods are quite efficient in terms of the computation time
and scale well for large networks. Moreover, our methods identify the minimal
control sets for different strategies, which can reduce the experimental costs to a
great extent. For the source-target control, both sequential control methods [4,5]
require less perturbations than the one-step control [8,9]. The attractor-based
sequential control [4] is considered more practical than the general sequential
control [5], since it uses biologically observable states as intermediate states
and thus only requires partial observability of the system. Considering different
types of perturbations, the temporary perturbation is preferable than the instan-
taneous and permanent perturbations due to: (1) temporary control requires the
least number of perturbations, which not only leads to less experimental costs,
but also makes the experiments easier to conduct; and (2) temporary perturba-
tions are eventually released and thus less invasive. In this way, we can avoid
some unknown side effects compared to permanent perturbations.

Furthermore, in order to make the results more practical, experimental con-
straints need to be incorporated. We have made the following improvements to
integrate practical and experimental concerns.

– Our methods can avoid certain perturbations (perturbing a gene from
‘expressed’ to ‘not expressed’ and/or the reverse direction) during the com-
putation. In this case, we can avoid perturbing genes that are essential for
cell survival and genes that are hard or expensive to perturb.

– For attractor-based sequential source-target control, our method can avoid
undesired attractors as intermediate states, such as apoptosis.

– Considering the minimal solution may not be the best solution, an upper
bound of the number of perturbations can be set as a prerequisite. Then our
methods can compute all the solutions within that upper bound.

4 Discussion and Future Work

Due to the diversity of GRNs, it is less likely to find one strategy that suits
different networks. Furthermore, the cost and success rate of different cell
1 We refer details on their evaluation to our previous works [1,4,5,8,9,11].
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reprogramming techniques vary a lot. Taking these into consideration, we can
compute a bunch of reprogramming paths with different control methods. After-
wards, biologists can make a choice from the provided solutions based on specific
biological systems and experimental settings.

Given the strengths of temporary perturbations, currently we are working
on sequential source-target control and target control with temporary perturba-
tions. In future, we plan to extend our work to the control of PBNs [10,12].
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