
Luca Bortolussi
Guido Sanguinetti (Eds.)

 123

LN
BI

 1
17

73

17th International Conference, CMSB 2019
Trieste, Italy, September 18–20, 2019
Proceedings

Computational Methods
in Systems Biology

Lecture Notes in Bioinformatics 11773

Subseries of Lecture Notes in Computer Science

Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

Editorial Board Members

Søren Brunak
Technical University of Denmark, Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA

More information about this series at http://www.springer.com/series/5381

http://www.springer.com/series/5381

Luca Bortolussi • Guido Sanguinetti (Eds.)

Computational Methods
in Systems Biology
17th International Conference, CMSB 2019
Trieste, Italy, September 18–20, 2019
Proceedings

123

Editors
Luca Bortolussi
University of Trieste
Trieste, Italy

Guido Sanguinetti
University of Edinburgh
Edinburgh, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-030-31303-6 ISBN 978-3-030-31304-3 (eBook)
https://doi.org/10.1007/978-3-030-31304-3

LNCS Sublibrary: SL8 – Bioinformatics

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8874-4001
https://doi.org/10.1007/978-3-030-31304-3

Preface

This volume contains the papers presented at CMSB 2019, the 17th Conference on
Computational Methods in Systems Biology, held during September 18–20, 2019, at
the University of Trieste, Italy.

The CMSB annual conference series, initiated in 2003, provides a unique discussion
forum for computer scientists, biologists, mathematicians, engineers, and physicists
interested in a system-level understanding of biological processes. Topics covered by
the CMSB proceedings include: formalisms for modeling biological processes; models
and their biological applications; frameworks for model verification, validation, anal-
ysis, and simulation of biological systems; high-performance computational systems
biology and parallel implementations; model inference from experimental data; model
integration from biological databases; multi-scale modeling and analysis methods;
computational approaches for synthetic biology; and case studies in systems and
synthetic biology.

This year there were 53 submissions in total for the 4 conference tracks. Each
regular submission and tool paper submission were reviewed by at least three Program
Committee members. Additionally, tools were subjected to an additional review by
members of the Tool Evaluation Committee, testing the usability of the software and
the reproducibility of the results. For the proceedings, the Program Committee decided
to accept 14 regular papers, 7 tool papers, and 11 short papers. This rich program of
talks was complemented by a poster session, providing an opportunity for informal
discussion of preliminary results and results in related fields.

In view of the broad scope of the CMSB conference series, we selected the fol-
lowing five high-profile invited speakers: Kobi Benenson (ETH Zurich, Switzerland),
Trevor Graham (Barts Cancer Hospital, London, UK), Gaspar Tkacik (IST, Austria),
Adelinde Uhrmacher (Rostock University, Germany), and Manuel Zimmer (University
of Vienna, Austria). Their invited talks covered a broad area within the technical and
applicative domains of the conference, and stimulated fruitful discussions among the
conference attendees.

Further details on CMSB 2019 are available on the following website:
https://cmsb2019.units.it.

Finally, as the program co-chairs, we are extremely grateful to the members of the
Program Committee and the external reviewers for their peer reviews and the valuable
feedback they provided to the authors. Our special thanks go to Laura Nenzi as local
organization co-chair, Dimitrios Milios as chair of the Tool Evaluation Committee, and
to François Fages and all the members of the CMSB Steering Committee, for their
advice on organizing and running the conference. We acknowledge the support of the
EasyChair conference system during the reviewing process and the production of these
proceedings. We also thank Springer for publishing the CMSB proceedings in its
Lecture Notes in Computer Science series.

https://cmsb2019.units.it

Additionally, we would like to thank the Department of Mathematics and Geo-
sciences of the University of Trieste, for sponsoring and hosting this event, and
Confindustria Venezia Giulia, for supporting this event and providing administrative
help. Finally, we would like to thank all the participants of the conference. It was the
quality of their presentations and their contribution to the discussions that made the
meeting a scientific success.

September 2019 Luca Bortolussi
Guido Sanguinetti

vi Preface

Organization

Program Committee

Alessandro Abate University of Oxford, UK
Ezio Bartocci Vienna University of Technology, Austria
Nikola Benes Masaryk University, Czech Republic
Luca Bortolussi University of Trieste, Italy
Giulio Caravagna The Institute of Cancer Research, UK
Luca Cardelli University of Oxford, UK
Milan Ceska Brno University of Technology, Czech Republic
Claudine Chaouiya Insituto Gulbenkian de Ciência, Portugal
Eugenio Cinquemani Inria, France
Thao Dang CNRS/VERIMAG, France
Hidde De Jong Inria, France
François Fages Inria, Université Paris-Saclay, France
Jerome Feret Inria, France
Jasmin Fisher University of Cambridge, UK
Christoph Flamm University of Vienna, Austria
Elisa Franco University of California, Los Angeles, USA
Tomas Gedeon Montana State University, USA
Calin Guet IST, Austria
Monika Heiner Brandenburg Technical University

Cottbus-Senftenberg, Germany
Jane Hillston The University of Edinburgh, UK
Heinz Koeppl TU Darmstadt, Germany
Jean Krivine CNRS, France
Tommaso Mazza IRCCS Casa Sollievo della Sofferenza, Italy
Laura Nenzi University of Trieste, Italy
Marco Nobile Universitá degli Studi di Milano-Bicocca, Italy
Diego Oyarzún The University of Edinburgh, UK
Nicola Paoletti Royal Holloway University of London, UK
Loïc Paulevé CNRS/LaBRI, France
Ion Petre University of Turku, Finland
Tatjana Petrov University of Konstanz, Germany
Carla Piazza University of Udine, Italy
Ovidiu Radulescu University of Montpellier 2, France
Olivier Roux IRCCyN, France
Jakob Ruess Inria Saclay, France
Guido Sanguinetti The University of Edinburgh, UK
Thomas Sauter University of Luxembourg, Luxembourg
Abhyudai Singh University of Delaware, USA

Carolyn Talcott SRI International, USA
Chris Thachuk California Institute of Technology, USA
P. S. Thiagarajan Harvard University, USA
Adelinde Uhrmacher University of Rostock, Germany
Verena Wolf Saarland University, Germany
Boyan Yordanov Microsoft, USA
Paolo Zuliani Newcastle University, UK
David Săfránek Masaryk University, Czech Republic

Additional Reviewers

Angaroni, Fabrizio
Backenköhler, Michael
Bellot, Eléonore
Boutillier, Pierre
Carcano, Arthur
Chen, Hongkai
Chodak, Jacek

Clarke, Matthew
de Franciscis, Sebastiano
Hall, Ben
Madari, Ahmad
Paul, Soumya
Shmarov, Fedor
Tognazzi, Stefano

viii Organization

Contents

Regular Papers

Sequential Reprogramming of Boolean Networks Made Practical 3
Hugues Mandon, Cui Su, Stefan Haar, Jun Pang, and Loïc Paulevé

Sequential Reprogramming of Biological Network Fate 20
Jérémie Pardo, Sergiu Ivanov, and Franck Delaplace

Control Variates for Stochastic Simulation of Chemical
Reaction Networks . 42

Michael Backenköhler, Luca Bortolussi, and Verena Wolf

Effective Computational Methods for Hybrid Stochastic Gene Networks 60
Guilherme C. P. Innocentini, Fernando Antoneli, Arran Hodgkinson,
and Ovidiu Radulescu

On Chemical Reaction Network Design by a Nested Evolution Algorithm . . . 78
Elisabeth Degrand, Mathieu Hemery, and François Fages

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm . . . 96
Melania Nowicka and Heike Siebert

Extending a Hodgkin-Huxley Model for Larval Drosophila Muscle
Excitability via Particle Swarm Fitting . 120

Paul Piho, Filip Margetiny, Ezio Bartocci, Richard R. Ribchester,
and Jane Hillston

Cell Volume Distributions in Exponentially Growing Populations 140
Pavol Bokes and Abhyudai Singh

Transient Memory in Gene Regulation. 155
Calin Guet, Thomas A. Henzinger, Claudia Igler, Tatjana Petrov,
and Ali Sezgin

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors . . . 188
Josephine Lamp, Simone Silvetti, Marc Breton, Laura Nenzi,
and Lu Feng

Reachability Design Through Approximate Bayesian Computation 207
Mahmoud Bentriou, Paolo Ballarini, and Paul-Henry Cournède

Fast Enumeration of Non-isomorphic Chemical Reaction Networks 224
Carlo Spaccasassi, Boyan Yordanov, Andrew Phillips, and Neil Dalchau

A Large-Scale Assessment of Exact Model Reduction
in the BioModels Repository . 248

Isabel Cristina Pérez-Verona, Mirco Tribastone, and Andrea Vandin

Computing Difference Abstractions of Metabolic Networks
Under Kinetic Constraints . 266

Emilie Allart, Joachim Niehren, and Cristian Versari

Tool Papers

BRE:IN - A Backend for Reasoning About Interaction Networks
with Temporal Logic . 289

Judah Goldfeder and Hillel Kugler

The Kappa Simulator Made Interactive . 296
Pierre Boutillier

Biochemical Reaction Networks with Fuzzy Kinetic Parameters in Snoopy 302
George Assaf, Monika Heiner, and Fei Liu

Compartmental Modeling Software: A Fast, Discrete Stochastic Framework
for Biochemical and Epidemiological Simulation. 308

Christopher W. Lorton, Joshua L. Proctor, Min K. Roh,
and Philip A. Welkhoff

Spike – Reproducible Simulation Experiments with Configuration
File Branching . 315

Jacek Chodak and Monika Heiner

KAMIStudio: An Environment for Biocuration of Cellular
Signalling Knowledge . 322

Russ Harmer and Eugenia Oshurko

A New Version of DAISY to Test Structural Identifiability
of Biological Models . 329

M. P. Saccomani, G. Bellu, S. Audoly, and L. d’Angió

Extended Abstracts (Posters and Highlight Talks)

Semi-quantitative Abstraction and Analysis of Chemical Reaction
Networks (Extended Abstract) . 337

Milan Češka and Jan Křetínský

Bayesian Parameter Estimation for Stochastic Reaction Networks
from Steady-State Observations. 342

Ankit Gupta, Mustafa Khammash, and Guido Sanguinetti

x Contents

Wasserstein Distances for Estimating Parameters in Stochastic
Reaction Networks . 347

Kaan Öcal, Ramon Grima, and Guido Sanguinetti

On Inferring Reactions from Data Time Series by a Statistical Learning
Greedy Heuristics . 352

Julien Martinelli, Jeremy Grignard, Sylvain Soliman,
and François Fages

Barbaric Robustness Monitoring Revisited for STL* in Parasim 356
David Šafránek, Matej Troják, Vojtěch Brůža, Tomáš Vejpustek,
Jan Papoušek, Martin Demko, Samuel Pastva, Aleš Pejznoch,
and Luboš Brim

Symmetry Breaking for GATA-1/PU.1 Model . 360
Lenka Přibylová and Barbora Losová

Scalable Control of Asynchronous Boolean Networks 364
Cui Su, Soumya Paul, and Jun Pang

Transcriptional Response of SK-N-AS Cells to Methamidophos
(Extended Abstract) . 368

Akos Vertes, Albert-Baskar Arul, Peter Avar, Andrew R. Korte,
Lida Parvin, Ziad J. Sahab, Deborah I. Bunin, Merrill Knapp,
Denise Nishita, Andrew Poggio, Mark-Oliver Stehr, Carolyn L. Talcott,
Brian M. Davis, Christine A. Morton, Christopher J. Sevinsky,
and Maria I. Zavodszky

Separators for Polynomial Dynamic Systems with Linear Complexity 373
Ines Abdeljaoued-Tej, Alia Benkahla, Ghassen Haddad,
and Annick Valibouze

Bounding First Passage Times in Chemical Reaction Networks:
Poster Abstract . 379

Michael Backenköhler, Luca Bortolussi, and Verena Wolf

Data-Informed Parameter Synthesis for Population Markov Chains 383
Matej Hajnal, Morgane Nouvian, Tatjana Petrov, and David Šafránek

Author Index . 387

Contents xi

Regular Papers

Sequential Reprogramming of Boolean
Networks Made Practical

Hugues Mandon1, Cui Su2, Stefan Haar1, Jun Pang2,3, and Löıc Paulevé4(B)

1 LSV, ENS Paris-Saclay, Inria, CNRS, Université Paris-Saclay, Cachan, France
2 SnT, University of Luxembourg, Luxembourg, Luxembourg

3 FSTC, University of Luxembourg, Esch-sur-Alzette, Luxembourg
4 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence, France

loic.pauleve@labri.fr

Abstract. We address the sequential reprogramming of gene regulatory
networks modelled as Boolean networks. We develop an attractor-based
sequential reprogramming method to compute all sequential reprogram-
ming paths from a source attractor to a target attractor, where only
attractors of the network are used as intermediates. Our method is more
practical than existing reprogramming methods as it incorporates several
practical constraints: (1) only biologically observable states, viz. attrac-
tors, can act as intermediates; (2) certain attractors, such as apoptosis,
can be avoided as intermediates; (3) certain nodes can be avoided to
perturb as they may be essential for cell survival or difficult to perturb
with biomolecular techniques; and (4) given a threshold k, all sequential
reprogramming paths with no more than k perturbations are computed.
We compare our method with the minimal one-step reprogramming and
the minimal sequential reprogramming on a variety of biological net-
works. The results show that our method can greatly reduce the number
of perturbations compared to the one-step reprogramming, while having
comparable results with the minimal sequential reprogramming. More-
over, our implementation is scalable for networks of more than 60 nodes.

Keywords: Cell reprogramming · Boolean networks · Attractors

1 Introduction

Cell reprogramming is one of the big discoveries of regenerative medicine. Taka-
hashi and Yamanaka in [23] demonstrated that cell fate decisions could be
reversed: a mature cell can be reprogrammed into an induced pluripotent stem
cell. Even though different cocktails of transcription factors have been found to
switch cell phenotypes [8,22], the identification of specific transcription factors
for a particular task remains a big obstacle. Blindly testing combinations of
transcription factors is unfeasible due to the high cost of biological experiments.

H. Mandon and C. Su—Co-first authors.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-31304-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_1

4 H. Mandon et al.

Fig. 1. Different flavors of Boolean networks reprogramming.

Computational models of cell dynamics enable the in silico prediction of
reprogramming targets. Qualitative models, notably Boolean networks, allow
accounting the influences between numerous genes by requiring few modelling
parameters. Thus, they turn out to be well suited for modelling cellular differenti-
ation processes and thereby predict perturbations for their control [1,5–7,18,24].
In Boolean networks, each gene or protein is modelled as a binary variable, which
can only take 0 or 1 as its value: a value of 0 means that the gene or protein is
inactive, whereas a value of 1 means that the gene or protein is active. Each vari-
able is assigned with a Boolean function, which determines the next value of the
variable given the current values of other variables of the network. The computa-
tion of the next states depends on the chosen update mode for the variables. In
this paper, we focus on the asynchronous updating mode where a single variable
is updated at a time, selected non-deterministically. The long term dynamics of
a Boolean network is described as attractors, which can be either single-state
attractors (fixed points), or cyclic attractors.

Cell reprogramming consists of triggering a change of cellular phenotype. In
the context of Boolean networks, phenotypes are modelled by the attractors.
Cellular reprogramming becomes then a control problem: driving the dynamics
of the network from a source attractor to a target attractor. In order to control
a network, the system is perturbed out of its actual state. These perturbations
can be applied instantaneously (for an instant), temporarily (for limited time),
or permanently (mutations). In this paper, we focus on instantaneous perturba-

Sequential Reprogramming of Boolean Networks Made Practical 5

tions. Moreover, the perturbations can take place at different “times”, and as
such, multiple kinds of reprogramming strategies can be found in the literature.

Existing works focus on one-step reprogramming [5,7,10,16,18], or in rare
instances, on sequential reprogramming, e.g., [12]. One-step reprogramming
allows applying perturbations only once as shown in Fig. 1(a). On the other
hand, sequential reprogramming identifies a sequence of perturbations to be
applied at different intermediate states. The intermediate states can be either a
transient state or a state in an attractor. As illustrated in Fig. 1(b), a set of per-
turbations are applied to the initial state, which stirs the network to a transient
state. After one-step spontaneous evolution, we apply another set of perturba-
tions to the new transient state. This leads the network dynamics to a state in
the strong basin of the target attractor, from which the network always eventu-
ally reaches the target attractor. By taking advantage of the natural dynamics
of the network, sequential reprogramming can provide alternative predictions to
one-step reprogramming, notably requiring considerably less perturbations [12].
However, in order to apply the perturbations at the correct time, sequential
reprogramming requires complete observability of the network (i.e., the state of
the network is known at any discrete time), which is rarely feasible in practice.
This motivates us to develop an attractor-based sequential reprogramming as
illustrated by Fig. 1(c), where perturbations should be applied only at attractors.
Since the attractors can be observed experimentally, the attractor-based sequen-
tial reprogramming only requires partial observability of the network. Moreover,
in experiments, perturbations need to take time before effectively changing the
values of the variables. Attractor-based sequential reprogramming captures this
requirement well, as the network dynamics remains in the attractor when per-
turbations are applied.

In this paper, we describe in detail our attractor-based sequential reprogram-
ming to compute sequential reprogramming paths through other attractors of
the network. We compare the performance of this new method with the minimal
one-step reprogramming and the minimal sequential reprogramming. The results
show that all the three methods are efficient in terms of computation time. Both
sequential reprogramming methods can greatly reduce the number of pertur-
bations compared to the minimal one-step reprogramming. Even though our
attractor-based sequential reprogramming may need a few more perturbations
than the minimal sequential reprogramming for some cases, the paths identified
by our method are more easily transferable to biological experiment protocols.

Outline. Section 2 gives preliminary notions on Boolean networks. Section 3
addresses the attractor-based sequential reprogramming, with definitions and
an algorithm to compute the solutions. Section 4 evaluates it by comparing its
performance with the minimal one-step reprogramming and the minimal sequen-
tial reprogramming on several biological networks. Lastly, Sect. 5 discusses the
results and reviews further the state of the art.

6 H. Mandon et al.

2 Background

2.1 Boolean Networks

A Boolean network (BN) describes elements of a dynamical system with binary-
valued nodes and interactions between elements with Boolean functions. It is
formally defined as follows.

Definition 1 (Boolean networks). A Boolean network is a tuple BN = (x, f)
where x = (x1, x2, . . . , xn) such that each xi, 1 ≤ i ≤ n is a Boolean variable and
f = (f1, f2, . . . , fn) is a tuple of Boolean functions over x. |x| = n denotes the
number of variables.

In what follows, i will always range between 1 and n, unless stated otherwise.
A Boolean network BN = (x, f) may be viewed as a directed graph GBN = (V,E)
where V = {v1, v2 . . . , vn} is the set of vertices or nodes and for every 1 ≤ i, j ≤ n,
there is a directed edge from vj to vi if and only if fi depends on xj . An edge
from vj to vi will be often denoted as vj → vi. A path from a vertex v to a vertex
v′ is a (possibly empty) sequence of edges from v to v′ in GBN. For the rest of
the exposition, we assume that an arbitrary but fixed network BN of n variables
is given to us and GBN = (V,E) is its associated directed graph.

A state s of BN is an element in {0, 1}n. Let S be the set of states of BN.
For any state s = (s1, s2, . . . , sn), and for every i, the value of si, often denoted
as s[i], represents the value that the variable xi takes when the BN ‘is in state
s’. For some i, suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) will denote
the value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming distance
between s and s′ will be denoted as hd(s, s′) and arg(hd(s, s′)) ⊆ {1, 2, . . . , n}
will denote the set of indices in which s and s′ differ. For a state s and a subset
S′ ⊆ S, the Hamming distance between s and S′ is defined as the minimum of
the Hamming distances between s and all the states in S′. That is, hd(s,S′) =
mins′∈S′ hd(s, s′). We let arg(hd(s,S′)) denote the set of subsets of {1, 2, . . . , n}
such that I = arg(hd(s,S′)) if and only if I is a set of indices of the variables
that realise this Hamming distance.

2.2 Dynamics of Boolean Networks

We assume that the Boolean network evolves in discrete time steps. It starts
initially in a state s0 and its state changes in every time step according to the
update functions f . The updating may happen in various ways. Every such way
of updating gives rise to a different dynamics for the network. In this article, we
focus on the fully asynchronous update mode, but the method is actually generic
to any update mode, as it computes on the resulting global transition system.

Definition 2 (Asynchronous dynamics of Boolean networks). Suppose
s0 ∈ S is an initial state of BN. The asynchronous evolution of BN is a function
ξ : N → ℘(S) such that ξ(0) = s0 and for every j ≥ 0, if s ∈ ξ(j) then
s′ ∈ ξ(j + 1) is a possible next state if and only if either hd(s, s′) = 1 and
s′[i] = fi(s) where {i} = arg(hd(s, s′)) or hd(s, s′) = 0 and there exists i such
that s′[i] = fi(s).

Sequential Reprogramming of Boolean Networks Made Practical 7

Note that the asynchronous dynamics is non-deterministic – the value of
exactly one variable is updated in a single time-step. The index of the variable
that is updated is not known in advance. Henceforth, when we talk about the
dynamics of BN, we shall mean the asynchronous dynamics as defined above.

The dynamics of a Boolean network can be represented as a state transition
graph or a transition system (TS).

Definition 3 (Transition system of BN). The transition system of BN,
denoted by the generic notation TS is a tuple (S,→) where the vertices are the
set of states S and for any two states s and s′ there is a directed edge from s to
s′, denoted s → s′ iff s′ is a possible next state according to the asynchronous
evolution function ξ of BN.

2.3 Attractors and Basins of Attraction

A path from a state s to a state s′ is a (possibly empty) sequence of transitions
from s to s′ in TS. A path from a state s to a subset S′ of S is a path from s to
any state s′ ∈ S′. For any state s ∈ S, let preTS(s) = {s′ ∈ S | s′ → s} and let
postTS(s) = {s′ ∈ S | s → s′}. preTS(s) contains all the states that can reach s
by performing a single transition in TS and postTS(s) contains all the states that
can be reached from s by a single transition in TS. preTS(s) and postTS(s) are
often called the set of predecessors and successors of s. Note that, by definition,
hd(s, preTS(s)) ≤ 1 and hd(s, postTS(s)) ≤ 1. preTS and postTS can be lifted to a
subset S′ of S as: preTS(S′) =

⋃
s∈S′ preTS(s) and postTS(S′) =

⋃
s∈S′ postTS(s).

We define prei+1
TS (S′) = preTS(prei

TS(S
′)) and posti+1

TS (S′) = postTS(postiTS(S
′))

where pre0TS(S
′) = post0TS(S

′) = S′. For a state s ∈ S, reachTS(s) denotes the set
of states s′ such that there is a path from s to s′ in TS and can be defined as
the fixpoint of the successor operation which is often denoted as post∗TS. Thus,
reachTS(s) = post∗TS(s).

Definition 4 (Attractor). An attractor A of TS (or of BN) is a minimal sub-
set of states of S such that for every s ∈ A, reachTS(s) = A.

Remark that attractors are the bottom strongly connected component of TS.
Any state which is not part of an attractor is a transient state. An attractor

A of TS is said to be reachable from a state s if reachTS(s) ∩ A �= ∅. Attractors
represent the stable behaviour of the BN according to the dynamics. Assuming
strong fairness, the network starting at any initial state s0 ∈ S will eventually
end up in one of the attractors of TS and remain there forever unless perturbed.

For an attractor A of TS, we define a subset of states of S called the strong
basins of A, denoted as basSTS(A), as follows.

Definition 5 (Strong basin). Let A be an attractor of TS. The strong
basin of attraction of A with respect to TS, is defined as basTS(A) = {s ∈
S|reachTS(s) ∩ ⋃

A′ = ∅} where the union is over all attractors A′ of TS such
that A′ �= A.

8 H. Mandon et al.

v1 v2

v3

v4

(a) GBN

0000 0001

0010 0011

0110 0111

0100 0101

1000 1001

1010 1011

1110 1111

1100 1101

(b) TSBN

Fig. 2. The graph of BN and its transition system, with the attractors in red. (Color
figure online)

The definition of strong basin guarantees that any state s in basTS(A) can only
reach the attractor A and cannot reach any other attractor A′, A′ �= A of BN.1

Example 1. Consider the following four-node network BN = (x, f) where x =
(x1, x2, x3, x4), and f = (f1, f2, f3, f4) where f1 = x1, f2 = x2, f3 = x1 ∧ ¬x2

and f4 = x3 ∨ x4. The graph of the network GBN and its associated transition
system TS are given in Fig. 2. TS has seven attractors marked in red. Their
corresponding strong basins of attractions are shown by enclosing grey regions
of a lighter shade.

3 Attractor-Based Sequential Reprogramming

3.1 Motivation

In most methods on cellular reprogramming using Boolean networks [7,16,18],
all perturbations are done at once, and the system is left to stabilize itself towards
the desired target attractor. However, allowing perturbations to be performed
at different points in time opens alternative reprogramming paths, possibly less
costly. In general, sequential reprogramming allows the network to be perturbed
in any state (transient states or states in an attractor) [12,19]. This requires
complete observability of the system, which is very hard to obtain experimentally.

To make the sequential reprogramming practical, we design an attractor-
based sequential reprogramming, which only requires partial observability of the
network. The principle of this method is to use other attractors as intermediate
states for the reprogramming. At each step, we apply a set of perturbations to
stir the dynamics towards a state in the strong basin of an intermediate attrac-
tor (or a target attractor). We then let the network evolve spontaneously to the

1 Henceforth, we drop the subscript TS for the sake of simplicity.

Sequential Reprogramming of Boolean Networks Made Practical 9

intermediate attractor (or the target attractor). We repeat the above procedure
until the network reaches the target attractor. In this paper, we focus on instan-
taneous perturbations, while applying the perturbations longer will not affect
the reachability of the target attractor. In practice, based on empirical experi-
ence, biologists may be able to determine how long it takes for the network to
stabilize in an intermediate attractor, i.e., the timing to apply the next pertur-
bations. In that case, if the intermediate attractors are single-state attractors,
partial observability is not required. However, if the intermediate attractors are
cyclic attractors, an observation of the state might still be required.

A feasible reprogramming method has to encode practical considerations. In
most cases, some variables cannot be perturbed, either because they represent
an external cause the experimenter cannot change, or a set of multiple genes and
proteins that would require a lot more work to perturb, or a transcription factor
impacting only the gene or protein hasn’t been found. Moreover, some attractors
might not be suitable as intermediate states, because they lead to the death or
disease of the cell. Thus, the algorithm we will describe in Sect. 3.3 provides
options to avoid perturbing user-specified variables and/or avoid passing user-
specified attractors.

The general principle of this method can be applied to other means to com-
pute the required perturbations for the system to reach a target attractor, given
an initial state in an attractor.

3.2 The Reprogramming Problem

In this work, we are interested in instantaneous perturbations, thus we define
reprogramming of a BN as follows.

Definition 6 (Reprogramming). A reprogramming set C of a BN is a (pos-
sibly empty) subset of {1, 2, . . . , n}. For a state s ∈ S, the application of C to s
reprograms the state of BN from s to s′ ∈ S, such that s′[i] = 1 − s[i] if i ∈ C
and s′[i] = s[i] otherwise.

Since the perturbations are applied instantaneously, only the state of BN
is changed while the Boolean functions remain the same. Based on the above
definition, we define one-step reprogramming of a BN as follows.

Definition 7 (One-step reprogramming). Given a source attractor As and
a target attractor At of BN, find a state s ∈ As and a reprogramming set C, such
that the dynamics of BN always eventually reaches At after the application of C
to s.

According to [16], we can easily obtain the following proposition.

Proposition 1. A one-step reprogramming CAs→At(s) (s ∈ As) from As to At

is minimal if and only if

1. C(s) ∈ bas(At) and C = arg(hd(s, bas(At))).
2. ∀s′ ∈ As, hd(s′, bas(At)) ≥ hd(s, bas(At)).

10 H. Mandon et al.

We denote a minimal one-step reprogramming from As to At as CAs→At
min (s). A

minimal one-step reprogramming drives the dynamics of BN from As to a state
in the strong basin of At, from which spontaneous evolution will eventually guide
the network to At.

As explained in Sect. 3.1, attractor-based sequential reprogramming can pro-
vide new solutions apart from the one-step reprogramming paths. Let |ABN|
denote the total number of attractors of BN. We define attractor-based sequen-
tial reprogramming as follows.

Definition 8 (Attractor-based sequential reprogramming). Given As (a
source attractor) and At (a target attractor) of BN, find a sequence of attractors
{A1, A2, . . . , Am} of BN, where A1 = As, Am = At, Ai �= Aj for any i, j ∈ [1,m]
and 2 ≤ m ≤ |ABN|, such that a sequence of minimal one-step reprogramming
{CA1→A2

min ,CA2→A3
min , . . . ,C

Am−1→Am

min } always eventually reaches At (Am). We call
it an attractor-based sequential path, denoted as

ρ : A1
C
A1→A2
min−−−−−→ A2

C
A2→A3
min−−−−−→ A3

...−→ . . .
C
Am−1→Am
min−−−−−−−−→ Am

(|CA1→A2
min |+ |CA2→A3

min |+ . . .+ |CAm−1→Am

min |) is the total number of perturbations.

Due to the diversity of biological networks, there does not exist one univer-
sal reprogramming strategy that suits all different networks. Hence, we develop
an algorithm to compute all attractor-based sequential reprogramming paths
satisfying the following constraints:

1. the total number of perturbations is less than a threshold;
2. certain attractors can be avoided as intermediates;
3. certain nodes of the network can be avoided to be perturbed.

These constraints encode practical considerations described in Sect. 3.1 and thus
lead to biologically feasible reprogramming paths. We describe such an algorithm
in the next section.

3.3 Algorithm

Let BN = (x, f) be a Boolean Network of size n = |x|. Let U be the set of
variables that cannot be perturbed, As be an attractor of the network, which is
the initial state of the system, and At be another attractor of the network, which
is the target to reprogram to.

Algorithm 1 describes the algorithm to compute sequential paths from As

to At, using other attractors as intermediate steps. The inputs are: the Boolean
Network BN, the initial attractor As, the target attractor At, the set of attractors
A that can act as intermediate states, and the set of variables U that can not be

Sequential Reprogramming of Boolean Networks Made Practical 11

Algorithm 1. Inevitable reprogramming of BNs from As to At

1: procedure Computation of inevitable paths(BN,As,At, A,U)
2: max dist = HBm(BN,U,As,At))
3: LAs = new empty dictionary
4: if max dist < ∞ then
5: a = arg HB(BN,U,As,At)
6: � Associate (distance, [perturbations list]) to the [path]
7: LAs .add([At] : (max dist, [a]))
8: � Associate the minimal length of all paths from As to At

9: LAs .add(“min” : max dist)
10: list := ∅
11: for A ∈ A do
12: d = HBm(BN,U,A,At)
13: if d < max dist then
14: list.add(A)
15: LA = map()
16: a = arg HB(BN,U,A,At)
17: � Associate (distance, [perturbations list]) to the [path]
18: LA.add([At] : (d, [a]))
19: � Associate minimal length of all paths from A to At

20: LA.add(“min” : d)

21: � Recursively computes the paths with attractors as intermediate steps
22: while list �= ∅ do
23: l := ∅
24: for A1 ∈ A do
25: for A2 ∈ list do
26: d = HBm(BN,U,A1,A2)
27: if d �= ∞ and d + LA2 [“min”] ≤ max dist then
28: l.add(A1)
29: for path ∈ LA2 \ {“min”} do
30: td = d + LA2 [path][0] � total length of the new path to At

31: if td ≤ max dist and A2 �∈ path then
32: if LA1 does not exists then
33: LA1 = map()
34: � Associate minimal length of all paths from A to At

35: LA1 .add(“min” : td)

36: a = arg HB(BN,U,A1,A2)
37: � Associate (distance, [perturbations]) to the [path]
38: LA1 .add([A2] + path : (td, [a] + LA2 [path][1]))
39: if td < LA1 [“min”] then
40: LA1 [“min”] = td

41: list = l
42: return LAs

perturbed. The set A excludes the attractors that cannot act as intermediates,
such as the source attractor and the undesired attractors.2

2 We refer details on attractor detection to [13].

12 H. Mandon et al.

Algorithm 2. Distance functions
1: function HBm(BN,U, S, T)
2: B = bas(T)
3: � Details on the computation of basinS can be found in [16,14]
4: return mins∈S,t∈B(hdm(U, s, t))

5: function hdm(BN,U, s, t)
6: sum = 0
7: for i = 1, i ≤ n, i + + do
8: if s[i] �= t[i] then
9: if i ∈ U then

10: return ∞
11: sum = sum + |s[i] − t[i]|
12: return sum
13: function arg HB(BN,U, S, T)
14: min = HBm(BN,U, S, T)
15: if min = ∞ then
16: Fail(”infinite distance”)

17: D = map()
18: for s ∈ S do
19: for t ∈ T do
20: if hdm(U, s, t) = min then
21: for i = 1, i ≤ n, i + + do
22: if s[i] �= t[i] then
23: � Associate the desired value of the variable i to ti
24: D.add(i : ti)

25: return D

The algorithm uses a modified Hamming distance hdm between the states of
the transition system. Between a state s and a state t, this modified Hamming
distance hdm(s, t) is defined as:

hdm(s, t) =
{∞ if ∃v ∈ U, s[v] �= t[v]
hd(s, t) otherwise

The modified Hamming distance between two sets of states S and T is defined
as: hdm(S, T) = mins∈S,t∈T (hdm(s, t)).

To compute the sequential paths from As to At using other attractors as
intermediate states, we have to compute the strong basin of At, which is bas(At).
Since we only use the distance between a state and a basin, let HBm, the distance
between a set of states S and the basin of a set of states T , be defined as
HBm(S, T) = hdm(S, bas(T)). Algorithm 2 describes how to compute both of
these distances, as well as how to compute the argument of HBm, including
the set of variables that realize the minimum Hamming distance and the desired
value of these variables. The distance between As and the basin of At, max dist =
HBm(As,At), will be used as a benchmark for the next computations: this is the
maximum number of perturbations allowed to reach At.

Sequential Reprogramming of Boolean Networks Made Practical 13

An empty dictionary LAs is created, to store the possible paths. If max dist <
∞, the perturbed variables, a = arg HB(BN,U,As,At) are computed. The path,
represented by a list of targets to reach in order to reach the next one, [At] is
added as an entry of the dictionary, with the value (max dist, [a]). This dictionary
regroups all paths from As to At, the first value is the length of the path, and
the second is how to get from one attractor to the next one in the list. A special
value is added to the dictionary, “min”, which is the minimal length of all the
paths from As to At, and it is given the value max dist.

Then, for all attractor A in A, the distance d = HBm(A,At) is computed.
If this distance d is strictly lower than max dist3, then A is added to a list of
attractors list and a dictionary LA is created. We add to LA the entry [At] to
which we associate the length of the path, d, and the perturbations made in a list,
[arg HB(BN,U,A,At)]. The path is a list of the attractors to reach in the right
order. The perturbations made are a set, a dictionary in our case, containing the
variables to perturb and the desired values. This set is put in a list: each set of
the list is a set of perturbations to go from the current attractor to the next one
in the path defined above. A special value “min” is added to the dictionary, in
the same way as for LAs , to store the minimal length of paths from A to At.

The list list is used to recursively compute the shortest paths. As long as list
is not empty, the following steps are done:

1. First, create an empty list l.
2. Then, from all attractor A1 in A, for all attractor A2 in list, the dis-

tance d = HBm(A1,A2) is computed. If this distance plus LA2 [“min”]4 is
lower than max dist, then for every path path in LA2 , the total distance
d + LA2 [path][0]5 is computed. If this distance is lower or equal to max dist
and if A1 �∈ path, a new entry [A2] + path6 is added to LA1 , with the value
(d + LA2 [path][0], [arg HB(A1,A2)] + LA2 [path][1]). The first value, the dis-
tance, is the one to go from A1 to At using A2 as an intermediate step, and
the paths from A2 to At already computed. The second value is the set of vari-
ables to perturb, using the same principle. If the dictionary does not exist, it
is created, and “min” is updated or created. Moreover, A1 is added to l.

3. Lastly, the value of list is changed to match l, list = l.

When this loop is over, all paths are in LAs , with the associated length and
steps of variables to perturb, and LAs is returned.

4 Evaluation

To demonstrate the efficiency and the efficacy of our attractor-based sequential
reprogramming described in Algorithm 1, we compare its performance with the
minimal one-step reprogramming [16] and the minimal sequential reprogram-
ming [12] on a variety of biological networks.
3 In this case, if max dist = ∞, any non infinite distance is considered strictly lower.
4 This value is the minimal length path from A1 to At.
5 As A2 is in list, LA2 exists.
6 Here, the + is the usual concatenation for lists.

14 H. Mandon et al.

4.1 Reprogramming Strategies

To drive a network from a source state to a target attractor, the minimal one-step
reprogramming [16] computes a minimal set of perturbations to be conducted
simultaneously, and the minimal sequential reprogramming [12] computes short-
est sequential paths, where any state may act as an intermediate state. Different
from [12], the attractor-based sequential reprogramming (this work) identifies all
the sequential paths with at most k perturbations, where only attractors (bio-
logically observable states) can play the role of intermediate states. We compute
the reprogramming paths for all combinations of source and target attractors of
the studied networks with the three methods. For the attractor-based sequen-
tial reprogramming, the maximal number of perturbations allowed is set as the
number of perturbations required by the minimal one-step reprogramming; and
we assume all the nodes can be perturbed, thus U = ∅ due to the lack of rel-
evant biological knowledge. The three methods are implemented as part of the
software tool ASSA-PBN [14]. All the experiments are performed on a computer
with a CPU of Intel Core i7 @3.1 GHz and 8 GB of DDR3 RAM7.

4.2 Benchmark Biological Networks

We give a short description of the biological networks on which we test the three
different reprogramming methods of Boolean networks. Table 1 gives an overview
of the sizes and number of attractors for these networks. All the attractors of
the networks are single-state attractors.

– The myeloid differentiation network is designed to model myeloid differen-
tiation from common myeloid progenitors to megakaryocytes, erythrocytes,
granulocytes and monocytes [11].

– The cardiac gene regulatory network is constructed for the early cardiac gene
regulatory network of the mouse, including the core genes required for the
cardiac development and the FHF/SHF determination [9].

– The ERBB receptor regulated G1/S transition network enables us to identify
potential targets in the treatment of trastuzumab resistant breast cancer [20].

– The tumour network is constructed to study the role of individual mutations
or their combinations in the metastatic process [5].

– The PC12 cell network models the temporal sequence of protein signalling,
transcriptional response and subsequent autocrine feedback [15].

– The model of hematopoietic cell specification recaps cytokine induced differ-
entiation, several reported gene knockdowns and the reprogramming of pre-B
cells [6].

– The model of bortezomib responses can predict responses to the lower borte-
zomib exposure and the dose-response curve for bortezomib [4].

7 Executable and data are available at the following link: https://github.com/cuisu/
attractor based sequential reprogramming.

https://github.com/cuisu/attractor_based_sequential_reprogramming
https://github.com/cuisu/attractor_based_sequential_reprogramming

Sequential Reprogramming of Boolean Networks Made Practical 15

Table 1. An overview of the networks and the evaluation results. O, A and S stand for
the minimal one-step reprogramming, the attractor-based sequential reprogramming
and the minimal sequential reprogramming, respectively.

Network # nodes # edges #A Range of |C| Time (seconds)

|CO| |Cmin
A | |CS | TO TA TS

Myeloid 11 30 6 1 − 5 1 − 4 1 − 4 0.02 0.04 0.21

Cardiac 15 39 6 1 − 9 1 − 8 1 − 4 0.23 0.63 2.28

ERBB 20 52 3 1 − 9 1 − 8 1 − 5 0.05 0.07 0.49

Tumour 32 158 9 1 − 10 1 − 9 1 − 6 1.54 5.99 387.04

PC12 33 62 7 1 − 11 1 − 10 1 − 10 0.39 3.21 95.10

Hematopoietic 33 88 5 1 − 13 1 − 12 1 − 12 1.89 4.87 8067.73

Bortezomib 67 135 5 1 − 21 1 − 15 ∗ 50.24 106.91 ∗

PU1

GATA2 GATA1

FOG1

Fli1

SCL

EKLF

C/EBP

EgrNab

cJun
α

Fig. 3. Structure of the myeloid network. Rightarrow and bar arrow represent activa-
tion and inhibition, respectively.

4.3 Results on the Myeloid Differentiation Network

Let us analyse in more depth the predictions obtained on the myeloid differentia-
tion network. Figure 3 depicts its influence graph, and Table 2 lists its six attrac-
tors, all being fixed points, four of which correspond to megakaryocyte (A2),
erythrocyte (A3), granulocyte (A5) and monocyte (A6) [11]. Table 3 describes
the number of perturbations required by the three methods (|CO|, |CA|, and
|CS |) for this network. The first column and the first row stand for the source
and the target attractors, respectively. The minimal one-step reprogramming
needs more perturbations since it only allows to apply perturbations once. By
choosing appropriate states as intermediates, the sequential reprogramming can
reduce the number of perturbations for a few cases (e.g. from A2 (A3, A4 or
A5) to A6). The minimal number of perturbations required by the two sequen-
tial reprogramming methods are identical for this network. Besides the shortest
paths, the attractor-based sequential reprogramming also identifies paths with

16 H. Mandon et al.

Table 2. Attractors of the myeloid network.

GATA2 GATA1 FOG1 EKLF Fli1 SCL C/EBPα PU1 cJun EgrNab Gfi1

A1 0 0 0 0 0 0 0 1 1 1 0

A2 0 1 1 0 1 1 0 0 0 0 0

A3 0 1 1 1 0 1 0 0 0 0 0

A4 0 0 0 0 0 0 0 0 0 0 0

A5 0 0 0 0 0 0 1 1 0 0 1

A6 0 0 0 0 0 0 1 1 1 1 0

Table 3. The number of perturbations computed by the three reprogramming methods
for the myeloid differentiation network. The first column and the first row stand for
the source and the target attractors, respectively.

A1 A2 A3 A4 A5 A6

|CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS |
A1 0 0 0 3 3 3 3 3 3 1 1 1 3 3 3 1 1 1

A2 2 2 2 0 0 0 2 2 2 2 2 2 4 4 4 5 3, 4, 5 3

A3 2 2 2 2 2 2 0 0 0 1 1 1 3 3 3 5 3, 5 3

A4 1 1 1 2 2 2 2 2 2 0 0 0 2 2 2 4 2, 4 2

A5 1 1 1 3 3 3 3 3 3 2 2 2 0 0 0 3 2, 3 2

A6 1 1 1 3 3 3 3 3 3 2 2 2 2 2 2 0 0 0

at most |CO| perturbations. For instance, there are in total three attractor-based
sequential paths from A2 to A6:

– ρ1 : A2
GATA1,EgrNab,PU1,cJun, C/EBPα−−−−−−−−−−−−−−−−−−−−−−−→ A6,;

– ρ2 : A2
GATA1, Fli1−−−−−−−−→ A4

PU1−−−→ A1
C/EBPα−−−−−→ A6;

– ρ3 : A2
GATA1,PU1−−−−−−−−→ A1

C/EBPα−−−−−→ A6.

Path ρ1 is also a shortest one-step path, which requires 5 perturbations. Paths ρ2
and ρ3 only require 4 and 3 perturbations, respectively. An interesting observa-
tion is that the sequential paths may require the perturbation of the same gene
multiple times, which will not happen for the one-step reprogramming method.

For instance, a sequential path from A5 to A6 is ρ : A5
C/EBPα−−−−−→ A1

C/EBPα−−−−−→ A6.
By perturbing ‘C/EBPα’ twice, we can achieve the sequential reprogramming
from A5 to A6.

4.4 Results on the Benchmark Biological Networks

An overview of the evaluation results on the seven networks is given in Table 1.
It is worth noting that Table 3 gives the number of perturbations for every pair
of source and target attractors of the myeloid differentiation network, while
in Table 1, columns |CO|, |Cmin

A |, and |CS | summarise the minimal number of
perturbations required by the three methods for all pairs of source and target

Sequential Reprogramming of Boolean Networks Made Practical 17

attractors of the seven biological networks.8 In Table 1, |Cmin
A | only considers the

shortest attractor-based sequential paths, instead of all the identified paths (see
|CA| in Table 3) with less than |CO| perturbations.

In general, the sequential strategy results in less perturbations. Even though
the attractor-based sequential method requires a few more perturbations than
the minimal sequential reprogramming, it uses biological observable states as
intermediates and thus is considered more realistic and applicable. In particular,
the attractor-based sequential control can reduce up to 9 perturbations compared
to the minimal one-step control. Columns TO, TA and TS of Table 1 give the total
computation time. We can see that all three methods are efficient and scale well
for large networks. Even though the attractor-based sequential reprogramming
takes a bit longer than the one-step reprogramming, it identifies a number of
potential applicable solutions.

5 Discussion

Combining the available techniques from computer science with the constraints
of experimental protocols in biology, in this paper, we have designed attractor-
based sequential reprogramming of Boolean networks. Compared to one-step
reprogramming [16], where all perturbations are applied only once, our method
identifies a sequence of perturbations to be applied sequentially. Taking full
advantage of spontaneous evolutions, our method requires less perturbations and
thus results in lower experimental costs. Different from the sequential reprogram-
ming [12], our method only uses other attractors as intermediates. Therefore, it
does not require complete observability, except within cyclic attractors, which
makes its application more feasible in biological experiments.

Moreover, our method allows avoiding some variables to be perturbed and
some attractors to be used as intermediate steps, which differs from a previously
developed sequential reprogramming method [12]. These constrains key obser-
vations in practice, as some biological networks have genes that cannot yet be
influenced by transcription factors (or they can be influenced at a very high cost),
and some attractors such as apoptosis of the cell shouldn’t be viable intermediate
steps. Our method sits in a middle ground between one-step reprogramming [16]
and sequential reprogramming [12].

Existing works mainly focus on one-step reprogramming [2,3,5–7,21,24], con-
sidering various kinds of perturbations and targeted dynamical properties. Pre-
dictions are obtained following different techniques, with probabilistic modelling
in [3,5,6], or qualitative modelling in [2,7,21,24]. Sequential reprogramming is
also studied in the literature [1,12,19] using quite different approaches: Abou-
Jaoudé et al. [1] applied model checking to verify that a set of perturbations
can reprogram the cell correctly, using other attractors as intermediate steps if
needed, Ronquist et al. [19] used a quantitative model that returns a specific
time for the perturbations to be made; lastly in the work of Mandon et al. [12],
8 ‘*’ means the algorithm fails to return any result within five hours. We excluded the

‘apoptosis’ attractor for the tumour network for the evaluation.

18 H. Mandon et al.

the perturbations can be done at any time, but require precise knowledge of the
state of the system (i.e., complete observability).

In future work, besides relaxing the observability within cyclic attractors,
we plan to address attractor-based sequential reprogramming with temporary
perturbations (i.e., sustained for a limited time). This corresponds to another
classical experimental setting in cellular reprogramming, and should provide
alternative and potentially shorter sequences of perturbations.

Acknowledgement. This research was supported by the ANR-FNR project Algo-
ReCell (ANR-16-CE12-0034; FNR INTER/ANR/15/11191283); Labex DigiCosme
(project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the pro-
gram “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02); and by
the project SEC-PBN funded by University of Luxembourg. Cui Su was also partially
supported by the COST Action IC1405.

References

1. Abou-Jaoudé, W., et al.: Model checking to assess T-helper cell plasticity. Front.
Bioeng. Biotechnol. 2, 86 (2015)

2. Biane, C., Delaplace, F.: Abduction based drug target discovery using Boolean
control network. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545,
pp. 57–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 4

3. Chang, R., Shoemaker, R., Wang, W.: Systematic search for recipes to generate
induced pluripotent stem cells. PLoS Comput. Biol. 7(12), e1002300 (2011)

4. Chudasama, V., Ovacik, M., Abernethy, D., Mager, D.: Logic-based and cellular
pharmacodynamic modeling of Bortezomib responses in U266 human myeloma
cells. J. Pharmacol. Exp. Ther. 354(3), 448–458 (2015)

5. Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.:
Mathematical modelling of molecular pathways enabling tumour cell invasion and
migration. PLoS Comput. Biol. 11(11), e1004571 (2015)

6. Collombet, S., et al.: Logical modeling of lymphoid and myeloid cell specification
and transdifferentiation. Proc. Nat. Acad. Sci. 114(23), 5792–5799 (2017)

7. Crespo, I., Perumal, T.M., Jurkowski, W., del Sol, A.: Detecting cellular repro-
gramming determinants by differential stability analysis of gene regulatory net-
works. BMC Syst. Biol. 7(1), 140 (2013)

8. Graf, T., Enver, T.: Forcing cells to change lineages. Nature 462(7273), 587–594
(2009)

9. Herrmann, F., Groß, A., Zhou, D., Kestler, H.A., Kühl, M.: A Boolean model of the
cardiac gene regulatory network determining first and second heart field identity.
PLoS ONE 7, 1–10 (2012)

10. Jo, J., et al.: An integrated systems biology approach identifies positive cofactor
4 as a factor that increases reprogramming efficiency. Nucleic Acids Res. 44(3),
1203–1215 (2016)

11. Krumsiek, J., Marr, C., Schroeder, T., Theis, F.J.: Hierarchical differentiation of
myeloid progenitors is encoded in the transcription factor network. PLoS ONE
6(8), e22649 (2011)

12. Mandon, H., Haar, S., Paulevé, L.: Temporal reprogramming of Boolean net-
works. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 179–195.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 11

https://doi.org/10.1007/978-3-319-67471-1_4
https://doi.org/10.1007/978-3-319-67471-1_11

Sequential Reprogramming of Boolean Networks Made Practical 19

13. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection
in large Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(1), 31–42
(2018)

14. Mizera, A., Pang, J., Su, C., Yuan, Q.: ASSA-PBN: a toolbox for probabilistic
Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(4), 1203–1216
(2018)

15. Offermann, B., et al.: Boolean modeling reveals the necessity of transcriptional
regulation for bistability in PC12 cell differentiation. Front. Genet. 7, 44 (2016)

16. Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards
the control of Boolean networks. In: Proceedings 9th ACM Conference on Bioin-
formatics, Computational Biology, and Health Informatics, pp. 11–20. ACM Press
(2018)

17. Paul, S., Su, C., Pang, J., Mizera, A.: An efficient approach towards the source-
target control of Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf.
(2019, accepted)

18. Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F., Calzone,
L.: A modelling approach to explain mutually exclusive and co-occurring genetic
alterations in bladder tumorigenesis. Cancer Res. 75, 4042–4052 (2015). https://
doi.org/10.1158/0008-5472.CAN-15-0602

19. Ronquist, S., et al.: Algorithm for cellular reprogramming. Proc. Nat. Acad. Sci.
114(45), 11832–11837 (2017)

20. Sahin, Ö., et al.: Modeling ERBB receptor-regulated G1/S transition to find novel
targets for de novo trastuzumab resistance. BMC Syst. Biol. 3(1), 1 (2009)

21. Samaga, R., Von Kamp, A., Klamt, S.: Computing combinatorial intervention
strategies and failure modes in signaling networks. J. Comput. Biol. 17(1), 39–
53 (2010)

22. del Sol, A., Buckley, N.J.: Concise review: a population shift view of cellular repro-
gramming. Stem Cells 32(6), 1367–1372 (2014)

23. Takahashi, K., Yamanaka, S.: A decade of transcription factor-mediated repro-
gramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17(3), 183–193 (2016)

24. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLoS Comput. Biol. 11, 1–24 (2015)

https://doi.org/10.1158/0008-5472.CAN-15-0602
https://doi.org/10.1158/0008-5472.CAN-15-0602

Sequential Reprogramming of Biological
Network Fate

Jérémie Pardo, Sergiu Ivanov(B), and Franck Delaplace

IBISC, Univ Évry, Paris-Saclay University, 91025 Évry, France
{jeremie.pardo,sergiu.ivanov,franck.delaplace}@ibisc.univ-evry.fr

http://www.ibisc.univ-evry.fr

Abstract. A major challenge in precision medicine consists in finding
the appropriate network rewiring to induce a particular reprogramming
of the cell phenotype. The rewiring is caused by specific network action
either inhibiting or over-expressing targeted molecules. In some cases, a
therapy abides by a time-scheduled drug administration protocol. Fur-
thermore, some diseases are induced by a sequence of mutations leading
to a sequence of actions on molecules. In this paper, we extend previ-
ous works on abductive-based inference of network reprogramming [3] by
investigating the sequential control of Boolean networks. We present a
novel theoretical framework and give an upper bound on the size of con-
trol sequences as a function of the number of observed variables. We also
define an algorithm for inferring minimal parsimonious control sequences
allowing to reach a final state satisfying a particular phenotypic property.

Keywords: Dynamical systems reprogramming ·
Boolean Control Network · Control sequence · Abductive reasoning ·
Drug target prediction · Sequential therapy

1 Introduction

Cell reprogramming consists in modifying gene expression to induce a particular
cell behavior naturally or artificially. The potential outcomes of reprogramming
will have valuable benefits in essential challenges of health: cancerous targeted
therapy, complex disease etiology, regenerative medicine, stem cells monitoring,
etc. Despite the impressive progress in cell reprogramming during the last decade,
more breakthroughs are required before cellular reprogramming yields routine
clinical use [18]. The main issues lie on the discovery of reliable ways to trigger
reprogramming process and to understand exactly how the process works. In this
endeavour, the definition of suitable theoretical frameworks and computational
methods are crucial for enabling the analysis and the design of reprogramming
patterns responsible for the phenotypic switch.

Cell reprogramming mechanisms are based on the control of molecular pro-
cesses to monitor the dynamics of the network fate. In [20], the authors relate
mutations to their network effect: nonsense mutation, out-of-frame insertion or
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 20–41, 2019.
https://doi.org/10.1007/978-3-030-31304-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_2

Sequential Reprogramming of Biological Network Fate 21

deletion and defective splicing are interpreted as node or arc deletions whereas
missense mutation and in-frame insertion or deletion can be modelled as node or
arc additions. Moreover, in [7], the authors classify mutations according to the
way they affect signalling networks and distinguish mutations that constitutively
activate or inhibit enzymes (nodes) and mutations that rewire the interactions
(arcs). In the same vein, the action of targeted therapies is interpreted as net-
work rewiring [8]. The effect of mutations and drugs can thus be described as
elementary topological actions on the network: deletion or insertion of nodes and
arcs. Cell reprogramming is then viewed as network alteration based on these
topological actions. The impact of the network actions should be evaluated from
a model of dynamics translating the topological actions into dynamical alter-
ation of the trajectories. Accordingly, the phenotypic changes are assessed at
molecular level by the measurement of the state of peculiar molecules called
biomarkers—observable indicators of biological processes whose molecular sig-
nature variation discriminates the phenotypes [8,17]. The signatures must be
observed in a significant period of time for testifying their relevance, and thus
assumed to be met at stability condition of the biological system. This approach
is part of Network Medicine [1] that aims to address drug target discovery and
the elucidation of disease mechanism based on network analysis by renewing the
phenotype-genotype relationship into the association of a phenotype to some
network perturbations [16].

Recent research in computational biology provides novel inference methods
for reprogramming a system to make the dynamics converge towards an expected
fate. These works use the Boolean Control Network (BCN) and model specifying
the actions as controls on Boolean network, detailed in Sect. 2. In [12] the authors
apply a stuck-at fault model for simulating drug and disease processes. A Max-
SAT based algorithm is then used for inferring node actions. In [19], the authors
propose a heuristic method focused on the control of key-nodes stabilizing the
state of “motifs” that correspond to specific sub-networks. In [15], the authors
propose a method based on Gröbner basis computation to find the node actions
for generating or avoiding particular stable states. In [3], the authors use an
abductive method based on prime implicants for the inference, and cover actions
on nodes and arcs. These works were validated on real biological cases showing
their adequacy for drug therapy prediction. The first method is restricted to
acyclic network whereas the others admit any network. In summary, the state of
the art related to Boolean control network shows that the majority of the works
use a similar methodology that consists in computing a single network action
modelled as control input for monitoring the dynamics in order to reach stable
states meeting some expected properties assessed at molecular level.

However in some biological cases, a sequence of mutations is observed or a
therapy involves a scheduled protocol for administering drugs. Tumorigenesis
is the result of a multi-step process governed by sequential genetic alterations.
Colorectal tumor offers a paradigmatic system illustrating this sequential pro-
gression shifting from a benign tumor (adenoma) to a malignant one (carci-
noma) following a sequence of four gene mutations ending with the appearance

22 J. Pardo et al.

of metastases [9]. Furthermore, in [11] the authors describe a systematic app-
roach to identifying efficient drug combinations in killing cancer cells depending
on changes in the order and duration of drug exposure. They found that some
drug combinations (egfr inhibitor) can synergise the apoptotic response to DNA
damaging chemotherapy for a subset of triple negative breast cancers if the drugs
are given sequentially but not simultaneously, leading to an appropriate dynamic
rewiring of oncogenic signalling networks.

Therefore, to widen the scope of potential applications in precision medicine,
we propose to extend the previous works by investigating control sequences to
provide the possibility to explain the causes of diseases by sequences of per-
turbations and to discover therapeutic regimen as a long term perspective. A
control sequence is composed of a list of control/topological network actions
whose sequential application routes the dynamics of the network by steps to
the expected fate. Little research has been developed on this extension. In [13],
the authors study temporal reprogramming of Boolean networks based on Petri
net analysis. Given a trajectory, they identify the appropriate states at which
a control should be applied, and deduce the corresponding controls (perturba-
tions) to reach an expected state. The algorithm explores the extended state
graph encompassing perturbation representation, implying that the number of
possible controls has to remain low to be tractable. An improved and generalised
version of this algorithm is given in [14].

In this article, we define a computational method for inferring the minimal
sequence of controls to reach some expected properties met at stable states.
More specifically, we propose a theoretical framework describing a controlled
dynamics enabling us to characterize a bound on the length of control sequences
of minimal size.

The article is organised as follows. Section 2 recalls the principles of Boolean
networks and introduces the extension to Boolean Control Networks by defining
the main notions of controlled dynamics. In Sect. 3, we examine the properties of
control sequences required to control network fate. In the section, we also detail
the algorithm inferring minimal control sequences.

2 Boolean Control Network

Boolean Control Networks (BCN) extend Boolean networks by adding Boolean
controls which can alter the dynamics. In this section, we briefly recall the main
definitions of Boolean networks (Sect. 2.1), and then we define the extension
to BCN (Sect. 2.2). We more specifically focus on a particular class of control
called the freezing control where a control input freezes a variable state to a
specific value definitively. This category truthfully models the aftermaths of the
perturbations on genetic and signalling networks blocking the gene expression
in a particular regulation state that are notably the consequences of mutations
or drug effects.

Sequential Reprogramming of Biological Network Fate 23

Notations. We use the following notations. Let E′ ⊆ E. We denote: −E′ = E\E′.
Let f be a function with E as domain, f↓E′ defines the restriction/projection of
the function to E′ such that f is only defined for the elements of E′.

2.1 Boolean Network

A Boolean network is a discrete dynamical system defined on Boolean vari-
ables X. A state s belonging to the set of states SX is an interpretation assigning
a Boolean value to the variables (i.e., s : X → B). A Boolean network is defined
by a collection of Boolean functions,

F = {xi = fi(x1, . . . , xn) | 1 ≤ i ≤ n},

where each fi is a propositional formula computing the state of xi.
The model of dynamics describes the evolution of states for all variables by

a labeled transition system 〈−→,M, SX〉, where the states are updated accord-
ing to an updating policy M ⊆ 2X , called the mode, which is a cover of X
(
⋃

m∈M m = X). Each transition relation (−→⊆ SX × M × SX) is labeled by
the set of updated variables m stipulating the modified variables during the
transition:

s
m−→ s′ def== s′ = (F↓m(s) ∪ s↓−m). (1)

The complement −m is taken with respect to X. The global transition relation is
defined as: −→=

⋃
m∈M

m−→. A path1 s −→∗ s′ characterizes a trajectory from s
to s′. In biological modelling two modes are preferentially used: the synchronous
mode where all the variables are updated during a transition (M = {X}) or
the asynchronous mode where one variable only is updated per transition (M =
{{xi}}xi∈X).

An equilibrium s is a particular state which is indefinitely reached once met
i.e., ∀s′ ∈ SX : s −→∗ s′ =⇒ s′ −→∗ s. A stable state s is a particular equilib-
rium satisfying the stability condition: stblF (s) def== F (s) = s. The picture on
the left of Fig. 1 describes a Boolean dynamics under the synchronous mode.

2.2 Boolean Control Network

A BCN Fμ is a function generating a Boolean network from an interpretation
μ ∈ SU of control parameters ui ∈ U , called a control input. It is defined as
follows:

Fμ = {xi = fi(x1, . . . , xn, u1, . . . , um} | 1 ≤ i ≤ n}.

Each application of a control input Fμ leads to a Boolean network with a par-
ticular dynamics.

The freezing control assigns a definite value to each variable. The two possi-
ble freezing outcomes, 0 or 1, are supported by two parameters with two distinct
regimes: either they freeze the variable or remain idle. By convention, inspired by

1 −→∗ is the reflexive and transitive closure of the transition relation.

24 J. Pardo et al.

the freezing temperature of water 0 ◦C, the freezing action is triggered when the
control parameter is set to 0 whereas 1 stands for the idle situation. The imple-
mentation of the freezing control on a Boolean network augments the formulas of
a Boolean network by adding the control parameter to obtain the expected con-
trol behavior. For a formula fi, the addition of the control parameters u0

i ∈ U0

and u1
i ∈ U1 for respectively freezing the variable xi to 0 or 1 leads to the

following specification:

xi = fi(x1, . . . , xn) ∧ u0
i for freezing to 0, (2)

xi = fi(x1, . . . , xn) ∨ ¬u1
i for freezing to 1. (3)

U0 and U1 control parameters can be combined to trigger the freeze to different
values (i.e., xi = fi(x1, . . . , xn) ∧ u0

i ∨ ¬u1
i). In the sequel U = U0 ∪ U1 will

represent the set of indiscriminate freezing control parameters, and ui ∈ U a
generic freezing control parameter (u0

i or u1
i). The model can be extended to

arc freezing [2,3]. Figure 1 depicts the application of a control to variable x1.
Three different dynamics respectively corresponding to the absence of control,
the freeze of variable x1 to 1 (d11 = 0), and the freeze to 0 (d01 = 0) are shown.
The dynamics changes by the application of a control and leads to different
equilibria.

The active control set of a control input, μ̇, represents the set collecting all
the activated controls: μ̇ = {u | μ(u) = 0}. Notice, that μ and μ̇ are equivalent
descriptions of the control since we can define one from the other one.

It is worth noticing that some variables are purposely uncontrolled to play
the role of observers used for freely reporting the state evolution of a system. In
biology, these observers play the role of biomarkers. Therefore, the uncontrolled
variables are important for assessing the fate of the dynamical system. The set
of controlled variables is denoted CX and the set of uncontrolled variables is
C̄X = X \ CX . Throughout the article, the profile of uncontrolled variables is
termed “C̄X−profile”, and “CX−profile” for controlled variables.

2.3 Control Sequence Dynamics

The controlled dynamics extends the Boolean network dynamics by showing how
the system evolves through a sequence of control inputs. A sequence of control
is formally defined by a function μ : N+ → (U → B) indexing control inputs,
where μi, i ≥ 1, is the i-th control input in the sequence and μ[k] stands for the
sequence of size k starting from μ1 and ending in μk.

Controlled Dynamics Definition. Given a Boolean control network Fμ, the model
of controlled dynamics is defined as a labeled transition system including the
control inputs as labels 〈SX , SU × M,−→〉 such that a transition is defined by:

s
μi,m−−−→ s′ def== s′ = (Fμi

)↓m(s) ∪ s′↓−m, (4)

leading to the following trajectory (path) from a control sequence μ[k]:

s
μ1,m1−−−−→ . . . si

μi,mi−−−−→ si+1 . . . sk
μk,mk−−−−→ sk+1.

Sequential Reprogramming of Biological Network Fate 25

F =

⎧
⎨

⎩

x1 = (x1 ∧ ¬x2) ∨ (x1 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3)
x2 = (x1 ∧ x3) ∨ (¬x1 ∧ x2)
x3 = (x1 ∧ x3) ∨ (¬x1 ∧ ¬x2)

010

100 001

111

110

011

101000

111

100

110

001

011

101

010

000

010

001

110

011

100

101000

111

∅ u1
1 u0

1

Legend : The Boolean network F is completed by the formulas of the freezing
controls to produce the equivalent BCN. From left to right the respective controls
are: no freeze, x1 is frozen to 1, x1 is frozen to 0. The active control parameter are
mentioned below each dynamics. The dynamics is synchronous and the self loops
on states are removed. The stable states of each dynamics are coloured in 3 shades
of gray where each one is associated to a different control input.

Fig. 1. The synchronous dynamics of a Boolean control network.

For the sake of clarity we omit the mode if it is not needed for the explanation2.
For example, the sequential application of the different controls described in
Fig. 1 leads to the following trajectory in the controlled dynamics by starting at
state 000. The control inputs are represented by their active control set and the
stable states traversed by the trajectory are in bold face.

000 ∅−−→ 001
{u1

1}−−−→ 101
{u1

1}−−−→ 111
{u0

1}−−−→ 011
{u0

1}−−−→ 010. (5)

Although no paths connect 000 to 010 initially, the controlled trajectory enables
the creation of a path between these two states by the successive application of
the controls u1

1 and u0
1.

State Trace. The trace defines the sequence of visited states (si)1≤i≤k+1. For
the example of Fig. 1, the state trace of Trajectory (5) is:

(000,001, 101,111, 011,010)

Control Evolving Based on Stable-State Dynamics. The model of controlled
dynamics is said to be Control Evolving based on Stable-State dynamics
(ConEvs) if the modification of the control only occurs at a stable state of
the previous Boolean network dynamics. Hence the ConEvs dynamics fulfills the
following property:

2 Formally, we consider the relation with the same control input:
μ−→=

⋃
m∈M

μ,m−−→.

26 J. Pardo et al.

∀s1
μ[k]−−→ sk+1 : μi �= μi+1 ⇐⇒ stblFµi

(si+1),

given that si
μi−→ si+1, 1 ≤ i ≤ k. (6)

In ConEvs dynamics, changing the control is the only way to evolve the dynamics
since a stable state is reached with the current instance of the Boolean network
resulting from the application of a control input to the BCN. The trajectory
described in (5) is ConEvs.

Contracted Control Sequence. The contracted control sequence keeps only one
instance of the control input for each sub-sequence having identical control
inputs. For ConEvs dynamics, the contracted control sequence can be some-
how considered as the sequence making the dynamics evolve from stable states
to stable states, and the initial control sequence can be easily retrieved by con-
necting the encountered stable states for each Fμi

by a path and applying the
same control for this path. In the case of example (5), the contracted sequence
represented by the active controls is: (∅, {u1

1}, {u0
1}).

Classes of Sequences. The control sequences can be categorized into families
based on the evolution of the control between steps:

1. Total Control Sequence (TCS): all the controls are triggered during the first
phase for controlled variables and remain active all along the sequence, pos-
sibly changing the values to which the variables are frozen.

2. Abiding Control Sequence (ACS): once a control on a variable is triggered,
the variable stays controlled but the freezing nature may possibly vary.

3. Opened Control Sequence (OCS): no constraints on control parameters are
imposed. Therefore a control can be changed or released freely.

The sequence described in (5) is an ACS sequence and, starting with the state
001, it is a TCS sequence since only x1 is controlled. The OCS family corresponds
to the largest class of control sequences including ACS, which in its turn includes
TCS. Therefore, the following inclusions between these families hold:

TCS ⊂ ACS ⊂ OCS.

The TCS class is mainly used for proofs with no specific biological application.
The ACS class models the consequences of the disease as mutations forbidding
the relaxation of the control definitively while enabling the possibility to change
it or not according to the context of the biological process. The OCS class is
the most general class that may represent the action of the drugs on molecular
network potentially implying the modification and the relaxation of the actions.

3 Control Sequence Discovery

Finding a control sequence altering the dynamics to evolve towards an expected
state is a major challenge that can be defined as a reachability problem stated
as follows:

Sequential Reprogramming of Biological Network Fate 27

Let Sα, Sω ⊆ SX be two set of states, can we find a control sequence:

μ[k] = (μ1, . . . , μk) such that there exists a path s1
μ[k]−−→ sk+1,

with: s1 ∈ Sα and sk+1 ∈ Sω?
We refer to this problem as “Controlled Fate in Sequence” (CoFaSe) problem. For
the example (Fig. 1), the controlled variable is CX = {x1} and the uncontrolled
ones are C̄X = {x2, x3}. The set of initial states is Sα = {000} and the set of
final states is Sω = {010, 110}, corresponding to the states where x2 = 1 and
x3 = 0.

In biological modelling, the outcome of reprogramming can be formulated
as a condition on the biomarkers checking whether the system has reached an
expected signature. Therefore, by considering that the biomarkers are repre-
sented by the uncontrolled variables, Sω will be defined by a predicate p for-
malizing the expected biological property as follows: Sω = {s ∈ SX | p(s↓C̄X

)}.
Notice that achieving a given state of controlled variables is trivial and con-
sists in merely assigning their expected values by setting the appropriate control
inputs. Therefore, the main problem lies on the way to indirectly influence the
state variation of the uncontrolled variables by freezing actions on controlled
variables.

A sequence μ[k] is said minimal for the CoFaSe problem with respect to
Fu, Sα, and Sω if no control sequences ν[l] satisfying the problem have a lower
cardinality: l < k. A sequence μ[k] is said parsimonious if the number of activated
controls is minimal to achieve the expected transition si

μi−→ si+1 for each control
input μi, 1 ≤ i ≤ k. Applied to ConEvs dynamics, the problem also imposes
that the states appearing Sω should be stable. The contracted control sequence
({u1

1}, {u0
1}) of the example (Fig. 1) is minimal, parsimonious, and complies to

the ConEvs condition for Sω.

3.1 Complexity of CoFaSe

Finding a single parsimonious control is known to be NP-complete [2]. In this
section we show that the inference of a control sequence satisfying CoFaSe is
PSPACE-hard, which makes this problem even less tractable than finding single
controls (assuming that PSPACE �= NP). Since the freezing to 0 and to 1 can-
not be triggered simultaneously for a single variable, the cardinality of possible
controlled transitions from a state is 3|X| · |M |, meaning that finding the control
sequence by exhaustively exploring these spaces is not practically tractable.

The problem of reachability in Boolean networks working in synchronous
mode can actually be formalized as a CoFaSe problem. Indeed, reachability on a
Boolean network is precisely the CoFaSe problem for a Boolean control network
without controlled variables. Proof of Lemma1 shows however that this reduc-
tion is not merely an artefact specific for such degenerate BCN. We can construct
a network with a non-empty set of control variables and reduce the CoFaSe prob-
lem for this network to a reachability problem for a standard Boolean network.

28 J. Pardo et al.

Lemma 1. Deciding whether a control sequence exists for the CoFaSe problem
in the synchronous mode is at least as hard as reachability in (uncontrolled)
Boolean networks in synchronous mode.

The reachability hardness of CoFaSe is based on the result stating the
PSPACE-completeness of reachability in 1-safe Petri nets [6], applied to Boolean
networks with the asynchronous mode. In the appendix of this paper, we pro-
vide an extension of this result to the synchronous mode. As far as we know,
no characterization of complexity of reachability in Boolean networks working
in the synchronous mode has been established in the literature before.

Theorem 1. Given a Boolean network F with the variables X, a set of starting
states Sα ⊆ SX , and the set of target states Sω ⊆ SX \ Sα, it is PSPACE-
complete to decide whether F can reach any of the states in Sω from one of the
states in Sα.

This theorem, combined with Lemma 1, gives the following lower bound on the
complexity of CoFaSe.

Theorem 2. Deciding the existence of a control sequence for the CoFaSe prob-
lem in the synchronous mode is PSPACE-hard.

Whether CoFaSe is in PSPACE remains an open question. Two levels of com-
plexity can be considered in CoFaSe: reachability and control discovery, indicat-
ing that the upper bound on the complexity of this problem may be high.

3.2 Bounds on Sequence Size

The properties related to the equivalences of classes of sequences enable us to
define an upper bound on the length of the minimal control sequence providing
relevant insights for the resolution of the CoFaSe problem.

Proposition 1 states the observational equivalence between OCS and TCS
classes, namely, that any OCS control sequence can be simulated by a TCS
sequence having the same state trace.

Proposition 1. For any control sequence μ[k] there exists a total control
sequence of the same size ν[k] ∈ TCS generating the same state trace by using
the synchronous mode.

As a TCS sequence is an ACS sequence by definition, we can conclude from
Proposition 1 that all the OCS sequences solving a given CoFaSe problem can
be simulated with ACS/TCS sequences, and conversely, since OCS includes ACS
which in turn includes TCS. Therefore, the three categories of sequences have
the same expressive capabilities to characterize the CoFaSe problem solutions.
Hence, the use of a particular class of sequences does not interfere with the
capability of solving the CoFaSe problem.

The necessity to find an exact solution precludes the use of approximation
heuristic. Thereby, we are looking for factors that would significantly reduce
the search space in practice. Theorem 3 defines an upper bound of the size of
minimal sequence that only depends on the number of uncontrolled variables.

Sequential Reprogramming of Biological Network Fate 29

Theorem 3. The size of the minimal control sequence μ[k] solving CoFaSe prob-
lem is bounded by 2|C̄X | (

∣
∣μ[k]

∣
∣ ≤ 2|C̄X |) for the synchronous mode.

Theorem 3 shows the critical role of the uncontrolled variables for the defi-
nition of the control sequence. In practice, the number of uncontrolled variables
standing for biomarkers is still very low compared to the controlled variables
that represent the other molecules of a network [2,4,5]. Moreover by the defini-
tion of the CoFaSe problem, the evolution of the uncontrolled variables guides
the discovery of the control since the objective is to reach an expected final state
characterized by a property defined on the uncontrolled variables. Thus, the
algorithm will be based on the exploration of the states of uncontrolled variables
to incrementally construct a control sequence.

3.3 Bounds on Sequence Size for ConEvs Dynamics

Finding a minimal parsimonious contracted OCS solving the CoFaSe problem
under the ConEvs dynamics appears relevant for biological applications. Indeed,
this framework models either the different mutational steps where a mutation
rewires the network reaching another fate as it is the case for the Vogelstein
sequence [9], or a therapeutic regimen where the drug administering depends on
the therapeutic evaluation modelled by a stable state assessment [11].

In fact, determining an upper bound on the size of such sequences provides
relevant insights to design an efficient algorithm for the control sequence infer-
ence based on the intelligent exploration of the sequence space. Theorem 3 is
proved for the case where the control is changed at any state, thus this upper
bound is not directly applicable in the ConEvs case, where the control changes
are allowed at stable states only.

A similar upper bound for ConEvs is established that allows us to design
an algorithm for solving the CoFaSe problem under the ConEvs dynamics with
a reasonable running time for biological applications with a limited number of
biomarkers (see Subsect. 3.4).

Theorem 4. The size of the minimal contracted control sequence μ[k] ∈ OCS
solving the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics under
the synchronous mode is at most 2|C̄X |+1:

∣
∣μ[k]

∣
∣ ≤ 2|C̄X |+1.

Theorem 4 implies the possibility of the occurrence of states with the same
C̄X part in the contracted trace, called duplicates. The proof of the theorem
also entails that duplicates appear in two successive states at most, except for
the first state of the trace. Intuitively, if duplicate C̄X profiles appear in non-
successive steps i and j, the whole evolution between i and j can be skipped by
applying an appropriate control input.

Corollary 1. Consider a minimal contracted control sequence μ[k] ∈ OCS solv-
ing the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics under the

30 J. Pardo et al.

synchronous mode. Take the sequence τ = (si)1≤i≤k+1 of states induced by μ[k],
with s1 ∈ Sα, sk+1 ∈ Sω, and the states si, 1 < i < k + 1, being the stable states
at which the control is changed. If there exist two indices 1 < i < j < k + 1 such
that si↓C̄X

= sj↓C̄X
, then j = i + 1.

By setting Sα = {010}, C̄X = {x1}, and Sw = {1��} as CoFaSe parameters,
the following trajectory for example Fig. 1, controlled by the minimal parsimo-
nious contracted control sequence ({u0

2}, {u1
2}), contains a duplicate, x1 = 0,

occurring in the initial state 010 and the stable state 001.

010
{u0

2}−−−→ 000
{u0

2}−−−→ 001
{u1

2}−−−→ 011
{u1

2}−−−→ 110.

3.4 Inference of Minimal Parsimonious Contracted Control
Sequences

The algorithm infers all minimal parsimonious control sequences solving the
CoFaSe problem for the ConEvs model of dynamics. Hence, the algorithm will
find a sequence of controls evolving from stable states to stable states. By con-
vention motivated by the biological application, we assume the property on the
expected final states to only concern the uncontrolled variables.

As the number of uncontrolled variables is in practice markedly lower than
the number of controlled variables (e.g., [2,4,5]), the exhaustive exploration of all
possible profiles for these variables constitutes an efficient approach for control
sequence computation. Furthermore, our algorithm is optimized to avoid redun-
dant operations. Informally the algorithm builds a tree describing the possible
paths from the initial states reaching a state of Sω, where a node corresponds
to a set of states having the same C̄X–profiles. The shortest paths/trajectories
are found in the tree, from which the minimal parsimonious control sequences
are directly derived by keeping their control inputs.

Phases of Algorithm. Algorithm 1 comprises two major phases. The first phase
(steps 1 and 2) corresponds to the search for a control allowing to directly attain
a state of Sω. The second phase (steps 3 and 4) corresponds to searching a tra-
jectory visiting the intermediary states. Moreover, at each step the parsimonious
control input is inferred with the method presented in [2,3]. A detailed version of
the algorithm is given in Appendix. The evolution of the main steps is detailed
in Fig. 2.

Data Structures. The algorithm relies on the following data structures:

1. the list Δ of partial states over C̄X induced by the candidate controlled
sequences;

2. the exploration tree G with nodes labelled by sets of stable states and edges
labelled by controls;

3. the sets Γl, Γl+1, and Γl+2 of unexplored nodes of the tree for the current
level of depth l, and the next two levels, respectively.

Sequential Reprogramming of Biological Network Fate 31

At the beginning, Δ is initialized to contain the partial states that do not
appear in Sω↓C̄X

, Γl contains the root node {Sα} of the exploration tree, and
all the other data structures are empty.

Algorithm 1. Inference of minimal parsimonious contracted control sequences
1. Direct reachability of Sω: For all γ ∈ Γl, infer the control μ taking the BCN from

γ to some of the target C̄X−profiles appearing in Sω↓C̄X
. If such a μ exists, add

the arc labelled by μ to G and go to step 6.

2. Reachability of Sω via a duplicate: For all γ ∈ Γl, infer a pair of controls (μ, μ′)
such that μ takes the BCN to some states having C̄X−profiles from γ↓C̄X

, and
μ′ takes the BCN from there to some of the target C̄X−profiles. If such a pair of
controls exists, add two chained arcs labelled by μ and μ′ to G and go to step 6.

3. Direct reachability of Δ: For every γ ∈ Γl, infer a set of controls U taking the BCN
from γ to some of the C̄X−profiles appearing in Δ. If U is non-empty, add the arcs
labelled by the controls from U to G, and store the sets of stable states they allow
to reach in Γl+1.

4. Reachability of Δ via a duplicate: For every γ ∈ Γl, infer a set of pairs of controls
D = {(μ, μ′) | μ, μ′ ∈ SU} such that μ takes the BCN to some states having
C̄X−profiles from γ↓C̄X

, and μ′ takes the BCN from there to some of the profiles
in Δ′ ⊂ Δ which we could not be directly reached at the previous step. If D is not
empty, add chained arcs labelled by the pairs of controls from D to G, and store
the sets of stable states they allow to reach in Γl+2.

5. Continue if states left: If one of Γl, Γl+1, or Γl+2 is non-empty, go to step 1.

6. Produce the result: Find the sequence of controls by backtracking G from a leaf
found in steps 1 or 2 to the root Sα. If no such leaf was found, return ∅.

Duplicated States. A specific treatment is applied to take into account the case
where a trajectory passes through duplicates with the same C̄X–profiles. Hence,
only the states of the controlled variables are modified without necessary freezing
all of them. Therefore their profile varies and must be assessed by the algorithm.

The algorithm first infers the set of parsimonious control inputs validating
the following equation where γ is the initial set of states:

∃s′ : s
μ−→∗

s′ ∧ stblFµ
(s′) ∧ s′

↓C̄X
⊆ γ↓C̄X

∧ s′ /∈ γ. (7)

From the situation formalized in (7), the new set of stable states γ′, where
the CX–profile is modified, represents the stable states of Fμ reachable from γ.
Subsequently, a parsimonious control input μ′ is inferred such that the set of
stable states Sμ′ of Fμ′ reachable from γ′ contains some elements satisfying the
property p. We prove that at most 2 successive duplicates may occur in any given
sequence, except for the initial state, in which case the number of repetitions
may reach 3 (Corollary 1).

32 J. Pardo et al.

Correctness. Algorithm 1 closely follows the proofs of Theorem 4 and of Corol-
lary 1, which guarantees the correctness, and the minimal parsimony of the
result. In other words, the sequences found by Algorithm 1 solve the CoFaSe
problem for the ConEvs model of dynamics under the synchronous mode and
they are minimal and parsimonious.

Theorem 5. Algorithm 1 returns all minimal parsimonious control sequences
μ[k] solving the CoFaSe problem for the ConEvs model of dynamics under the
synchronous mode.

Iteration 1, Sω search Iteration 1, Δ search Iteration 2, Sω search

{001}
eq (7)

Sw↓C̄X

{001}
eq (7)

000111

{{u1
1}} {∅}

{001}

{111} {001}

Sw↓C̄X

{u1
1} ∅

{{u0
1}}

Legend : Construction of the tree built by Algorithm 1 to infer the control se-
quence allowing to reach Sω = { 10} for the Boolean control network FU of Figure 1
from the set of initial states Sα = {001}. The only controlled variable is CX = {x1}
and the uncontrolled ones are C̄X = {x2, x3}.
On the left and in the middle are the two phases of the algorithm exploring for
Γl = {Sα} the reachability of Sω and of the partial states of Δ respectively. On
the right is the first phase of the second iteration for Γl = {{111}, {001}} and
the final step of the algorithm where it finds the sequential control {{u1

1}, {u0
1}}

reaching Sω.
Green edges represent the reachability of the target property (corresponding to Sω)
and are annotated by sets of inferred parsimonious controls. Red edges correspond
to a failure of the algorithm for finding a control inputs leading to the target profile.
A black edge is a branch of the tree G connecting the previous initial state to the
new set of initial states created by the application of the annotated control to FU .

Fig. 2. Iterations of Algorithm 1 on the Boolean network of Fig. 1.

Example. Figure 2 shows the evolution of the control sequence computation. At
the beginning, we have: Γl = {Sα}, Γl+1 = ∅, Γl+2 = ∅, and Δ = {11, 01, 00}. On
the left, we seek to reach a state from Sω. Sω↓C̄X

being not reachable from Sα

in one shot, we search for the existence of a possible trajectory via a duplicate.
Since no states validate (7), we know that such a trajectory does not exist.

As no sequences were found, we arrive at the second phase. Here, all states
of Δ will be used as the new targets. In the middle, we see that 11 ∈ Δ is
reachable from sα with the control {u1

1} and 01 ∈ Δ is reachable from sα with
the control ∅, but 00 ∈ Δ is not reachable. We add to Γl+1 the stable states γ′

Sequential Reprogramming of Biological Network Fate 33

of F{u1
1} validating the search state 11 ∈ Δ and γ′′ of F∅ validating the search

state 01 ∈ Δ, and update Δ by deleting 11. After creating the new edges of the

tree, sα
{u1

1}−−−→ γ′ and sα
∅−→ γ′′, we test for new trajectories which would attain

a state of Δ via a duplicate. Since no states validate (7), we know that such a
trajectory does not exist.

On the right, after updating all variables, we start the second iteration of
the loop with Γl = {{111}, {001}}, Γl+1 = ∅, Γl+2 = ∅, and Δ = {00, 01}. We
observe that Sω↓C̄X

is reachable from the initial state {111} by the control {u0
1}.

After creating the new edge, the algorithm breaks the loop and returns the found
sequence {{u1

1}, {u0
1}} by backtracking the resulting tree.

Parsimony and Optimality. Minimality is proved by considering the parsimony
condition for the control inputs at each step. However, it is worth noticing that
it may be possible to find shorter control sequences by relaxing the parsimony
constraint. Let us consider the following Boolean network:

F =

⎧
⎪⎪⎨

⎪⎪⎩

x1 = x1 ∨ (x2 ∧ x3 ∧ ¬x4)
x2 = (¬x1 ∧ x2) ∨ (¬x1 ∧ x4) ∨ (x2 ∧ ¬x3) ∨ (x2 ∧ x4)
x3 = (x1 ∧ x3) ∨ (¬x2 ∧ x3) ∨ (x3 ∧ x4)
x4 = x4

,

with C̄X = {x1, x2}, CX = {x3, x4}, Sα = {0000}, and Sω = {11��} as CoFaSe
parameters. The minimal parsimonious control sequence of size 3 inferred by
Algorithm 1 is μ = {{u1

4}, {u1
3}, {u0

4}}. However, the following sequence of size
2: ν = {{u1

3, u
1
4}, {u0

4}} also converges to the same final state 1100. Their trajec-
tories are respectively:

Tμ = 0000
{u1

4}−−−→ 0001
{u1

4}−−−→ 0101
{u1

3}−−−→ 0111
{u0

4}−−−→ 0110
{u0

4}−−−→ 1100.

Tν = 0000
{u1

3,u1
4}−−−−−→ 0011

{u1
3,u1

4}−−−−−→ 0111
{u0

4}−−−→ 0110
{u0

4}−−−→ 1100.

As the parsimony condition is related to the target property on C̄X–profiles,
Algorithm 1 infers a minimal control sequence passing through some intermedi-
ary stable states since C̄X–profiles 11 (Sω) cannot be directly attained. Let us
consider {x1 = 0, x2 = 1} as the intermediary C̄X−profile to reach. The stable
state 0101 is then first reached by the single parsimonious freezing of x4 to 1
before reaching stable state 0111 whereby state 1100 can be finally attained.
C̄X–profile 01 is then duplicated suggesting that the sequence does not evolve
in the C̄X–profile exploration but moves to a more appropriate stable state. By
contrast, the application of a non-parsimonious control {u1

3, u
1
4} gathering the

two first controls, directly reaches this state and reduce the size of the control
sequence (ν) to 2. As the variations between these states occur for the controlled
variables only (x3), the sequence is here shortened by gathering the controls
between duplicated C̄X–profiles.

34 J. Pardo et al.

4 Conclusion

In this article, we study the sequential control applied to Boolean networks. We
propose a theoretical framework aiming at discovering minimal control sequences
evolving from stable states to stable states (ConEvs model of dynamics) for par-
simonious control actions at each step. Algorithm 1 infers the minimal parsi-
monious control sequence and runs in time which is exponential in the number
of C̄X -variables (O(2|C̄X |)). The inference of control sequences can be used in
precision medicine for the causal analysis of such complex diseases as cancer [9],
stressing the evolution of the tumorigenesis from benign to malignant tumoral
states. The control sequence inference can also be used to determine efficacious
order of drug administering for chemotherapy [11].

Moreover, our analysis emphasizes non-obvious complex features of the
sequence, such as the occurrence of duplicates where only the controlled variables
evolve without changing the states of uncontrolled variables. Such occurrences
are interpreted as the need to evolve to different stable states with the same
profiles for uncontrolled variables, but which could not be reached previously.

The perspective is twofold: applying the method to biological cases for inves-
tigating complex treatment schemes, more specifically for cancer, and investigat-
ing an algorithm guaranteeing the minimality in a broader context by notably
relaxing the parsimony requirement and by considering other modes as the asyn-
chronous one. The synchronous mode enables an efficient computation of the
reachability condition in practice by a symbolic composition since the transi-
tion is a function. For the asynchronous mode we need to tackle the fact that
the transition becomes a relation inducing non-determinism that should not be
exhaustively explored for ensuring the efficiency of the algorithm.

Appendix

Proofs

Proof (Lemma 1). Take an n-variable Boolean network F and construct a
Boolean control network F ′ by adding to F the single control variable x0 and
defining the update functions f ′

i of F ′ in terms of the update functions fi of F
in the following way:

f ′
i = fi ∧ x0, 1 ≤ i ≤ n,

f ′
0 = 0,

where f ′
0 is the update function for x0.

Consider the controls μ1 = d10 and μ0 = d00 controlling x0 to 1 and 0 respec-
tively. The previous two properties ensure that the state graph of F ′

μ1
is that of

F , with x0 = 1 added to each state, and that the state graph F ′
μ0

only contains
transitions to the state 0, which is the state in which all variables are 0.

Let X be the set of variables of F . The set of variables of F ′ is thus X ′ =
X ∪ {x0}. Fix a set of starting states Sα ⊆ SX′ and a set of target states
Sω ⊆ SX′\(Sα∪{0}), such that the states in both sets satisfy x0 = 1. The CoFaSe

Sequential Reprogramming of Biological Network Fate 35

problem for the tuple (F ′, Sα, Sω) has a solution if and only if the states in Sω↓X

are reachable from Sα↓X in F . Indeed, by construction of F ′ and since 0 /∈ Sω, the
control sequence for this instance of CoFaSe may only be the singleton control
sequence consisting of μ1, and it must ensure the reachability of Sω from Sα

in Fμ1 , whose state graph is trivially isomorphic to that of F . Therefore, an
oracle for CoFaSe would allow to solve reachability in Boolean networks working
in the synchronous mode with at most polynomial overhead, which proves the
statement of the lemma. ��
Lemma 2. Given a Boolean network F with the variables X, a set of starting
states Sα ⊆ SX , the set of target states Sω ⊆ SX \ Sα, it is PSPACE-hard to
decide whether F can reach any of the states in Sω from a state in Sα.

Proof. The proof idea is to polynomial-time reduce the acceptance problem of a
deterministic linear bounded automaton (a DLBA) to reachability for Boolean
networks working in asynchronous mode. An LBA is a Turing machine which is
only allowed to use at most f(n) contiguous tape cells, where n is the size of
the input and f is a linear function. Deciding whether a DLBA accepts a given
input string is a PSPACE-complete problem (e.g., [10]).

Take a DLBA M and construct the Boolean network F simulating M in
the following way. Define the Boolean variables Ai,j and Qi,k, where i indexes
the tape cells of M , j indexes the symbols in the tape alphabet of M , and k
indexes the states of M . The situation in which the i-th tape cell contains the
j-th symbol is represented by setting Ai,j to 1. The situation in which M is in
the k-th state and the head is on the i-th tape cell is represented by setting Qi,k

to 1. F operates by stepwise simulating the evolution of M : rewriting the j1-th
symbol to the j2-th symbol in the i-th tape cell is done by setting Ai,j1 to 0 and
Ai,j0 to 1, while moving the head from cell i1 to i2 and changing the state from
k1 to k2 is simulated by setting Qi1,k1 to 0 and Qi2,k2 to 1. The synchronous
dynamics of F can therefore faithfully simulate M , because M is deterministic.

For any input word w, the DLBA M reaches a configuration in the set of
accepting configurations CA if and only F can reach the encoding of one of
the configurations CA from the encoding of the initial configuration of M . The
statement of the lemma follows from the facts that the procedure of constructing
F from M is polynomial and that acceptance for DLBA is PSPACE-complete.

��
Lemma 3. Given a Boolean network F with the variables X, a set of starting
states Sα ⊆ SX , the set of target states Sω ⊆ SX \Sα, it is in PSPACE to decide
whether F can reach any of the states in Sω from one of the states in Sα.

Proof. The proof idea is to construct a DLBA M which accepts the input if and
only if the Boolean network F can reach a state in Sω from a state in Sα. The
initial configuration of M consists of the following three segments:

1. the list of binary vectors representing the states in Sα, each vector written in
two copies;

36 J. Pardo et al.

2. the list of binary vectors representing the states in Sω, each vector written in
one copy;

3. an |X|-bit binary counter initialised to 0, where |X| is the number of binary
variables of F .

In the remainder of the proof we implicitly assume that the states of F are
represented as Boolean vectors.

Consider a state s ∈ Sα. The initial configuration of M contains a sub-
string ss. M starts by simulating the transitions of F on one copy of s and
replacing the other copy by the new state s′ = F (s), thereby yielding the new
substring ss′. The subsequent operation of M is divided into macrosteps, during
which it carries out the following actions:

1. calculate the new state for each pair of states in segment (1);
2. compare each new state with the states written in segment (2); if one of these

comparisons is successful, M accepts, otherwise its continues to the following
substep;

3. check if all the bits of the binary counter in segment (3) are 1; if yes, reject,
otherwise, commence the next macrostep.

Intuitively, M simulates the deterministic synchronous dynamics of F on
every state in segment (1), accepts if it sees a target state from Sω, or rejects
after 2|X| steps. Counting to 2|X| = |SX | ensures that the entire state graph of
F reachable from Sα is visited. Therefore, M accepts if and only if F can reach
at least one state in Sω from at least one state in Sα. Constructing M from
the triple (F, Sα, Sω) is a polynomial-time procedure, meaning that an oracle
for DLBA acceptance would allow deciding reachability for Boolean networks
working in the synchronous mode with polynomial overhead. This proves the
statement of the theorem. ��
Proof (Proposition 1). Take a control sequence μ[k] and an initial state. For a
transition si

μi−→ si+1, 1 ≤ i ≤ k, two cases may occur for the control parameters
of the controlled variables, xj ∈ CX .:

1. If one of the two control parameters u0
j , u

1
j is already activated then the

configuration remains the same for ν.
2. If the control parameters are both idle (u0

j = 1, u1
j = 1) then we directly fix

the expected final state value by setting the control appropriately, namely:
νi(u0

j) = 0, νi(u1
j) = 1 if si+1(xj) = 0 and,

νi(u0
j) = 1, νi(u1

j) = 0 if si+1(xj) = 1.

As the update is synchronous then all the value of the controlled variables,
xj , leads to the state si+1(xj) in a controlled way. For uncontrolled variables
xj ∈ C̄X , we have: (fν)j = (fμ)j since no modifications occur, then the update
is the same.

Since transition only depends on the previous state that can be obtained by
application of a TCS control input νi, we can define a TCS control input for each
step finally leading to a total controlled sequence ν[k] simulating the trajectory
controlled by μ[k] from a s1. ��

Sequential Reprogramming of Biological Network Fate 37

Proof (Theorem 3). Assume that μ[k] is a minimal sequence solving CoFaSe
problem with regards to Fu, Sα, Sω and consider the total control sequence ν[k]
simulating μ[k] from s1 (Proposition 1). As μ[k] is minimal by assumption then
ν[k] is also minimal, yielding the following path: s1

ν1−→ s2 . . . sk
νk−→ sk+1, with

s1 ∈ Sα and sk+1 ∈ Sω.
Now, assume that k > 2|C̄X |, and consider the projection of the state trace

onto C̄X : T = (si↓C̄X
)1≤i≤k+1. As there exists k + 1 states, we deduce that

|T | > 2|C̄X |. Hence the cardinality of T exceeds the cardinality of the set of states
of C̄X , SC̄X

, thus leading to the existence of two states in the trace si, sj , 1 <
i < j ≤ k+1 such that si↓C̄X

= sj↓C̄X
. Based on this conclusion, we can observe

that it is possible to skip all the controls in between step i−1 to step j −1, thus
leading to the following trajectory:

s1
ν1−→ s2 . . . si−1

νj−1−−−→ s′
i

νj−→ s′
i+1

νj+1−−−→ s′
i+2 . . . s′

k
νk−→ s′

k+1.

As the variables in CX are fully controlled with the TCS sequence ν, we
deduce that the application of νj−1 at state si−1 with respect to the synchronous
mode gives rise to the same state than its application at state sj−1 for these
variables. Hence, we have the following equivalence:

sj↓CX
= s′

i↓CX
.

Since no control variations affect the uncontrolled variable by definition, we
deduce that: si↓C̄X

= s′
i↓C̄X

. Moreover, by hypothesis on i, j we know that
sj↓C̄X

= si↓C̄X
, thus leading to the following equivalence by approximating the

two former equalities:

sj↓C̄X
= s′

i↓C̄X
.

Hence, from these equalities, we deduce that s′
i = sj because the state of con-

trolled and uncontrolled variables is the same for s′
i, sj . From s′

i the sequence we
conclude that sk+1 will be finally reached as this was done from sj for ν (resp. μ).
The control sequence we have constructed then validates CoFaSe problem since
it reaches sk+1 and sk+1↓C̄X

∈ Sω↓C̄X
by hypothesis. The size of this sequence

is k − (j − i) < k, meaning that ν[k] (resp. μ[k]) is not minimal, that contradicts
the original assumption and proving the statement of the theorem. ��
Lemma 4. Consider a control sequence μ[k] ∈ OCS solving the CoFaSe problem
(F, Sα, Sω) for the ConEvs model of dynamics under the synchronous mode. Take
the trajectory induced by μ[k]: T = s1

μ1−→∗
s2 . . . sk

μk−−→∗
sk+1, where s1 ∈ Sα,

sk+1 ∈ Sω, and the states si, 1 < i < k + 1, are the stable states at which
the control is changed. Denote by s′

i the states immediately following si in T :
si

μi−→ s′
i. The following statement holds:

si↓C̄X
= s′

i↓C̄X
, 1 < i < k + 1.

38 J. Pardo et al.

Proof. Suppose for the sake of contradiction that there exists such an index i,
1 < i < k + 1, for which si↓C̄X

�= s′
i↓C̄X

. Since the controls do not affect the
variables in C̄X , the evolution of these variables between si and s′

i does not
depend on the control applied at si. But then si cannot be stable, because the
partial state of uncontrolled variables evolves from si↓C̄X

to s′
i↓C̄X

, whatever
the control applied at step i. It must be therefore that si↓C̄X

= s′
i↓C̄X

for all
1 < i < k + 1, which proves the lemma. ��

Notice that the previous lemma does not consider the very first pair of states
s1

μ1−→ s′
1. Indeed, since we do not require the initial states to be stable, we may

have: s1↓C̄X
�= s′

1↓C̄X
.

Proof (Theorem 4). Consider the CoFaSe problem (Fu, Sα, Sω) and assume that
μ[k] ∈ OCS is a minimal contracted control sequence solving it for the ConEvs

model of dynamics. This control sequence gives rise to the trajectory T = s1
μ1−→∗

s2 . . . sk
μk−−→∗

sk+1, with s1 ∈ Sα, sk+1 ∈ Sω, and the states si, 1 < i < k + 1,
being the stable states at which the control is changed. We will use the symbol
τ to refer to the sequence of stable states, plus the initial and the final states:
τ = (si)1≤i≤k+1.

Now assume that k > 2|C̄X |+1 and consider the sequence of partial states over
C̄X : τ↓C̄X

=
(
si↓C̄X

)
1≤i≤k+1

. Since k is greater than the double of the number
of all states over C̄X , it must be that τ↓C̄X

contains an element appearing three
times at different positions. Suppose that these three positions are 1 ≤ h < i <
j ≤ k+1, i.e., sh↓C̄X

= si↓C̄X
= sj↓C̄X

. Note that, at least two different controls
must appear between the states sh and sj because there is at least the stable
state si in between the two.

In what follows, we will distinguish two cases based on whether sh is the first
state in the trajectory.

Case h > 1: Suppose that, instead of applying μh at sh, we apply the total con-

trol μ̂j−1 which sets the values of the controlled variables to sj↓CX
: sh

μ̂j−1−−−→ ŝj .
By construction, ŝj↓CX

= sj↓CX
. Furthermore, according to Lemma 4, ŝj↓C̄X

=
sh↓C̄X

= sj↓C̄X
. But then ŝj = sj , meaning that we can replace the controls

between sh and sj (at least two controls) by a single control μ̂j−1, and get
a shorter control sequence which still solves the same CoFaSe problem under
ConEvs. This contradicts our initial assumption that μ[k] is minimal.

Case h = 1: If the state s′
h immediately following sh in T (sh

μh−−→ s′
h) has the

same values for uncontrolled variables as sh, sh↓C̄X
= s′

h↓C̄X
, we may apply the

same contraction as in the case h > 1.
Suppose now that sh↓C̄X

�= s′
h↓C̄X

. In this case we cannot directly jump
from sh to sj , because the uncontrolled variables evolve. Nevertheless, one of
the following will hold:

1. There is another element s↓C̄X
�= sh↓C̄X

appearing three times in τ , and we
can then apply the contraction from the case h > 1 to its repetitions.

Sequential Reprogramming of Biological Network Fate 39

Algorithm 2. Inference of minimal parsimonious contracted control sequences
1. For all γ ∈ Γl do :

(a) Infer a parsimonious control parameter μ such that the set of stable states Sμ

of Fμ, reachable from the set of states γ, has the property Sω↓C̄X
∩Sμ↓C̄X

�= ∅.
(b) If such a μ exists, a sequence of control is found, add to G the new arc γ

μ−→ γ′,
where γ′ ⊆ Sμ are the stable states of Fμ reachable from γ satisfying γ′

↓C̄X
⊆

Sω↓C̄X
. Go to 8.

Otherwise continue.
2. The states of Sω not being attainable from Γl in one shot, we must test the existence

of successive duplicate.
For all γ ∈ Γl do :
(a) Infer a parsimonious pair of control parameter (μ, μ′) such that the set of

stable states Sμ of Fμ, reachable from the set of states γ, has the property
γ↓C̄X

∩ Sμ↓C̄X
�= ∅ and the set of stable states Sμ′ of Fμ′ , reachable from the

set of states γ′, has the property Sω↓C̄X
∩ Sμ′ ↓C̄X

�= ∅, where γ′ ⊆ Sμ are the

stable states of Fμ reachable from γ satisfying γ′
↓C̄X

⊆ γ↓C̄X
.

(b) If such a pair exists, a sequence of control is found, add to G the new arc

γ
μ−→ γ′ μ′

−→ γ′′, where γ′′ ⊆ Sμ′ are the stable states of Fμ′ reachable from γ′

satisfying γ′′
↓C̄X

⊆ Sω↓C̄X
. Go to 8.

Otherwise continue.
3. The states of Sω not being attainable from Γl, we must explore the states of Δ.

For all γ ∈ Γl do : For all δ ∈ Δ do :

(a) Infer the list of parsimonious control parameters U such that, for every μ ∈ U ,
the set of stable states Sμ of Fμ which can be reached from γ has the property
δ ∈ Sμ↓C̄X

.

(b) If a control validating the property exists (U �= ∅), for each μ ∈ U , add γ′ to
Γl+1 and create a new arc γ

μ−→ γ′ to G, where γ′ ⊆ Sμ are the stable states
of Fμ reachable from γ satisfying γ′

↓C̄X
⊆ δ.

4. For every γ ∈ Γl+1, if γ↓C̄X
⊆ Δ, delete γ↓C̄X

from Δ .
5. For all δ ∈ Δ not being attainable from Γl, we must test the existence of a successive

duplicates.
For all γ ∈ Γl do : For all δ ∈ Δ do :

(a) Infer the list of parsimonious pair of control parameters D such that, for every
(μ, μ′) ∈ D, the set of stable states Sμ of Fμ, which can be reached from γ,
has the property γ↓C̄X

∩ Sμ↓C̄X
�= ∅ and the set of stable states Sμ′ of Fμ′ ,

reachable from the set of states γ′, has the property δ ∈ Sμ′ ↓C̄X
, where γ′ ⊆ Sμ

are the stable states of Fμ reachable from γ satisfying γ′
↓C̄X

⊆ γ↓C̄X
.

(b) If a control validating the property exists (D �= ∅), for each (μ, μ′) ∈ D, add

γ′′ to Γl+2 and create a new arc γ
μ−→ γ′ μ′

−→ γ′′ to G, where γ′′ ⊆ Sμ′ are the
stable states of Fμ′ reachable from γ′ satisfying γ′′

↓C̄X
⊆ δ.

6. Prepares the next exploration layer. Γl = Γl+1, Γl+1 = Γl+2 and Γl+2 = {}.
7. If the lists of unexplored nodes Γl,Γl+1 and Γl+2 are not empty go to 1.
8. Find the sequence of control by backtracking G, the created tree, from a leaf γ′

found in 1b or 2b to the root Sα. If this leaf does not exists, then return ∅.

40 J. Pardo et al.

2. The only element appearing three times in τ is sh↓C̄X
. But then, since |τ | >

2|C̄X |+1, all partial states from SC̄X
\{sh↓C̄X

} must appear exactly two times
in τ . In particular, there exist two indices 1 < i′ < j′ < k + 1 such that
s′

h↓C̄X
= si′ ↓C̄X

= sj′ ↓C̄X
. If we now set the values of the controlled variables

to sj′↓CX
by applying the total control μ̂j′−1 at sh, we will end up in the

state sj′ , contracting the sequence μ[k] just like in the case h > 1. ��
It follows from this discussion that any control sequence solving the CoFaSe

problem for the ConEvs model of dynamics and having more than 2|C̄X |+1 ele-
ments is not minimal, that proves the statement of the theorem. ��
Proof (Corollary 1). It follows from the proof of Theorem 4 that, whenever
j > i + 1, we can use the control μ̂j−1 to force the values of all controllable
variables of si to sj↓CX

and thus reach sj from si in one step. ��

Proof (Theorem 5). The compliance of μ[k] with the ConEvs model of dynamics
and its minimal parsimony are guaranteed by the use of the parsimonious one-
shot inference algorithm from [2,3]. This algorithm yields parsimonious controls
allowing to reach stable states satisfying certain properties. The fact that μ[k]

solves the given CoFaSe problem follows from the end condition in step 6. ��

Complete Inference Algorithm
We give here the complete version of the algorithm presented in Sect. 3.4. First
off, we provide a detailed presentation of the data structures used by the algo-
rithm together with the values to which they are initialised.

1. Δ := SX↓C̄X
\Sω↓C̄X

is a list of potential intermediate partial states, between
Sω and Sα, in the contracted controlled sequence.

2. G := ∅ is the list of edges of the exploration tree constructed by the algorithm.
Each node of this tree is labeled by set of stable states Si ∈ SX .

3. Γl := {Sα} is a set of unexplored nodes of the tree at the depth l and is
initialize with the root node Sα for the depth 0. With Γl+1 := {} and Γl+2 :=
{} being sets of unexplored nodes of the tree respectively at the depth l + 1
and the depth l + 2.

References

1. Barabási, A.-L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based
approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)

2. Biane, C., Delaplace, F.: Abduction based drug target discovery using Boolean
control network. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545,
pp. 57–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 4

3. Biane, C., Delaplace, F.: Causal reasoning on Boolean control networks based on
abduction: theory and application to cancer drug discovery. IEEE/ACM Trans.
Comput. Biol. Bioinf. (2018). (Epub ahead of print)

https://doi.org/10.1007/978-3-319-67471-1_4

Sequential Reprogramming of Biological Network Fate 41

4. Burga, L.N., et al.: Loss of BRCA1 leads to an increase in epidermal growth fac-
tor receptor expression in mammary epithelial cells, and epidermal growth factor
receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant
mice. Breast Cancer Res. 13(2), R30 (2011)

5. Chau, C.H., Rixe, O., McLeod, H., Figg, W.D.: Validation of analytic methods for
biomarkers used in drug development. Clin. Cancer Res. 14(19), 5967–5976 (2008)

6. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoret.
Comput. Sci. 147(1), 117–136 (1995)

7. Creixell, P., et al.: Kinome-wide decoding of network-attacking mutations rewiring
cancer signaling. Cell 163(1), 202–217 (2015)

8. Csermely, P., Korcsmàros, T., Kiss, H.J.M., London, G., Nussinov, R.: Structure
and dynamics of molecular networks: a novel paradigm of drug discovery: a com-
prehensive review. Pharmacol. Ther. 138(3), 333–408 (2013)

9. Fearon, E.R., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell
61(5), 759–767 (1990)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

11. Lee, M., et al.: Sequential application of anti-cancer drugs enhances cell death by
re-wiring apoptotic signaling networks. Cell 149, 780–794 (2012)

12. Lin, P.-C.K., Khatri, S.P.: Application of Max-SAT-based ATPG to optimal cancer
therapy design. BMC Genom. 13 Suppl 6(Suppl. 6), S5 (2012)

13. Mandon, H., Haar, S., Paulevé, L.: Temporal reprogramming of Boolean net-
works. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 179–195.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 11

14. Mandon, H., Su, C., Pang, J., Paul, S., Haar, S., Paulevé, L.: Algorithms for the
sequential reprogramming of Boolean networks. IEEE/ACM Trans. Comput. Biol.
Bioinf. (2019 to appear)

15. Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Laubenbacher, R.: Identification of
control targets in Boolean molecular network models via computational algebra.
BMC Syst. Biol. 10(1), 94 (2016)

16. Sahni, N., et al.: Edgotype: a fundamental link between genotype and phenotype.
Curr. Opin. Genet. Dev. 23(6), 649–657 (2013)

17. Strimbu, K., Tavel, J.A.: What are Biomarkers? Curr. Opin. HIV AIDS 5(6), 463–
466 (2011)

18. Vogel, G.: Reprogramming cells. Science 322(5909), 1766–1767 (2008)
19. Zanudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular

network dynamics. PLoS Comput. Biol. 11(4), e1004193 (2015)
20. Zhong, Q., et al.: Edgetic perturbation models of human inherited disorders. Mol.

Syst. Biol. 5(321), 321 (2009)

https://doi.org/10.1007/978-3-319-67471-1_11

Control Variates for Stochastic Simulation
of Chemical Reaction Networks

Michael Backenköhler1(B), Luca Bortolussi1,2, and Verena Wolf1

1 Saarland University, Saarbrücken, Germany
michael.backenkoehler@uni-saarland.de

2 University of Trieste, Trieste, Italy

Abstract. Stochastic simulation is a widely used method for estimat-
ing quantities in models of chemical reaction networks where uncertainty
plays a crucial role. However, reducing the statistical uncertainty of the
corresponding estimators requires the generation of a large number of
simulation runs, which is computationally expensive. To reduce the num-
ber of necessary runs, we propose a variance reduction technique based
on control variates. We exploit constraints on the statistical moments of
the stochastic process to reduce the estimators’ variances. We develop an
algorithm that selects appropriate control variates in an on-line fashion
and demonstrate the efficiency of our approach on several case studies.

Keywords: Chemical reaction network · Chemical master equation ·
Stochastic simulation algorithm · Moment equations ·
Control variates · Variance reduction

1 Introduction

Chemical reaction networks that are used to describe cellular processes are often
subject to inherent stochasticity. The dynamics of gene expression, for instance,
is influenced by single random events (e.g. transcription factor binding) and
hence, models that take this randomness into account must monitor discrete
molecular counts and reaction events that change these counts. Discrete-state
continuous-time Markov chains have successfully been used to describe networks
of chemical reactions over time that correspond to the basic events of such pro-
cesses. The time-evolution of the corresponding probability distribution is given
by the chemical master equation, whose numerical solution is extremely chal-
lenging because of the enormous size of the underlying state-space.

Analysis approaches based on sampling, such as the Stochastic Simulation
Algorithm (SSA) [18], can be applied independent of the size of the model’s
state-space. However, statistical approaches are costly since a large number of
simulation runs is necessary to reduce the statistical inaccuracy of estimators.
This problem is particularly severe if reactions occur on multiple time scales
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-31304-3 3) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 42–59, 2019.
https://doi.org/10.1007/978-3-030-31304-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_3
https://doi.org/10.1007/978-3-030-31304-3_3
https://doi.org/10.1007/978-3-030-31304-3_3

Control Variates for Stochastic Simulation of Chemical Reaction Networks 43

or if the event of interest is rare. A particularly popular technique to speed
up simulations is τ -leaping which applies multiple reactions in one step of the
simulation. However, such multi-step simulations rely on certain assumptions
about the number of reactions in a certain time interval. These assumptions
are typically only approximately fulfilled and therefore introduce approximation
errors on top of the statistical uncertainty of the considered point estimators.

Moment-based techniques offer a fast approximation of the statistical
moments of the model. The exact moment dynamics can be expressed as an
infinite-dimensional system of ODEs, which cannot be directly integrated for a
transient analysis. Hence, ad-hoc approximations need to be introduced, express-
ing higher order moments as functions of lower-order ones [1,13]. However,
moment-based approaches rely on assumptions about the dynamics that are
often not even approximately fulfilled and may lead to high approximation errors.
Recently, equations expressing the moment dynamics have also been used as con-
straints for parameter estimation [5] and for computing moment bounds using
semi-definite programming [12,15].

In this work, we propose a combination of such moment constraints with the
SSA approach. Specifically, we interpret these constraints as random variables
that are correlated with the estimators of interest usually given as functions of
chemical population variables. These constraints can be used as (linear) control
variates in order to improve the final estimate and reduce its variance [23,34].
The method is easy on an intuitive level: If a control variate is positively cor-
related with the function to be estimated then we can use the estimate of the
variate to adjust the target estimate.

The incorporation of control variates into the SSA introduces additional sim-
ulation costs for the calculation of the constraint values. These values are inte-
grals over time, which we accumulate based on the piece-wise constant trajecto-
ries. This introduces a trade-off between the variance reduction that is achieved
by using control variates versus the increased simulation cost. This trade-off is
expressed as the product of the variance reduction ratio and the cost increase
ratio.

For a good trade-off, it is crucial to find an appropriate set of control variates.
Here we propose a class of constraints which is parameterized by a moment vector
and a weighting parameter, resulting in infinitely many choices. We present an
algorithm that samples from the set of all constraints and proceeds to remove
constraints that are either only weakly correlated with the target function or are
redundant in combination with other constraints.

In a case study, we explore different variants of this algorithm both in terms
of generating the initial constraint set and of removing weak or redundant con-
straints. We find that the algorithm’s efficiency is superior to a standard esti-
mation procedure using stochastic simulation alone in almost all cases.

Although in this work we focus on estimating first order moments at fixed
time points, the proposed approach can in principle deal with any property that
can be expressed in terms of expected values such as probabilities of complex
path properties. Another advantage of our technique is that an increased effi-

44 M. Backenköhler et al.

ciency is achieved without the price of an additional approximation error as it is
the case for methods based on moment approximations or multi-step simulations.

This paper is structured as follows. In Sect. 2 we give a brief survey of meth-
ods and tools related to efficient stochastic simulation and moment techniques.
In Sect. 3 we introduce the common stochastic semantics of chemical reaction
networks. From these semantics we show in Sect. 4 how to derive constraints
on the moments of the transient distribution. The variance reduction technique
of control variates is described in Sect. 5. We show the design of an algorithm
using moment constraints to reduce sample variance in Sect. 6. The efficiency
and other characteristics of this algorithm are evaluated on four non-trivial case
studies in Sect. 7. Finally, we discuss the findings and give possibilities for further
work in Sect. 8.

2 Related Work

Much research has been directed at the efficient analysis of stochastic chemical
reaction networks. Usually research focuses on improving efficiency by making
certain approximations.

If the state-space is finite and small enough one can deal with the underlying
Markov chain directly. But there are also cases where the transient distribution
has an infinitely large support and one can still deal with explicit state proba-
bilities. To this end, one can fix a finite state-space, that should contain most
of the probability [27]. Refinements of the method work dynamically and adjust
the state-space according to the transient distributions [3,20,26].

On the other end of the spectrum there are mean-field approximations, which
model the mean densities faithfully in the system size limit [6]. In between there
are techniques such as moment closure [32], that not only consider the mean, but
also the variance and other higher order moments. These methods depend on
ad-hoc approximations of higher order moments to close the ODE system given
by the moment equations. Yet another class of methods approximate molecular
counts continuously and approximate the dynamics in such a continuous space,
e.g. the system size expansion [35] and the chemical Langevin equation [16].

While the moment closure method uses ad-hoc approximations for high order
moments to facilitate numerical integration, they can be avoided in some con-
texts. For the equilibrium distribution, for example, the time-derivative of all
moments is equal to zero. This directly yields constraints that have been used for
parameter estimation at steady-state [5] and bounding moments of the equilib-
rium distribution using semi-definite programming [14,15,21]. The latter tech-
nique of bounding moments has been successfully adapted in the context of
transient analysis [12,29,30]. We adapt the constraints proposed in these works
to improve statistical estimations via stochastic simulation (cf. Sect. 4).

While the above techniques give a deterministic output, stochastic simula-
tion generates single executions of the stochastic process [18]. This necessitates
accumulating large numbers of simulation runs to estimate quantities. This adds
a significant computational burden. Consequently, some effort has been directed

Control Variates for Stochastic Simulation of Chemical Reaction Networks 45

at lowering this cost. A prominent technique is τ -leaping [17], which in one step
performs multiple instead of only a single reaction. Another approach is to find
approximations that are specific to the problem at hand, such as approximations
based on time-scale separations [7,8].

Recently, multilevel Monte Carlo methods have been applied in to time-
inhomogenous CRNs [2]. In this techniques estimates are combined using esti-
mates of different approximation levels.

The most prominent application of a variance reduction technique in the
context of stochastic reaction networks is importance sampling [22]. This tech-
nique relies on an alteration of the process and then weighting samples using the
likelihood-ratio between the original and the altered process.

3 Stochastic Chemical Kinetics

A chemical reaction network (CRN) describes the interactions between a set of
species S1, . . . , SnS

in a well-stirred reactor. Since we assume that all reactant
molecules are spatially uniformly distributed, we just keep track of the overall
amount of each molecule. Therefore the state-space is given by S ⊆ N

nS . These
interactions are expressed a set of reactions with a certain inputs and outputs,
given by the vectors v−

j and v+
j for reaction j = 1, . . . , nR, respectively. Such

reactions are denoted as
nS∑

i=1

v−
jiSi

cj−→
nS∑

i=1

v+
jiSi . (1)

The reaction rate constant cj > 0 gives us information on the propensity of the
reaction. If just a constant is given, mass-action propensities are assumed. In a
stochastic setting for some state x ∈ S these are

αj(x) = cj

nS∏

i=1

(
xi

v−
ji

)
. (2)

The system’s behavior is described by a stochastic process {Xt}t≥0. The propen-
sity function gives the infinitesimal probability of a reaction occurring, given a
state x. That is, for a small time step δt > 0

Pr(Xt+δt = x + vj | Xt = x) = αj(x)δt + o(δt) . (3)

This induces a corresponding continuous-time Markov chain (CTMC) on S with
generator matrix1

Qx,y =

{∑
j:x+vj=y αj(x) , if x �= y

−∑nR

j=1 αj(x) , otherwise.
(4)

1 Assuming a fixed enumeration of the state space.

46 M. Backenköhler et al.

Accordingly, the time-evolution of the process’ distribution, given an initial dis-
tribution π0, is given by the Kolmogorov forward equation, i.e. dπt

dt = Qπt, where
πt(x) = Pr(Xt = x). For a single state, it is commonly referred to as the chemical
master equation (CME)

d

dt
πt(x) =

nR∑

j=1

(αj(x − vj)πt(x − vj) − αj(x)πt(x)) . (5)

A direct solution of (5) is usually not possible. If the state-space with non-
negligible probability is suitably small, a state space truncation could be per-
formed. That is, (5) is integrated on a possibly time-dependent subset Ŝt ⊆ S
[20,27,33]. Instead of directly analyzing (5), one often resorts to simulating tra-
jectories. A trajectory τ = x0t1x1t1 . . . tnxn over the interval [0, T] is a sequence
of states xi and corresponding jump times ti, i = 1, . . . , n and tn = T . We can
sample trajectories of X by using stochastic simulation [18].

Consider the birth-death model below as an example.

Model 1 (Birth-death process). A single species A has a constant production
and a decay that is linear in the current amount of molecules. Therefore the model
consists of two mass-action reactions

∅
γ−→ A , A

δ−→ ∅ ,

where ∅ denotes no reactant or no product, respectively.

For Model 1 the change of probability mass in a single state x > 0 is described
by expanding (5) and

d

dt
πt(x) = γπt(x − 1) + δπt(x + 1) − (γ + δ)πt(x).

We can generate trajectories of this model by choosing either reaction, with a
probability that is proportional to its rate given the current state xi. The jump
time ti − ti+1 is determined by sampling from an exponential distribution with
rate γ + xiδ.

4 Moment Constraints

The time-evolution of E (f(Xt)) for some function f can be directly derived from
(5) by computing the sum

∑
x∈S f(x) d

dtπt(x), which yields

d

dt
E (f(Xt)) =

nR∑

j=1

E ((f(Xt + vj) − f(Xt)) αj(Xt)) . (6)

While many choices of f are possible, for this work we will restrict ourselves
to monomial functions f(x) = xm, m ∈ N

nS i.e. the non-central moments of

Control Variates for Stochastic Simulation of Chemical Reaction Networks 47

the process. The order |m| of a moment E (Xm) is the sum over the exponents,
i.e. |m| =

∑
i mi. The integration of (6) with such functions f is well-known

in the context of moment approximations of CRN models. For most models the
arising ODE system is infinitely large, because the time-derivative of low order
moments usually depends on the values of higher order moments. To close this
system, moment closures, i.e. ad-hoc approximations of higher order moments
are applied [31]. The main drawback of this kind of analysis is that it is not
known whether the chosen closure gives an accurate approximation for the case
at hand. Here, such approximations are not necessary, since we will apply the
moment dynamics in the context of stochastic sampling instead of trying to
integrate (6).

Apart from integration strategies, setting (6) to zero has been used as a con-
straint for parameter estimation at steady-state [5] and bounding moments at
steady-state [11,15,21]. The extension of the latter has recently lead to the adap-
tion of these constraints to a transient setting [12,30]. These two transient con-
straint variants are analogously derived by multiplying (6) by a time-dependent,
differentiable weighting function w(t) and integrating:

Multiplying with w(t) and integrating on [t0, T] yields [12,30]

w(T)E (f(XT)) − w(t0)E (f(Xt0)) −
∫ T

t0

dw(t)
dt

E (f(Xt)) dt

=
nR∑

j=1

∫ T

t0

w(t)E ((f(Xt + vj) − f(Xt)) αj(Xt)) dt

(7)

In the context of computing moment bounds via semi-definite programming
the choices w(t) = ts [30] and w(t) = eλ(T−t) [12] have been proposed. While
both choices proved to be effective in different case studies, relying solely on the
latter choice, i.e. w(t) = eλ(T−t) was sufficient.

By expanding the rate functions and f in (7) and substituting the exponential
weight function we can re-write (7) as

0 = E (f(XT)) − eλT
E (f(Xt0)) +

∑

k

ck

∫ T

t0

eλ(T−t)
E (Xmk

t) dt (8)

with coefficients ck and vectors mk defined accordingly. Assuming the moments
remain finite on [0, T], we can define the random variable

Z = f(XT) − eλT f(Xt0) +
∑

k

ck

∫ T

t0

eλ(T−t)Xmk
t dt (9)

with E (Z) = 0.
Note, that a realization of Z depends on the whole trajectory τ = x0t1x1t1 . . .

tnxn over [t0, T]. Thus, for the integral terms in (9) we have to compute sums

1
λ

n∑

i=1

(
eλ(T−ti+1) − eλ(T−ti)

)
xmk

i , (10)

48 M. Backenköhler et al.

over a given trajectory. This accumulation is best done during the simulation to
avoid storing the whole trajectory. Still, the cost of a simulation run increases.
For the method to be efficient, the variance reduction (Sect. 5) needs to over-
compensate for this increased cost of a simulation run.

For Model 1 the moment equation for f(x) = x becomes

d

dt
E (Xt) = γ − δE (Xt) .

The corresponding constraint (8) with λ = 0 gives

0 = E (XT) − E (X0) − γT + δ

∫ T

0

E (Xt) dt.

In this instance the constraint leads to an explicit function of the moment over
time. If X0 = 0 w.p. 1, then (8) becomes

E (XT) =
γ

δ

(
1 − e−δT

)
(11)

when choosing λ = −δ.

5 Control Variates

Now, we are interested in the estimation of some quantity E (V) by stochastic
simulation. Let V1, . . . , Vn be independent samples of V . Then the sample mean
V̂n = 1

n

∑n
i=1 Vk is an estimate of E (V). By the central limit theorem

√
nV̂n

d−→ N(E (V) , σ2
V).

Now suppose, we know of a random variable Z with 0 = E (Z). The variable Z is
called a control variate. If a control variate Z is correlated with V , we can use it
to reduce the variance of V̂n [19,28,34,36]. For example, consider we are running
a set of simulations and consider a single constraint. If the estimated value of
this constraint is larger than zero and we estimate a positive correlation between
the constraint Z and V , we would, intuitively, like to decrease our estimate V̂n

accordingly. This results in an estimation of the mean of the random variable

Yβ = V − βZ

instead of V . The variance

σ2
Yβ

= σ2
V − 2βCov(V,Z) + β2σ2

Z .

The optimal choice β can be computed by considering the minimum of σ2
Yβ

.
Then

β∗ = Cov(V,Z)/σ2
Z .

Therefore σYβ∗ = σ2
Z(1 − ρ2V Z), where ρV Z is the correlation of Z and V .

Control Variates for Stochastic Simulation of Chemical Reaction Networks 49

If we have multiple control variates, we can proceed in a similar fashion. Now,
let Z denote a vector of d control variates and let

Σ =
[

ΣZ ΣV Z

ΣZV σ2
V

]

be the covariance matrix of (Z, V). As above, we estimate the mean of Yβ =
V −β�Z . The ideal choice of β is the result of an ordinary least squares regres-
sion between V and Zi, i = 1, . . . , n. Specifically, β∗ = ΣZ

−1ΣZV . Then, asymp-
totically the variance of this estimator is [34],

σ2
Ŷβ∗ = (1 − R2

ZV)σ2
V̂

, R2
ZV = ΣZV Σ−1

Z ΣZV /σ2
V . (12)

In practice, however, β∗ is unknown and needs to be replaced by an estimate β̂.
This leads to an increase in the estimator’s variance. Under the assumption of
Z and V having a multivariate normal distribution [10,23], the variance of the
estimator is Ŷβ̂ = V̂ − β̂�Ẑ

σ2
Ŷβ̂

=
n − 2

n − 2 − d
(1 − R2

ZV)σ2
V̂

. (13)

Clearly, a control variate is “good” if it is highly correlated with V . The
constraint in (11) is an example of the extreme case. When we use this constraint
as a control variate for the estimation of the mean at some time point t, it has
a correlation of ±1 since it describes the mean at that time precisely. Therefore
the variance is reduced to zero. We thus aim to pick control variates that are
highly correlated with V .

Consider, for example, the above case of the birth-death process. If we choose
(11) as a constraint, it would always yield the exact difference of the exact mean
to the sample mean and therefore have a perfect correlation. Clearly, β̂ reduces
to 1 and Ŷ1 = E (Xt).

6 Moment-Based Variance Reduction

We propose an adaptive estimation algorithm (Algorithm1) that starts out with
an initial set of control variates and periodically removes potentially inefficient
variates. The “accumulator set” A represents the time-integral terms (10). The
size of A has the most significant impact on the overall speed of the algorithm
since it represents the only factor incurring a direct cost increase in the SSA
itself (line 5).

The algorithm consists of a main loop which performs n simulation runs
(line 4). Between each run the mean and covariance estimates of [Z, V] are
updated (line 6). Every d < n iterations, the control variates are checked for
efficiency and redundancy (lines 7–12).

Checking both conditions is based on the correlation ρij between the i-th and
j-th control variate and the correlation ρiv of a control variate i to V . The first

50 M. Backenköhler et al.

Fig. 1. (a) Different decision functions used in the redundant control variate removal.
The weaker of any two control variates is removed if the pair (ρ̄ij , ρij) belongs to the
shaded area of the considered function. The vertical dashed line indicates ρmin. (b,
c) The absolute correlation of different constraints to V arising from different choices
of λ. The blue dots represent constraints based on first order moments, while the
orange refers to control variates derived from second order moments. In both cases
10,000 samples were used with 30 initial samples for λ from N(0, 1) and kmin = 2.
A quadratic decision bound was used for the redundancy removal. Furthermore, a
histogram of control variates selected by Algorithm 1 is given. In (b) E

(
XA

2

)
in the

dimerization model was estimated. In (c) E
(
XX

50

)
in the processive modification model

was estimated. (Color figure online)

condition is a simple lower threshold ρmin for a correlation ρiv. This condition
aims to remove those variates from the control variate set that are only weakly
correlated to V (line 9). The rationale is that, if variate i has a low correlation
with the variable of interest V , its computation may not be worth the costs.
Here, we propose to set ρmin heuristically as

ρmin = min
(

0.1,
maxi ρiv

kmin

)
,

where kmin > 1 is an algorithm parameter.
The second condition aims to remove redundant conditions. This is not only

beneficial for the efficiency of the estimator, but also necessary for the matrix
inversion (12) because perfectly and highly correlated constraints will make the
covariance matrix estimate Σ̂Z (quasi-) singular. For all considered criteria we
iterate over all tuples (i, j) ∈ {1, . . . , k}2, i �= j, removing the weaker of the
two, i.e. arg mink∈{i,j} ρkv, if the two control variates are considered redundant
(line 10).

There are many ways to define such a redundancy criterion. Here, we focus
on criteria that are defined in terms of the average correlation ρ̄ij = (ρiv+ρjv)/2.
For two variates i and j we then check if their mutual correlation ρij exceeds a
some function φ of ρ̄ij , i.e. we check the inequality

φ(ρ̄ij) ≤ ρij .

If this inequality holds, constraint arg mink∈{i,j} ρkv is removed. Naturally, there
are many possible choices for the above decision boundary φ (cf. Fig. 1a).

Control Variates for Stochastic Simulation of Chemical Reaction Networks 51

Algorithm 1. Estimate the mean of species i at time T

1: procedure EstimateMean(n, d, nmax, nλ, kmin)
2: L = {λi ∼ πλ | 1 ≤ i < nλ} ∪ {0}
3: P ← {(m, λ)|1 ≤ |m| ≤ nmax, λ ∈ L}
4: for i = 1, . . . , n do
5: τ ← SSA(π0, T, A)
6: compute constraint values using A and update Σ̂ and V̂i

7: if i mod d = 0 then
8: ρmin ← min (0.1, maxi ρiv/kmin)
9: P ← P \ {(mk, λk) | ρkv < ρmin}

10: P ← P \ {(mk, λk) | ∃i, j.i �= j, φ(ρ̄ij) < ρij , k = arg mink∈{i,j} ρkv}
11: end if
12: remove unneeded accumulators from A
13: end for
14: return V̂n − (Σ̂−1

Z Σ̂ZV)
�

Ẑn

15: end procedure

The simplest choice is to ignore ρ̄ij and just fix a constant close to 1 as a
threshold, e.g. φc(ρ̄ij) = .99. While this often leads to the strongest variance
reduction and avoids numerical issues in the control variate computation, it
turns out that the computational overhead is not as well-compensated as by
other choices of φ (see Sect. 7).

Another option is to fix a simple linear function, i.e. φ�(ρ̄ij) = ρ̄ij . For this
choice the intuition is, that one of two constraints is removed if their mutual
correlation exceeds their average correlation with V .

Here, we also assess two quadratic choices for φ. The first choice of φq(ρ̄) =
1 − (1 − ρ̄)2 is more tolerant than the linear function and more strict than a
threshold function, except for highly correlated control variates. Another vari-
ant of φ is given by including the lower bound ρmin and scaling the quadratic
function accordingly: φsq(ρ̄) = 1 − ((1 − ρ̄)/(1 − ρmin))2. The different choices of
φ considered here are plotted in Fig. 1a.

Now, we discuss the choice of the initial control variates. We identify control
variate k by a tuple (mk, λk) of a moment vector mk and a time-weighting
parameter λk. That is, we use w(t) = eλk(T−t) and f(x) = xmk in (7). For a given
set of parameters L, we use all moments up to some fixed order nmax (line 3).
The ideal set of parameters L is generally not known. For certain choices the
correlation of the control variates and the variable of interest is higher then for
others. To illustrate this, consider the above example of the birth-death process.
Choosing λ = −δ leads to a control variate that has a correlation of ±1 with
V . Therefore, the ideal choice of initial values for would be L = {−δ}. This,
however, is generally not known. Therefore, we sample a set of λ’s from some
fixed distribution πλ (line 2).

52 M. Backenköhler et al.

7 Case Studies

We first define a criterion of efficiency in order to estimate whether the reduction
in variance is worth the increased cost. A natural baseline of a variance reduction
is, that it is more efficient to pay for the overhead of the reduction than to
generate more samples to achieve a similar reduction of variance. Let σ2

Y be the
variance of Y . The efficiency of the method is the ratio of the necessary cost to
achieve a similar reduction with the CV estimate YCV compared to the standard
estimate Y [24], i.e.

E =
c0σ

2
Y

c1σ2
YCV

. (14)

That ratio c0/c1 depends on both the specific implementation and the technical
setup. The cost increase is mainly due to the computation of the integrals in
(8). But the repeated checking of control variates for efficiency also increases the
cost. The accumulation over the trajectory directly increases the cost of a single
simulation which is the critical part of the estimation. To estimate the base-
line cost c0, 2000 estimations were performed without considering any control
variates.

The simulation is implemented in the Rust programming language2. The
model description is parsed from a high level specification. Rate functions are
compiled to stack programs for fast evaluation. Code is made available online [4].

We consider four non-trivial case studies. Three models exhibit complex
multi-modal behaviour. We now describe the models and the estimated quanti-
ties in detail.

The first model is a simple dimerization on a countably infinite state-space.

Model 2 (Dimerization). We first examine a simple dimerization model on
an unbounded state-space

∅
10−→ M, 2M

0.1−−→ D

with initial condition XM
0 = 0.

Despite the models simplicity, the moment equations are not closed for this
system due to the second reaction which is non-linear. Therefore a direct analysis
of the expected value would require a closure. For this model we will estimate
E

(
XM

2

)
.

The following two models are bimodal, i.e. they each posses two stable
regimes among which they can switch stochastically. For both models we choose
the initial conditions such that the process will move towards either attracting
region with equal probability.

2 https://www.rust-lang.org.

https://www.rust-lang.org

Control Variates for Stochastic Simulation of Chemical Reaction Networks 53

Model 3 (Distributive Modification). The distributive modification model
was introduced in [9]. It consists of the reactions

X + Y
.001−−→ B + Y , B + Y

.001−−→ 2Y ,

Y + X
.001−−→ B + X , B + X

.001−−→ 2X

with initial conditions XX
0 = XY

0 = XB
0 = 100.

Model 4 (Exclusive Switch). The exclusive switch model consists of 5
species, 3 of which are typically binary (activity states of the genes) [25].

P1 −→ ∅ G −→ G + P2 G + P1 −→ G1 G1 −→ G + P1 G1 −→ G1 + P1

P2 −→ ∅ G −→ G + P1 G + P2 −→ G2 G2 −→ G + P2 G2 −→ G2 + P2

with initial conditions XG
0 = 1 and XG1

0 = XG2
0 = XP1

0 = XP2
0 = 0.

We evaluate the influence of algorithm parameters, choices of distributions
to sample λ from, and the influence of the sample size on the efficiency of the
proposed method. Note that the implementation does not simplify the constraint
representations or the state space according to stoichiometric invariants or lim-
ited state spaces. Model 3, for example has the invariant XX

t +XY
t +XB

t = const.,
∀t ≥ 0, which could be used to reduce the state-space dimensionality to two. In
Model 4 the invariant ∀t ≥ 0.XG

t ,XG1
t ,XG2

t ∈ {0, 1} could be used to optimize
the algorithm by eliminating redundant moments, e.g. E((XG)2) = E

(
XG

)
.

Such an optimization would further increase the efficiency of the algorithm.
We first turn to the choice of the λ sampling distribution. Here we consider

two choices:

1. a standard normal distribution N(0, 1),
2. a uniform distribution on [−5, 5].

We deterministically include λ = 0 in the constraint set, as this parameter cor-
responds to a uniform weighting function. We performed estimations on the case
studies using different valuations of the algorithm parameters of the minimum
threshold kmin and the number of λ-samples nλ. We used samples size n = 10,000
and checked the control variates every d = 100 iterations for the defined criteria.
For each valuation 1000 estimations were performed. In Fig. 2b, we summarize
the efficiencies for the arising parameter combinations on the three case stud-
ies. Most strikingly, we can note that the efficiency was consistently larger than
one in all cases. Generally, the normal sampling distribution out-performed the
alternative uniform distribution, except in case of the dimerization. The reason
for this becomes apparent, when examining Fig. 1b,c: In case of the dimeriza-
tion model the most efficient constraints are found for λ ≈ −3, while in case of
the distributive modification they are located just above 0 (we observe a similar
pattern for the exclusive switch case study). Therefore the sampling of efficient
λ values is more likely using a uniform distribution for the dimerization case

54 M. Backenköhler et al.

Fig. 2. (a) The effect of including control variates (CV) on the mean estimates Ê(XM
2)

in the dimerization case study. Parameters were πλ = N(0, 1), nλ = 30, kmin = 4,
φ(ρ̄) = 1 − (1 − ρ̄)2. (b) The efficiencies for different valuations of nλ and kmin and
choices of πλ. The sample size was n = 10,000 in all cases with d = 100. The bars give
the bootstrapped (1000 iterations) standard deviations.

study, than it is for the others. Given that larger absolute values for λ seem
unreasonable due their exponential influence on the weighting function and the
problem of fixing a suitable interval for a uniform sampling scheme, the choice
of a standard normal distribution for πλ seems superior.

In Fig. 3 we compare efficiencies for different maximum orders of constraints
nmax. This comparison is performed for different choices of the redundancy rule
and initial λ sample sizes nλ. Again, for each parameter valuation 1000 esti-
mations were performed. With respect to the maximum constraints order nmax

we see a clear tendency, that the inclusion of second order constraints lessens
the efficiency of the method. In case of a constant redundancy threshold it even
dips below break-even for the distributive modification case study. This is not
surprising, since the inclusion of second order moments increases the number
of initial constraints quadratically and the incurred cost, especially of the first
iterations, lessens efficiency.

Figure 4 depicts the trade-off between the variance reduction σ2
0/σ2

1 versus
the cost ratio c0/c1. Comparing the redundancy criterion based on a constant
threshold φc to the others, we observe both a larger variance reduction and an
increased cost. This is due to the fact, that more control variates are included
throughout the simulations (cf. See Supplementary Material Tables 1 and 2).
Depending on the sample distribution πλ and the case study, this permissive
strategy may pay off. In case of the dimerization, for example, it pays off, while
in case of the distributive modification it leads to a lower efficiency ratio. In the
latter case the model is more complex, and therefore the set of initial control

Control Variates for Stochastic Simulation of Chemical Reaction Networks 55

Fig. 3. The efficiency for different redundancy policies φ and maximal moment orders
nmax. The sample size was n = 10,000 in all cases with d = 100. Furthermore, kmin = 3,
πλ = N(0, 1), and nmax = 1. The bars give the bootstrapped (1000 iterations) standard
deviations.

variates is larger. With a more permissive redundancy strategy, more control
variates are kept (ca. 10 when using φc vs. ca. 2–3 for the others). The other
redundancy boundaries move the results further in the direction of less variance
reduction while keeping the cost increase low. On the opposite end is the lin-
ear φ�. The quadratic versions φq and φsq can be found in the middle of this
spectrum.

We also observe, that an increase of nλ is particularly beneficial, if the sam-
pling distribution πλ does not capture the parameter region of the highest cor-
relations well. This can be seen for the Dimerization case study, where the vari-
ance reduction increases strongly with increasing sample size (See Supplemen-
tary Material Tables 1 and 2). Since πλ = N(0, 1), more samples are needed to
sample efficient λ-values (cf. Fig. 1b).

Finally, we discuss the effect of the sample size n on the efficiency E. In Fig. 5
we give both the efficiencies and the slowdown for different sample sizes. As a
redundancy rule we used the unscaled quadratic function, 30 initial values of λ,
and kmin = 3. With increasing sample size, the efficiency usually approaches an
upper limit. This is due to the fact that most control variates are dropped early
on and the control variates often remain the same for the rest of the simulations.
If we assume there are no helpful control variates in the initial set and all would
be removed at iteration 100, the efficiency would approach 1 with n → ∞.

56 M. Backenköhler et al.

Fig. 4. A visualisation of the trade-off between variance reduction σ2
0/σ2

1 and cost ratio
c0/c1. Isolines for efficiencies are given in grey. The break-even is marked by the dashed
red line. Markers of the same kind differ in nλ and shift with increasing value upwards
in variance reduction and lower in c0/c1, i.e. the shift is to the left and upwards with
increasing nλ. The sample size was n = 10,000 in all cases with d = 100. Furthermore,
kmin = 3 and πλ = N(0, 1). (Color figure online)

Fig. 5. (a) The effect of sample size on the efficiency E in the different case studies.
The break-even E = 1 is marked by the dashed red line. (b) The cost increase due to
the variance reduction over different sample sizes. (Color figure online)

8 Conclusion

In this work we have shown that known constraints on the moment dynamics
can be successfully leveraged in simulation-based estimation of expected values.
The empirical results indicate that the supplementing a standard SSA estima-
tion with moment information can drastically reduce the estimators’ variance.
This reduction is paid for by accumulating information on the trajectory dur-
ing simulation. However, the reduction is able to compensate for this increase.
This means that for fixed costs, using estimates with control variates is more
beneficial than using estimates without control variates.

While a variety of algorithmic variants was evaluated, many aspects remain
subject to further study. In particular different choices of f and w in (7) may
improve efficiency further. These choices become particularly interesting when
moving from the estimation of simple first order moments to more complex

Control Variates for Stochastic Simulation of Chemical Reaction Networks 57

queries such as behavioural probabilities of trajectories. In such cases, one might
even attempt to find efficient control variate functions using machine learning
methods.

Another open question regarding this work is its performance when multiple
quantities instead of a single quantity are to be estimated. In such a case, con-
straints would be particularly beneficial, if they lead to improvements as many
estimation targets as possible.

Furthermore the identification of the best weighting parameters λ could be
done in a more adaptive fashion. The presented scheme of a sampling from πλ

could be extended into a Bayesian-like procedure, wherein the values for λ are
periodically re-sampled from a distribution that is adjusted according to the
best-performing constraints up to that point.

Acknowledgement. This work was supported by the DFG project MULTIMODE.

References

1. Ale, A., Kirk, P., Stumpf, M.P.: A general moment expansion method for stochastic
kinetic models. J. Chem. Phys. 138(17), 174101 (2013)

2. Anderson, D.F., Yuan, C.: Low variance couplings for stochastic models of intra-
cellular processes with time-dependent rate functions. Bull. Math. Biol. 81, 1–29
(2018)

3. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for
Markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22110-1 8

4. Backenköhler, M.: CME stochastic simulation code (2019). https://github.com/
mbackenkoehler/cme-simulation

5. Backenköhler, M., Bortolussi, L., Wolf, V.: Moment-based parameter estimation
for stochastic reaction networks in equilibrium. IEEE/ACM Trans. Comput. Biol.
Bioinform. (TCBB) 15(4), 1180–1192 (2018)

6. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

7. Bortolussi, L., Milios, D., Sanguinetti, G.: Efficient stochastic simulation of systems
with multiple time scales via statistical abstraction. In: Roux, O., Bourdon, J.
(eds.) CMSB 2015. LNCS, vol. 9308, pp. 40–51. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23401-4 5

8. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algo-
rithm. J. Chem. Phys. 122(1), 014116 (2005)

9. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2, 656 (2012)

10. Cheng, R.C.: Analysis of simulation experiments under normality assumptions. J.
Oper. Res. Soc. 29(5), 493–497 (1978)

11. Dowdy, G.R., Barton, P.I.: Bounds on stochastic chemical kinetic systems at steady
state. J. Chem. Phys. 148(8), 084106 (2018)

12. Dowdy, G.R., Barton, P.I.: Dynamic bounds on stochastic chemical kinetic systems
using semidefinite programming. J. Chem. Phys. 149(7), 074103 (2018)

https://doi.org/10.1007/978-3-642-22110-1_8
https://doi.org/10.1007/978-3-642-22110-1_8
https://github.com/mbackenkoehler/cme-simulation
https://github.com/mbackenkoehler/cme-simulation
https://doi.org/10.1007/978-3-319-23401-4_5
https://doi.org/10.1007/978-3-319-23401-4_5

58 M. Backenköhler et al.

13. Engblom, S.: Computing the moments of high dimensional solutions of the master
equation. Appl. Math. Comput. 180(2), 498–515 (2006)

14. Ghusinga, K.R., Lamperski, A., Singh, A.: Estimating stationary characteristic
functions of stochastic systems via semidefinite programming. In: 2018 European
Control Conference (ECC), pp. 2720–2725. IEEE (2018)

15. Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and
upper bounds on stationary moments in stochastic biochemical systems. Phys.
Biol. 14(4), 04LT01 (2017)

16. Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306
(2000)

17. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically react-
ing systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

18. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

19. Glasserman, P., Yu, B.: Large sample properties of weighted Monte Carlo estima-
tors. Oper. Res. 53(2), 298–312 (2005)

20. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite
Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
337–352. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 27

21. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: Rigorous bounds on the station-
ary distributions of the chemical master equation via mathematical programming.
arXiv preprint arXiv:1702.05468 (2017)

22. Kuwahara, H., Mura, I.: An efficient and exact stochastic simulation method to
analyze rare events in biochemical systems. J. Chem. Phys. 129(16), 10B619 (2008)

23. Lavenberg, S.S., Moeller, T.L., Welch, P.D.: Statistical results on control variables
with application to queueing network simulation. Oper. Res. 30(1), 182–202 (1982)

24. L’Ecuyer, P.: Efficiency improvement and variance reduction. In: Proceedings of
the 26th conference on Winter simulation, pp. 122–132. Society for Computer Sim-
ulation International (1994)

25. Loinger, A., Lipshtat, A., Balaban, N.Q., Biham, O.: Stochastic simulations of
genetic switch systems. Phys. Rev. E 75(2), 021904 (2007)

26. Mateescu, M., Wolf, V., Didier, F., Henzinger, T.: Fast adaptive uniformisation of
the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)

27. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)

28. Nelson, B.L.: Control variate remedies. Oper. Res. 38(6), 974–992 (1990)
29. Sakurai, Y., Hori, Y.: A convex approach to steady state moment analysis for

stochastic chemical reactions. In: 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pp. 1206–1211. IEEE (2017)

30. Sakurai, Y., Hori, Y.: Bounding transient moments of stochastic chemical reactions.
IEEE Control. Syst. Lett. 3(2), 290–295 (2019)

31. Schnoerr, D., Sanguinetti, G., Grima, R.: Comparison of different moment-closure
approximations for stochastic chemical kinetics. J. Chem. Phys. 143(18), 11B610 1
(2015)

32. Singh, A., Hespanha, J.P.: Lognormal moment closures for biochemical reactions.
In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2063–
2068. IEEE (2006)

33. Spieler, D.: Numerical analysis of long-run properties for Markov population mod-
els. Ph.D. thesis, Saarland University (2014)

https://doi.org/10.1007/978-3-642-02658-4_27
https://doi.org/10.1007/978-3-642-02658-4_27
http://arxiv.org/abs/1702.05468

Control Variates for Stochastic Simulation of Chemical Reaction Networks 59

34. Szechtman, R.: Control variate techniques for Monte Carlo simulation: control
variates techniques for Monte Carlo simulation. In: Proceedings of the 35th Con-
ference on Winter Simulation: Driving Innovation, pp. 144–149. Winter Simulation
Conference (2003)

35. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier,
Amsterdam (1992)

36. Wilson, J.R.: Variance reduction techniques for digital simulation. Am. J. Math.
Manag. Sci. 4(3–4), 277–312 (1984)

Effective Computational Methods
for Hybrid Stochastic Gene Networks

Guilherme C. P. Innocentini1, Fernando Antoneli2, Arran Hodgkinson3,
and Ovidiu Radulescu3(B)

1 Federal University of ABC, Santo André, Brazil
2 Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil

3 LPHI UMR CNRS 5235, University of Montpellier, Montpellier, France
ovidiu.radulescu@umontpellier.fr

Abstract. At the scale of the individual cell, protein production is
a stochastic process with multiple time scales, combining quick and
slow random steps with discontinuous and smooth variation. Hybrid
stochastic processes, in particular piecewise-deterministic Markov pro-
cesses (PDMP), are well adapted for describing such situations. PDMPs
approximate the jump Markov processes traditionally used as models
for stochastic chemical reaction networks. Although hybrid modelling
is now well established in biology, these models remain computation-
ally challenging. We propose several improved methods for computing
time dependent multivariate probability distributions (MPD) of PDMP
models of gene networks. In these models, the promoter dynamics is
described by a finite state, continuous time Markov process, whereas the
mRNA and protein levels follow ordinary differential equations (ODEs).
The Monte-Carlo method combines direct simulation of the PDMP with
analytic solutions of the ODEs. The push-forward method numerically
computes the probability measure advected by the deterministic ODE
flow, through the use of analytic expressions of the corresponding semi-
group. Compared to earlier versions of this method, the probability of
the promoter states sequence is computed beyond the näıve mean field
theory and adapted for non-linear regulation functions.

Availability. The algorithms described in this paper were implemented
in MATLAB. The code is available at Zenodo. https://doi.org/10.5281/
zenodo.3251708.

1 Introduction

In PDMP models of gene networks, each gene promoter is described as a finite
state Markov process [3,10,12,13]. The promoter triggers synthesis of gene
products (mRNAs and proteins) with intensities depending on its state. The
promoter can exhibit two state (ON-OFF) dynamics, but also dynamics with
more than two states and arbitrarily complex transitions [11,19]. The transition
rates between the states of the promoter depend on the expression levels of pro-
teins expressed by the same or by other promoters. In PDMP models, the gene

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 60–77, 2019.
https://doi.org/10.1007/978-3-030-31304-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_4&domain=pdf
https://doi.org/10.5281/zenodo.3251708
https://doi.org/10.5281/zenodo.3251708
https://doi.org/10.1007/978-3-030-31304-3_4

Effective Computational Methods for Hybrid Stochastic Gene Networks 61

products are considered in sufficiently large copy numbers and are represented
as continuous variables following ordinary differential equations (ODEs). The
sources of noise in these models are thus the discrete transitions between the
promoter states.

In single cell experimental settings the quantities of mRNA [1,14,17,18] and
proteins [5,6] can be determined for each cell. By double or multiple- fluorophore
fluorescence techniques products from several genes can be quantified simultane-
ously and one can have access to multivariate probability distributions (MPD)
of mRNA or proteins. The stochastic dynamics of promoters and gene networks
can have important consequences for fundamental biology [4] but also for HIV
[15] and cancer research [7]. For this reason we aim to develop effective methods
for computing time-dependent MPDs for PDMP models. Our main objective is
the reduction of computation time which is prerequisite for parameter scans and
machine learning applications [8].

PDMPs already represent a gain with respect to the chemical Markov equa-
tion from which they are derived by various limit theorems [2]. A gene network
PDMP model can be simulated by numerical integration of ODEs coupled with
a driven inhomogeneous Poisson process for the successive transitions of the pro-
moters [3,13,16,20]. The simulation becomes particularly effective when analytic
solutions of the ODEs are available [10].

However, very little has been done to further improve the computational
power by optimising simulation and analysis of PDMP models.

Numerical integration of the PDE satisfied by MPD is an interesting option
combining precision and speed for small models. Finite difference methods, how-
ever, are of limited use in this context as they can not cope with many RNA
and protein variables (extant examples are restricted to the dimension 2, corre-
sponding to a single promoter, with or without self-regulation see [10,12]).

Another interesting method for computing time dependent MPDs is the push-
forward method. For gene networks, this method has been first introduced in [9]
and further adapted for continuous mRNA variables in [10]. It is based on the
idea to compute the MPD as the push-forward measure of the semigroup defined
by the ODEs. This method is approximate, as one has to consider that the dis-
crete PDMP variables are piecewise constant on a deterministic time partition.
Furthermore, the transition rates between promoter states were computed in a
mean field approximation. In this paper we replace the mean field approximation
by the next order approximation taking into account the moments of the protein
distribution.

2 Methods

2.1 PDMP Models of Gene Networks

The state of a PDMP gene network model is defined by the elements of the set
E = R

2N × {0, . . . , smax − 1}N where N is the number of genes and smax is
a positive integer representing the maximum number of states of a gene pro-
moter. It is a process ζt = (xt,yt, st), where xt,yt, are vectors in R

N and their

62 G. C. P. Innocentini et al.

components xi
t, y

i
t (1 ≤ i ≤ N) encode the dynamics of protein and mRNA

densities, respectively, associated with gene i. The vector st is an element of
S := {0, . . . , smax −1}N and the components si

t (0 ≤ si ≤ smax −1) describe the
jump Markov process between states of the gene i, where si

t can assume integer
values in {0, ..., smax − 1}. The process ζt = (xt,yt, st) is determined by three
characteristics:

(1) For all fixed s ∈ S a vector field F s : R2N → R
2N determining a unique

global flow Φs(t,x,y) in R
2N , the space of all protein (x ∈ R

N) and mRNA
(y ∈ R

N) values such that, for t > 0,

dΦs(t,x,y)
dt

= F s(Φs(t,x,y)), Φs(0,x,y) = (x,y). (1)

On coordinates, this reads

dΦx
i

dt
= biΦ

y
i − aiΦ

x
i ,

dΦy
i

dt
= ki(si) − ρiΦ

y
i , 1 ≤ i ≤ N, (2)

where bi, ki, ai, ρi are translation efficiencies, transcription rates, protein
degradation coefficients and mRNA degradation coefficients of the ith gene,
respectively. Note that transcription rates depend on the relevant promoter
states.
The flow Φs(t,x,y) represents a one parameter semigroup fulfilling the
properties
(i) Φs(0,x0,y0) = (x0,y0),
(ii) Φs(t + t′,x0,y0) = Φs(t′,Φx

s (t,x0,y0),Φy
s(t,x0,y0)).

(2) A transition rate matrix for the promoter states H : R
2N →

M(Nsmax)×(Nsmax)(R), such that Hr ,s(x,y) ≥ 0 is the (r, s) element of
the matrix H. If (s �= r) this is the rate of probability to jump to the state
r from the state s. Furthermore, Hs,s(x,y) = −∑

r �=s Hr ,s(x,y) for all
s, r ∈ S, s �= r and for all (x,y) ∈ R2N .

(3) A jump rate λ : E → R
+. The jump rate can be obtained from the transi-

tion rate matrix

λ(x,y, s) =
∑

r �=s

Hr ,s(x,y) = −Hs,s(x,y). (3)

From these characteristics, right-continuous sample paths {(xt,yt) : t > 0}
starting at ζ0 = (x0,y0, s0) ∈ E can be constructed as follows. Define

xt(ω) := Φs0(t,x0,y0) for 0 ≤ t ≤ T1(ω), (4)

where T1(ω) is a realisation of the first jump time of st, with the distribution

F (t) = P[T1 > t] = exp(−
∫ t

0

λ(Φs0(u,x0,y0))du), t > 0, (5)

Effective Computational Methods for Hybrid Stochastic Gene Networks 63

and ω is the element of the probability space for which the particular reali-
sation of the process is given. The pre-jump state is ζT −

1 (ω)(ω) = (Φs0(T1(ω),
x0,y0), s0) and the post-jump state is ζT1(ω)(ω) = (Φs0(T1(ω),x0,y0), s), where
s has the distribution

P[s = r] =
Hr ,s0(Φs0(T1(ω),x0,y0), s0)

λ(Φs0(T1(ω),x0,y0), s0)
, for all r �= s0. (6)

We then restart the process ζT1(ω) and recursively apply the same procedure at
jump times T2(ω), etc.

Note that between each two consecutive jumps (xt,yt) follow deterministic
ODE dynamics defined by the vector field F s . At the jumps, the protein and
mRNA values (xt,yt) are continuous.

The calculation of the flow between two jumps and of the jump time can be
gathered in the same set of differential equations

dΦx
i

dt
= biΦ

y
i − aiΦ

x
i ,

dΦy
i

dt
= ki(si) − ρiΦ

y
i , 1 ≤ i ≤ N,

d log F

dt
= −λ(x,y, s0), (7)

that has to be integrated with the stopping condition F (T1) = U , where U is a
random variable, uniformly distributed on [0, 1].

We define multivariate probability density functions ps(t,x,y). These func-
tions satisfy the Liouville-master equation which is a system of partial differential
equations:

∂ps(t,x,y)
∂t

= −∇x,y .(F s(x,y)ps(t,x,y)) +
∑

r

Hs,r (s,x,y)pr (t,x,y). (8)

2.2 ON/OFF Gene Networks

In this paper, for the purpose of illustration only, all the examples are constituted
by ON/OFF gene networks. For an ON/OFF gene each component si has two
possible values 0 for OFF and 1 for ON.

As a first example that we denote as model M1, let us consider a two genes
network; the expression of the first gene being constitutive and the expression
of the second gene being activated by the first. We consider that the transcrip-
tion activation rate of the second gene is proportional to the concentration of
the first protein f2x

1. All the other rates are constant f1, h1, h2, representing
the transcription activation rate of the first gene, and the transcription inacti-
vation rates of gene one and gene two, respectively. For simplicity, we consider
that the two genes have identical protein and mRNA parameters b1 = b2 = b,
a1 = a2 = a, ρ1 = ρ2 = ρ. We further consider that ki(si) = k0 if the gene i is
OFF and ki(si) = k1 if the gene i is ON.

64 G. C. P. Innocentini et al.

The gene network has four discrete states, in order (0, 0), (1, 0), (0, 1), and
(1, 1). Then, the transition rate matrix for the model M1 is

⎡

⎢
⎢
⎣

−(f1 + f2x
1) h1 h2 0

f1 −(h1 + f2x
1) 0 h2

f2x
1 0 −(f1 + h2) h1

0 f2x
1 f1 −(h1 + h2)

⎤

⎥
⎥
⎦ . (9)

The model M2 differs from the model M1 by the form of the activation function.
Instead of a linear transcription rate f2x

1 we use a Michaelis-Menten model
f2x

1/(K1 + x1). This model is more realistic as it takes into account that the
protein x1 has to attach to specific promoter sites which become saturated when
the concentration of this protein is high.

The transition rate matrix for the model M2 is
⎡

⎢
⎢
⎣

−(f1 + f2x
1/(K1 + x1)) h1 h2 0
f1 −(h1 + f2x

1/(K1 + x1)) 0 h2

f2x
1/(K1 + x1) 0 −(f1 + h2) h1

0 f2x
1/(K1 + x1) f1 −(h1 + h2)

⎤

⎥
⎥
⎦ .

(10)

2.3 Monte-Carlo Method

The Monte-Carlo method utilizes the direct simulation of the PDMP based on
Eq. 7. A larger number M of sample paths is generated and the values of (xt,yt)
are stored at selected times. Multivariate probability distributions are then esti-
mated from this data.

The direct simulation of PDMPs needs the solutions of (7) which can be
obtained by numerical integration. This is not always computationally easy.
Problems may arise for fast switching promoters when the ODEs have to be inte-
grated many times on small intervals between successive jumps. Alternatively,
the numerical integration of the ODEs can be replaced by analytic solutions or
quadratures. Analytic expressions are always available for the gene network flow
(2) and read

Φx
i (t, x0, y0) = x0 exp(−ait) + bi

[(
y0 − ki(s

i)

ρi

)
exp(−ρit)− 1

ai − ρi
+

ki(s
i)

ρi

1− exp(−ait)

ai

]
,

Φy
i (t, x0, y0) = (y0 − ki/ρi) exp(−ρit) + ki/ρi. (11)

Let us consider the following general expression of the jump intensity function

λ(x,y, s) = c0(s) +
N∑

i

ci(s)xi +
N∑

i

di(s)fi(xi),

where fi are non-linear functions, for instance Michaelis-Menten fi(xi) =
xi/(Ki + xi) or Hill functions fi(xi) = (xi)ni/(Kni

i + (xi)ni). If di = 0 for
all 1 ≤ i ≤ N , the cumulative distribution function of the waiting time T1 can

Effective Computational Methods for Hybrid Stochastic Gene Networks 65

be solved analytically [10], otherwise it can be obtained by quadratures. For
example, for the model M2 one has

λ(x, y, s) =

(
f1 + f2

x1

K1 + x1

)
δs,1 +

(
h1 + f2

x1

K1 + x1

)
δs,2 +(h2 + f1)δs,3 +(h2 +h1)δs,4,

where δi,j is Kronecker’s delta. In this case, the waiting time T1 is obtained as
the unique solution of the equation

− log(U) =
[

(f1 + f2)T1 + f2

∫ T1

0

1
K1 + Φx

1(t′, x0, y0)
dt′

]

δs0,1 +
[

(h1 + f2)T1+

f2

∫ T1

0

1
K1 + Φx

1(t′, x0, y0)
dt′

]

δs0,2 + (h2 + f1)T1δs0,3 + (h2 + h1)T1δs0,4,

(12)
where U is a random variable, uniformly distributed on [0, 1]. In our implemen-
tation of the algorithm we solve (12) numerically, using the bisection method.

2.4 Push-Forward Method

This method allows one to compute the MPD of proteins and mRNAs at a time
τ given the MPD of proteins and mRNAs at time 0.

In order to achieve this we use a deterministic partition τ0 = 0 < τ1 < . . . <
τM = τ of the interval [0, τ] such that ΔM = maxj∈[1,M](τj − τj−1) is small.
The main approximation of this method is to consider that st, for t ∈ [0, τ], is
piecewise constant on this partition, more precisely, that st = sj := sτj

, for t ∈
[τj , τj+1), 0 ≤ j ≤ M − 1. This is rigourously true for intervals [τj , τj+1) com-
pletely contained between two successive random jump times of st. This case
becomes very frequent for a very fine partition (large M). Thus, the error gen-
erated by the approximation vanishes in the limit M → ∞ (for a rigorous result
see the Theorem 1 in Sect. 3.1 and the Lemma 1 in the AppendixC).

For each path realization SM := (s0, s1, . . . , sM−1) ∈ Ω := {0, 1, . . . , 2N −
1}M of the promoter states, we can compute (see Appendix B) the protein and
mRNA levels xt,yt of all genes i ∈ [1, N], at t = τ :

yi
τ = yi

0e
−ρτ +

k0

ρ
(1 − e−ρτ) +

k1 − k0

ρ

M−1∑

j=1

e−ρτ (e−ρτj+1 − e−ρτj)si
j (13)

xi
τ = xi

0e
−aτ +

byi
0

a − ρ
(e−ρτ − e−aτ) +

bk0

ρ

(
1 − e−aτ

a
+

e−aτ − e−ρτ

a − ρ

)

+

+
b(k1 − k0)

ρ
e−aτ

M∑

j=1

si
j−1wj , i ∈ [1, N] (14)

where wj = e(a−ρ)τ −e(a−ρ)τj

a−ρ (eρτj −eρτj−1)− e(a−ρ)τj −e(a−ρ)τj−1

a−ρ eρτj−1 + eaτj −eaτj−1

a

and si
j := 0 if promoter i is OFF for t ∈ [τj , τj+1) and si

j := 1 if promoter i is
ON for t ∈ [τj , τj+1).

66 G. C. P. Innocentini et al.

In order to compute the MPD at time τ one has to sum the contributions of
all solutions (13) and (14), obtained for the 2NM realisations of promoter state
paths with weights given by the probabilities of the paths.

Equations 13 and 14 can straightforwardly be adapted to compute xt,yt for
all t ∈ [0, τ]. To this aim, τ should be replaced by t and M should be replaced
by Mt defined by the relation t ∈ [τMt

, τMt+1].
Suppose that we want to estimate the MPD of all mRNAs and proteins of the

gene network, using a multivariate histogram with bin centers (xli
0 , ymi

0), 1 ≤ i
≤ N, 1 ≤ li ≤ nx, 1 ≤ mi ≤ ny where nx, ny are the numbers of bins in
the protein and mRNA directions for each gene, respectively. Typically xli

0 =
b/(aρ)(k0 + (k1 − k0)(li − 1/2)), 1 ≤ i ≤ N, 1 ≤ li ≤ nx, ymi

0 = 1/ρ(k0 + (k1 −
k0)(mi − 1/2)), 1 ≤ i ≤ N, 1 ≤ mi ≤ ny. The initial MPD at time t = 0 is
given by the bin probabilities pli,mi

0 , 1 ≤ i ≤ N, 1 ≤ li ≤ nx, 1 ≤ mi ≤ ny. Let
(xli,mi , yli,mi) be the solutions , with xi

0 = xli
0 and yi

0 = ymi
0 . The many-to-one

application (l′i,m
′
i) = ψ(li,mi) provides the histogram bin (l′i,m

′
i) in which falls

the vector (xli,mi , yli,mi)). The push forward MPD at time t = τ is defined by
the bin probabilities pli,mi , 1 ≤ i ≤ N, 1 ≤ li ≤ nx, 1 ≤ mi ≤ ny that are
computed as

pli,mi =
∑

SM ∈Ω

∑

ψ(l′i,m
′
i)=(li,mi)

p
l′i,m

′
i

0 P[SM] . (15)

In order to compute P[SM] we can use the fact that, given xt, st is a finite
state Markov process, therefore

P[SM] = ΠsN−1,sN−2(τN−2, τN−1) . . . Πs1,s0(τ0, τ1)PS
0 (s0), (16)

where PS
0 : {0, 1, . . . , 2N − 1} → [0, 1] is the initial distribution of the promoter

state,

Π(τj , τj+1) = exp

(∫ τj+1

τj

H(xt) dt

)

, (17)

and xt is given by (14).
The push-forward method can be applied recursively to compute the

MPD for times τ, 2τ, . . . , ntτ . The complexity of the calculation scales as
nt(nx)N (ny)N2NM which is exponential in the number of genes N . The exponen-
tial complexity comes from considering all the 2NM possible paths SM . However,
many of these paths have almost the same probability and impose very similar
trajectories to the variables (xt,yt). In fact, a convenient approximation is to
consider that different genes are switching between ON and OFF states accord-
ing to Markov processes with rates given by the mean values of regulatory pro-
teins (mean field approximation, [10]). This approximation consists in applying
the push-forward procedure for each gene separately, using averaged transition
probabilities. Thus, the 2N states transition matrix H has to be replaced by N ,
2 × 2 state transition matrices for each gene. This approximation reduces the
complexity of the calculations to ntnxnyN2M which is linear in the number of
genes.

Effective Computational Methods for Hybrid Stochastic Gene Networks 67

In [10] we have replaced the regulation term f2x
1
t occurring in the transition

matrix by its mean f2E
[
x1

t

]
. In this case both H and Π can be computed analyt-

ically, which leads to a drastic reduction in the execution time. This approach is
suitable for the model M1, which contains only linear regulation terms. For non-
linear regulation terms, Π can not generally be computed analytically. Further-
more, the mean field approximation introduces biases. For instance, in the case
of the model M2, the approximation f2x

1
t /(K1 + x1

t) ≈ f2E
[
x1

t

]
/(K1 + E

[
x1

t

]
)

is poor. A better approximation in this case is to replace f2x
1
t /(K1 + x1

t) by its
mean and use

E

[
f2x

1
t

K1 + x1
t

]

≈ f2E
[
x1

t

]

(K1 + E[x1
t])

− f2

(K1 + E[x1
t])3

V ar(x1
t), (18)

in order to correct the bias. Here V ar indicates the variance.
As in [10] we can use analytic expressions for E

[
x1

t

]
, but also for V ar(x1

t).
These expressions can be found in AppendixA. Although the elements of matrix
H have analytic expressions, the elements of the matrix Π contain integrals that
must be computed numerically. For the model M2, we have

Π1(τ, τ ′) =
[
(1 − p1,on) + p1,one−ε1(τ

′−τ), (1 − p1,on) − (1 − p1,on)e−ε1(τ
′−τ)

p1,on − p1,one−ε1(τ
′−τ), p1,on + (1 − p1,on)e−ε1(τ

′−τ)

]

,

(19)
for the transition rates of the first gene, where p1,on = f1/(f1 + h1), ε1 = (f1 +
h1)/ρ, and

Π 2(τ, τ
′
) =

⎡
⎣ e− ∫ τ′

τ (h2+F2(t)) dt + h2
∫ τ′

τ
e− ∫ τ′

t (h2+F2(t′)) dt′
dt, h2

∫ τ′
τ

e− ∫ τ′
t (h2+F2(t′)) dt′

dt

1 − e− ∫ τ′
τ (h2+F2(t)) dt − h2

∫ τ′
τ

e− ∫ τ′
t (h2+F2(t′)) dt′

dt, 1 − h2
∫ τ′

τ
e− ∫ τ′

t (h2+F2(t′)) dt′
dt

⎤
⎦ ,

(20)
for the transitions of the second gene, where F2(t) = f2E

[
x1

t

K1+x1
t

]

3 Results

3.1 Convergence of the Push-Forward Method

The probability distribution obtained with the push-forward method converges
to the exact PDMP distribution in the limit M → ∞. This is a consequence of
the following theorem.

Theorem 1. Let ΦSM
(t,x,y) be the flow defined by the formulas (14) and (13),

such that (xt,yt) = ΦSM
(t,x(0),y(0)) for t ∈ [0, τ], and let μM

t : B(R2N) → R+

be the probability measure defined as μM
t (A) =

∑
SM ∈Ω P[SM] μ0(Φ−1

SM
(t, A)),

where μ0 : B(R2N) → R+ is the probability distribution of (x,y) at t = 0, P[SM]
are given by (16), and B(R2N) are the Borel sets on R

2N . Let μt, the exact
distribution of (xt,yt) for the PDMP defined by (1), (2) and (3), with initial
values (x0,y0, s0) distributed according to μ0 × PS

0 . Assume that |τi − τi−1| <
C/M for all i ∈ [1,M], where C is a positive constant. Then, for all t ∈ [0, τ],
μM

t converges in distribution to μt, when M → ∞.

The proof of this theorem is given in the AppendixC.

68 G. C. P. Innocentini et al.

3.2 Testing the Push-Forward Method

In order to test the push-forward method, we compared the resulting proba-
bility distributions with the ones obtained by the Monte Carlo method using
the direct simulation of the PDMP. We considered the models M1 and M2 with
the following parameters: ρ = 1, p1 = f

f+h = 1/2, a = 1/5, b = 4, k0 = 4,
k1 = 40 for the two genes. The parameter ε took two values ε = 0.5 for slow
genes and ε = f+h

ρ = 5.5 for fast genes. We tested the slow-slow and the fast-fast
combinations of parameters.

The initial distribution of the promoters states was PS
0 ((0, 0)) = 1 where the

state (0, 0) means that both promoters are OFF. The initial probability measure
μ0 was a delta Dirac distribution centered at x1 = x2 = 0 and y1 = y2 = 0.
This is obtained by always starting the direct simulation of the PDMP from
x1

0 = x2
0 = 0, y1

0 = y2
0 = 0, and s1

0 = s2
0 = 0. The simulations were performed

between t0 = 0 and tmax = 20 for fast genes and between t0 = 0 and tmax = 90
for slow genes. In order to estimate the distributions we have used MC = 50000
samples for the highest sampling.

The push-forward method was implemented with M = 10 equal length sub-
intervals of [0, τ]. The time step τ was chosen τ = 2 for fast genes and τ = 15 for
slow genes. The procedure was iterated 10 times for fast genes (up to tmax = 20)
and 6 times for slow genes (up to tmax = 90).

The execution times are provided in the Table 1. The comparison of the prob-
ability distributions are illustrated in the Figs. 1 and 2. In order to quantify the
relative difference between methods we use the L1 distance between distribu-
tions. More precisely, if p(x) and p̃(x) are probability density functions to be
compared, the distance between distributions is

d =
∫

|p(x) − p̃(x)| dx. (21)

Table 1. Execution times for different methods. All the methods were implemented
in Matlab R2013b running on a single core (multi-threading inactivated) of a Intel
i5-700u 2.5 GHz processor. The Monte-Carlo method computed the next jump waiting
time using the analytical solution of Eq. 12 for M1 and the numerical solution of Eq. 12
for M2. The push-forward method used analytic solutions for mRNA and protein tra-
jectories from (13) and (14), and numerical computation of the integrals in Eq. 20, for
both models.

Model Monte-Carlo high
sampling [min]

Push-forward [s]

M1 slow-slow 45 20

M1 fast-fast 74 30

M2 slow-slow 447 20

M2 fast-fast 758 30

Effective Computational Methods for Hybrid Stochastic Gene Networks 69

Fig. 1. Histograms of protein for the second gene, produced by the Monte-Carlo
method (green lines) and by the push-forward method (black lines) for the model M1.
The green dotted line results from low sampling Monte-Carlo with similar execution
time as the push-forward method, whereas the solid green line results from high sam-
pling Monte-Carlo. The distances, defined by (21), are between low sampling and high
sampling Monte-Carlo (d∗) and between push-forward and high sampling Monte-Carlo
(d). (Color figure online)

This distance was computed between distributions resulting from the push-
forward method and the Monte-Carlo method with the highest sampling. We
have also used a reduced sampling Monte-Carlo scheme whose execution time
is similar to the one of the push-forward method. The distributions resulting
from low sampling and high sampling Monte-Carlo were compared using the
same distance. Figures 1 and 2 clearly show that for the same execution time,
the push-forward method outperforms the Monte-Carlo method.

70 G. C. P. Innocentini et al.

Fig. 2. Histograms of protein for the second gene, produced by the Monte-Carlo
method (green lines) and by the Push-forward method (black lines) for the model M2.
The green dotted line results from low sampling Monte-Carlo with similar execution
time as the push-forward method, whereas the solid green line results from high sam-
pling Monte-Carlo. The distances, defined by (21), are between low sampling and high
sampling Monte-Carlo (d∗) and between push-forward and high sampling Monte-Carlo
(d). (Color figure online)

4 Discussion and Conclusion

Combining direct simulation of PDMP gene network models and analytic for-
mulas for the ODE flow represents an effective, easy to implement method for
computing time dependent MPD of these models. However, the precision of the
Monte-Carlo estimates of the distributions increases like

√
MC, where MC is

the number of Monte-Carlo samples. For this reason, the execution time of this

Effective Computational Methods for Hybrid Stochastic Gene Networks 71

method, although smaller compared to PDMP simulation methods that imple-
ment numerical resolution of the ODEs such as reported in [13] (data not shown),
is large compared to deterministic methods such as the push-forward method.

The push-forward method represents an effective alternative to Monte-Carlo
methods, ensuring reduced execution time. With respect to an earlier imple-
mentation of this method in [9] we used promoter states instead of mRNA copy
numbers as discrete variables of the PDMP. As a consequence, the number of
discrete states is lower and we can afford increasing the number M of time
subdivisions. Compared to the similar work in [10] we used second moments
of the protein distribution which took into account the correlation of the pro-
moter states and lead to increased accuracy in the case of nonlinear regulation.
We proved rigorously the convergence of the distributions calculated with the
push-forward method to the exact distributions of the PDMP. However, the
push-forward method is an approximate method, and its accuracy relies on the
careful choice of the time and space steps, namely of the integers M , nt, nx, ny.
We will present elsewhere error estimates allowing an optimal choice of these
parameters. Although the protein moments and the exponential transition rate
matrix Π can be computed numerically, the effectiveness of the push-forward
method is increased when analytic expressions are available for these quantities.
In this paper, these expressions were computed for particular cases. In the future,
we will provide expressions, as well as symbolic computation tools to compute
these quantities in more general cases. We situate our findings in the broader
effort of the community to produce new effective tools for computational biology
by combining numerical and symbolic methods.

A Appendix: Mean and Variance of the Protein

We compute here the mean and the variance of the protein synthesized by a
constitutive promoter (gene 1 of models M1 and M2).

We start with

xt = x0e
−at + b

∫ t

0

[

y0e
−ρt′

+
∫ t′

0

k0 + (k1 − k0)st′′

ρ
eρ(t′′−t′)dt′′

]

ea(t′−t)dt′,

(22)
where st = 0 if the promoter is OFF and st = 1 if the promoter is ON at the
time t.

Equation 22 leads to

xt = x0e
−at + by0

e−ρt − e−at

a − ρ
+

bk0

ρ

(
1 − e−at

a
− e−ρt − e−at

a − ρ

)

+
b(k1 − k0)

ρ

∫ t

0

[∫ t′

0

st′′eρt′′
dt′′

]

e(a−ρ)t′
e−atdt′.

(23)

72 G. C. P. Innocentini et al.

From (23) it follows

E[xt] = E[x0] e−at + bE[y0]
e−ρt − e−at

a − ρ
+

bk0

ρ

(
1 − e−at

a
− e−ρt − e−at

a − ρ

)

+
b(k1 − k0)

ρ

∫ t

0

[∫ t′

0

E[st′′] eρt′′
dt′′

]

e(a−ρ)t′
e−atdt′.

(24)

The promoter state variable st follows the master equation

dP[st = 1]
dt

= f(1 − P[st = 1]) − (f + h)P[st = 1] , (25)

that has the solution

E[st] = P[st = 1] = (p10 − p1)e−ρεt + p1, (26)

where p10 = P[s0 = 1], ε = (f +h)/ρ, and p1 = f/(f +h). Using straightforward
algebra, we find

E[xt] = M0 + M1e
−at + M2e

−ρt + M3e
−εt, (27)

where

M0 =
b(k0 + (k1 − k0)p1)

a
, (28)

M1 = E[x0] − bE[y0]

a − ρ
+

bk0

a(a − ρ)
+

b(k1 − k0)(p10 − p1)

(a − ρε)(a − ρ)
+

b(k1 − k0)p1

a(a − ρ)
, (29)

M2 =
bE[y0]
a − ρ

− bk0

a − ρ
− b(k1 − k0)(p10 − p1)

ρ(1 − ε)(a − ρ)
− b(k1 − k0)p1

a − ρ
, (30)

M3 =
b(k1 − k0)(p10 − p1)

ρ(1 − ε)(a − ερ)
. (31)

From (23) we find also

V ar(xt) = V ar(x0)e
−2at + b2V ar(y0)

(
e−ρt − e−at

a − ρ

)2

+

(
b(k1 − k0)

ρ

)2

e−2at

×
∫ t

0

∫ t

0

dt2dt4

[∫ t2

0

∫ t4

0

(E[st1st3] − E[st1]E[st3])e
ρt1eρt3dt1dt3

]
e(a−ρ)t2e(a−ρ)t4 .

(32)
We have considered here that x0, y0 are uncorrelated, but more general expres-
sions can be obtained.

In order to compute the two times covariance E[st1st3]−E[st1]E[st3] we com-
bine the tower property of the conditional expectation with the Markov property

Effective Computational Methods for Hybrid Stochastic Gene Networks 73

satisfied by st. More precisely, for t1 ≥ t3 we find E[st1st3] = E[E[st1st3 |st3]] =
E

[
((st3 − p1)e−ρε(t1−t3) + p1)st3

]
and E[st1]E[st3] = E[E[st1 |st3]]E[st3] =

((E[st3] − p1)e−ρε(t1−t3) + p1)E[st3]. Then, it follows

E[st1st3] − E[st1]E[st3] = V ar[st3]e
−ρε(t1−t3). (33)

st3 is a Bernoulli variable, therefore V ar[st3] = E[st3] (1−E[st3]). From (33) and
(26) it follows

E[st1st3] − E[st1]E[st3] = p1(1 − p1)e−ρε(t1−t3) + (1 − 2p1)(p10 − p1)e−ρεt1

− (p10 − p1)2e−ρε(t1+t3), for t1 ≥ t3.
(34)

Similarly, one gets

E[st1st3] − E[st1]E[st3] = p1(1 − p1)e−ρε(t3−t1) + (1 − 2p1)(p10 − p1)e−ρεt3

− (p10 − p1)2e−ρε(t1+t3), for t3 ≥ t1.
(35)

The domain of the multiple integral in (32) should be split in two sub-domains
corresponding to t2 < t4 and to t2 > t4. Each of these sub-domains should be
subdivided into two smaller sub-domains corresponding to t3 > t1 and t1 < t3.
Symmetry arguments imply that the integrals on t2 < t4 and on t4 < t2 are
equal, which allows us to perform the calculation of the integral on only two
sub-domains, instead of four. After some algebra we find

V ar(xt) = V ar(x0)e
−2at

+ b
2
V ar(y0)

(
e−ρt − e−at

a − ρ

)2

−
[

(p10 − p1)(k1 − k0)b

ρ(1 − ε)

(
e−ρεt − e−at

a − ρε
− e−εt − e−at

a − ρε

)]2

+
p1(1 − p1)(k1 − k0)

2b2

ρ2
(V0 + V1e

−(a+ρε)t
+ V2e

−ρ(1+ε)t
+ V3e

−2at
+ V4e

−(a+ρ)t
+ V5e

−2ρt
)

+
(1 − 2p1)(p10 − p1)(k1 − k0)

2b2

ρ2
(V6e

−ρεt
+ V7e

−(a−ρε)t
+ V8e

−ρ(ε+1)t

+V9e
−(a+ρε)t

+ V10e
−ρt

+ V11e
−2ρt

), (36)

where

V0 =
a + (ε + 1)ρ

a(a + ρε)(a + ρ)(ε + 1)
, V1 = − 2

(a2 − ρ2ε2)(a − ρ)(ε − 1)
,

V2 =
2

(a − ρε)(a − ρ)(ε2 − 1)
, V3 =

1
a(a − ρε)(a − ρ)2

,

V4 =
2(a + (1 − 2ε)ρ)

(a − ρε)(a − ρ)2(a + ρ)(ε − 1)
, V5 = − 1

(ε − 1)(a − ρ)2
,

V6 = − 2(2a + (2 − ε)ρ)
a(ε − 2)(2a − ρε)(a + (1 − ε)ρ)

, V7 =
2

(1 − ε)a(a − ρ)(a − ρε)
,

V8 =
2

(a − ρε)(a − ρ)(ε − 1)
, V9 =

2(a + (1 − 2ε)ρ)
(a − ρ)2(ε − 1)(a − ρε)(a + (1 − ε))

,

V10 =
2

(a − ρ)2(2 − ε)(1 − ε)
, V11 =

2
(a − ρ)2(2a − ρε)(a − ρε)

. (37)

74 G. C. P. Innocentini et al.

B Appendix: Details of the Derivation of (13) and (14)

xt and yt satisfy the following system of equations

dx

dt
= by − ax

dy

dt
= k0 + (k1 − k0)s − ρy (38)

For simplification, we rescale variables and parameters t → tρ, ki → ki/ρ, a →
a/ρ, b → b/ρ and obtain

dx

dt
= by − ax

dy

dt
= k0 + (k1 − k0)s − y (39)

From (39) it follows yτ = y0e
−τ +

∫ τ

0
dτ ′e−(τ−τ ′)[k0 + (k1 − k0)s(τ ′)] = y0e

−τ +
∑M−1

j=1

∫ τj+1

τj
dτ ′e−(τ−τ ′)[k0 + (k1 − k0)s(τj)] = y0e

−τ + k0(1 − e−τ) + (k1 −
k0)

∑M−1
j=0 e−τ (eτj+1 − eτj)s(τj) and hence (13).

From (39) we also obtain xτ = x0e
−aτ + b

∫ τ

0
ea(τ ′−τ)y(τ ′)dτ ′ = x0e

−aτ +
by0
a−1 (e−τ −e−aτ)+b

∫ τ

0
dτ ′ea(τ ′−τ)

∫ τ ′

0
dτ ′′e−(τ ′−τ ′′)(k0+(k1−k0)sτ ′′) = x0e

−aτ +
by0
a−1 (e−τ − e−aτ) + bk0

(
1−e−aτ

a + e−a(τ−τ0)−e−(τ−τ0)

a−1

)
+ b(k1 − k0)I, where

I =
∫ τ

0

dτ ′ea(τ ′−τ)

∫ τ ′

0

dτ ′′e−(τ ′−τ ′′)sτ ′′ .

In order to compute the integral I we decompose the triangular integration
domain into M − 1 rectangles and M triangles on each of which sτ ′′ is constant,
as in Fig. 3.

The contribution of each rectangle to the integral I is
∫ τ

τi
dτ ′ea(τ ′−τ)

∫ τi

τi−1
dτ ′′e−(τ ′−τ ′′)sτi−1 = e−aτ e(a−1)τ −e(a−1)τi

a−1 (eτi − eτi−1)sτi−1 .

The contribution of each triangle to the integral I is
∫ τi

τi−1
dτ ′ea(τ ′−τ)

∫ τ ′

τi−1
dτ ′′

e−(τ ′−τ ′′)sτi−1 = e−aτsτi−1

(
eaτi−eaτi−1

a − eτi−1 e(a−1)τi−e(a−1)τi−1

a

)
.

It follows that I =
∑M−1

i=1 e−aτ e(a−1)τ −e(a−1)τi

a−1 (eτi − eτi−1)sτi−1 +
∑M

i=1 e−aτ

sτi−1

(
eaτi−eaτi−1

a − eτi−1 e(a−1)τi−e(a−1)τi−1

a

)
.

Noting that the first sum in the expression of I can go to i = M (the M-th
term is zero) we obtain (14).

Effective Computational Methods for Hybrid Stochastic Gene Networks 75

Fig. 3. Decomposition of the integration domain for computing the integral I.

C Appendix: Proof of the Theorem1

The proof the Theorem 1 relies on the following Lemma:

Lemma 1. Let (xt,yt, st) be a realization of the PDMP such that s(τj) = sj for
all j ∈ [0,M − 1] and let (xM

t ,yM
t , sM

t) be the push-forward solutions computed
with (13) and (14) considering that sM

t is piecewise constant on the intervals
[τj , τj+1], sM

t = sj , τj ≤ t < τj+1. Then, under the conditions of Theorem1,
P
[||yt − yM

t || > δ
] → 0 and P

[||xt − xM
t || > δ

] → 0 when M → ∞, for any
δ > 0 and for all t ∈ [0, τ].

We prove this Lemma for yt. The proof for xt follows the same principles.

Proof. For each gene i, xi
t and yi

t are solutions of the equations (38) with s = si.
The box B = {k0/ρ ≤ yi ≤ k1/ρ, (bk0)/(ρa) ≤ xi ≤ (bk1)/(ρa), 1 ≤ i ≤ N}
is invariant with respect to the gene network flow defined by (38). Precisely, if
the initial data is in B, then the entire trajectory is confined to B. If the initial
data is not in B, then the solutions xi

t, yi
t, 1 ≤ i ≤ N converge monotonically

to the unique point attractor yi = (k0 + (k1 − k0)si)/ρ, xi ≤ (b(k0 + (k1 −
k0)si))/(ρa), i ∈ [1, N] in B. From these elementary remarks it follows that the
jump rate is bounded, λ(xt,yt, st) < A, for all t ∈ [0, τ]. Therefore, the random
variables ηi, representing the number of jumps of the promoter i in the interval
[0, τ] has bounded mean E[ηi] < Aτ .

Consider that for the ith gene there are ηi jumps such that si changes from
ON to OFF or from OFF to ON, on the interval [0, τ].

The positions of these jumps are τ∗
jl

∈ [τjl
, τjl+1), for l ∈ [1, ηi]. Using (13) it

follows |yi
t−yi,M

t | ≤ e−ρτ k1−k0
ρ

∑ηi

l=1 |eρτ∗
jl −eρτjl | ≤ (k1−k0)

∑ηi

l=1(τjl+1 −τjl
) <

(k1 − k0)ηiC
M .

Using Markov’s inequality we find that P

[
(k1 − k0)ηiC

M > δ
]

≤ ACτ(k1−k0))
δM .

It follows that P

[
|yi

t − yi,M
t | > δ

]
→ 0 when M → ∞, for any δ > 0, 1 ≤ i ≤ N .

76 G. C. P. Innocentini et al.

The proof of the Theorem1 follows from the Lemma 1 because by construc-
tion, the promoter states have the same distribution in the push-forward and
PDMP schemes, and the convergence in probability of the mRNAs and of the
proteins implies the convergence in distribution of these variables.

References

1. Cai, L., Friedman, N., Xie, X.S.: Stochastic protein expression in individual cells
at the single molecule level. Nature 440(7082), 358 (2006)

2. Crudu, A., Debussche, A., Muller, A., Radulescu, O.: Convergence of stochastic
gene networks to hybrid piecewise deterministic processes. Ann. Appl. Probab. 22,
1822–1859 (2012)

3. Crudu, A., Debussche, A., Radulescu, O.: Hybrid stochastic simplifications for
multiscale gene networks. BMC Syst. Biol. 3(1), 89 (2009)

4. Eldar, A., Elowitz, M.B.: Functional roles for noise in genetic circuits. Nature
467(7312), 167 (2010)

5. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression
in a single cell. Science 297(5584), 1183–1186 (2002)

6. Ferguson, M.L., et al.: Reconciling molecular regulatory mechanisms with noise
patterns of bacterial metabolic promoters in induced and repressed states. Proc.
Natl. Acad. Sci. USA 109, 155 (2012)

7. Gupta, P.B.: Stochastic state transitions give rise to phenotypic equilibrium in
populations of cancer cells. Cell 146(4), 633–644 (2011)

8. Herbach, U., Bonnaffoux, A., Espinasse, T., Gandrillon, O.: Inferring gene regu-
latory networks from single-cell data: a mechanistic approach. BMC Syst. Biol.
11(1), 105 (2017)

9. Innocentini, G.C.P., Forger, M., Radulescu, O., Antoneli, F.: Protein synthesis
driven by dynamical stochastic transcription. Bull. Math. Biol. 78(1), 110–131
(2016)

10. Innocentini, G.C.P., Hodgkinson, A., Radulescu, O.: Time dependent stochastic
mRNA and protein synthesis in piecewise-deterministic models of gene networks.
Front. Phys. 6, 46 (2018)

11. da Costa Pereira Innocentini, G., Forger, M., Ramos, A.F., Radulescu, O., Hornos,
J.E.M.: Multimodality and flexibility of stochastic gene expression. Bull. Math.
Biol. 75(12), 2600–2630 (2013)

12. Kurasov, P., Lück, A., Mugnolo, D., Wolf, V.: Stochastic hybrid models of gene
regulatory networks-a PDE approach. Math. Biosci. 305, 170–177 (2018)

13. Lin, Y.T., Buchler, N.E.: Efficient analysis of stochastic gene dynamics in the
non-adiabatic regime using piecewise deterministic Markov processes. J. R. Soc.
Interface 15(138), 20170804 (2018)

14. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., Tyagi, S.: Stochastic mRNA
synthesis in mammalian cells. PLoS Biol. 4(10), e309 (2006)

15. Razooky, B.S., Pai, A., Aull, K., Rouzine, I.M., Weinberger, L.S.: A hardwired
HIV latency program. Cell 160(5), 990–1001 (2015)

16. Riedler, M.G.: Almost sure convergence of numerical approximations for piecewise
deterministic Markov processes. J. Comput. Appl. Math. 239, 50–71 (2013)

17. Tantale, K., et al.: A single-molecule view of transcription reveals convoys of RNA
polymerases and multi-scale bursting. Nat. Commun. 7, 12248 (2016)

Effective Computational Methods for Hybrid Stochastic Gene Networks 77

18. Thattai, M., Van Oudenaarden, A.: Stochastic gene expression in fluctuating envi-
ronments. Genetics 167(1), 523–530 (2004)

19. Thomas, P., Popović, N., Grima, R.: Phenotypic switching in gene regulatory net-
works. Proc. Natl. Acad. Sci. 111(19), 6994–6999 (2014)

20. Zeiser, S., Franz, U., Wittich, O., Liebscher, V.: Simulation of genetic networks
modelled by piecewise deterministic Markov processes. IET Syst. Biol. 2(3), 113–
135 (2008)

On Chemical Reaction Network Design
by a Nested Evolution Algorithm

Elisabeth Degrand, Mathieu Hemery, and François Fages(B)

Inria Saclay, Lifeware Group, Palaiseau, France
francois.fages@inria.fr

Abstract. One goal of synthetic biology is to implement useful func-
tions with biochemical reactions, either by reprogramming living cells or
programming artificial vesicles. In this perspective, we consider Chemical
Reaction Networks (CRN) as a programming language, and investigate
the CRN program synthesis problem. Recent work has shown that CRN
interpreted by differential equations are Turing-complete and can be seen
as analog computers where the molecular concentrations play the role of
information carriers. Any real function that is computable by a Turing
machine in arbitrary precision can thus be computed by a CRN over a
finite set of molecular species. The proof of this result gives a numerical
method to generate a finite CRN for implementing a real function pre-
sented as the solution of a Polynomial Initial Values Problem (PIVP).
In this paper, we study an alternative method based on artificial evolu-
tion to build a CRN that approximates a real function given on finite
sets of input values. We present a nested search algorithm that evolves
the structure of the CRN and optimizes the kinetic parameters at each
generation. We evaluate this algorithm on the Heaviside and Cosine func-
tions both as functions of time and functions of input molecular species.
We then compare the CRN obtained by artificial evolution both to the
CRN generated by the numerical method from a PIVP definition of the
function, and to the natural CRN found in the BioModels repository for
switches and oscillators.

1 Introduction

One goal of Synthetic Biology is to implement useful functions using biochemical
reactions, either by reprogramming living cells, or by programming artificial
devices. While the former approach is mainstream in synthetic biology [1,12,17,
19,41,47], examples of the later approach are given by the whole field of DNA
computing [2,8,11,15,38] or analog computing with enzymatic reactions [42],
possibly encapsulated in artificial vesicles [13].

Chemical Reaction Networks (CRN) are used to describe systems of chemical
reactions. In this article, we consider CRN as a programming language [20,
46]. We focus on their continuous semantics defined by Ordinary Differential
Equations (ODE) on the molecular concentrations. We study the CRN program
synthesis problem, i.e. the problem of designing a CRN for implementing a given
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 78–95, 2019.
https://doi.org/10.1007/978-3-030-31304-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_5

On Chemical Reaction Network Design 79

function, either a function of time (Problem1) or a function of input molecular
species (Problem 2):

Problem 1. Given a function f : [0, a] → R, construct a CRN such that one of
the species has a concentration A implementing the function f . That is A(t) =
f(t), t ∈ [0, a].

Problem 2. Given a function f : [0, a] → R, construct a CRN such that, when
initialized for a given input, one of the species converge to the desired result.
That is ∀x ∈ [0, a],X(t = 0) = PI(x) ⇒ A(t = 1) = f(x) where X is the vector
of species concentrations and PI a polynomial of degree one.

A recent result proving the Turing completeness of continuous CRN [20],
restricted to mass action law kinetics and with at most two reactants, has given
rise to a numerical method for compiling computable real functions and pro-
grams in finite CRN. This approach is implemented in Biocham-41 [20] and
CRN++2 [46] with some different design choices. The theoretical result states
that one can restrict to real functions presented as solutions of polynomial differ-
ential equations and polynomial initial values as functions of the inputs (PIVP).
For a positive PIVP, the transformation can use a CRN inference algorithm
from ODEs such as [29] or [21] initially dedicated to importing MatLab models
in SBML [25]. For negative variables, the transformation can use the dual-rail
encoding of a real variable by the difference between two positive variables for
the positive and negative parts respectively [37]. In the generated CRN the
molecular concentration play the role of information carriers, similarly to analog
computation performed by protein complexes in cells [17,43].

In this article, we study an alternative CRN design method based on artificial
evolution, and compare the results to the numerical method. In [15] a complete
search method is described for scanning the space of CRN that may implement a
given function with a limited number of species and reactions, and then optimiz-
ing the kinetic parameters using a metropolis like algorithm. This enumerative
algorithm is limited to small size CRN with only a handful of species and reac-
tions. Another method described in [6] consists in sketching a CRN in broad
outline and letting an optimization algorithm complete the holes to perform the
desired function. This method thus requires prior knowledge on the CRN. In
the framework of gene regulatory networks, [33] gives a method to infer network
parameters but with also prior knowledge on the structure of the network. In
[18] a method to evolve reaction networks is presented using the DNA toolbox
and one single genetic algorithm for both structure and parameters.

The method presented here does not require prior knowledge. It is based on
artificial evolution with the hope of finding CRN more akin to comparison to
natural CRN present in BioModels. The idea is to let an evolutionary algorithm
(EA) evolve a population of CRN to approximate a real function given on a finite
set of values. These data are either finite traces for approximating a function of

1 http://lifeware.inria.fr/biocham4.
2 https://github.com/marko-vasic/crnPlusPlus.

http://lifeware.inria.fr/biocham4
https://github.com/marko-vasic/crnPlusPlus

80 E. Degrand et al.

time (Problem 1), or dose-response diagrams for approximating a function of
input (Problem2). The general idea is to let evolve a population of potential
CRN while selecting them according to a fitness that is the distance between
their output and the desired target function. We take here as a distance the L2
norm evaluated in a specified set of points.

Such a CRN design method by artificial evolution can also be seen as a
machine learning procedure [45] to learn a CRN from traces either observed in
the systems biology perspective, or desired in the synthetic biology perspective.
This method may be seen as a learning problem akin to those currently solved
with neural networks or linear regression. The input is a set of points (xi, yi)
called data and the goal is to find a function f from a certain class that minimizes
the difference between the yi and f(xi). The output of the approximation is the
best function f . However, as the approximation function f is computed through
a CRN, we also hope for a network that will gives us some explanatory power
in systems biology, as well as some implementability in synthetic biology.

We present a nested evolution algorithm which combines a genetic algorithm
for evolving the CRN structures of a population of CRN, with a black-box con-
tinuous optimization procedure, namely the covariance matrix adaptation evo-
lutionary strategy (CMA-ES) [28], for optimizing the kinetic parameters of the
CRN by evolving a population of parameter settings. This nesting of two levels of
evolution has been proposed, see for instance [4] for mixed-variable optimization
problems in the framework of non-linear optimization problems, refined in [5]
to evolve a cell model with structure optimization and parameter optimization.
The authors suggest to use a better genetic algorithm for parameter optimiza-
tion and to parallelize the genetic algorithms. This is what we show here with
the choice of CMA-ES [28] for parameter optimization, and the parallelization
of both populations of the genetic algorithm and CMA-ES.

In the next section, we recall basic definitions of continuous CRN, their Tur-
ing completeness, and the automatic design method based on this approach.
In Sect. 3 we present our two level evolutionary algorithm for learning CRN
structure and kinetic parameters, and its parallel implementation. In Sect. 4 we
evaluate the results obtained with this algorithm on both functions of time and
input/output functions, by focusing in both cases, on the Heaviside function
as an ideal sigmoid function, and on the cosine function as an ideal oscillator.
On these examples, we compare the CRN obtained by artificial evolution to the
CRN obtained by compilation. In Sect. 5, we compare the CRN obtained by our
algorithm for the cosine function, to CRN present in BioModels using the sub-
graph epimorphism method [23,24], and discuss their relationship to circadian
clock models.

2 CRN Design by PIVP Compilation

In [20] we have shown that any computable function over the reals can be imple-
mented by a CRN over a finite set of molecular species. This result relies on previ-
ous results on analog computation and complexity showing the Turing complete-
ness of polynomial initial value problems (PIVPs), i.e. numerical integration with

On Chemical Reaction Network Design 81

arbitrary precision of polynomial ODEs from polynomial initial conditions [3].
More precisely, we showed

Theorem 1 ([20]). A function over the reals is computable (resp. in polynomial
time) if and only if it is computable by a CRN with mass action law kinetics using
only synthesis reactions with at most two catalysts, of the form

- => z or _ =[x]=> z or _ =[x+y]=> z

and annihilation reactions of the form
x_p + x_m => _

(resp. with trajectories of polynomial length).

This form of reactions based solely on catalytic synthesis and degradation by
annihilation is given by the proof of Turing completeness but is not very appeal-
ing from a biochemical point of view. It should be understood as an abstract form
of reactions which can be realized with real reactions, for instance by replacing
an annihilation reaction by a complexation reaction forming an inactive com-
plex, a synthesis reaction by a transformation reaction from an inactive form,
e.g. by a phosphorylation reaction where the catalyst is a kinase, etc. Such a
realization of abstract CRN in CRN with real enzymes is described in [14] using
the BRENDA database of enzymes3 and has been used for instance in [13] to
implement designed circuits with real enzymes in artificial vesicle.

Example 1. The cosine function of time can be specified by the PIVP

df/dt = z dz/dt = −f f(0) = 1 z(0) = 0

The CRN generated by the PIVP method introduces variables for the positive
and negative part of f and z together with annihilation reactions given with a
sufficiently high value rate constant fast :
biocham: compile_from_expression(cos, time, f).

_ = [z2_p] => f_p.
_ = [z2_m] => f_m.
_ = [f_m] => z2_p.
_ = [f_p] => z2_m.
fast*z2_m*z2_p for z2_m+z2_p => _.
fast*f_m*f_p for f_m+f_p => _.
present (f_p, 1).

biocham: list_ode.
d(f_p)/dt = z2_p-fast*f_m*f_p
d(f_m)/dt = z2_m-fast*f_m*f_p
d(z2_p)/dt = f_m-fast*z2_m*z2_p
d(z2_m)/dt = f_p-fast*z2_m*z2_p

The inference of general CRN has a low time complexity, linear in the number
of variables and monomials for generating general reactions [21]. However, the
transformation to reactions with at most two reactants, may take exponential
time in the worst case [9].
3 https://www.brenda-enzymes.org/.

https://www.brenda-enzymes.org/

82 E. Degrand et al.

3 CRN Design by Artificial Evolution

3.1 Nested Evolution Algorithms for Structure and Kinetics

The goal here is to learn a CRN that minimizes the error between the input trace
and the simulation trace of the CRN. Thanks to Theorem 1 we know that we
can restrict ourselves to elementary reactions with at most two reactants of some
simple form and with mass action law kinetics, i.e. to PIVPs with monomials of
degree at most 2.

While the structure of the CRN/PIVP defines what is possible, the value of
the parameters (i.e. kinetic parameters and initial concentrations) is essential
to the function and a bad exploration of the parameter space might lead to a
wrong rejection of an actually good structure. To solve this difficulty we use two
nested evolutionary algorithms where the first optimizes the structure and the
second optimizes the parameter values, as summarized in Fig. 1.

Fig. 1. Schematic representation of the nested evolution algorithm. The initialization
corresponds to the creation of different random individuals. The evaluation of a given
structure implies a sub-call to the CMA-ES algorithm with a limited time budget,
and only the best set of parameters is kept to compute the fitness of the individual in
the main algorithm. Elite selection is used where half the population is deleted while
the second one is copied, this scheme allows for fast selection (no random number is
needed) and keep a constant population size. The mutation scheme incorporates adding
or removing variables or monomials, and switching signs. Termination is enforced by
fixing the number of generations.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [28] is a
black-box derivative-free continuous optimization algorithm used here to opti-
mize the kinetic parameters at each step of the CRN structure evolution. This

On Chemical Reaction Network Design 83

algorithm enjoys many invariance properties with respect to scales as well as
linear, rotational or any order-preserving transformations. It is a state-of-the-
art algorithm that shows best performances on the hardest non-convex even
discontinuous problems [27]. Here the parameters are positive and are searched
according to a logarithmic scale. CMA-ES has been used in Biocham for param-
eter search and robustness optimization with respect to quantitative temporal
logic properties [22,39,40] with notable success in both systems biology [30] and
synthetic biology [13] as well as external control of cell processes [44].

Algorithm 1. Structure Optimization
function Evolution(f)

population ← InitializePopulation(f)
for g in generation do

for p in population do
StructureFitness(f,p)

end for
pop new ← Select(population)
population ← pop new + Mutate(pop new) � Concatenate the two lists

end for
return Select best(population)

end function

Algorithm 2. Parameter Optimization
procedure StructureFitness(f, pivp)

u ← Random(0, 1)
if u == 1 then

x0 ← RandomInitialState(pivp)
else

x0 ← InitialStateFromBest(pivp)
end if
fit value, fit param ← CmaEs(FitnessFunction(pivp),x0)
UpdateBestParameters(pivp, fit value, fit param)

end procedure

The top-level genetic algorithm for learning the structure of the PIVP is given
in Algorithm 1. Each monomial has a sign, + or −. To handle the constraint of
positivity of the concentration variables, a monomial in the ODE of one variable
cannot have a negative sign if the variable is not present in the monomial. For
example, the derivative of x can depend on −xy but not on −y which is equivalent
to say that a degradation reaction must have the degraded species as reactant.
This constraint ensures the positivity of the system (Prop. 1 in [21]). With this
provision, there exists a canonical (yet not unique) way of associating a CRN to

84 E. Degrand et al.

Algorithm 3. Fitness function for functions of time
function FitnessFunction(f, pivp, param)

coeff, y0 ← ParamToCoeff(param)
sol ← Integrate(pivp, coeff, y0)
return Loss(sol, f)

end function

Algorithm 4. Fitness function for functions of input
function FitnessFunction(f, pivp, param)

coeff, y0 ← ParamToCoeff(param)
value ← 0
for xi in x do

sol ← Integrate(pivp, coeff, y0(xi))
value ← value + Loss(sol, fi)

end for
return value/len(x)

end function

a PIVP, by associating a possibly catalyzed synthesis reaction to each positive
monomial, with mass action law kinetics with the monomial coefficient as rate
constant, and similarly a degradation reaction to a negative monomial.

The population of possible solutions is initialized with random PIVPs. The
number of variables is chosen in a given range with a uniform distribution. They
have 1 or 2 monomials per variable with the same probability.

To evaluate the fitness score of a given structure we rely on CMA-ES to find
a set of optimized kinetic parameters and initial concentration (Algorithm2).
As CMA-ES is a stochastic algorithm and its result may vary from one call to
another even for the same structure, only the best parameter set found so far is
used to affect the score (that is we do not allow the fitness to decrease). To keep
the computation time tractable, CMA-ES is called with a time limit (of the order
of the minute depending on the problem at hand). This also mean that, even
with a proper initialization of the CMA-ES seed, the result of this optimization
may vary according to the current state of the processor. However limiting the
number of function evaluations may drastically slow down the algorithm as large
PIVP are difficult to integrate.

As for selection, an elitist strategy is applied: the 50% best polynomials are
kept and then mutated. It is worth noting that this criterion is only based on
the ranking of the individual solutions according to their evaluation and is thus
robust with respect to the precise fitness definition.

Several types of mutations are used:

Adding a monomial with a coefficient exp(v) where v is sampled according to
the normal law N (0, 1).

Removing a monomial Note that if a variable has no more monomials, a
random monomial is added to this variable (thus avoiding an empty ODE).

On Chemical Reaction Network Design 85

Adding a variable to avoid empty variable, two monomials are added with
coefficients sampled as just explained, and the initial concentration is sampled
with the same law.

Removing a variable all the monomials of this variable are deleted too.
Restarting That is replacing the PIVP by a new random one having the same

number of variables and 1 or 2 monomials per variable (also called a restart,
this enables the exploration of the search space)

At each generation, one of the mechanisms above can happen. The probability
of adding or removing a monomial is 0.35. While the other mutations have
a probability of 0.1. Moreover, at each generation, the sign of a monomial is
changed (if it satisfies the positivity constraint). This high rate of mutation is
tempered by the fact that only one half of the population is mutated while the
other half is kept unchanged, thus ensuring that the best structures will never be
lost through the mutation operator. Hence the term of elitist selection. During
the mutation, the good parameters found during evaluation are kept. Note that
no cross-overs are implemented in our mutation operator.

After a fixed number of generations, the best structure of the population is
selected as the final result and CMA-ES is called a last time with an extended
time limit to fine tuned the parameters.

3.2 Parallel Implementation

The previous algorithm has been implemented in Python 3.6.3 using the CMA-
ES package cma, the numerical integrator LSODA of the scipy library, and the
parallelization package mpi4py [16].

In our evolutionary algorithm, the most time consuming part is the evaluation
part since it requires numerical integration to compare the simulation trace to
the objective trace. However, since the evaluations of the different individuals
in the population are independent, they can be parallelized. Furthermore, since
our algorithm uses two nested evolutionary algorithms, it can benefit from two
sources of parallelism. For each of them, we can achieve a linear speedup in the
number of processors.

The first layer of parallelism is easy to implement, as there is a function
Scatter that takes a list from a root process and scatter it to all processes. The
function Gather can perform the inverse operation. Adding the second layer
is more difficult, especially in our case where it is not possible to transform
the two layers into one layer. To overcome this challenge, using the function
parallelism is easy to implement, as there Split, new communicators are created.
There are as many new communicators as individuals in the population. At each
generation, the population is scattered between the different groups of processes.
Each group is dedicated to one individual. Each group performs the evaluation of
the individual. The population of CMA-ES is set here to 10 individual parameter
sets. In a group, during the evaluation part of CMA-ES, each individual of CMA-
ES is thus evaluated by a different process, through a scatter/gather mechanism.

86 E. Degrand et al.

4 Evolved CRN for Mathematical Functions

4.1 Functions of Time

In all this section, we use as fitness function the mean square error between our
goal and the simulation trace evaluated on a finite set of time points.

Cosine. Interestingly, the algorithm evolves PIVPs that can be reduced to the
following CRN of 3 species and 7 reactions4:

962*A*B for A =[B]=> _. present(A, 1).
4.78*C for _ =[C]=> A. present(B, 0.0028).
544*A*B for B =[A]=> _. present(C, 0.539).
0.477*B for _ =[B]=> B.
1.5 for _ => B.
0.648*B for _ =[B]=> C.
0.346*C for C => _.

On a trace of two periods, the obtained fitness value is L2(A, cos) = 0.042.
This is an excellent fit comparable to the fitness value of L2(fp, cos) = 0.039
obtained with the numerical method (Example 1) with a fast parameter set to
100.

In this CRN, the positive and negative parts of the cosine are the species
A and B. It is worth noticing that these two species are subjected to a fast
bi-degradation similar to the encoding of signed variables with two variables for
the positive and negative parts shown in Example 1. However, this CRN uses the
two parts in a non symmetric fashion that makes it unreachable for our compiler.

The oscillatory behavior of this CRN is the limit cycle of the ODE and is
reached for a large space of initial conditions. We can also gather together the
reactions that have similar monomials (reactions 1 and 3 for example) and even
if this affect the precise fit of the cosine, we check that the oscillatory behavior
is preserved.

Heaviside. The Heaviside function

Θ(t) =

{
0 if t < 0.5,

1 if t ≥ 0.5.
(1)

is a discontinuous (hence non-computable) function that cannot be defined by
a PIVP. Because it is an ideal step function, it is interesting to see what CRN
can emerge to best approximate that function. It takes nearly 10 times more
generations to evolve a good approximation for Heaviside than it takes to evolve
the cosine function. The best result found, with a fitness φ = L2(A,Θ) = 0.0078,
is of the following form:
4 The evolved CRN of this section are available at https://lifeware.inria.fr/wiki/Main/

Software#CMSB19b.

https://lifeware.inria.fr/wiki/Main/Software#CMSB19b
https://lifeware.inria.fr/wiki/Main/Software#CMSB19b

On Chemical Reaction Network Design 87

To understand the dynamics of this CRN, we see that the amplitude of
the output species is tuned by the parameter of the first reaction. The fourth
reaction (_ =[A+B]=> C) is actually unessential to the function even if it can
result in a better approximation, its suppression does not significantly modify
the trace. The core of the CRN is thus on the competition between species B
and C, both starting at low concentration and increasing abruptly around the
desired threshold. There, the last reaction imposes a slow-down that makes C
disappear and B stabilize. The species of interest A is then only a linear scaling
of B to respect the constraints imposed by the fitness function.

It is worth remarking that this solution is surprisingly close to the PIVP
method to transform a function of time in a function of input by multiplying
each monomial by a variable that decreases exponentially fast, hence halting the
computation on the desired state [20]. Here an exploding variable is halted in
its course to simulate non-linearity.

Another way our artificial evolutionary algorithm manages to produce Heav-
iside like functions is through the generation of sigmoidal functions. The CRN
below

k*A*B for B =[A]=> A. present(A, C0).
present(B, 1.0).

satisfies the relation C0 � exp(−k
2) in order to have the jump around one half,

and k large makes the jump as sharp as possible. Practically, this make the initial
concentration of A vanishingly small.

This mechanism may have several variants depending on the evolutionary
history followed by the algorithm. A common one is to implement the sigmoid
function through two species with large concentration in order to produce a sharp
exponential and to report the output on a third one that is a linear rescaling of
a previous one as is the case in the previous example.

4.2 Functions of Input Variables

In this section, the performance of a CRN is measured by recording only the
final value of its output species and using a mean square error as global loss
function. Here, final value mean the value at a predefined time (t = 1), to ensure
that this correspond to the steady state, the norm of the derivative is used as a
penalty. Note that the choice t = 1 has nothing particular as the time may be
rescaled.

88 E. Degrand et al.

Cosine. The PIVP structure that commonly emerges by artificial evolution is
the following one:

da

dt
= −2.9 · 102 · a − 1.8 · 10−1 · c (2)

db

dt
= −2.2 · 109 · ac − 4.2 · 10−10 · c (3)

dc

dt
= 3.8 · 10−5 · ab − 1.0 · 100 · c2 (4)

We choose to start from the PIVP to emphasize the importance of neutral trans-
formation in the final result of our EA. Here, both time 2.9 · 102t → t and the
last variable 7.7 · 106c → c can be rescaled, giving:

da

dt
= −a − 8.1 · 10−11 · c (5)

db

dt
= −ac − 1.9 · 10−19 · c (6)

dc

dt
= ab − 4.5 · 10−10 · c2 (7)

where all the variable are of the order of unity. The final term in c may safely
be ignored and this let us with the same PIVP as the one feed to our compiler
to generate the cosine of input:

da

dt
= −a (8)

db

dt
= −ac (9)

dc

dt
= ab (10)

Here again, a plays the role of a halting species and b and c compute the cosine
and sine functions that are halted on the desired value.

Sum of Two Inputs. The purpose here is to find a CRN to implement the
sum function f(x, y) = x + y, as a first example of a case with two inputs. The
best solution found by evolution is:

k1*A*A for A =[A]=> B. present(A, input1).
k2*A*A for _ =[A+A]=> C. present(B, input2).
k2*B*B for _ =[B+B]=> C. present(C, 1.44).
k2*A*B for _ =[A+B]=> 2C.
k2*C*C for C =[C]=> _.

where we have labeled with the same name the rate constants found nearly
equal by artificial evolution. On the other hand the values of k1 and k2 do
not play any role. Actually, k1 may even be chosen to be null, highlighting

On Chemical Reaction Network Design 89

a symmetry of the fitness function. The rest of the reaction implements the
equation: ċ = (a+b)2−c2, where the square enforces a faster dynamics and thus
a better convergence.

The general idea is however to balance the positive and negative monomials
of variable c to stabilize it on the desired result. A direct consequence of this
mechanism is that the initial concentration of C has no importance in the final
output. While a human engineer would thus fixed it to 0, our evolutionary algo-
rithm proposes a random value. We may however suspect that this is the mean
of the output used to train our CRN as such a choice would accelerate the mean
convergence time and decrease the final error.

That mechanism may be more clear if written without the squaring:

k1*A for _ =[A]=> C. present(A, input1).
k2*B for _ =[B]=> C. present(B, input2).
k3*C for C => _.

Interestingly, this also gives a generalization where different values for the rates
allow us to compute the function:

f [k1, k2, k3](x, y) =
k1
k3

x +
k2
k3

y. (11)

Several remarks should be done on this CRN. First, it provides a CRN to
compute online since a modification of the concentration of the input will be
transmitted to the output. This online CRN algorithm will have the form of an
exponential decay with a time rate 1

k3
. A fast dynamics (high k3) means that

either the output is small, or the energetic cost will be high. Finally, it is known
from the study of such process that on the stochastic regime, the distribution of
species C will follow a Poisson distribution with a variance equal to its mean. In
comparison, the solution found by our EA converges faster and present a higher
signal to noise ratio in stochastic semantics.

Heaviside. When considered as a function of input, the non-linearity of the
Heaviside function is no longer an issue as it can be computed with continuous
function such as a bi-stable switch. For example, starting from the simplest
bistable PIVP da

dt = a(1−a)(2a−1), our compiler generates the following PIVP:

3*A*A for _ =[A+A]=> A. present(A,input).
A for A => _. present(B,input2).
2*A*B for A =[B]=> _.
6*A*B for _ =[A+B]=> B.
4*B*B for B =[B]=> _.
2*B for B => _.

where input2 have to be the square of input. Interestingly, this switch CRN
is an instance of the Approximate Majority distributed algorithm extensively
studied and related to cell division cycle progression models in [7].

90 E. Degrand et al.

Another solution would be to activate a production and degradation cycle
based on the remainder of the input after a fast comparison to a predefined
threshold:

fast*A*C for A+C => _. present(A,input).
A for _ =[A]=> B. present(C,0.5).

A*B for B =[A]=> _.

The best CRN found by evolution in our experiments is however very different
from these two solutions5, and plays upon the dynamics of the network and the
precise point of evaluation defined by the input trace to fit, here at time t = 1.
The CRN found displays a transient state of variable length τt where the output
is near zero, and a single steady state where the output is near unity. The value
of the input impacts the time to reach the steady state so that if the input is
greater than one half then τt < 1 and the output is near 1 at evaluation time,
while in the other case, τt > 1 and at the evaluation time t = 1 the output is
null but just temporarily. This illustrates the typical problem of generalization
in machine learning for an input/output function specified by a finite trace.

5 Comparison to Natural CRNs in BioModels

One first remark illustrated by the previous examples, is that when we usually
end up with parameters value taking involved values it is often possible, by
clever variable transformation, to recover more natural values thus highlighting
several symmetries of our fitness function. This is typically the case when evolv-
ing the cosine function, the scale of the sine function is undefined and creates
a whole variety of solutions that are strictly equivalent up to a rescaling of two
parameters. This kind of symmetry of the fitness function is one of the plague of
biology as it is often difficult to identify them and they may obfuscate a simpler
design [26].

A second discussion may be raised by the two CRN for the cosine function of
time obtained respectively by the numerical method and the artificial evolution
algorithm. Figure 2 shows that those CRN can be compared to the circadian
clocks present in eukaryote and prokaryote albeit with strong differences in their
implementations. In prokaryotes, a circadian clock has been shown to be imple-
mented through a cycle of phosphorylation and dephosphorylation, such as of
the two sites S and T of a KaiC protein polymer found in cyanobacteria [35].
This mechanism is usually presented through a four step process:

ST → SpT → pSpT → pST → ST

where a p preceding a letter indicates that the corresponding site is phosphory-
lated. This mechanism is similar to the compiled version of our cosine function
where 4 species activates one another in a circular fashion:

cos+ → sin+ → cos− → sin− → cos+

5 This CRN is not shown in the main text but could be examined on the notebook
available at: https://lifeware.inria.fr/wiki/Main/Software#CMSB19b.

https://lifeware.inria.fr/wiki/Main/Software#CMSB19b

On Chemical Reaction Network Design 91

Fig. 2. Representation of our compiled (panel A) and evolved (panel B) CRN as reac-
tion graphs for the cosine function of time. Ellipses represent species, squares indicate
reactions in green for productions and red for degradations. Catalysts are linked to their
reactions with a bold black line. Panel C shows the molecular oscillator of cyanobac-
teria as described in [35]. Panel D shows the genetic oscillator of mammal (similar in
most eukaryotes) as proposed in [32]. (Color figure online)

where the upper signs denote the positive and negative part of the function.
The eukaryotes use a transcriptional mechanism where a CLOCK protein

activates the transcription of its own inhibitor. The action of the inhibitor is
however delayed through several steps that may vary from one organism to
another. Usually this involves translation, dimerization and transportation to
and from the nucleus. By using the graph matching method based on subgraph
epimorphism (SEPI) [24] to compare our evolved CRN to models of the BioMod-
els repository, we found a mapping from the mammalian circadian clock models
such as [32] toward the simple oscillator in panel B of Fig. 2 presented above. The
SEPI mapping makes B play the role of the transcription factor that activates
the transcription of the messenger RNA C that then became the protein A that
will bind to the transcription factor to form an inactive complex, thus inhibiting
the transcription.

Table 1 shows general SEPI comparison results with models in BioMod-
els [10]. We see that models presenting oscillations (circadian clock and cell cycle)
are far more likely to exhibit a SEPI toward one of our evolved network than the
MAPK models (the SEPIs found come from model 026 [36] and 010 [34]). The

92 E. Degrand et al.

Table 1. SEPI matchings from biological models in BioModels having between 5 and
15 species to the 10 best evolved CRNs (over 60 runs) for the cosine time function.

Model type No. of models Nb. SEPI matchings (min/mean/max) % SEPI

Circadian clock 13 3/7.8/12 60%

Cell cycle 22 6/10.1/17 45%

Mapk 9 0/0.7/2 08%

evolved model that harbors nearly all SEPI from both cell cycle and circadian
clock models is the one with the best fit presented in Sect. 4.1.

These connections between the result of our evolutionary algorithm and the
actual mechanisms found in biology suggest a form of evolutionary convergence.
It is well known in biology that organs in species that have evolved totally inde-
pendently may in fact be similar. There might be actually few ways to imple-
ment a clock that are easily found by evolution so much that every solution
that appears is actually a close repetition from the existing one. This kind of
evolution convergence has already been emphasized in the case of the evolution
of a biological logarithm were every successful run displays the same core mech-
anism [31]. This provides a tool to decipher the function and constraints of a
biochemical network by comparing it to an idealized mathematical framework
while still being able to make relevant connection with the biological case.

6 Conclusion

We have described a nested evolution algorithm to learn both the structure and
the kinetic parameters of a CRN for approximating a function given by a finite
trace of either time points for a function of time, or input values.

On a Heaviside function of time, the results obtained by artificial evolution
lead to a remarkably simple CRN of 3 molecular species and 5 reactions with
double catalysts which provide a very stiff transition although using mass action
law kinetics. This solution is more economical than the CRN generated by the
PIVP method for sigmoid functions [20]. On a Heaviside function of input, the
CRN found by evolution are slightly more complicated than the bistable switch
found in cell cycle CRN for instance, but much less complex than the MAPK
signaling network that plays a similar role [34].

On the cosine function of time, the best CRN found by evolution contains an
annihilation reaction similar to the CRN generated by the numerical method for
positive and negative variables, but one less reaction thanks to an intriguing non
symmetric use of the two variables which preserves the limit cycle. Interestingly,
the evolved and the PIVP generated structures could be compared to prokaryote
and eukaryote models of the circadian clock found in BioModels.

On the cosine function of input, a CRN surprisingly emerges with the struc-
ture of the CRN for cosine function of time, using the same trick as in [20] to
stop time at the desired input value.

On Chemical Reaction Network Design 93

These results are encouraging to further develop artificial evolution meth-
ods for CRN design in both perspectives of systems biology with the study of
evolution convergence, and synthetic biology in addition to rational design.

Acknowledgment. This work benefited from support from the ANR-MOST project
BIOPSY “Biochemical Programming System”ANR-16-CE18-0029 and granted access
to HPC resources with GENCI allocation 2018-AP011010715.

References

1. Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of
synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)

2. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule
provides a computing machine with both data and fuel. Proc. Nat. Acad. Sci.
100(5), 2191–2196 (2003)

3. Bournez, O., Graça, D.S., Pouly, A.: Polynomial time corresponds to solutions of
polynomial ordinary differential equations of polynomial length. In: 43rd Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2016,
LIPIcs, 11–15 July 2016, Rome, Italy, vol. 55, pp. 109:1–109:15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2016)

4. Cao, H., Kang, L., Chen, Y., Yu, J.: Evolutionary modeling of systems of ordinary
differential equations with genetic programming. Genet. Program Evolvable Mach.
1(4), 309–337 (2000)

5. Cao, H., Romero-Campero, F.J., Heeb, S., Cámara, M., Krasnogor, N.: Evolving
cell models for systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010)

6. Cardelli, L., et al.: Syntax-guided optimal synthesis for chemical reaction networks.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 375–395.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 20

7. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2, 656 (2012)

8. Cardelli, L., Kwiatkowska, M., Whitby, M.: Chemical reaction network designs for
asynchronous logic circuits. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS,
vol. 9818, pp. 67–81. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43994-5 5

9. Carothers, D.C., Parker, G.E., Sochacki, J.S., Warne, P.G.: Some properties of
solutions to polynomial systems of differential equations. Electron. J. Differ. Equ.
2005(40), 1–17 (2005)

10. Chelliah, V., Laibe, C., Novère, N.: Biomodels database: a repository of mathe-
matical models of biological processes. In: Schneider, M.V. (ed.) In Silico Systems
Biology, Methods in Molecular Biology, vol. 1021, pp. 189–199. Humana Press
(2013)

11. Chen, Y., et al.: Programmable chemical controllers made from DNA. Nat. Nan-
otechnol. 8, 755–762 (2013)

12. Chen, Y., Smolke, C.D.: From DNA to targeted therrapeutics: bringing synthetic
biology moving to the clinic. Sci. Trans. Med. 3(106), 106ps42 (2011)

13. Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided bio-
chemical programming of synthetic microreactors as diagnostic devices. Mol. Syst.
Biol. 14(4), E7845 (2018)

https://doi.org/10.1007/978-3-319-63390-9_20
https://doi.org/10.1007/978-3-319-43994-5_5
https://doi.org/10.1007/978-3-319-43994-5_5

94 E. Degrand et al.

14. Courbet, A., Molina, F., Amar, P.: Computing with synthetic protocells. Acta
Biotheor. 63(3), 309 (2015)

15. Dalchau, N., Murphy, N., Petersen, R., Yordanov, B.: Synthesizing and tuning
chemical reaction networks with specified behaviours. In: Phillips, A., Yin, P. (eds.)
DNA 2015. LNCS, vol. 9211, pp. 16–33. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21999-8 2

16. Dalcin, L.D., Paz, R.R., Kler, P.A., Cosimo, A.: Parallel distributed computing
using Python. Adv. Water Resour. 34(9), 1124–1139 (2011)

17. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation
in living cells. Nature 497(7451), 619–623 (2013)

18. Dinh, H.Q., Aubert, N., Noman, N., Fujii, T., Rondelez, Y., Iba, H.: An effective
method for evolving reaction networks in synthetic biochemical systems. IEEE
Trans. Evol. Comput. 19(3), 374–386 (2015)

19. Duportet, X., et al.: A platform for rapid prototyping of synthetic gene networks
in mammalian cells. Nucl. Acids Res. 42(21), 13440–13451 (2014)

20. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness
of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–
127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 7

21. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential
equations. Theor. Comput. Sci. 599, 64–78 (2015)

22. Fages, F., Soliman, S.: On robustness computation and optimization in BIOCHAM-
4. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 292–299.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 18

23. Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epimor-
phism problem. Discrete Appl. Math. 162, 214–228 (2014)

24. Gay, S., Soliman, S., Fages, F.: A graphical method for reducing and relating
models in systems biology. Bioinformatics 26(18), i575–i581 (2010). Special issue
ECCB 2010

25. Gomez, H.F., Hucka, M., Keating, S.M., Nudelman, G., Iber, D., Sealfon, S.C.:
MOCCASIN: converting MATLAB ODE models to SBML. Bioinformatics 21(12),
1905–1906 (2016)

26. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna,
J.P.: Universally sloppy parameter sensitivities in systems biology models. PLOS
Comput. Biol. 3(10), 1–8 (2007)

27. Hansen, N., Auger, A., Ros, R., Finck, S., Poš́ık, P.: Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009. In: Pro-
ceedings of the 12th Annual Conference Companion on Genetic and Evolutionary
Computation - GECCO 2010, p. 1689. ACM Press, New York (2010)

28. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

29. Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M. (ed.)
Colloquia Mathematica Societatis János Bolyai. Qualitative Theory of Differential
Equations, vol. 30, pp. 363–379 (1979)

30. Heitzler, D., et al.: Competing G protein-coupled receptor kinases balance G pro-
tein and β-arrestin signaling. Mol. Syst. Biol. 8(590) (2012)

31. Hemery, M., François, P.: In silico evolution of biochemical log-response. J. Phys.
Chem. B 19, 2235–2243 (2019)

32. Hong, C.I., Zámborszky, J., Csikasz-Nagy, A.: Minimum criteria for DNA damage-
induced phase advances in circadian rhythms. PLoS Comput. Biol. 5(5), e1000384
(2009)

https://doi.org/10.1007/978-3-319-21999-8_2
https://doi.org/10.1007/978-3-319-21999-8_2
https://doi.org/10.1007/978-3-319-67471-1_7
https://doi.org/10.1007/978-3-319-99429-1_18

On Chemical Reaction Network Design 95

33. Hsiao, Y.T., Lee, W.P.: Reverse engineering gene regulatory networks: coupling an
optimization algorithm with a parameter identification technique. BMC Bioinform.
15(Suppl. 15), S8 (2014)

34. Huang, C.Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase
cascade. PNAS 93(19), 10078–10083 (1996)

35. Kageyama, H., Nishiwaki, T., Nakajima, M., Iwasaki, H., Oyama, T., Kondo, T.:
Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC
phosphorylation cycle in vitro. Mol. Cell 23(2), 161–171 (2006)

36. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability
arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol.
164(3), 353–359 (2004)

37. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET
Syst. Biol. 5(4), 252–260 (2011)

38. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp.
123–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-
8 12

39. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for
robustness analysis with applications to synthetic gene networks. Bioinformatics
12(25), il69-il78 (2009)

40. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic
specifications with applications to parameter optimization and robustness mea-
sures. Theor. Comput. Sci. 412(26), 2827–2839 (2011)

41. Rubens, J.R., Selvaggio, G., Lu, T.K.: Synthetic mixed-signal computation in living
cells. Nat. Commun. 7, 11658 (2016)

42. Sarpeshkar, R.: Analog synthetic biology. Philos. Trans. R. Soc. Lond. A: Math.
Phys. Eng. Sci. 372(2012), 20130110 (2014)

43. Sauro, H.M., Kim, K.: Synthetic biology: it’s an analog world. Nature 497(7451),
572–573 (2013)

44. Uhlendorf, J., et al.: Long-term model predictive control of gene expression at the
population and single-cell levels. Proc. Natl. Acad. Sci. USA 109(35), 14271–14276
(2012)

45. Valiant, L.: Probably Approximately Correct. Basic Books (2013)
46. Vasic, M., Soloveichik, D., Khurshid, S.: CRN++: Molecular Programming Lan-

guage. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 1–18.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1 1

47. Vecchio, D.D., Abdallah, H., Qian, Y., Collins, J.J.: A blueprint for a synthetic
genetic feedback controller to reprogram cell fate. Cell Syst. 4, 109–120 (2017)

https://doi.org/10.1007/978-3-642-18305-8_12
https://doi.org/10.1007/978-3-642-18305-8_12
https://doi.org/10.1007/978-3-030-00030-1_1

Designing Distributed Cell Classifier
Circuits Using a Genetic Algorithm

Melania Nowicka1,2(B) and Heike Siebert1

1 Freie Universitaet, 14195 Berlin, Germany
m.nowicka@fu-berlin.de

2 Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany

Abstract. Cell classifiers are decision-making synthetic circuits that
allow in vivo cell-type classification. Their design is based on finding a
relationship between differential expression of miRNAs and the cell con-
dition. Such biological devices have shown potential to become a valuable
tool in cancer treatment as a new type-specific cell targeting approach.
So far, only single-circuit classifiers were designed in this context. How-
ever, reliable designs come with high complexity, making them difficult
to assemble in the lab. Here, we apply so-called Distributed Classifiers
(DC) consisting of simple single circuits, that decide collectively accord-
ing to a threshold function. Such architecture potentially simplifies the
assembly process and provides design flexibility. We present a genetic
algorithm that allows the design and optimization of DCs. Breast can-
cer case studies show that DCs perform with high accuracy on real-
world data. Optimized classifiers capture biologically relevant miRNAs
that are cancer-type specific. The comparison to a single-circuit classi-
fier design approach shows that DCs perform with significantly higher
accuracy than individual circuits. The algorithm is implemented as an
open source tool.

Keywords: Synthetic biology · Boolean modeling ·
Genetic algorithms · miRNA profiling · Cell classifiers · Cancer

1 Introduction

Synthetic biology has shown its immense potential in recent years in a wide array
of applications. This is particularly true for the medical field, where synthetic
biological systems are developed for versatile employment from diagnostics to
treatment [24,28]. Research in design and construction of cell classifier circuits
touches on both these areas. Cell classifiers are molecular constructs capable of
sensing certain markers in the environment, processing the input and reacting
with a signal-specific output. A prime example for this are miRNA-based clas-
sifiers that distinguish cell states, e.g., as healthy or diseased, based on their
miRNA expression profiles applying boolean logic (Fig. 1A) [15,26]. These cir-
cuits can be delivered to cells on plasmids or viral vectors and trigger the pro-
duction of a desired output, e.g., a toxic compound causing cell apoptosis in
diseased cells (Fig. 1B).
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 96–119, 2019.
https://doi.org/10.1007/978-3-030-31304-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_6&domain=pdf
http://orcid.org/0000-0002-2403-1042
https://doi.org/10.1007/978-3-030-31304-3_6

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 97

Fig. 1. (A) An exemplary boolean design of a two miRNA-input cell classifier. (B) A
schema showing two types of cells, healthy (solid line) and diseased (dashed line). The
classifiers are delivered to the cells, sense the internal input levels and respond with
respect to a given cell condition.

A variety of different approaches to designing synthetic circuits is available
[12,17,25]. However, to confront many application-derived limitations, circuit
designs must be often tailored to rigorous specifications. Since cell classifiers
must be feasible to implement in the lab, many constraints are posed on the
building blocks of these circuits that need to be encoded in the design problem.
So far, only a few different methods for designing single-circuit classifiers were
described [1,15]. Mohammadi et al. proposed two different heuristic approaches
[15]. The procedure performing with the highest accuracy in terms of sample
classification allows to optimize a classifier’s topology using a mechanistic model
of the circuit and a predefined set of biochemical parameters. Another approach
was presented by Becker et al. [1]. The authors propose a method for finding
globally optimal classifiers represented by boolean functions based on binarized
miRNA expression data. To search through the entire space of solutions in a short
time frame the authors apply logic solvers. Becker et al. compare their results
to the previously mentioned state-of-the-art method demonstrating significant
improvement in binary classification of presented classifiers [1].

While this research shows that theoretically single-circuit classifiers can per-
form such classification tasks [1,15], there is a number of challenges for the
approach in application. Depending on the heterogeneity of the data, to obtain
a clear-cut classification often a circuit of high complexity is needed. Gener-
ally, the cost both in time and money for classifier circuit construction in the
lab goes up the larger and more complex the circuit architecture gets, quickly
becoming not feasible at all [15]. A further problem is the robustness needed for
reliable performance when faced with uncertainty and noise in signals and wide
ranging possibilities for perturbations of the classifier functionality in natural
environments. To address these issues the principles of distributed classification,
as inherent in many natural systems such as the immune system and shown
to be an effective strategy, e.g., in machine learning, can be exploited [19,22].
Here, the idea is to design a set of different classifier circuits, also called dis-
tributed classifier, that perform classification in an integrated manner. Such a
set can consist of rather simple classifiers that still perform more accurately than
a complex single circuit classifier, since the individual classification results are
aggregated which compensates for individual mistakes. A theoretical design of

98 M. Nowicka and H. Siebert

such a distributed classifier based on synthetic gene circuits was presented by
Didovyk et al. [3]. The classifier is optimized by training a starting population
of simple circuits on the available data similarly to machine learning algorithms,
i.e., by presenting learning examples and successively removing low-performance
circuits. While this work considers only a quite specific scenario being designed
for bacterial cell cultures, it highlights the potential of the underlying idea of
using distributed classifiers.

Here, we adapt the distributed classifier approach proposed by Didovyk et al.
[3] to the problem of cell classifier design. We define a Distributed Classifier (DC)
as a set of single-circuit classifiers that decide collectively based on a threshold
function. Biologically, the threshold may correspond to a certain concentration
of the drug that allows to treat the cells or fluorescent marker allowing to clas-
sify the cell type [3,14,15]. According to Mohammadi et al. [15] such threshold
manipulation may be achieved by changing the biochemical parameters of a cir-
cuit model. Due to the high complexity of the problem, we apply a heuristic
approach to design and optimize DCs, namely, a genetic algorithm (GA). GAs
are evolution-inspired metaheuristics that allow to optimize populations of indi-
viduals [13]. Such evolutionary approaches were successfully applied to various
biological questions [11], e.g., design of synthetic networks and, in particular,
design of single-circuit classifiers [15,25]. Due to the high flexibility of GAs in
terms of design and parameters, the algorithm may be efficiently adapted to the
distributed classifier problem.

In this article, we illustrate the potential of distributed classifiers in appli-
cation, in particular, in cancer cell classification. The following section contains
preliminaries including the definition of a single-circuit and distributed classi-
fier. Section 3 describes the architecture of the proposed genetic algorithm for
the design and optimization of DCs. In Sect. 4 we present case studies performed
on real-world breast cancer data and compare the results with a single-circuit
design method proposed by Becker et al. [1]. Finally, we discuss the distributed
classifier performance and comment on potential future work.

2 Preliminaries

In this section we describe the data we employ to designing classifiers, intro-
duce single-circuit and distributed classifiers and propose binary classification
measures that allow to evaluate their performance.

2.1 miRNA Expression Data

The proposed method is a boolean approach and utilizes binarized and anno-
tated data. While our focus is on miRNA expression profiles, the approach can
naturally be applied to any data set of the format introduced below.

In cancer research, differentially expressed miRNAs provide a valuable source
of information about tumor development, progression and response to a therapy
[8,9]. Thus, dysregulated miRNAs have been considered as potential biomarkers

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 99

for cancer diagnosis and treatment. One of the approaches allowing to distin-
guish up- and down-regulated miRNAs is discretization of the expression data
into a finite number of states. Discretization provides clear and interpretable
information about the miRNA behaviour and makes the learning process from
the data more efficient [6]. However, the procedure is also related to a potential
information loss. We comment on this issue in Sect. 5.

Table 1. A miRNA expression data set.

ID Annots miR-a miR-b miR-c

1 0 0 1 0

2 0 0 1 0

3 1 1 0 0

4 1 0 0 0

5 1 1 0 0

We define a data set D = (S,A) as a finite set of samples S ⊆ {0, 1}m,
where m ∈ N is the number of miRNAs and A : S −→ {0, 1} is sample annota-
tion. Presented as a table, the first column includes unique sample IDs and the
second the annotation of samples (Annots), where 0 is a label assigned to nega-
tive class samples (healthy) and 1 to positive (cancerous). The following columns
are miRNA expression profiles describing the miRNA regulation among the sam-
ples. miRNAs are binarized into two states: up- (1/positive) and down-regulated
(0/negative), according to a given threshold. An example of a data set is pre-
sented in Table 1. A miRNA is non-regulated if for every sample its state is either
0 or 1 (e.g., Table 1, miR-c). Some miRNAs can perfectly separate the samples
into the two categories implied by the annotation (e.g., Table 1, miR-b).

2.2 Single-Circuit Classifier

A single-circuit cell classifier may be represented by a boolean function f :
S −→ {0, 1}. To make a classifier feasible to construct in the lab additional
constraints must be imposed on the function. We adopt here the constraints
introduced by Mohammadi et al. [15]. Accordingly, the function should be given
in Conjunctive Normal Form (CNF), i.e., a conjunction of clauses where each
clause is a disjunction of negated (negative) or non-negated (positive) literals.
Here, the literals correspond to the miRNAs and clauses to the gates. It may
consist of: (i) negative literals only in 1-element clauses (NOT gates) (ii) at
most 3 positive literals per clause (OR gate) (iii) up to 10 literals (miRNAs) and
up to 6 clauses (gates) in total (iv) including at most 4 NOT gates and 2 OR
gates. A circuit topology presented as a CNF satisfying the above-mentioned
constraints directly corresponds to the biological model of the circuit employed
by Mohammadi et al. [15]. An example of a classifier is presented below.

¬miR-a ∧ (miR-b ∨ miR-c) (1)

100 M. Nowicka and H. Siebert

The function should output 1/True in case of cancerous and 0/False in case
of healthy cells. The example function presented in Eq. 1 classifies a cell as posi-
tive/1 if miR-a is down-regulated and at least one of the other miRNAs (miR-b
or miR-c) is up-regulated.

2.3 Distributed Classifier

Here, we introduce a concept of Distributed Classifier (DC) for the cell classi-
fication problem. A DC is a finite set DC = {f1, ..., fc}, where fi is a boolean
function fi : S −→ {0, 1}, to which we will refer from now on as a Rule, c ≤ cmax,
c ∈ N, is the DC size and cmax ∈ N is an upper bound for the DC size. Motivated
by Sect. 2.2 a Rule must be a boolean function in a Conjunctive Normal Form
consisting of at most two single-literal clauses. An example of a DC is presented
below.

{miR-a, miR-b ∧ ¬miR-c, miR-a ∧ miR-d}.

We assume that each Rule in the set must be unique, i.e., we do not allow copies
of Rules in the DC. Also, two identical miRNA IDs cannot occur in one Rule,
i.e., a trivial false function is not allowed (a ∧ ¬a). Thus, the functions are in a
minimised form (a ∧ a = a). The DC categorizes cells according to a threshold
function FDC : S −→ {0, 1} with

FDC(s) =

{
0,

∑c
i=1 fi(s) < θ

1,
∑c

i=1 fi(s) ≥ θ,
(2)

where s ∈ S is a sample and θ ∈ [0, c] is a threshold. Here, we use θ = 	α · c
 as
the threshold, where α is a ratio that allows to calculate the decision threshold
based on the classifier size. The threshold is then rounded half up. FDC returns
1/True if a certain number of Rules (θ) outputs 1/True, e.g., α = 0.5 for c =5
indicates that at least 3 Rules must output 1/True to classify a cell as positive.

Depending on α one may receive different results. In case of a very low thresh-
old, e.g., if only one Rule outputing 1/True results in DC outputing 1/True, the
DC becomes simply a disjunction of Rules. Note, that the function may then
classify in favor of the positive class, as the decision to classify a sample as
positive is in fact made by only one rule. This effect is already reduced by not
considering 2-literal OR gates as rules. Otherwise, if the threshold is c (α = 1),
i.e., all the rules must output 1 for the DC to output 1, the function takes a form
of a conjunction of clauses staying close to the single-circuit classifier. Unlike the
disjunction, a conjunction may classify in favor of the negative class which may
decrease the sensitivity of the method. Applying intermediate thresholds results
in different combinations of those functions, therefore, different classification
performance. In terms of cell classifiers applied as a cancer treatment, one may
consider the following problem: in case of high α, the classifier may misclassify
the diseased cells resulting in false negatives. Thus, the treatment may be less
effective. However, low α may result in misclassification of healthy cells which

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 101

makes the treatment more toxic as the drug is released in those cells (false pos-
itives). Here, one should consider what type of errors is less desirable and apply
a suitable threshold. We discuss this issue further in Sect. 4.

2.4 Evaluation

Here, we introduce the measures we employ to evaluate DCs in terms of binary
classification. Many metrics that may be applied are available [20]. However,
real-world expression data is often heavily imbalanced, i.e., the samples are not
equally represented in the two classes. Data imbalance may significantly influence
the classification results [27]. Balanced Accuracy (BACC) is an intuitive and
easily interpretable metric that allows to balance the importance of samples in
both classes (Eq. 3) [20]. Thus, as a main measure of classifier’s performance we
apply BACC.

BACC(DC,D) =
TP
P + TN

N

2
(3)

where D is a given data set, P and N are the numbers of positive and nega-
tive samples in D, TP is the number of samples correctly classified as positive
and TN is the number of samples correctly classified as negative. TP and TN
are threshold-dependent values, i.e., they may change while applying different
threshold values for a given classifier. To evaluate other aspects of classifier’s per-
formance we employ additional common metrics such as sensitivity (TP/(TP +
FN)), specificity (TN/(TN + FP)) and accuracy ((TP + TN)/(P + N)). Sen-
sitivity represents the ability of the method to correctly distinguish samples
belonging to the positive class, while specificity shows the ability to correctly
distinguish those belonging to the negative class. Accuracy gives information
about the proximity of results to the true values, but does not take data imbal-
ance into account.

3 Genetic Algorithm

In this section we present the architecture of a GA applied to design and opti-
mization of DCs. In the following sections we describe the core structure of the
algorithm as well as the used parameters and operators.

3.1 General Description

The input miRNA expression data must be formatted as described in Sect. 2.1.
To optimize the DCs, seven parameters must be specified: iter - number of GA’s
iterations, ps - population size, i.e., the number of DCs allowed in the popula-
tion, cp - crossover probability, mp - mutation probability, ts - tournament size,
cmax - maximal size of a classifier, i.e., the number of single-circuit classifiers in
a DC, α - the decision threshold ratio. As an output, the algorithm returns a list
of all best solutions found over the GA’s iterations according to their balanced
accuracy (DCbest). In case of single-circuit classifiers, besides the accuracy, the

102 M. Nowicka and H. Siebert

complexity of a solution is also taken into account [1,15]. Thus, we choose the
solution consisting of the lowest number of rules as the optimal one. The algo-
rithm starts with a random generation of an initial population (Algorithm1, line
1). Next, the population is evaluated and a list of best solutions DCbest is created
(Algorithm 1, 2). Having the initial population generated, the algorithm starts
with a first generation. At the beginning, ps individuals are selected in so-called
tournaments as potential parents to be recombined, i.e., randomly exchange
genes. (Algorithm 1, 4–7). Many selection operators are described in the litera-
ture. Tournament selection allows to increase the chance of very good solutions
to be selected as parents while maintaining the diversity in the population and
can be efficiently implemented [23]. Next, the crossover occurs with the probabil-
ity cp (Algorithm 1, 8–13). Crossover allows to generate new solutions (children),
based on previously selected individuals (parents). Here, a child classifier may be
created by copying rules from parent classifiers by randomly choosing which par-
ent the next rule is duplicated from. As classifier sizes may differ, we propose two
recombination strategies described further in Sect. 3.4. Next, individuals in the
new population may mutate with the probability mp (Algorithm 1, 14). At the
end of each iteration the list of best solutions (DCbest) is updated (Algorithm 1,
15). All the described steps in a generation are repeated iter times (Algorithm 1,
3–16). Below we explain the details of the algorithm design.

Algorithm 1. A genetic algorithm for designing DCs.
Data: dataset D
Parameters : number of iterations iter, population size ps, crossover

probability cp, mutation probability mp, tournament size ts,
maximal size of DC cmax, threshold ratio α

Output: DCbest

1 Population ←− InitializePopulation(D, ps, cmax)
2 DCbest ←− Evaluate(Population, D, α)
3 for i = 0 to iter do
4 for i = 0 to ps/2 do
5 Parent1, Parent2 ←− SelectParents(Population)
6 Parents ←− Add(Parent1, Parent2)

7 end
8 for i = 0 to ps/2 do
9 Parent1, Parent2 ←− RandomlyChooseParents(Parents)

10 Child1, Child2 ←− Crossover(Parent1, Parent2, cp, cmax)
11 NewPopulation ←− Add(Child1, Child2)
12 RemoveUsedParents(Parent1, Parent2, Parents)

13 end
14 Population ←− Mutate(NewPopulation, D, mp, cmax)
15 DCbest ←− Evaluate(Population, D, α)

16 end

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 103

3.2 Population

Individual Encoding. An individual (i.e., a DC) is encoded as a vector of
single rules (genes). A unique ID and a fitness score is assigned to each individ-
ual. Both, the distributed classifier and single rules must satisfy the previously
described constraints (see Sect. 2.3). Note, rules must consist of unique miRNA-
inputs and DCs must consist of unique rules.

Initial Population. An initial population of a given size (ps) is generated
randomly, i.e., each classifier and each single rule in the classifier is randomly
initialized. Individuals in the population may be of a different size c and maxi-
mally of a size cmax. Thus, to generate a new individual, c must first be defined.
Then, each single rule is generated in a few steps. First, the rule size (RuleSize)
and RuleSize miRNA IDs are randomly chosen. Then, for each miRNA the
sign (positive/negative) is randomly assigned. This procedure (Algorithm 1, 1)
is described in details in the appendix (Algorithm2).

3.3 Fitness Function and Evaluation

As described in Sect. 2.4, to evaluate the classification performance of a dis-
tributed classifier we apply balanced accuracy as the fitness function. To count
TPs and TNs we iterate over samples and evaluate the performance of a DC
according to the threshold function described in Sect. 2.3. The fitness score is
calculated separately for each DC in the population (Algorithm1, 2, 15). As
mentioned before, each iteration of the GA is completed by the update of the
list of the best found solutions (DCbest). If the newly generated DCs perform
with higher BACC than the solutions currently stored in DCbest, the new best
DCs replace the previously found classifiers. If the new DCs have identical scores
as the solutions in DCbest they are added to the list of the best solutions (Algo-
rithm1, 15). The classification threshold is a parameter specified by the user. In
Sect. 4 we discuss the influence of different thresholds on the results.

3.4 Operators

Selection. Parents, to be potential candidates for recombination, are chosen in
a process of tournament selection (Algorithm 1, 4–7). In each selection iteration
two parents are chosen in separate tournaments. To select one parent, a number
of ts individuals is randomly chosen from the current population to participate
in a tournament. The winning candidate is an individual with the best fitness
score. The first and the second parent must be different individuals. Thus, in
each iteration, after choosing the first parent, its ID is temporarily blocked to be
re-selected. The steps are repeated to form a population of selected individuals
of the size ps. For more details see Appendix (Algorithm 3).

104 M. Nowicka and H. Siebert

Crossover. In each crossover iteration two parents are randomly chosen from
a population of selected individuals to recombine and generate two new indi-
viduals. Crossover (Algorithm 1, 8–13) occurs with the probability cp. To decide
whether parents exchange information a random number p is chosen. If p ≤ cp
then the two randomly chosen parents recombine. Otherwise, parents are copied
to a new population. If chosen parents are of the same size we perform uniform
crossover (Fig. 2A). To create two new individuals, rules from the first and sec-
ond parent are paired off. Then, the first rule in each pair is assigned with equal
probability to either the first or second child, while the second rule is assigned to
the other child. The step is repeated until all the rules from parents were utilized
and the children consist of the same number of rules as the parents. Otherwise,
if the sizes of parents differ, to preserve a chance for each rule to be exchanged,
we apply an index-based crossover (Fig. 2B). Here, the rules from the first and
second parent are paired off according to a randomly chosen index specifying the
position of a shorter parent in relation to the other one (see example in Fig. 2B).
Paired rules are crossovered uniformly. Rules that cannot be paired (due to dif-
ferent sizes) may be copied to a randomly chosen child. Note, the index-based
crossover may shorten the size of an individual as additional rules cannot be
copied to the larger classifier. Details on the implementation of the index-based
crossover may be found in the Appendix (Algorithms 4 and 5).

Fig. 2. Two crossover strategies applied in the presented GA. Yellow (light) and
green (dark) boxes represent rules in different DCs (parents or children). (A) Uni-
form crossover. (B) Index-based crossover. The crossover index is marked by a red
frame. (Color figure online)

Mutation. Mutation (Algorithm 1, 14) may occur on two levels: both, rules and
inputs may mutate. A rule may (i) be removed from a classifier, (ii) be added
to a classifier and (iii) be copied from one classifier to another. As mentioned
before, index-based crossover may shorten the classifier. Here, two possibilities
to extend the size of a classifier are available: a new rule may be initialized and
added to a classifier or copied from another classifier. These two options balance
the influence of crossover on the size of classifiers. An input may (i) be removed
from a rule, (ii) be added to a rule, (iii) may change the sign (i.e., become
a negative or positive input respecting the constraints described in Sect. 2.3).
Rules, being larger components affecting the classifier size, mutate with a lower
probability than inputs (0.2). Note, the maximal size of a classifier (cmax) must
be preserved. For more details see Appendix (Algorithm 6).

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 105

4 Case Study

In this section, we illustrate the potential of DCs in application by performing
case studies on real-world breast cancer data. We first describe the data sets used
to evaluate DC performance. Then, we present results of parameter tuning and
cross-validation. We analyze the classifier performances, as well as the relevance
of chosen miRNAs. Finally, we compare DCs with a single-circuit classifier design
approach.

4.1 Breast Cancer Data

To evaluate the performance of our approach we use Breast Cancer data sets
previously applied by Becker et al. [1] and Mohammadi et al. [15] to the design
of single-circuit classifiers. Originally the data was described by Farazi et al. [5]
and pre-processed by Mohammadi et al. [15]. The details about the samples and
miRNAs may be found in Table 2. The data set All includes samples of different
breast cancer subtypes. This allows to compare breast cancer samples with the
control samples. The following data sets are subsets representing different breast
cancer subtypes containing information about the differences between particular
subtypes and the control. Note, the data sets are significantly imbalanced as the
negative class is heavily underrepresented. The data is formatted according to
the description presented in Sect. 2.1. In terms of cell classifiers, non-regulated
miRNAs do not carry any information. Thus, we remove them from the data
sets before optimizing the classifiers. The last two columns of Table 2 include
numbers of miRNAs before and after the filtering procedure.

Table 2. Breast Cancer data description.

Dataset Samples Positive Negative miRNAs filtered miRNAs

All 178 167 11 478 57

Triple- 82 71 11 456 52

Her2+ 86 75 11 438 19

ER+ Her- 32 21 11 392 18

Cell Line 17 6 11 375 59

4.2 Parameter Tuning

To tune the parameters of the genetic algorithm we applied a random search
approach. The random search method allows to obtain results similar to the
grid search approach, while decreasing the computational cost [2]. This provides
an opportunity to extend the range of tested parameters. To tune the parameters
we used the Breast Cancer All data set. We performed 3-fold cross-validation
and repeated each GA run 10 times to obtain the average balanced accuracy on

106 M. Nowicka and H. Siebert

the test data. We have randomly chosen 300 combinations of 5 parameters in
following ranges: iter: 25–100, step 25; ps: 50–300, step 50; cp: 0.1–1.0, step 0.1;
mp: 0.1–1.0, step 0.1; ts: 10–50%, step 10% (of ps). We tuned the parameters for
α = 0.50 as in intermediate threshold ratio and cmax = 5 and chose a following
set of parameters based on average scores: iter = 75, ps = 200, cp = 1.0,
mp = 0.3, ts = 10% (20 individuals). We applied those parameters to all case
studies presented in the following sections. One may expect that the parameters
optimized for a given decision threshold may further improve the performance
of classifiers. We comment on it briefly in Sect. 5.

4.3 Cross-Validation

To evaluate the classifiers accuracy we performed 3-fold cross-validation for the
breast cancer data sets presented in Sect. 4.1. We partition the data sets into 3
folds nearly equal in terms of the number of samples representing each class per
fold. For each fold we run the algorithm once. For all tests we apply cmax = 5.
The classifier size cmax = 5 allows to preserve the maximal number of miRNA
inputs as proposed for single-circuit classifiers [1,15]. Maintaining similar com-
plexity of classifiers allows to compare the DC-based method to another app-
roach.

We test eight different values of α: 0.25, 0.35, 0.40, 0.50, 0.60, 0.65, 0.75, 0.85,
to evaluate the influence of the threshold function on the classification accuracy.
As mentioned before, the results might be influenced by the parameter tuning
being done for α = 0.5. The best results are presented in Table 3 (complete
results for different α values may be found in the Appendix, Table 5). The DCs
presented in the results are the first best shortest classifiers found by the algo-
rithm. If identical BACC values for the testing data were obtained for more than
one α, we present results for a DC with the highest BACC value on the training
data. In case of equal training BACC values, we present an exemplary result for
a chosen threshold. Table 3 includes the α-s and performance scores. All scores
except of BACCtrain were calculated on the testing data.

Table 3. Results of 3-fold cross-validation. For the Breast Cancer All data set we
found DCs performing with identical score values for two α values (0.50, 0.60) and for
ER+Her- for 6 different α values (0.35, 0.50, 0.60, 0.65, 0.75, 0.85)

Dataset α Sensitivity Specificity ACC BACC BACCtrain

All 0.50 0.92 0.92 0.92 0.92 0.98

Triple- 0.85 0.92 0.75 0.89 0.83 0.98

Her2+ 0.75 0.99 0.61 0.94 0.80 0.96

ER+ Her- 0.50 0.90 0.64 0.82 0.77 0.93

Cell Line 0.25 1.00 1.00 1.00 1.00 1.00

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 107

High BACC values obtained for the training data sets, as well as the average
final population BACC values (0.91), show that the populations converge over
the iterations resulting in high-performing DCs. The BACC values measured
for the testing data sets are significantly higher for the largest and the smallest
data sets than for the intermediate-size ones. Note, that for the data sets Her2+
and ER+ Her- the number of relevant miRNAs is significantly lower than for
the other data sets. Thus, the space of available solutions is also substantially
decreased. Cell Line data set includes 6 different miRNAs that perfectly separate
samples [1]. Thus, excellent performance was expected for this particular data
set. The accuracy is higher than BACC for all data sets as the metric is not
sensitive to data imbalance.

The sensitivity is high for all data sets meaning that the method success-
fully classifies samples belonging to a positive class. However, the specificity is
substantially decreased for Her2+ and ER+ Her- data sets. Note, the data sets
are significantly imbalanced, i.e., the negative class is strongly underrepresented.
Thus, even small number of errors results in substantially decreased specificity.

The best α values differ among the data sets. For the largest one, α is equal
or not much higher than 50%. The data sets of intermediate sizes (Triple- and
Her2+) favoured two more extreme α values. For the ER+Her- several α values
returned identical results (Appendix, Table 5). For the smallest data set the
lowest α value resulted in the highest BACC. Thus, the threshold seems to be
data-specific and should be adjusted to the data set for the DC to perform well.

Applying a certain threshold caused a shift in the rates of certain types of
errors. Here, we analyze false positive rates (FPrate) and false negative rates
(FNrate) observed among all data sets for two extreme applied α values. In
case of a low threshold (0.25, FPrate = 0.34) the shift is displayed towards mis-
classification of the negative samples in comparison to a very high threshold
(0.85, FPrate = 0.27). The high threshold (0.85, FNrate = 0.13) causes more
frequent misclassification of positive samples in comparison to the low one (0.25,
FNrate = 0.04). The influence of a certain threshold on the shift should be fur-
ther investigated. Complete information about FPrates and FNrates for different
thresholds may be found in Appendix, Table 6.

The tests were performed using Allegro CPU Cluster provided by Freie Uni-
versitaet Berlin1. An average run-time is 45 min for one cross-validation fold of
the largest data set employed in the case studies. The tests may be performed on
a personal computer. However, the breast cancer data sets consist of up to 180
samples and up to 60 relevant miRNAs. Thus, one should consider performing
extended scalability tests to estimate the run-time limits of the method.

4.4 Analysis of Input Viability

In this section we analyze miRNA inputs that occur in two exemplary classifiers.
We chose the best performing classifiers for the largest data set (All) representing
all subtypes and the smallest Cell Line data set.

1 https://www.allegro.imp.fu-berlin.de/Cluster.

https://www.allegro.imp.fu-berlin.de/Cluster

108 M. Nowicka and H. Siebert

For breast cancer All two different α values resulted in the highest BACC. We
found that classifiers for each cross-validation fold in the data set are identical
for both α values. Also, all the classifiers are of the same size c = 4. In this
case the applied α does not change the threshold function between both values
(0.50 and 0.60), i.e., for all data sets at least 2 Rules must output 1 to classify
a cell as positive. Below we present a DC found for the third cross-validation
fold of the All data set. The classifier consists of 4 different 1-input rules. We
analyzed the miRNAs and found that all of them may be relevant for cancer
sample classification. The classifier is presented below.

{¬miR-378, miR-200c, ¬miR-145, ¬miR-451-DICER1}

miR-378, miR-145, miR-451-DICER1 are described as down-regulated in
breast cancer [4,5], e.g., the study by Ding et al. [4] has shown that underex-
pression of miR-145 is related to increased proliferation of breast cancer cells.
Also, miR-378 occurred as down-regulated in the best 1-input single-circuit clas-
sifier presented previously by Becker et al. for the same data set [1]. miR-200c
is marked as up-regulated in breast cancer in [21].

Another classifier we present is a DC for the third cross-validation fold for
the Cell Line data set:

{¬miR-146a, ¬miR-143}

For most of the α values the performance of found DCs was very low for this
particular fold in the Cell Line data set (BACC = 0.50). A perfect classifier of
size 2 performing with BACC = 1.00 on both training and testing data was found
with α = 0.25, i.e., one of 2 rules must output 1 to classify the cell as positive.
We found that both, miR-146a and miR-143, are described as down-regulated
in breast cancer [10,16].

4.5 Comparison to Other Methods

We optimized single-circuit classifiers with the ASP-based method proposed by
Becker et al. [1] by performing 3-fold cross-validation using the same data sets
and identical division into folds. The objective function of the ASP algorithm is
based on the minimization of the total number of classification errors. Note that
the ASP method may return several optimal classifiers. Different combinations
of FPs and FNs influence the balanced accuracy. Thus, to increase the chance
of ASP to perform well, we have chosen the best classifiers according to their
BACC. Here, we do not compare our results to Mohammadi et al. [15] as the
approach did not perform better than the ASP-based approach as described by
Becker et al. in terms of binary classification [1] (Table 4).

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 109

Table 4. Comparison of results of 3-fold cross-validation for the ASP-based approach
proposed by Becker et al. [1] and for the GA (as in Table 3).

Dataset Method Sensitivity Specificity ACC BACC BACCtrain

All GA 0.92 0.92 0.92 0.92 0.98

ASP 0.96 0.47 0.93 0.72 0.92

Triple- GA 0.92 0.75 0.89 0.83 0.98

ASP 0.89 0.44 0.83 0.67 0.96

Her2+ GA 0.99 0.61 0.94 0.80 0.96

ASP 1.00 0.61 0.95 0.81 0.96

ER+ Her- GA 0.90 0.64 0.82 0.77 0.93

ASP 0.90 0.64 0.82 0.77 0.93

Cell Line GA 1.00 1.00 1.00 1.00 1.00

ASP 0.83 1.00 0.93 0.92 1.00

The DC-based method outperformed the single-circuit approach in 3 of 5 case
studies. For two other data sets the resulting BACC (test) values are either iden-
tical (ER+Her-) or very similar (Her2+). This may imply that further improve-
ment of classifier performance for those data sets is not possible with the cur-
rently applied techniques. The training BACC values are also significantly higher
for the DC-based approach. Note, the DC-based design method explores a dif-
ferent search space than the single circuit approach. Although single circuits are
also allowed as 1-rule classifiers, their complexity is substantially lower in com-
parison to single circuits. Additionally, ASP returns globally optimal solutions,
i.e., it adjusts the classifier perfectly to the training data, which may cause over-
fitting. Although, the classifiers obtain high BACC on the training data (average
for all data sets: 0.95), the classifiers may be too specific to perform well on the
testing data.

The scalability of the ASP-based approach was previously shown by Becker
et al. [1]. As mentioned before, the ASP-based approach optimizes much simpler
classifiers than the GA-based method. Thus, the run-times of both approaches
are not easily comparable.

5 Discussion

In this article, we introduced a new approach to cell classifier design. The concept
of DCs proposed by Didovyk et al. [3] was re-formalized in the context of miRNA-
based cell classification. We designed and implemented a genetic algorithm that
allows design and optimization of DCs. We performed case studies on real-
world data and compared our results to a single-circuit design method obtaining
significantly higher or similar accuracy.

110 M. Nowicka and H. Siebert

DCs show immense potential as an alternative to single-circuit designs. Pre-
sented case studies demonstrate the DC’s ability to perform classification on
real-world cancer data. The results obtained on the training data show that
the proposed genetic algorithm allows to optimize classifiers that achieve high
accuracy. The cross-validation demonstrates that the optimized DCs classify
unknown data with high accuracy. The data sets for which the algorithm returns
the worst results (Her2+, ER+Her-) are ones with the lowest number of rele-
vant miRNAs. Thus, the number of possible solutions is significantly decreased
in contrast to other data sets. The best performing decision thresholds differ sig-
nificantly among data sets. However, higher α values seem to be more efficient.
Testing a wide range of thresholds while optimizing the classifiers is strongly rec-
ommended. The comparison to a single-circuit design method shows that DCs
outperformed single-circuit classifiers on most of the presented data sets accord-
ing to balanced accuracy. Although the GA performs better on the largest and
the smallest data sets than on the intermediate-size ones, the results obtained for
both compared methods for Her2+ and ER+Her- are very similar which may
suggest that for those data sets significant improvement is not possible. The
improvements in binary classification may be a result of applying a different
strategy to cell classifier design. Here, single-circuit decision is complemented by
a collective classification based on a threshold function. Thus, the DCs may be
more resistant to data noise than single-circuit classifiers.

Generally, the problem of designing reliable and efficient DCs begins with the
initial data processing. As mentioned before, the data sets employed for the case
studies are significantly imbalanced. Although we apply an objective function
that allows to partially overcome this issue, one may consider applying data bal-
ancing methods such as weighted schemes that balance the sample importance
[7]. Furthermore, our approach to the design of DCs is based on binarized data
sets. As mentioned before, data discretization allows obtaining clear-cut infor-
mation about miRNA regulation and efficient exploration of the search space.
One advantage of this data processing procedure is absorption of noise coming
from, e.g., lab artifacts. However, simultaneously some information that may
be valuable for the classification is lost. Considering binarization according to
a given threshold, miRNAs having their concentrations significantly higher (or
lower, respectively) than the threshold may be more informative. Thus, one may
introduce a multi-objective function that allows to optimize both, the accuracy
and the use of particular miRNAs according to, e.g., a weighted scheme favoring
more reliable miRNAs.

Adapting the ASP approach to classifier design, one could apply ASP to the
optimization of DCs, obtain globally optimal solutions and compare with the
heuristic approach. However, ASP searches through the entire solution space;
thus, the run-time may be significantly increased with the rising number of
possible combinations. As we expect that this may significantly limit the ASP-
based optimization, one may explore other possibilities. In the proposed GA the
initial population is generated randomly, i.e., there is no preference in choosing

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 111

particular miRNAs or gate signs that built rules. One may optimize the initial
population by creating rules taking such preferences into account. The ASP
allows to optimize single short classifiers with relaxed constraints in a short time,
e.g., allowing up to a certain number of errors. This may generate a pool of rules
that are pre-optimized resulting in a better starting point for the algorithm.

Although the results demonstrate that classifiers perform with high accuracy,
the possibilities to further develop the presented method should be explored.
Certainly, the approach must be tested using more data representing variety
of cancer types. Although the proposed genetic algorithm performed well on
the presented case studies, particular parts of the algorithm may be improved.
In this work we do not tune parameters for different applied thresholds due
to time-consuming calculations. It should be further investigated whether the
parameters may be optimized for certain thresholds to improve the performance
of classifiers. Additionally, different selection operators may be tested to evaluate
the influence of a chosen operator on the results [23]. Although tournament
selection is described in the literature as a well-performing operator, some other
operators may be more accurate for particular problems than the commonly
recommended ones.

Although DCs are not yet applied in terms of cancer cell classification, the
approach should be further investigated. DCs are designed based on available
building blocks that are in fact single-circuit classifiers. Mohammadi et al. [15]
presented a biochemical model of a single-circuit classifier that allows to manip-
ulate the output compound concentration. Thus, the biological output threshold
for a given classifier may be adjusted to perform the classification in living cells.
As the on-off single-circuit response may be regulated on the biological level, the
sum of their outputs should also be adaptable for a given DC. This needs to be
investigated through further work in the lab.

Data and Software Availability. The algorithm is implemented in Python
3. The scripts, as well as the data used to tune the parameters and test the
algorithm’s performance including the results, are available at GitHub [18].

Aknowledgements. We would like to thank to P. Mohammadi, Y. Benenson and N.
Beerenwinkel (ETH Zurich) for sharing the breast cancer data with us. MN would like
to thank to J. Bartoszewicz (RKI, Berlin) for his valuable comments and support with
cluster handling.

Appendix

Algorithm2. The algorithm describes the generation of an initial population of
size ps (Sect. 3.2). ps individuals are created randomly, i.e., the number of rules is
randomly chosen and the rules are randomly generated. To create an individual
its size must be first specified (line 2). Then, c rules must be generated in a

112 M. Nowicka and H. Siebert

few steps. First, the size of a rule (RuleSize) and miRNA IDs (miRNAs) must
be randomly chosen (lines 4–7). Then, the sign (positive/negative) is randomly
assigned to the miRNAs (line 8). Note that in case of RuleSize = 2, the miRNAs
are connected with an AND. c rules generated as described above create an
individual which may be added to a population (line 12). The steps are repeated
until the population consists od ps individuals (lines 1–11).

Algorithm 2. Initialization of a first population.
Data: dataset D
Parameters: population size ps, maximal size of a DC cmax

Output: Population
1 for i = 1 to ps do

/* randomly choose the size of a new classifier */

2 c ←− RandomlyChooseInRange(1, cmax)
3 for i = 1 to c do

/* randomly choose the size of a new rule */

4 RuleSize ←− RandomlyChooseInRange(1, 2)
/* randomly choose miRNA IDs */

5 miRNAs ←− RandomlyChooseIDs(D, RuleSize)
/* randomly assign miRNA signs */

6 miRNAs ←− RandomlyAssignSigns()
/* create a new rule */

7 Rule ←− CreateARule(miRNAs)
/* add a new rule to a classifier */

8 Individual ←− Add(Rule)
9 end

/* add a new classifier to a population */

10 Population ←− Add(Individual)
11 end

Algorithm3. The algorithm describes the selection of parents that are poten-
tial candidates to recombine (Sect. 3.4). The parents are chosen in tournaments
of size ts, i.e., ts candidates are randomly chosen from the population to partici-
pate in a tournament (lines 1–5, 7–11). In each round 2 parents are selected from
the population. The winning candidates are individuals with the highest BACC
(lines 5, 11). After the first parent is selected its ID is temporarily blocked to
be re-selected (line 6). This allows to diverse the population of selected parents.
The new population of selected parents is then utilized to perform crossover.

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 113

Algorithm 3. Selection of parents
Input: Population
Parameters: population size ps, tournament size ts
Output: Parent1, Parent2
/* repeat adding to a tournament ts times */

1 for i = 1 to ts do
/* randomly choose an individual’s ID */

2 Candidate ←− RandomlyChooseInRange(1, ps)
/* add a candidate ID to a tournament */

3 Candidates ←− Add(Candidate)
4 end

/* choose the best parent in a tournament */

5 Parent1 ←− SelectBest(Candidates)
/* block a chosen ID to be re-selected */

6 ps ←− BlockID(Parent1, ps)
7 for i = 0 to ts do

/* randomly choose an individual’s ID */

8 Candidate ←− RandomlyChooseInRange(1, ps)
/* add a candidate ID to a tournament */

9 Candidates ←− Add(Candidate)
10 end

/* choose the best parent in a tournament */

11 Parent2 ←− SelectBest(Candidates)

Algorithm4. The algorithm describes the crossover procedure performed on
the population of selected parents (Sect. 3.4). Each couple of parents chosen ran-
domly from the population of selected parents exchange genes with the probabil-
ity cp. If the randomly chosen probability is lower than cp the parents undergo
the crossover (lines 2–13). Otherwise, the parents are copied directly to a new
population (line 15). If parents are of the same size, uniform crossover is per-
formed (line 11–12). Otherwise, index-based crossover is applied (lines 7–9). Both
procedures are described in details in Sect. 3.4.

Algorithm5. The algorithm describes the index-based crossover that we apply
if the sizes of parents differ to preserve a chance for each rule to be exchanged.
Here, the rules from the first and second parent are paired off according to a
randomly chosen index specifying the position of a shorter parent in relation
to the other one. The index is chosen randomly and is in range between 1 and
ParentSize1-ParentSize2 (Algorithm 4, line 7). Paired rules are crossovered
uniformly. Rules that cannot be paired (due to different sizes) may be copied to
a randomly chosen child. As a result, the number of rules in each child is between
the minimum and the maximum size of the two parents. Note, the index-based
crossover may shorten the size of an individual as additional rules cannot be
copied to the larger classifier. This procedure is described in details in Sect. 3.4.

114 M. Nowicka and H. Siebert

Algorithm 4. Crossover
Input: Parent1, Parent2, crossover probability cp
Output: Child1, Child2
/* randomly choose the probability of crossover */

1 probability ←− DrawProbability(0,1)
/* if probability ≤ cp perform crossover */

2 if probability ≤ cp then
/* assign a longer parent to Parent1 */

3 Parent1, Parent2 ←− AssignParentsBySize(Parent1, Parent2)
/* assign sizes of parents */

4 ParentSize1 ←− Size(Parent1)
5 ParentSize2 ←− Size(Parent2)

/* if parents sizes differ perform index-based crossover */

6 if ParentSize1 �= ParentSize2 then
/* randomly choose the crossover index */

7 CrossoverIndex ←− RandomlyChooseInRange(1, ParentSize1 -
ParentSize2)
/* perform index based crossover */

8 Child1, Child2 ←− IndexCrossover(Parent1, Parent2,
ParentSize1, ParentSize2, CrossoverIndex)

9 Population ←− Add(Child1, Child2)
10 else

/* if parents have identical sizes perform uniform crossover

*/

11 Child1, Child2 ←− UniformCrossover(Parent1, Parent2)
/* add children to a new population */

12 Population ←− Add(Child1, Child2)
13 end
14 else

/* if probability > cp copy parents to a new population */

15 Population ←− Add(Parent1, Parent2)
16 end

Algorithm6. The algorithm describes mutation (Sect. 3.4). Mutation may
occur on two levels: both, rules and inputs may mutate. A rule may (i) be
removed from a classifier, (ii) be added to a classifier and (iii) be copied from
one classifier to another (lines 5–17). An input may (i) be removed from a rule,
(ii) be added to a rule, (iii) may change the sign i.e., become a negative or pos-
itive input (lines 19–32). Rules, being larger components affecting the classifier
size, mutate with a lower probability than inputs (0.2). Note, the maximal size
of a classifier (cmax) must be preserved.

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 115

Algorithm 5. Index-based crossover
Input: Parent1, Parent2, ParentSize1, ParentSize2, CrossoverIndex
Output: Child1, Child2

1 for i = 1 to ParentSize1 do
/* decide whether the rule will be exchanged */

/* SwapMask=1 corresponds to rule exchange */

/* SwapMask=0 corresponds to copying without exchanging */

2 SwapMask ←− RandomlyChooseInRange(0, 1)
/* 1 - rule is exchanged */

3 if SwapMask = 1 then
/* if the rules do not pair off */

/* i.e., there is no possibility to exchange rules */

4 if i < CrossoverIndex OR i ≥ CrossoverIndex + ParentSize2
then

/* copy a rule from Parent1 to Child2 */

5 Child2 ←− CopyRule(Parent1, i)
6 else

/* if the rules pair off exchange rules */

/* copy a rule from Parent2 to Child1 */

7 Child1 ←− CopyRule(Parent2, i)
/* copy a rule from Parent1 to Child2 */

8 Child2 ←− CopyRule(Parent1, i)
9 end

10 else
/* 0 - rule is not exchanged */

11 if i < CrossoverIndex OR i ≥ CrossoverIndex + ParentSize2
then

/* copy a rule from Parent1 to Child1 */

12 Child1 ←− CopyRule(Parent1, i)
13 else

/* else copy rules to the parents without exchanging */

/* copy a rule from Parent1 to Child1 */

14 Child1 ←− CopyRule(Parent1, i)
/* copy a rule from Parent2 to Child2 */

15 Child2 ←− CopyRule(Parent2, i)
16 end
17 end
18 end

116 M. Nowicka and H. Siebert

Algorithm 6. Mutation
Input: Population, maximal size of a DC cmax

Output: Population

1 for i = 1 to ps do

/* randomly choose the probability of mutation */

2 probability ←− DrawProbability(0,1)

/* if probability ≤ mp perform mutation */

3 if probability ≤ mp then

/* choose the mutation level */

/* 1 corresponds to mutation of a rule */

/* 2-4 corresponds to mutation of an input */

4 MutationLevel ←− RandomlyChooseInRange(1, 5)
5 if MutationLevel = 1 then

/* choose the mutation type */

6 MutationType ←− DrawItem(add, remove, copy)

7 switch MutationType do

8 case add

/* add rule */

9 AddRule(Population, i, cmax)

10 end
11 case copy

/* copy rule */

12 CopyRule(Population, i, cmax)

13 end
14 case remove

/* remove rule */

15 RemoveRule(Population, i)

16 end

17 endsw

18 else

/* choose the mutation type */

19 MutationType ←− DrawItem(add, remove, sign)

20 switch MutationType do
21 case add

/* add input */

22 Rule ←− DrawRule(1, ps)
23 AddInput(Population, i, Rule)

24 end
25 case remove

/* remove input */

26 RemoveInput(Population, i, cmax, Rule)

27 end
28 case sign

/* change sign of an input */

29 ChangeInputSign(Population, i, Rule)

30 end

31 endsw

32 end

33 end

34 end

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 117

Table 5. Results of 3-fold cross-validation.

Dataset α Sensitivity Specificity ACC BACC BACCtrain

All 0.85 0.89 0.83 0.88 0.86 0.96

0.75 0.94 0.81 0.93 0.87 0.98

0.65 0.95 0.72 0.93 0.83 0.98

0.60 0.92 0.92 0.92 0.92 0.98

0.50 0.92 0.92 0.92 0.92 0.98

0.40 0.94 0.64 0.92 0.79 0.99

0.35 0.97 0.72 0.96 0.85 0.99

0.25 0.96 0.72 0.94 0.84 1.00

Triple- 0.85 0.92 0.75 0.89 0.83 0.98

0.75 0.96 0.67 0.92 0.81 0.99

0.65 0.94 0.58 0.89 0.76 1.00

0.60 0.93 0.64 0.89 0.78 1.00

0.50 0.93 0.64 0.89 0.78 1.00

0.40 0.94 0.56 0.89 0.75 1.00

0.35 0.94 0.53 0.89 0.74 0.99

0.25 0.94 0.53 0.89 0.74 1.00

Her2+ 0.85 0.99 0.44 0.92 0.72 0.96

0.75 0.99 0.61 0.94 0.80 0.96

0.65 0.99 0.53 0.93 0.76 0.96

0.60 1.00 0.53 0.94 0.76 0.96

0.50 1.00 0.53 0.94 0.76 0.96

0.40 0.99 0.53 0.93 0.76 0.96

0.35 1.00 0.53 0.94 0.76 0.96

0.25 1.00 0.53 0.94 0.76 0.93

ER+ Her- 0.85 0.90 0.64 0.82 0.77 0.93

0.75 0.90 0.64 0.82 0.77 0.93

0.65 0.90 0.64 0.82 0.77 0.93

0.60 0.90 0.64 0.82 0.77 0.93

0.50 0.90 0.64 0.82 0.77 0.93

0.40 0.90 0.53 0.78 0.72 0.93

0.35 0.90 0.64 0.82 0.77 0.93

0.25 0.90 0.53 0.78 0.72 0.91

Cell Line 0.85 0.67 1.00 0.87 0.83 1.00

0.75 0.67 1.00 0.87 0.83 1.00

0.65 0.67 1.00 0.87 0.83 1.00

0.60 0.67 1.00 0.87 0.83 1.00

0.50 0.67 1.00 0.87 0.83 1.00

0.40 0.67 1.00 0.87 0.83 1.00

0.35 1.00 0.89 0.93 0.94 1.00

0.25 1.00 1.00 1.00 1.00 1.00

118 M. Nowicka and H. Siebert

Table 6. FPrate and FNrate values for different thresholds (for all datasets).

Threshold FPrate FNrate

0.85 0.27 0.13

0.75 0.23 0.11

0.65 0.31 0.11

0.60 0.26 0.12

0.50 0.26 0.12

0.40 0.35 0.11

0.35 0.34 0.04

0.25 0.34 0.04

References

1. Becker, K., Klarner, H., Nowicka, M., Siebert, H.: Designing miRNA-based syn-
thetic cell classifier circuits using answer set programming. Front. Bioeng. Biotech-
nol. 6, 70 (2018). https://doi.org/10.3389/fbioe.2018.00070

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

3. Didovyk, A., Kanakov, O.I., Ivanchenko, M.V., Hasty, J., Huerta, R., Tsimring, L.:
Distributed classifier based on genetically engineered bacterial cell cultures. ACS
Synth. Biol. 4(1), 27–82 (2015). https://doi.org/10.1021/sb500235p

4. Ding, Y., et al.: miR-145 inhibits proliferation and migration of breast cancer cells
by directly or indirectly regulating TGF-β1 expression. Int. J. Oncol. 50(5), 1701–
1710 (2017). https://doi.org/10.3892/ijo.2017.3945

5. Farazi, T.A., et al.: MicroRNA sequence and expression analysis in breast tumors
by deep sequencing. Cancer Res. 71(13), 4443–4453 (2011). https://doi.org/10.
1158/0008-5472.CAN-11-0608

6. Gallo, C.A., Cecchini, R.L., Carballido, J.A., Micheletto, S., Ponzoni, I.: Discretiza-
tion of gene expression data revised. Brief. Bioinform. 17(5), 758–770 (2016).
https://doi.org/10.1093/bib/bbv074

7. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learn-
ing from class-imbalanced data: review of methods and applications. Expert Syst.
Appl. 73, 220–239 (2017). https://doi.org/10.1016/J.ESWA.2016.12.035

8. Iorio, M.V., Croce, C.M.: MicroRNA dysregulation in cancer: diagnostics, moni-
toring and therapeutics. A comprehensive review. EMBO Mol. Med. 4(3), 143–59
(2012). https://doi.org/10.1002/emmm.201100209

9. Lan, H., Lu, H., Wang, X., Jin, H.: MicroRNAs as potential biomarkers in cancer:
opportunities and challenges. BioMed Res. Int. 2015, 125094 (2015). https://doi.
org/10.1155/2015/125094

10. Li, Y., Xu, Y., Yu, C., Zuo, W.: Associations of miR-146a and miR-146b expression
and breast cancer in very young women. Cancer Biomarkers 15(6), 881–887 (2015).
https://doi.org/10.3233/CBM-150532

11. Manning, T., Sleator, R.D., Walsh, P.: Naturally selecting solutions: the use of
genetic algorithms in bioinformatics. Bioengineered 4(5), 266–78 (2013). https://
doi.org/10.4161/bioe.23041

https://doi.org/10.3389/fbioe.2018.00070
https://doi.org/10.1021/sb500235p
https://doi.org/10.3892/ijo.2017.3945
https://doi.org/10.1158/0008-5472.CAN-11-0608
https://doi.org/10.1158/0008-5472.CAN-11-0608
https://doi.org/10.1093/bib/bbv074
https://doi.org/10.1016/J.ESWA.2016.12.035
https://doi.org/10.1002/emmm.201100209
https://doi.org/10.1155/2015/125094
https://doi.org/10.1155/2015/125094
https://doi.org/10.3233/CBM-150532
https://doi.org/10.4161/bioe.23041
https://doi.org/10.4161/bioe.23041

Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 119

12. Marchisio, M., Stelling, J.: Computational design of synthetic gene circuits with
composable parts. Bioinformatics 24(17), 1903–1910 (2008). https://doi.org/10.
1093/bioinformatics/btn330

13. McCall, J.: Genetic algorithms for modelling and optimisation. J. Comput. Appl.
Math. 184(1), 205–222 (2005). https://doi.org/10.1016/J.CAM.2004.07.034

14. Miki, K., et al.: Efficient detection and purification of cell populations using syn-
thetic MicroRNA switches. Cell Stem Cell 16(6), 699–711 (2015). https://doi.org/
10.1016/j.stem.2015.04.005

15. Mohammadi, P., Beerenwinkel, N., Benenson, Y.: Automated design of synthetic
cell classifier circuits using a two-step optimization strategy. Cell Syst. 4(2), 207–
218.e14 (2017). https://doi.org/10.1016/j.cels.2017.01.003

16. Ng, E.K.O., Li, R., Shin, V.Y., Siu, J.M., Ma, E.S.K., Kwong, A.: MicroRNA-
143is downregulated in breast cancer and regulates DNA methyltransferases 3A
inbreast cancer cells. Tumor Biol. 35(3), 2591–2598 (2014). https://doi.org/10.
1007/s13277-013-1341-7

17. Nielsen, A.A., et al.: Genetic circuit design automation. Science 352, 6281 (2016).
https://doi.org/10.1126/science.aac7341

18. Nowicka, M.: A genetic algorithm to designing distributed cell classifier circuits
(2019). https://github.com/MelaniaNowicka/RAccoon

19. Palmer, E.: The T-Cell antigen receptor: a logical response to an unknown ligand.
J. Recept. Signal Transduct. 26(5–6), 367–378 (2006). https://doi.org/10.1080/
10799890600919094

20. Ramola, R., Jain, S., Radivojac, P.: Estimating classification accuracy in positive-
unlabeled learning: characterization and correction strategies. In: Pacific Sympo-
sium on Biocomputing, vol. 24, pp. 124–135 (2019)

21. Sánchez-Cid, L., et al.: MicroRNA-200, associated with metastatic breast cancer,
promotes traits of mammary luminal progenitor cells. Oncotarget 8(48), 83384–
83406 (2017). https://doi.org/10.18632/oncotarget.20698

22. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990). https://doi.org/10.1007/BF00116037

23. Shukla, A., Pandey, H.M., Mehrotra, D.: Comparative review of selection tech-
niques in genetic algorithm. In: 2015 International Conference on Futuristic Trends
on Computational Analysis and Knowledge Management (ABLAZE), pp. 515–519.
IEEE, February 2015. https://doi.org/10.1109/ABLAZE.2015.7154916

24. Slomovic, S., Pardee, K., Collins, J.J.: Synthetic biology devices for in vitro and
in vivo diagnostics. Proc. Natl. Acad. Sci. 112(47), 14429–14435 (2015). https://
doi.org/10.1073/pnas.1508521112

25. Smith, R.W., van Sluijs, B., Fleck, C.: Designing synthetic networks in silico: a
generalised evolutionary algorithm approach. BMC Syst. Biol. 11(1), 118 (2017).
https://doi.org/10.1186/s12918-017-0499-9

26. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., Benenson, Y.: Multi-input RNAi-
based logic circuit for identification of specific cancer cells. Science 333(6047),
1307–1311 (2011). https://doi.org/10.1126/science.1205527

27. Yang, K., Li, J., Gao, H.: The impact of sample imbalance on identifying differ-
entially expressed genes. BMC Bioinform. 7(Suppl. 4), S8 (2006). https://doi.org/
10.1186/1471-2105-7-S4-S8

28. Ye, H., Fussenegger, M.: Synthetic therapeutic gene circuits in mammalian cells.
FEBS Lett. 588(15), 2537–2544 (2014). https://doi.org/10.1016/j.febslet.2014.05.
003

https://doi.org/10.1093/bioinformatics/btn330
https://doi.org/10.1093/bioinformatics/btn330
https://doi.org/10.1016/J.CAM.2004.07.034
https://doi.org/10.1016/j.stem.2015.04.005
https://doi.org/10.1016/j.stem.2015.04.005
https://doi.org/10.1016/j.cels.2017.01.003
https://doi.org/10.1007/s13277-013-1341-7
https://doi.org/10.1007/s13277-013-1341-7
https://doi.org/10.1126/science.aac7341
https://github.com/MelaniaNowicka/RAccoon
https://doi.org/10.1080/10799890600919094
https://doi.org/10.1080/10799890600919094
https://doi.org/10.18632/oncotarget.20698
https://doi.org/10.1007/BF00116037
https://doi.org/10.1109/ABLAZE.2015.7154916
https://doi.org/10.1073/pnas.1508521112
https://doi.org/10.1073/pnas.1508521112
https://doi.org/10.1186/s12918-017-0499-9
https://doi.org/10.1126/science.1205527
https://doi.org/10.1186/1471-2105-7-S4-S8
https://doi.org/10.1186/1471-2105-7-S4-S8
https://doi.org/10.1016/j.febslet.2014.05.003
https://doi.org/10.1016/j.febslet.2014.05.003

Extending a Hodgkin-Huxley Model
for Larval Drosophila Muscle Excitability

via Particle Swarm Fitting

Paul Piho1(B), Filip Margetiny2, Ezio Bartocci4, Richard R. Ribchester2,3,
and Jane Hillston1

1 School of Informatics, University of Edinburgh, Edinburgh, UK
paul.piho@ed.ac.uk

2 Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
3 Euan MacDonald Centre for Motor Neurone Disease Research,

University of Edinburgh, Edinburgh, UK
4 Faculty of Informatics, TU Wien, Vienna, Austria

Abstract. We present a model of excitability in larval Drosophila mus-
cles. Our model was initially based on modified Hodgkin-Huxley equa-
tions, adapted to represent variable, regenerative depolarisations (action
potentials) we have occasionally observed in intracellular recordings and
that can be triggered by excitatory junction potentials at neuromuscular
synapses. We modified several kinetic equations describing voltage sen-
sitive Ca2+ and K+ ionic currents, previously used to predict excitabil-
ity in muscle cells of the mammalian cardiac atrioventricular node. The
resulting nonlinear differential equations had multiple unknown param-
eters. Thus, to fit the model to experimental observations of variable
excitability, we developed a new implementation of particle swarm opti-
misation. This GPU-based implementation allows us to adopt an ensem-
ble model approach in which each experimental observation is used to
find a plausible parameterisation, resulting in a set of models account-
ing for cell-to-cell variability of muscle excitability in Drosophila larvae,
and with potential applications to population-based modeling of other
excitable cell types.

1 Introduction

The control of muscle contraction is fundamental to behaviour. In mammals
and other vertebrates, muscle contraction is the end result of a signalling cas-
cade that begins with excitation of motor neurones in the brain stem or spinal
cord, triggering waves of regenerative depolarization and repolarization (action
potentials) that are propagated by saltatory conduction along each myelinated
nerve axon. Activation of muscle fibres takes place at neuromuscular junctions
(NMJs). When a muscle action potential is propagated along the muscle sur-
face membrane it leads to conformational change in muscle proteins, enabling
contraction.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 120–139, 2019.
https://doi.org/10.1007/978-3-030-31304-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_7

Extending a Hodgkin-Huxley Model 121

In this paper we investigated the mechanisms of muscle excitability in the
abdominal muscles of larval fruit flies (Drosophila melanogaster). These inver-
tebrate muscles do not express the voltage-sensitive sodium channels that are
essential for generation of action potentials in vertebrate muscle fibres. Larval
muscles do, however, contain voltage-sensitive calcium (Ca2+) and potassium
(K+) channels: a similar situation to some non-skeletal muscle fibres in verte-
brates, for example in the atrioventricular (AV) node of the mammalian heart
[3,8,12]. However, unlike mammalian cardiac AV node cells, the functional sig-
nificance of voltage-sensitive Ca2+ and K+ channels in larval Drosophila muscle
fibres is unclear, since activation of these channels is not necessary for muscle con-
traction and the summative effects of a short burst of excitatory NMJ potentials
(EJPs) is sufficient for evoking contractile responses [14,22]. Nevertheless, larval
Drosophila muscle fibres are capable of regenerative, Ca2+-dependent depolar-
ization and we seek to establish the physiological role of these phenomena. As
part of that ongoing investigation, we have developed a computational model
of excitability at larval Drosophila NMJs. Our approach was initially based on
a modified Hodgkin-Huxley model of the firing properties of muscle cells in the
mammalian cardiac AV node, which also depends mainly on a combination of
interacting voltage-sensitive Ca2+ currents and K+ currents [8]. In addition, in
order to parameterise the model we have applied a new GPU-based implementa-
tion of the particle swarm optimisation method, following a similar procedure to
others [15]. Initial investigations of this model suggest that the quantitative char-
acteristics of the regenerative responses that have been observed experimentally
can be accounted for by a computational model of this type.

The rest of the paper is structured as follows. In Sect. 2 we present an
overview of the relevant biological background and a brief summary of Hodgkin-
Huxley models of action potentials. In Sect. 3 we introduce the computational
model of excitability at larval Drosophila neuromuscular junctions. In Sect. 4 we
set up the parameter study for the presented model in the context of particle
swarm optimisation and describe the preprocessing steps taken for isolating indi-
vidual examples of actions potentials from the experimental data. In Sect. 5 we
discuss the results of the parameter fitting for the considered model and finally,
in Sect. 6 we give conclusions and some further research directions.

2 Background

2.1 Action Potentials

Action potentials are primary mechanisms of cell-to-cell communication in ner-
vous and neuromuscular systems and they occur when transmembrane voltage
undergoes rapid depolarisation then repolarisation. In neurones, this is often
referred to as spiking or firing. The changes in membrane potential are caused
by the flow of charged ions along their extracellular-intracellullar concentration
gradients through voltage-gated ion channels in the cell membrane, proteins that
typically incorporate selectivity filters for Na+, Ca2+ or K+ ions. In the resting
state, the inside voltage is often more negative than −70 mV with respect to

122 P. Piho et al.

Fig. 1. A. Voltage sensitive ion channels in excitable cell membranes with the normal
direction of ionic flux when open indicated. Several subtypes of Na, Ca and K chan-
nels are expressed in different cell types and species, differing in protein structure and
activation/inactivation kinetics. B. Schematic illustration of regenerative depolariza-
tion (action potential) and recovery of the transmembrane resting potential following
activation of ion channels like those shown in A. The magnitude and time course of
these phenomena vary between cell types, depending on the number, density and types
of voltage-sensitive ion channels.

the outside, due to the open states of voltage-insensitive channels. The opening
of voltage-sensitive channels becomes regenerative when membrane potential is
depolarised beyond critical threshold values that are unique for each type of
channel protein. Opening of Na+ or Ca2+ channels admits positively charged
ions into the cell, further depolarising the membrane and causing more chan-
nels to open. This positive feedback is frequently sufficient to bring about a
rapid reversal in the membrane potential (inside becoming positive, rather than
negative). The polarity of the membrane is then restored by a combination of
delayed voltage-dependent inactivation and delayed activation of other channels,
typically K+-channels, that enable flux of positive ions along concentration gra-
dients from inside to out. This interplay between ion channels of different types
is the basis of the depolarization/repolarization that is used to propagate signals
along axons and between cells (Fig. 1).

In vertebrate skeletal muscle, action potentials are trigged by axonal con-
tacts at neuromuscular junctions (NMJs). Each presynaptic motor nerve ter-
minal contains neurotransmitter molecules (acetylcholine) packaged into 30 nm
spheres (synaptic vesicles), some of which are tethered to the intracellular surface
nerve membrane at “active zones”. An incoming nerve action potential triggers
fusion of about 50 vesicles with the nerve terminal membrane, releasing their
contents into the synaptic cleft. This process of exocytosis is executed following
influx of Ca2+ ions through Ca2+-selective, voltage sensitive ion channels in the
nerve terminal membrane. These ions then bind to signaling proteins integrated
into the active zone molecular complex [23,24]. Molecules of neurotransmitter
released by exocytosis diffuse rapidly across the narrow (50 nm) synaptic cleft

Extending a Hodgkin-Huxley Model 123

between motor nerve terminal and muscle fibre, where they bind to specific
protein receptors located in high density (> 105 µm−2) at the crests of mem-
brane folds of the motor endplate, the muscle surface opposed to the sites of
presynaptic neurotransmitter release. Activation of these receptors generates an
inward postsynaptic ionic current, which depolarizes the motor endplate mem-
brane. When the membrane potential at the motor endplate reaches around
−65 mV, voltage-sensitive Na-channels (NaV channels) located in the crypts of
the junctional folds are activated, leading to a regenerative depolarization that
is similar in character to the neuronal action potential [11,29,30]. The muscle
action potential is propagated along the muscle surface membrane and into a
network of invaginations known as t-tubules. Here, proteins are coupled to those
controlling the release of Ca2+ from the sarcoplasmic reticulum, an intracellular
membrane-bound storage depot [4]. Binding of released Ca2+ brings about an
energy-dependent conformational change in other muscle proteins, enabling force
generation or muscle shortening via recycling of molecular cross-bridges between
an orderly array of cytoskeletal filaments comprising the protein molecules actin
and myosin [26]. Neuromuscular function is similarly initiated and executed in
invertebrate muscles, including those of Drosophila larvae. The most distinctive
chemical and structural differences are that larval NMJs utilise glutamate as a
neurotransmitter and the postsynaptic membrane folds, rich in glutamate recep-
tors, are more extensive than in vertebrates and is normally referred to as the
sub-synaptic reticulum.

Action potentials in vertebrate muscle fibres are obligatory for excitation-
contraction coupling: if NaV channels in muscle are selectively blocked phar-
macologically, then synaptically-evoked endplate potentials (EPPs) at neuro-
muscular junctions, though tens of millivolts in amplitude, fail to trigger mus-
cle contraction [17,29]. By contrast, muscle fibres in the abdominal muscles of
larval Drosophila, do not express NaV channels. Instead, they contain voltage-
sensitive Ca2+ and K+ channels. But as noted above, the functional significance
of voltage-sensitive Ca2+ and K+ channels in larval Drosophila muscle fibres is
unclear. It is generally regarded that they are of little physiological significance
since they are only reliably observed in recordings from muscles in which extra-
cellular Ca2+ concentration is increased beyond normal physiological maxima,
or when membrane K+ permeability is reduced by adding selective channel
blocking drugs [6,10,21,22].

However, action potentials are also occasionally observed in larval muscle
fibres under more normal physiological recording conditions [25,31]. Figure 2(A)
shows an intracellular microelectrode recording obtained from a filleted prepa-
ration of a 3rd instar larval Drosophila, which clearly shows a train of spikes:
regenerative depolarising action potentials. Larval fillet preparations and intra-
cellular recordings were made using standard techniques [27]. The preparation
was bathed in a normal HL3.1 physiological saline (containing 1.5 mM Ca2+;

4 mM Mg2+) without any ion channel blockers. The muscles were impaled with
glass microelectrodes, resistance 10–40 MΩ. Segmental nerves were aspirated
into a fire-polished 10 µm diameter suction pipette/electrode and stimulated

124 P. Piho et al.

Fig. 2. Trace obtained during impalement of Muscle 4, in normal HL3.1 bathing
medium and in the absence of any ion channel blockers. B. Combined optical recording
of twitch contractions (arbitrary units) of Muscle 12 in a 3rd instar larval fillet prepa-
ration (upper trace) and simultaneous intracellular recording of membrane potential
in response to progressive 2 nA increments in the strength of current pulses injected
through the recording microelectrode (lower trace) in normal HL3.1 medium. Baseline
drift was due to slight movement of the preparation during recording. C: Intracellular
recording of a nerve-evoked excitatory synaptic (junctional) potential (EJP) in Muscle
6, sufficient to activate a regenerative action potential (three successive sweeps at 2 s
intervals). D: Spontaneous hyperpolarisation of the resting potential by about 10 mV,
in the same muscle fibre as C, abolished the regenerative depolarisation, leaving only
a large EJP in response to nerve stimulation. The prepulses in C, D are responses to
±1 nA rectangular pulses injected through the recording microelectrode, used to check
membrane integrity (resistance and capacitance).

with 0.2 ms pulses 1−10 V in amplitude. Trigger and current pulses were deliv-
ered and recordings were captured via a Digidata 1550B interface using pClamp-
10 software (Molecular Devices, San Jose, USA). Images were captured using a
QImaging Optimos camera (Teledyne Photometrics, Tucson, USA) driven by
public domain Micromanager software (micro-manager.org). Images were post-
processed and muscle contractions recording in FiJi (imagej.net/Fiji) using the
Muscle Motion plugin (github.com/l-sala/MUSCLEMOTION).

A brief discharge of action potentials diminished in frequency as the rest-
ing membrane potential spontaneously hyperpolarised. The identified muscle in
this case was Muscle 4 but we have observed similar phenomena in intracel-
lular recordings from muscles 5, 6, 7, 12, and 13. Figure 2(B) shows combined
optical recording of twitch contractions of Muscle 12 in 3rd instar larval fillet
preparation (upper trace) and simultaneous intracellular recording of membrane
potential in response to progressive 2 nA increments in the strength of current

Extending a Hodgkin-Huxley Model 125

pulses injected through the glass recording microelectrode (lower trace), in nor-
mal HL3.1 medium. Contractile responses were only elicited when membrane
depolarisation exceeded the firing threshold for regenerative responses. Sum-
mative contractile responses were evoked when membrane depolarisation was
sufficient to evoke action potential doublets.

The experience from the Ribchester Lab is that about 10% of freshly-
dissected larval preparations bathed in normal (or even reduced) Ca2+ contain-
ing media show action potentials and these are associated with brisk muscle con-
tractions (c.f. Fig. 2(B)). The mechanism of these regenerative responses, which
activate at a much higher threshold than vertebrate muscle action potentials, is
wholly consistent with published data on the voltage-dependence of Ca2+ chan-
nels and K+-channels expressed in larval muscle: specifically, a form of L-type
Ca2+ channel with an activation threshold of about −25 mV, as well as sev-
eral types of K+-channels [6,21]. Sixteen of these recordings were from muscle
fibres that showed sufficient membrane integrity and stability to warrant further
analysis and simulation.

2.2 Hodgkin-Huxley Type Models

In 1952 Hodgkin and Huxley proposed and tested a model to account for the
propagation of action potentials in the squid giant axon, the most favourable
preparation at that time for comparing empirical data with computational analy-
sis [7]. The Hodgkin-Huxley formulation was based on the notion that membrane
ionic permeability is voltage- and time-dependent and that permeabilities to ions,
specifically Na+ and K+, are associated with distinct activation and inactiva-
tion kinetics. In their model, the cell membrane is represented as a dielectric
separating conducting ionic media, thus conferring transmembrane capacitance,
in parallel with batteries representing transmembrane voltages. Selective ionic
permeabilities were represented by separate variable conductances. Based on
this abstraction they applied and numerically solved a set of nonlinear ordinary
differential equations (ODEs) to describe the flow of membrane current and to
predict the change in transmembrane voltage during the action potential [7].

The voltage-sensitive ionic permeabilities envisaged by Hodgkin and Hux-
ley were subsequently shown to be mediated by protein molecules embedded in
membranes and that functioned as ion channels in their open state [18]. Subse-
quently such models were adapted to other excitable cell types, including cardiac
and skeletal muscle, and are now widely used in membrane biophysics due to
their computational efficiency and relative mathematical simplicity.

2.3 Particle Swarm Optimisation

PSO is a stochastic optimisation technique for continuous non-linear functions
introduced by Eberhart and Kennedy in [5] and is inspired by social behaviour of
bird flocking or fish schooling. The algorithm initialises and maintains a swarm
of particles where each particles represents a random solution with a velocity in
the search space. Each particle moves through the search space based on its own

126 P. Piho et al.

the best solution, and the best global solution, obtained thus far. It was demon-
strated in [32] that a GPU based implementation can result in performance
improvements for large swarm sizes and many dimensional problems.

3 Model

The structure of the model presented here is based on a Hodgkin-Huxley type
model [7] of myocyte action potentials in the AV node of the mammalian heart
published by Inada et al. [9]. We based the model on nodal cells of myocardium,
as we hypothesised the same ionic properties (Ca2+ : K+ gating) underlie the
generation of action potentials in larval Drosophila muscle. Our model assumed
one cellular compartment (inside-outside) and was modified to accommodate
different kinetics appropriate to the larval muscle fibres. Functional homologues
for channels known to occur in Drosophila muscle but which are absent from the
cardiac muscle were added.

The model represents the change in voltage across the cell membrane based on
the temperature, membrane capacitance and atmospheric pressure (all treated
as constants and specified in Appendix A) and a sum of ionic currents flow-
ing through open ion channels. The total voltage change was determined as a
function of ionic current based on the following equation

d

dt
V =

−Itotal
Cm

+
d

dt
Vinit, Itotal = ICv + IKv1 + IKv2 + IKv3 + Ib + If

giving the change in membrane voltage as a function of time and ionic currents
in Drosophila muscle cells. Vinit is a function representing the magnitude and
time course of initial depolarisation that results from activation of ligand-gated
glutamate channels by neurotransmitter at the NMJs and which then triggers
activation of the voltage-gated currents. This function aims to account for the
dataset consisting of evoked responses as the synaptic signal which it represents
is not integral to action potential occurrence but is present in our dataset.

Ion channels in the model are characterised using sets of ODEs, which are
used to determine the expected proportion of channels which are in open (con-
ducting) state, as opposed to closed (non-conducting) states. The proportion of
channels in the open state is dependent on their activation and inactivation rates
as a function of membrane voltage, values of which are dependent on a set of
equations expressing sensitivity of the channel to voltage and time.

The total current passing through the ion channels is dependent on the con-
ductance of ion channels which represents the population of channels present
on the cell surface. In this paper, we explore different parametrisations of the
conductance values to identify the channels which contribute the most to the
characteristics of the Drosophila muscle action potential.

The model under consideration consists of 6 ion channels and the initiali-
sation current – one channel (Cv2) modelling the inward currents, three (Kv1,
Kv2, Kv3) modelling the outward current and finally two pacemaking currents

Extending a Hodgkin-Huxley Model 127

(Ib, HCN) modelling channels which conduct inwards at highly negative mem-
brane voltages and outwards in more positive voltages. The ODE formulations
of the channels, along with their empirically found parametrisations of the acti-
vation and inactivation rates, are from papers [9] and [1]. In the following we
give a brief description of the channels and their functions in the model. The
ODE formulations of the channels are given in Appendix A.

Cv2 Current. The channel gives the inward Ca2+ current underlying muscle
activation in Drosophila embryos. The formulation of Cv2 model was taken from
the model of rabbit atrioventricular cell by Inada et al. [9], due to their functional
resemblance to mammalian L-type channels.

Kv1 Current (Shaw). Kv1 channel in Drosophila larvae conducts a transient
outward potassium current. It is a voltage dependent, fast inactivating potassium
channel, which controls (and prevents) repetitive firing of the cell by prolong-
ing and enhancing hyperpolarisation of the cell in response to depolarisation.
The formulation for Kv1 current used in this paper taken from its mammalian
homologue in rat Purkinje cell neurons [1].

Kv2 Current (Shab). Kv2 carries a delayed-rectifier potassium current. The
channel slowly opens and closes in response to depolarising voltage. The delayed
activation kinetics are important to control the duration of action potential in
3rd instar Drosophila and mammalian neurons. The formulation of Kv2 current
considered here was taken from [9] formulation for IKr.

Kv3 Current (Shaker). Kv3 channels are low conductance ion channels acti-
vated at depolarised voltages which generate atypical, delayed voltage-dependent
slowly activating and non-inactivating currents. These contribute to maintain-
ing of the resting membrane potential but have little effect on action potential
parameters. In traditional Hodgkin-Huxley type models these channels could be
considered K+ leak channels. As for Kv1 current the formulation for Kv3 is
modelled after its mammalian homologue Kv3.3 from rat Purkinje cells [1].

Background Current. Ib As there is only one type of functional voltage-
gated excitatory ion channel, with relatively high activating threshold (around
−25 mV), in order to observe spontaneous action potentials a depolarising driv-
ing force (pacemaker current) is necessary. The formulation for fast pacemaking
background current was taken from rabbit heart background pacemaker as in [9].

HCN Current. If In previous versions (Margetiny, unpublished), the fits of
the model to experimental data were seen to improve when an HCN channel
(or channel with HCN-like kinetics) was added. However, whether or not such a
channel occurs in Drosophila muscle tissue is unknown. We consider the original
model from rabbit cardiomyocyte [9] in the context of regenerative responses in
Drosophila muscles. Similarly to background current, HCN is hypothesised to
be a multiple-ion permeable channel, albeit with much slower kinetics.

128 P. Piho et al.

Initialisation Current. The initialisation current is modelled through its time-
dependent effect on the voltage by

Vi(t) = βi

(
t

αi

)
exp

(
1 − t

αi

)

4 Parameter Estimation Problem

The general parameter estimation problem we are aiming to solve is the fol-
lowing: what are the parameters θ such that the deterministic model f(t,θ)
serves as a good predictor to the voltage response during an action potential as
observed in the experimental time-series data. In the following we describe the
available experimental data as well as the preprocessing steps.

4.1 Data Preprocessing

The available data is in the form of time series measurements of voltage response
to stimulus provided by current injections. Figure 3a and b give two examples
of available time series. Figure 3a shows the voltage response to a single induced
synaptic stimulus triggering an action potential while Fig. 3b shows five con-
secutive stimuli. Note that in this case only one of the current injections has
triggered the action potential behaviour.

The measurements from the experiments started with a depolarising current
intended to test the membrane resistance and is not relevant to the fitting of
the model (c.f. Fig. 2(C)). The timings for testing the membrane resistance are
consistent throughout the dataset and thus we have simply dropped measure-
ments before 0.2 s. For hence forward we are considering the time series with the
prepulse removed.

From there, we need to identify the parts of the time series corresponding
to the action potential behaviour. The method for identifying parts of the time
series is done in the following way. For each time series

– we identify the indices {i1, · · · , in} corresponding to peaks in the time series
using standard implementations of peak finding algorithms.

– we identify the indices {j1, · · · , jn} corresponding to where the peaks start.
For that we first use Savgol-Goyal high pass filter [19] to smooth the time
series resulting in a series for which we can numerically calculate derivatives.
Working backwards from a peak we find where the derivatives change sign.

– we split the time series into n parts corresponding to single instances of action
potentials in the following way. The k-th series corresponds to the values of
the original time series between the indices jk and jk+1. We normalise the
time by taking the initial time to be 0.0. For each point between jk and jk+1

we consider the time passed since the measurement at index jk. Secondly, we
normalise voltages by considering the voltage differences between the base of
the peak at index jk each point in the new time series.

Extending a Hodgkin-Huxley Model 129

(a) Response to a single synaptic
(NMJ) stimulus, triggering a regener-
ative response (same recording as Fig-
ure 2C). Prepulse is a membrane re-
sistance test pulse.

(b) Five consecutive synaptic stimuli, only
the third of which triggered as regenerative
response

Fig. 3. Time series data for voltage response during action potential.

– Note that not all such generated time series correspond to action potentials.
We pick a threshold voltage of −10 mV for the peaks that are likely to corre-
spond to the action potential phenomenon.

– In order to reduce the computational load we are going to consider a sub-
sample of the generated time-series.

Figure 4 gives examples of the results of the process. In particular, the dots rep-
resent an 18 point sub-sample of the experimental time series showing the action
potential. The number of sampling points is an arbitrary choice and can be easily
changed as long as the sub-sample sufficiently captures the shape characteristics
of the traces. The resulting dataset from the available recordings consists of 16
instances of action potentials.

4.2 PSO Fitting

For this preliminary study of fitting the Hodgkin-Huxley type action potential
model we used a standard particle swarm optimisation (PSO) algorithm over a
given search space. The fitness calculations are given by the following. Given a
single action potential time series consisting of points (t0, V0), · · · , (tm, Vm) and
a model f(t,θ) parametrised by θ we consider the simple distance measure

K(θ) =
m∑
i=0

(f(ti,θ) − f(0,θ) − Vi)
2

where f(ti,θ) − f(0,θ) gives the difference of the voltages predicted by the
model at time 0 and ti and Vi gives the same quantity for the experimental time
series. Similarly to the multi-swarm method presented in [15] we perform the

130 P. Piho et al.

(a) Single synaptic response same as
Fig. 3a)

(b) Consecutive synaptic responses (same
recording as Fig. 3b)

Fig. 4. Generated time-series sub-sampled at 18 points.

optimisation algorithm for multiple initialisations of the swarm. In our case the
initialisations are provided by the distinct time-series of action potentials.

4.3 Implementation

The standard PSO algorithm adapted for the described problems proceeds
through the following steps:

1. Particles are initialised with uniformly sampled values from the search space
and velocities. An alternative initialisation of particles through Latin hyper-
cube sampling, as done in [20] can be considered in further work.

2. For each particle the set of ODEs giving the corresponding system dynamics
is solved.

3. Based on the ODE solutions each particle gets a reward value.
4. Global maximum reward is found.
5. The location of a particle, θ, in the search space is updated based on the

global maximum θgbest and individual best previous location of the particle
θibest. In particular, the update between the i-th and (i + 1)-th iteration for
an individual particle takes the following form

θi+1 = θi + wvi + c1ri1(θibesti − θi) + c2ri2(θgbesti − θi)

where ri1 , ri2 are random numbers in the interval [0, 1] and w (weight given to
previous velocities), c1 (called cognitive weight) and c2 (called social weight)
are parameters of the optimisation algorithm.

6. Go back to Step 2.

In the implementation we made use of the fact that PSO is easily parallelisable on
graphics processing units (GPUs) [15,32] so that each particle is assigned a single
GPU thread. In particular, for the standard PSO given above all steps other than

Extending a Hodgkin-Huxley Model 131

Step 2 are easily parallelisable. Reward evaluations are slightly more complex
consisting of two steps: the integration step for solving the system of ODEs
and the actual reward calculation. However, storing the trajectories resulting
from numerical integration in memory would severely limit the scalability of the
algorithm to large numbers of particles. Instead, we can update the value of the
reward function on the fly after each step of the numerical integration. This way
only the point necessary for the next iteration of numerical integration is stored
in memory. The integration for reward calculations in this paper was performed
by the simple Euler forward method. For the model presented in this paper this
was found to be sufficient but other fixed time-step methods, like Runge-Kutta
fourth-order method, can be easily considered. Finally, the boundary conditions
are enforce in the following way: if the particle is about to violate the boundary
for a given parameter its position in the component of this parameter is set to
the boundary value while reversing the relevant component of its velocity.

5 Results

The parameters under investigation are the conductance values for each of the
channels (gCv, gKv1, gKv2, gKv3, gIb , gf), the reversal potential Eb for the back-
ground pacemaker current and the shape parameters αi, βi for the voltage change
due to the initial current injection. The bounds for each of the parameter values
are set to encompass a range of physiologically plausible values. For conductances
this was the interval between 0.0µS and 0.016 µS. The viable shape parameters
for the initialisation current were set so that the induced voltage would reach its
peak between values 10 mV and 25 mV before 0.5ms in order to feasibly set up
the action potential. We conducted two sets of experiments: (a) parameter gf was
held at 0.0 ,disabling the channel in the model and (b) the HCN channel corre-
sponding to gf conductance values was enabled. For both sets of experiments we
ran the PSO on the action potential traces 6 times – each with different random
seeding and a varying weight parameter w from {0.7, 0.72, 0.74, 0.76, 0.78, 0.80}
to further perturb the behaviour of the particle swarms between different exper-
iments in order to find as many different optima as possible. We set the values
c1 = c2 = 2.0 as in [5]. The effect of varying the social and cognitive weights
for this problem was not explored and is left for further work. We ran a fixed
number (2000) of iterations. Little can be said about the convergence properties
of the PSO for the given fitness function, but in experiments we saw that 2000
iterations generally allowed the swarms to settle to some local optimal values.

In the multi-swarm implementation we associated each instance of observed
action potential with its own fitness function. Not averaging over the collected
AP samples and running the PSO algorithm on each sample multiple times
allows us to effectively find a set of plausible parametrisations of the proposed
model. This gives an alternative way to generate a population of models aiming
to take into account the cell-to-cell variability similarly to [2,13]. Figure 5 shows
the model fitted to sub-samples of the time series shown in Fig. 4. The results

132 P. Piho et al.

Fig. 5. Blue and red trajectories correspond to best model fittings for the time-series
presented in Fig. 4(a) and (b) respectively. (Color figure online)

Table 1. Mean and standard deviation of fitted conductance values for the model with
the HCN channel disabled.

mean std.
gCv2 0.0106 0.0031
gKv1 0.0093 0.0043
gKv2 0.0091 0.0041

mean std.
gKv3 0.0083 0.0053
gb 0.0102 0.0038
Eb 2.8 23.4

of the fitting are summarised by combined box and violin plots in Figs. 6 and 7,
describing the shape of the distributions of found parameter values. Table 1 gives
mean and standard deviation summary statistics for the model fitting with the
HCN channel disabled. We have discarded parameters which give rise to volt-
age responses that do not recover to the interval −50 mV to −30 mV after the
occurrence of an action potential or result in overly low fitness values.

From the results of parameter fitting with HCN channel disabled we first note
that the summary plots indicate that conductance values of gCv2 and gb close
to 0 are unlikely to fit the experimental traces well. This seems to confirm the
necessity for involvement of both Cv2 channels and a pacemaker current Ib to
facilitate action potentials in Drosophila. In addition, slightly tighter interquar-
tile range for the Kv2 channel conductance compared to the other two K+

channels (Kv1, Kv3) points towards its more significant effect in shaping of the
action potentials while Kv1 and Kv3 are permitted to vary more. This is consis-
tent with previously understood physiology of Drosophila muscle ionic activity
as Kv1 and Kv3 are expected to be important in regulation of repeated firing
and unlikely to influence the parameters of a single action potential. Surpris-
ingly, the modelling experiments might indicate a higher reversal potential for
Ib than originally expected (median − 1.5 mV with mean 2.8 mV and standard
deviation 23.4, as opposed to −22 mV). A higher reversal potential for Ib may
suggest a more complex current consisting of several ion channel conductances,
or a single channel which is more biased towards inward current than previ-
ously estimated. This inspires further modelling and experimental enquiry into
the nature of channel or channels responsible for the generation of background

Extending a Hodgkin-Huxley Model 133

Fig. 6. Violin and box plots of fitted parameter values for the model the HCN channel
disabled.

Fig. 7. Violin and box plots of fitted parameter values for the model including the
HCN channel.

pacemaking current. Further, we experimented with addition of HCN channels.
The resulting dispersion of fitted conductance values gf is similar to Kv1 and
Kv3 indicating that the presence of the HCN channel in the model is of little
importance for fitting Drosophila action potentials. Moreover the fitness calcu-
lations do not show quantitatively better fits being achieved with the addition
of the HCN channel.

All optimisation runs were conducted with 2000 iterations where a swarm
of 64 particles was assigned to each of the 16 trajectories, thus simulating 1024
particles in parallel. Each run took approximately 4 minutes to complete on a
machine equipped with Nvidia Titan X GPU with the equivalent single-threaded
execution on a laptop CPU taking around 19 min. Additionally, the GPU imple-
mentation provided better scalability for the same optimisation problem, with
the total of 2048 and 4096 particles taking 7 and 12 min in the case of the GPU
implementation and 38 and 78 min in the case of the CPU implementations.

6 Conclusion

We have presented a new model of excitability of the abdominal muscles of lar-
val Drosophila, observed experimentally following excitatory depolarisation at

134 P. Piho et al.

a minority of NMJs, and used this model to explore techniques for modulation
of its parameters via a novel GPU-based implementation of the particle swarm
optimisation method. This approach was computationally very efficient and sup-
ported an ensemble model view, allowing each action potential recording to be
used to obtain a plausible set of parameters that might be used, for example, to
account for cell-to-cell variability in the incidence, magnitude and time course
of regenerative action potentials in larval muscle recordings.

From a functional standpoint, our unpublished preliminary data suggest that
when freely moving larvae undergo rapid peristaltic locomotion, for example to
escape a potential predator there is insufficient time for more than one brisk and
powerful twitch contraction per abdominal segment. Combined measurements of
synaptic potentials and muscle shortening indicate that single EJPs are not suf-
ficient to account for this escape behaviour (M.Fjeldstad and R.R.Ribchester,
unpublished). Thus, we hypothesise that rapid contractile responses of larval
muscle fibres are enabled by an endogenous mechanism that modulates the mus-
cle fibre resting membrane potential and this permits synaptic depolarization to
trigger a regenerative response (Fig. 2(C, D)). This results, as in vertebrate mus-
cle, in brisk muscle contraction (Fig. 2(B)). This hypothesis implies that further
analysis of the characteristics and mechanism of regenerative membrane depolar-
ization in larval Drosophila muscle will yield deeper insight into their function.
Computational modelling of these events and exploring the scope and causes of
their variability from moment to moment will facilitate the analysis.

Due to the nature of the model, distinct channels expressed in the model
are capable of compensating for each other resulting in widely dispersed viable
parameter values. Thus analysis of correlations between the parameter values as
well as refinements and alterations of the model would be of interest for further
work. In many such scenarios the small size of the currently available dataset
would be a limiting factor. On a practical level, dynamic modelling (including
parameter fitting) in real time would be a valuable tool that could complement
experimental approaches, such as the dynamic clamp technique: an experimen-
tal procedure that enables electrophysiologists to explore the consequences and
potential functional significance of varying the specificity and kinetics of different
ionic currents and determining their transitory effects on membrane potential
[16,28]. Computational speed is an essential consideration for real time feedback
between dynamic modelling and dynamic clamp to be feasible and practical.

Acknowledgements. We thank Mr Keiran Brown for assistance with intracellular
recordings and Professor Mark Boyett, Manchester University, for sharing source code
for action potential modelling in myocytes of the rabbit AV node. FM is supported by
an MRC PhD Studentship in the University of Edinburgh Doctoral Training Pro-
gramme in Precision Medicine. PP is supported by EPSRC grant EP/L01503X/1
(CDT in Pervasive Parallelism) and STSM Grant from COST Action IC1406 High-
Performance Modelling and Simulation for Big Data Applications.

Extending a Hodgkin-Huxley Model 135

Appendix A Model

The following appendix gives the ODE formulations of the channels considered
in this paper. The ODEs are characterised by general Hodgkin-Huxley scheme,
with a transitions between channels in open and shut states modelled as a first
order chemical reaction

open
α

β
shut

Transition rate expressions α and β provided for the channels in this model
correspond to number of openings or closures of channel per second.

The functions for dL∞ , m∞, n∞, y∞ determine the proportion of channels
in a particular (generally open) state under equilibrium conditions. This value
changes as a function of the membrane voltage via a change in voltage dependent
rates α and β. While change in equilibrium proportion happens instantly, change
in real proportion of channels in open state does not: the rate at which the
proportion of dL, m, n, d, y changes towards its equilibrium value is given by
a differential equation. The time constant τ is an expression of how fast this
equilibrium is achieved and is dependent on the innate properties of channel and
its sensitivity to voltage. Channels Cv1 and Kv2 have more than one inactivation
mode – one happening at a slower time-scale than the other. These are denoted
fL,fast, fL,slow for the Cv1 channel and pa,fast and pa,slow for the Kv2 channel.

Reversal potential EK for potassium and calcium channels at temperature
294.15 K (laboratory conditions) were calculated using the Nernst equation based
on expected intracellular and extracellular concentrations of potassium and cal-
cium

E =
RT

zF
ln

[ion concentration ouside]
[ion concentration inside]

where R is the universal gas constant, T the temperature in Kelvins, F the
Faraday constant and z valency of the ion. For Drosophila the intracellular
concentrations are estimated to be 0.05 mmol and 140 mmol for calcium and
potassium respectively. Extracellular solution for the experiments used 5.0 mmol
potassium and 1.5 mmol calcium concentration. Finally, Q10 is experimentally [1]
determined time change constant for the Kv1 potassium channel.

Background Current Ib

Ib(V) = gb(V − Eb)

HCN Current If

y∞(V) = 1.0

1.0+exp(V +83.19
13.56)

d
dt

y = y∞−y
τy

τy(V) = 0.250 + 2.0 exp(− (V +70.0)2

500.0
) If (V) = gfy(V − Ef)

136 P. Piho et al.

Cv1 Current

dL∞(V) = 1

1+exp
(

V +18.2
−5

) d
dt

dL = dL∞−dL
τdL

αdL
(V) =

−26.12(V +35.0)

exp
(

V +35.0
−2.5

)
−1

d
dt

fL,fast =
fL,fast∞−fL,fast

τL,fast

+ −78.11V
exp (−0.208V)−1

d
dt

fL,slow =
fL,slow∞−fL,fast

τL,slow

βdL
(V) =

10.52(V −5.0)
exp (0.4×(V −5.0))−1.0

τdL
= 1

αdL
+βdL

ICv2(V) = gCvdL(0.675fL,fast + 0.325fL,slow)(V − ECaL)

Kv2 Current

Kv1 Current

αn(V) = 0.12889 exp
(

−V +45.0
−33.90877

)
τn = Q10

1
αn+βn

βn(V) = 0.12889 exp
(−V +45.0

12.42101

)
d
dt

n = n∞−n
τn

n∞(V) = αn(V)
αn(V)+βn(V)

IKv1 = gKv1n
4(V − EK)

Extending a Hodgkin-Huxley Model 137

Kv3 Current

αmShaw(V) = 0.22 exp
(

V +16
26.5

)
τmShaw = 1

αmShaw+βmShaw

βmShaw(V) = 0.22 exp
(−V +16

26.5

)
d
dt

m = m∞−m
τmShaw

m∞(V) = αn
αn+βn

IKv3 = gKv3m
4(V − EK)

References

1. Akemann, W., Knöpfel, T.: Interaction of Kv3 potassium channels and resurgent
sodium current influences the rate of spontaneous firing of Purkinje neurons. J.
Neurosci. 26(17), 4602–4612 (2006). https://doi.org/10.1523/JNEUROSCI.5204-
05.2006

2. Britton, O.J., et al.: Experimentally calibrated population of models predicts and
explains intersubject variability in cardiac cellular electrophysiology. Proc. Natl.
Acad. Sci. 110(23), 2098–2105 (2013). https://doi.org/10.1073/pnas.1304382110

3. Choisy, S., Cheng, H., Orchard, C., James, A., Hancox, J.: Electrophysiological
properties of myocytes isolated from the mouse antrioventricular node: L-type ICA,
IKr, If, and Na-Ca exchange. Physiol. Rep. 3, e12633 (2015)

4. Dulhunty, A.: Excitation-contraction coupling from the 1950s to the new millenium.
Clin. Exp. Pharmacol. Physiol. 33, 763–772 (2006)

5. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science, MHS 1995, pp. 39–43, October 1995. https://doi.org/10.1109/MHS.1995.
494215

6. Gielow, M., Gu, G., Singh, S.: Resolution and pharmacological analysis of the
voltage-dependent clacium channels of Drosophila larval muscles. J. Neurosci. 15,
6085–6093 (1995)

7. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its
application to conductance and excitation in nerve. J. Physiol. 11(4), 500–544
(1952)

8. Inada, S., Hancox, J., Zhang, H., Boyett, M.: One-dimensional mathematical model
of the atrioventricalur node including atrio-nodal, nodal and nodal-his cells. Bio-
phys. J. 97, 2117–2127 (2009)

9. Inada, S., Hancox, J., Zhang, H., Boyett, M.: One-dimensional mathematical model
of the atrioventricular node including atrio-nodal, nodal, and nodal-his cells. Bio-
phys. J. 97(8), 2117–2127 (2009). https://doi.org/10.1016/j.bpj.2009.06.056

10. Lee, J., Ueda, A., Wu, C.: Distinct roles of Drosophila cacophany and Dmca1D
Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke
Ca(2+)-activated BK channels in presynaptic excitability and postsynaptic
response. Dev. Neurobiol. 74, 1–15 (2014)

11. Martin, A.: Amplification of neurotransmission by postjunctional folds. Proc. Biol.
Sci. 258, 321–326 (1994)

https://doi.org/10.1523/JNEUROSCI.5204-05.2006
https://doi.org/10.1523/JNEUROSCI.5204-05.2006
https://doi.org/10.1073/pnas.1304382110
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1016/j.bpj.2009.06.056

138 P. Piho et al.

12. Munk, A., Adjemian, R., Zhao, J., Ogbabhebriel, A., Shrier, A.: Electrophysiologi-
cal prperties of morphologically distinct cells isolated from the rabbit atrioventric-
ular node. J. Physiol. (Lond.) 493(Pt 3), 801–818 (1996)

13. Muszkiewicz, A., et al.: Variability in cardiac electrophysiology: using
experimentally-calibrated populations of models to move beyond the single vir-
tual physiological human paradigm. Prog. Biophys. Mol. Biol. 120(1–3), 115–127
(2016). https://doi.org/10.1016/j.pbiomolbio.2015.12.002

14. Newman, Z., et al.: Input-specific plasticity and homeostasis at the Drosophila
larval neuromuscular junction. Neuron 93, 1388–1404 (2017)

15. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based
multi-swarm PSO method for parameter estimation in stochastic biological systems
exploiting discrete-time target series. In: Giacobini, M., Vanneschi, L., Bush, W.S.
(eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 74–85. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29066-4 7

16. Ortega, F., Butera, R., Christini, D., White, J., Dorval, A.: Dynamic clamp in
cardiac and neuronal systems using RTXI. Methods Mol. Biol. 1183, 327–354
(2014)

17. Ribchester, R., et al.: Progressive abnormalities in skeletal muscle and neuromus-
cular junctions of trangenic mice expressing the Huntingdon’s disease mutation.
Eur. J. Neurosci. 20, 3092–3114 (2004)

18. Sakmann, B., Neher, E.: Patch clamp techniques for studying ionic channels in
excitable membranes. Annu. Rev. Physiol. 46, 455–472 (1984)

19. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified
least squares procedures. Anal. Chem. 36, 1627–1639 (1964)

20. Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel
global optimization with the particle swarm algorithm. Int. J. Numer. Methods
Eng. 61(13), 2296–2315 (2004). https://doi.org/10.1002/nme.1149

21. Singh, S., Wu, C.: Properties of potassium currents and their role in membrane
excitability in Drosophila larval muscle fibers. J. Exp. Biol. 152, 59–76 (1990)

22. Singh, S., Wu, C.: Ionic currents in larval muscles of Drosophila. Int. Rev. Neuro-
biol. 43, 191–220 (1999)

23. Slater, C.: The functional organization of motor nerve terminals. Prog. Neurobiol.
134, 55–103 (2015)

24. Südof, T.: Neurotransmitter release: the last millisecond in the life of a synaptic
vesicle. Neuron 80, 675–690 (2013)

25. Suzuki, N., Kano, M.: Development of action potential in larval muscle fibers in
Drosophila melanogaster. J. Cell. Physiol. 93, 383–388 (1977)

26. Sweeney, H., Hammers, D.: Muscle contraction. Cold Spring Harbour Perspect.
Biol. 10, a023200 (2018)

27. West, R.J.H., Briggs, L., Perona Fjeldstad, M., Ribchester, R.R., Sweeney,
S.T.: Sphingolipids regulate neuromuscular synapse structure and function in
Drosophila. J. Comp. Neurol. 526(13), 1995–2009 (2018). https://doi.org/10.1002/
cne.24466

28. Wilders, R.: Dynamic clamp: a powerful tool in cardiac electrophysiology. J. Phys-
iol. (Lond.) 576, 349–359 (2006)

29. Wood, S., Slater, C.: The contribution of postsynaptic folds to the safety factor for
neurotrnsmission in rat fast- and slow-twitch muscles. J. Physiol. (Lond.) 500(Part
1), 165–176 (1997)

https://doi.org/10.1016/j.pbiomolbio.2015.12.002
https://doi.org/10.1007/978-3-642-29066-4_7
https://doi.org/10.1002/nme.1149
https://doi.org/10.1002/cne.24466
https://doi.org/10.1002/cne.24466

Extending a Hodgkin-Huxley Model 139

30. Wood, S., Slater, C.: Safety factor at the neuromuscular junction. Prog. Neurobiol.
64, 393–429 (2001)

31. Yamaoka, K., Ikeda, K.: Electrogenic responses elicited by transmembrane depo-
larizing current in aerated body wall muscles of Drosophila melanogaster larvae.
J. Comp. Physiol. 163, 705–714 (1988)

32. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim,
Norway, pp. 1493–1500 (2009). https://doi.org/10.1109/CEC.2009.4983119

https://doi.org/10.1109/CEC.2009.4983119

Cell Volume Distributions in
Exponentially Growing Populations

Pavol Bokes1(B) and Abhyudai Singh2

1 Department of Applied Mathematics and Statistics, Comenius University,
84248 Bratislava, Slovakia

pavol.bokes@fmph.uniba.sk
2 Department of Electrical and Computer Engineering, University of Delaware,

Newark, DE 19716, USA
absingh@udel.edu

Abstract. Stochastic effects in cell growth and division drive variabil-
ity in cellular volumes both at the single-cell level and at the level of
growing cell populations. Here we consider a simple and tractable model
in which cell volumes grow exponentially, cell division is symmetric, and
its rate is volume-dependent. Consistently with previous observations,
the model is shown to sustain oscillatory behaviour with alternating
phases of slow and fast growth. Exact simulation algorithms and large-
time asymptotics are developed and cross-validated for the single-cell and
whole-population formulations of the model. The two formulations are
shown to provide similar results during the phases of slow growth, but
differ during the fast-growth phases. Specifically, the single-cell formu-
lation systematically underestimates the proportion of small cells. More
generally, our results suggest that measurable characteristics of cells may
follow different distributions depending on whether a single-cell lineage
or an entire population is considered.

Keywords: Cell growth · Cell division · Cell size

1 Introduction

Each living cell is an individual entity occupying a given volume enclosed by
the cell membrane [1]. Homeostatis of cell volume is due to balance between
cell growth and division. Growth in cell volume is understood to occur continu-
ously in time and is often assumed to be exponential. Cell division is typically
represented as a discrete event at which the volume of a mother cell abruptly
changes into the volume of either daughter cell [19]. Specifically, symmetric divi-
sion means that each daughter obtains exactly one half of their mother’s volume.
The contents of a mother cell, including its transcriptome and proteome, are also
divided between its daughters. Fluctuations in cell volume due to cell growth and
division can therefore correlate with gene-expression noise [3].

There are (at least) two alternative approaches to the modelling of cell-growth
dynamics. In the first approach, one follows a single cell line, discarding the other
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 140–154, 2019.
https://doi.org/10.1007/978-3-030-31304-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_8

Cell-Volume Distributions 141

daughter cell at each division. In the single-cell approach, the time-dependent
cell volume can be represented by a piecewise deterministic [6] or drift-jump
Markovian process [15]. One is interested in the probability distribution of the
random process, in particular at steady state. In the second approach, one fol-
lows both daughter cells, and is interested in the dynamics of the population size
as well as the distribution of cell volumes among the population, in particular in
the large-time limit. A question of interest is whether the probability distribution
obtained from the single-cell approach and the population distribution obtained
from the population approach are the same or different. The difference between
single-cell and population approaches can be relevant in a number of applica-
tions, e.g. in cancer biology, which allow for experimental setups in which the
reproductive history of a cell can be traced [10]. We will examine this problem
for a particular type of volume-growth model.

The maintenance of homeostasis requires that cells actively control their pro-
liferation [14,16,18]. The necessary feedback can be exerted through e.g. the cell’s
age [9], its current size [13], the size at its inception [2], or by a combination of
these mechanisms [11,17]. In this manuscript we specifically focus on size-based
regulation. Within the framework of a relatively simple model, we will proceed
towards the following goals: (i) develop exact and efficient stochastic algorithms
to simulate the volume growth process; (ii) characterise the large-time asymp-
totic behaviour of the process by formulating and solving a master equation;
and (iii) draw conclusions about the similarities and differences between the
single-cell and the whole-population approach to modelling cell growth.

The outline of the paper is as follows: in Sect. 2 we introduce and logarith-
mically transform the model. In Sect. 3 we present an iterative algorithm for
simulating the single-cell version of the model and a recursive algorithm for the
simulation of the whole-population version. In Sect. 4 we introduce the concept
of periodicity in the context of the current model. In Sects. 5 and 6 we formulate
the master equation and provide tractable closed-form formulae for large-time
solutions in the single-cell and whole-population cases. In Sect. 7 we present
the main implications of the current work on the dynamics of cell growth and
cell volume distributions. In Sect. 8 we extract conclusions from the presented
analysis.

2 Model Fundamentals

Our model for cell-volume growth is based on the following fundamentals:

1. Cell volume grows exponentially in time. Specifically,

V (t) = V (0)2t, (1)

where t is the time since birth. Time is measured in units of the volume
doubling time.

142 P. Bokes and A. Singh

2. A mother cell can divide into two daughter cells. Either daughter cells obtains
one half of the mother’s volume. From a single-cell viewpoint, at the time of
division the volume changes abruptly according to the mapping

V → V

2
, (2)

where the volume on the left-hand side represents the volume of the mother
right before the division and a daughter’s volume is on the right-hand side.

3. Cells divide with a volume dependent stochastic rate γ(V). We specifically
focus on the case of

γ(V) =

{
0 if V < Vc,

α if V ≥ Vc,
(3)

where α is a constant rate and Vc is a critical volume threshold.

It turns out that it is much more convenient to use a logarithmic transfor-
mation of cell volume defined by

u = 1 + log2
V

Vc
. (4)

By (3), cells cannot divide before they reach the critical volume Vc. Hence the
cell volume is always greater than Vc

2 , and the log-volume, as defined by (4), is
always positive.

The model fundamentals (1)–(3), when expressed in the language of log-
volume, read as follows:

1. Dividing (1) by the critical volume Vc and taking the binary logarithm gives

u(t) = u(0) + t, (5)

i.e between divisions a cell’s log-volume grows linearly with unit rate.
2. Taking the binary logarithm of (2) divided by Vc gives

u → u − 1, (6)

meaning that, upon division, a cell’s log-volume decreases by one.
3. Since requiring V ≥ Vc is equivalent to u ≥ 1, the dependence (3) of the

stochastic rate on volume translates into

γ(u) =

{
0 if u < 1,

α if u ≥ 1,
(7)

in terms of the log-volume.

Table 1 summarises the model fundamentals in the linear and logarithmic
volume scales.

Cell-Volume Distributions 143

Table 1. Model formulation in terms of Volume V (left column) and Log-Volume
u = 1 + log2

V
Vc

(right column).

Volume V Log-Volume (U = 1 + log2
V
Vc

)

Growth V (t) = V (0)2t u(t) = u(0) + t

Division Map V → V
2

u → u − 1

Division Rate γ(V) =

{
0 if V < Vc,

α if V ≥ Vc,
γ(u) =

{
0 if u < 1,

α if u ≥ 1,

3 Stochastic Simulation

In this section we present an algorithmic approach the model of cell-volume
growth based on the fundamentals presented in Sect. 2. Hereby we distinguish
two versions of the model.

Single-Cell Version. Upon cell division, one of the daughter cells is followed,
the other discarded. We are interested in the probabilistic description of the
cell volume along an arbitrarily chosen lineage.

Population Version. Both daughter cells are followed upon cell division. We
are interested in the growth of the number of offspring and in the distribution
of volume across the population.

Throughout this section we will operate with log-volumes of cells rather than
their volumes (see Sect. 2 for explanation).

A common building block in both versions of the algorithm is to sample
the waiting time τ for division of a cell which currently has log-volume u. The
waiting time consists of two parts: the deterministic time required to reach the
critical log-volume of one; the stochastic time that it takes to divide once the
critical threshold has been passed. Since log-volume grows with unit rate, the
deterministic waiting time is 1 − u if u < 1 and zero if it is greater than one.
After crossing the threshold division has a constant propensity α to occur; it
follows that the stochastic waiting time will be exponentially distributed with
mean 1/α. Putting the deterministic and stochastic parts of the waiting time τ
together, we find that it can be sampled as

τ = max{1 − u, 0} − lnθ

α
, (8)

where θ is drawn from the uniform distribution on the unit interval. We have
thereby used the well known fact that −lnθ is exponentially distributed with
unit mean.

We are now ready to go through the individual steps of the single-cell version
of the simulation algorithm (Algorithm 1). The algorithm requires the following
inputs: the model parameter α which gives the (post-threshold) division rate;
the initial log-volume u0; the time points t0, t1, . . ., tm at which we wish the log-
volume to be recorded. We assume that these time points are ordered from the

144 P. Bokes and A. Singh

Algorithm 1. Single-cell version
Require: Timepoints t0, . . . , tm; division rate α; initial log-volume u0

Ensure: Sampled values u1, . . . , um of log-volumes at the given timepoints

1: Initialise current time and log-volume: t ← t0; u ← u0

2: while t < tm do
3: Draw θ from the unit-interval uniform distribution
4: Set τ ← max{1 − u, 0} − lnθ

α

5: for all i such that t ≤ ti < t + τ do
6: Set ui ← u + ti − t.
7: end for
8: Update time and log-volume: t ← t + τ ; u ← u + τ − 1
9: end while

lowest to the largest. Time t0 is understood to be the initial time at which the
log-volume is given by the initial value u0. The algorithm returns the sampled
value u1, . . ., um of log-volumes at the given time points.

The algorithm starts by initialising the current time t and log-volume u with
the initial values t0 and u0 (Line 1 in Algorithm 1). The next steps are repeated
while the current time t is less that the largest time point tm at which a recording
of the log-volume is sought (Lines 2–9): first, the waiting time until the next
division is sampled in Lines 3–4 using the formula (8); second, log-volumes are
recorded at all recording times ti which fall between the current time t and the
time t + τ of next division (Lines 5–7); third, the current time and log-volume
are updated to the post division values (Line 8).

We are now well positioned to proceed to the population version of the simu-
lation algorithm (Algorithm 2). The population version is only marginally more
elaborate than the single-cell version thanks to the use of recursion. Algorithm 2
requires the same input as Algorithm 1, but provides a different output, return-
ing for each given time point a list of log-volumes across the whole population.
By a list we understand a collection of elements (here log-volumes), some of
which may be present in the list multiple times. We may append a number to
a list; we may query how many times a given element is present in the list; we
may query the total number of elements in the list—here the population size.

The algorithm proceeds as follows. First, we make sure that the lists are
empty initially (Lines 1–3). Then we make a call to the procedure CELL (Line
15). The CELL procedure is defined recursively in Lines 4–14. The procedure
calculates the contribution made by a cell that is introduced into the population
at time t0 with log-volume u0, and by the entire offspring of that cell, to the
lists of log-volume recordings. The cell’s individual contribution is calculated in
Lines 5–9. Comparing Lines 5–9 in Algorithm 2 to the corresponding passage in
Algorithm 1 (Lines 3–7), we note that the two sections of code differ only in that
the cell’s log-volume is either stored as a single value (Algorithm 1, Line 6) or
added to a list potentially containing multiple values (Algorithm 2, Line 8). The
contribution of the cell’s offspring to the log-volume recordings is calculated in

Cell-Volume Distributions 145

Algorithm 2. Population version
Require: Timepoints t0, . . . , tm; division rate α; mother cell’s log-volume u0

Ensure: Lists U0, . . . , Um of log-volumes at the given timepoints

1: for i = 1, . . . m do
2: Initialise Ui to an empty list
3: end for

4: procedure cell(t, u)
5: Draw θ from the unit-interval uniform distribution
6: Set τ ← max{1 − u, 0} − lnθ

α

7: for all i such that t ≤ ti < t + τ do
8: Append the value u + ti − t to the list Ui

9: end for
10: if t + τ < tm then
11: cell(t + τ , u0 + τ − 1)
12: cell(t + τ , u0 + τ − 1)
13: end if
14: end procedure

15: cell(t0, u0)

Lines 11–12 by making a recursive call to the CELL procedure for either of its
daughter cells. Cells that are born after the last recording time point tm cannot
make contribution to the log-volumes recordings. For this reason, the recursive
calls are made only if the mother cell divides before the time tm of last recording
(Line 10). In this manner, we make sure that the recursion does not continue ad
infinitum.

4 Periodicity

Regardless of the particulars of the growth-control mechanism, a minimalistic
model based on exponential growth and symmetric division, which we shall con-
sider here, exhibits a type of periodic behaviour [4,5,7]. Specifically, the volume,
measured in units of its doubling time, of a daughter cell at time t > 0 is equal
to the volume of the mother cell at time t = 0 multiplied by 2t−n, where n is the
daughter cell’s generation. A couple of important observation follow immediately
from this. First, possible cell volumes are restricted to a discrete set of values
at any given time. Second, cell-volume measurements taken at different times
cannot be equal unless the times of measurement differ by an integer multiple
of the volume doubling time. We will see in what follows that this periodicity
with respect to the volume doubling time has important consequences for the
cell growth process that persist even in the asymptotic limit of large times.

Let t0 be the initial time and u0 be the log-volume of the mother cell at the
initial time. These two are input values in stochastic simulation. At time t > t0,

146 P. Bokes and A. Singh

the log-volume u(t) of a daughter cell is constrained to the discrete set

u(t) ∈ {ϕ + n, n ∈ Z}, (9)

where 0 ≤ ϕ < 1 is a phase defined by

ϕ = u0 + t − t0 − �u0 + t − t0�, (10)

where �a� denotes the floor of a (the nearest integer lower than the real number
a). The choice of the value of n within the discrete set (9) depends inversely on
the number of divisions of the first mother cell up to the daughter.

Fig. 1. Periodicity of the cell-volume process. At any given time, the log-volume belongs
to a discrete constraint set (top panel). Which of the constraint sets applies is deter-
mined by the phase ϕ, which is a one-periodic function of time t (bottom panel).

The constraint (9) holds regardless whether the single-cell or the popula-
tion approach to modelling cell-volume dynamics is taken. Additionally, it holds
regardless of the choice of the log-volume-dependent division rate γ(u). Specifi-
cally, for the threshold-like dependence (7) we know that the log-volume has to
be positive, implying that the n in the constraint (9) has to be non-negative.

The presence of the constraint (9) is best explained graphically (Fig. 1, top
panel). While the cell does not divide, its log-volume increases along a straight
line with unit slope. When it divides, the log-volume transfers to a parallel line
with intercept one unit lower. Regardless of the timing of cell divisions, the log-
volume trajectories are constrained to a discrete union of parallel lines whose

Cell-Volume Distributions 147

intercepts differ by an integer. The constraint (9) is obtained by taking a cross-
section at time t of these parallel lines.

The constraint sets (9) are parametrised by the phase ϕ, which is a one-
periodic function of time t (Fig. 1, bottom panel). The log-volume u(t) visits
each constraint set periodically with unit period. Different phases give disjoint
constraint sets. The union of all constraint sets over phases 0 ≤ ϕ < 1 gives the
entire state space of real log-volumes.

Discrete Markov chains whose state space is partitioned into disjoint classes
which are periodically (with discrete period) visited by the chain are called peri-
odic Markov chains [12]. By analogy, we refer to the cell-volume process also as
periodic. Periodicity has consequences for the large-time behaviour of a process.
Large-time behaviour of aperiodic processes is typically given by a steady-state
distribution. Contrastingly, periodic processes retain the dependence of the phase
even in the large-time limit.

In the next two sections, we will characterise the large-time behaviour of the
periodic cell-volume process using first the single-cell and then the population
approach.

5 Large-Time Single-Cell Behaviour

In the previous section we showed that the log-volume u(t) of a cell at time t is
constrained to the set of values n + ϕ(t), where n is an integer the phase ϕ(t) is
a function of time t (and of initial data). The probabilities

pn(t) = Prob[u(t) = n + ϕ(t)] (11)

have a discontinuity at any time t for which at which ϕ(t) has a discontinuity
(cf. Fig. 1, bottom panel). We then have a consistency condition

pn(t−) = Prob[u(t) = n + 1] = pn+1(t+), whenever ϕ(t) = 0. (12)

Away from the discontinuities, the probabilities (11) satisfy a system of balance
equations

dpn(t)
dt

= γ(n + 1 + ϕ(t))pn+1(t) − γ(n + ϕ(t))pn(t), 0 < ϕ(t) < 1. (13)

Integrating the system (13) forward in time, one obtains the probabilities pn(t)
until a discontinuity in ϕ(t) is encountered. The consistency condition (12) needs
to be applied at times of discontinuity to calculate from the probabilities right
before the discontinuity their values right after the discontinuity. The integration
of the system (13) can then be restarted with the post-discontinuity values.

The system (13) comprises an infinite number of coupled linear ordinary
differential equations with non-constant coefficients. In general, the system (13)
can be solved by truncating to a finite number of equations and using a numerical
solver. In the specific case of a threshold dependence (7) of the division rate on

148 P. Bokes and A. Singh

the log-volume, we will be able to find an explicit large-time solution to (13)
subject to (12).

As time progresses, the log-volume distribution becomes independent of the
specifics of the initial condition and depend on time only via the phase ϕ. Let
us denote this distribution by πn(ϕ). It satisfies a system of balance equations

dπn(ϕ)
dϕ

= γ(n + 1 + ϕ)πn+1(ϕ) − γ(n + ϕ)πn(ϕ), (14)

which looks similar to (13), differing in that the independent variable is now the
phase ϕ, which is restricted to the range 0 ≤ ϕ ≤ 1. The consistency condition
(12) translates into

πn(1) = Prob[u(t) = n + 1] = πn+1(0), (15)

which provide a set of boundary conditions for the system (14). For threshold-
type dependence (7) of division rate on log-volume, we have γ(n + φ) = α(1 −
δn,0), so that the system (14) simplifies to

dπ0(ϕ)
dϕ

= απ1(ϕ),
dπn(ϕ)

dϕ
= α(πn+1(ϕ) − πn(ϕ)), n = 1, 2 . . . (16)

We look for a solution to (16) subject to the boundary conditions (15) in the
form of an exponential

πn(ϕ) = cne−μϕ, n ≥ 1, (17)

where μ is an eigenvalue and cn are eigenvector components. Inserting the
ansatz (17) into (16) we find

− μcn = α(cn+1 − cn), n ≥ 1. (18)

Substituting the ansatz (17) into (15) we find that

cn+1 = cne−μ, n ≥ 1. (19)

Substituting (19) into (18) and simplifying yields the characteristic equation

μ = α(1 − e−μ). (20)

Elementary analysis shows that the characteristic Eq. (20) has a positive solution
μ only if α > 1. Furthermore, it is a unique positive solution and lies in the
interval α − 1 < μ < α. From now on we require that α > 1 holds and we take
for μ the unique positive solution to the characteristic Eq. (20). The condition
α > 1 guarantees the (post-threshold) dominance of division over growth, which
is critical for the maintenance of cell volume homeostasis.

The recursive relation (19) implies that cn = c0e−μn, which, if substituted
into (17), yields

πn(ϕ) = c0e−μ(n+ϕ), n ≥ 1. (21)

Cell-Volume Distributions 149

Positivity of μ guarantees that πn(ϕ) has a finite
1 norm and can be normalised
into a probability distribution. Integrating the first equation in (16) subject to
π0(0) = 0 leads to

π0(ϕ) = c0
αe−μ(1 − e−μϕ)

μ
= c0

1 − e−μϕ

eμ − 1
, (22)

in which the second equality is due to (20). The normalisation constant c0 can
be determined from the relation

1 =
∞∑

n=0

πn(ϕ) = c0

(
1 − e−μϕ

eμ − 1
+

∞∑
n=1

e−μ(n+ϕ)

)

= c0

(
1 − e−μϕ

eμ − 1
+

e−μϕe−μ

1 − e−μ

)
=

c0
eμ − 1

,

from which
c0 = eμ − 1 (23)

follows. Inserting (23) into (21) and (22) finalises our analysis.
In summary, we approximate the probability pn(t) that the cell’s log-volume

is equal to n + ϕ(t) in the large-time regime by a phase-dependent distribution

pn(t) ∼ πn(ϕ(t)), t 	 1, (24)

where πn(ϕ) is given explicitly by

π0(ϕ) = 1 − e−μϕ, πn(ϕ) = (eμ − 1)e−μ(n+ϕ), n = 1, 2, . . . , (25)

and μ is the unique positive solution to the transcendental characteristic equation
(20), which exists provided that a > 1.

6 Large-Time Population Behaviour

Assume that at the initial time t0 the population consisted of a single mother
cell with log-volume u0. Algorithm 2 ensures that at t > t0 the log-volumes of
its progeny are contained in a list U(t). Lists differ from sets in that they can
contain the same element multiple times. Due to periodicity of the cell-volume
process, U(t) can only contain elements with values n + ϕ(t), where n is an
integer and ϕ(t) is the phase as defined by (10). Define by fn(t) the number of
times a particular value n+ϕ(t) is present in the list. The consistency condition

fn(t−) = fn+1(t+), whenever ϕ(t) = 0, (26)

holds at times of discontinuity of ϕ(t). Provided that the numbers fn(t) are suffi-
ciently large, we can treat them as continuous quantities that satisfy a population
balance equation

dfn(t)
dt

= 2γ(n + 1 + ϕ(t))fn+1(t) − γ(n + ϕ(t))fn(t), 0 < ϕ(t) < 1, (27)

150 P. Bokes and A. Singh

away from the times of discontinuity of ϕ(t). The population balance Eq. (27)
differs from the probability balance Eq. (13) in the factor 2 multiplying the first
term on the right-hand side of (27). It is easy to verify that fn(t) = 2−npn(t),
where pn(t) is a solution to the probability balance Eq. (13), is in fact a solution
to the population balance Eq. (27). It does not however satisfy the consistency
condition (26). In order to satisfy the consistency condition, we modify the solu-
tion to

fn(t) = c 2−n+t−ϕ(t)pn(t), (28)

where c is a tunable constant. Since t − ϕ(t) is constant in any interval in which
ϕ(t) is continuous, the function (28) is a constant multiple of 2−npn(t) in any
such interval, and as such satisfies the population balance Eq. (27). Further, it is
easy to verify that the consistency condition (26) is met by (28). In the regime
of large times, we can approximate pn(t) by πn(ϕ(t)) to obtain

fn(t) ∼ c 2−n+t−ϕ(t)πn(ϕ(t)), t 	 1. (29)

The total number of progeny at time t is given by

f(t) =
∞∑

n=0

fn(t) ∼ c 2t−ϕ(t)

(
1 − e−μϕ(t) +

∞∑
n=1

(eμ − 1)2−ne−μ(n+ϕ(t))

)

= c 2t−ϕ(t)

(
1 − e−μϕ(t) + (eμ − 1)e−μϕ(t) e−μ

2 − e−μ

)

= c 2t−ϕ(t) 2 − e−μ − e−μϕ(t)

2 − e−μ
. (30)

Finally,

fn(t)
f(t)

∼ 2 − e−μ

2 − e−μ − e−μϕ(t)
2−nπn(ϕ(t)), t 	 1, n = 0, 1, . . . , (31)

gives the proportion of cells which have log-volume n + ϕ(t) at a large time t.

7 Results

In this Section we use the simulation and analytic methods presented in the
previous Sections to examine the dynamical behaviour of our model for cell-
volume growth.

Figure 2 shows the cell count, on a logarithmic scale, as function of time
measured in units of volume doubling time. Although the overall trend is char-
acterised by an exponential increase, the cell count is nevertheless subject to
periodically recurring cycles of fast growth alternating with slow growth. The
cyclic behaviour is sustained even at large times. The simulation-based cell count
(blue lines) exhibits low-copy-number noise at earlier times. The analysis-based
cell count (orange lines) faithfully reproduces the large-time cyclic behaviour of

Cell-Volume Distributions 151

Fig. 2. Size of the cell population derived from an individual mother cell as function
of time measured in units of volume doubling time. Panels differ in the choice of the
division rate α that applies after the critical cell volume has been reached by a growing
cell. Results of stochastic simulation by Algorithm 2 (blue lines) cross-validate the
theoretical prediction (30) (orange lines). The log-volume of the mother cell at initial
time (here t0 = 0) is set to the critical value of u0 = 1 in all examples. The undetermined
constant c in the theoretical result (30) has been chosen so as to perfectly fit the
simulation result at the last timepoint (here tm = 12). The cell count was obtained by
counting the total number of elements in the lists Ui returned by Algorithm 2. (Color
figure online)

the results of simulation. The four panels of Fig. 2 differ in the choice of volume-
dependent division rate γ(V). The value specified within the figure panels gives
the division rate α that applies once a volume threshold has been crossed (cf.
Eq. (3)). For large values of the division rate α (bottom right panel in partic-
ular), the control of cell volume becomes near deterministic: division initiates
almost immediately (i.e. with a very high rate) after the critical volume thresh-
old is reached. We observe that in the near-deterministic regime of cell-volume
control, the growth dynamics assumes a step-like pattern. Away from the deter-
ministic regime, i.e. for lower values of the post-threshold division rate, the cycles
of fast and slow growth are less pronounced.

In the following computational experiment, we let a colony of cells, derived
from a single progenitor, grow until it counts in thousand individuals, and then
study in detail a single ensuing period of cyclic growth. The top panel in Fig. 3
shows the dependence of the cell count on phase, which is consistent with the

152 P. Bokes and A. Singh

Fig. 3. Discrete log-volume distributions at different phases of the growth cycle for
post-threshold division rate set to α = 3. (Color figure online)

time dependence of cell count reported in Fig. 2. In the remaining panels of
Fig. 3, blue-coloured bars represent the distributions of log-volume in the cell
population at different phases of the period. At any phase of the cycle, the
log-volume distribution is discrete (cf. Sect. 4). The support of the distribution,
which is indicated by vertical dotted lines in the panels of Fig. 3, travels to the
right as phase increases. At the end of the period, the support of the distribution,
as well as the distribution itself, returns to where it started at the beginning of
the cycle. The theoretical proportions (31) (bars of lighter shade of blue) are in
a good agreement with the results of simulation by Algorithm 2 (bars of darker
shade of blue).

In order to compare the population and single-cell versions of the model,
we juxtapose the proportion of cell population with a particular log-volume
(Fig. 3, blue bars) to the probability of observing the log-volume within a single-
cell lineage (Fig. 3, orange bars). The single-cell probabilities were estimated

Cell-Volume Distributions 153

from an ensemble of 4096 independent sample paths generated by Algorithm 1
(Fig. 3, bars of darker shade of orange). In each single-cell simulation, we used
the same initial condition as in the population simulation; we also skipped the
same amount of time, before analysing a single period of cyclic behaviour, as in
the population simulation. The simulation-based estimates, both single-cell and
population-wide versions, are cross-validated with the theoretical probability
values (25) (Fig. 3, bars of lighter shade of orange). Comparing the results of the
population and single-cell versions of the model, we observe that the single-cell
approach tends to underestimate the proportion of small cells and overestimate
the proportion of big cells in the phases of fast growth (Fig. 3, phases 0.1 to 0.7,
say). In the later phases of slow growth, the two approaches lead to the same
values of log-volume.

8 Conclusions

We considered a model for the growth of cellular volume in which cells grow
exponentially and divide with a volume-dependent rate, resulting in two daugh-
ter cells each inheriting half of their mother’s volume. Two versions of the model
are systematically compared: in the first version, a single cell lineage is described
by a stochastic, Markovian, model; in the second, an exponentially growing cell
population is followed. We constructed simulation algorithms for both model ver-
sions which are exact in the sense that they require no numerical discretisation
technique to sample the underlying stochastic process [8].

The model, in either of the two formulations, is shown to sustain cyclic
behaviour with alternating phases of slow and fast growth. The phases of fast
growth occur when most cells are large enough to divide, whereas the phases
of slow growth take place when most cells are too small to divide. The cyclic
behaviour, resulting from the periodicity of the stochastic process, is intriguing
as it suggests possible biases from specific experimental designs (e.g. choice of
measurement times). Notably, periodicity is a consequence of a fully symmet-
ric division, and even small amounts of asymmetry in a more general model
situations are expected to eventually break periodicity.

Our computational analysis suggests that the population-based approach
leads to greater proportions of small cells and smaller proportions/probabilities
of large cells in the fast-growth phases than the single-cell approach. This obser-
vation is consistent with the fact that the population approach includes twice as
many daughter cells than mother cells do in comparison with the single-cell app-
roach. Additionally, our results provide a quantitative evaluation of this effect
and tractable analytic solutions valid in the large time asymptotic regime.

Thus, our results provide insights into the dynamics of the process of cell
growth and suggest commonalities as well as differences between single-cell
Markovian modelling and whole-population simulation. We expect that the
methods explored in this paper can be applicable in related and more complex
descriptions of cell growth and division.

154 P. Bokes and A. Singh

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell. Garland Science, New York (2002)

2. Amir, A.: Cell size regulation in bacteria. Phys. Rev. Lett. 112(20), 208102 (2014)
3. Antunes, D., Singh, A.: Quantifying gene expression variability arising from ran-

domness in cell division times. J. Math. Biol. 71(2), 437–463 (2015)
4. Bell, G.I., Anderson, E.C.: Cell growth and division: I. a mathematical model

with applications to cell volume distributions in mammalian suspension cultures.
Biophys. J. 7(4), 329 (1967)

5. Bernard, E., Doumic, M., Gabriel, P.: Cyclic asymptotic behaviour of a population
reproducing by fission into two equal parts. arXiv preprint arXiv:1609.03846 (2018)

6. Davis, M.: Piecewise-deterministic markov processes: a general class of non-
diffusion stochastic models. J. R. Stat. Soc. B 46, 353–388 (1984)

7. Diekmann, O., Heijmans, H.J., Thieme, H.R.: On the stability of the cell size
distribution. J. Math. Biol. 19(2), 227–248 (1984)

8. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–61 (1977)

9. Hannsgen, K.B., Tyson, J.J., Watson, L.T.: Steady-state size distributions in prob-
abilistic models of the cell division cycle. SIAM J. Appl. Math. 45(4), 523–540
(1985)

10. Kretzschmar, K., Watt, F.M.: Lineage tracing. Cell 148, 33–45 (2012)
11. Modi, S., Vargas-Garcia, C.A., Ghusinga, K.R., Singh, A.: Analysis of noise mech-

anisms in cell-size control. Biophys. J. 112(11), 2408–2418 (2017)
12. Norris, J.R.: Markov Chains. Cambridge Univ Press, Cambridge (1998)
13. Perthame, B.: Transport Equations in Biology. Springer, Berlin (2006)
14. Robert, L., Hoffmann, M., Krell, N., Aymerich, S., Robert, J., Doumic, M.: Division

in escherichia coli is triggered by a size-sensing rather than a timing mechanism.
BMC Biol. 12(1), 17 (2014)

15. Schuss, Z.: Theory and Applications of Stochastic Processes: An Analytical App-
roach. Springer, Berlin (2009)

16. Taheri-Araghi, S., et al.: Cell-size control and homeostasis in bacteria. Curr. Biol.
25, 385–391 (2015)

17. Thomas, P.: Analysis of cell size homeostasis at the single-cell and population level.
Front. Phys. 6, 64 (2018)

18. Vargas-Garcia, C.A., Ghusinga, K.R., Singh, A.: Cell size control and gene expres-
sion homeostasis in single-cells. Curr. Opin. Syst. Biol. 8, 109–116 (2018)

19. Vargas-Garcia, C.A., Soltani, M., Singh, A.: Conditions for cell size homeostasis:
a stochastic hybrid system approach. IEEE Life Sci. Lett. 2(4), 47–50 (2016)

http://arxiv.org/abs/1609.03846

Transient Memory in Gene Regulation

Calin Guet2, Thomas A. Henzinger2, Claudia Igler2, Tatjana Petrov1(B),
and Ali Sezgin3

1 Department of Computer and Information Sciences/Centre for the Advanced Study
of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany

tatjana.petrov@gmail.com
2 IST Austria, Am Campus 1, 34000 Klosterneuburg, Austria

3 Aselsan, Ankara, Turkey

Abstract. The expression of a gene is characterised by its transcription
factors and the function processing them. If the transcription factors are
not affected by gene products, the regulating function is often repre-
sented as a combinational logic circuit, where the outputs (product) are
determined by current input values (transcription factors) only, and are
hence independent on their relative arrival times. However, the simulta-
neous arrival of transcription factors (TFs) in genetic circuits is a strong
assumption, given that the processes of transcription and translation of
a gene into a protein introduce intrinsic time delays and that there is
no global synchronisation among the arrival times of different molecular
species at molecular targets.

In this paper, we construct an experimentally implementable genetic
circuit with two inputs and a single output, such that, in presence of
small delays in input arrival, the circuit exhibits qualitatively distinct
observable phenotypes. In particular, these phenotypes are long lived
transients: they all converge to a single value, but so slowly, that they
seem stable for an extended time period, longer than typical experiment
duration. We used rule-based language to prototype our circuit, and we
implemented a search for finding the parameter combinations raising the
phenotypes of interest.

The behaviour of our prototype circuit has wide implications. First, it
suggests that GRNs can exploit event timing to create phenotypes. Sec-
ond, it opens the possibility that GRNs are using event timing to react
to stimuli and memorise events, without explicit feedback in regulation.
From the modelling perspective, our prototype circuit demonstrates the
critical importance of analysing the transient dynamics at the promoter
binding sites of the DNA, before applying rapid equilibrium assumptions.

Tatjana Petrov’s research was supported by SNSF Advanced Postdoc. Mobility Fel-
lowship grant number P300P2 161067, the Ministry of Science, Research and the Arts
of the state of Baden-Württemberg, and the DFG Centre of Excellence 2117 ‘Centre
for the Advanced Study of Collective Behaviour’ (ID: 422037984). Claudia Igler is the
recipient of a DOC Fellowship of the Austrian Academy of Sciences. Thomas A. Hen-
zinger’s research was supported in part by the Austrian Science Fund (FWF) under
grant Z211-N23 (Wittgenstein Award).

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 155–187, 2019.
https://doi.org/10.1007/978-3-030-31304-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_9

156 C. Guet et al.

Keywords: Gene regulation · Stochastic modelling ·
Long lived transients · DNA looping

1 Introduction

The fundamental conceptual breakthroughs related to how a gene is turned on
and off, have inspired a large body of theoretical and experimental work on
gene regulation, including the explanation of stochastic switching between lysis
and lysogeny of phage [25], all the way to more complex logic gate formalisms
that attempt to abstract more complex biological behaviour. Synthetic biology
enthusiasts often use analogies with how electronic circuits are manipulated by
computers [13,24], and have demonstrated success in engineering simple genetic
circuits that are encoded in DNA and perform their function in vivo. However,
such digital (in the sense that the expression states are encoded through Boolean
values) and combinational design (in the sense that the output is a pure function
of present input only, different to the sequential design) quickly becomes infea-
sible in experiment, because the cellular environment is resource-limited and
highly crosstalk-prone. The effective engineering of biological systems needs to
take into account the intrinsic properties of the biological medium, so as not to
fight against the principles of tinkering that characterise biology [16], but rather
to make use of them. Significant conceptual challenges remain related to the still
unsatisfactory quantitative but also qualitative understanding of the underlying
processes [20]. Understanding time-dependent phenomena is fundamental in this
complex picture of the cell that unravels itself at the molecular scale, especially
since cells do not have computer-like clocking mechanisms, beyond circadian and
cell cycle ones. A major question emerges as to what are the macroscopic effects
of small delays in the arrival times of different molecules at molecular targets.

Gene expression in a single cell is modelled by a stochastic process which
captures the stochastic switching among possible configurations at the DNA
(the architectural configuration of which is often termed promoter logic, e.g.
shown in Fig. 4), and their effect on the copy number of other species involved
in regulation, such as mRNA, proteins and transcription factors (TFs). The
switching mechanism depends on the binding affinities of the TFs and RNA
polymerase to their respective binding sites as well as the concentrations of those
proteins in the cell. Stochastic dynamics of such gene regulatory process typically
has a single equilibrium, as a consequence of reversibility of reactions occurring
at the DNA binding sites. Sometimes, the transient regime of the distribution
among DNA configurations is rapid and robust to possible delays in arrival of
TFs. In such cases, it is satisfactory to use the statistical thermodynamics model,
which has shown unquestionable success (e.g. [1,37]). It estimates the probability
of being in any of the possible DNA binding configurations from their relative
binding energies (Boltzmann weights) and the protein concentrations, both of
which can often be experimentally accessed. While this model takes into account
the stochasticity inherent to the DNA binding configurations (unlike the also
widely used deterministic limit [18]), it neglects the transient probabilities in

Transient Memory in Gene Regulation 157

the promoter logic before the equilibrium is reached. The question arises: In
which ways does the transient regime at the DNA (promoter) affect the shape
and duration of observable protein dynamics? Can it happen that the observable
transients move towards the unique equilibrium so slowly, that they are mistaken
for steady state dynamics?

In this paper, as a proof-of-concept, we construct a prototype genetic circuit
based on two different transcription factors that regulate the same gene, with-
out feedback. Our circuit demonstrates that, for gene regulation, qualitatively
distinct transients may take extraordinarily long times to disappear, and the
observable phenotype in the transient can be highly sensitive to the order of
arrival of TFs in the system. In particular, the transient phenotype may appear
to be stable even though it is not, creating an effect of long lived transients[7].
Our prototype circuit is realistic, experimentally implementable in the sense that
the mechanism can be implemented by the current technology and kinetic rate
values are in realistic ranges. The behaviour of this circuit suggests that the
genetic circuit can memorise the order of arrival of TFs, although there is no
explicit feedback at the gene regulatory level.

2 Preliminaries and Background

A gene is expressed at a basal rate, whenever the RNA polymerase (RNAP) is
bound to its promoter region at the DNA. Activators are transcription factors
(TFs) that bind to specific locations on the DNA, or to other TFs, and enhance
the expression of gene g by promoting the binding of RNAP. Repressors reduce
the expression of gene g, by directly blocking the binding of RNAP, or indirectly,
by inhibiting the activators, or promoting direct repressors. The mechanism of
how and at which rates the molecular species are interacting is transparently
written in a list of reactions. Reactions are equipped with the stochastic seman-
tics which is valid under mild assumptions [12].

Definition 1. A reaction system; is a pair (S,R), such that S = {S1, . . . , Sn}
is a finite set of species, and R = {r1, . . . , rr} is a finite set of reactions. The
state of a system can be represented as a multi-set of species, denoted by x =
(x1, ..., xn) ∈ Nn. Each reaction is a triple rj ≡ (aj ,νj , cj) ∈ Nn × Nn × R≥0,
written down in the following form:

a1jS1, . . . , anjSn
cj→ a′

1jS1, . . . , a
′
njSn, such that ∀i.a′

ij = aij + νij .

The vectors aj and a′
j are often called respectively the consumption and produc-

tion vectors due to jth reaction, and cj is the respective kinetic rate. If the jth
reaction occurs, after being in state x, the next state will be x′ = x + νj . This
will be possible only if xi ≥ aij for i = 1, . . . , n.

Stochastic Semantics. The species multiplicities follow a continuous-time
Markov chain (CTMC) {X(t)}t≥0, defined over the state space S = {x | x

158 C. Guet et al.

is reachable from x0 by a finite sequence of reactions from {r1, . . . , rr}}. In other
words, the probability of moving to the state x + νj from x after time Δ is

P(X(t + Δ) = x + νj | X(t) = x) = λj(x)Δ + o(Δ),

with λj the propensity of jth reaction, assumed to follow the principle of mass-
action: λj(x) = cj

∏n
i=1

(
xi

aij

)
. The binomial coefficient

(
xi

aij

)
reflects the proba-

bility of choosing aij molecules of species Si out of xi available ones.

Example 1 (basal gene expression). Basal gene expression with RNAP binding
can be modelled with four reactions, where the first reversible reaction models
binding between the promoter site at the DNA and the polymerase, and the
second two reactions model the protein production and degradation, respectively:

DNA,RNAP ↔ DNA.RNAP at rates k, k−

DNA.RNAP → DNA.RNAP + P at rate α

P → ∅ at rate β.

The state space of the underlying CTMC S ∼= {0, 1} × {0, 1, 2, . . .}, such that
s(1,x) ∈ S denotes an active configuration (where the RNAP is bound to the
DNA) with x ∈ N protein copy number, as depicted in Fig. 2.

Example 2 (adding repression). Repressor blocking the polymerase binding can
be modelled by adding a reaction

DNA, R ↔ DNA.R

In this case, there are three possible promoter configurations, that is, S ∼=
{DNA,DNA.RNAP,DNA.R}×{0, 1, 2, . . .}, where D0 = {DNA,DNA.R} are inac-
tive promoter states.

Computing the Transient. Using the vector notation X(t) ∈ Nn for the
marginal of process {X(t)}t≥0 at time t, we can compute this transient dis-
tribution by integrating the chemical master equation (CME). Denoting by
p(t)(x) = P(X(t) = x), the CME for state x ∈ Nn reads

d
dt

p(t)(x) =
r∑

j=1,x−ν j∈S

λj(x − νj)p(t)(x − νj) −
r∑

j=1

λj(x)p(t)(x). (1)

The solution may be obtained by solving the system of differential equations,
but, due to its high (possibly infinite) dimensionality, it is often statistically
estimated by simulating the traces of {Xt}, known as the stochastic simulation
algorithm (SSA) in chemical literature [12]. As the statistical estimation often
remains computationally expensive for desired accuracy, for the case when the
deterministic model is unsatisfactory due to the low multiplicities of many molec-
ular species [19], different further approximation methods have been proposed,
major challenge to which remains the quantification of approximation accuracy
(see [36] and references therein for a thorough review on the subject).

Transient Memory in Gene Regulation 159

2.1 Transients in Gene Expression Without Feedback

We will further focus on regulation of single gene without feedback. This allows
a circuit-view, where activators and repressors are inputs, and the average tran-
sient protein expression is the output. Since there is a single DNA molecule per
cell, each state counts one copy of the current DNA configuration, and zero copies
of all other DNA binding configurations. Hence, the expression state for a single
gene of interest consists of two layers: the proteins that we see, and the regu-
latory configuration of the DNA (for example, two activators and polymerase
are bound) (Fig. 3). Such two-layer model allows us to study the transient of
coupled promoter state and protein count. In order to focus our analysis on the
effect of input timing perturbations, yet to keep our model simple, we chose not
to involve further mechanistic details, such as the steps involving mRNA.

The following observation states that in general, when there is no feedback,
computing the output does not require integrating the Master equation for the
entire CTMC, but only for a CTMC controlling the switching among the DNA
configurations (depicted left in Fig. 3).

Lemma 1. Let {X(t)}t≥0 be the CTMC for a model of single gene regulation
without feedback, over the state space S = S0
S1 = (D0
D1)×{0, 1, . . .}, where
D0 = {D01,D02, . . .} are inactive DNA configurations, and D1 = {D11,D12, . . .}
are active DNA configurations (RNAP bound). Let the reaction system;(S,R) be
such that all reactions are of one of the following types (for some i ≥ 0 and
j ≥ 0):

(de)activation: D0i ↔ D1i at rates ki, k
−
i

switching: D0i ↔ D0j at rates k0ij , k
−
0ij

switching: D1i ↔ D1j at rates k1ij , k
−
1ij

protein syhnthesis: D1i → D1i + P at rate α

protein degradation: P → ∅ at rate β.

Then, the average amount of protein in a population follows the differential
equation

d
dt

〈xp(t)〉 = P(X(t)|D ∈ D1)α − β〈xp(t)〉, (2)

where 〈xp(t)〉 denotes the average amount of the protein molecules at time t, and
process X(t)|D is the projection of process X(t) to states at the promoter, that
is X(t)|D = d if and only if (X(t) ∈ ∪i≥0(d, i)). In other words, P(X(t)|D ∈ D1)
denotes the marginal probability that the promoter is in active state (bound
RNAP) at time t.

The proof is discussed in Appendix, Sect. 1.C.

Corollary 1. Let π1 = limt→∞ P(X(t)|D ∈ D1) denote the probability of active
promoter at stationarity. Then, whenever the initial probability equals that of
the stationary, i.e. P(X(0)|D ∈ D1) = π1, the average protein dynamics follows
the differential equation

160 C. Guet et al.

d
dt

〈xp(t)〉 = π1α − β〈xp(t)〉. (3)

When DNA is modelled with one binding site, the promoter can be in only
two states, and the analytic solution to Eq. (2) is tractable. In general, as
activators and repressors bind to different regions (operator sites) of the same
DNA molecule, the respective number of regulatory configurations at the pro-
moter grows combinatorially with the number of operator sites. For instance,
one hypothesised mechanism in λ-phage, containing only three left and three
right operators, leads to 1200 different DNA configurations [35]1! In such cases,
the simplification based on the argument of fast equilibrium is often employed,
meaning that the transient protein dynamics is computed according to Eq. (3),
thus neglecting the transient changes in probability distribution among the DNA
regulatory configurations.

Fast equilibrium assumption is a prerequisite to applying a widely popular
statistical thermodynamics model [38]. Assuming that the DNA regulatory con-
figurations mix rapidly, this model allows to experimentally estimate the free
energies of each promoter configuration, and then, subsequently, to derive the
equilibrium constants2 for each of the reactions [28,38]. As the absolute and
precise values of kinetic rates are rarely available in practice, this method is
powerful, because it allows to predict the dynamics of a genetic circuit from
a scarcely available experimental data. However, the statistical thermodynam-
ics model is applicable only when the assumption of rapid equilibrium at the
promoter is valid.

In the following, we showcase a simple, experimentally realisable genetic cir-
cuit which demonstrates an interesting situation where the long transient at the
promoter creates phenotypes that are qualitatively distinct from the phenotypes
created when the promoter configurations start at the equilibrium. In particular,
these phenotypes are long lived transients: they all converge to a single value,
but so slowly, that they seem stable for an extended time period, longer than
typical experiment duration.

3 Problem Statement

We focus on a single gene regulation without feedback, where activators and
repressors are inputs, and the average protein expression is the output. Assuming
that a fixed amount of activators and repressors are added to the system with a
possible time lag, our reference scenarios are (Fig. 4 in Appendix):

– XA||R in which activator and repressor are introduced together,
– XA→R(Δ) in which the activator is introduced Δ time units before the repres-

sor,and
– XR→A(Δ) in which the repressor is introduced Δ time units before the acti-

vator.
1 Models used in this paper will count 23 and 6 distinct DNA binding configurations.
2 The ratio between the binding and unbinding rate.

Transient Memory in Gene Regulation 161

Our goal is to construct a genetic circuit with the following requirements:
(i) it is realistic, that is - experimentally implementable in the sense that the
mechanism can be implemented by the current technology and kinetic rate values
are in realistic ranges, (ii) the scenarios provide striking differences in the shape
and duration of transient protein output. To quantify the latter, we introduce
two quantitative measures:

– amplitude, the maximum distance in phenotype of the scenario with delay
from the scenario without delay, that is

α|s := max
t≥t0

|〈xp〉(t|s) − 〈xp〉(t|XA||R)|,

where s refers to the scenario in question (XA→R(Δ) or XR→A(Δ)) and xp(t|s)
denotes the average protein number in a population at time t in scenario s,
and

– halflife, the time the system takes from the moment of reaching the ampli-
tude, to the moment when the distance from the phenotype without delay
disappears, that is

t1/2|s := arg min
t≥tα|s

{t | |〈xp〉(t|s) − xp(t | XA||R)| <
1
2
α|s},

where tα|s denotes the moment when the amplitude is reached in scenario s.

In summary, the amplitude reflects how observable is the sensitivity to the
delay among inputs, and the second measure, halflife, reflects how slow is the
convergence to the real equilibrium after the amplitude has been observed. Long
lived transients are characterised by a large amplitude relative to the basal
expression and a half-life exceeding several cell division cycles.

4 Searching for Long Lived Transients

We develop and analyse models for two promoter architectures (drafted in
Fig. 5):

– Model without looping. A basic mechanism for activation and repression
is assumed: repressor R competes with RNAP, and the activator A recruits
the polymerase RNAP and binds independently of the repressor and the poly-
merase (configurations shown in Fig. 6).

– Model with looping. In the model with looping (Fig. 5, right), two activa-
tors and two repressors can bind the DNA; Binding of the second activator
(resp. repressor) promotes looping of the DNA in the active (resp. repressed)
state, thereby excluding binding of the other TF. This small mechanistic
change leads to the blow-up of the state space of the CTMC to 23 states as
a composition of two sub-models (Fig. 7).

162 C. Guet et al.

Biological Context. The CTMC for the DNA switching of our prototype circuit
with looping is inspired by the very well-characterized regulatory mechanisms of
the lac operon and of the bacteriophage lambda genetic switch [17,30].

Mathematical Context. In Markov chains, the time to be ε-close to equilib-
rium, mixing time, varies depending on the initial distribution, the chain connec-
tivity, and the rate parameters. In particular, long mixing times are prominent
for chains with a large spectral gap of the underlying generator matrix, and can
be guaranteed for chains with large connectivity diameter, suggesting that more
states and sparse connectivities generally can prolong the mixing time [21]. Still,
tightly estimating bounds on the mixing time for a given chain is an open prob-
lem, beyond the scope of this manuscript. Intuitively, DNA looping architecture
is a good candidate for creating large mixing times, because the looped states
are quick to reach when only activators or only repressors are present, but, once
entered, they are then hard to exit (‘dynamically trapped states’).

4.1 Model Implementation

Implementation. The models are written and analysed within the rule-based
modelling framework Kappa which allows us to represent the mechanistic model
concisely and to run an efficient stochastic simulation algorithm [3,11]. Source-
code of the rule-based models is given in Appendix 1.B. Parameter exploration
and additional output analysis were performed with Python.

Simulation. We simulated multiple samples of the stochastic model, and we
statistically estimated the first two moments of protein expression. In the model
with looping, we used 1000 individual cells for a time of 36000 s = 10 h, that
equals around 20 average cell doubling times, where inputs are added from time
point t0 = 5400 = 1.5 h (see Table 2 for all simulation parameters).

Kinetic Rates. All model parameters are in realistic ranges taken from the
literature, given in Table 1 and further explained in the Appendix. The mecha-
nism for the activator is inspired by the λ-phage. The mechanism for repressor
is inspired by the lac operon. Further values that were tested to show the gen-
erality of our approach came from other well-characterized TFs such as CRP.
The chosen parameter values were found in the literature, both for the scenario
without looping [6,15] and for the scenario with looping [32–34,39,40].

Parameter Search. We implemented a grid search of the viable parameter
space (for different levels of eleven kinetic rate parameters, and the amounts of
activator, repressor and RNAP), where we compute the average protein expres-
sion, amplitude and half-life for a subset of all parameter combinations. In our
implementation, the user specifies a range for each parameter, and the models
are executed, figures drawn for each possible parameter combination.

5 Results

In further text, by phenotype, we mean the average protein expression in a popu-
lation of 1000 cells. All three scenarios XA||R, XA→R(Δ) and XR→A(Δ) have the

Transient Memory in Gene Regulation 163

Fig. 1. A small delay in arrival times of TFs can give rise to qualitatively opposite,
stable transient phenotypes for a long period of time (a) Average protein level for
a population of 1000 cells, in three input scenarios (full lines) and three reference
scenarios (dotted lines). (b) 50 single cell traces (grey lines) and the respective average,
for each of the six modes.

same phenotypes eventually. As a reference, we also analyse the scenarios where
no TFs are input (Xbasal), only activators (XA) or only repressors are input
(XR). We investigated the phenotype in the three scenarios for a large range
of parameter combinations. (there are 211 > 2000 combinations when only two
values for each parameter are set). We choose one parameter set as the refer-
ence parameter set (shown in Fig. 1a), where the phenotypes are symmetric with

164 C. Guet et al.

respect to the XA||R scenarios in the sense that the protein expression deviates
in the same amount from the phenotype of XA||R and the rate of reaching the
phenotype of XR||A is of the same scale.

A Small Delay in Arrival Times of TFs Can Give Rise to Qualitatively
Opposite, Stable Transient Phenotypes for a Long Period of Time. In
Fig. 1a, we plot the observable phenotype – the mean of protein expression for
a given population of cells – in the three regimes of interest (full lines) and the
three reference regimes (dotted lines). Three distinct transient phenotypes are
observed:

– for XA||R, the expression is close to the level of basal expression,
– the transient regime for the input XA→R(1min) shows high expression for

multiple average cell doubling times, while
– the transient regime for the input XR→A(1min) shows low expression for

multiple average cell doubling times.

The transient for the input XA||R lasts roughly for one average cell doubling
time (30min), while both phenotypes for XA→R(1min) and XR→A(1min) last
well over 10 average doubling times. Therefore, the delay in arrival times of
TFs can result in long lived transient regimes with qualitatively opposite pheno-
types (both differing significantly from the equilibrium phenotype), depending
on which TF arrives first. Moreover, each of the phenotypes seems stable at the
time-scale of multiple cell lifetimes. In other words, the small delays, hence two
different histories of input, produce substantially different routes to the equilib-
rium, and the routes are so slow that they appear as steady state behavior at
the timescale of most experiments.

In Fig. 1b, we see that individual cells exhibit ‘all-or-none’ behaviour: an
individual cell either has high or low expression and the phenotype depends
on whether the cell entered the active looped state or the repressed looped
state. The expected time that a cell spends in one looped state is long. The
protein expression for 50 randomly chosen single cells is displayed in Fig. 1b for
each of the three regimes. In regime XA||R, an individual cell either has high
expression at around 400 proteins or low expression, being fully inhibited. The
noise around the low expression value is not observable in the plot, because
the low expression is fully inhibited most of the time. If the DNA unloops and
subsequently loops towards a different regulatory state, eg from looped repressed
to looped active state (or vice-versa), the protein expression will change from low
to high expression (or vice-versa). In the taken time window (10 h), three (out of
50) displayed traces switching from the high to low expression level and one trace
switching from low to high expression level. As expected, the average expression
in a given population (thick line in respective color) follows a continuous line; It is
saturated at around 270 protein molecules. In regime XA→R, all of the displayed
50 cells enter the active looped state before the repressors are input, but, due
to the slow unlooping, the high expression profile is long-preserved, resulting
in slow switching towards the low-expression state, and hence long transient
time towards the average expression. In regime XR→A, even though repressors

Transient Memory in Gene Regulation 165

are input first, some cells are activated, but most of the cells are repressed.
Similarly as in the profile XA→R, since DNA unlooping from the repressed state
is slow, the transient of the average protein expression is also slow. The reference
scenarios - Xbasal, XA and XR show the expected behaviour.

Long Lived Transients are Robust to Changes in Kinetic Parameters.
Are long lived transients a consequence of system regulatory architecture or
a careful tuning of kinetic parameters? To tackle this question, we chose six
different parameter combinations, listed in Table 1, and we reproduce the plot
shown in Fig. 1a for each of the parameter combinations, each for three time
delays - 1 min, 5 min and 15 min. p1 is the reference parameter set (the plot
shown in Fig. 1). Results, shown in Fig. 8, confirm that the long lived transients
are preserved with the chosen parameter changes. Higher unlooping rate for
either activators or repressors results in shortening the transient and moving the
average expression level to lower and higher value respectively (p2 and p3). While
decreasing the number of activators does not change the phenotype much (p4),
decreasing the number of repressors results in complete dominance of activation
effect when both TFs are input simultaneously (p5). Still, the delay of activator
input shows full repression profile for a long period of time. When RNAP rates
are scaled so that the binding and unbinding rates are both ten times slower,
the duration of transients shortens and the three input regimes show the same
output after much shorter time (≈10 h, p6).

To quantify the effect of long-lived transients, in Fig. 12 (up, model with
looping), we see that the reference parameter set (p1) has a halflife longer than
20 hours no matter if the delay occurs in favour of the activator or repressor.
The halflife decreases significantly in cases when the unlooping rate is decreased
(one at a time - p2 and p3), or when RNAP binding and unbinding rate is scaled
down (p6), while the change in the number of activators/repressors reflect more
on the amplitude than on the halflife (p4, p5).

Long Lived Transients Are Not Observed in the Model Without Loop-
ing. We next inquire how changes in regulatory architecture affect the behaviour,
i.e. is DNA looping essential for observing the long lived transients? We repeated
the experiments on a model without looping. Phenotypes for six parameter com-
binations, listed in Table 13, are each plotted for three time delays (Fig. 10). For
all parameter combinations, the amplitude and duration of transient regimes is
clearly correlated with the duration of delay - the longer delays induce longer
transient regimes. The transient phase is significantly shorter than in the model
with looping (notice the different time-scale than in Figs. 1 and 8), but they still
can last for several cell doubling times (for delays of 15 min up to 2.5 h or 5 aver-
age doubling times). However, they are not long lived transients, as the shape
of transients clearly reveals that the steady-state regime is going to be reached
later on, that is, the transients in this model would not be easily confused with
the steady state. The observations above are indicating that looping is essential

3 Notice that these six parameter combinations are different than those used for the
model with looping.

166 C. Guet et al.

for creating the effect of long lived transients. p1 is the reference parameter set,
which we choose so that the level of expression when both activators and repres-
sors are input is close to basal (the TFs neutralise each-other’s effect overall).
As expected, decreasing the recruitment by the activator results in lower sta-
tionary expression (p2), increasing the number of repressors results in stronger
repression (p3), weakening the repressor binding results in higher expression
(p4), weak binding of repressor in combination is not affected by decreasing the
recruitment by activator simultaneously (p5) and weak binding of repressor in
combination with more repressor molecules results in low expression (p6).

In the summary of characteristics of long lived transients for the model with-
out looping (shown in Fig. 12 down), we see that, for a delay of 5min, all parame-
ter combinations achieve the amplitude at comparable scale as that in the case of
model with looping. However, the maximal halflife in all tested parameter points
is 15min, a 100-fold difference with respect to the halflife of long lived transients
in the model with looping, confirming that adding the looped configurations was
essential for the effect of long-lived transients.

Phenotypes in Long Lived Transients can be Modulated by the Delay
Between Inputs. We now comment on the dependency on the delay. In Fig. 11,
the phenotypes in scenario XA→R(Δ) are observably equivalent for all chosen
values of delay. In particular, they transiently reach the same protein expression
value as the scenario XA where only activator is present. Therefore, this scenario
seems to be independent of delay timing between TFs as long as the delay occurs
in favour of the activator.

On the other hand, the difference between phenotypes in scenario XR→A(Δ)
is different for delay Δ = 1min than for delays Δ ∈ {5min, 15min}. While for
all three delays, the effect of long lived transients can be observed (the slope of
approaching the limit value is small), the phenotype (protein expression around
which the transients seem to stabilise) is different. It appears that, unlike delays
longer than 5min, the delay of 1min is not long enough for the population to
repress protein expression to a value as low as in the scenario XR (where only
repressor is present). In other words, the lowest gene expression value for delay
of 1min is never as small as in the scenario XR. To investigate the dependency of
the transient phenotype on the delay, we simulated the scenario for several delay
values between 1 sec and 5 min, namely Δ ∈ {1s, 20s, 40s, 60s, 120s, 180s} and we
computed the amplitude for the scenario XR→A. The plot in Fig. 11 demonstrates
that the amplitude approaches the value of XR scenario exponentially fast with
increasing delay time.

Plotting the phenotypes for scenario XA→R(Δ) for delays between 1 s and
1 min shows that the same activated gene expression levels are observed even for
delays as small as 1 s (plots not shown). The explanation for different sensitiv-
ity of transient phenotypes to the delay in scenarios XA→R(Δ) and XR→A(Δ)
are the different mechanisms implementing the activation and repression. When
activator is input first, it quickly binds both operator sites and the probabil-
ity of being in the looped active state almost instantaneously increases to the
maximum value (as fast as within 1 s), and then starts decreasing only very

Transient Memory in Gene Regulation 167

slowly towards the equilibrium as soon as the repressor is present as well. On
the other hand, when the repressor is input first, it does not bind both operator
sites as quickly, because it is competing with the abundant RNAP, even while
the activator is not in the system. Only if there is enough time for the repressor
to reach the looped repressed state with a probability nearly as high as in case
of repressors only, the maximally repressed expression level will be observable.
Otherwise, as soon as the activator is in the system, the probability of being in
the looped repressed state starts shifting slowly towards the equilibrium point,
and, consequently, the protein expression in the population starts increasing.

Long Lived Transients in Protein Expression Follow the Long Lived
Transients (Mixing Times) in Promoter Activity. In Fig. 9, we plot the
probability of the active regulatory configuration of the promoter for six different
parameter combinations (listed in Table 1). Plots show the expected agreement
with those in Fig. 8.

6 Discussion

Given that the processes of transcription and translation of a gene into a protein
introduce intrinsic time delays and that there is no global synchronization among
the arrival times of different molecular species at molecular targets, the simulta-
neous arrival of TFs in genetic circuits is a strong assumption. We subjected this
assumption to a perturbation analysis, where the perturbed parameters are the
relative arrival times of the TFs (different to the usual choices of perturbation
parameters being the kinetic rates). We simulated a simple and realistic genetic
circuit with two inputs and we showed that, in presence of small perturbations
in the arrival of inputs (shorter than 1min), the circuit can exhibit three qualita-
tively distinct phenotypes which are stable for as long as any typical experiment
would last (longer than 20 cell doubling-times). This has wide implications.

First, while our showcase example was constructed with the goal of demon-
strating that long lived transients can appear in gene regulation, there are
reasons to believe that many other gene regulatory schemes also exhibit long
lived transients and implement multiple phenotypes by modulating the timing
of inputs. To see this, consider that the number of potential phenotypes grows
factorially with the number of inputs per gene as it is determined by the num-
ber of possible input orderings, meaning that, for instance, only 5 inputs would
require us to analyse 5! = 120 different input scenarios. Moreover, our analysis
indicates that long lived transients are possible in promoters with many configu-
rations and certain states that are easy to reach but hard to exit. For instance,
genomic regulation of the development of sea urchin embryo shows potential for
long lived transients. The relevance of transient TF production has already been
determined in this system [2,44]: multiple TFs regulate a single gene which in
turn has multiple targets, and there is clear differentiation between upstream
and downstream components in the network. Therefore, considering long lived
transients might clear up some puzzling observations like the discrepancy of TF

168 C. Guet et al.

interactions between endogenous promoters and minimal promoters controlled
by three Endo16 regulatory modules [43].

Secondly, our proof-of-concept case study suggests that any modelling app-
roach which assumes perfectly synchronous arrival of TFs or assumes rapid
equilibrium at the promoter, may fail to explain a variety of phenotypes and
raise false conclusions. To illustrate this point, think of an experimentalist who
observes the system which seems equilibrated, but is a long lived transient (e.g.
in our case study, a delay in favour of the activator occurs). Assuming that what
she sees is an equilibrium, following the approach of statistical thermodynam-
ics, she would proceed by estimating the free energies of binding configurations,
but these estimates would be wrong, as the real equilibrium is much further
away. Moreover, the obtained model would explain a single phenotype, and not
the variety of quasi-stable phenotypes such as the ones we see in our showcase
example. In summary, one cannot ignore the order of stimulating a cell, even
when the GRN under consideration is assumed to be feedback-free. Similarly,
one cannot assume what is observed towards the end of the life cycle is close to
equilibrium even when the system seems relatively stable, e.g. growth at steady
state in bulk, even when the stimulation was completed very early on. This opens
further important questions such as how can an experimentalist who observes
a stable phenotype for the chosen experiment duration, distinguish between a
long lived transient and a real equilibrium? One immediate insight is the crit-
ical importance of experimentally measuring the kinetic rates as accurately as
possible, and taking the timing of inputs into account.

Finally, our case study opens the possibility that GRNs are exploiting event
timing to perform desired behaviours - it suggests that the cell does not compute
with equilibrium dynamics - as is widely assumed in the field (with the exception
of ‘well behaved’ limit cycle behaviours or pulsatile behaviour [22]), but uses
the transients to react to stimuli and to memorise events. The DNA may be
encoding more behaviours and thus phenotypes than an understanding based on
the conventional input to output mapping suggests. In particular, as our analysis
of delay timing between TFs shows (Fig. 11), a whole range of different stable
gene expression levels can be encoded in the event timing of inputs. More broadly,
this aspect may provide an explanation to why an organism can display so many
more phenotypes, though the number of genes is limited, as the complexity of
the organism increases, e.g. number of genes in bacteria and human vary by a
factor of only 4!

Our primary goal was to show that a simple gene regulation without feedback,
with realistic parameters, can exhibit long lived transients. We hypothesised that
the promoter architecture with looping will have the desired feature, and, in order
to find the feature, we performed a search over the 11-dimensional parameter
space, which allowed us to display and discuss a range of parameterisations
showing interesting behaviour. One of the compelling questions for future work
is formalisation and computation of robustness of a given promoter architecture
wrt. property of long-lived transients, as well as its sensitivity to a specific (group
of) parameters. To this end, we believe that the ideas of parameter synthesis for

Transient Memory in Gene Regulation 169

stochastic chemical reaction networks, extensively studied in [4,9,10] (where the
properties of the CTMC assigned to general biochemical reaction networks are
expressed in continuous signalling logic (CSL)), would be a useful starting point.

Related Work. The consequences of combined effects of time delay and intrin-
sic noise on gene regulation has been studied in [45]. In more recent works [23],
the authors elucidate the importance of relative timing of TF activation in com-
binatorial gene regulation with pulsatile signals. Like Lin et al. [23], our work
shows that relative timing between TFs may be used by the cell to implement
responses to different environments and therefore has to be taken into consid-
eration for modelling gene expression patterns. However, while the authors in
[23] suggest that the phenotypes differ in pulsatile regulation patterns, our study
reveals the existence of long lived transients. From a dynamical system point of
view, the effect of long lived transients that we present here can be seen through
the prism of general theoretical frameworks such as proposed in [31,42], where
the authors discuss how to detect and automatically compute the meta-stable
states from only the topology and timescales of the network; It would be inter-
esting to see how precisely these methods could be used to detect the long lived
transients we showcase in this paper.

Of relevance for synthetic biology, our construction based on looping suggests
a way to implement memory units, though they may be leaky, in the sense that
the signal is slowly being lost. In a broader context, cellular memory refers to
systems whose present phenotype is dependent on the history of input stimuli
and therefore the trajectory by which it has been reached [8]. The molecular
mechanisms associated with such memory effects are usually based on feedback
loops (e.g. the E. coli lac operon), DNA methylation patterns (e.g. temperate
phage, pilus synthesis, cell differentiation) or inversions catalysed by site-specific
recombinases (e.g. the Salmonella Hin system or the E. coli Fim system) [8,29].
The long lived transient behaviour observed in our simulations differs from the
mentioned memory mechanisms as it is purely relying on dynamical trapping of
the transcriptional state. Different to the usual references to cellular memory,
the long lived transients require no stabilisation of the phenotype through strong
(covalent) modification of the DNA or any kind of feedback of the output on the
promoter state (which is generally considered necessary for cellular memory).

The nature of the observed long lived transient states confer an epigenetic
nature to these states. Methylation of histones is widely used in eukaryotic gene
regulation as a modulator of gene activity that confers memory and stability
to gene expression states. However, unlike methylation that requires a sleuth
of specialised proteins that expend energy in order to form covalent bonds of
methyl groups to histones, the long lived transients arise simply as a dynamical
property of the system.

Acknowledgements. We are very grateful to Moritz Lang, Tiago Paixao and Jakob
Ruess, for their feedback during the manuscript preparation.

170 C. Guet et al.

Appendix 1.A Parameter Values

Table 1 lists the parameter ranges used for our case study example. We next
explain the choice of each of the parameters with respect to their biological
context.

1.A.1 Stochastic Scaling Constant
The stochastic scaling of rates and concentrations is done with a standard scaling
rate for E. coli cell N = 109 [26].

1.A.2 Protein Production and Degradation
The protein production is taken 0.5 molec.s−1 ([41], caption of Fig. 2) and the
degradation rate is taken 0.001 s−1 (corresponding to the halflife of 12min, con-
sistent with [26]).

1.A.3 RNAP Rates
On rate, off rate and number of RNAP molecules are consistent with the orders
of values reported in [5,14,35].

1.A.4 Activator
The activation mechanism is inspired by the activation of the PRM promoter in
the lysogenic state by protein CI in the regulation of λ-phage: CI competes with
Cro to bind to the promoter sites, and, when bound, it recruits RNAP (increases
PRM activity). The mechanism with looping, explained at mechanistic detail
level in [35], contains three left and three right operators, leading to 1200 different
DNA binding states. We model a mechanism with two states for the activator
without looping (‘bound’ or ‘not bound’) and with four binding states for the

Table 1. Parameter combinations tested in the model with looping.

Parameter

set

RNAP A binding R binding unloop A unloop R # A # R

IDa onb off ifA on off on off uA uR xA xR

Reference

set (p1)

104N−1 1.6 · 0.01 9× 8.8 · 107N−1 0.0264 8.8 · 107N−1 0.016 1000 1000 275 350

increase

unloop A

(p2)

− − − − − − − 100 − − −

increase

unloop R

(p3)

− − − − − − − − 100 − −

decrease

A (p4)

− − − − − − − − − 10 −

decrease

R (p5)

− − − − − − − − − − 10

downscale

RNAP

rates (p6)

10× 10× − − − − − − − − −

aThe stochastic scalling of rates and concentrations is done with N = 109. The choice of this and other

parameters is detailed in the main text of the appendix.
bAll on-rates are given in units molec.−1s−1, off-rates in units s−1. The unlooping rate is specified relative

to the unbinding of the respective transcription factor - eg. it means that the unlooping rate is 1000 times

smaller than the unbinding of the TF A. xA, xR are given in molecule numbers.

Transient Memory in Gene Regulation 171

activator with looping (see Fig. 5). The on-rate, off-rate well as the number of
activators is taken from [35] (page 82) When activator is bound, the recruitment
of RNAP is increased by factor 10 or 50 ([34] and [27] respectivelly) (Table 3).

1.A.5 Repressor
The repression mechanism is inspired by the well-studied transcriptional regula-
tion, there is a word missing after transcription of the lac operon, the repressor
LacI. We take the binding and unbinding rates for the repressor from ([39], Fig. 4).

1.A.6 Looping Rates
The stability of the looped state is incorporated in the model by scaling down
the unlooping rate. We choose the scaling factors of 100 and 1000 based on the
computation of the ratio of dissociation rates for the models with and with-
out looping ([40], Table 1; parameter a in [39]). The mechnism proposed in,
eg. [39] suggests that the looping increases the binding rate (due to increased
local concentration of TFs), while leaving the unbinding rate unchanged. As the
scaled on-rates may exceed theoretical limit for diffusion-limited reactions, in
our model, we incorporate the same effect by leaving the binding rate identical,
and scaling down the unlooping rate.

Table 2. Parameter combinations tested for the model without looping.

Parameter set RNAP A binding R binding # A # R

ID on off ifA on off on off xA xR

Reference set

(p1)

104V −1 1.6 · 0.01 49× 8.8 · 107V −1 0.0264 8.8 · 107V −1 0.016 275 10

low

recruitment

by A (p2)

− − 9× − − − − − −

increase #

R (p3)

− − − − − − − − 350

weak R

binding (p4)

− − − − − − 0.19 − −

low

recruitment

by A, weak R

binding (p5)

− − 9× − − − 0.19 − −

weak R

binding,

increase #

R (p6)

− − − − − − 0.19 − 350

Table 3. Simulation parameters: all models were run for three different delays and in
six different regimes.

Input

time

Total

time

Time delays Input schemes Simulation

points

samples

5400 s 36000 s 60 s, 300 s, 900 s {Xbasal, Xboth, XA, XR, XAR, XRA} 2000 1000

172 C. Guet et al.

Appendix 1.B Kappa Models

####### MODEL 1 (no looping) ############

Signatures

%agent: D(a,d) # Declaration of agent representing DNA with two binding

sites: ’a’ for

binding the activator and ’d’ for binding the Polymerase or the repressor

%agent: RNAP(d) # Declaration of Polymerase with binding site named ’d’

%agent: A(a) # Declaration of actovatpr A with binding site named ’a’

%agent: R(d) # Declaration of repressor R with binding site named ’d’

%agent: P() # Declaration of protein P

Rules

numbers after the ’!’ sign denote bond identifiers

for bimolecular reactions, the rate is scaled with the average number

of molecules in

the cell ’N’ in order to convert from units ’per Mol per sec’ to ’per

molecule per sec’)

POLYMERASE

RNAP(d), D(d) -> RNAP(d!1), D(d!1) @ ’on_rnap’ # RNAP binds, bimolecular

reaction

RNAP(d!1), D(d!1) -> RNAP(d), D(d) @ ’off_rnap’ # RNAP unbinds

PROTEIN

RNAP(d!1), D(d!1) -> RNAP(d!1), D(d!1), P() @ ’p_on’ # P is expressed

when RNAP is bound

P() -> @ ’p_off’

ACTIVATION

A(a), D(a) <-> A(a!1), D(a!1) @ ’on_a’, ’off_a’ # A binds to D

A(a!1), D(a!1,d), RNAP(d) -> A(a!1), D(a!1,d!2), RNAP(d!2) @

’on_rnap_if_a’ # A recruits

RNAP, that is, if A is bound, RNAP binds with larger affinity

INHIBITION

R(d), D(d) <-> R(d!1), D(d!1) @ ’on_b’, ’off_b’ # repressor binds the

’d’ site of D;

Since ’d’ is also the site for binding RNAP, when the repressor binds to

site ’d’, it

prevents the RNAP from binding and hence inhibits the protein expression.

Transient Memory in Gene Regulation 173

Variables

rates

%var: ’N’ 10^9 # the average number of molecules in the cell

%var: ’on_rnap’ 10^4/’N’ # division because the reaction is bimolecular

%var: ’off_rnap’ 1.6*0.01

%var: ’on_rnap_if_a’ 49*’on_rnap’

%var: ’on_b’ 8.8*10^7/’N’

%var: ’off_b’ 0.016

%var: ’on_a’ 8.8*10^7/’N’

%var: ’off_a’ 0.0264

%var: ’p_on’ 0.5

%var: ’p_off’ 0.001

%var: ’rnap0’ 1500

%var: ’a_add’ 275

%var: ’b_add’ 10

%var: ’p0’ 240 # initial number of proteins

%var: ’b0’ 0 # initial number of B molecules

%var: ’a0’ 0

Observables

%obs: ’protein’ P()

%obs: ’d_active’ D(d!1),RNAP(d!1)

Perturbation

#%mod: [T]= 5400 do $ADD ’a_add’ A(a)

%mod: [T]= 5400 do $ADD ’b_add’ R(d)

Initial conditions

%init: 1 D(d,a)

%init: ’rnap0’ RNAP(d)

%init: ’b0’ R(d)

%init: ’a0’ A(a)

%init: ’p0’ P()

####### MODEL 2 (with looping) ############

Signatures

%agent: D(a1,a2,d,b2,loop~0~1) # Declaration of agent representing DNA

with four binding

sites: ’a1’ and ’a2’ for binding the activators, ’d’ and ’b2’ for

binding the repressor

(both) or Polymerase (site ’d’), and site ’loop’ which indicates whether

the DNA is looped

174 C. Guet et al.

or not.

%agent: RNAP(d) # Declaration of Polymerase with binding site named ’d’

%agent: A(a) # Declaration of actovatpr A with binding site named ’a’

%agent: R(d) # Declaration of repressor B with binding site named ’d’

%agent: P() # Declaration of protein P

Rules

numbers after the ’!’ sign denote bond identifiers

for bimolecular reactions, the rate is scaled with the average number

of molecules in

the cell ’N’ in order to convert from units ’per Mol per sec’ to ’per

molecule per sec’)

POLYMERASE

RNAP(d), D(d) -> RNAP(d!1), D(d!1) @ ’on_rnap’ # RNAP binds, bimolecular

reaction

RNAP(d!1), D(d!1) -> RNAP(d), D(d) @ ’off_rnap’ # RNAP unbinds

PROTEIN

RNAP(d!1), D(d!1) -> RNAP(d!1), D(d!1), P() @ ’p_on’ # P is expressed

when RNAP is bound

P() -> @ ’p_off’

ACITIVATION

#A binds to the site ’a1’ or site ’a2’ of DNA whenever it is not looped

A(a), D(a1,a2,loop~0) <-> A(a!1), D(a1!1, a2, loop~0) @ ’on_a’, ’off_a’

A(a), D(a1,a2,loop~0) <-> A(a!1), D(a1, a2!1, loop~0) @ ’on_a’, ’off_a’

lopping is immediate when the second activator binds

A(a!1), D(a1!1,a2,loop~0), A(a) <-> A(a!1), D(a1!1,a2!2,loop~1), A(a!2)

@ ’loop_a’, ’unloop_a’

A(a!1), D(a1,a2!1,loop~0), A(a) <-> A(a!1), D(a1!2,a2!1,loop~1), A(a!2)

@ ’loop_a’, ’unloop_a’

if A is bound to site ’a1’, it recruits RNAP

A(a!1), D(a1!1,d), RNAP(d) -> A(a!1), D(a1!1,d!2), RNAP(d!2) @

’on_rnap_if_a’

INHIBITION

R binds to site ’d’ or site ’b2’ of DNA whenever it is not looped

By binding to site ’d’, repressor inhibits the binding of RNAP to the

same site, and

hence inhibits the expression of the protein indirectly

R(d), D(d,b2,loop~0) <-> R(d!1), D(d!1,b2,loop~0) @ ’on_b’, ’off_b’

Transient Memory in Gene Regulation 175

R(d), D(d,b2,loop~0) <-> R(d!1), D(d,b2!1,loop~0) @ ’on_b’, ’off_b’

looping is immediate when the second repressor binds

R(d!1), D(d!1,b2,loop~0), R(d) <-> R(d!1), D(d!1,b2!2,loop~1), R(d!2) @

’loop_b’, ’unloop_b’

R(d!1), D(d,b2!1,loop~0), R(d) <-> R(d!1), D(d!2,b2!1,loop~1), R(d!2) @

’loop_b’, ’unloop_b’

Variables

rates

%var: ’N’ 10^9 # the average number of molecules in the cell

%var: ’on_rnap’ 10^4/’N’

%var: ’off_rnap’ 1.6*0.01

%var: ’on_rnap_if_a’ 9*’on_rnap’

%var: ’on_b’ 8.8*10^7/’N’

%var: ’off_b’ 0.19

%var: ’on_a’ 8.8*10^7/’N’

%var: ’off_a’ 0.0264

%var: ’p_on’ 0.5

%var: ’p_off’ 0.001

%var: ’rnap0’ 1500 # initial number of RNAP molecules

%var: ’a_add’ 275

%var: ’b_add’ 350

%var: ’unloop_a’ ’off_a’/1000

%var: ’unloop_b’ ’off_b’/1000

%var: ’p0’ 240 # initial number of proteins

%var: ’b0’ 0 # initial number of B molecules

%var: ’a0’ 0

%var: ’loop_a’ ’on_a’

%var: ’loop_b’ ’on_b’

Observables

%obs: ’protein’ P()

%obs: ’d_active’ D(d!1),RNAP(d!1)

Perturbation

#%mod: [T]= 5400 do $ADD ’a_add’ A(a)

%mod: [T]= 5400 do $ADD ’b_add’ R(d)

Initial conditions

%init: 1 D(d,a1,a2,b2,loop~0)

%init: ’rnap0’ RNAP(d)

%init: ’b0’ R(d)

%init: ’a0’ A(a)

%init: ’p0’ P()

176 C. Guet et al.

Appendix 1.C Supplementary Theory and Proofs

1.C.1 Deterministic Limit
In the continuous, deterministic model of a chemical reaction network, the state
z(t) = (z1, . . . , zn)(t) ∈ R

n is represented by listing the concentrations of each
species. The dynamics is given by a set of differential equations in form

d
dt

zi = νij

r∑

j=1

kj

n∏

i=1

zi(t)aij , (4)

where kj is a deterministic rate constant, computed from the stochastic one and
the volume N according to kj := cjN

|aj |−1 (|x| denotes the 1-norm of the vector
x). The deterministic model is a limit of the stochastic model when all species in
a reaction network are highly abundant [19]: by scaling the species multiplicities
with the volume: Zi(t) = Xi(t)/N , adjusting the propensities accordingly, in
the limit of infinite volume N → ∞, the scaled process Z(t) follows an ordinary
differential Eq. (4).

1.C.2 Expected Output in the Transient
The CME implies that the expectation of the marginal distribution of {Xt}
satisfies the equations

d
dt

E(Xt) =
r∑

j=1

νjE(λj(Xt)). (5)

To check (5), observe a transition from x to x+νj . The term λj(x)P(Xt = x)
appears exactly once when summing up for the state x̂ = x as the outflow
probability, and exactly once when summing up for the state x̂ = x + νj , as
the inflow probability. This gives the term (x+ νj) − x = νj ·λj(x)p(t)(x). It is
worth noting that, upon scaling the rate constants, the equations for E(Xt) are
equivalent to (4) only if all rate functions are linear, that is, when all reactions
are unimolecular.

1.C.3 Proof for Lemma 1
We first notice that the process X(t)|D is indeed Markovian, because all states of
X(t) projected to the same state in X(t)|D are behaviourally indistinguishable
(bisimulation equivalent), due to rates between lumped states not depending on
protein count. From (5), it follows that

d
dt

〈xP(t)〉 = −β〈xP(t)〉 +
r∑

j=1

1 ·E(α ·xD1j(t)) = −β〈xP(t)〉 + α
∑

all j

〈xD1j(t)〉,

where 〈xD1j(t)〉 denotes the expected value of being in one of the active promoter
configurations. The latter equals (2), since in every reachable state x ∈ (D0

D1) × {0, 1, . . .}, exactly one DNA configuration takes value 1.

Transient Memory in Gene Regulation 177

. . .

.s1,x−1

s0,x

s1,x

. . .

s1,x+1

k ·xRNAPk−

α

xβ (x + 1)β

α

Fig. 2. Transitions of the CTMC underlying basal gene expression. The state space
S ∼= {0, 1} × {0, 1, 2, . . .}, such that s1,x denotes an active configuration (where the
RNAP is bound to the DNA) and x ∈ N protein molecules.

regulatory configurations of the DNA

. . .

. . .

. . .

protein count

. . . x x + 1 . . .×
if active

Fig. 3. Each binding configuration of the DNA can be active (green, polymerase bound)
or inactive (gray, polymerase not bound). Protein count can increase only when the
DNA configuration is active. (Color figure online)

Appendix 1.D Supporting Figures

See Fig. 13.

Fig. 4. Searching for long lived transients in gene regulation without feedback: three
modelled scenarios. We demonstrate that small delays Δ can raise qualitatively different
phenotypes, which are stable for cell lifetime.

178 C. Guet et al.

Fig. 5. Two prototype GRNs and their promoter logic: (a) Model without looping: reg-
ulatory architecture (promoter logic), (b) Model with looping: regulatory architecture
(promoter logic). Mechanistic models are listed in (Appendix 1.B).

Fig. 6. Model without looping: the CTMC regulating six different DNA configurations.
Thicker blue line denotes that the recruitment of RNAP is faster when the activator is
bound. (Color figure online)

Fig. 7. Model with looping: CTMC regulating the DNA configurations has 23 different
states. It is naturally represented as a composition of two sub-models: (left) the switch-
ing among configurations with respect to activator binding to its main and auxiliary
binding sites (OAm and OAx respectively, and (right) the switching among configura-
tions with respect to repressor binding to its main and auxiliary binding sites (OAm and
OAx respectively. The unlooping rates (thicker blue lines) are typically much weaker
than the TF unbinding. Any combination of the states in the two sub-models can be
observed (reachable), except the state where both repressor and activator are looped.
(Color figure online)

Transient Memory in Gene Regulation 179

re
fe
re
nc

e
se
t

in
cr
ea
se

un
lo
op

A
in
cr
ea
se

un
lo
op

R
de

cr
ea
se

#
A

de
cr
ea
se

#
R

sc
al
e
R
N
A
P

ra
te
s

The effect of kinetic parameters on the shape and
duration of transients for a model with looping

Fig. 8. The effect of kinetic parameters on the shape and duration of transients for a
model with looping (for six parameter values listed in Table 1 and time delays of 1 min,
5min and 15 min respectively).

180 C. Guet et al.

re
fe
re
nc

e
se
t

in
cr
ea
se

un
lo
op

A
in
cr
ea
se

un
lo
op

R
de

cr
ea
se

#
A

de
cr
ea
se

#
R

sc
al
e
R
N
A
P

ra
te
s

Long lived transients in protein expression are
due to long lived transients in promoter activity

Fig. 9. Long lived transients in protein expression follow the long lived transients
(mixing times) in promoter activity. We plot the statistically inferred probability of
promoter logic being in the active state for six different parameter combinations, listed
in Table 1 and time delays of 1 min, 5 min and 15 min respectively.

Transient Memory in Gene Regulation 181

re
fe
re
nc
e

se
t

lo
w

re
cr
u-

it
m
en
t
by

A
in
cr
ea
se

#
R

w
ea
k

R
bi
nd

in
g

lo
w

re
cr
ui
t-

m
en
t
by

A
,w
ea
k

R
bi
nd

in
g

Long lived transients in protein expression are
not observed in the model without looping

w
ea
k
R

bi
nd

in
g,

in
cr
ea
se

#
R

Fig. 10. Long lived transients are not observed in the model without looping (for six
parameter values listed in Table 1 and time delays of 1 min, 5 min and 15 min respec-
tively).

182 C. Guet et al.

Fig. 11. In the reference parameter set, when there is no delay (Δ = 0), the phenotype
in scenario XR→A(Δ) is equal to the one in scenario XA||R, visibly different than the
phenotype XR (290 protein molecules). The difference of from the scenario XA||R (the
characteristic we formally termed amplitude – see Sect. 5) exponentially grows as the
delay increases, that is, it quickly approaches the phenotype of scenario XR. The dif-
ference of XR→A(Δ) from XR becomes observably negligible already for delays larger
than Δ = 5min = 300 s (difference of 10 molecules, 0.035% of the initial difference). We
obtained the dependency by fitting the data obtained by simulating the system for
Δ ∈ {1, 20, 40, 60, 120, 180, 240, 300, 600, 900}.

Transient Memory in Gene Regulation 183

Fig. 12. For chosen parameter sets (Tables 1 and 2) and for a delay Δ = 5 min, we plot
the amplitude and the half-life (defined in Sect. 2).

184 C. Guet et al.

Fig. 13. We define a more global measure of the effect of delay in arrival times of
TFs: first, the range of values that can be observed with a delay Δ = 5min by the
measuring the maximum distance between phenotypes the scenarios XA→R and XR→A

β := maxt≥t0 |xp(t|XA→R)−xp(t|XR→A)|, and secondly, the halflife of this range t1/2 :=
arg mint≥tβ

{t | |xp(t|XA→R) − xp(t | XR→A)| < 1
2
β}.

Transient Memory in Gene Regulation 185

References

1. Bintu, L., et al.: Transcriptional regulation by the numbers: applications. Curr.
Opin. Genet. Devel. 15(2), 125–135 (2005)

2. Bolouri, H., Davidson, E.H.: Modeling transcriptional regulatory networks. Bioes-
says: News Rev. Mol. Cell. Devel. Biol. 24(12), 1118–1129 (2002)

3. Boutillier, P., et al.: The Kappa platform for rule-based modeling. Bioinformatics
34(13), i583–i592 (2018)

4. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of
stochastic biochemical systems using quantitative model checking. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 7

5. Brunner, M., Bujard, H.: Promoter recognition and promoter strength in the
Escherichia coli system. EMBO J. 6(10), 3139 (1987)

6. Buchler, N.E., Gerland, U., Hwa, T.: On schemes of combinatorial transcription
logic. Proc. Nat. Acad. Sci. 100(9), 5136–5141 (2003)

7. Byers, R., Hansell, R., Madras, N.: Stability-like properties of population models.
Theor. Popul. Biol. 42(1), 10–34 (1992)

8. Casadesús, J., D’Ari, R.: Memory in bacteria and phage. BioEssays 24(6), 512–518
(2002)

9. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2017)

10. Česka, M., Šafránek, D., Dražan, S., Brim, L.: Robustness analysis of stochastic
biochemical systems. PLoS ONE 9(4), e94553 (2014)

11. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74407-8 3

12. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–2361 (1977)

13. Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of
genetic networks. Science 296(5572), 1466–1470 (2002)

14. Harada, Y., Funatsu, T., Murakami, K., Nonoyama, Y., Ishihama, A., Yanagida,
T.: Single-molecule imaging of RNA polymerase-dna interactions in real time. Bio-
phys. J. 76(2), 709–715 (1999)

15. Hermsen, R., Tans, S., Ten Wolde, P.R.: Transcriptional regulation by competing
transcription factor modules. PLoS Comput. Biol. 2(12), e164 (2006)

16. Jacob, F.: Evolution and tinkering. Science 196(4295), 1161–1166 (1977)
17. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins.

J. Mol. Biol. 3(3), 318–356 (1961)
18. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump

Markov processes. J. Appl. Probab. 7(1), 49–58 (1970)
19. Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximat-

ing ordinary differential processes. J. Appl. Probab. 8(2), 344–356 (1971)
20. Kwok, R.: Five hard truths for synthetic biology. Nature 463(7279), 288–290 (2010)
21. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American

Mathematical Society (2009)

https://doi.org/10.1007/978-3-642-39799-8_7
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-74407-8_3

186 C. Guet et al.

22. Levine, J.H., Lin, Y., Elowitz, M.B.: Functional roles of pulsing in genetic circuits.
Science 342(6163), 1193–1200 (2013)

23. Lin, Y., Sohn, C.H., Dalal, C.K., Cai, L., Elowitz, M.B.: Combinatorial gene reg-
ulation by modulation of relative pulse timing. Nature 527(7576), 54–58 (2015)

24. Marchisio, M.A., Stelling, J.: Automatic design of digital synthetic gene circuits.
PLoS Comput. Biol. 7(2), e1001083 (2011)

25. McAdams, H.H., Arkin, A.: It‘sa noisy business! genetic regulation at the nanomo-
lar scale. Trends Genet. 15(2), 65–69 (1999)

26. Milo, R., Jorgensen, P., Moran, U., Weber, G., Springer, M.: Bionumbers–the
database of key numbers in molecular and cell biology. Nucleic Acids Res. 38(suppl
1), D750–D753 (2010)

27. Müller-hill, B.: Lac Operon. Wiley Online Library (1996)
28. Myers, C.J.: Engineering Genetic Circuits. CRC Press (2009)
29. Nashun, B., Hill, P.W., Hajkova, P.: Reprogramming of cell fate: epigenetic memory

and the erasure of memories past. EMBO J. 34(10), 1296–1308 (2015)
30. Ptashne, M.: A Genetic Switch: Phage Lambda Revisited, vol. 3. Cold Spring

Harbor Laboratory Press Cold Spring Harbor, New York (2004)
31. Radulescu, O., Swarup Samal, S., Naldi, A., Grigoriev, D., Weber, A.: Symbolic

dynamics of biochemical pathways as finite states machines. In: Roux, O., Bour-
don, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 104–120. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23401-4 10

32. Saiz, L., Rubi, J.M., Vilar, J.M.G.: Inferring the in vivo looping properties of DNA.
Proc. Nat. Acad. Sci. U.S.A. 102(49), 17642–17645 (2005)

33. Saiz, L., Vilar, J.M.: DNA looping: the consequences and its control. Curr. Opin.
Struct. Biol. 16(3), 344–350 (2006). Nucleic acids/Sequences and topology Anna
Marie Pyle and Jonathan Widom/Nick V Grishin and Sarah A Teichmann

34. Saiz, L., Vilar, J.M.: Stochastic dynamics of macromolecular-assembly networks.
Mol. Syst. Biol. 2(1) (2006)

35. Santillán, M., Mackey, M.C.: Why the lysogenic state of phage λ is so stable: a
mathematical modeling approach. Biophys. J. 86(1), 75–84 (2004)

36. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods
for stochastic biochemical kinetics–a tutorial review. J. Phys. A: Math. Theor.
50(9), 093001 (2017)

37. Segal, E., Widom, J.: From dna sequence to transcriptional behaviour: a quanti-
tative approach. Nat. Rev. Genet. 10(7), 443–456 (2009)

38. Shea, M.A., Ackers, G.K.: The OR control system of bacteriophage lambda: a
physical-chemical model for gene regulation. J. Mol. Biol. 181(2), 211–230 (1985)

39. Vilar, J.M., Leibler, S.: DNA looping and physical constraints on transcription
regulation. J. Mol. Biol. 331(5), 981–989 (2003)

40. Vilar, J.M., Saiz, L.: Dna looping in gene regulation: from the assembly of macro-
molecular complexes to the control of transcriptional noise. Curr. Opin. Genet.
Devel. 15(2), 136–144 (2005)

41. Vilar, J.M., Saiz, L.: Suppression and enhancement of transcriptional noise by
DNA looping. Phys. Rev. E 89(6), 062703 (2014)

42. Vivek-Ananth, R., Samal, A.: Advances in the integration of transcriptional reg-
ulatory information into genome-scale metabolic models. Biosystems 147, 1–10
(2016)

https://doi.org/10.1007/978-3-319-23401-4_10

Transient Memory in Gene Regulation 187

43. Yuh, C.H., Bolouri, H., Davidson, E.H.: Cis-regulatory logic in the endo16 gene:
switching from a specification to a differentiation mode of control. Devel. (Cam-
bridge, England) 128(5), 617–629 (2001)

44. Zeller, R.W., Griffith, J.D., Moore, J.G., Kirchhamer, C.V., Britten, R.J., David-
son, E.H.: A multimerizing transcription factor of sea urchin embryos capable of
looping DNA. Proc. Nat. Acad. Sci. 92(7), 2989–2993 (1995)

45. Zhu, R., Salahub, D.: Delay stochastic simulation of single-gene expression reveals
a detailed relationship between protein noise and mean abundance. FEBS Lett.
582(19), 2905–2910 (2008)

A Logic-Based Learning Approach
to Explore Diabetes Patient Behaviors

Josephine Lamp1(B), Simone Silvetti3, Marc Breton2, Laura Nenzi4,
and Lu Feng1

1 Department of Computer Science, University of Virginia, Charlottesville, VA, USA
{jl4rj,lu.feng}@virginia.edu

2 Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
mb6nt@virginia.edu

3 Esteco S.p.A., Trieste, Italy
simone.silvetti@gmail.com

4 University of Trieste, Trieste, Italy
lnenzi@units.it

Abstract. Type I Diabetes (T1D) is a chronic disease in which the
body’s ability to synthesize insulin is destroyed. It can be difficult for
patients to manage their T1D, as they must control a variety of behav-
ioral factors that affect glycemic control outcomes. In this paper, we
explore T1D patient behaviors using a Signal Temporal Logic (STL)
based learning approach. STL formulas learned from real patient data
characterize behavior patterns that may result in varying glycemic con-
trol. Such logical characterizations can provide feedback to clinicians and
their patients about behavioral changes that patients may implement to
improve T1D control. We present both individual- and population-level
behavior patterns learned from a clinical dataset of 21 T1D patients.

Keywords: Signal Temporal Logic · Learning · Type I Diabetes

1 Introduction

Type I Diabetes (T1D) is a chronic disease in which the body’s ability to syn-
thesize insulin is destroyed, as the patient’s immune system attacks the insulin-
producing cells of the pancreas [10]. Insulin is an important hormone used by
cells to absorb glucose for energy production. 425 million people worldwide have
Diabetes (Type I and Type II), including 1,106,500 children and adolescents
living with T1D [15]. Intensive insulin therapy effectively reduces the risk of
long-term complications of T1D (such as nerve or kidney damage) in which
patients are required to inject or infuse insulin throughout the day to replace
the normal pancreas function. Unfortunately, this means the burden of manag-
ing T1D falls to patients as they are required to manage a variety of behavioral
factors (e.g., insulin injection, exercise, eating) that affect T1D. Studies have
found that such factors affect a patient’s overall glycemic control: e.g., exercise
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 188–206, 2019.
https://doi.org/10.1007/978-3-030-31304-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_10

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 189

Fig. 1. Hypothetical patient behaviors resulting in different glycemic control outcomes.

may lower blood glucose values while carbs from meals increase blood glucose
levels [1,23]. Figure 1 shows a set of hypothetical patient behaviors that may
result in varying glycemic control. For example, on days when a patient exer-
cises in the evening and underestimates the insulin absorption amount, they
may have poor glycemic control (hypoglycemia) the next morning. Characteri-
zation of these behaviors can be used by clinicians to counsel their patients on
strategies to optimize glycemic control using predictive recommendations (e.g.,
if you exercise late at night, make sure you eat a snack before you go to bed to
avoid morning hypoglycemia). However, it is challenging to accurately identify
T1D patient behavior patterns due to inherently messy patient data and the
individual variability of patient behavior and physiology.

In this paper, we present a logic-based learning approach to address these
challenges and explore T1D patient behaviors. Our approach takes advantage of
the expressiveness and explainability of Signal Temporal Logic (STL) [19] and
uses STL learning [21] to learn a set of STL formulas that characterize both
individual- and population-level T1D patient behaviors. We argue that STL is
a suitable representation of patient behavior patterns, because it can capture
the temporal relations of Diabetes patient actions and glycemic outcomes. In
addition, STL formulas are easily explainable to clinicians and patients. We apply
our approach to learn STL formulas representing T1D patient behaviors from a
clinical dataset including a variety of patient physiological and behavioral data,
such as Continuous Glucose Monitors (CGM) sensor readings, heart rate, step
count and activity intensity recorded by Fitbit, insulin pump injection records,
self-reported meals and blood glucose finger pricks (SMBG). We envision that
the learned STL formulas can provide clinically-relevant insights for clinicians
and patients to develop behavioral change strategies to improve glycemic control.

The rest of the paper is organized as follows: Sect. 2 introduces the back-
ground of STL and learning techniques. Section 3 describes our approach to
learn STL formulas for characterizing T1D patient behaviors. Sections 4 and 5
present our key findings about individual- and population-level patient behav-
iors, respectively. Section 6 summarizes related work, and Sect. 7 draws conclu-
sions and discusses future research directions.

190 J. Lamp et al.

(a) (b)

Fig. 2. (a) Example CGM trajectories that satisfy (green trajectories) or violate (red
trajectories) the STL formula �(cgm ≥ 70 ∧ cgm ≤ 180). (b) An example illustrating
the labeling mechanism of patient data. The CGM trajectory is chopped into several
one-hour chunks divided by the vertical dashed blue lines. Each chunk is assigned with
one of the four labels based on the percentage of time that the CGM value is within
the target grey region. (Color figure online)

2 Preliminaries

In this section, we briefly introduce background on Signal Temporal Logic (STL)
and STL learning techniques. Formally, the syntax of an STL formula ϕ is defined
as follows:

ϕ ::=μ | ¬ϕ | ϕ ∧ ϕ | �(u,v)ϕ | ♦(u,v)ϕ | ϕU(u,v)ϕ,

where μ is a signal predicate in the form of g(τ) > 0 with a signal variable
τ ∈ X and function g : X → R. The temporal operators �, ♦, and U denote
“always”, “eventually,” and “until”, respectively. The bounded interval (u, v)
denotes the time interval of temporal operators and can be omitted if the interval
is [0,+∞). For example, we can specify a diabetes management rule “continuous
glucose monitoring signal should always be between 70 and 180” [24] using a STL
formula �(cgm ≥ 70 ∧ cgm ≤ 180).

The satisfaction of a formula is verified over a signal trajectory. For example,
the formula �(cgm ≥ 70 ∧ cgm ≤ 180) can be verified over the time series of
CGM signals shown in Fig. 2(a). STL considers two different semantics (Boolean
and quantitative) to describe the satisfaction of a formula. The Boolean seman-
tics checks if a trajectory satisfies a STL formula. For example, some CGM
signals shown in Fig. 2(a) violate the STL formula �(cgm ≥ 70 ∧ cgm ≤ 180)
because their CGM values go under 70 or above 180. The quantitative semantics
returns a real-valued robustness metric that can be interpreted as a measure
of the satisfaction [9]. Signal trajectories exhibiting weakening robustness with
respect to a given property can be said to be moving toward a state of viola-
tion. We refer to [2,4,9,11,13] for a more detailed description of STL and its
semantics.

STL learning provides techniques to infer STL formulae and parameters from
signal trajectories. STL learning goes beyond property specification and allows

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 191

for the automated identification of interesting behaviors that may not initially
be apparent to the human eye. Nenzi et al. [21] present a STL learning method
that learns the best set of STL formulas to discriminate between a two-label
dataset of trajectories (e.g., regular and anomalous). This method uses a bi-
level optimization process: it learns the STL formula structure using a discrete
optimization of a genetic algorithm, and then synthesizes the parameters for
the formulas using the Gaussian Process Upper Confidence Bound algorithm.
We expand upon the STL learning tool developed in [21] to learn STL formulas
representing T1D patient behaviors. However, since our clinical dataset has four
labels (shown in Fig. 2(b)) rather than two labels, we need to adapt the tool
for our problem. In addition, our goal is not to learn STL formulas that best
discriminate between data with different labels. Instead, we are interested in
learning STL formulas that can characterize patient behaviors that fall under
the same label. We present our approach of learning STL formulas from T1D
patient behaviors in the next section.

3 Methodology

We first describe the clinical dataset, then present our approach of learning
individual- and population-level patient behaviors as illustrated in Fig. 3.

3.1 Clinical Dataset Description

Our dataset was collected during the observation period leading up to inpatient
clinical trials in 2016–2017 at the Center for Diabetes Technology at the Univer-
sity of Virginia. The dataset contains 21 patients, ages ranging from 17 to 55,
with an average age of 36 ± 10.4. Each patient has about 2 months of consecu-
tive data. The data includes blood glucose readings from a Continuous Glucose
Monitor (recorded in a variable named CGM), different types of insulin injec-
tions called boluses (total bolus, meal bolus, basal bolus, and correction bolus),
meal carbs, patient-recorded blood glucose values from a finger prick (SMBG)
and recordings of hypoglycemia (SMBG-Hypo). The data also contains exercise
data recorded from a Fitbit including Heart Rate (HR), step count, calories,
distance (in miles), and a Fitbit calculated activity level (in range of 1 to 4, with
1 being equivalent to little activity, and 4 being equivalent to intense activity.)

3.2 STL Learning for Individual Patient Behaviors

The approach of learning for individual behaviors is shown in Fig. 3 in the top
yellow flowchart. We first pre-processed the data, and then added a multi-class
labeling mechanism for our unlabeled patient data using CGM time in range,
based on medical domain knowledge. Next, we fed our data and labels into
our STL learning tool, to output STL formulas that classify specific patient
behaviors. Finally, our results were validated for clinical insights. Each of these
steps is explained in greater detail below.

192 J. Lamp et al.

Fig. 3. Approach overview for learning STL formulas representing individual- (top yel-
low flowchart) and population-level (bottom blue flowchart) patient behavior patterns.
(Color figure online)

Data Pre-processing. As our clinical data was messy and sampled at different
rates, the first step in our methodology was to pre-process the data. We combined
all data variables into a single file, and aligned them on a five minute sampling
rate, to match the set sampling rate of the CGM. The variables HR and steps
were sampled at more frequent rates (data was recorded a couple times per
minute,) and we used a sliding average to compute the HR value, and summed
the total steps in the time frame to align with each five minute interval. In
addition, we added a detector to indicate when patients were exercising. For the
purposes of our approach, we determined that a patient was exercising when
the Fitbit Activity Level was ≥3, and/or when the patient had ≥3000 steps in
30 min, following approaches used to detect exercise in [5,20]. Finally, the data
was layered into one hour time chunks to be fed into our STL Learning algorithm.
We choose a one hour time chunk such that we would have enough data points
(12 points) per layer for interesting learning to happen, but also small enough
to provide detailed granularity within each patient’s data.

Labeling. Next, we added labels for each one hour time chunk by hand. We used
CGM Time in Range [12,18]—the percentage of time a patient spends in a well
controlled blood glucose range (between 70 and 180 mg/dL)—as our labeling
mechanism. This metric is commonly used by clinicians to determine how well
controlled patients are, and as such served as an appropriate labeling mechanism
for our data. We developed 4 sets of labels based on the total percentage of
time the patient was in a well-controlled range: 100%, 75–99%, 50–74%, and
<50% time in range. These thresholds were chosen based on clinical advice, and
to evenly stratify the labels across our data points. Since our STL Learning
algorithm cannot handle mutli-class labels, we had to create 4 label sets for each
of these classes with binary indicators. In essence, for each label set, the hour
chunk of data was given a positive label if it met the correct time in range (i.e.
100%) and a negative label if not. An example labeling scheme for a patient is
shown in Fig. 2(a). For instance, for the first label class, for each one hour layer,
if 100% of the CGM data points are in well controlled ranges then the label is

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 193

a +1, and if it is anything else, then it is a −1 label. This is repeated for every
hour chunk of the patient’s data. For the second labeling class (75–99% label,) a
+1 label is given if 75–99% of the CGM data points are in well controlled ranges
for the hour time chunk, and −1 label if not, and so on for the rest of the data
and label classes.

STL Learning and Validation. Once we had developed our four labeling
classes, we fed our dataset and each of the four labeling sets into the STL learn-
ing tool [21] described in Sect. 2. For example, we fed the dataset with our 100%
time in range labels, then with our 75–99% labels, etc. The tool works by gen-
erating formulas and picking the set that best separates our two classes (the
positive and negative labelled classes). The tool then outputs these sets of for-
mulas with the accuracy and misclassification rate (MCR). We define accuracy
as True Positives+True Negatives

Total and MCR as 1 - accuracy. In our case, we end up
with 4 different final formula sets for each of our labeling classes. These formulas
represent specific rules that classify particular patient behaviors with positive
and negative labels. A formula is considered a good candidate for characterizing
data with a given label if it separates the +1 and −1 classes with a high accuracy
and low MCR. For instance, if we are classifying data using the 100% labels, a
returned formula is good if it has a high percentage of data instances correctly
classified in the positive label (+1, meaning they belong to the 100% class.)

3.3 STL Learning for Clustered Population Behaviors

The approach for learning population behaviors is shown in Fig. 3 in the bottom
blue flowchart. First, we cluster the patient data into four population groups
based on the overall percentage of time patients are in a well controlled CGM
range. Next, the data is pre-processed and labeled, and the STL learning tool is
used to learn formulas representative of our patient clusters. Four sets of formulas
(for each of our clusters) are outputted and our results are validated for clinical
insights at a population level.

Clustering. The first thing we did was divide our patient data into clusters
based on how well controlled they were for the entire time period of data (approx.
2 months per patient), based on the average CGM time in range. We had 4
clusters, grouped by best controlled patients to worst: Cluster 1 had patients
that were well controlled >79% of the time, Cluster 2 had patients that were well
controlled 70–79% of the time, Cluster 3 had patients that were well controlled
60–69% of the time, and Cluster 4 had patients that were well controlled <60% of
the time. We clustered patients in this way to ensure a relatively even distribution
of patients per cluster (∼5 patients per cluster). Figure 4(a) shows a plot of the
different patient clusters with the percentage of time their blood glucose is high
(>180 mg/dL) vs the percentage of time their blood glucose is low (<70 mg/dL).
We then pre-processed and chopped the data into 1 h time chunks, following the
same methodology used for individual patients.

Labeling. Next, we labeled each of our four clusters using a binary methodology:
For each hour time chunk, if patients were 75–100% controlled, a positive label

194 J. Lamp et al.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Percent of Time CGM Low

0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

 o
f T

im
e

C
G

M
 H

ig
h

Cluster 1: > 79% controlled
Cluster 2: 70-79% controlled
Cluster 3: 60-69% controlled
Cluster 4: < 60% controlled

(a) (b)

Fig. 4. (a) Clusters of Patient Data plotted for percentage of time patients are in a
high blood glucose range (>180 mg/dL) vs in a low blood glucose range (<70 mg/dL),
and (b) Sample patient trajectories of Cluster 1 (well controlled >79% of the time).

was added (+1), and if they were <75% a negative label was added (−1). It
is important to note here that although patients were clustered based on their
overall average time in range (i.e. Cluster 1 is for patients who had >79% average
time in range,) the patients within each cluster are not always in those set ranges,
and there may be periods where they are more or less controlled than their
average. As a result, it is necessary to label each time chunk individually based
on the actual percentage of time they are in range for that specific time chunk.
For each cluster we generated one labeling set.

STL Learning and Validation. We then fed each cluster and its binary label
set into the STL Learning tool individually, to output four formula sets, represen-
tative of each of the clusters patients’ behaviors with accuracy and MCR metrics.
Similar to the STL learning for individual patients, our outputted formulas are
representative of rules that characterize the population level behaviors of the
cluster. For example, Fig. 4(b) shows some sample CGM trajectories of Cluster
1 patients, and the learned STL formula that characterizes these trajectories is
�(cgm ≥ 70 ∧ cgm ≤ 180).

4 Learning Results for Individual Behaviors

In the following, we present our key findings about personalized STL formulas
(rules) learned from individual patients’ data using the methodology described
in Sect. 3.2.

4.1 Personalized Bounds from Repeated Rules

One of the first interesting things we found were repeating formulas for different
patients that had the same STL formula structure, but different personalized
parameters, representative of patient bounds for specific variables. We identified
repeated rules for CGM, HR, basal bolus and total bolus. The structure of such
rules is shown as follows,

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 195

0 5 10 15 20
Patient Number

0

50

100

150

200

250

300

350

400

450

C
G

M
 B

ou
nd

s
(m

g/
dL

)

(a)

0 5 10 15 20
Patient Number

0

50

100

150

200

250

300

H
R

 B
ou

nd
s

(B
P

M
)

(b)

0 5 10 15 20
Patient Number

0

0.05

0.1

0.15

0.2

0.25

0.3

B
as

al
 B

ou
nd

s
(u

ni
ts

)

(c)

0 5 10 15 20
Patient Number

0

5

10

15

20

25

30

T
ot

al
 B

ol
us

 B
ou

nd
s

(u
ni

ts
)

(d)

Fig. 5. Individual patient bounds for CGM (a), Heart Rate (b), Basal Bolus (c) &
Total Bolus (d) found from Repeated Rules (see Rule 1) for each patient’s 2-months of
data.

ϕ = �[0,1](x ≥ α ∧ x ≤ β) (1)

where the time interval bound is within 1 h, x is the signal variable (e.g., cgm),
and α and β are parametric lower and upper bounds of the signal variable.
Figure 5 shows personalized parameter values learned for different patients. Since
these rules encompass the range of specific bounds patients have for different
data variables (i.e. CGM and HR), they are good classifiers for our data, and
therefore show up repeatedly for each patient. This is supported by the fact that
these rules generally (with the exception of HR bounds), have high accuracy
rates (see Table 5 in the Appendix). Since HR is highly variable even just for an
individual patient, it is not surprising that their accuracy is not extremely high.
However, we include the bounds in our results for all patients, since these rules
did show up repeatedly, and were accurate for some patients. We will explain the
significance and use of the personalized bounds for each specific variable next.

Identifying CGM bounds as in Fig. 5(a) allows for an understanding of the
range of blood glucose values patients may have within a specific time period (in
this case within a 2 month time period for our data). This may be relevant to note

196 J. Lamp et al.

to help clinicians tailor treatment options, especially if a patient consistently has
very large CGM ranges over periods of many months: the clinician may find it
useful to find out the source of such wide variability, as well as determine other
options that might help the patient reduce such large hypo- or hyper-glycemic
occurrences. Visualizing HR bounds as shown in Fig. 5(b) provides an overview of
the minimum and maximum heart rate values a patient experiences. Although
not clinically significant, it can be used as a quick, ballpark idea of patients’
maximum heart rates, as well as their normal resting heart rates. One of the most
interesting and clinically relevant bounds we are able to identify is personalized
basal insulin bounds for patients, as shown in Fig. 5(c). These are very useful for
determining the appropriate basal rates for individual patients. Currently, such
bounds are estimated based on clinical expertise and then changed over time
(using a guess-and-check method) after conferring with patients. Being able to
determine the proper ranges for patients in an automated way over time is a
great advantage of this approach, and can help clinicians and patients save time.
The fourth type of bound we are able to identify is total bolus bounds, as shown
in Fig. 5(d). These bolus amounts are also variable by patient, and include total
meal, correction and basal bolus amounts. Although not quite as helpful as the
basal bolus bounds, they still provide clinicians with an overview of the range
of bolus amounts patients may have for certain time periods.

In addition, we also identified repeated rules for meal carbs and time bounds
when eating occurs, as well as exercise intensity and timing on a patient-by-
patient basis. These rules were identified across all 4 label classes by comparing
learned rules from similar time periods. For instance, we compared all of the
rules for a single patient in the morning time (i.e. between 7:00 and 11:00) and
noticed repeating rules that identified meal and exercise times for that individual
patient. These rules are defined as follows,

ϕ = ♦[α,β](x ≤ κ ∧ y ≥ λ) (2)

where α and β are the time bound parameters, x and y are the variables the
bounds are generated for (meal, HR, steps, or activity level), and κ and λ are
parameters. As mentioned before, we do not focus on the use of rules to dis-
criminate between different classes, but rather on the types of behaviors we can
classify within and across different label classes. In this case, these rules allow
for an understanding of when patients are eating and exercising. As an example,
we identified this rule for Patient 1 with an accuracy rate of 70.09%, indicating
the patient consistently eats a meal of 10 to 65 carbs between 18:01 and 19:37.

ϕ = ♦[18:01,19:37](meal ≤ 65 ∧ meal ≥ 10) (3)

In another example, we identified this rule for Patient 15 (accuracy 88%)
indicating the patient consistently exercises at a moderate intensity level (Fitbit
Activity Level indicator of 3 or above) between 17:59 and 19:00:

ϕ = ♦[17:59,19:00](HR ≤ 212 ∧ activityLevel ≥ 3) (4)

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 197

4.2 Unique Formula Relationships

We also generated a variety of unique formulas that enable learning about
the specific relationships between different variables (e.g. exercise and CGM)
for individual patients. These relationships were identified across all our label
classes, and as such may indicate behaviors resulting in better/worse glycemic
control. However, in this section we only elucidate the types of rules we identify,
and we will discuss the implications for good and bad control in Sect. 4.4.

Meals and CGM. We are able to identify relationships between eating and the
resulting change in blood glucose values within all four of our labeling classes.
An example formula for Patient 3 showing that the CGM changes within 35 min
after the patient eats from the 75–99% class is shown below (MCR = 9.09%):

ϕ = ((meal ≥ 1) U[13:15,13:50] (cgm ≥ 120)) (5)

These rules are useful to quickly understand how meals affect a patient’s blood
glucose and the specific time range these effects occur.

Meals and Meal Bolus. We can identify relationships for the amount of meal
bolus given for various meals. For example, we find the following rule for Patient
11 (MCR 13.63%) in the 50–74% class, which states that they will have a meal
bolus of ≤ to 0.8 units given a meal ≥ to 23 carbs:

ϕ = �[8:09,9:09](mealBolus ≤ 0.8 ∧ meal ≥ 23) (6)

These rules provide some insight into the bolus levels for patients based on their
carb amount. This is useful to understand to help patients tune and identify the
correct amounts of bolus they should infuse based on the carbs they eat.

Exercise and CGM. Similar to meals and CGM, we can identify specific rela-
tionships about the effect exercise has on patient blood glucose levels. For exam-
ple, we identify the following formula for Patient 1 (MCR = 17.143%) in the
100% class, which states that the patient’s CGM value is greater than 120 mg/dL
whenever the patient has an activity level of 3 or greater.

ϕ = �[20:31,21:14](cgm ≥ 120 ∧ activityLevel ≥ 3) (7)

These rules are useful to quickly understand how exercise may affect a patient’s
blood glucose and the specific time range these effects occur.

Eating and Exercise. We can also identify different instances of eating and
exercise. These include eating before exercise as shown in Rule 8 for Patient 20
(MCR = 0%) from the <50% class and eating during actual periods of exercise,
as shown in Rule 9 for Patient 21 (MCR = 5%) from the <50% class.

ϕ = ((meal ≥ 1) U[18:17,18:32] (activityLevel ≥ 2)) (8)

ϕ = ♦[12:52,13:07](activityLevel ≥ 2 ∧ meal ≥ 10) (9)

198 J. Lamp et al.

These rules are interesting to identify as they provide insights for clinicians into
the strategies specific patients use to help keep their blood glucose in the proper
ranges before (or during) exercise. For instance, some may eat a small snack
before they begin their workout to help prevent hypoglycemia, and others may
begin their workout, then realize they are becoming hypoglycemic and eat a
snack during a break in the workout to prevent this.

Exercise and Basal Bolus. Finally, we are able to identify basal adjustments
before or during the start of exercise, such as the one shown in the rule below
for Patient 11 (MCR = 7%) from the 75–99% class:

ϕ = ((basalBolus ≤ 0.0345) U[10:48,11:22] (activityLevel ≥ 3)) (10)

Similar to the rules identified for eating and exercise, these rules provide insight
into decisions patients make to manage their blood glucose before exercise.

4.3 Behavioral Interventions

We were able to generate rules that identify specific behavioral interventions
patients engage in, across our four label classes. As a reminder, the focus of
our approach is to characterize behaviors within labeled classes, and these rules
provide insights into when patients are intervening in their T1D management,
by double checking their blood glucose values and/or making corrections to their
bolus levels. These rules are interesting as they indicate how proactive individuals
are in monitoring and adjusting aspects of their glycemic control. Patients double
check their blood glucose through a finger prick for SMBG values, and these
formulas provide information about the circumstances under which patients may
check their blood glucose. For instance, they may occur at regular time intervals,
or around other events such as hyper- or hypo-glycemia as in Rule 11 (Patient
4, MCR = 0%), or before exercise as in Rule 12 (Patient 8, MCR = 14.5%).

ϕ = ♦[14:09,14:29](cgm ≥ 195 & smbg ≥ 200) (11)

ϕ = ((smbg ≥ 82) U[10:36,11:59] (activityLevel ≥ 3)) (12)

In addition, our rules identify correction bolus times and amounts, such as
those in Rule 13 (Patient 13, MCR = 12.12%) and 14 (Patient 4, MCR = 5%).

ϕ = ((basalBolus ≤ 0.04) U[8:15,11:48] (corrBolus ≥ 0.459)) (13)

ϕ = ♦[16:58,17:55](totalBolus ≤ 2.105 ∧ corrBolus ≥ 4.07) (14)

4.4 Occurrences of Good and Bad Control

Using our unique relationships, we were able to identify specific instances that
patient behaviors may have resulted in good or bad control, based on which
class label the rule was identified in. We identified many different types of rules
classifying these behaviors, but due to space constraints we provide 6 total rules

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 199

Table 1. Example rules capturing good and bad instances of control

Class label Patient Formula MCR

Good: 100% 1 ϕ = ♦[13:24,15:22](smbgHypo ≥ 1 ∧ meal ≥ 49) 0%

Good: 75–99% 2 ϕ = ♦[12:00,12:55](smbgHypo ≥ 1 ∧ totalBolus ≤ 7.18) 0.2%

Good: 100% 21 ϕ = ((activityLevel ≤ 4) U[10:36,11:59] (corrBolus ≥ 5.9)) 5%

Bad: 50–74% 5 ϕ = ♦[15:00,17:41](cgm ≤ 68 ∧ basalBolus ≤ 0.011) 13.18%

Bad: <50% 7 ϕ = ♦[11:55,13:02](activityLevel ≥ 4 ∧ cgm ≤ 65) 1.8%

Bad: <50% 15 ϕ = ((meal ≤ 44) U[21:09,23:37] (cgm ≥ 210)) 6.36%

with their MCR in Table 1. For instance, in the case of good control we identified
periods where patients were hypoglycemic and ate a meal (to raise their blood
sugar,) were hyperglycemic and added a meal bolus (to lower blood sugar), and
where the correct amounts of correction boluses were taken. For incidents of bad
control, we identified periods where patients exercised but their blood glucose
was too low (and no corrective actions were taken,) instances where incorrect
bolus amounts for meals were taken and instances of incorrect basal or bolus
adjustments. These rules are very helpful on a personalized level to help patients
identify and correct behaviors that result in bad glycemic control.

4.5 Example Use Case

We next present a sample use case of our learned rules. Using the formulas
generated for occurrences of good and bad control, we can identify the specific
basal bolus amounts appropriate for different exercise intensity levels for a spe-
cific patient (i.e. Patient 21). Table 2 shows the minimum and maximum basal
bounds for each activity level, and the Misclassification Rate for the good and
bad formulas (MCR Good and MCR Bad), and the good and bad classification
formulas used to derive each of the basal range bounds are shown below (the
name of each ϕ indicates the label class and the activity level.) We define the
75–99% and 100% labels as the “good class” and the 50–74% and <50% labels as
the “bad class”. For instance, in the first row of Table 2 we can see that the basal
range is between 0.066 and 0.072 for an activity level of 4. We reference Rule 15,
that states that the basalBolus is below 0.072 units at the start of intense exer-
cise (activity level 4,) and Rule 16, that states that bad control occurs when
exercise activity level is 4 and the basal bolus is less than 0.065 (meaning we
need a higher basal rate than this for good control.) From these we can derive
the basal rate bounds: an upper rate bound of 0.072 from our good classification
formula, and a lower bound of 0.066 from our bad classification formula.

Table 2. Proper basal ranges for exercise intensity for patient 21

Act. level Basal range Formulas used MCRGood class MCRBad class

4 0.066–0.072 15, 16 14.84% 0%

3 0.073–0.077 17, 18 16.23% 10.12%

2 0.078–0.089 19 0% N/A

1 0.09–0.1 20, 21 26.35% 1.8%

200 J. Lamp et al.

Formulas Used to Derive Table 2:

ϕgood4 = �[9:00,11:01](basalBolus ≤ 0.072)U[9:10,11:01](activityLevel ≥ 4) (15)

ϕbad4 = �[9:00,11:05](activityLevel ≥ 4 ∧ basalBolus ≤ 0.065) (16)

ϕgood3 = �[9:00,11:00](activityLevel ≤ 3 ∧ basalBolus ≤ 0.072) (17)

ϕbad3 = �[9:02,10:59](activityLevel ≥ 3 ∧ basalBolus ≥ 0.078) (18)

ϕgood2 = �[8:58,11:00](activityLevel ≤ 2 ∧ basalBolus ≤ 0.089) (19)

ϕgood1 = �[8:55,10:57](activityLevel ≤ 1 ∧ basalBolus ≥ 0.091) (20)

ϕbad1 = �[8:55,11:05](basalBolus ≤ 0.122) U[9:10,11:01] (activityLevel ≥ 1) (21)

5 Learning Results for Population Behaviors

We now present results of population-level patient behaviors learned using the
methodology in Sect. 3.3. There are several interesting key findings. First, the
most controlled patients had the most number of SMBG occurrences (double
checks of their blood glucose) as shown in Table 3. These occurrences were drawn
from our STL formulas generated related to SMBG, an example of which is dis-
played in Rule 22. As mentioned before, Cluster 1 contains the best controlled
patients, and Cluster 4 contains the worst controlled patients. This finding indi-
cates that the best controlled patients double check their blood glucose much
more frequently, which may result in better overall control of their T1D. This
makes sense, because patients who are more actively engaged in verifying the
status of their blood glucose (and other factors of their glycemic control,) are
more proactive in making the necessary changes (i.e. adding a correction bolus)
in order to ensure their blood glucose stays within the proper ranges. Alterna-
tively, patients who have worse control tend to check their blood glucose values
less often, meaning they may not be as aware of specific blood glucose changes
that require some adjustment to the management of their T1D. The following is
an example SMBG rule used to derive Table 3 for a 24 h time period for Cluster
1 (accuracy = 100%):

ϕ = ♦[12:00,12:00](smbg ≥ 55 ∧ cgm ≤ 400) (22)

Table 3. Average SMBG count by cluster

Cluster number Average count
of SMBG checks

1 (best controlled) 85.00

2 68.80

3 59.67

4 (worst controlled) 50.60

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 201

Table 4. Average number and amount of correction boluses by cluster

Cluster number Number of
correction boluses

Correction
bolus amount

1 (best controlled) 8.80 17.14

2 11.80 18.16

3 12.17 23.98

4 (worst controlled) 14.80 32.30

Second, from our rules we identified that as we go from the best controlled
cluster (Cluster 1) to the worst (Cluster 4), we have an increased count of correc-
tion boluses per patient. This is shown in the second column of Table 4, and some
sample rules that we derived these values from is shown in Rule 23. Moreover,
not only do patients with worse control have an increased count of the correction
boluses, they also have an increased average amount of actual correction bolus
units taken per correction bolus occurrence. This is shown in the third column
of Table 4. These findings indicate that patients who have worse control tend
to need to correct their bolus levels more often, and change (i.e. increase) their
actual correction bolus amounts more drastically than better controlled patients.
These findings also make sense, because less controlled patients may take more
of a reactive approach, (e.g. they only intervene in their control when a specific
incident such as hyper- or hypo-glycemia occurs), resulting in an increased need
to correct their bolus levels, and by larger unit amounts at each intervention.
The following is an example Correction Bolus rule used to derive Table 4 for a
24 h time period for Cluster 4 (accuracy = 100%):

ϕ = ♦[23:59,23:59](corrBolus ≥ 10) (23)

We were not able to identify any other specific formulas that made sense
and that provided a good characterization between the clusters. Although dif-
ferent rules relating CGM or exercise to other components (i.e. basal bolus) were
generated, these rules cannot be used for the entire cluster population. These
types of formulas and their parameters should be very specific to individuals,
and therefore cannot be generalized, even across a small cluster of patients.

6 Related Work

Learning Diabetes Patient Behaviors. A couple of works have looked at
learning patient behaviors for T1D patients at a population level. Chen et al. [8]
developed an “eat, trust, check” framework to model and evaluate patient insulin
pump behaviors using a machine learning approach. Hoyos et al. [14] used an

202 J. Lamp et al.

incremental learning approach to infer the behavior of autonomous glucose mea-
surements and parameters for population groups of T1D patients. In addition,
Cameron et al. [6] developed a model predictive controller for regulating blood
glucose based on cgm readings and meal behaviors, and Paoletti et al. [22] pre-
sented a model predictive controller to administer insulin based on patient behav-
ior (i.e. meal and exercise events). These approaches do not include behavior
types beyond meals/exercise as our approach does (such as our SMBG checks)
and do not employ STL Learning, so they are not able to express the range of
different behaviors and personalized level of formulas that our methodology can.
Moreover, Chatterjee et al. [7] designed a sensor-based at home system for T1D
patients that records patient activity throughout the day to promote patient
behavior change. This approach provides alerts about more high-level activities
(eating and sedentary behavior), and does not provide as specific of information
(such as about behavioral interventions related to SMBG) as in our approach.

STL Learning for Behavior Detection. In terms of STL Learning, a variety
of papers have developed new methodologies to learn STL formula structures and
their parameters for anomaly detection and behavior identification in applica-
tions such as naval surveillance and medical contexts. Kong et al. [17] developed
an offline supervised learning approach that uses machine learning to detect
anomalous and normal behaviors. Formula structures and parameters are syn-
thesized using a gradient descent optimization guided by robustness and hinge
loss functions in their machine learning algorithm. This work suffers from a long
computational complexity, due to the time needed to optimize for the graph
structure and a lack of explainability due to the ML algorithm. Our approach is
explainable and facilitates greater clinician trust in the outcome of our results.
In addition, Klimek [16] and Bombara et al. [3] used tree structures to generate
their STL formulas and parameters. Klimek employed an online learning app-
roach in which graph models were used to reason about objects and events, and
logical truth trees were outputted to represent the formulas and their behavioral
meanings. Bombara et al. use a decision tree framework and a misclassification
rate optimization method to build binary decision trees representative of STL
formulas and their parameters to categorize anomalous vs normal behaviors. The
strict structure of the tree algorithms imposes some restrictions on the flexibility
and diverse types of STL formula structures that can be outputted. As a result,
these structures are not optimal choices for T1D patient data, as they lack the
expressivity needed to classify diverse patient behaviors. Moreover, the formulas
generated from the decision tree are long and not very human readable.

7 Discussion and Conclusion

Conclusion. In this paper, we presented an approach to learn STL formulas
that characterize individual- and population-level T1D patient behaviors with
varying glycemic control and applied it to a clinical dataset with 21 T1D patients’

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 203

data. Our learning results provide some clinically-relevant insights for clinicians
and patients to develop behavioral change strategies to improve glycemic control.

Tool Limitations. Our results are constrained by the limitations of the STL
learning tool [21] in several ways. First, our patient data contain many null
values. For example, patients only eat at discrete time periods, and times the
patient was not eating were null. However, the tool cannot handle null values, so
we had to fill all of these instances with zeros: this changes the semantic meaning
of the data points, and may cause a bias in how the formula parameters are being
generated (for instance, when data points are averaged to get specific parameter
bounds). Second, since the tool cannot handle multi-class classification, we had
to use four different sets of labels with binary indicators to cover our different
classes. This may have caused some overlap in our resulting formulas. In addition,
since the tool relies on a supervised classification approach, we had to supply
labels to guide the learning. However, this may have resulted in missing some
behavior sets that still have an effect on T1D glycemic control (but may not
have a direct relationship with CGM time in range). Moreover, the tool relied
on having an evenly split distribution of data labels, which proved challenging
for our unevenly distributed patient data. Finally, the tool can only learn from
raw data streams for short time periods, (and can not, for instance, calculate
CGM rate of change or other advanced relationships), and as such we were only
able to learn fairly simple rules for short time chunks. As a result, we were unable
to study longer term T1D effects (e.g. multiple hour meal-bolus relationships).

Future Work. We would like to address the limitations and improve upon
the capabilities of the tool, as well as integrate our patient behavior identi-
fication approach into a closed loop feedback system (e.g., implemented in a
smartphone application or other wearable), which will provide real-time feed-
back about behaviors that have negative impact on glycemic control.

Acknowledgements. The authors would like to graciously thank the UVA Center
for Diabetes Technology for providing the clinical datasets and Basak Ozaslan, Jack
Corbett, Jonathan Hughes and Dr. José Garćıa-Tirado for their clinical insights and
valuable discussions. Research partially supported by the Austrian National Research
Networks RiSE/ShiNE (S11405) and ADynNet (P28182) of the Austrian Science Fund
(FWF).

204 J. Lamp et al.

Appendix

Table 5. Accuracy rates for repeated rules

Patient CGM % HR % Basal % Bolus %

1 88.61 51.25 86.94 90

2 93.88 97.05 93.24 100

3 90.58 77.02 100 93.72

4 96.10 56.25 98.48 98.48

5 87.10 94.17 100 95.28

6 88.19 51.25 100 97.92

7 93.61 83.55 96.26 94.40

8 87.08 78.89 99.72 100

9 88.09 88.78 100 93.77

10 95.45 97.47 100 95.36

11 86.76 86.46 100 87.05

12 93.75 55.17 100 95.63

13 95.59 61.25 100 96.12

14 94.40 79.33 96.38 100

15 86.86 93.50 88.24 91.29

16 89.38 75.47 90.90 89.13

17 87.38 100 100 93.07

18 89.54 71.09 90.66 89.65

19 90.29 63.38 90.15 89.88

20 89.54 62.43 91.11 89.99

21 86.86 66.99 89.88 88.35

References

1. American Diabetes Association: 13. children and adolescents: standards of medical
care in diabetes–2019. Diab. Care 42(Suppl. 1), S148–S164 (2019)

2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 3

3. Bombara, G., Vasile, C.I., Penedo, F.: A decision tree approach to data classifica-
tion using signal temporal logic, pp. 1–10 (2016)

4. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.:
Temporal logic based monitoring of assisted ventilation in intensive care patients.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 30

https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-662-45231-8_30

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors 205

5. Bumgardner, W.: The average steps per minute for different exercises. https://
www.verywellfit.com/pedometer-step-equivalents-for-exercises-and-activities-343
5742

6. Cameron, F., Niemeyer, G., Bequette, B.W.: Extended multiple model prediction
with application to blood glucose regulation. J. Process Control 22(8), 1422–1432
(2012)

7. Chatterjee, S., Byun, J., Dutta, K., Pedersen, R.U., Pottathil, A., Xie, H.: Design-
ing an Internet-of-Things (IoT) and sensor-based in-home monitoring system for
assisting diabetes patients: iterative learning from two case studies. Eur. J. Inf.
Syst. 27(6), 670–685 (2018)

8. Chen, S., Feng, L., Rickels, M.R., Peleckis, A., Sokolsky, O., Lee, I.: A Data-Driven
Behavior Modeling and Analysis Framework for Diabetic Patients on Insulin
Pumps Recommended Citation, Technical report (2015). http://repository.upenn.
edu/cis papersrepository.upenn.edu/cis papers/791

9. Deshmukh, J., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.: Robust online
monitoring of signal temporal logic, pp. 1–26, July 2017

10. Prevention: Type 1 diabetes for Disease Control, C.C., August 2018. https://www.
cdc.gov/diabetes/basics/type1.html

11. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

12. Fabris, C., Patek, S.D., Breton, M.D.: Are risk indices derived from CGM inter-
changeable with SMBG-based indices? J. Diab. Sci. Technol. 10(1), 50–59 (2016)

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262 – 4291 (2009). https://
doi.org/10.1016/j.tcs.2009.06.021. http://www.sciencedirect.com/science/article/
pii/S0304397509004149

14. Hoyos, J.D., Bolanos, F., Vallejo, M., Rivadeneira, P.S.: Population-based incre-
mental learning algorithm for identification of blood glucose dynamics model for
type-1 diabetic patients. In: Proceedings on the International Conference on Artifi-
cial Intelligence (ICAI), pp. 29–35. The Steering Committee of The World Congress
in Computer Science, Computer (2018)

15. IDF: IDF diabetes atlas 8th edition 2017 (2017). https://diabetesatlas.org/
16. Klimek, R.: Behavior recognition and analysis in smart environments for context-

aware applications, October 2015 (2016). https://doi.org/10.1109/SMC.2015.340
17. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anoma-

lous behavior. IEEE Trans. Autom. Control 62(3), 1210–1222 (2017). https://doi.
org/10.1109/TAC.2016.2585083

18. Kovatchev, B.P.: Metrics for glycaemic control-from HbA 1c to continuous glucose
monitoring. Nat. Rev. Endocrinol. 13(7), 425 (2017)

19. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

20. Marshall, S.J., et al.: Translating physical activity recommendations into a
pedometer-based step goal: 3000 steps in 30 minutes. Am. J. Prev. Med. 36(5),
410–415 (2009)

21. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 20

https://www.verywellfit.com/pedometer-step-equivalents-for-exercises-and-activities-3435742
https://www.verywellfit.com/pedometer-step-equivalents-for-exercises-and-activities-3435742
https://www.verywellfit.com/pedometer-step-equivalents-for-exercises-and-activities-3435742
http://repository.upenn.edu/cis_papersrepository.upenn.edu/cis_papers/791
http://repository.upenn.edu/cis_papersrepository.upenn.edu/cis_papers/791
https://www.cdc.gov/diabetes/basics/type1.html
https://www.cdc.gov/diabetes/basics/type1.html
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
http://www.sciencedirect.com/science/article/pii/S0304397509004149
http://www.sciencedirect.com/science/article/pii/S0304397509004149
https://diabetesatlas.org/
https://doi.org/10.1109/SMC.2015.340
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20

206 J. Lamp et al.

22. Paoletti, N., Liu, K.S., Smolka, S.A., Lin, S.: Data-driven robust control for type
1 diabetes under meal and exercise uncertainties. In: Feret, J., Koeppl, H. (eds.)
CMSB 2017. LNCS, vol. 10545, pp. 214–232. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67471-1 13

23. Riddell, M.C., et al.: Exercise management in type 1 diabetes: a consensus state-
ment. Lancet Diab. Endocrinol. 5(5), 377–390 (2017). https://doi.org/10.1016/
S2213-8587(17)30014-1

24. Young, W., Corbett, J., Gerber, M.S., Patek, S., Feng, L.: DAMON: a data
authenticity monitoring system for diabetes management. In: 2018 IEEE/ACM
Third International Conference on Internet-of-Things Design and Implementation
(IoTDI), pp. 25–36. IEEE (2018)

https://doi.org/10.1007/978-3-319-67471-1_13
https://doi.org/10.1007/978-3-319-67471-1_13
https://doi.org/10.1016/S2213-8587(17)30014-1
https://doi.org/10.1016/S2213-8587(17)30014-1

Reachability Design Through
Approximate Bayesian Computation

Mahmoud Bentriou, Paolo Ballarini(B), and Paul-Henry Cournède

MICS, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
{mahmoud.bentriou,paolo.ballarini,paul-henry.cournede}@centralesupelec.fr

Abstract. Time-bounded reachability problems are concerned with
assessing whether a model’s trajectories traverse a given region of the
state-space within given time-bounds. In the case of stochastic models
reachability is associated with a measure of probability which depends on
the model’s parameters. In this paper we propose a methodology that,
given a reachability specification (for a parametric stochastic model),
allows for computing a reachability related probability distribution on
the parameter space, i.e. a distribution that allows for identifying regions
of the parameter space for which there is a non-null probability to match
the considered reachability specification. The methodology relies on the
characterisation of distance between a model’s trajectory and a reach-
ability specification which we show being assessable by using a hybrid
automaton as a monitor of a model’s trajectory. An automata-based
adaptation of the Approximated Bayesian Computation method is then
introduced to estimate the reachability distribution on the parameter
space.

Keywords: ABC methods · Hybrid automata · Parameter estimation

1 Introduction

Approximate Bayesian computation (ABC) algorithms have gained in popular-
ity over the last decade and are applied for parameter inference in many mod-
eling fields, including systems biology [16,21,26,29] and cancer research [24].
They proved powerful in many cases when classical Bayesian parameter infer-
ence methods are difficult to implement. A first formulation can be found in the
population genetics field [25] which was motivated by the dimension of the stud-
ied models. ABC permits to approximate the posterior distribution of a model
without evaluating the likelihood function in complex models, when the com-
putation cost is too high or even impossible. ABC methods are likelihood-free
and only rely on model simulations: simply speaking, only parameters for which
simulated summary statistics are close to observed ones are preserved while
the others are dismissed. This mechanism, generally used iteratively, allows for
progressively converging towards regions of the parameter space with higher
probability density.
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 207–223, 2019.
https://doi.org/10.1007/978-3-030-31304-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_11

208 M. Bentriou et al.

The initial idea of our work relies on the similarity of this concept with
that of logic driven parameter inference, i.e. an emerging area notably in sys-
tems biology. Specifically, parameter synthesis driven by temporal logic aims at
identifying the regions of a model’s parameter space that better fulfill a given
temporal logic specification [13,14]. We propose a likelihood-free ABC algorithm
that relies on general hybrid automata to constrain the particle selection in the
original ABC algorithm in order to ensure that specific logical properties of the
system are satisfied by the simulations. We show that sequential versions of ABC
can speed up the exploration of the subset of parameters where a temporal logic
specification is satisfied thanks to a formal definition of the distance of a tra-
jectory from the property. The paper is organised as follows: Sect. 2 introduces
background material about stochastic models, reachability problems, the hybrid
automata specification language and ABC statistical methods. In Sect. 3 the
notion of distance of a trajectory from a spatio-temporal region is introduced
and a novel ABC framework based on such distance measure is developed aimed
at finding the parameter subspace such that the probability of reaching this
region is positive. The novel ABC framework is demonstrated through a number
of experiments in Sect. 4, while some conclusive remarks and future perspectives
are discussed in Sect. 5.

2 Background

We briefly introduce the background material the remainder of the paper relies
upon, namely: the basics about the class of continuous-time Markov chain mod-
els, the basics about temporal logic and reachability problems, the basics about
the Hybrid Automata Specific Language and the ABC method (whose automata-
extension we introduce in Sect. 3).

2.1 Continuous-Time Markov Chains

We consider continuous-time Markov chains (CTMCs) [17] as a framework for
modelling networks of biochemical reactions. A CTMC M is a kind of stochastic
process which accounts for dense time elapsing and that enjoys the memoryless
property, i.e. the probability of observing a transition from a source state to
a target state (within a given delay) depends entirely on the source state and
not on the history that led to it. A CTMC model for a biochemical network
consisting of n species interacting through m reaction channels is characterised
by:

– A state space S ⊆ Nn whose elements are vectors X = [X1, . . . , Xn]∈S where
Xi is the population, in terms of number of molecules, of the i-th species. State
space S is associated with an initial state probability distribution π0 : S →
[0, 1] which, whenever π0 concentrates the probability mass in a single state
s0∈S, is simply denoted s0.

– A set R1, . . . , Rm of reaction channels where each Rj is characterised by a pair
Rj : (νj , ηj) with νj = [ν1j , . . . , νnj] the stoichiometric vector, representing

Reachability Design Through ABC 209

the amount of change on each species determined by the occurrence of Rj ,
and ηj = ηj(X, θ) the kinetic rate expressing the rate of an exponential
distribution governing the occurrence of Rj as a function of the state X and
of the parameters θ of the model.

– a d-dimensional vector of parameters θ = [θ1, . . . , θd] which affect the kinetic
rate of the reaction channels.

Observe that the kinetic rate of a reaction channel i.e. ηj = ηj(X, θ) depends
both on the state X of the CTMC as well as on the parameters θ. To high-
ligh the fact that the dynamics underlying a given CTMC model M may vary
considerably depending on the considered value of θ we adopt the notation Mθ.

Paths of a CTMC. Given a CTMC model Mθ = (S,R, s0) we denote
PathMθ

(s1) the set of (possibly infinite) paths originating in state s1∈S where

a path from s1 is a (possibly infinite) sequence σ =s1
t1−→ s2

t2−→ . . .
tn−1−−−→ sn . . .

with ti ∈R>0 being the sojourn-time in state si ∈S. For σ∈PathMθ
(s1) a path,

i∈N and t∈R>0, we denote σ[i] = si the i-th state of σ, δ(σ, i) = ti the sojourn-
time of σ in the i-th state and σ@t the state of σ at time t. It can be easily
shown that a CTMC model Mθ induces a probability mesure on the space of
the trajectories PathMθ

(s0). A measurable subset of trajectories of PathMθ
(s0)

may be referred to as an event of Mθ. Notice that trajectories of a CTMC are
càdlàg (i.e. step) functions of time.

2.2 Temporal Logic and Reachability Problems

In temporal logic reasoning [3,9] the term reachability problem identifies the
class of problems interested in establishing whether a given model reaches (i.e.
enters), at some point during its execution, a certain region of its state-space usu-
ally associated with some state condition ϕ. If the considered model inherently
quantifies time elapsing (like with CTMCs) then one may also consider time-
bounded reachability whereby the focus is on establishing whether the desired
region of the state-space is entered within a time-interval [t1, t2] ⊂ R≥0. Tem-
poral logic formalisms are equipped with operators for expressing reachability
problems. Here we briefly recall the basics of the Metric Interval Temporal Logic
(MITL [22]), one of many temporal logic languages (e.g. [2,18]) that allow for
stating time-bounded reachability problems for CTMC models.

MITL Temporal Logic. MITL formulae are terms of the following grammar:

ϕ ::= � | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[t1,t2] ϕ2

where � stands for the true formula, μ denotes an atomic proposition (i.e.
an inequality built on top of model’s state-variables), ¬ and ∧ are the basic
negation and conjunction connectives of propositional logic and U[t1,t2] is the
time-bounded until temporal operator with [t1, t2] ⊆ R≥0 being the bounding
interval. The truth of a MITL formula is defined w.r.t. to a function of time, such

210 M. Bentriou et al.

as, e.g. a path σ of a CTMC model. For t an instant of time we say that σ@t sat-
isfies ϕ, denoted σ@t |= ϕ. For example a time-bounded until formula is satisfied
from time t of path σ, denoted σ@t |= ϕ1 U[t1,t2] ϕ2, if and only if there exists
t′ ∈ [t1, t2] such that σ@(t + t′) |= ϕ2 and ∀t′′ <t′, σ@(t + t′′) |= ϕ1. As usual we
consider two derivations of the time-bounded until operator: the time-bounded
eventuality F[t1,t2]ϕ ≡ � U[t1,t2]ϕ, which stands for “at some point within [t1, t2]
ϕ is satisfied” and the time-bounded globally G[t1,t2]ϕ ≡ ¬F[t1,t2]¬ϕ which
stands for “ϕ is always satisfied within [t1, t2]”. In the remainder, unless other-
wise stated, we restrict our focus to the non-nested fragment of MITL, i.e. we
consider only formulae such that the operands of a temporal modality is always
an atomic proposition μ. Although a clear limitation in terms of expressiveness
this constraint still allows us to treat most common reachability problems.

Model Checking CTMCs. Model checking of a (MITL) formula ϕ against a
CTMC model Mθ involves assessing the probability that Mθ satisfies ϕ, denoted
Pr(ϕ|Mθ), which, roughly speaking, boils down to adding up the probabil-
ity of each path that starting in the initial state s0 at time t = 0 satisfies
ϕ, i.e. Pr(ϕ|Mθ) = Pr({σ|σ@0 |= ϕ, σ ∈ PathMθ

(s0)}|Mθ). Pr(ϕ|Mθ) may
be assessed either exactly through numerical model checkers [10,19] (although
these are affected by the state-space explosion problem, hence they are lim-
ited to models of reasonable size) or being estimated through statistical model
checkers [5,20,27,31] (through which the estimates of Pr(ϕ|Mθ) are obtained
by statistical inference based on trajectory samples of arbitrary size).

2.3 Hybrid Automata Specification Language

The Hybrid Automata Specification Language [4] (HASL) is a formalism that
allows for expressing sophisticated performance measures of stochastic models
(CTMCs included) and assess them through a statistical model checking app-
roach. The expressive power of HASL relies on the use of a linear hybrid automa-
ton (LHA) as a machinery to filter trajectories sampled from a given model M.
LHA generalise timed automata (TA), in that they may be equipped with generic
real-valued variables which include but are not limited (as with TA) to clocks,
hence allowing for computing useful statistics during the analysis of a model’s
trajectory which opens up to plentiful applications. In this paper we apply the
HASL formalism to reachability problems by developing HASL specifications
for measuring the distance of trajectories from a given reachability region (see
Sect. 3.1) associated to a reachability problem expressed in MITL terms. We
briefly recall the nature of LHA referring the reader to [4] for more details. An
HASL specification consist of a linear hybrid automaton (LHA) which is defined
as an n-tuple:

A = 〈E,L,Λ, Init ,Final ,X,flow,→〉
where: E is a finite alphabet of events; L is a finite set of locations; Λ : L → Prop,
a location labelling function (Prop being the set of atomic proposition built on
top of variables X); Init is a subset of L called the initial locations; Final is a

Reachability Design Through ABC 211

subset of L called the final locations; X = (x1, ...xn) a n-tuple of data variables;
flow : L �→ Indn is a function which associates each location with an n-tuple of
indicators with the i-th indicator, denoted flowi, representing the rate at which
variable xi evolves; →⊆ L × (

(Const × 2E) (lConst × {
})
) × Up × L, a set of

edges, where the notation l
γ,E′,U−−−−→ l′ means that (l, γ, E′, U, l′) ∈→, with Const

the set of constraints, whose elements are boolean combinations of inequalities
of the form

∑
1≤i≤n αixi + c ≺ 0 where αi and c are constants), ≺∈{=, <,>,≤

,≥}, whereas lConst is the set of left-closed constraints. Selection of a model’s
trajectories through an automaton A is achieved through synchronization of Mθ

with A, i.e. by letting A synchronise its transitions with the transitions of the
trajectory σ being sampled. To this aim an LHA admits two kinds of transitions:
synchronising transitions (associated with a subset E ⊆ Σ of event names, with
ALL denoting Σ), which may be traversed when an event (in E) is observed on
σ, and autonomous transitions (denoted by
) which are traversed autonomously
(and have priority over synchronized transitions), on given conditions, typically
to update relevant statistics or to terminate (accept) the analysis of σ. For

example, autonomous transition l0
�,�,{n;=xO,d:=∞}−−−−−−−−−−−−→ l1 of automaton AF in

Fig. 2 is fired unconditionally (constraint �) and updates variables n and d to
the value of species O in current state and ∞ respectively. On the other hand

transition l3
ALL,�,{n:=xO}−−−−−−−−−−−→ l1 is fired only when any event (i.e. ALL) is observed

on the synchronising trajectory. Since automata-based formalisms are at least
as expressive as temporal logic based on classical temporal modalities (see [12])
in the remainder we denote Aϕ the HASL automaton equivalent to a MITL
formula ϕ (i.e. Aϕ accepts a trajectory σ of a CTMC model Mθ if and only if
σ |= ϕ).

2.4 The ABC Method

Approximate Bayesian Computation (ABC) methods are concerned with esti-
mating the posterior distribution of a model’s parameters θ based on some
observed (experimental) data yexp. Considering a prior distribution on the
parameters π(.), observations yexp ∈ Y and likelihood function p(.|θ) of a model,
the objective of Bayesian estimation is to determine the posterior distribution:

π(θ|yexp) =
p(yexp|θ)π(θ)∫

θ′ p(yexp|θ′)π(θ′) dθ′ (1)

In complex models, the likelihood function p(yexp|θ) may be too expensive to
compute or even intractable, which hinders the determination of the posterior
distribution by classical methods. ABC algorithms were designed to handle these
situations. We refer to [23,28] for interesting and pretty complete surveys of ABC
or rejection-sampling methods. To illustrate the general idea, we give below a
simple likelihood-free algorithm:

212 M. Bentriou et al.

Algorithm 1. Simple ABC
Require: yexp, ε, ρ, η

Ensure: (θi)1≤i≤N drawn from πABC,ε

for i = 1 : N do
repeat

θ′ ∼ π(.)
y′ ∼ p(.|θ′)

until ρ(η(y′), η(yexp)) ≤ ε
θi ← θ′

end for

where η : Y → S ⊂ Rk1 is a function that computes summary statistics on the
observations and ρ : S×S → R+ is a distance in the space of summary statistics.
The choice of summary statistics is a crucial point in ABC (see for example [1]).
The resulting samples (θi, yi)1≤i≤N are drawn from the joint distribution:

πABC,ε(θ, y|yexp) ∝ 1Aε,yexp
(y)p(y|θ)π(θ)

where Aε,yexp
={y′/1ρ(η(y′),η(yexp))≤ε}. The marginal distribution of πABC,ε(., .) is:

πABC,ε(θ|yexp) ∝
∫

y

πABC,ε(θ, y|yexp)dy

When η is the identity function, as ε tends to zero, we get:

lim
ε→0

πABC,ε(θ|yexp) ∝ lim
ε→0

∫
y

πε(θ, y|yexp)dy ∝ lim
ε→0

∫
y

1Aε,yexp
(y)p(y|θ)π(θ)dy

∝
∫

y

δyexpp(y|θ)π(θ)dy ∝ p(yexp|θ)π(θ)

Therefore πABC,ε approximates the posterior distribution, all the better when ε
is smaller.

Algorithm 2. ABC Population Monte-Carlo
Require: N : number of particles, yexp, (εi)1≤i≤M , ρ, η
Ensure: (θj)1≤j≤N drawn from πABC,εM

Iteration i = 1: find (θ
(1)
j)1≤j≤N with algorithm ABC 1

ωj ← 1
N

for i = 2 : M do
for j = 1 : N do

repeat

Take θ
′
j from (θ

(i−1)
j)1≤j≤N with probabilities (ωj)1≤j≤N

θ
(i)
j ∼ K(.|θ′

j)

y′ ∼ p(.|θ(i)j)
until ρ(η(y′), η(yexp)) ≤ εi

ωj ← π
(

θ
(i)
j

)

N
Σ

j′=1
ω
(i−1)
j′ K(θ

(i)
j |θ(i−1)

j′)

end for

Normalize (ωj)j
end for

Reachability Design Through ABC 213

2.5 ABC Population Monte-Carlo

The chosen value of ε is crucial for the performance of Algorithm 1: a small ε is
needed to achieve a good approximation, however this may result in high rejec-
tion rate leading to cumbersome computations. To overcome this issue the more
elaborate Algorithm 2, known as ABC population Monte-Carlo (ABC-PMC),
has been proposed [6]. It is an SMC based approach [11] through which a pop-
ulation of N particles is iteratively sampled with increasing accuracy until the
targeted level of accuracy εM , is obtained. At the first iteration particles are ini-
tialised through the simple ABC Algorithm 1 using a large enough ε1 to limit the
computation cost. Then, at each step i, i = 2, . . . ,M , the particles are moved by
a transition kernel K(.|.) (for example a Gaussian one [11]) until they match the
next level, tighter, approximation constraint εi. At iteration M , we finally get N
particles that fulfill the desired approximation εM . Some ad-hoc strategies are
proposed to find a proper sequence (εi)1≤i≤M ensuring an efficient convergence
towards the posterior distribution.

3 ABC for Reachability Design

In this section we present the core contribution of the paper namely: we formalise
the notion of distance of a model’s trajectories from a reachability region, we
introduce the HASL specifications for measuring the trajectories distance w.r.t.
a given reachability problem and finally we introduce an adaptation of the ABC
method to the reachability problem, i.e. we adapt ABC so that the convergence
is guided by the distance from a reachability region.

3.1 Reachability Distances

In order to adapt procedures for searching the parameters space driven by a
reachability problem we introduce different notions of distance of a model’s tra-
jectory from a (set of) reachability region(s) associated with a reachability prob-
lem.

Definition 1 (Time-bounded reachability region).Given ann-dimensional
CTMC population model Mθ with state-space S ⊆ Nn and a simple (time-
bounded) reachability formula, either ϕ ≡ F [t1,t2]μ or ϕ ≡ G[t1,t2]μ (with
[t1, t2] ⊂ R≥0) we define Rreg(Mθ, ϕ) ⊂ S × [t1, t2] the time-bounded reacha-
bility region of Mθ w.r.t. ϕ as the hyperrectangle:

Rreg(Mθ, F
[t1,t2]μ) = Rreg(Mθ, G

[t1,t2]μ) = {((s, t) | s |=μ ∧ t∈ [t1, t2]}
Definition 2 (Distance from an eventual region F [t1,t2]μ). Given a trajec-
tory σ∈PathMθ (s0) of a CTMC Mθ and an eventual reachability property ϕ≡
F [t1,t2]μ we define the distance d(σ, F [t1,t2]μ)) from region Rreg(Mθ, F

[t1,t2]μ)
as the minimal euclidean distance of any point of σ that occurs within [t1, t2]
from Sμ, the subset of states of Mθ that fulfils μ.

d(σ, F [t1,t2]μ) = argmint∈[t1,t2]de(σ@t, Sμ)

214 M. Bentriou et al.

where de(s, S1) = argmins′∈S1

√∑n
i=1(si − s′

i)2r denotes the euclidean distance
of point s∈ S from subset S1 ⊆ S with S ⊆ Nn an n-dimensional space.

Definition 3 (Distance from a global region G[t1,t2]μ). Given a trajectory
σ∈PathMθ

(s0) of a CTMC Mθ and a global reachability property ϕ≡G[t1,t2]μ
we define the distance d(σ,G[t1,t2]μ)) from region Rreg(Mθ, G

[t1,t2]μ) as the sum
of the euclidean distance from Sμ of any point of σ that occurs within [t1, t2]

d(σ,G[t1,t2]μ) =
∫ t2

t1

de(σ@t, Sμ)dt

Observe that, in agreement with the semantics of the eventual (F) and the
global (G) modalities, the distance of a CTMC trajectory σ from an eventual
formula d(σ, F [t1,t2]μ) = 0 if and only if σ has at least one point traversing
region Sμ × [t1, t2] while, on the other hand, the distance from a global formula
d(σ,G[t1,t2]μ) = 0 if and only if all points of σ fall in Sμ × [t1, t2] (see Fig. 1).

distance = 0 distance > 0

t1 t2

x2

x1

σ

t1 t2

x2

x1
σ

t1 t2

x2

x1

σ t1 t2

x2

x1σ

F [t1,t2](x1, x2) G[t1,t2](x1, x2) F [t1,t2](x1, x2) G[t1,t2](x1, x2)

Fig. 1. Examples of trajectories with zero-distance (left) and positive distance (right)
from an eventual, respectively a global, region (positive distances are depicted in gray).
(Color figure online)

The following proposition states an intuitively trivial, yet relevant, aspect relat-
ing a trajectory’s distance of from a region with the satisfaction of the corre-
sponding MITL formula.

Proposition 1. For σ ∈ PathMθ
(s0) a path of a CTMC Mθ and ϕ a MITL

reachability formula of kind ϕ=F [t1,t2]μ or ϕ=G[t1,t2]μ then

σ |= ϕ ⇐⇒ d(σ, ϕ) = 0

Proof. Trivial.

3.2 HASL Specifications for Measuring Reachability Distance

Given a (global or eventual) reachability formula ϕ referred to a model Mθ we
show how to set up an LHA for measuring the distance of a trajectory of Mθ from
region Rreg(Mθ, ϕ). For the sake of simplicity in Fig. 2 we show automata AF ,
respectively AG, referred to a mono-dimensional region corresponding to atomic
formula μ ≡ x1 ≤ xO ≤ x2 (where xO denotes the population of an observable

Reachability Design Through ABC 215

quantity O of Mθ and x1<x2∈N). Distance automata for n-dimensional regions
are just adaptation of those in Fig. 2.

Distance Automaton AF . Automaton AF in Fig. 2 is designed for measuring
the (average) distance (Definition 2) of trajectories of a CTMC model Mθ from
the region associated with F [t1,t2](x1≤xO ≤x2), i.e. the region corresponding to
quantity O being xO ∈ [x1, x2] within time t∈ [t1, t2].

AF

l0
ṫ:1

l1
ṫ:1

l2
ṫ:1

l3
ṫ:1

�,(d>0)∧(t>t2),∅

�,(d=0)∧(t≥t1),∅

�,(x1≤n≤x2)∧(t1≤t≤t2),

{d:=0}

�,�,{n:=xO,d:=∞}

�,(d=0)∧(x1>n∨n>x2)∧(t<t1),

{d:=min(|n−x1|,|n−x2|)}

�,(x1≤n≤x2)∧(t<t1),{d:=0}

�,(d>0)∧(x1>n∨n>x2),

{d:=min(d,min(|n−x1|,|n−x2|))}

ALL,�,{n:=xO}

AG

l0
ṫ:1

l1
ṫ:1

l3
ṫ:1
ṫ′:0

l4
ṫ:1
ṫ′:1

l2
ṫ:1

�,�,{n:=x
O ,d:=0,in:=�}

�,¬in∧t1≤t≤t2∧(n<x1∨n>x2), {d+=d·(t−t1)}
�,in∧t1≤t≤t2∧(n<x1∨n>x2), ∅

�,¬in∧t1≤t≤t2∧(x1≤n≤x2)

{d:=d·(t−t1),t′:=0}

�,in∧t1≤t≤t2∧(x1≤n≤x2), {t′ :=0}

�,t<t1∧(x1≤n≤x2){d:=0,in:=⊥}

�,t<t1∧(n<x1∨n>x2), {d:=min(|x1−n|,|x2−n|),in:=⊥}

ALL,�,{d′+=t′·min(|x1−n|,|x2−n|)),t′:=0,n:=xO,in:=�}

ALL,�,{n:=xO}

�,t>t2,
∅

�,t>t2∧¬in,

{d:=
d·(t1−t2)

}

Fig. 2. Distance automata for regions F [t1,t2](x1 ≤xO ≤x2) and G[t1,t2](x1 ≤xO ≤x2)

It uses 3 variables: d (computed distance), t (current time along the trajectory)
and n (population of the observed quantity xO). Initially (l0 → l1) the distance
is initialised to d := ∞ and the initial value of the observed species stored in n :=
xO. Once in l1 if the trajectory is inside the region (and this include even initially

with t = 0 in case t1 = 0 too) then transition l1
(x1≤n≤x2)∧(t1≤t≤t2),{d:=0}−−−−−−−−−−−−−−−−−−−→ l2

fires and computation stops setting d := 0. On the other hand if, while in l1,
the trajectory has not entered the region the distance d must be updated which
is dealt by 3 autonomous transitions l1 → l3. In case O has entered [x1, x2]

before the considered time-window (l1
(x1≤n≤x2)∧(t<t1),{d:=0}−−−−−−−−−−−−−−−−−→ l3) the distance

is set to d := 0 . This is because, since CTMC trajectories are càdlàg functions of
time1, if the next reaction occurs at time t ≥ t1 then it is certain that the current
trajectory has at least one point within the considered region hence the trajectory
1 i.e. right continuous with left limits, see Fig. 1.

216 M. Bentriou et al.

is accepted (l1
(d=0)∧(t≥t1)−−−−−−−−−→ l2) with distance d = 0. On the other hand if O has

not entered [x1, x2] then d is set to the distance of the current point from [x1, x2],

if the previous point was in [x1, x2] (l1
(d=0)∧(x1>n∨n>x2)−−−−−−−−−−−−−−→ l3), or to the minimum

between the previous value of d and the distance of the current point from

[x1, x2] if the previous point was not in [x1, x2] (i.e. (l1
(d>0)∧(x1>n∨n>x2)−−−−−−−−−−−−−−→ l3).

The transition l3
ALL,�,{n:=xO}−−−−−−−−−−−→ l1 is traversed whenever a novel point is added

to the trajectory and brings the automaton back to l1 so that the distance

can be updated accordingly. Finally transition l1
�,(d>0)∧(t>t2),∅−−−−−−−−−−−→ l2 halts the

computation as soon as the trajectory exit the temporal region [t1, t2] not having
traversed [x1, x2]: at that point the distance of the trajectory is already stored in
d and needs no update (even in case of a trajectory consisting of a single point).

Distance Automaton AG. Automaton AG (Fig. 2) is similar to AF only that
the computed distance d corresponds with the integral of the distance of points
which falls outside the region within time window [t1, t2]. It uses the same vari-
ables as AF plus an extra timer t′, for measuring the duration of a segment falling
outside the region within [t1, t2], and a boolean flag in, which is set to ⊥ (i.e.
false) if the trajectory have no segment originating in the region within [t1, t2].
After variables are initialised (l0 → l1) analysis begins in l1: for events occurring
at t < t1 the distance is set to either d = 0 (l1 → l3 top arc), if σ@t ∈ [x1, x2],
or to the distance of σ@t from [x1, x2] otherwise (l1 → l3 midway arc). This is
because if the next point of σ happens at t > t2 then the final distance is given
by d · (t2 − t1) (l1 → l2 bottom arc). Conversely for events occurring at t∈ [t1, t2]
the distance is either incremented with the surface underlying the segment (of
duration t′) laying outside [x1, x2], if σ@t �∈ [x1, x2] (sequence l1 → l4 → l1), or
is left unchanged if σ@t∈ [x1, x2] (sequence l1 → l3 → l1).

Example 1 (Enzymatic reaction system). We consider a simple model of an enzy-
matic reaction (ER) system whereby a substrate species S is converted into a
product P through mediation of an enzyme E. The dynamics is given by chemi-
cal equations (2) which depend on the parameters θ={k1, k2, k3}, i.e. the kinetic
rate constants of reactions R1, R2, R3:

R1 : E + S
k1−→ ES R2 : ES

k2−→ E + S R3 : ES
k3−→ E + P (2)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

nu
m

be
r

of
 m

ol
ec

ul
es

time

E

S

SE

P
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

nu
m

be
r

of
 m

ol
ec

ul
es

time

E

S

SE

P

Fig. 3. Trajectories of the ER system with θ=(1, 1, 1) (left) and θ=(0.1, 1, 0.1) (right).

Reachability Design Through ABC 217

We assume mass-action as the law for kinetic rates of the 3 reactions (i.e. the
actual rate of each reaction is given by the product of the abundances of the reac-
tants times the kinetic rate constant). Figure 3 shows two (4-dimensional) tra-
jectories sampled from the CTMC model Mθ of the enzymatic reaction system
with initial state (E0, S0, ES0, P0) = (100, 100, 0, 0) and parameters θ = (1, 1, 1)
(left) and θ=(0.1, 1, 0.1) (right). The dynamics of the ER system (Fig. 3) is such
that the totality of the substrate (initially S0 = 100) is converted into the prod-
uct at a speed dependent on parameters θ. With θ=(1, 1, 1) the totality of S is
converted within T ∼ 5 whereas if we slow down by a ten-fold both formation
of the ES complex and synthesis of P (i.e. θ = (0.1, 1, 0.1))) we have that only
about 30% of S has been converted within T ∼ 5.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

R3

R2

R1

nu
m

be
r

of
 m

ol
ec

ul
es

k3

k3=10

k3=20

k3=50
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 o
f P

 fr
om

 a
 r

eg
io

n

k3

region R1 [50,75]x[0.025,0.05]

region R2 [50,75]x[0.05,0.075]

region R3 [25,50]x[0.05,0.75]

Fig. 4. P -projected trajectories of the CTMC model of ER with different spatio-
temporal regions (left), and distances computed thtoguh AF (right). (Color figure
online)

Testing Distance Automata. To test automaton AF we run a few experi-
ments on the CTMC model of the ER system using the statistical model checker
Cosmos [5]. Figure 4 (left) shows batches of (the projection over the P dimension
of) trajectories of the ER model corresponding to parameter sets θ1 : (1, 1, 50),
θ2 = (1, 1, 20) and θ3 = (1, 1, 10) together with regions associated with formulae
ϕ1 : F [0.025,0.05](50 ≤ xP ≤ 75) (r1), ϕ2 : F [0.05,0.075](50 ≤ xP ≤ 75) (r2) and
ϕ3 : F [0.05,0.075](25 ≤ xP ≤ 50) (r3). It is evident that trajectories for Mθ1

(purple) are more likely to traverse r1, those for Mθ2 (green) to traverse r2
and those for Mθ3 (blue) to traverse r3. Such intuition is confirmed by plots
in Fig. 4 (right) which depict (the average value of the) distance of trajectories
from regions r1, r2 and r3 measured with Cosmos, in function of k3, using spe-
cific instances of AF i.e. Aϕ1 , Aϕ2 and Aϕ3 . We observe that e.g. the measured
distance from region r1 monotonically decreases as k3 increases and gets equal
to zero for k3 ≥ 30 while the distance from region r3 is null when 10 ≤ k3 ≤ 15
whereas it grows as we increases k3.

3.3 ABC with Reachability Distances

We consider the problem of defining an ABC framework for exploring the param-
eter space of a CTMC model Mθ so that the probability of Mθ to satisfy a

218 M. Bentriou et al.

reachability formula ϕ (either ϕ ≡ F [t1,t2]μ or ϕ ≡ G[t1,t2]μ) is positive. The
intuition behind this idea is that the exploration of the parameter space can be
driven efficiently by taking into account the notion of distance of a trajectory
σ ∈PathMθ

(s0) from the reachability region corresponding to ϕ (see Sect. 3.1).
We point out that with the distance driven ABC the estimation of the pos-
terior distribution (πϕ−ABC) is no longer computed as a limit approximation
(i.e. limε→0 π̂ABC,ε(.|yexp)), as with classical ABC (Algorithm 1), but rather as
an estimation of the exact posterior distribution, since trajectories are accepted
exclusively if their distance is zero.

Simple ABC with Reachability Distance. We define a modified version of
Algorithm 1 adapted to reachability distance:

Algorithm 3. ABC driven by Aϕ automaton
Require: π(.)
Ensure: (θi)0≤i≤N drawn from πϕ−ABC

for i = 1 : N do
repeat

θ′ ∼ π(.)
σ′ ∼ Mθ′

until d(σ′, ϕ) = 0
θi, σi ← θ′, σ′

end for

Here we draw a parameter θ′ from the prior π(.), we simulate a path σ′

according to the CTMC Mθ′ , and accept θ′ if its distance from ϕ is d(σ′, ϕ)=0.
(i.e. if σ′ |= ϕ). Hence, (θi, σi)i are drawn according to a density πϕ−ABC :

πϕ−ABC(θi, σi) ∝ 1d(.,ϕ)=0(σi)p(σi|θi)π(θi) ∝ 1Cθi,ϕ
(σi)pMθi

(σi)π(θi)

where Cθ,ϕ the set of paths of Mθ that satisfies ϕ, Prθ,s0(Cθ,ϕ) = Pr(ϕ|Mθ)
and pMθi

is the density related to Prθi,s0 . The marginal of θ is given by:

πϕ−ABC(θi) ∝
∫

σ∈PathMθ
(s0)

1Cθi,ϕ(σ)pMθi
(σ)π(θi)dσ ∝ π(θi)

∫
σ∈Cθi,s0

dPrθi,s0(σ)

∝ Prθi,s0(Cθi,s0)π(θi) = Pr(ϕ|Mθ)π(θi)

With an uniform prior (θi)i ∼ πϕ−ABC(θi) ∝ Pr(ϕ|Mθ). The ϕ − ABC density
of θ is then proportional to the probability that ϕ is satisfied by Mθ.

ABC-PMC with Reachability Distance. Following the same approach we
introduce the adapted ABC-PMC algorithm with distance automaton which
allows for a smaller runtime than Algorithm 3. Observe that if with Algo-
rithm3 we do not really exploit the notion of continuous distance (i.e. we only
accept/reject trajectories depending on whether their distance is null, i.e. if they

Reachability Design Through ABC 219

satisfy ϕ, which is a simple Monte-Carlo approach), with Algorithm4 we actually
use the distance to rank paths and accept those parameters whose correspond-
ing paths are closer (better ranked) than others, even if they don’t necessarily
satisfy ϕ. In this Sequential Monte-Carlo based version, the decreasing sequence
of ε is set automatically. For the first iteration, we randomly sample parameters
from the prior, simulate the paths and compute the empirical α−quantile of the
distances of the simulated paths from ϕ for ε1. Then, at each iteration we find
parameters so that the simulated paths satisfy the acceptance condition with
the current ε and then take the empirical α − quantile for the new ε until ε is
equal to zero.

Algorithm 4. ABC Population Monte-Carlo driven by Aϕ automaton
Require: N : number of particles, π(.) prior, d(., .) the distance from Aϕ, α ∈ (0, 1)
Ensure: (θj)1≤j≤N drawn from πϕ−ABC

i ← 1
(θ

(1)
j)1≤j≤N ∼ π(.)

∀j ∈ 1, . . . , N, σj ∼ Mθj

ε ← quantile(α, d(σj , ϕ))1≤j≤N)

(ωj)
(1)
1≤j≤N ← 1

N

while ε > 0 do
for j = 1 : N do

repeat
Take θ

′
i from (θ

(i−1)
j)1≤j≤N with probabilities (ωj)1≤j≤N

θ
(i)
j ∼ K(.|θ′

i)

σ′ ∼ p(.|θ(i)
j)

dj ← d(σ′, ϕ)
until dj ≤ ε

ωj ← π
(

θ
(i)
j

)

N
Σ

j′=1
ω
(i−1)
j′ K(θ

(i)
j |θ(i−1)

j′)

end for
Normalize (ω

(i)
j)j

ε ← quantile(α, (dj)1≤j≤N)
i ← i + 1

end while

4 Experiments

Table 1 reports about the evaluation2 of the posterior distribution πϕ−ABC

obtained by application of the automaton-driven adaptation of the ABC method
2 Experiments were performed on HPC resources from the “Mésocentre” (http://

mesocentre.centralesupelec.fr/) through a prototype tool (available at https://gitlab.
centralesupelec.fr/2017bentrioum/abc-automaton) written in Julia [7] and based on
the ADJUSTIN’ modelling platform [30].

http://mesocentre.centralesupelec.fr/
http://mesocentre.centralesupelec.fr/
https://gitlab.centralesupelec.fr/2017bentrioum/abc-automaton
https://gitlab.centralesupelec.fr/2017bentrioum/abc-automaton

220 M. Bentriou et al.

Table 1. Posterior distributions computed through the ABC-distance method for dif-
ferent reachability regions of the enzymatic reaction model.

R1 : F [0.025,0.05](50≤P ≤75)
R2 : F [0.05,0.075](50≤P ≤75)
R3 : F [0.05,0.075](25≤P ≤50)

k1 =k2 =1
πk3

(.)∼U(0, 100)

R4 : F [8,10](5≤P ≤15)
k2 = 1

πk1
(.)∼U(0, 100)

πk3
(.)∼U(0, 100)

R4 : F [8,10](5≤P ≤15)
k3 = 1

πk1
(.)∼U(0, 100)

πk2
(.)∼U(0, 100)

R5 : G[0,0.8](50≤E ≤100)
k3 =1

πk1
(.)∼U(0, 100)

πk2
(.)∼U(0, 100)

(Algorithms 3 and 4) to different reachability formulae referred to the ER model.
Specifically we considered a few examples of F (eventual) reachability formulae
as well as one example of G (global) reachability property. The first line of Table 1
depicts the marginal distribution of k3 computed w.r.t. to regions R1, (left) R2

(center) and R3 (right) where R1, R2, R3 correspond with the reachability for-
mulae ϕ1 : F [0.025,0.05](50 ≤ P ≤ 75), ϕ2 : F [0.05,0.75](50 ≤ P ≤ 75) respectively
ϕ3 : F [0.05,0.75](25 ≤ P ≤ 50) (see Fig. 4). The marginal for R1 shows a rather
uniform profile with about the 95% credibility interval that ϕ is satisfied for
k1 ∈ [20, 100], which is in agreement with the average distance measure (Fig. 4
right). The marginals for R2 and R3, instead, gather about the 95% credibility
interval on smaller intervals k3 ∈ [15, 50] (R2) resp. k3 ∈ [5, 25] (R3), again in
line with measured distance (Fig. 4 right). The 2nd and 3rd row of Table 1 refer
to the evaluation of posterior for the “eventual” region R4 for product P (i.e.
ϕ4 : F [8,10](5≤P ≤15)) while the 4th row refers to the “global” region R5 for the
enzyme E (i.e. ϕ4 : G[0,08](50≤ E ≤ 100)), obtained by searching the parameter
space w.r.t two (out of three) parameters. The rectangular profile of the joint
posterior in the 2nd row (computed with k2 = 1 and πk3(.), πk1(.) ∼ U (0, 100))
indicates that k3 is the “dominant” parameter w.r.t region R4 as the uniform-
like profile of the marginal of k1 indicates that k1 has little effect on reaching

Reachability Design Through ABC 221

R4. The triangular profile of the joint posterior in 3rd and 4th row (computed
with k3=1 and πk1(.), πk2(.) ∼ U (0, 100)) indicates that only very low values of
k1 (k1≤0.015 for R4, k1≤1 for R5) combined with rather high-values of k2 (i.e.
k1∈ [40, 100] for R4, k1∈ [50, 100] for R5) results in trajectories entering R4, resp.
never leaving R5, which means the algorithm caught the correlation between the
parameters. This is intuitively correct in both cases, in fact R4 corresponds to
a very low synthesis of P which is not compatible with fast creation of the ES
complex (i.e. only very small k1 are not ruled out) and even the compensation
effect obtained by fast decomplexion (i.e. large k2) won’t suffices for trajectories
to stay in R4. Similarly R5 bounds the speed of the initial decrease of E (which
initially is E0 =100), to 50 within t ≤ 0.8 which again is compatible only with
slow ES complexation and cannot be compensated by fast decomplexation.

Remarks. Results have been obtained by running Algorithm4 with sample size
N = 10000, α = 0.5. There are no notable differences of performance between
Algorithms 3 and 4 for regions R1, R2, R3 because of the large distributions.
However Algorithm 3 is not worth considering for R4 and R5: one can see with
the considered priors the probability to get a couple of parameters in the second
distribution is about

90×0.03
2

100∗100 ≈ 10−4 which gives infinitesimal probability for
drawing from the prior N = 10000 particles in the distribution and this simple
computation doesn’t even take into account a parameter in the obtained distri-
bution could produce paths that don’t satisfy ϕ. By adding several transitional
step with Algorithm 4 the problem becomes feasible. Results for R4 required
about 4 × 105 simulations of the model.

Related work. Several important results have been obtained in recent times
w.r.t. studying the satisfaction of a temporal specification ϕ w.r.t. to a paramet-
ric CTMC model Mθ. In [8] authors outline conditions under which the satis-
faction of ϕ is a differentiable function of parameters θ and set up a Bayesian
framework for efficiently estimating the probability Pr(ϕ|Mθ). In [15] authors
introduce a framework for identifying the regions of the parameter space that
either comply with a threshold CSL problem (i.e. such that Pr(ϕ|Mθ) ∼ r, with
∼∈{<,≤,≥, >} and r∈ [0, 1]) or maximise the probability of a CSL specification.

5 Conclusion

We presented a new methodology for efficient exploration of a CTMC parameter
space so that it has a positive probability to satisfy a time-bounded reachability
specification ϕ. The methodology is an adaptation of the ABC method which,
based on the notion of distance from a reachability region, outputs a density
which is proportional to the probability of satisfying ϕ with uniform priors.
Through experiments on a enzymatic reaction model we showed both the effi-
ciency (i.e. the adapted ABC-PMC algorithm allows for treating computationally
costly reachability problems which simple ABC cannot deal with) as well as the
consistency of the proposed approach. Future works include the extension to a

222 M. Bentriou et al.

larger fragment of reachability problems (e.g. Until formulae and nested opera-
tors) as well as to other categories of problems (beyond reachability), i.e. those
for which a notion of trajectory distance can be conceived.

References

1. Nunes, M.A., Balding, D.J. On optimal selection of summary statistics for approx-
imate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 9 (2010). Article no.
34

2. Baier, C.: On algorithmic verification methods for probabilistic systems. Habilita-
tion thesis, Fakultät für Mathematik & Informatik, Universität Mannheim (1998)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: HASL: a new app-
roach for performance evaluation and model checking from concepts to experimen-
tation. Perform. Eval. 90, 53–77 (2015)

5. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a sta-
tistical model checker for the hybrid automata stochastic logic. In: Proceedings of
the 8th International Conference on Quantitative Evaluation of Systems (QEST
2011), pp. 143–144. IEEE Computer Society Press, September 2011

6. Beaumont, M.A., Cornuet, J.-M., Marin, J.-M., Robert, C.P.: Adaptive approxi-
mate Bayesian computation. Biometrika 96(4), 983–990 (2009)

7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65–98 (2017)

8. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

10. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Proceedings of the 29th International Conference
on Computer Aided Verification (CAV 2017) (2017)

11. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat.
Soc. B 68(3), 411–436 (2006)

12. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSLTA. IEEE Trans. Softw. Eng. 35, 224–240 (2009)

13. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: International Conference on Computer Aided Verification, pp. 167–
170 (2010)

14. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Gros, R., Belta, C.: SpaTeL: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
pp. 189–198 (2015)

15. Ceska Jr., M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Inf. 54(6), 589–623
(2017)

16. Koutroumpas, K., Ballarini, P., Votsi, I., Cournède, P.H.: An infinite mixture mod-
els approach. In: Bioinformatics, Bayesian parameter estimation for the Wnt path-
way (2016)

Reachability Design Through ABC 223

17. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems, 3rd edn. Chapman
& Hall/CRC Texts in Statistical Science. CRC Press, Boca Raton (2016)

18. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

20. Legay, A., Sedwards, S., Traonouez, L.-M.: Plasma lab: a modular statistical model
checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 77–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 6

21. Lenive, O., Kirk, P.D.W., Stumpf, M.P.H.: Inferring extrinsic noise from single-cell
gene expression data using approximate Bayesian computation. BMC Syst. Biol.
10, 81 (2016)

22. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT-2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

23. Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian compu-
tational methods. Stat. Comput. 22(6), 1167–1180 (2012)

24. Plagnol, V., Tavaré, S.: Approximate Bayesian computation and MCMC. In:
Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 99–
113. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18743-8 5

25. Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A., Feldman, M.W.: Population
growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol.
Biol. Evol. 16(12), 1791–1798 (1999)

26. Ratmann, O., Andrieu, C., Wiuf, C., Richardson, S.: Model criticism based on
likelihood-free inference, with an application to protein network evolution. Proc.
Natl. Acad. Sci. 106, 10576–10581 (2009)

27. Sen, K., Viswanathan, M., Agha, G.: VESTA: a statistical model-checker and ana-
lyzer for probabilistic systems. In: Second International Conference on the Quan-
titative Evaluation of Systems (QEST 2005), pp. 251–252, September 2005

28. Sisson, S.A., Fan, Y., Beaumont, M.A.: Overview of approximate Bayesian com-
putation (1), 1–66 (2018)

29. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate
Bayesian computation scheme for parameter inference and model selection in
dynamical systems. J. R. Soc. Interface 6(31), 187–202 (2009)

30. Viaud, G.: Statistical methods for the genotypic differentiation of plants using
growth models. Université Paris-Saclay, Theses (2018)

31. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 43

https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-18743-8_5
https://doi.org/10.1007/11513988_43

Fast Enumeration of Non-isomorphic
Chemical Reaction Networks

Carlo Spaccasassi, Boyan Yordanov, Andrew Phillips, and Neil Dalchau(B)

Biological Computation group, Microsoft Research, Cambridge CB1 2FB, UK
{t-caspac,yordanov,aphillip,ndalchau}@microsoft.com

Abstract. Chemical reaction networks (CRNs) have been applied suc-
cessfully to model a wide range of phenomena and are commonly used
for designing molecular computation circuits. Often, CRNs with spe-
cific properties (oscillations, Turing patterns, multistability) are sought,
which entails searching an exponentially large space of CRNs for those
that satisfy a property. As the size of the CRNs being considered grows,
so does the frequency of isomorphisms, by up to a factor N !, where N
is the number of species. Accordingly, being able to generate sets of
non-isomorphic CRNs within a class can lead to large computational
savings when carrying out global searches. Here, we present a bijective
encoding of bimolecular CRNs into novel vertex-coloured digraphs called
Complex-Species graphs. The problem of enumerating non-isomorphic
CRNs can then be tackled by leveraging well-established computational
methods from graph theory [20]. In particular, we extend Nauty, the
graph isomorphism tool suite by McKay [22]. Our method is highly par-
allelisable and more efficient than competing approaches, and a software
package (genCRN) is freely available for reuse. Non-isomorphs are gener-
ated directly by genCRN, alleviating the need to store intermediate results.
We provide the first complete count of all 2-species bimolecular CRNs
and extend previous known counts for classes of CRNs of special interest,
such as mass-conserving and reversible CRNs.

1 Introduction

Chemical reaction networks (CRNs) are widely recognised as a convenient for-
malism for modelling and analysing a broad range of biochemical systems [1,17].
In recent years, they have also been used for designing synthetic systems with
specified behaviours, such as distributed consensus networks [9], oscillators [34]
and feedback control circuits [27]. CRNs provide a convenient abstraction for
modelling synthetic biological systems, while also supporting a mapping to bio-
logical implementations in both molecular [33] and genetic [28] circuits.

CRNs also support a broad range of analysis methods, which can be used
to check the desired properties of a system prior to its implementation. In par-
ticular, a promising approach is to encode a CRN as a graph and analyse its
properties using graph-theoretic methods. A CRN is essentially a map from a

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 224–247, 2019.
https://doi.org/10.1007/978-3-030-31304-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_12

Enumeration of Non-isomorphic CRNs 225

multiset of reactant species to a multiset of product species, which can be can
be written as

αjiAi
kj−→ βjiAi, j ∈ {1, . . . , M}, i ∈ {1, . . . , N} (1)

where N denotes the number of species, M denotes the number of reactions, αji

and βji denote the multiplicity of species Ai in the reactants and products of
reaction j, respectively, and kj ∈ R+ denotes the rate constant of reaction j. In
a pair of landmark papers [15,16], Feinberg encoded CRNs as complex graphs
– where each vertex represents a complex and each directed edge represents a
reaction – and related the deficiency of a CRN to the existence of positive steady
states. Alternative graph encodings have also been developed, including species-
reaction (SR) graphs, which are directed bipartite graphs whose vertices are
either species or reactions. These SR graphs are used to check for the existence of
multiple equilibria that can be determined from network structure alone [11,12].
Graph-theoretic properties have also been developed for detecting oscillations
[24] and Turing instabilities [23], and for assessing concentration robustness [32].

As the number of species N increases, the number of possible reactions grows
such that the number of bimolecular CRNs grows as O(2N4

) (see Lemma 4 in
Appendix B). As a result, the design space of CRNs with more than a few species
is intractable to explore systematically [26], and the design of CRNs with speci-
fied behaviours remains largely an artisanal process. One approach to exploring
the design space of CRNs more efficiently is to filter out CRNs that are isomor-
phic and therefore exhibit identical behaviour. In principle, the enumeration of
these non-isomorphic CRNs can make it possible to exhaustively explore an oth-
erwise intractable space, since as the number of species N increases, the number
of isomorphic CRNs also increases substantially. More generally, enumerating
non-isomorphic CRNs can be used to determine which CRNs satisfy a property
in a complete sense, such as determining the complete set of 2-species CRN
oscillators [4], or the smallest CRN admitting bistability [35].

The problem of enumerating non-isomorphic CRNs is related to the prob-
lem of enumerating non-isomorphic graphs, which is NP-hard and, worse still,
considered to be a pathology of computer science research [30]. Several methods
for working with graph isomorphisms already exist, the most notable of which
is NAUTY [22], which can efficiently compute a canonical form of a graph, find
its automorphism group and its generators. NAUTY also provides enumeration
tools for graphs, digraphs and vertex colouring, among others. Also related is
Polya’s enumeration theorem, which counts non-isomorphic graphs without con-
structing them [29]. The most promising method for working with isomorphic
CRNs was introduced in [3], which uses NAUTY to encode a CRN as a species-
reaction Petri net [2]. This is similar to an SR-graph, except that edges are
directed and weighted. It was inspired by attempts to enumerate CRNs in [13],
which also leverages NAUTY. However, species-reaction Petri nets need to be
encoded as multidigraphs, which are not supported natively in NAUTY. They
can be encoded in terms of digraphs, but such an encoding is not enumerable
in NAUTY without also generating invalid multidigraphs. This requires storing

226 C. Spaccasassi et al.

and then filtering out non-isomorphs after enumeration, which penalises run-
time. Time measurements or a software tool are not available in [3], so it is hard
to quantify the number of non-isomorphs and their negative impact on perfor-
mance. The maximum counts reported in these works are for the bimolecular
CRN classes of size (N,M) from (2,7), (3,6), (4,5), (5,4) to (9,4) and (10,3), with
a maximum running time of 20 days [13]; (5,5) is reported in [3].

The other major challenge of checking large sets of CRNs is that storing the
set of CRNs in the memory of a computer becomes impossible beyond some
problem size (N,M), even when using a memory-efficient representation of the
CRN. For example, the (5,5) class stored in the encoding of [3] takes 64.4 giga-
bytes of disk space; the (5,6) class of reversible CRNs takes 198 gigabytes. As
such, the only way to proceed practically is to directly generate non-isomorphic
CRNs using the canonical construction path method [21], check whether the
CRN satisfies the predicate, and write those to file (or store in memory if the
satisfying subset happens to be small enough).

In this paper, we present an efficient method for generating non-isomorphic
bimolecular CRNs. Our method can determine the complete subset of CRNs
of a given size that satisfy a specified property, without the need to enumerate
and store in memory all non-isomorphic CRNs of that size. By creating such a
generator, our method can be used to ask complete questions for larger CRN
sizes than was previously possible, since memory is no longer limiting. Instead,
it is limited only by the computation time of testing each non-isomorphic CRN.
Our approach is based on a new graph encoding of CRNs that we name the
Complex-Species graph (CS-graph), and we prove that isomorphisms of bimolec-
ular CRNs are equivalent to isomorphisms of CS-graphs. Our method also facil-
itates a tighter relationship with NAUTY than previous methods, leading to
efficiency benefits and high parallelisation. We are the first to report that there
are precisely 535,852,102 bimolecular 2-species CRNs, and extend the counts of
non-isomorphic CRNs with more than 2 species beyond what has been reported
previously, including counts for (10,5), (5,6) and (4,7) in less than a day. We pro-
vide execution times of all enumerations, and a new computational tool (genCRN)
for enumerating non-isomorphic CRNs with several filters. Using genCRN, it is
now possible to explore the design space of larger CRNs satisfying a given set of
properties.

2 Methods

We first present the Complex-Species graph (CS-graph), an encoding of bimolec-
ular CRNs into directed coloured graphs, and prove that CS-graphs faithfully
encode bimolecular CRNs up to isomorphism, in the sense that two bimolecular
CRNs are isomorphic if and only if their CS-graphs are isomorphic. We then
explain how CS-graphs facilitate the fast enumeration of the set of all CRNs
that are non-isomorphic to one another.

Enumeration of Non-isomorphic CRNs 227

2.1 Complex-Species Graph Encoding

We begin with a formal definition of CRNs and CRN isomorphism. We define
S to be a set of species and C to be the space of complexes, which is any
combination of species that may appear as the reactant or product set in a
reaction. A set C ⊂ C is a set of multisets, where c ∈ C is a pair (A,m) with
A ∈ S and m ∈ N.

Definition 1 (CRN). A chemical reaction network N = (S, C,R) consists of
a set of species S, a set of complexes C ⊂ C, and a set of reactions R ⊂ C × C
with (y, y) /∈ R for any y ∈ C.

Two CRNs are isomorphic when they are identical under species renaming:

Definition 2 (CRN isomorphism). Let N1 and N2 be chemical reaction
networks. N1 is isomorphic with N2, or N1

∼= N2, if there exists a permutation
π over S such that N1π = N2.

Here, we have written the function application N1π in postfix notation. Note that
the reaction rates are not relevant in CRN isomorphism, so are not included in
this definition and are omitted from the remainder of this paper.

Before introducing CS-graphs, we introduce a technical device to more con-
veniently index the elements of a set:

Definition 3 (Indexed set). Let I and S be sets, and f be a bijection I → S.
The set {Si}i∈I � {Si | Si = f(i), i ∈ I} is an indexed set, and I is the indexing
set. We write Si for Si = f(i) with i ∈ I when f is clear from the context.

If N = (S, C,R) is a CRN, we indicate with {ci}i∈I the indexed set of
complexes occurring in N , and with {Aj}j∈J the indexed set of species occurring
in N . For the remainder of this section, the indexing sets I and J always index
respectively the complexes and the species of a CRN; moreover, we assume that
I∩J = ∅ and I, J ⊂ N. We are now ready to define the CS-graph of a bimolecular
CRN:

Definition 4 (Complex-Species graph). Let N be a bimolecular CRN with
indexed sets {ci}i∈I and {Aj}j∈J . The Complex-Species graph �N �I

J is the
quadruple 〈V,E, σ, ρ〉, where:

V = I ∪ J (Vertices)
E = {(j, i) | Aj occurs in ci} (Edges)

∪ {(i1, i2) | ci1 → ci2 occurs in N}

σ(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if ci = ∅
� if ci = Aj

2� if ci = 2Aj

�� if ci = Aj1 + Aj2

(Stoichiometry function)

ρ(j) = Aj (Labelling function)
for i, i1, i2 ∈ I and j, j1, j2 ∈ J .

228 C. Spaccasassi et al.

Fig. 1. Complex-Species graph of a bimolecular CRN. The set I = {0, 1, 2, 3, 4} is the
indexing set for the complexes of the CRN, while J = {5, 6, 7} is the indexing set for
its species. The concrete names of the indexes are unimportant; any disjoint set I and
J can be used. Set I indexes the complexes of a CRN, the stoichiometry function σ
assigns a multiplicity to each index (e.g. σ assigns heterodimer to node 0, homodimer
to node 2 and monomer to node 4). An edge between two nodes in I represents a CRN
reaction. Set J indexes the CRN species, with labelling function ρ assigning them
concrete species names. A dashed edge from node j ∈ J to node i ∈ I means that
species ρ(j) occurs in complex i.

Figure 1 provides a visual representation of a Complex-Species graph. Notice
that it is not possible to distinguish monomers from homodimers using the encod-
ing’s vertices and edges alone; this is accomplished by σ. The indexing set I in the
figure is the same indexing set returned by NAUTY for that digraph. AppendixC
shows an extension to CS-graphs to encode CRNs with higher molecularity.

Two CS-graphs are isomorphic when their underlying graphs are isomorphic
and have the same stoichiometry:

Definition 5 (CS-graph isomorphism). Let �N1�
I1
J1

= 〈V1, E1, σ1, ρ1〉 and
�N2�

I2
J2

= 〈V2, E2, σ2, ρ2〉. Complex-Species graph �N1�
I1
J1

and �N2�
I2
J2

are isomor-
phic, or �N2�

I2
J2

∼= �N2�
I2
J2

, if there exist bijections α : I1 → I2 and β : J1 → J2

such that:

1. V1αβ = V2

2. E1αβ = E2

3. σ1α = σ2

where αβ stands for the function composition of α and β.

As already pointed out, the actual indexing sets used in a CS-graph are
unimportant. As a matter of fact, we can show that CS-graphs of the same CRN
are all isomorphic with each other:

Lemma 1. Let N be a bimolecular CRN. Then �N �I1
J1

∼= �N �I2
J2

holds for any
indexing sets I1, I2, J1, J2.

Proof. The lemma is proved by explicitly constructing bijections α = {(i1, i2)|ci1

= ci2 for i1 ∈ I1, i2 ∈ I2} and β = {(j1, j2) | Aj1 = Aj2 for j1 ∈ J1, j2 ∈ J2} that
satisfy Definition 5. See AppendixB for more details. ��

Enumeration of Non-isomorphic CRNs 229

Having proved this result, and since CRN isomorphism provides a permuta-
tion of species π such that two CRNs become equal, it is easy to show that CRN
isomorphism implies CS-graph isomorphism:

Lemma 2. Let N1 and N2 be bimolecular CRNs. If N1
∼= N2, then �N1�

I1
J1

∼=
�N2�

I2
J2

for any indexing sets I1, I2, J1 and J2.

Proof. By Definition 2, there exists a permutation π over the species of N1 such
that N1π = N2. Notice that by Lemma 1 we can deduce �N1π�I1

J1
∼= �N2�

I2
J2

for any indexing sets I1, I2, J1 and J2. The lemma is proved by taking α =
{(i1, i2) | ci1π = ci2 for i1 ∈ I1, i2 ∈ I2} and β = {(j1, j2) | Aj1π = Aj2 for j1 ∈
J1, j2 ∈ J2}. ��

When two CS-graphs are isomorphic, the indexed sets of complexes and
species provide enough information to reconstruct an isomorphism π for their
original CRNs:

Lemma 3. Let N1 and N2 be bimolecular CRNs with indexing sets respectively
I1, J1 and I2, J2. If �N1�

I1
J1

∼= �N2�
I2
J2

, then N1
∼= N2.

Proof. Let �N1�
I1
J1

= 〈V1, E1, σ1, ρ1〉 and �N2�
I2
J2

= 〈V2, E2, σ2, ρ2〉, such that
�N1�

I1
J1

∼= �N2�
I2
J2

. By hypothesis, �N1�
I1
J1

∼= �N2�
I2
J2

implies the existence of bijec-
tions α and β that satisfy conditions 1 to 3 in Definition 5. The lemma is proved
by taking π = {(Aj1 , Aj2) | j1β = j2} ◦ πI where πI is the identity function over
S. See AppendixB for more details. ��

We can now show that CS-graphs are a faithful encoding of bimolecular
CRNs up to isomorphism:

Theorem 1 (Faithful encoding). Let N1 and N2 be bimolecular CRNs with
indexing sets respectively I1, J1 and I2, J2. Then N1

∼= N2 if and only if �N1�
I1
J1

∼=
�N2�

I2
J2

.

Proof. By Lemmas 2 and 3. ��

2.2 Isomorph-Free Complex-Species Graphs Enumeration

Our non-isomorphic CS-graph enumeration method entails the generation of all
non-isomorphic bimolecular CRNs, by virtue of Theorem1. Our method inputs
are the numbers of complexes L, reactions M and species N of the output CRNs.
CS-graphs are generated through four successive enumeration stages, where each
stage turns a structure generated in the previous stage into a list of more refined
non-isomorphic structures (Fig. 2).

The first stage enumerates all undirected graphs with L nodes and M edges.
Each undirected graph represents the topology of a CRN. The second stage ori-
ents the edges of an undirected graphs in all possible directions, including both
directions at the same time (by replacing an undirected edge with two opposite
directed edges). A directed edge between two nodes represents a reaction between

230 C. Spaccasassi et al.

Fig. 2. Isomorph-free generation of 3-species bimolecular CRNs with 5 complexes and
4 reactions. CRN enumeration comprises four stages. It starts with generating the list
of all non-isomorphic undirected graphs with 5 vertices and 4 edges (A); for each graph
the list of all non-isomorphic directed graphs (B); for each directed graph the list of all
non-isomorphic unassigned CS-graphs (C), and finally for each unassigned CS-graph
the list of all non-isomorphic CRNs (D). The total count of elements enumerated from
a single element in each stage is reported. There are 428,502 non-isomorphic CRNs
against 635,040 isomorphs in total.

two complexes; two opposite edges mean a reversible reaction. For each directed
graph, the third stage assigns all possible stoichiometries σ to the nodes, generat-
ing a list of unassigned CS-graphs, that is CS-graphs without species nodes. The
fourth stage finds all possible assignments for N species nodes to an unassigned
CS-graph, therefore listing non-isomorphic CRNs by Theorem1.

The state-structured enumeration we present (Fig. 2) is based on McKay’s
canonical construction path method [21], whereby a generation of larger struc-
tures is first constructed from a previous generation of smaller non-isomorphic
structures, and then filtered out by some canonical form function f . This func-
tion maps all structures in an isomorphism class to the same structure in that
class, which is called canonical. Only the canonical form is retained from the
generated structures.

For example, let G be a graph of size n. A new graph G′ of size n + 1 can be
obtained by adding a new node to G and a new set of edges between the new
node and any subset of nodes in G. The new graph G′ is discarded unless G′ is in
canonical form, i.e. G′ = f(G′) for a canonical function f . A simple but inefficient
example of f(G′) is to apply all possible node permutations to G′, sort the
resulting graphs by lexicographic order on their edges, and return the least graph
in the sorting. Starting from the empty graph, it is then possible to enumerate all
graphs by iteratively constructing and filtering larger non-isomorphic structures.

2.3 Enumeration Invariants and Implementation Details

Although the generation of classes of larger structures might grow combina-
torially, in practice the judicious use of graph invariants reduces this number
greatly [6,21]. A notable example is the graph isomorphism tool suite by McKay,
based on NAUTY [22]. NAUTY is a fast coinductive algorithm to find a graph’s

Enumeration of Non-isomorphic CRNs 231

Fig. 3. Assignment of three species to an unassigned CS-graph in four steps. To simplify
the visualisation, complex multiplicities have been overlaid over the complex nodes,
where complex and species indices are subscript next to each node in grey. The red
dashed circles indicate the existence of an automorphism, a permutation of nodes that
maps the CS-graph to itself. For example, in step (i) the permutation [0 �→ 1, 1 �→
0, 2 �→ 3, 3 �→ 2, 4 �→ 4], or (01)(23)(4) in permutation cycle notation [31], returns the
same CS-graph. At step (ii) the only automorphism is the identity permutation. The
resulting CS-graph represents the CRN from Fig. 1; the automorphism reveals that
species A and B are symmetric in the CRN. (Color figure online)

canonical labelling and its automorphism group [31]. A graph automorphism is
a permutation of vertices that maps the graph onto itself. The actions of the
automorphism group can generate a graph’s isomorphism class very efficiently.
Moreover, the generators can be used early to avoid generating non-canonical
candidate structures immediately.

Graphs and directed graphs in the first and second stage of Fig. 2 are gen-
erated respectively by geng and directg, two enumeration programs available
in the NAUTY tool suite. The enumeration of unassigned CS-graphs can be
encoded as graph-vertex colouring problems. We use four colours, one per stoi-
chiometry type (naught, monomer, homodimer, heterodimer). The enumeration
of a coloured graph is performed by another NAUTY tool, vcolg. However, not
all graph colourings result in a valid CRN stoichiometry: for example, a 3-species
CRN cannot have 4 monomers, since there are only 3 species available to make a
monomer from. We have thus modified vcolg to enumerate valid stoichiometries
only, by providing an upper bound for the number of nodes with each specific
colour. A valid CRN can have at most one naught complex, n monomers, n
homodimers and

(
n
2

)
heterodimers. The total number of complexes for a given

maximum number of reactants p is given by the sum of the multiset coefficients:

Lp(n) :=
p∑

i=0

((n

i

))
=

p∑

i=0

(
n + i − 1

i

)

=
(

n + p

p

)

(2)

which for bimolecular CRNs with N species is
(
N+2
2

)
.

The last stage is the enumeration of CRNs from an unassigned CS-graph,
for which we have developed a custom algorithm following the canonical con-
struction path method [21]. The structures we augment are partially assigned
CS-graphs, starting from an unassigned one. Larger structures are obtained by
adding a new species node, together with a set of edges that assign the new
species to a subset of the complex nodes in the graph, until all N have been
added and all complexes are valid. We call species assignment the set of com-

232 C. Spaccasassi et al.

plex nodes targeted by the new species; for example, in step (ii) of Fig. 3, {0, 3}
is the species assignment for A.

As pointed out in [20], it is crucial to exploit graph invariants in order to curb
the number of larger structures to test for canonicity. We adopt some of geng’s
invariants in our enumeration method when adding a new species node. In order
to avoid constructing the same graph more than once by adding the same species
assignments in a different order, we impose a lexicographic order on the species
assignments. For example, the choice of species assignment {1, 2} at step (iii) of
Fig. 3 is allowed, because it is greater than the previous assignment {0, 3} at step
(ii); if {1, 2} is chosen first, {0, 3} breaks the lexicographic order and is illegal.
Similarly, the cardinality of the species assignment must be equal or greater
than the previous one. As for vertex colouring, not all species assignments are
valid; for example, the same species cannot be assigned to two different monomer
complexes, or a species to naught. Such assignments are discarded immediately.

After augmenting a CS-graph with a new species, it is tested for canonicity.
The test applies all possible automorphisms α and β to the current CS-graph
G: if G is the least graph of all Gαβ graphs by lexicographic order, then G is in
canonical form, and used to assign more species to it. When the automorphism
group is trivial (the only automorphism is the identity) any species assignment
added in lexicographic order is already canonical.

The fourth stage does not add new complex nodes or edges, therefore the
automorphisms β over complexes are either the same or they decrease after
adding new species assignment, which might introduce asymmetries in the graph.
For example, the species assignments of A in step (ii) of Fig. 3 introduces an
asymmetry that renders the automorphism graph trivial (the only automorphism
is the identity); however adding a species assignment B of the same cardinality
in step (iii) restores the group. For this reason we only recompute a CS-graph’s
automorphism group after increasing the cardinality of its species assignments
(which, as previously pointed out, are only added in increasing order).

An implementation of our method is available online at https://github.com/
CSpaccasassi/genCRN for Windows and Unix systems. Our tool, called genCRN,
implements the third and fourth stage of Fig. 2, and relies on inputs from
geng and directg. genCRN is based on version 2.6 of NAUTY, where geng
only generates graphs with a maximum size of 32 nodes. Our tool has the same
limitation, it can only produce CS-graphs of size |I ∪ J | ≤ 32. Later versions of
NAUTY raise this limit to 64 nodes; we leave the extension of our implementa-
tion to 64 nodes for future work.

3 Results

3.1 Complete Enumeration of Non-isomorphic 2-Species CRNs

We applied our CRN enumeration technique to count how many non-isomorphic
CRNs there exist with specified numbers of species and reactions. When consid-
ering only 2 species, we are able to provide a complete construction, covering all
possible numbers of reactions (Fig. 4). Overall, we find that there are 536,884,871
non-isomorphic CRNs with 2 species.

https://github.com/CSpaccasassi/genCRN
https://github.com/CSpaccasassi/genCRN

Enumeration of Non-isomorphic CRNs 233

5 10 15 20 25 30
Reactions

100

102

104

106

108
C

R
N

s
Non-isomorphic CRNs
Reversible only
Mass-conserving
Conservation Laws
Non-trivial dynamics

Fig. 4. Enumeration of non-isomorphic CRNs with 2 species. All non-isomorphic 2-
species CRNs were enumerated (blue bars), and then filtered according to four criteria
(separately): CRNs with only reversible reactions (red bars), mass-conserving CRNs
(orange bars), CRNs with conservation laws (purple bars) and CRNs with non-trivial
dynamics (green bars). (Color figure online)

The practical utility of non-isomorphic CRN enumeration is that it enables
testing of properties of CRNs against a smaller set. Compared to the naive app-
roach of writing all possible reactions among the N and picking all combinations
of size M , checking only the non-isomorphic subset amounts to a computational
saving of at least N !. We also considered four simple filters of properties over
the 2-species CRNs. Due to the tree structure of the approach (Fig. 2), applying
filters as early as possible is preferable.

The first filter we checked was to restrict the enumeration to CRNs that have
only reversible reactions. To achieve this, we modified our approach (Fig. 2) to
skip part B (enumeration of directed graphs from undirected graphs), and imme-
diately constructed undirected unassigned CS-graphs. Accordingly, each edge
can be viewed as a reversible reaction. This enabled us to rapidly compute all
reversible-only 2-species CRNs, of which there were exponentially fewer exam-
ples, yet following a similar Gaussian-like distribution over M (Fig. 4).

The second filter we applied was to identify mass-conserving CRNs, using the
defining feature that there exists a vector v ∈ R

N
>0 (all entries strictly positive)

such that v.Γk = 0 for all k, where Γ is the stoichiometry matrix. For example,
the CRN A → B is mass-conserving. It’s stoichiometry matrix is Γ = [−1, 1]�,
and so v = [1, 1] can satisfy the property. To test for the existence of such a v
in general, we used a Fourier-Motzkin algorithm to identify invariants v ∈ R

N

[10]. As such invariants may include zero entries, we do an additional check to
see whether all species participate in an invariant. E.g. strictly positive v can be
constructed from the set of invariants. Rather than applying the filter directly to
the complete set of non-isomorphic CRNs, we can obtain a computational saving
by first removing the naught complex ∅ from C, since any reaction involving ∅
would not be mass-conserving. In total, there were only 138 mass-conserving
CRNs with 2 species, the largest of which had 8 reactions.

234 C. Spaccasassi et al.

A → B A + B → 2A 2A → A + B 2A → 2B
B → A A + B → 2B 2B → A + B 2B → 2A

This CRN simply includes all reactions that preserve the total molecule count.
However, they are not the only reactions that are mass-conserving on their own.
For example, the CRN 2A → B is also mass-conserving, though now B has equiv-
alent mass to 2 copies of A (e.g. this is simply homo-dimerisation). Accordingly,
the counting of mass-conserving CRNs is not trivial.

We next identified CRNs for which there exists any conservation law, e.g.
there exists a vector v such that v.Γk = 0 for all k, but in contrast to strictly
mass-conserving CRNs, now v can include zero entries, as not all species need
to participate in a conservation law for one to exist. Single-reaction examples
include A → B (A + B is conserved), A → A + B (A is conserved) and A → 2B
(2A + B is conserved). As before, we used the Fourier-Motzkin algorithm, but
this time simply as a filter applied to the same enumeration approach for the
full non-isomorphic set. We found 330 such CRNs (Fig. 4). As for the mass-
conserving CRNs, there were no CRNs with more than 8 reactions, though this
time an additional CRN was found:

∅ → B ∅ → 2B B → 2B A → A + B
B → ∅ 2B → ∅ 2B → B A + B → A

Notably, this CRN includes ∅ complexes, but these only appear in reactions
not interacting with the species A. Instead, the species A only participates by
catalysing the production and degradation of B, and is not produced or con-
sumed in these reactions. As such, A is conserved in this CRN.

Finally, we considered “dynamically non-trivial” CRNs [3], which can give
rise to positive equilibria, periodic orbits, and other “interesting” properties.
Dynamically trivial CRNs, in contrast, have no limit sets. e.g. trajectories grow
unbounded in phase space. To enumerate dynamically non-trivial CRNs, we use
the definition in [3], that a CRN N is dynamically trivial if there exists a vector
q > 0 in ImΓ�. [14] Accordingly, we find the reduced row echelon form of Γ and
ask whether any row contains only non-negative entries (though not all zero).
As done in [3], we take the set of non-isomorphic CRNs, and then check each
CRN. Applying this filter to the 2-species CRNs reveals a considerably smaller
number of CRNs with non-trivial dynamics than the full set, when there are few
reactions (Fig. 4). As the number of reactions increases, the fraction of CRNs
that are dynamically non-trivial tends to 1.

3.2 Enumeration of Non-isomorphic CRNs with More Than 2
Species

Owing to the combinatorial nature of CRNs, simply extending to 3 species leads
to an exponential increase in the number of possible CRNs. Using our enu-
meration method, we found that there are 1,244,363,180 bimolecular 3-species
CRNs with M = 7 reactions, more than twice the number of all 2-species
CRNs (Fig. 5A). Adding another reaction (M = 8) increases by a factor of
10 (12,916,870,803) and for M = 9 another factor of 10 (117,703,409,335). We

Enumeration of Non-isomorphic CRNs 235

enumerated and counted non-isomorphic CRNs with up to 10 species and with a
number of reactions that could be evaluated within approximately 2 days of com-
putation. In doing so, we have extended the known number of non-isomorphic
CRNs beyond what was previously evaluated in [3], and have tabulated these val-
ues in AppendixD (Table 1). We have also evaluated non-isomorphic reversible
CRNs with up to 8 species (Fig. 10 and Table 2) and non-isomorphic CRNs with
non-trivial dynamics (Fig. 11 and Table 3).

2 4 6 8 10
Reactions

0
100

102

104

106

108

1010

1012

C
R

N
s

2 4 6 8 10
Reactions

100

105

E
xe

cu
tio

n
tim

e
(s

ec
)

second

minute

hour

day

10
9
8
7
6
5
4
3
2
1

Species

A B

Fig. 5. Counting non-isomorphic CRNs. A. The total number of non-isomorphic CRNs
is quantified for up to 10 species and up to 10 reactions. B. Execution time is quantified
as if running on a single-core computer, by summing times over a parallel execution
on an Intel Xeon Platinum 8168 2.70 GHz machine with 72 cores.

While there is no reason our enumeration method cannot handle more reac-
tions, additional combinatorial complexity leads to longer run times (Figs. 5B,
10B and 11B). We have quantified the execution times for each combination of
species and reactions (N,M) by reporting the values as if the calculation was
run sequentially on a single-core machine. In practice, we perform calculations
in parallel, enumerating each digraph independently and collecting results.

McKay’s labelling algorithm is known to have exponential complexity in the
worst-case [25] but is well-behaved in practice. Similarly, there is no precise
complexity for the canonical construction path method, although it depends
on the size of the graph’s automorphism groups [21]. In line with this, we found
considerable differences in the execution times of each digraph (Fig. 6). The most
adversarial digraphs are those which contain the highest number of disconnected
sub-digraphs. Examples of such digraphs are those with 2n nodes and n edges,
resulting in n sub-digraphs. The topology of such digraphs poses little constraints
on the topology of the CRNs, and therefore the number of possible CRNs arising
from such digraphs is combinatorially larger.

3.3 The Non-isomorphic CRNs Fraction

To gain a more quantitative understanding of the frequency of isomorphisms
among sets of CRNs, we computed an isomorph ratio, defined simply as the
number of non-isomorphic CRNs found, divided by the total number T of CRNs,
for a given number of species and reactions. Using

236 C. Spaccasassi et al.

0 50 100 150 200 250 300 350 400
Digraph ID

10-2

100

102

104

E
xe

cu
tio

n
tim

e
(s

ec
)

second

minute

hour

day

100 102 104 106 108 1010

Number of non-isomorphic CRNs

4
5
6
7
8
9
10

Species

A B

Fig. 6. Execution times vary considerably with input digraph. The execution times of
enumerating non-isomorphic CRNs are shown for each of the 365 digraphs of CRNs
with 5 reactions. A. The digraphs are sorted by the execution times corresponding to
7 species, which illustrates that the variation in execution time is strongly influenced
by digraph structure. B. Execution times are compared against the total number of
non-isomorphic CRNs found.

T =
(

Lp(N)(Lp(N) − 1)
M

)

−
s−1∑

k=1

(
Lp(k)(Lp(k) − 1)

M

)

, (3)

where Lp(N) =
(
N+p

p

)
is the number of complex nodes in the CS-graph when

there are N species, we computed the isomorph ratios for bimolecular CRNs
(p = 2) with up to 5 species and 6 reactions (Fig. 7). By considering species
relabellings alone, one would naively expect a factor N ! saving when considering
isomorphisms. As there are

(
N+2
2

)
possible complexes for N species (Eq. 2), there

are 6 complexes for 2 species: {∅, A,B, 2A, 2B,A + B}. As there are L(L − 1)
possible (directed) edges connecting L nodes, there are 30 possible reactions
for 2 species. Without considering CRN isomorphisms, this would result in∑30

r=1

(
30
r

)
= 1, 073, 741, 823 possible CRNs. Whereas, we found that there are

536,884,871 non-isomorphic CRNs with 2 species, which is just more than half of
the concretely labelled set. There are N ! permutations of N species, and so for
most non-isomorphic CRNs, the N ! species permutations leads to an N ! different
CRNs. However, some CRNs are species-symmetric, for example A � B, which
means that a species relabelling can sometimes return the exact same CRN.
Because such symmetries are automatically resolved in our calculation of the
number of non-isomorphic CRNs, but not incorporated into Eq. 3, the isomorph
ratio can be less than 1/N ! (Fig. 7).

3.4 Checking Properties of CRNs with External Tools

As mentioned above, a practical benefit of using non-isomorphic CRN enumer-
ation is that filters can be applied to a stream of CRNs, producing subsets
of CRNs satisfying a property of interest. Such a property need not be imple-
mented in the same code base as the CRN enumerator, since results can be piped

Enumeration of Non-isomorphic CRNs 237

0 10 20 30
Reactions

0

0.2

0.4

0.6

0.8

1
Is

om
or

ph
 ra

tio
2 species

0 2 4 6 8
Reactions

0

0.05

0.1

0.15

3 species

0 2 4 6
Reactions

0

0.01

0.02

0.03

0.04
4 species

0 2 4 6
Reactions

0

0.002

0.004

0.006

0.008

0.01
5 species

Fig. 7. The isomorph ratio. The ratio of non-isomorphic CRNs to the expected total
number of CRNs was computed for different numbers of species and reactions. The
expected total number of CRNs was calculated using Eq. 3. The dashed black line
indicates the value of 1/N !, the reciprocal of the number of species relabellings in a
CRN with N species.

into external tools. To demonstrate this, we considered the existence of forward
bisimulations of CRNs [7], using the ERODE tool [8] (Fig. 8). The existence of
a forward bisimulation means that a subset of the species can be lumped into
a single species, the result being a different CRN with fewer species but with
the same behaviour. As such, the analysis of a CRN for which there exists a for-
ward bisimulation can be considered to have been covered by equivalent analysis
of CRNs with fewer species. The set of CRNs which are connected, have non-
trivial dynamics and are irreducible via forward bisimulation was determined in
less than 5 min, despite there being as many as 1011 CRNs initially covered by
our encoding.

104,520,373,335

8,386,321

264
(Non-trivial only)

(Connected only)
7,247,276

49248
genCRN

�

genCRN -c -t

Connected
Non-trivial dynamics

ERODE

Forward
bisimulation

290.66 s 304.056 s
(Filter: 13.4 s)

2.2 s

Fig. 8. Identifying non-isomorphic non-trivial connected CRNs with no forward bisim-
ulation. CRNs with 7 species and 4 reactions were enumerated using genCRN, both in
the presence and absence of filters for connectedness (-c) and non-trivial dynamics
(-t). The resultant 251 CRNs were processed by ERODE, producing 49 CRNs for
which no forward bisimulation exists.

238 C. Spaccasassi et al.

4 Discussion

In this paper we have presented a method for the fast enumeration of non-
isomorphic Chemical Reaction Networks, which enables complete statements on
properties of classes of CRNs. The method is based on a novel encoding of CRNs
into Complex-Species graphs, which are enumerated using established techniques
such as the canonical construction path method [6,21], and implemented on top
of the NAUTY tool suite [5,22]. We have shown that classes of non-isomorphic
CRNs can be further specialised into classes satisfying certain properties of inter-
est, such as mass convervation, non-trivial dynamics, reversible networks and
non-lumpability under Forward Bisimulation.

We are the first, to the best of our knowledge, to report that there are
precisely 535,852,102 bimolecular 2-species CRNs in total; a surprising number
for just two species. The method is highly efficient, and can calculate this count
in ≈27 min. It is also highly parallelisable; the same count on a 72 core machine
takes ≈ 38seconds. Currently our implementation enumerates unassigned CS-
graphs and CRNs in a single step. Deeper parallelisation could be achieved by
splitting this step into two, for handling more heavily combinatorial digraphs.
We have extended previously known counts for CRNs in excess of 6 species or
6 reactions (see Appendix). Our counts and measurements are reproducible via
genCRN, which is available online; comparison with other approaches [3,13] is
difficult, because we have not found accompanying tools or time measurements.

Compared to other encodings, Complex-Species graphs are encoded in terms
of digraphs and vertex colouring, and as such it has been easier to enumer-
ate them with existing techniques and tools. For comparison, Species-Reaction
graphs are expressed using multidigraphs or digraphs with edge labels, in order to
express the multiplicity of a species in a reaction. For example, reaction 2A → B
is encoded either by two edges from a species node A to some reaction node R or
by an edge with the label 2, to capture the fact that 2A is a heterodimer. NAUTY
does not support multidigraphs or labelled digraphs natively [5], so CRN encod-
ings relying on these lead to the production of isomorphs, which must be stored
and filtered out in a subsequent step [3]. Interesting graph-theoretic results exist
for complex graphs [15,16] and various directed or undirected bipartite graphs
[12,23,24]; once the CRNs have been enumerated (and filtered) as CS-graphs,
they can be translated into different representations for further analysis.

In future, it would be interesting to explore more advanced properties of
CRNs, such as lumpability, multistability and limit cycles. Our tool allows testing
sets of CRNs for overlapping properties, such as CRNs with no conservation laws
and lumpable under Forward Bisimulation, or mass-conserving CRNs which are
not lumpable under Forward Bisimulation, such as 2A � B. Moreover, it would
be interesting to verify properties on the unassigned CS-graphs; we conjecture
that trivial dynamics occur when any species, independently from the others, is
only assigned to multiplicity monotonic paths in an unassigned CS-graph, that
is non-cyclic paths where the multiplicity of that species is ever increasing.

Our approach could be beneficial to the study of non-mass-action reaction
systems such as Gene Regulatory Networks [18], or reaction-diffusion systems

Enumeration of Non-isomorphic CRNs 239

[19]. For example, special species roles as fast diffuser, slow diffuser and other
could be encoded as ulterior nodes in a CS-graph, connected to species nodes
and used as a further enumeration step. Broader applications in computer sci-
ence might also be possible, to enumerate programs against a set of primitives,
unique up to α-conversion. Species nodes might represent variables in the lambda
calculus, or channels names in the π-calculus or CCS.

Acknowledgements. We would like to thank Brendan McKay, who extended
NAUTY’s vertex-colouring algorithm to directed graphs on our request, without which
this work would have not been possible. We would also like to thank Andrea Vandin
and Mirco Tribastone for providing a command-line version of ERODE and for useful
discussions. Finally, we thank an anonymous reviewer for helping us to identify an error
in the algorithm used for filtering dynamically trivial networks.

A Definitions

This section introduces definitions for automorphisms, orbits and the autor-
mophism group for graphs, following [31].

Definition 6 (Permutation). A permutation of a set S is a total function
from S to itself.

Definition 7 (Cyclic permutation). A permutation π of the form:
(

x π(x) π2(x) · · · πp−2(x) πp−1(x)
π(x) π2(x) π3(x) · · · πp−1(x) x

)

is said to be cyclic permutation of period p.

Definition 8 (Disjoint cycle representation). A disjoint cycle representa-
tion of a permutation π on a set S is a composition of cyclic permutations on
subsets of S that constitute a partition of S, one cyclic permutation for each
subset in the partition.

Definition 9 (Group). An algebraic system <U, �> is a called a group if it
has the following properties:

1. the operation � is associative,
2. there is an identity element,
3. every element of U has an inverse.

Definition 10 (Permutation group). A closed non-empty collection P of
permutations on a set Y of objects that forms a group under the operation of com-
position is called a permutation group. The combined structure may be denoted
V = [P : V]. It is often denoted P when the set of Y objects is understood from
context.

240 C. Spaccasassi et al.

Definition 11 (Orbit). Let P = [P : Y] be a permutation group, and let y ∈ Y .
The orbit of the object y under the action of P is the set {π(y) | π ∈ P}.
Corollary 1. Let P = [P : Y] be a permutation group. Then being coorbital is
an equivalence relation

Proof. Identity: by the identity permutation. Commutativity: because each π is
invertible. Transitivity: by function composition ◦.

B Proofs

Lemma 1. Let N be a bimolecular CRN. Then �N �I1
J1

∼= �N �I2
J2

holds for any
indexing sets I1, I2, J1, J2.

Proof. The lemma can be proved by explicitly constructing bijections α and
β required by Definition 5. Recall that we indicate with {ci}i∈I and {Aj}j∈J

respectively the indexed set of the complexes and of the species in N .
Let α = {(i1, i2) | ci1 = ci2 for i1 ∈ I1, i2 ∈ I2} and β = {(j1, j2) | Aj1 =

Aj2 for j1 ∈ J1, j2 ∈ J2}. These functions are well-defined because the indexing
sets all target the same CRN N . It is also easy to show that they are bijections.

The lemma is proved by verifying that α and β satisfy Condition 1 to 3 of
Definition 5:

1. V1αβ = V2 because α and β are bijections over the indexed sets;
2. E1αβ = {(j1, i1) | Aj1 ∈ci1}αβ ∪ {(i1, i′1) | ci1 → ci′

1
∈ R}αβ by Definition 4

= {(j2, i2) | Aj2 ∈ ci2} ∪ {(i2, i′2) | ci2 → ci′
2

∈ R} by def. of α, β.
= E2

which proves the case.
3. Let i1 be such that σ1(i1) = ∅. By Definition 4, ci1 = ∅, and since α(i1) = i2

implies that ci1 = ci2 , then c2 = ∅ as well. Therefore σ(i2) = ∅ holds by
Definition 4, which implies σ(i1)α = σ2(i2). The proof for the remaining cases
(monomers, homodimers and heterodimers) is similar. ��

Lemma 2. Let N1 and N2 be bimolecular CRNs. If N1
∼= N2, then �N1�

I1
J1

∼=
�N2�

I2
J2

for any indexing sets I1, I2, J1 and J2.

Proof. By definition of CRN isomorphism (Definition 2), there exists a permu-
tation π over the species of N1 such that N1π = N2. Notice that by Lemma 1
we can deduce �N1π�I1

J1
∼= �N2�

I2
J2

for any indexing sets I1, I2, J1 and J2. The
proof of this lemma is similar to Lemma 1, by defining α = {(i1, i2) | ci1π =
ci2 for i1 ∈ I1, i2 ∈ I2} and β = {(j1, j2) | Aj1π = Aj2 for j1 ∈ J1, j2 ∈ J2}. ��
Lemma 3. Let N1 and N2 be bimolecular CRNs with indexing sets respectively
I1, J1 and I2, J2. If �N1�

I1
J1

∼= �N2�
I2
J2

, then N1
∼= N2.

Enumeration of Non-isomorphic CRNs 241

Proof. Let �N1�
I1
J1

= 〈V1, E1, σ1, ρ1〉 and �N2�
I2
J2

= 〈V2, E2, σ2, ρ2〉, such that
�N1�

I1
J1

∼= �N2�
I2
J2

. By hypothesis, �N1�
I1
J1

∼= �N2�
I2
J2

implies the existence of bijec-
tions α and β that satisfy conditions 1 to 3 in Definition 5. Let us define the
following permutation of S:

π = {(Aj1 , Aj2) | j1β = j2} ◦ πI

where πI is the identity function over S. Since β and πI are bijections, then π is
also a bijection; since its domain and range are S, π is a well-defined permutation.

Let ci1 → ci′
1

be a reaction in N1. By Definition 4 E1 contains the edge
(i1, i′1). Since �N1�

I1
J1

and �N1�
I2
J2

are isomorphic by hypothesis, it follows by
definition that E2 = E1αβ, therefore the edge (i1, i′1)α = (i2, i′2) also exists in
E2 for i2, i

′
2 ∈ I2. Because of this, the reaction ci2 → ci′

2
exists in N2; moreover,

by Condition 3 of Definition 5, the complexes have the same stoichiometry.
Similarly, let (j1, i1) be an edge in E1 such that Aj1 occurs in ci1 . By Con-

dition 2 of Definition 5, E2 contains the edge (j1, i1)αβ = (j1α, i1β) = (i2, j2),
which means that Aj2 occurs in ci2 . By definition of π, Aj1π = Aj1β = Aj2 ;
since ci1 and ci2 also have the same multiplicity by Condition 3 of Definition 5,
this implies that ci1π = ci2 . A similar line of reasoning shows that ci′

1
π = ci′

2
.

Therefore (ci1 → ci′
1
)π = ci2 → ci′

2
. Generalising this result to all reactions in

N1, we obtain N1π = N2, which concludes the proof. ��
Lemma 4. The number of p-CRNs (reactions have up to p reactants/products)
with up to N species grows as O(2N2p

).

Proof. Following Eq. 3, the total number of p-CRNs with up to N and specifically
M reactions is given by

(
Lp(N)(Lp(N)−1)

M

)
. Given that

L(N)(L(N) − 1) =
(N + p) . . . (N + 1)

p!
.
(N + p) . . . (N + 1) − p!

p!
= O(N2p),

we can use the fact that
∑k

i=1

(
n
k

)
= 2n to characterise the total number of

bimolecular CRNs as O(2N2p
). ��

C Complex-Multiplicity-Species Graph

Section 2.1 has shown how to encode bimolecular CRNs as vertex-coloured
digraphs. It is natural to wonder whether this encoding extends to more than
bimolecularity. Unfortunately CS-graph cannot encode higher molecularities
than 2, however we propose in this section a more general encoding of CRNs
called the Complex-Multiplicity-Species graph (or CMS graph).

We begin by showing that CS-graphs cannot encode trimolecular reactions.
Consider in fact the reaction 2A+B → A+2B. If we added a new color “2�+�”
and connect two node species A and B to it, there would be no way to tell which
of the two species is actually the homodimer and which one is the monomer.

242 C. Spaccasassi et al.

A

B

2
3

1

2
3

1

0

2A+B

A+2B

0

3A

Fig. 9. Complex-Multiplicity-Species graph encoding of a CRN.

To overcome this issue, we propose Complex-Multiplicity-Species graphs,
which extend CS-graphs with multiplicity nodes, that is distinct coloured nodes
that point out the multiplicity of a species in a reaction. If m is the molecularity
of interest, then there are m + 1 kinds of multiplicity nodes: naught, �, 2�, 3�
and so on. Each species node is connected to m multiplicity nodes, signifying for
example A, 2A, 3A etc. Naught is a separate multiplicity node that cannot be
connected to any species. In turn, multiplicity nodes are connected to complex
nodes to represent the original CRN’s reaction. Figure 9 show an example of a
CMS graph; notice that no confusion is possible between complexes 2A+B and
A + 2B.

We believe that CMS graphs are a general encoding of CRNs with any molec-
ularity, but we leave a formal definition and proofs for future work.

D Counts of Non-isomorphic CRNs

In this appendix, we tabulate the numbers of non-isomorphic CRNs found using
genCRN. The tables can be compared against values reported at https://reaction-
networks.net/networks/, at the time of writing, which were evaluated using the
method in [3]. In each case, we report values for genuine CRNs, those which use
all N species.

D.1 No Filters

Here, we consider the total number of non-isomorphic CRNs for N species and
M reactions. The results are graphically depicted in Fig. 5, but tabulated below
(Table 1).

https://reaction-networks.net/networks/
https://reaction-networks.net/networks/

Enumeration of Non-isomorphic CRNs 243

Table 1. Genuine non-isomorphic CRNs. The number of non-isomorphic CRNs is
shown for different numbers of species and reactions. Coloured in blue are those counts
not available at https://reaction-networks.net/networks/ at time of writing.

Reactions
Species 1 2 3 4 5 6 7

1 6 15 20 15 6 1 0
2 10 210 2,024 13,740 71,338 297,114 1,018,264
3 5 495 17,890 414,015 7,262,666 103,511,272 1,244,363,180
4 1 451 47,323 2,900,934 128,328,834 4,518,901,463 133,379,120,523
5 0 204 55,682 7,894,798 763,695,711 56,929,248,832
6 0 54 35,678 10,704,289 2,069,783,947
7 0 8 13,964 8,386,321 3,041,467,242
8 0 1 3,594 4,182,295 2,715,774,734
9 0 0 639 1,417,784 1,595,551,325
10 0 0 83 618,885 653,346,685

D.2 Reversible CRNs

To generate reversible CRNs, we generate undirected graphs of a suitable size
and feed these into genCRNin the same way as for general CRNs with irreversible
reactions. Reported below are counts for M reversible reactions. As such, the
CRNs found have 2M unidirectional reactions.

1 2 3 4 5 6 7 8
Reactions

0
100

102

104

106

108

1010

C
R

N
s

1 2 3 4 5 6 7 8
Reactions

100

105

E
xe

cu
tio

n
tim

e
(s

ec
)

second

minute

hour

day

10
9
8
7
6
5
4
3
2
1

Species

A B

Fig. 10. Counts and execution times for enumeration of genuine non-isomorphic
reversible CRNs.

https://reaction-networks.net/networks/

244 C. Spaccasassi et al.

Table 2. Genuine non-isomorphic reversible CRNs. The number of non-isomorphic
CRNs with only reversible reactions is shown for different numbers of species and
reactions. Coloured entries correspond to comparisons with the counts available at
https://reaction-networks.net/networks/ at time of writing. Blue indicates values not
available, and red indicates values that differ.

Reactions
Species 1 2 3 4 5 6 7 8

1 3 6 7 4 4 1 1 0
2 6 60 296 989 2,516 4,997 8,241 11,271
3 3 138 4,788 26,988 230,595 1,589,808 9,161,056 45,107,712
4 1 134 6,354 187,005 4,048,219 69,982,180 1,011,965,511
5 0 65 7,677 513,036 24,186,053 888,323,405
6 0 21 5,178 709,212 66,152,034 4,674,311,477
7 0 4 2,188 572,058 98,576,689
8 0 1 648 298,030 89,754,652

D.3 Non-trivial Dynamics

As described in the main text, one can test whether a CRN has non-trivial
dynamics. To apply this filter to the enumerated non-isomorphic CRNs, one can
use the -t flag for genCRN.

1 2 3 4 5 6 7 8
Reactions

0
100

102

104

106

108

1010

C
R

N
s

1 2 3 4 5 6 7 8
Reactions

100

105

E
xe

cu
tio

n
tim

e
(s

ec
)

second

minute

hour

day

10
9
8
7
6
5
4
3
2
1

Species

A B

Fig. 11. Counts and execution times for enumeration of genuine non-isomorphic CRNs
with non-trivial dynamics.

We found that our counts differ with those reported at https://reaction-
networks.net/networks/ (using the method in [3]) for CRNs with at least 4
species and 4 reactions (Table 3). In each of the 5 counts identified as dif-
ferent, the values we report are lower than those reported previously, though
within 1.5% relative error. By analysing the sets of CRNs produced in the 6
species and 4 reactions class, we have determined that we incorrectly classify at
least one CRN as trivial, and tracked this to numerical discrepancies in our use

https://reaction-networks.net/networks/
https://reaction-networks.net/networks/
https://reaction-networks.net/networks/

Enumeration of Non-isomorphic CRNs 245

Table 3. Genuine non-isomorphic CRNs with non-trivial dynamics. The number of
non-isomorphic CRNs with non-trivial dynamics is shown for different numbers of
species and reactions. Coloured entries correspond to comparisons with the counts
available at https://reaction-networks.net/networks/ at time of writing. Blue indicates
values not available, and red indicates values that differ.

Reactions
Species 1 2 3 4 5 6 7 8

1 0 9 18 15 6 1 0 0
2 0 19 304 5,016 41,500 221,728 871,330 2,700,277
3 0 8 464 25,272 1,125,465 30,806,874 563,453,020 7,675,100,687
4 0 2 223 27,925 3,276,425 322,473,604
5 0 0 41 12,310 2,805,266
6 0 0 5 2,604 1,114,937
7 0 0 0 264 237,064
8 0 0 0 17 28,163
9 0 0 0 0 1,795
10 0 0 0 0 60

of Fourier-Motzkin elimination. Further work would be required to refine the
numerical procedure used here, in order to improve confidence in our counts of
dynamically non-trivial and non-isomorphic CRNs. For instance, implementing
Fourier-Motzkin elimination with explicit rational numbers (one integer variable
each for the numerator and denominator), could avoid the emergence of values
close to zero.

References

1. Angeli, D.: A tutorial on chemical reaction network dynamics. Eur. J. Control
15(3–4), 398–406 (2009)

2. Angeli, D., De Leenheer, P., Sontag, E.: A Petri Net approach to persistence anal-
ysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia, G.,
Niculescu, S.I. (eds.) Biology and Control Theory: Current Challenges, pp. 181–
216. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71988-5 9

3. Banaji, M.: Counting chemical reaction networks with NAUTY. arXiv e-prints
arXiv:1705.10820, May 2017

4. Bayramov, S.K.: New theoretical schemes of the simplest chemical oscillators.
Biochem. (Mosc.) 70(12), 1377–1384 (2005)

5. Brendan, D., McKay, A.P.: Nauty and Traces User’s Guide (2013)
6. Brinkmann, G.: Isomorphism rejection in structure generation programs. DIMACS

Ser. Discret. Math. Theor. Comput. Sci. 51(3), 25–38 (2000)
7. Cardelli, L., Tribastone, M., Vandin, A., Tschaikowski, M.: Forward and backward

bisimulations for chemical reaction networks. In: CONCUR 2015 (2015)
8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the

evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

https://reaction-networks.net/networks/
https://doi.org/10.1007/978-3-540-71988-5_9
http://arxiv.org/abs/1705.10820
https://doi.org/10.1007/978-3-662-54580-5_19

246 C. Spaccasassi et al.

9. Chen, Y.J., et al.: Programmable chemical controllers made from DNA. Nat. Nan-
otechnol. 8(10), 755 (2013)

10. Colom, J.M., Silva, M.: Convex geometry and semiflows in P/T nets. A compar-
ative study of algorithms for computation of minimal p-semiflows. In: Rozenberg,
G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 79–112. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 22

11. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-
works: I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)

12. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-
works: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338
(2006)

13. Deckard, A.C., Bergmann, F.T., Sauro, H.M.: Enumeration and Online Library of
Mass-Action Reaction Networks. arXiv e-prints arXiv:0901.3067, January 2009

14. Farkas, J.: Uber die theorie der einfachen ungeichungen. J. Reine Angew. Math.
124, 1–24 (1902)

15. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactors-I. The deficiency zero and deficiency one theorems. Chem. Eng.
Sci. 42(10), 2229–2268 (1987)

16. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactors-II. multiple steady states for networks of deficiency one. Chem.
Eng. Sci. 43(1), 1–25 (1988)

17. Hucka, M., et al.: The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

18. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks.
Nat. Rev. Mol. Cell Biol. 9(10), 770 (2008)

19. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding
biological pattern formation. Science 329(5999), 1616–1620 (2010)

20. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324
(1998)

21. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324
(1998)

22. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. CoRR abs/1301.1493
(2013)

23. Mincheva, M., Roussel, M.R.: A graph-theoretic method for detecting potential
turing bifurcations. J. Chem. Phys. 125(20), 204102 (2006)

24. Mincheva, M., Roussel, M.R.: Graph-theoretic methods for the analysis of chemical
and biochemical networks. I. Multistability and oscillations in ordinary differential
equation models. J. Math. Biol. 55(1), 61–86 (2007)

25. Miyazaki, T.: The complixity of McKay’s canonical labeling algorithm. In: Groups
and Computation, Proceedings of a DIMACS Workshop, New Brunswick, New
Jersey, USA, 7–10 June 1995, pp. 239–256 (1995)

26. Murphy, N., Petersen, R., Phillips, A., Yordanov, B., Dalchau, N.: Synthesizing
and tuning stochastic chemical reaction networks with specified behaviours. J. R.
Soc. Interface 15(145), 20180283 (2018)

27. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET
Syst. Biol. 5(4), 252–260 (2011)

28. Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering
of living cells. J. R. Soc. Interface 6(suppl–4), S437–S450 (2009)

https://doi.org/10.1007/3-540-53863-1_22
http://arxiv.org/abs/0901.3067

Enumeration of Non-isomorphic CRNs 247

29. Pólya, G., Read, R.: Combinatorial Enumeration of Groups, Graphs, and Chemi-
cal Compounds. Springer, New York (1987). https://doi.org/10.1007/978-1-4612-
4664-0

30. Read, R.C., Corneil, D.G.: The graph isomorphism disease. J. Graph Theory 1(4),
339–363 (1977)

31. Rosen, K.H.: Handbook of Discrete and Combinatorial Mathematics, 2nd edn.
Chapman & Hall/CRC, Boca Raton (2010)

32. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. Science 327(5971), 1389–1391 (2010)

33. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

34. Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic
acid dynamical systems. Science 358(eaal2052), 2052 (2017)

35. Wilhelm, T.: The smallest chemical reaction system with bistability. BMC Syst.
Biol. 3(1), 90 (2009)

https://doi.org/10.1007/978-1-4612-4664-0
https://doi.org/10.1007/978-1-4612-4664-0

A Large-Scale Assessment of Exact Model
Reduction in the BioModels Repository

Isabel Cristina Pérez-Verona1(B), Mirco Tribastone1, and Andrea Vandin2

1 IMT School for Advanced Studies Lucca, Lucca, Italy
isabel.perez@imtlucca.it

2 DTU Technical University of Denmark, Lyngby, Denmark

Abstract. Chemical reaction networks are a popular formalism for
modeling biological processes which supports both a deterministic and
a stochastic interpretation based on ordinary differential equations and
continuous-time Markov chains, respectively. In most cases, these mod-
els do not enjoy analytical solution, thus typically requiring expensive
computational methods based on numerical solvers or stochastic sim-
ulations. Exact model reduction techniques can be used as an aid to
lower the analysis cost by providing reduced networks that preserve the
dynamics of interest to the modeler. We hereby consider a family of tech-
niques for both deterministic and stochastic networks which are based
on equivalence relations over the species in the network, leading to a
coarse graining which provides the exact aggregate time-course evolution
for each equivalence class. We present a large-scale empirical assessment
on the BioModels repository by measuring their compression capabil-
ity over 667 models. Through a number of selected case studies, we also
show their ability in yielding physically interpretable reductions that can
reveal dynamical patterns of the bio-molecular processes under consid-
eration.

Keywords: Model reduction · Biological systems ·
Equivalence relations

1 Introduction

Computational models in systems biology combine biochemical and physiologi-
cal knowledge to inform highly detailed mechanistic models of biological net-
works such as signaling pathways, protein-protein interaction networks, and
genetic cascades. Mathematical models which equip such interaction networks
with kinetic information generally lead to a dynamical-system representation
in terms of a formal chemical reaction network (CRN), with two main inter-
pretations based on ordinary differential equations (ODEs) and continuous-time
Markov chains (CTMCs), respectively. In either case the model tracks the time-
course evolution of all biochemical species in the network. In the ODE inter-
pretation each species is associated with a variable of a system of (typically
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 248–265, 2019.
https://doi.org/10.1007/978-3-030-31304-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_13

A Large-Scale Assessment of Exact Model Reduction in BioModels 249

nonlinear) ODEs, which are analyzed from an initial condition that represents
the initial concentration of each species [51]. In the CTMC interpretation [27],
species are tracked discretely and each state is a vector of molecular counts, one
component for each species. It is well known that these two representations can
be formally related to each other under appropriate conditions, with the ODEs
being the thermodynamical limit when the number of molecules in the CRN is
large enough [33].

Often it is useful to consider both interpretations—one would take the CTMC
semantics as the ground-truth representation and the ODE as an approximation
that estimates the first-order moments. Unfortunately, in both cases the analysis
can be expensive due to the lack of analytical solutions in general. Indeed, the
modeler is typically left with computational approaches such as the numerical
integration of ODEs (e.g., [1]) or stochastic simulation [27]. This is a major moti-
vating issue for several lines of research aiming at easing the computational cost
of the analysis, including efficient simulation methods (e.g., [26]), approximation
methods for stochastic chemical kinetics (e.g., [44]), and simplification techniques
for multi-scale biochemical CRNs (e.g., [43]) and rule-based models [23–25].

A complementary approach that can be seen as a generic pre-analysis step
consists in the use of an exact model reduction algorithm which, given an input
CRN, produces a smaller CRN (i.e., consisting of fewer species and reactions)
that preserves the output dynamics of interest to the modeler (e.g., [38,49]).
This would lead to a coarse-grained CRN which still allows the full observation
of the time evolution of some original species (e.g., the phosphorylated forms
of downstream molecular complexes in a signaling pathway) while collapsing
the behavior of other species into macro-variables. Such an approach may bring
about two main advantages. First, being a CRN-to-CRN transformation, the
coarse-grained CRN can still be subjected to other techniques to reduce the com-
plexity of the analysis, including approximate model reduction methods. Second,
the very collapse of several species into one may carry a physical interpretation
that increases our understanding of the biology. The latter point appears to be
of scientific relevance regardless of the CRN reduction ratio. Therefore, two suit-
able indicators of the relevance of exact model reduction techniques in practice
are the effectiveness and the intelligibility of the reductions.

This paper presents a large-scale assessment on biological models in the lit-
erature for recent reduction techniques for CRNs, supporting the ODE and the
CTMC semantics [7,8,10,11,13]. The techniques share two main unifying ideas:

(i) Identifying criteria on the species and reactions of a CRN inducing a suit-
able species equivalence, i.e., a partition of the species such that an exactly
reduced CRN can be written having a macro-species per partition block.

(ii) Developing an algorithm for computing the largest species equivalence using
partition refinement [41], based on iterative refinements of a given initial
partition of species (with which, for instance, one can isolate the observable
species to be preserved in the reduction).

The definitions of the species equivalences differ according to the underlying
semantics to which they are applicable, the assumptions made on the input

250 I. C. Pérez-Verona et al.

CRN, and the kind of reduction that they yield. Specifically, forward equivalence
(FE) and backward equivalence (BE) apply to CRNs with ODE semantics based
on mass-action kinetics and identify reduced models where each macro-species
preserves the sums of original variables belonging to a block [10]; while with
FE the time-course of one species cannot be recovered, BE aggregates species
that have the same solutions at all time points. Forward differential equiva-
lence (FDE) and backward differential equivalence (BDE) are generalizations
that can be applied to CRNs where the underlying ODEs have nonlinearities
beyond polynomials such as rational expressions in Hill kinetics [7]. Finally syn-
tactic Markovian bisimulation (SMB) is the species equivalence for stochastic
CRNs [11]. It identifies a partition of species which induces a coarse graining of
the underlying CTMC in terms of ordinary lumpability [5], aggregating CTMC
states that have equal sums of molecular counts across each partition block of
species.

Assisted by ERODE [9], a publicly available software tool that implements the
aforementioned species equivalences, we carry out an assessment of the BioMod-
els database [37], a well-known repository of quantitative models of biochemical
systems.1 Our goal is to answer the following three evaluation questions:

Q1. How restrictive are the assumptions required by the species equivalences?
We answer this question by detailing how we translated the BioMod-
els descriptions, available in the SBML format, into the input format of
ERODE.

Q2. What is the effectiveness of exact model reduction by species equivalence?
We measure effectiveness as the percentage of models that can be aggre-
gated, as well as the compression ratio provided by the largest species
equivalence that preserves the observables specified in the original model.

Q3. What is the physical interpretation of the reductions? For this question, we
present a more detailed discussion of a selected number of models.

2 Background

In order to make the paper self-contained, in this section we briefly overview
the main results regarding the species equivalences used in our assessment. We
refer to the original papers for the details and further examples, while unifying
tutorial-like presentations are given in [48,50].

Chemical Reaction Networks. First, we fix the notation and terminology for
reaction networks. A CRN is a pair (S,R) consisting of a finite set of species

S and a finite set of reactions R, where each reaction is in the form ρ
f−→ π

consisting of: a multiset of species ρ, with the multiplicity of species S denoted
by ρS , that represents the reactants; a multiset of species π (the products); and
the propensity function f : RS → R≥0. Roughly speaking, it gives the rate at

1 The models are available at https://sysma.imtlucca.it/tools/erode/cmsb2019/.

https://sysma.imtlucca.it/tools/erode/cmsb2019/

A Large-Scale Assessment of Exact Model Reduction in BioModels 251

which the reaction fires based on the current system state; the net stoichiometry
π − ρ gives the state update upon the reaction firing.2

Example 1. Let us use a CRN (SE ,RE) with species S1, S2, S3, S4, S5, and reac-
tions S1

2−−→S5, S1
1−−→2S3, S3+S5

3−−→S3, S2
2−−→S3, S2

1−−→2S5, S4+S5
3−−→S3.

According to the deterministic semantics of CRNs [51], a CRN is associated
with an ODE system which tracks the time course of the vector of concentrations
of the species at time t, X(t) = (XS(t))S∈S , as follows:

dXS(t)
dt

=
∑

(ρ
f−→π)∈R

(πS − ρS) · f(X(t)).

In a deterministic mass-action CRN, each reaction is associated with a kinetic
parameter λ > 0, and the propensity function, denoted by fλ, is given by fλ(x) =
λ ·∏S∈S xρS

S , where ρ is the multiset of reactants. The CRN (SE ,RE) is a mass-
action CRN. For example, the ODEs for S1 and S2 are:

dX1(t)
dt

= −3 · X1(t))
dX2(t)

dt
= −3 · X2(t)

According to the stochastic semantics of CRNs [27], a CRN is represented as a
Markov population process, a CTMC where each state is a vector n = (nS)S∈S
of nonnegative integers that tracks the molecular counts of each species. The
initial state is a vector representing the initial (integer) populations of each
species. A transition between any two states n and n+π −ρ occurs according to
an exponential distribution with parameter f(n) for each reaction ρ

f−→ π. The
CTMC underlying a CRN for an initial state consists of all states and transitions
generated by applying exhaustively the reactions on all generated states, starting
from the initial one. An elementary mass-action CRN has reactions in the form
ρ

fλ−→ π where |ρ| ≤ 2 (i.e., at most two molecules can interact), λ > 0 is the
kinetic parameter, and fλ(n) = λ · ∏

S∈S
(
nS

ρS

)
, where n is the source state. The

CRN in Example 1 is elementary.

Forward and Backward Equivalence (FE and BE). FE and BE are two reduction
techniques for deterministic mass-action CRNs given as equivalence relations on
species which can be efficiently checked by using only structural conditions on
the reactions [10]. For χ ∈ {FE,BE}, both notions can be expressed as:

Given a CRN (S,R), a partition H of species is χ if and only if for any
two blocks H,H ′ ∈ H and any two species Si, Sj ∈ H it holds

cχ(Si, η,H ′)=cχ(Sj , η,H ′) ∀η. ∃(Sk+η
λ−−→π)∈R for Sk ∈ {Si, Sj}

2 As usual, the + and - operators denote multiset union and difference, respectively,
while the multiplicity of a species denotes its stoichiometric coefficient.

252 I. C. Pérez-Verona et al.

Hf ={{S1, S2}, {S3, S4}, {S5}}
Sf ={S1,2, S3,4, S5}
Rf ={S1,2

1−−→S5, S1,2
0.5−−→2S3,4, S3,4+S5

3−−→S3,4,

S1,2
1−−→S3,4, S1,2

0.5−−→2S5}
(a) FE-reduction

Hb={{S1, S2}, {S3}, {S4}, {S5}}
Sb={S1,2, S3, S4, S5}
Rb={S1,2

1−−→S5, S1,2
0.5−−→2S3, S3+S5

3−−→S3,

S1,2
1−−→S3, S1,2

0.5−−→2S5, S4+S5
3−−→S3}

(b) BE-reduction

Fig. 1. Coarsest FE/BE, and FE/BE-reductions of (SE ,RE) from Example 1.

where cχ maps a species (Si, Sj), a multiset of reagent partners (η) and a block
(H ′) into a real number computed by inspecting once the reactions [10].

Figure 1 shows FE partition Hf and BE partition Hb, as well as their respec-
tive reduced CRNs, for the running example (We observe that Hb is a refinement
of Hf , but in general, FE and BE are not comparable [6,8]). FE relates species
such that it is possible to rewrite the ODEs underlying the CRN in terms of
sums of the variables in each block. Each macro-species in the FE-reduced CRN
represents the sum of the corresponding species in the original CRN.For exam-
ple, in Fig. 1(a) species S1,2 and S3,4 can be used to study the concentration of
the sums of original variables S1 + S2 and S3 + S4, respectively.

BE relates species that have same ODE solution at any point in time (which
therefore must have same initial condition). In the BE-reduced CRN in Fig. 1(b),
S1,2 represents the sum of original species S1 + S2. However, BE ensures that
S1 and S2 have same ODE solution at all times. Therefore, we can recover each
individual solution of by halving that of S1,2.

Forward and Backward Differential Equivalence (FDE and BDE). FDE and
BDE are generalizations of FE and BE, respectively, for deterministic CRNs
beyond mass-action [7,13]. FDE and BDE capture the same dynamical proper-
ties of FE and BE, and collapse to them for mass-action deterministic CRNs.
The greater generality of FDE/BDE comes at the cost of a more computa-
tionally expensive implementation based on encodings in satisfiability modulo
theory (SMT) formulas. For instance, the following formula ψHb encodes the
check whether partition Hb is a BDE:

ψHb := (X1 = X2) =⇒ (−3 · X1 = −3 · X2)

which checks that if all variables in same block are equal (the premise) then
they must evolve in the same way, i.e. their derivative should evaluate to the
same value (the conclusion). The formula has two free real variables, X1 and
X2, corresponding to S1 and S2. By using an SMT solver, e.g., Z3 [19], we can
check if Hb is a BDE by checking for the satisfiability of ¬ψHb . If there exists an
assignment for X1 and X2 that makes ¬ψHb true, then Hb is not a BDE. This
is not the case, and hence it is a BDE (as expected from it being a BE).

Syntactic Markovian Bisimulation (SMB). SMB is a reduction technique for
stochastic mass-action elementary CRNs [11]. It is given as an equivalence on

A Large-Scale Assessment of Exact Model Reduction in BioModels 253

species, in the same spirit of FE and BE. Indeed, SMB can be seen as an instan-
tiation of FE to the stochastic semantics of CRNs. We discuss this through
our running example. The partition Hs = {{S1}, {S2}, {S3, S4}, {S5}} is an
SMB for the CRN (SE ,RE) from Example 1. The very same notion of FE/BE-
reduced CRN applies to SMB as well. The Hs-reduction of (SE ,RE) has species
SS ={S1, S2, S3,4, S5} and reactions RS ={S1

2−−→ c5, S1
1−−→2S3,4, S3,4+S5

3−−→
S3,4, S2

2−−→ S3,4, S2
1−−→ 2S5}. A state of a CTMC of (SE ,RE) is a vector of

size |SE | counting the population of each original species, while a state of a
CTMC of (SS ,RS) is a vector of size |SS | counting the cumulative population
of each block of Hs. The CTMCs of (SS ,RS) are reductions in terms of CTMC
ordinary lumpability [5] of the ones obtained from (SE ,RE). All states of the
original CTMC containing same number of Hs-equivalent species get collapsed
in the same macro-state in the reduced CTMC. Therefore, similarly to FE, SMB
allows to obtain a coarse-grained version of the original CRN which allows to rea-
son in terms of sums of variables. For example, the states S1 +2S3, S1 +S3 +S4,
and S1 + 2S4 form an ordinary lumpable partition of a CTMC of the original
CRN, and therefore get collapsed in the state S1 + 2S3,4 for the reduced CRN.

We note that Hs is a refinement of Hf . Indeed, it has been shown that SMB
implies FE, but not vice versa [11]. This will be confirmed in Sect. 3.4.

Partition Refinement. Each equivalence is supported by a partition refinement
algorithm which refines an initial partition of species (splitting its blocks) until a
fixed point. The initial partition can be chosen, e.g., to isolate species that must
not be aggregated because they are observables of interest to the modeler. The
examples shown in this section are largest refinement of the singleton partition
where all species are in a block. Other initial partitions will be used in Sect. 3.

3 Experimental Set-Up

3.1 Overview of the BioModels Repository

The BioModels Database is a repository of computational models of biological
processes [37]. It hosts dynamical quantitative models described in peer-reviewed
scientific literature as well as models generated automatically from pathway
resources such as KEGG [32], BioCarta [40], MetaCyc [14], PID [42] and SABIO-
RK [52]. BioModels covers a wide range of models from several biological cate-
gories such as biochemical reaction systems, kinetic models, metabolic networks,
steady-state models and signaling pathways. Models are available in the Systems
Biology Markup Language (SBML) [30], a well-known machine-readable format
based on XML for representing quantitative models of biological systems.

The BioModels repository is divided into two sections: the curated branch
and the non-curated branch. The former contains models that have been manu-
ally checked and their components annotated using unambiguous identifiers [31]
that refer to external biological databases [17,22,46] or ontologies (such as
Gene Ontology [2], SBO [18] or ChEBI [20]). Models are curated following

254 I. C. Pérez-Verona et al.

Fig. 2. Workflow overview. Models were downloaded from the BioModels repository in
the SBML format. We implemented a tool to translate the SBML description into the
CRN-like input (.ode format) of ERODE. The output of ERODE is a reduced CRN with
reactions involving macro-species, each representing the sum within an equivalence class
of original species. We manually inspected the ERODE output to provide a physical
interpretation of the obtained equivalences.

the Minimum Information Required in the Annotation of Models guidelines
(MIRIAM) [35]. Models that are not MIRIAM-compliant are stored in the non-
curated branch, which also contains non-kinetic models such as flux balance
analysis models. A more detailed description of BioModels is available at [16].

3.2 Model Conversion

We developed a prototype for translating SBML models into ERODE’s format,
using the workflow in Fig. 2. SBML files are read using the jsbml library (version
1.2) [21,36]. Here we briefly explain the main phases of the conversion process.

The CRN input format of ERODE contains lists of parameters (to be used in
kinetic rates), of species (with corresponding initial conditions), and of reactions.
This is followed by a list of commands for analysis, reduction, and export.

The following SBML snippet, from BIOMD0000000030, specifies a parameter

<parameter id="k1" metaid="metaid_0000019" name="k1" value="0.02"/>

This is translated into k1 = 0.02 within the parameters list (delimited by begin
parameters/end parameters) of the ERODE description.

The next SBML snippet, adapted from the same model by removing the
annotation tag containing links to external databases, defines the species M:

<species compartment="cell" id="M" initialConcentration="800"
metaid="metaid_0000005" name="MAPK"/>

It describes the compartment in which the species is located, the initial concen-
tration and an identifier. We translate this into M = 800 within ERODE’s species
declaration section (delimited by begin init/end init).

Instead, the conversion of the reactions is less straightforward, particularly to
recognize mass-action models to which the specialized FE, BE, and SMB can be
applied. Indeed, SBML allows the direct specification of mass-action reactions
by means of appropriate SBO labels in the kineticLaw tag (other labels identify
different kinetics such as Michaelis-Menten and Hill). However, we encountered
cases of reactions that, although not tagged with mass-action labels, were clearly
so upon inspection of the reactions. One such example is given in Fig. 3. It shows

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000030

A Large-Scale Assessment of Exact Model Reduction in BioModels 255

Fig. 3. Sample SBML reaction adapted from BIOMD0000000030

the specification of a reaction containing a list of reactants, products (as well as
modifiers, not used in this reaction, to model, e.g., catalysts or intermediates in
the reaction). The reaction has an optional attribute reversible, by default
set to true, indicating if the reaction is reversible. We inferred the forward and
reverse rate functions as the left and right operand, respectively, of the topmost
minus MathML tag (Line 16). This leads to the two following ERODE irreversible
reactions (as ERODE does not support reversible reactions):

M + MAPKK -> M_MAPKK_Y, arbitrary cell * k1 * M * MAPKK
M_MAPKK_Y -> M + MAPKK, arbitrary cell * k_1 * M_MAPKK_Y

Here, the left- and right-hand sides of the reactions are taken from the SMBL
lists (and modifiers are added in both sides if present), whereas the arbitrary
keyword denotes a reaction with a generic non-mass-action propensity func-
tion. However, one can notice that these two reactions are actually equivalent
to mass-action reactions with kinetic parameters cell * k1 and cell * k 1,
respectively. We manually detected such occurrences of non-tagged mass-action
reactions and translated into ERODE mass-action ones. In this example we get:

M + MAPKK -> M_MAPKK_Y, cell * k1
M_MAPKK_Y -> M + MAPKK, cell * k_1

ERODE can export the ODEs underlying a model as a Matlab function. Like-
wise, in BioModels all models come with an encoding as Matlab functions. We
tested our converter over a large random selection of BioModels files by checking
that their Matlab functions and those exported by ERODE corresponded.

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000030

256 I. C. Pérez-Verona et al.

3.3 Repository Preprocessing

In our experiments we used the BioModels repository snapshot 26 July 2017.
It consists of 640 models in the curated branch (from id BIOMD0000000001
to BIOMD0000000640) and 1000 models in the non-curated branch (with ids
ranging from MODEL0072364382 to MODEL9811206584).

We performed a preprocessing step to filter out models that could not be
used for the analysis (cf. evaluation question Q1 in Sect. 1). In the non-curated
branch only 491 models are kinetic models described as ODE systems, while
the others are described in formalisms, such as logical or flux balance analysis
models, that are outside the scope of applicability of species equivalences.

Overall, we could process 448 models from the curated branch and 219 from
the non-curated one, for an overall sanitized dataset of 667 models. Of these,
43 were recognized as mass-action CRNs (as detailed in Sect. 3.2); all of them
were found to be elementary mass-action CRNs, hence analyzable by SMB. The
most frequent reasons for discarding a model were (within parenthesis we give
the frequency in the curated branch, which we assume to be more stable):

– syntactic limitations in our converter prototype, including the lack of support
for models without explicit reactions where the dynamics is given by rate rules
over a set of parameters, e.g., as in BIOMD0000000020 (114);

– models with unsupported propensity functions such as tanh and exp (31);
– models with species with Assignment Rules, used to model features such as

delayed equations and hybrid systems, not supported by ERODE (47).

3.4 Reduction Results

Here we report the summary of the reduction results. Non mass-action models
were analyzed using FDE and BDE, while for mass-action ones we used FE, BE,
and SMB. In a preliminary analysis we considered the maximal equivalences
for all cases, computed by starting the partition-refinement algorithms with the
initial singleton partition with a single block containing all species in the CRN.
However, in 32 cases we found that the maximal FDE/FE collapsed all species
and reactions. This is because these CRNs are closed and mass-preserving, mean-
ing that the concentrations (represented by the ODE solutions for each species)
just flow among the species, but the total cumulative concentration is constant.
Therefore these systems can be self-consistently written as a single-equation
ODE with zero derivative (and initial concentration equal to that total cumula-
tive concentration). We dismissed such partitions as degenerate/uninteresting.
Instead, for these cases we built more meaningful (ad-hoc) initial partitions to
be used in the partition-refinement algorithm: we isolated variables of interest
to the modeler, as evinced from the related scientific publication.

For each equivalence we computed the reduced CRN, recording the resulting
number of species and reactions as a measure of the effectiveness of the exact
reduction techniques (cf. Q2 in Sect. 1). Figure 4 counts the models that could be
reduced by at least one technique, regardless of the reduction ratio. For the non

A Large-Scale Assessment of Exact Model Reduction in BioModels 257

FDE

BDE

BDE timeout

FDE timeout

Non reduced

BDE/FDE

202

196

68

129

33

2

36

(a) Non mass-action

10

5

5 11

1210

5

5 11

12

FE

BE

BE/FE

BE/FE/SMB

FE/SMB

(b) Mass-action

Fig. 4. Reduction results.

100 101 102
100

101

102

103

104

Reduced model
Original model

N
um

be
r

of
 s

pe
ci

es

Number of reactions

Fig. 5. Comparison among original and reduced species and reactions (log scale).
(Color figure online)

mass-action models (Fig. 4a), 233 models (37%) could be reduced. In particular,
only 36 models could be reduced by both FDE and BDE, proving that they
are not comparable. Several models (196, 31%) could not be analyzed due to
the excessive computational cost of FDE, while only 2 due to BDE (we used a
time-out of 8 hours). This is consistent with the more (and more complex) SMT
checks required by FDE with respect to BDE [7].

All the mass-action models (Fig. 4b) could be reduced by at least one equiv-
alence relation. Ten models (23%) could be reduced with BE and 5 (12%) with
FE only. Twelve models (28%) could be reduced with the three methods, while
11 (25%) could be reduced with SMB and FE, and 5 (12%) with FE and BE.
The presence of models that could be reduced only by FE and not SMB shows
that FE does not imply SMB, while the converse is true, as discussed.

Figure 5 shows a scatter plot to summarize the reduction ratio for
each model using the species equivalence that yielded the best reduction.

258 I. C. Pérez-Verona et al.

Species

Reactions

Reduction (%)

0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100]

N
um

be
r

of
 m

od
el

s

(a) FDE

Species

Reactions

Reduction (%)

N
um

be
r

of
 m

od
el

s

0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100]

(b) BDE

Species

Reactions

Reduction (%)

N
um

be
r

of
 m

od
el

s

0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100]

(c) FE

Species

Reactions

Reduction (%)

N
um

be
r

of
 m

od
el

s

0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100]

(d) BE

Species

Reactions

Reduction (%)

N
um

be
r

of
 m

od
el

s

0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100]

(e) SMB

Fig. 6. Reduction ratios for the species and reactions for each species equivalence.
(Color figure online)

MODEL3632127506, the largest model processed, denoted with blue circled dots
in the figure, was reduced from 872 species and 1750 reactions to 436 species
and 900 reactions, with a reduction of about 50% in the number of species and
reactions. Overall, the average compression ratio is 36% for the species and 26%
for the reactions.

The average reduction ratio in the number of species and reactions varies with
each method: BDE (23% for species, 8% for reactions), FDE (50%, 48%), BE
(19%, 8%), FE (51%, 47%), SMB (35%, 29%). Figure 6 illustrates the reductions
obtained. For each species equivalence, we group the models in 5 histogram bins
(0%–20%, . . . , 80%–100%) in two series showing the reduction ratio of the species
(red) and the reactions (blue). It is possible to observe cases with models showing
no reductions in the number of reactions. This can be due to an equivalence
among species with no dynamical role in the network, as they can be interpreted
as distinct auxiliary species that are used to model zero-order reactions, such
as I in reaction I → I + A, a purely catalytic species C in a reaction like
A + C → B + C, or SINK in a degradation reaction such as A → SINK . In the
first two cases, these species are associated with zero-derivative variable, while in
the last case the variable for SINK does not appear in any ODE in the system.

A Large-Scale Assessment of Exact Model Reduction in BioModels 259

M Mpp

M:MAPK:Y

M:MAPK:T

Mpp:MKP:Y

Mpp:MKP:T

...

(a)

M MppM:MAPK:T Mpp:MKP:T...M MppM:MAPK:T Mpp:MKP:T...

(b)

Fig. 7. (a) Mechanisms for the initial interaction of M and Mpp with MAPKK and
MKP from [39]. Phosphorylation of M starts with the binding of MAPKK in either
of terminus (T or Y) or M. Dephosphorylation occurs when MKP binds to an active
molecule of M, in this case Mpp. (b) Reduced mechanism. BE equates the molecular
complexes up to their phosphorylated residue.

SPB

T

T

T

(a)

SPB

T

T

(b)

Fig. 8. (a) Adaptation of the SPOC dynamical model from [15]. The SPB compart-
ment is depicted in the yellow-circle background. Reactions crossing the compartment
boundary represent the intrinsic Tem1 (blue rectangle) GTPase-cycle and reversible
SPB association in terminal T . (b) Reduced mechanism where both FE and SMB
equate all Tem1 molecules up to their GTP (green)- or GDP (red)-bound state (indi-
cated by the green/red ellipsis). (Color figure online)

4 Case Studies

We hereby report selected case studies to highlight the physical interpretability
of the reductions (cf. Q3 in Sect. 1).

BE Example: MAPK Double Phosphorylation. Multisite phosphoryla-
tion is a well-studied model in computational systems biology [29,47]. The dou-
ble (de)phospho-rylation model depicted in Fig. 7 reflects the changes in the
phosphorylated state of MAPK in BIOMOD0000000030. MAPK cascades are
evolutionary conserved and consist of several (usually 3) levels, where the acti-
vated kinase at each level phosphorylates the kinase at the next level down the
cascade. MAPK (M) is a molecule with two residues: tyrosine (Y) and threo-
nine (T), thus requires double phosphorylation from a MAPK Kinase to become
active (Mpp), and double dephosphorylation from a MAPK phosphathase to
return to its original inactive state. This dynamics is represented in a model
with 18 species and 32 reactions. BE equates the MAPK complexes regardless
of their binding with MAPK or MKP, yielding a reduced CRN with 16 species
and 28 reactions.

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000030

260 I. C. Pérez-Verona et al.

Fig. 9. (a) Adaptation of the signaling network in [4]. The activation of the molecular
SOS by either of the receptors triggers the Ras cascade, concluding in ERK activation.
EGF can also use the left branch involving PI3K to modulate Erk activity through
Raf1 downregulation, and NGF can upregulate Mek using the right branch containing
Rap1. P1, P2 and P3 represent unregulated phosphatases. Molecular components in
(a) with the same color are grouped together in the same FDE equivalence class. (b)
BDE reduction. (c) FDE reduction. (Color figure online)

FE Example: SPOC. Model BIOMOD0000000705 is a CRN of the Spindle
Position Checkpoint (SPOC) [15]. SPOC intervenes in the process of cell division
by verifying all requirements to pass to the next phase in the cell cycle. In partic-
ular, it prevents the separation of the duplicated chromosomes until each chromo-
some is properly attached to the spindle apparatus. The most upstream event
of the pathway involves GTPase Tem1. Tem1 binds to the yeast centrosomes
(called spindle pole bodies, SPBs) via GAP-dependent and GAP-independent
sites (Fig. 8a). The intrinsic GTPase switching cycle of Tem1 is modeled as a
reversible first-order reaction that converts TemGTP

1 into TemGDP
1 and vice versa.

The model consists of 24 species and 71 reactions. FE equates the two forms of
the GPTase Tem1 (Fig. 8), moreover this equivalence extends to all Tem1 molec-
ular complexes, yielding a reduced model with 16 species and 36 reactions . In
this example, the largest SMB yields the same reduction.

BDE/FDE Example: Signaling Cascade. Model BIOMOD0000000033 is a
signaling pathway concluding in ERK activation [4]. Its most upstream event
(Fig. 9) starts with the binding of EGF and NGF to their respective receptors
(EGFR, NGFR). Once bound, both receptors can activate molecular SOS and
trigger the Ras cascade. Here, molecular components are modeled representing
the species active and inactive state, i.e mSOS* and mSOS, yielding a model with
32 species and 26 reactions. For BDE, the free EGF and the free receptor EGFR
are aggregated, simplifying the process of EGF binding to EGFR. Similarly, this

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000705
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000033

A Large-Scale Assessment of Exact Model Reduction in BioModels 261

Fig. 10. (a) Adaptation of the FOXO-dependent IsnR and Sod2 synthesis mechanism
in [45]. Species labels are x:y:z, where x is the species compartment, y indicates binding
with molecular RNA, and z is the first letter of the name of the protein, e.g., n:r:I
encodes the nuclear RNA-bound IsnR, c:S encodes cytoplasmic Sod2. RNA-bound
molecules are rounded by a dotted circle. SMB equivalences are represented by a dotted
rectangle. (b) SMB/FE reduced mechanism.

occurs for NFG and NFGR. Finally, phosphatases P1, P2, and P3, whose role
is purely catalytic, are aggregated (in a macro-species denoted by P). The BDE
reduction has 27 species and 26 reactions (Fig. 9b). Instead, FDE collapses the
active and inactive form of those species. Moreover, the dynamics of the active
and inactive species sum up to zero if aggregated. As above, the phosphatases P1,
P2, and P3 are aggregated in the same class. This results in the FDE reduction
in Fig. 9c, with 18 species and 4 reactions.

SMB Example: Proteins with Same Synthesis Mechanism. As observed,
our methods can help detecting symmetries among molecular components. We
show this in BIOMOD0000000705, a FOXO-dependent synthesis mechanism
involving IsnR and Sod2. Forkhead Box-type O (FOXO) is a family of transcrip-
tion factors responsible for various biological processes including apoptosis, cell
metabolism, differentiation, and drug resistance [34]. The model has 56 species
and 135 reactions describing processes such as FOXO-dependent and basal tran-
scription, export, translation, and degradation of RNA and proteins. The kinetic
parameters for FOXO-dependent protein synthesis (Fig. 10a) for both IsnR and
Sod2 are assumed to be equal. This gives an SMB reduction with 36 species and
110 reactions where IsnR and Sod2 molecules are aggregated in each step of the
protein synthesis mechanism (Fig. 10b). FE leads to the same reduction.

5 Concluding Remarks

The empirical assessment of exact model reduction on the BioModels repository
has provided a number of findings along the main evaluation questions Q1–Q3
introduced in Sect. 1, which can be summarized as follows.

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000705

262 I. C. Pérez-Verona et al.

Q1. Assumptions for applicability of model reductions. In the preprocess-
ing phase (Sect. 3.3), we found 300 models not supported by ERODE. Among the
reasons for incompatibility it is worth commenting on the models which included
exponential expressions in rate functions. This is not accepted by FDE/BDE
because the underlying theory is not decidable. A workaround has been sketched
in [10,13] and builds on a systematic technique which transforms an initial value
problem for an ODE system with derivatives containing rational and exponen-
tial expressions into an equivalent problem with polynomial derivatives [28], to
which BE and FE can be applied. In future work we plan to implement such a
transformation in order to extend the range of applicability of species equiva-
lences. Instead, the limitation of SMB to elementary CRNs did not turn out to
be practically impeding for the analysis of the BioModels repository, since all
the CRNs were in this form; it is however theoretically interesting to extend the
theory to non-elementary mass-action kinetics.

Q2. Effectiveness of the reductions. Overall, we found exact model reduc-
tions effective in terms of both the number of cases in which a CRN could
be reduced by at least one technique (40%) and the overall compression ratio
achieved on average (36% for number of species and 26% for the number of
reactions). Unfortunately, the analysis of FDE on a rather appreciable num-
ber of models (196) was not conclusive due to timeouts, because of the relative
complexity of the SMT checks that are required. This challenges the practical
applicability of FDE to realistic case studies (BDE, on the other hand, timed out
only twice in our tests whereas BE, FE, and SMB are supported by minimiza-
tion algorithms that enjoy polynomial time and space complexity), prompting
alternative approaches to computing FDE, for example by parallelizing the com-
putations.

Q3. Physical interpretability. In the selected case studies herein presented,
the exact model reductions have revealed that symmetries in certain signalling
pathways carry over to equivalences at the level of the underlying quantitative
semantics. Given their moderate size, the considered models would be computa-
tionally tractable even without reduction. However, the equivalences can be used
as an aid in developing more complex models where such symmetries are present
in some components. In addition, we remark that exact model reduction can still
be useful when the complexity is due to the many repetitions that are required
(e.g., for sensitivity analysis or for simulation with tight confidence intervals) or
for particularly difficult analyses such as parametric inference [44].

Future Work. This empirical study suggests potential benefits in the application
of exact model reduction techniques in biological models from the literature. This
motivates the development of our ERODE translator into a more mature tool to
be further integrated with BioModels/SBML. The availability of ready-to-use
model conversions in a simple CRN format such as ERODE’s might stimulate
similar assessments with other model reduction techniques (e.g., [3,12]).

In this paper we focused on reducing models with parameterizations given as
in the respective original publications. If we wish to draw more general conclu-
sions about the relevance of the reductions and the presence of certain symmetri-

A Large-Scale Assessment of Exact Model Reduction in BioModels 263

cal patterns in signaling pathways, it becomes important to test their robustness
with respect to the model parameters. Theoretically, this does not seem to be
particularly difficult, at least for CRNs with deterministic semantics. For exam-
ple, model parameters could be interpreted as further variables in the SMT
formulas used for checking FDE and BDE. Such an extension is currently not
implemented in ERODE and is subject to the aforementioned caveats about the
scalability of SMT-based reduction techniques, hence left for future work.

Acknowledgement. The authors are grateful to Andreas Dräguer (Institut für Infor-
matik Zentrum für Bioinformatik Tübingen) for his support with JSBML.

References

1. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. SIAM (1988)

2. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet.
25(1), 25 (2000)

3. Boreale, M.: Algebra, coalgebra, and minimization in polynomial differential equa-
tions. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp.
71–87. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 5

4. Brown, K.S., et al.: The statistical mechanics of complex signaling networks: nerve
growth factor signaling. Phys. Biol. 1(3), 184 (2004)

5. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31(1), 59–75 (1994)

6. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven
lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 6

7. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computa-
tion of differential equivalences. In: POPL, pp. 137–150 (2016). https://doi.org/
10.1145/2837614.2837649

8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. In: 26th International Conference
on Concurrency Theory, CONCUR, pp. 226–239 (2015). https://doi.org/10.4230/
LIPIcs.CONCUR.2015.226

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of
polynomial dynamical systems. Proc. Nat. Acad. Sci. 114(38), 10029–10034 (2017)

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Syntactic Markovian
bisimulation for chemical reaction networks. In: Aceto, L., Bacci, G., Bacci, G.,
Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and
Tools. LNCS, vol. 10460, pp. 466–483. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63121-9 23

12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Guaranteed error
bounds on approximate model abstractions through reachability analysis. In: 15th
International Conference on Quantitative Evaluation of Systems (QEST) (2018)

https://doi.org/10.1007/978-3-662-54458-7_5
https://doi.org/10.1007/978-3-662-49674-9_6
https://doi.org/10.1007/978-3-662-49674-9_6
https://doi.org/10.1145/2837614.2837649
https://doi.org/10.1145/2837614.2837649
https://doi.org/10.4230/LIPIcs.CONCUR.2015.226
https://doi.org/10.4230/LIPIcs.CONCUR.2015.226
https://doi.org/10.1007/978-3-662-54580-5_19
https://doi.org/10.1007/978-3-319-63121-9_23
https://doi.org/10.1007/978-3-319-63121-9_23

264 I. C. Pérez-Verona et al.

13. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. Theor. Comput. Sci. 777, 132–154 (2019)

14. Caspi, R., et al.: The MetaCyc database of metabolic pathways and enzymes and
the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 42(D1),
D459–D471 (2013)

15. Caydasi, A.K., Lohel, M., Grünert, G., Dittrich, P., Pereira, G., Ibrahim, B.: A
dynamical model of the spindle position checkpoint. Mol. Syst. Biol. 8(1), 582
(2012)

16. Chelliah, V., Laibe, C., Novère, N.L.: Biomodels database: a repository of math-
ematical models of biological processes. In: Dubitzky, W., Wolkenhauer, O., Cho,
K.H., Yokota, H. (eds.) Encyclopedia of Systems Biology, pp. 134–138. Springer,
New York (2013). https://doi.org/10.1007/978-1-4419-9863-7

17. Consortium, U.: UniProt: a hub for protein information. Nucleic Acids Res.
43(D1), D204–D212 (2014)

18. Courtot, M., et al.: Controlled vocabularies and semantics in systems biology. Mol.
Syst. Biol. 7(1), 543 (2011)

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Degtyarenko, K., et al.: ChEBI: a database and ontology for chemical entities of
biological interest. Nucleic Acids Res. 36(Suppl. 1), D344–D350 (2007)

21. Dräger, A., et al.: JSBML: a flexible Java library for working with SBML. Bioinfor-
matics 27(15), 2167–2168 (2011). https://doi.org/10.1093/bioinformatics/btr361

22. Federhen, S.: The NCBI taxonomy database. Nucleic Acids Res. 40(D1), D136–
D143 (2011)

23. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-
based systems. Theor. Comput. Sci. 431, 137–164 (2012)

24. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009). https://
doi.org/10.1073/pnas.0809908106

25. Ganguly, A., Petrov, T., Koeppl, H.: Markov chain aggregation and its applications
to combinatorial reaction networks. J. Math. Biol. 69(3), 767–797 (2014). https://
doi.org/10.1007/s00285-013-0738-7

26. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.
58(1), 35–55 (2007)

27. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

28. Gu, C.: QLMOR: a projection-based nonlinear model order reduction approach
using quadratic-linear representation of nonlinear systems. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 30(9), 1307–1320 (2011). https://doi.org/
10.1109/TCAD.2011.2142184

29. Gunawardena, J.: Multisite protein phosphorylation makes a good threshold but
can be a poor switch. Proc. Nat. Acad. Sci. U.S.A. 102(41), 14617–14622 (2005).
https://doi.org/10.1073/pnas.0507322102

30. Hucka, M., et al.: The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

31. Juty, N., Le Novere, N., Laibe, C.: Identifiers.org and MIRIAM registry: community
resources to provide persistent identification. Nucleic Acids Res. 40(D1), D580–
D586 (2011)

https://doi.org/10.1007/978-1-4419-9863-7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1093/bioinformatics/btr361
https://doi.org/10.1073/pnas.0809908106
https://doi.org/10.1073/pnas.0809908106
https://doi.org/10.1007/s00285-013-0738-7
https://doi.org/10.1007/s00285-013-0738-7
https://doi.org/10.1109/TCAD.2011.2142184
https://doi.org/10.1109/TCAD.2011.2142184
https://doi.org/10.1073/pnas.0507322102

A Large-Scale Assessment of Exact Model Reduction in BioModels 265

32. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 28(1), 27–30 (2000)

33. Kurtz, T.G.: The relationship between stochastic and deterministic models for
chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)

34. Lam, E.W.F., Brosens, J.J., Gomes, A.R., Koo, C.Y.: Forkhead box proteins: tun-
ing forks for transcriptional harmony. Nat. Rev. Cancer 13, 482 EP (2013)

35. Le Novère, N., et al.: Minimum information requested in the annotation of bio-
chemical models (MIRIAM). Nat. Biotechnol. 23(12), 1509 (2005)

36. Le Novère, N., et al.: JSBML 1.0: providing a smorgasbord of options to encode
systems biology models. Bioinformatics 31(20), 3383–3386 (2015). https://doi.org/
10.1093/bioinformatics/btv341

37. Li, C., et al.: BioModels database: an enhanced, curated and annotated resource
for published quantitative kinetic models. BMC Syst. Biol. 4, 92 (2010)

38. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem.
Eng. Sci. 44(6), 1413–1430 (1989). https://doi.org/10.1016/0009-2509(89)85014-6

39. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability
arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol.
164(3), 353–359 (2004)

40. Nishimura, D.: BioCarta. Biotech Soft. Internet Rep.: Comput. Softw. J. Scient
2(3), 117–120 (2001)

41. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

42. Pratt, D., et al.: NDEx, the network data exchange. Cell Syst. 1(4), 302–305 (2015)
43. Radulescu, O., Gorban, A.N., Zinovyev, A., Noel, V.: Reduction of dynamical

biochemical reactions networks in computational biology. Front. Genet. 3(131)
(2012). https://doi.org/10.3389/fgene.2012.00131

44. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods
for stochastic biochemical kinetics – a tutorial review. J. Phys. A: Math. Theor.
50(9), 093001 (2017)

45. Smith, G.R., Shanley, D.P.: Modelling the response of FOXO transcription fac-
tors to multiple post-translational modifications made by ageing-related signalling
pathways. PLoS ONE 5(6), e11092 (2010)

46. Stoesser, G., et al.: The embl nucleotide sequence database. Nucleic Acids Res.
30(1), 21–26 (2002)

47. Thomson, M., Gunawardena, J.: Unlimited multistability in multisite phospho-
rylation systems. Nature 460(7252), 274–277 (2009). https://doi.org/10.1038/
nature08102

48. Tribastone, M., Vandin, A.: Speeding up stochastic and deterministic simulation by
aggregation: an advanced tutorial. In: 2018 Winter Simulation Conference, WSC
2018, Gothenburg, Sweden, 9–12 December 2018, pp. 336–350 (2018). https://doi.
org/10.1109/WSC.2018.8632364

49. Turanyi, T., Tomlin, A.S.: Analysis of Kinetic Reaction Mechanisms. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44562-4

50. Vandin, A., Tribastone, M.: Quantitative abstractions for collective adaptive sys-
tems. In: SFM 2016, pp. 202–232. Bertinoro Summer School (2016). https://doi.
org/10.1007/978-3-319-34096-8 7

51. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomath. 2013, 53 (2013).
https://doi.org/10.1155/2013/897658

52. Wittig, U., et al.: SABIO-RK–database for biochemical reaction kinetics. Nucleic
Acids Res. 40(D1), D790–D796 (2011)

https://doi.org/10.1093/bioinformatics/btv341
https://doi.org/10.1093/bioinformatics/btv341
https://doi.org/10.1016/0009-2509(89)85014-6
https://doi.org/10.1137/0216062
https://doi.org/10.3389/fgene.2012.00131
https://doi.org/10.1038/nature08102
https://doi.org/10.1038/nature08102
https://doi.org/10.1109/WSC.2018.8632364
https://doi.org/10.1109/WSC.2018.8632364
https://doi.org/10.1007/978-3-662-44562-4
https://doi.org/10.1007/978-3-319-34096-8_7
https://doi.org/10.1007/978-3-319-34096-8_7
https://doi.org/10.1155/2013/897658

Computing Difference Abstractions
of Metabolic Networks Under

Kinetic Constraints

Emilie Allart1,2(B), Joachim Niehren1,3, and Cristian Versari1,2

1 BioComputing Team, CRIStAL Lab, Lille, France
2 Université de Lille, Lille, France
emilie.allart@univ-lille.fr

3 Inria, Lille, France

Abstract. Algorithms based on abstract interpretation were proposed
recently for predicting changes of reaction networks with partial kinetic
information. Their prediction precision, however, depends heavily on
which heuristics are applied in order to add linear consequences of the
steady state equations of the metabolic network. In this paper we ask
the question whether such heuristics can be avoided while obtaining the
highest possible precision. This leads us to the first algorithm for com-
puting the difference abstractions of a linear equation system exactly
without any approximation. This algorithm relies on the usage of ele-
mentary flux modes in a nontrivial manner, first-order definitions of the
abstractions, and finite domain constraint solving.

Keywords: Gene knockout prediction · Reaction networks ·
Constraints · Systems biology · Synthetic biology · Metabolism

1 Introduction

Flux balance analysis [16,17] can be used to predict the effect of influx changes
of metabolic networks at steady state. Such predictions can be based on reason-
ing with linear equations systems that describe the rates of the reactions in a
steady state of the metabolic network, by using Gaussian elimination, elemen-
tary flux modes (EFMs) [13], or optimisation methods [6,14]. Most importantly,
precise quantitative kinetic information is not required in contrast to classical
mathematical analysis methods for reaction networks [2,7,9,11]. In fact, even
when the kinetic functions associated to chemical reactions are known, the val-
ues of rate constants are most often missing, since it is difficult to measure them
experimentally in the precise state of the regulation of the metabolic network at
the time point of interest.

Recently, abstract interpretation [3,5,8] has been exploited to design novel
algorithms [4,12,15] that can use partial kinetic information beneficially for
predicting changes of metabolic networks. They can in particular exploit the

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 266–285, 2019.
https://doi.org/10.1007/978-3-030-31304-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_14

Computing Difference Abstractions of Metabolic Networks 267

Fig. 1. A toy metabolic network
with a simple cycle.

Fig. 2. A glimpse of the formal model from
[4] of leucine production in B. subtilis.

knowledge about the enzymes and inhibitors. Similarly to flux balance analysis,
the linear equations describing steady states are used, but in addition to them,
kinetic constraints are inferred from the partial kinetic information of inhibitors
and enzymes.

The steady state equations and the kinetic constraints enable gene knock-
out predictions based on abstract interpretation (in the finite relational struc-
ture Δ6), based on the linear equations from the metabolic network and the
constraints on its regulatory control. The unknown kinetic parameters are
abstracted away, by interpretation over some finite relational structure, that
contains a finite number of abstract differences rather than concrete differences
in R

2
+. Eventually, the prediction algorithm will apply a finite domain constraint

solver for Δ6 that we implemented in Minizinc [18] to enumerate all the changes
that may or must lead to the target change.

The prediction quality of abstract interpretation approaches heavily depends
on heuristics that find and add linear equations entailed by the steady state
equations before constraint solving over Δ6. This is necessary to enable global
reasoning, since local reasoning alone is not able to deal with cycles in metabolic
part of the network as we will illustrate in Sect. 2. On the other hand, it is
impossible to add the infinity of all entailed linear equations before abstract
interpretation. Therefore, these algorithms can at best approximate the abstrac-
tion of differences of solution set of linear equations. Whether this abstraction
can be computed exactly is a long standing open problem, as well as how to
measure the quality of approximation heuristics.

In this paper, we present the first exact algorithm that can compute the Δ6

difference abstraction of the solution set of a linear equation system without any
overapproximation. We apply it to the prediction of leucine overproduction, a
benchmark task that is best studied with abstract interpretation. In this case, we
need to deal with kinetic constraints in addition that are naturally interpreted
over Δ6. It turns out that a new heuristic that we also propose in the present
paper does indeed compute well the difference abstraction at this benchmark
task from systems biology, although being inexact in the general case. The main

268 E. Allart et al.

advantage of this heuristic is that it outperforms the exact algorithm dramat-
ically in computation time: only 5 min are needed for the knockout prediction
rather than 5 h with the always exact algorithm.

2 Qualitative Reasoning on Metabolic Reaction Networks

The application of abstract interpretation to the analysis of metabolic reaction
networks is based on an intuitive qualitative reasoning. Its aim is to predict how
a living organism or its environment should be changed in order to maximize
the production of some metabolite of interest, without exact knowledge of the
quantitative parameters of the system. A change of the organism is represented
for example by any modification of its genome, such as a gene knockout. A
change of the environment is typically represented by the modification of the
culture medium, which results in an increase or decrease of some inflows. Since
changes can be arbitrarily combined to obtain or improve the wanted results,
the problem that we tackle is highly combinatorial.

Examples of formal metabolic networks on which abstract interpretation can
be applied are shown in Figs. 1 and 2. Figure 1 shows a toy metabolic network
with a simple cycle that will be used in the following to introduce the key ideas
of the reasoning. In this network, metabolites are displayed in yellow rounded
boxes, while reactions are in gray squared boxes, in the tradition of Petri nets.
Reactions with dotted contour are inflows or outflows of the system.

Figure 2 shows a glimpse of a bigger metabolic reaction network with regu-
lation, where the regulatory part is represented by the enzymes in blue rounded
boxes. The full network of Fig. 1 models a part of the metabolism of the gram
positive bacterium B. subtilis. Our benchmark application – taken from [4] –
is the overproduction of one of the metabolites of this network, the branched
chain amino acid Leucine (Leu). This amino acid is a precursor of surfactin,
a non ribosomal peptide with several applications in food and pharmaceutical
industry.

Let us now reconsider the toy model with a simple cycle in Fig. 1. This net-
work is composed of two chemical species A and B. The species A is continuously
produced by an inflow at a fixed rate X, and is transformed into B by the reac-
tion with rate V . The inverse reaction with rate V- transforms B back into A.
The species B has an outflow with rate Y . All reactions but the inflow are con-
trolled internally by the system. The outflow rate Y in particular is determined
by the concentration of B which in turn depends on the rates V and V-.

The only possible change in this toy network is the increase or decrease of
the inflow X. In order to illustrate the reasoning method, we set the increase
of Y as our final target. As usually done in flux balance analysis [16,17], we
consider the system at the steady state, that gives us the following linear system
of equations:

∃V ∃V-. V = X + V- ∧ V = Y + V- (1)

The existential quantifiers for V and V- allow us to hide the internal behaviour
of the network, so to project to inflows and outflows. While the consequences

Computing Difference Abstractions of Metabolic Networks 269

of steady state equations may be difficult to interpret without using Gauss’
algorithm, in this particular case it is easy to see that by subtracting the first
equation in (1) from the second we obtain an important relation:

X = Y (2)

Equation (2) tells us that the only way for Y to increase is that X increases too.
We formalize now this intuition by means of abstract interpretation, this time
applied to concrete differences in R

2
+. Concrete differences capture the essence

of a change in the spirit of [15]: a change of the value of X for instance can be
thought of as a pair of positive reals (rbefore, rafter) representing the value of X at
steady state respectively before and after the modification of the environment.
We need to consider positive reals since the rates of irreversible reactions are
positive. We call the above concrete differences an increase if rbefore < rafter,
a decrease if rbefore > rafter and a no-change if rbefore = rafter. This intuition
motivates the usage of abstract values in Δ3 = {�

,
�

,∼∼∼} where
�

= (0, 1)
represents an increase,

�
= (1, 0) a decrease, and ∼∼∼ = (0, 0) a no-change.

The canonical mapping of concrete differences in R
2
+ to the abstract differences

in Δ3 can be seen as a homomorphism between the relational structures R
2
+

to Δ3. This algebraic view of abstractions as homomorphisms enables various
generalizations. An example is the abstraction from R

2
+ to Δ6 – as considered for

gene knockout prediction [4,12] – which refines each of the three R
2
+ equivalence

classes produced by Δ3 into two parts in Δ6.
Any abstraction of concrete differences enables some form of abstract quali-

tative reasoning [10] based on operations of the relational structure of abstract
differences, that can be used for change prediction in systems biology. Let us
illustrate how to reason with Δ3. As a first example, assume that we know for
some reason that X and V- both increase, that is X =

�
and V- =

�
. Then we

can use the first equation in (1) to deduce for sure V will also increase, since�
+Δ3

�
=

�
. The full table defining the summation operator +Δ3 on abstract

difference is given in Fig. 3.
The above qualitative reasoning method, however, is quite weak when relying

only on the steady state equations in (1). The main reason is that all reasoning
steps are local, so that they overlook global properties of the network that are
arising for example with metabolic cycles. To see this, suppose that we want to
predict which environmental change may lead to an increase of Y . We can use
the second equation in (1) to infer some constraints on the values of V and V-: if
Y =

�
, we can for example infer that V cannot be

�
if V- is

�
. In fact,

�
+

�

can never be equal to
�

. However, V =
�

, V- =
�

is a partial solution that
seems compatible with an increase of Y . This illustrates that we cannot infer any
constraint on X with this kind of local reasoning.

Equation X = Y in Eq. (2), in contrast, expresses a global property of the
network that immediately implies that the only value for X compatible with an
increase of Y is

�
. In other words, when reasoning with equations over abstract

differences, Eq. (2) is no longer an implicit consequence of the system (1). There-
fore, to be taken into account, such equations must be explicitly included in the

270 E. Allart et al.

system before applying the abstract reasoning. Unfortunately, the number of
entailed linear equations is infinite in general. For instance, in our small network
all the equations of the family nV +mX = nV- +(m+1)Y for any two naturals
n,m are consequences of (1). So, instead of trying to infer the set of all the
consequences of our system, we may try to compute a “good” subset of it, by
including only the consequences that more heavily constrain the variables. The
prediction quality of the existing approaches heavily depends on the heuristics
chosen for adding entailed linear consequences.

One evident advantage of Eq. (2) is its small number of variables (there are
only two: X and Y). If we consider an individual linear equation, the intuition
is that removing a variable increases the constraining power on the remaining
variables. So, we propose as a heuristics the inclusion of all linear consequences
involving a minimal subset of variables. This idea is at the core of the first result
that we present in this paper: a heuristic algorithm that enriches the steady state
equations of the metabolic network with minimal support consequences before
applying abstract interpretation. While this algorithm has been internally used
for some time to increase the precision of the abstract interpretation, some key
questions have been always open about it:

1. is the set of minimal support equations complete? that is, does it represent
all the deducible constraints on the abstract system?

2. are these constraints sufficient to compute the exact set of abstract solutions?
3. if this is not the case, is there a method to compute them?

The definitive answers to these questions is the second main contribution of this
paper. We show in particular that the above heuristic does not cover all the
entailed constraints on the abstract system, i.e. it does not allow to compute the
exact abstraction of a linear system in general. Intuitively, this happens because
the approach takes for granted that the abstract reasoning is based on the linear
system computed at the steady state, that is on the matrix equation AX = 0
where A is the stoichiometry matrix associated to the metabolic network, and
Xis the set of metabolic flows representing the unknowns of the linear system.
However, it is easy to notice that as soon as concrete differences are introduced in
the reasoning, there is not only one, but actually two linear systems to consider:
one before the environmental change, and one after it, that is one system for each
value of the pairs representing concrete changes. Informally, we should therefore
consider a bigger matrix equation including somehow both AXbefore = 0 and
AXafter = 0.

This idea is the starting point of development of the main contribution of
the present paper: a method for the exact computation of the abstraction of a
linear system, that we call the exact algorithm. This method not only provides
us with the counterexamples to the exactness of the heuristic based on minimal
support consequences, but gives us also an exact measure of its goodness as
well as of the goodness of all the other heuristics used to improve our abstract
analysis.Remarkably, both the heuristic and the exact algorithm have their root
in the rewriting of a linear system in terms of its EFMs. The key difference
between the two methods lies in the choice of the linear system (i.e. the matrix
equation) initially used to compute the EFMs.

Computing Difference Abstractions of Metabolic Networks 271

3 Preliminaries

Set Notation. We start with usual notation for sets. Let N be the set of natural
numbers and R+ the set of positive real numbers, both including 0. For any set
A and n ∈ N, the set of n-tuples of elements in A is denoted by An. The i-th
projection function on n-tuples of elements in A, where 1 ≤ i ≤ n is the function
πi : An → A such that πi(a1, . . . , an) = ai for all a1, . . . , an ∈ A. If A is finite
the number of elements of A is denote by |A|.

Σ- Algebras and Σ- Structures. We next recall the notions of Σ-algebras,
Σ-structures, and homomorphism between Σ-structures. Let Σ = ∪n≥0F

(n) �C
be a ranked signature. The elements of f ∈ F (n) are called the n-ary function
symbols of Σ and the elements in c ∈ C its constants.

Definition 1. A Σ-algebra S = (dom(S), .S) consists of a set dom(S) and an
interpretation .S such that cS ∈ dom(S) for all c ∈ C, and fS : dom(S)n →
dom(S) for all f ∈ F (n) and n ∈ N.

We next reinterpret n-ary function symbols of Σ as n+1-ary relation symbols,
so that we can reuse the same signature Σ for defining Σ-structures.

Definition 2. A Σ-structure Δ = (dom(Δ), .Δ) consists of a set dom(Δ) and
an interpretation .Δ such that cΔ ∈ dom(Δ) for all c ∈ C and fΔ ⊆ dom(Δ)n+1

for all f ∈ F (n) and n ∈ N.

In this manner, any Σ-algebra is also a Σ-structure since any n-ary function
is an n+1-ary relation. Note also that symbols in F (0) are interpreted as monadic
relations in Σ-structures, i.e., as subsets of the domain, in contrast to constants
in C that are interpreted as elements of the domain.

Definition 3. A homomorphism between two Σ-structures S and Δ is a func-
tion h : dom(S) → dom(Δ) such that for c ∈ C, n ∈ N, f ∈ F (n), and
s1, . . . , sn+1 ∈ dom(S):

1. h(cS) = cΔ, and
2. if (s1, . . . , sn+1) ∈ fS then (h(s1), . . . , h(sn+1)) ∈ fΔ.

If we consider n+1-ary relations as n-ary set valued functions, the second con-
dition can be rewritten equivalently as h(fS(s1, . . . , sn)) ⊆ fΔ(h(s1), . . . , h(sn)).
For Σ-algebras, this condition is equivalent to h(fS(s1, . . . , sn)) =
fΔ(h(s1), . . . , h(sn)).

4 Σ-Abstractions

Throughout the paper we will use the signature Σ = F (2) � C with two binary
function symbols in F (2) = {+, ∗} and two constants C = {0, 1}. We will only
consider Σ-algebras S in which +S and ∗S are associative and commutative,
with neutral element 0S and 1S respectively.

272 E. Allart et al.

Example 4. The set of positive real numbers R+ can be turned into a Σ-algebra
with domain R+, by interpreting + as the addition of positive real numbers
+R+ , ∗ as the multiplication of positive real numbers ∗R+ , and interpreting the
constants by themselves 0R+ = 0 and 1R+ = 1. We will deliberately confuse the
set R+ with the Σ-algebra (R+, .R+).

Example 5. The set of Booleans B = {0, 1} ⊆ R+ can be turned into a Σ-algebra
with domain B by interpreting +B = ∨B as disjunction, ∗B = ∧B as conjunction,
and the constants by themselves 0B = 0 and 1B = 1. We will deliberatly confuse
the set B with the Σ-algebra (B, .B).

We can abstract positive real numbers into booleans by defining a function
hB : R+ → B such that hB(0) = 0 and hB(r) = 1 for all r ∈ R+ \ {0}.

Lemma 6. The function hB : R+ → B is a homomorphism between Σ-algebras.

The homomorphism hB is the prime example of what we will call a Σ-
abstraction.

Definition 7. A Σ-abstraction is a homomorphism between Σ-structures S and
Δ such that dom(Δ) ⊆ dom(S).

5 Abstracting Concrete Differences

Concrete differences are pairs of positive real numbers such as (rbefore, rafter) ∈
R

2
+ in the example Sect. 2. We show how to abstract concrete differences into

abstract differences in some finite Σ-structure.

The Tuple Σ-Algebra Sn. For any Σ-algebra S and natural number n ∈ N

we define the Σ-algebra of n-tuples Sn = (dom(S)n, .S
n

) such that for all
s1, . . . , sn, s′

1, . . . , s
′
n ∈ dom(S) and � ∈ F (2):

(s1, . . . , sn) �Sn

(s′
1, . . . , s

′
n) = (s1 �S s′

1, . . . , sn �S s′
n)

The constants c ∈ C are interpreted as cSn

= (cS , . . . , cS). Note that if 0S is
the neutral element of +S , then 0Sn

is the also the neutral element of +Sn

. In
analogy, if 1S is the neutral element of ∗S then 1Sn

is also the neutral element of
∗Sn

. Furthermore, the associativity and commutativity of +Sn

and ∗Sn

inherit
from +S and ∗S respectively.

Note that we deliberatly confuse the set R
2
+ with the Σ-algebra (R2

+, .R
2
+)

with our notation. Given this, it follows from the above, that the algebra R
2
+

has the neutral element (0, 0) for +R
2
+ and the neutral element (1, 1) for ∗R2

+ ,
and that these operations are associative and commutative.

For any function h : A → B and n ∈ N we define the function hn : An → Bn

such that hn(a1, . . . , an) = (h(a1), . . . , h(an)) for all a1, . . . , an ∈ A.

Lemma 8. If h is Σ-abstraction from S to Δ then hn is a Σ-abstraction from
Sn to Δn.

Computing Difference Abstractions of Metabolic Networks 273

Fig. 3. Interpretation of Σ-structure Δ3.

Fig. 4. Interpretation of Σ-structure Δ6.

Abstractions of Concrete Differences. A generic manner to abstract concrete
differences in R

2
+ is to start with a finite set Δ ⊆ R

2
+ of so called abstract dif-

ferences, and some function h : R2
+ → Δ that says how to abstract any concrete

differences to some abstract difference. The function h defines a partition of R2
+

into the equivalences classes of concrete differences that are mapped to the same
abstract difference.

Given such a function h, there is a unique manner to define an interpreta-
tion .Δ such that (Δ, .Δ) becomes Σ-structure and h a Σ-abstraction. For any
constant c ∈ C we have to define cΔ = h(cR

2
+) and for any function symbol

� ∈ F (2) we have to define a ternary relation �Δ, which seen as set-valued
function �Δ : Δ × Δ → 2Δ must satisfy for all abstract values δ1, δ2 ∈ Δ:

δ1 �Δ δ2 = {h(r1 �R+ r2, r
′
1 �R+ r′

2) | h(r1, r′
1) = δ1, h(r2, r′

2) = δ2}

Lemma 9. h : R2
+ → Δ is a Σ-abstraction.

The Σ-Structure Δ3. Our next objective is to recall the abstraction of concrete
differences into the finite Σ-structure with domain Δ3 = {�

,
�

,∼∼∼} that is
well-known from qualitative reasoning (see e.g. [10]). For this we start with the
function hΔ3(r, r

′) ∈ Δ3 such that for any all r, r′ ∈ R+:

hΔ3(r, r
′) =

⎧
⎨

⎩

�
= (1, 0) if r > r′

�
= (0, 1) if r < r′

∼∼∼ = (0, 0) if r = r′

The relations +Δ3 and ∗Δ3 are is the symmetric closure of the relation in Fig. 1.
Furthermore, hΔ3 : R2

+ → Δ3 is a Σ-abstraction by Lemma 9.

The Σ-Structure Δ6. We next recall the abstraction of concrete differences to
the finite Σ-structure with domain Δ6 = {↑,↓,∼,⇑,⇓,≈} that was introduced

274 E. Allart et al.

for gene knockout prediction in [15]. For defining this Σ-structure, we start with
the function hΔ6 : R2

+ → Δ6 such that for any two numbers r, r′ ∈ R+:

hΔ6 (r, r
′) =

⎧
⎨

⎩

↑ = (1, 2) if 0 �= r < r′
↓ = (2, 1) if r > r′ �= 0

∼ = (1, 1) if r = r′ �= 0

hΔ6 (r, r
′) =

⎧
⎨

⎩

⇑ = (0, 2) if 0 = r < r′
⇓ = (2, 0) if r > r′ = 0

≈ = (0, 0) if r = r′ = 0

The relations +Δ6 and ∗Δ6 are the symmetric closure of the relations in Fig. 4.
By Lemma 9, hΔ6 : R2

+ → Δ6 is a Σ-abstraction.

6 First-Order Logic

We first recall the standard first-order logic and then show how to enhance it
with n-tuples without increasing the expressiveness.

We fix a set of variables V (for instance V = N). The variables in V will be
ranged over by x and y. The set of first-order expressions e ∈ EΣ and first-order
formulas φ ∈ FΣ are constructed according to the abstract syntax in Fig. 5 from
the symbols in the signature Σ, the variables in V, the first-order connectives,
and the equality symbol .=. As shortcuts, we define the formula true =def 1 .=1
and for any sequence of formulas φ1, . . . , φn we define ∧n

i=1φi as φ1 ∧ . . . ∧ φn

which is equal to true if n = 0. We define formulas e
.

=0 by ¬e
.=0.

The semantics of a formula φ ∈ FΣ is a truth value, which depends on the
Σ-structures S of interpretation and on a variable assignment α : V → dom(S).
Any Σ-expressions e ∈ EΣ denotes a subset of values in dom(S), which will be
singleton in case that S was a Σ-algebra. The semantic of equations e

.=e′ is, as
expected when interpreted over Σ-algebras S: the unique values of e and e′ in
S must be equal. However, we will also need to interpret equations e

.=e′ over
Σ-structures. This is why, any expression e denotes a subset of the Σ-structure,
not just a single element. We can then interpret equality as nondisjointness, i.e.,
e

.=e′ holds in a Σ-structure S if e and e′ are interpreted as nondisjoint subsets
of dom(S).

A variable assignment into a Σ-structure S is a partial function α : V →
dom(S) for some subset V ⊆ V. Let S be a Σ-structure and α a variable assign-
ment to S. Any Σ-expression e with V(e) ⊆ V can be interpreted as an element
of dom(S) and any Σ-formula φ ∈ FΣ with V(φ) ⊆ V as a Boolean value. The
set of solutions of a formula φ ∈ FΣ over a Σ-structure S with respect to some
set of variables V ⊇ V(φ) is defined by:

solSV (φ)={α : V → dom(S) | �φ�S,α = 1}
If V = V(φ) then we omit the index V , i.e., solS(φ) = solSV (φ).

We next extend the first-order logic to n-tuples where the parameter n is
fixed. In applications, we will use the case n = 2, that is the first-order logic
with pairs. Back and forth compilers from first-order logic with and without
tuples will be convenient later on.

The syntax of first-order logic with n-tuples is given in Fig. 6. The expressions
o ∈ On

Σ are like the expression e ∈ EΣ except that variables x are now replaced

Computing Difference Abstractions of Metabolic Networks 275

Fig. 5. Syntax and semantics of expressions and formulas of first-order logic.

Fig. 6. Σ-expressions and Σ-formulas of the first-order logic with n-tuples.

by projection expressions
.
πi(x) where 1 ≤ i ≤ n. The reason is that any variable

does now denote an n-tuple of values, rather than a single value (while the
interpretation of constants and function symbols remain unchanged). The only
change in the semantics is that variables assignment β do now map to n-tuples
of values of the domain, and that �

.
πi(x)�S,β = {πi(β(x))}. The set of solutions

of a formula ψ ∈ Fn
Σ over a Σ-structure S is defined as follows:

n-solS(ψ)={β : V(ψ) → dom(S)n | �ψ�S,β = 1}

We next show how to express any first-order formulas in FΣ , interpreted
over a tuple algebra Sn, by some formulas in Fn

Σ , interpreted over S. In a first
step, we convert first-order expression in e ∈ EΣ – that we will interpret over
the Σ-algebra Sn – to n projected expressions Πi(e) ∈ On

Σ where 1 ≤ i ≤ n. For
all operators � ∈ F (2) and constants c ∈ C we define:

Πi(e � e′) =def Πi(e) � Πi(e′) Πi(x) =def
.
πi(x) Πi(c) =def c

In the second step, we convert any formula φ ∈ FΣ without tuples – that
will be interpreted in the tuple algebra Sn – to some formula 〈φ〉n ∈ Fn

Σ with
tuples.

〈e .=e′〉n =def ∧n
i=1Πi(e)

.=Πi(e′) 〈φ ∧ φ′〉n =def 〈φ〉n ∧ 〈φ′〉n

〈¬φ〉n =def ¬〈φ〉n 〈∃x.φ〉n =def ∃x.〈φ〉n

Proposition 10. For any φ ∈ FΣ, Σ-structure S, and n ≥ 1: solS
n

(φ) =
n-solS(〈φ〉n).

276 E. Allart et al.

Example 11. Let 3 =def 1 + 1 + 1 and 4 =def 1 + 1 + 1 + 1. The formula φ ∈ FΣ

equal to:

3 ∗ x + 4 ∗ y
.=0

then has the same solutions over R2
+ than the formula 〈φ〉2 ∈ F2

Σ over R+ below:

3 ∗ .
π1(x) + 4 ∗ .

π1(y) .=0 ∧ 3 ∗ .
π2(x) + 4 ∗ .

π2(y) .=0

We next show how to rewrite any first-order formulas with tuples ψ ∈ Fn
Σ

into some first-order formula ν̃(ψ) ∈ FΣ without tuples. The idea is to replace
all projections πi(x) by new variables νi(x). For this, we first fix n generators of
fresh variables ν1, . . ., νn : V → V. Second, we map any expression o ∈ On

Σ with
projections to some expressions ν̃(o) ∈ EΣ without new variables:

ν̃(
.
πi(x)) =def νi(x), ν̃(c) =def c, ν̃(o1 � o2) =def ν̃(o1) � ν̃(o2).

Third, we map any formula ψ ∈ Fn
Σ with projections to some formula ν̃(ψ) ∈

FΣ with fresh variables:

ν̃(o = o′) =def ν̃(o) = ν̃(o′) ν̃(¬ψ) =def ¬ν̃(ψ)
ν̃(ψ ∧ ψ′) =def ν̃(ψ) ∧ ν̃(ψ′) ν̃(∃x.ψ) =def ∃ν1(x) . . . ∃νn(x). ν̃(ψ)

Given an variable assignment β : V → dom(S)n with V ⊆ V, we define ν(β) :
�n

i=1νi(V) → dom(S) such that for all x ∈ V :

ν(β)(νi(x)) = πi(β(x)))

Function ν is a bijection with range {α | α : �n
i=1νi(V) → dom(S)}. The inverse

of this function satisfies ν-1(α)(x) = (α(ν1(x)), . . . , α(νn(x)) for all α in the
range and all x ∈ V .

Proposition 12. For any ψ ∈ Fn
Σ, Σ-structure S, and n ≥ 1: n-solS(ψ) =

ν-1(solS(ν̃(ψ))).

Proposition 13. For any subset R of variable assignments of type V → dom(S)
where V ⊆ V, n ≥ 1, and Σ-abstraction h : S → Δ: ν-1(h ◦ R) = hn ◦ ν-1(R).

7 Difference Abstraction

We next show how to recast the notions of difference abstractions from [4,12,15]
by applying our notion of Σ-abstractions to the Σ-algebra R

2
+.

Let S be a Σ-algebra and V ⊆ V a subset of variables. For any two variable
assignments α, α′ : V → dom(S), we define an assignment of variables to pairs of
elements in the domain of the structure diff(α, α′) : V → dom(S)2 – that we call
the differences of α and α′ – such that for all variables x ∈ V , diff(α, α′)(x) =

Computing Difference Abstractions of Metabolic Networks 277

(α(x), α′(x)). For any subset R of variable assignments of type V → dom(S) we
define the set of differences of assignments in R by:

diff(R) = {diff(α, α′) | α, α′ ∈ R}

Furthermore, for any Σ-abstraction h : S2 → Δ and subset R′ of difference
abstractions of type V → dom(S)2 we define the application of the abstraction
h to R′ by h ◦ R′ =def {h ◦ β | β ∈ R′}
Definition 14. For any Σ-abstraction h : S2 → Δ and formula φ ∈ FΣ we
define the difference abstraction of the S-solution set of φ by: solS(φ)Δ = h ◦
diff(solS(φ))).

The original definition of sol(φ)Δ6 in [15] did not make explicit the roles of
diff and hΔ6 : R2

+ → Δ6. Having done so, we can now see that the difference
abstraction of the R+-solution sets of a formula is the R

2
+-solution set of the

same formula.

Lemma 15. For any formula φ ∈ FΣ and Σ-structure S: diff(solS(φ)) =
solS

2
(φ).

As an immediate consequence, we have for any Σ-abstraction h : S2 → Δ
that sol(φ)Δ = hΔ ◦ solS

2
(φ). Our next objective is to show that we can overap-

proximate the set sol(φ)Δ by solΔ(φ) (Corollary 19). In order to show this, let
h′:S′ → Δ be a Σ-abstraction and α be a variable assignment into dom(S′):

Lemma 16. For any expression e ∈ EΣ with V (e) ⊆ dom(α): h′(�e�S′,α) ⊆
�e�Δ,h′◦α.

Proposition 17. For any positive formula φ ∈ FΣ with V (φ) ⊆ dom(α):
�φ�S′,α ≤ �φ�Δ,h′◦α.

Theorem 18. For any positive formula φ ∈ FΣ: h′ ◦ solS
′
(φ) ⊆ solΔ(φ).

Corollary 19. For any Σ-abstraction h : S2 → Δ and positive first-order for-
mula φ ∈ FΣ:

solS(φ)Δ = h ◦ diff(solS(φ)) ⊆ solΔ(φ)

This is an obvious consequence from Theorem 18 and Proposition 15. If Δ is
finite then the set solΔ(φ) is finite. If furthermore φ is a conjunctive formula,
we can therefore compute the set solΔ(φ) by a finite domain constraint solver
(such as e.g. Minizinc [18]). In contrast, it remains unclear how to compute the
finite set h ◦ diff(solS(φ)) for infinite structures S. The problem is open, even if
φ is a system of homogenous linear equations and S = R+, so that the infinite
set solS(φ) has a finite solved form by a triangular matrix. This is the core of
the objective that we tackle in the remainder of the present paper.

278 E. Allart et al.

8 Objective

We formalize the full algorithmic problem that we will solve in this paper and
illustrate its relevance to our benchmark application to systems biology.

Once having fixed the parameter Δ ∈ {Δ3,Δ6} the algorithmic problem has
three inputs:

Linear system over R+: a first-order formula φ ∈ FΣ that represents a linear
equation system. (This formula typically captures the steady state equations
of the model.)

Constraint over Δ: a first-order formula φ′ ∈ FΣ∪Δ where the signature Σ is
extended with additional constants of Δ that will be interpreted by them-
selves. (This formula typically expresses the partial kinetic knowledge on
the reactions in the model and the change target of the prediction task (e.g.
overproduction of some metabolites).)

Set of observable variables: a finite subset of variables V ⊆ V(φ) ∪ V(φ′).
(This set typically contains the control variables such as inflows and gene
knockouts as well as the target variables, but not the variables for the rate
of the internal metabolic reactions. Since the number of solutions may be of
cardinality |Δ||V |, it is essential to choose V as small as possible.)

The algorithmic output that has to be produced is the Δ-abstraction of dif-
ferences of R+-solutions of φ, but constrained to the solutions of φ′ over the
structure Δ, and projected to the variables of V . In other words, the algorithm
will compute the following finite set where V ′ = V(φ) ∪ V(φ′):

{β|V | β ∈ sol
R+
V ′ (φ)Δ ∩ solΔV ′(φ′)}

The only restriction on the inputs that we will impose is that the first formula φ
must represent a homogeneous system of linear equations in FΣ . For instance,
the linear equation x − 2y = 0 is captured by the equation x

.=y + y in FΣ

where we cannot use the minus operator. See Sect. 9 for the general definition.
The constraint φ′ ∈ FΣ∪Δ in contrast may be arbitrary, including nonlinear
equations and universal quantifiers but must be interpreted abstractly over Δ,
while the linear equation system is valid over R+. Note however, that any uni-
versal quantifiers in φ′ can be expressed by a simple conjunction, given that the
interpretation domain Δ is finite.

In Fig. 7 we illustrate how the inputs will be instantiated for our benchmark
application of leucine overproduction (a glimpse of the reaction network was
given in Fig. 2). In this case, we choose the parameter Δ = Δ6. The observable
variables in V stand for the rates of the inflows Threonine (xThr), Akb (xAkb),
etc, the rate of the target outflow Leucine (yLeu), and the possible gene knock-
outs. The system of linear equations φ contains the steady state equations for
the metabolic reactions in the network. These require that all metabolites must
be produced and consumed at the same rate. For instance, Pyruvate is produced
by the inflow of Threonine at rate xThr and consumed by reactions 27 and 30
at rates r27 and r30 respectively. The yields the linear equation (Thr) of Fig. 7.

Computing Difference Abstractions of Metabolic Networks 279

Fig. 7. Inputs of our algorithm on the benchmark example from of leucine overproduc-
tion.

Species Akb is produced by reaction 41 and consumed by 27, leading to the
steady state equation (Akb). Leucine is produced by reaction 45 and consumed
by its outflow, leading to equation (Leu). The constraint φ ∈ FΣ∪Δ6

contains
the overproduction target yLeu = ↑ in (target) and the kinetic constraints for
all reactions, of which we show only constraint (27) for reaction 27. The kinetic
constraints must be interpreted abstractly over Δ6 according the formal seman-
tics of the modeling language [15] rather than concretely over R+. Therefore,
the meaning of the constraints is purely qualitative and not at all quantitative.
For instance, the constraint (27) states (beside others) that rate of reaction 27
increases if either of the concentrations of the reactants Pyr and Akb or of the
enzymes IlvD, IlvBH or IlvC increase. Nothing is said about quantities of these
increases.

9 Exact Algorithms

We now present an exact solution of the problem presented in the previous
section. Our approach is to characterize the abstraction of the solution set of a
linear equation system as the solution set of some first-order formula over the
abstract domain. We consider the abstractions hB, hΔ3 , and hΔ6 in this order.

Characterizing B-Abstractions. We now present a result from [1] that shows
that the boolean abstraction of the R+-solution set of a mixed linear system can
be computed exactly. The development of this result was motivated by the needs
of the present paper, but given that it is of independent interest and nontrivial
to prove, we decided to present it independently.

Any natural numbers n can be described by the expression n =def

∑n
i=1 1

in EΣ . This permits to define linear equations as equations in FΣ that have the
form:

n1 ∗ x1 + . . .nm ∗ xm
.=nm+1 ∗ xm+1 + . . . + np ∗ xp (3)

where m, p, n1, . . . , np ∈ N and x1, . . . , xp ∈ V.

Mixed Linear Systems. A product-zero-equation in FΣ is an equation of the form
x ∗ y

.=0 where x, y ∈ V. A mixed linear system is a conjunctive formula in FΣ

of the form ∃z. L ∧ E where L is a conjunction of linear equations and E a
conjunction of product-zero-equations.

Elementary Flux Modes. The support of a variable assignment α : V → R with
V ⊆ V is supp(α) = {x ∈ dom(α) | α(x) = 0}. Given a linear system φ, the

280 E. Allart et al.

EFMs of φ are the minimal support solutions of φ over R+. The R-EFMs of φ
are the minimal support solutions of φ over R. Note that the interpretation of R
is natural for the steady-state equations of metabolic networks with reversible
reactions, while the reactions of our networks are always irreversible.

Theorem 20 [1]. Let φ be a mixed linear system. We can compute in at most
exponential time some conjunctive formula φ′ with existential quantifiers such
that hB ◦ solR+(φ) = solB(φ′).

Proof Sketch. There are quite some insights behind this theorem that we can
only sketch here. First, any linear equation L system can be rewritten in the form
Ay .=0 where A is an integer matrix and y a sequence of pairwise distinct variables
such that V (y) = V (L). Let P be a positive integer matrix whose columns
contain all the EFMs of A. These can be computed in at most exponential time
[19]. Then solR+(Ay .=0) is equal to solR+(∃x. Px .=y) given that any solution
of Ay .=0 over R+ can be obtained from some linear combination of the EFMs
of A. Second, a formula φ ∈ FΣ is called hB-exact if solB(φ) = hB ◦ solR+(φ).
Unfortunately, not every linear systems is hB-exact. However, the formula φ′′

equal to ∃x.Px .=y can be shown to be hB-exact, roughly since matrix P contains
only positive integers. Third, it was noticed that any conjunction of product-zero
equations is hB-exact as well. Fourth, for any system of product-zero equations
E and any sequence of variables z, the formula φ′ equal to ∃z.φ′′ ∧ E can be
shown to be hB-exact. Finally, any mixed linear systems φ can be brought into
the form of φ′ by computing the EFMs of the matrix A of the linear subsystem
of φ in exponential time. ��
Exact Algorithm. In order to compute the hB-abstraction of a mixed linear system
φ, we first compute φ′ along the lines of the sketch of the proof ideas of Theo-
rem 20. Second, given that φ′ is a conjunctive formula, we compute solB(φ′) by
finite domain constraint programming.

Characterizing Δ3-Abstractions. We present a characterization of Δ3-
abstractions of linear equation systems and show that it provides an exact algo-
rithm solving the objective in the case of Δ3. We first decompose hΔ3 into hB

and the binary relation, that is defined by the following first-order formula in
the logic with pairs F2

Σ :

projG(x, y) =def
.
π1(x) +

.
π2(y) =

.
π2(x) +

.
π1(y) ∧ .

π1(y) ∗ .
π2(y) = 0

We are mainly interested in interpreting this formula over R
2
+.

Lemma 21. The relation projGR
2
+ is a function satisfying hΔ3 = h2

B
◦ projGR

2
+ .

We next define applications of projG in FO-logic. For any sequence of vari-
ables y and FO-formula φ(y) ∈ F2

Σ with V(φ(y)) ⊆ {y} we define a formula
projG(φ(y)) ∈ F2

Σ describing the application of projG to the solutions of φ(y)
by ∃z. φ(z) ∧ projG(z,y) where φ(z) is obtained from φ(y) by replacing the
variables in y by arbitrarily but fixed fresh variables z.

Computing Difference Abstractions of Metabolic Networks 281

Lemma 22. projGR
2
+ ◦ 2-solR+(φ(y)) = 2-solR+(projG(φ(y))).

Theorem 23. For any linear formula L ∈ FΣ we can compute in at most
exponential time a positive conjunctive formula with existential quantifiers φ ∈
FΣ such that:

hΔ3 ◦ diff(solR+(L)) = ν-1(solB(φ))

Proof. Let L(y) be a linear system with V(L(y)) = V(y) where y is a sequence
of distinct variables. The time for computing φ is dominated by the time for
computing the elementary modes, which can be done in at most exponential
time.

hΔ3 ◦ diff(solR+ (L(y)))

Proposition 15 = hΔ3 ◦ solR
2
+(L(y))

Pair FO Proposition 10 = hΔ3 ◦ 2-solR+(L2(y)) with L2(y) = 〈L(y)〉2
Decomposition Lemma 21 = h2

B
◦ projG

R
2
+ ◦ 2-solR+ (L2(y)))

FO-Definition Lemma 22 = h2
B

◦ 2-solR+(projG(L2(y)))

Proposition 12 = h2
B

◦ ν-1(solR+ (ν̃(projG(L2(y)))))

Proposition 13 = ν-1(hB ◦ solR+ (ν̃(projG(L2(y)))))

Definition of projG(L2(y)) = ν-1(hB ◦ solR+ (ν̃(∃z. L2(z) ∧ projG(z,y))))
Mixed linear systems Theorem 20 = ν-1(solB(φ)

where φ is an equivalent conjunctive formula for the

mixed linear sytem ν̃(∃z. L2(z) ∧ projG(z,y))

��
Note that solB(φ) can be computed by finite domain constraint programming.

This yields an exact algorithm for computing the Δ3-abstraction of a system of
linear equations, which is a special case of our general objective without kinetic
constraints.

For adding a treatment of kinetic constraints, we consider the union B ∪ Δ3

as a relational structure providing the values and functions of both structures B
and Δ3. The signature of this mixed structure consists of the function symbols
in {+B, ∗B,+Δ3 , ∗Δ3} and the constants in the set B ∪ Δ3, all of which are
interpreted by themselves in the mixed structure B ∪ Δ3. The set of first-order
formulas over the mixed signature is denoted by F

B∪Δ3
. For any α : V →

dom(S), we can define its restriction α|V ′ : V ′ → dom(S) such that for all
y ∈ V ′ ⊆ V , α|V ′(y) = α(y).

Proposition 24. For any formulas φ ∈ FΣ and φ′ ∈ FΣ∪Δ3
and sets of

variables V ⊆ V ′ = V(φ) ∪ V(φ′) we can compute in linear time a formula
φM ∈ F

B∪Δ3
over the mixed signature such that: solB∪Δ3(φM) = {β|V | β ∈

ν-1(solBV ′(φ)) ∩ solΔ3
V ′ (φ′)}.

The set solB∪Δ3(φM) can be computed by a finite domain constraint pro-
gramming, since B ∪ Δ3 is a finite structure. By combining Theorem23 and
Proposition 24 we obtain an algorithm for solving the general problem of Sect. 8
in the cases of Δ3.

282 E. Allart et al.

Characterizing Δ6-Abstractions. The case of Δ6 is considerably more
envolved that the case of Δ3, even though following the same general approach.
For this, we consider the abstraction hΔ6 as an element of the algebra of total
functions on R

2
+, that we denote as R

2
+ → R

2
+. The following lemma shows that

hΔ6 is the sum of hΔ3 and h2
B

in this Σ-algebra.

Lemma 25. hΔ6 = h2
B
+hΔ3 where + = +R

2
+→R

2
+ .

Let idprojGR
2
+ : R

2
+ → (R2

+)2 such that for any p ∈ R
2
+ idprojGR

2
+(p) =

(p, projGR
2
+(p)). Furthermore, we define for any two functions g : A → B × C

and f : B × C → D the pseudo composition f • g : A → D such that for all
a ∈ A: (f • g)(a) = f(π1(g(a)), π2(g(a))). The Σ-abstraction h2

B
: R

2
+ → B

2

allows us to define (h2
B
)2 : (R2

+)2 → (B2)2.

Lemma 26 Decomposition. hΔ6 = +R
2
+ • (h2

B
)2 ◦ idprojGR

2
+ .

We can now define the ternary relation idprojGR
2
+ in the first-order logic with

pairs by idprojG : V × V2 → F2
Σ such that for all x, y1, y2 ∈ V:

idprojG(x, y1, y2) =def 〈x = y1〉2 ∧ projG(x, y2)

We next define applications of idprojG in FO-logic. For any sequence of vari-
ables y and FO-formula φ(y) ∈ F2

Σ with V(φ(y)) ⊆ {y} we define a formula
idprojG(φ(y)) ∈ F2

Σ for describing the application of idprojG to the solution
set of φ(y). We let idprojG(φ(y) be ∃z. φ(z) ∧ idprojG(z,y1,y2) where φ(z) is
obtained from φ(y) by replacing the variables in y by arbitrarily but fixed fresh
variables z and by fixing two sequences of fresh variables y1,y2 ∈ Vm such that
y = (y1,y2).

Lemma 27. idprojGR
2
+ ◦2-solR+(φ(y))={[y/(α(y1), α(y2)]|α∈2-solR+(idprojG

(φ(y)))}.
Theorem 28. For any linear formula L(y) with free distinct variable y we can
compute in at most exponential time a positive conjunctive formula with exis-
tential quantifiers φ′ ∈ FΣ and sequences of variables y1,y2 such that:

hΔ6 ◦ diff(solR+(L(y))) = {[y/(β(y1) +R
2
+ β(y2)] | β ∈ ν-1(solB(φ′))}

Proof. Let L(y) be a linear formula L with free distinct variable y ∈ Vm.

hΔ6 ◦ diff(solR+(L(y)))

Proposition 15 = hΔ6 ◦ solR
2
+ (L(y))

Proposition 10 = hΔ6 ◦ 2-solR+ (L2(y)) with L2(y) = 〈L(y)〉2
Decomposition Lemma 26 = +R

2
+ • (h2

B
)2 ◦ idprojG

R
2
+ ◦ 2-solR+ (L2(y))

FO-Definition Lemma 27 = +R
2
+ • (h2

B
)2 ◦ {[y/(α(y1), α(y2)] | α ∈ 2-solR+ (idprojG(L2(y)))}

= +
h
R
2
+ • {[y/(β(y1), β(y2)] | β ∈ h2

B
◦ 2-solR+ (idprojG(L2(y)))}

= {[y/(β(y1) +R
2
+ β(y2)] | β ∈ h2

B
◦ 2-solR+(idprojG(L2(y)))}

Computing Difference Abstractions of Metabolic Networks 283

Fig. 8. Predictions for the networks analysed in this paper, obtained respectively by
pure abstract interpretation, the heuristic based on minimal support consequences and
the exact algorithm.

We can now finish the proof by computing the h2
B

abstraction of the above
solution set similarly to the case of Δ3.

h2
B

◦ 2-solR+(idprojG(L2)(y))

Proposition 12 = h2
B

◦ ν-1(solR+ (ν̃(idprojG(L2(y))))

Proposition 13 = ν-1(hB ◦ solR+ (ν̃(idprojG(L2(y)))))

Definition of idprojG(L2(y)) = ν-1(hB ◦ solR+ (ν̃(∃z. L2(z) ∧ idprojG(z,y))))
Mixed linear systems Theorem 20 = ν-1(solB(φ′))

where φ′ is conjunctive formula equivalent to the

mixed linear system ν̃(∃z. L2(z) ∧ idprojG(z,y))

��
For adding a treatment of kinetic constraints, we consider the union B ∪ Δ6

as a relational structure providing the values and functions of both structures B
and Δ6 in analogy to the case of Δ3. We denote the of first-order formulas over
the signature of this mixed structure by F

B∪Δ6
.

Proposition 29. For any formula φ(y) ∈ FΣ with distinct free variables y,
formula φ′ ∈ FΣ∪Δ6

, and variable sets V ⊆ V ′ = V(y) ∪ V(φ′) we can
compute in linear time a formula φM ∈ F

B∪Δ6
such that solB∪Δ6(φM) =

β|V | β ∈ {[y/(β′(y1) +R
2
+ β′(y2)) | β′ ∈ ν-1(solBV ′(φ))} ∩ solΔ6

V ′ (φ′).

The set solB∪Δ6(φM) can be computed by a finite domain constraint pro-
gramming, since B ∪ Δ6 is a finite structure. By combining Theorem28 and
Proposition 29 we obtain an algorithm for solving the general problem of Sect. 8
in the case of Δ6.

10 Heuristic Algorithm Based on Minimal Support
Consequences

The intuition behind the heuristic with minimal support consequences relies on
two facts: first, adding consequences to a given linear system L before applying
abstract interpretation can improve the precision of the abstraction, as already
discussed (2); second, the smaller the number of variables in an equation, the
more constraining generally is its abstract interpretation. The heuristics is there-
fore very simple: before abstracting from R+ to Δ, the linear system L containing

284 E. Allart et al.

the steady state equations of the system is replaced by a linear system Lmin con-
taining all the minimal support R+-consequences of the equations in L. The
linear system Lmin can be computed by applying any existing algorithm for the
calculation of R-EFMs to the orthogonal complement of L⊥ as follows:

1. From L compute a linear system L⊥ whose solution space – seen as a subspace
of the vector space R

V(L) – is the orthogonal complement of solR+(L). This
can be done for example by using a variant of Gauß’ triangularization method.

2. From L⊥ compute the R-EFMs lmin
1 , . . . , lmin

k with any known R-EFMs algo-
rithm.

3. Build Lmin by using lmin
1 , . . . , lmin

k as the coefficients of the equations of Lmin.

11 Experimental Results

We experimentally compare three algorithms for overapproximating the objec-
tive {β|V | β ∈ sol

R+
V ′ (φ)Δ6 ∩ solΔV ′(φ′)} given a linear system of equations φ,

kinetic constraints φ′, and observable variables V . The first algorithm directly
applies pure abstract interpretation to φ to compute solΔ6(∃V .(φ∧φ′)) by finite
domain programming where V = V(φ) \ V , overapproximating the objective by
Theorem 18. The second algorithm enriches the linear system φ with its minimal
support consequences as discussed in Sect. 10 before applying abstract interpre-
tation. The third algorithm is the exact algorithm that can be derived from
Theorem 28.

The experimental results are summarized in Fig. 8. The first instance verifies
our expectations on the toy metabolic network with a simple cycle in Fig. 1,
without kinetic constraints and V = {X,Y } as observable variables. The exact
algorithm shows that there are 6 abstract solutions, one for each value of Δ6. The
heuristic with minimal support consequences finds exactly these same 6 abstract
solutions, while by applying pure abstract interpretation we find 19 abstract
solutions (out of 36 possible assignments), thus a large overapproximation.

The second real scale instance treats leucine overproduction on the network
from Fig. 2, see Fig. 7 for a discussion of the precise inputs. The heuristic and
the exact algorithm produce the same result with 226 abstract solutions, while
by pure abstract interpretation 292 abstract solutions are found. Thereby, the
two new algorithms both remove the same 2 wrong gene knockout predictions
with respect to baseline algorithm by pure abstract interpretation.

However, the heuristics with minimal support
consequences is not always exact: we found a
counter example given on the right for which it
slightly overapproximates the exact solution set.

On the other hand, the heuristic algorithm with
EFM-consequences is remarkably faster than the
exact algorithm – in the benchmark on leucine over-
production, we have 5 min versus 5 h – while still
being equally precise in most cases.

Computing Difference Abstractions of Metabolic Networks 285

References

1. Allart, E., Niehren, J., Versari, C.: Computing sign abstractions of linear sys-
tems. Working paper or preprint, hal-02279942, v1, September 2019. https://hal.
archives-ouvertes.fr/hal-02279942

2. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling bio-
logical systems and formalizing experimental knowledge. Bioinformatics 22(14),
1805–1807 (2006)

3. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282 (1979)

4. Coutte, F., Niehren, J., Dhali, D., John, M., Versari, C., Jacques, P.: Modeling
leucine’s metabolic pathway and knockout prediction improving the production of
surfactin, a biosurfactant from bacillus subtilis. Biotechnol. J. 10(8), 1216–34 (2015)

5. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: exact and automated model reduction. In:
LICS, pp. 362–381. IEEE Computer Society (2010)

6. Facchetti, G., Altafini, C.: Partial inhibition and bilevel optimization in flux bal-
ance analysis. BMC Bioinform. 14, 344 (2013)

7. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential
equations. Theoret. Comput. Sci. 599, 64–78 (2015)

8. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. The-
oret. Comput. Sci. 403(1), 52–70 (2008)

9. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactors. Chem. Eng. Sci. 42(10), 2229–2268 (1987)

10. Forbus, K.D.: Qualitative reasoning. In: Tucker, A.B. (ed.) The Computer Science
and Engineering Handbook, pp. 715–733. CRC Press, Boca Raton (1997)

11. Hoops, S., et al.: Copasi-a complex pathway simulator. Bioinformatics 22(24),
3067–3074 (2006)

12. John, M., Nebut, M., Niehren, J.: Knockout prediction for reaction networks with
partial kinetic information. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.)
VMCAI 2013. LNCS, vol. 7737, pp. 355–374. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35873-9 22

13. Lotz, K., Hartmann, A., Grafahrend-Belau, E., Schreiber, F., Junker, B.H.:
Elementary flux modes, flux balance analysis, and their application to plant
metabolism. In: Sriram, G. (ed.) Plant Metabolism. MMB, vol. 1083, pp. 231–252.
Humana Press, Totowa, NJ (2014). https://doi.org/10.1007/978-1-62703-661-0 14

14. Maranas, C.D., Zomorrodi, A.R.: Flux balance analysis and LP problems. Chap.
3, pp. 53–80. Wiley-Blackwell (2016)

15. Niehren, J., Versari, C., John, M., Coutte, F., Jacques, P.: Predicting changes
of reaction networks with partial kinetic information. BioSystems 149, 113–124
(2016)

16. Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis? Nat. Biotech-
nol. 28(3), 245–248 (2010)

17. Papin, J.A., Stelling, J., Price, N.D., Klamt, S., Schuster, S., Palsson, B.O.: Com-
parison of network-based pathway analysis methods. Trends Biotechnol. 22(8),
400–405 (2004)

18. Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent meta-
search language for MiniZinc. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp.
376–392. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 27

19. Zanghellini, D., Ruckerbauer, D.E., Hanscho, M., Jungreuthmayer, C.: Elementary
flux modes in a nutshell: properties, calculation and applications. Biotechnol. J. 8,
1009–1016 (2013)

https://hal.archives-ouvertes.fr/hal-02279942
https://hal.archives-ouvertes.fr/hal-02279942
https://doi.org/10.1007/978-3-642-35873-9_22
https://doi.org/10.1007/978-3-642-35873-9_22
https://doi.org/10.1007/978-1-62703-661-0_14
https://doi.org/10.1007/978-3-319-23219-5_27

Tool Papers

BRE:IN - A Backend for Reasoning
About Interaction Networks

with Temporal Logic

Judah Goldfeder1 and Hillel Kugler2(B)

1 Yeshiva University, New York, USA
ygoldfed@gmail.com

2 Bar-Ilan University, Ramat-Gan, Israel
hillelk@biu.ac.il

Abstract. We present the BRE:IN tool, a Backend for Reasoning about
Interaction Networks. Our tool supports the framework and methodol-
ogy originally introduced by the RE:IN tool, where an Abstract Boolean
Network (ABN) specifies partial information about the network topology,
and experimental observations are used to constrain the ABN, allowing
to synthesize consistent models, or prove that no consistent model exists.
RE:IN has been used successfully to derive mechanistic models of biolog-
ical systems allowing to gain new insights into cellular decision-making
and to make predictions that were validated experimentally. BRE:IN
implements translations of experimental observations to temporal logic
and captures the semantics of ABNs as transition systems, enabling to
use off-the-shelf model checking algorithms. We make our tool and bench-
marks publicly available and demonstrate the utility of the tool, provid-
ing speed-up gains for some benchmarks, while also enabling extensions
of the experimental observations specification language currently sup-
ported in RE:IN by using the rich expressive power of temporal logic.

1 Introduction

One of the main challenges in Biology is deciphering and understanding the
complex networks of genetic interactions driving cellular behavior and decision-
making. Often such genetic Interaction Networks are represented in the biological
literature as a directed graph, where an edge from one component to another
represents a direct genetic interaction, that can have an effect of either activation
or repression. Providing formal semantics to such diagrams opens the way to
utilizing computational methods for comparing the dynamics of the networks
to known experimental measurements, and making new predictions that can be
tested experimentally.

Previously, the Reasoning Engine for Interaction Networks (RE:IN), a formal
verification based approach and tool [6,17] enabling the synthesis and analysis
of Boolean Networks (BNs) [11] was developed, where only partial information
on the genetic interactions and update rules is explicitly known. The RE:IN
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 289–295, 2019.
https://doi.org/10.1007/978-3-030-31304-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_15

290 J. Goldfeder and H. Kugler

tool is provided with experimental constraints representing measurements of
the different components under various experimental conditions, and then it
can automatically synthesize BNs that match the partial information known
about the network topology and also satisfy all experimental constraints. Here
we present BRE:IN, a new backend implementation for RE:IN which is based
on using off-the-shelf model checking methods and an encoding of experimental
observations via temporal logic [9]. BRE:IN is a command line tool made publicly
available with the aim of extending the synthesis capabilities of RE:IN in terms
of expressive power and performance.

The main contributions of our new tool are: (1) We encode the experimen-
tal observations specification language supported by RE:IN in temporal logic
allowing us to specify more expressive temporal properties, or simplify the rep-
resentation of some properties that can already be represented in RE:IN but
in a more complex manner; (2) We capture the semantics of Abstract Boolean
Networks (ABNs) as a transition system using the SMV format of the NuSMV
model checking tool [3], making explicit the semantic interpretation provided
to interaction networks in RE:IN and enabling the application of formal verifi-
cation methods to the analysis and synthesis of consistent models; and (3) We
make the tool and benchmarks publicly available and open source to encourage
reproducibility and support further research in scaling up the methods to the
challenges provided by current real-world biological models and data.

2 Background

In this section we briefly explain the synthesis-based approach supported by
RE:IN [6,17]. The modeling starts with an ABN (Fig. 1(A)), which extends clas-
sical BNs [11], a well studied and widely used formalism providing Boolean
abstractions of genetic systems. In a BN every gene is represented by a Boolean
variable specifying whether the gene is active or inactive. The concept of an
ABN allows the representation of models with partial information on the net-
work topology and dynamics.

Rather than allowing the use of any arbitrary update function as allowed in
classical BNs, a set of biologically plausible update function templates, which are
called regulation conditions, is used to define the combined effect of activators
and repressors. The regulation conditions satisfy monotonicity, and only consider
whether none, some, or all potential activators or repressors are active.

To capture the possible uncertainty in the precise network topology, the ABN
formalism allows some interactions to be marked as optional. Each optional inter-
action could be included or excluded from a synthesized concrete model. Thus, in
terms of network topology, for n optional interactions, an ABN model specifies
a set of 2n concrete models, each corresponding to a unique selection of optional
interactions. Additionally, a choice of several possible regulation conditions for
each gene is allowed. An ABN is transformed into a concrete model by select-
ing a subset of the optional interactions to be included and assigning a specific
regulation condition for each gene.

BRE:IN - A Backend for Reasoning About Interaction Networks 291

Fig. 1. Toy Model: (A) An Abstract Boolean Network with components S1, S2, A, B,
C. Four of the interactions A → B, B → A, A → C and B → C are optional interactions
that are depicted with dashed lines in the diagram. (B) Experimental observations are
specified on the dynamics of the network using an observation specification language
defined in RE:IN. (C) After running synthesis, 8 solutions are found to be consistent
with all the experimental constraints, they are shown graphically as columns 0 .. 7
highlighting which optional interactions were chosen in each concrete model.

A set of experimental observations that each concrete model needs to be able
to satisfy are encoded as predicates over system states (Fig. 1(B)) which limits
the possible consistent choices of the optional interactions and regulation con-
ditions. The synthesis problem is, given an ABN and a set of experiments, find
a choice of optional interactions and regulation conditions for each gene, guar-
anteeing that the resulting concrete model is consistent with all experimental
observations (Fig. 1(C)), or prove that no consistent models exist. To synthesize
consistent models, RE:IN encodes the synthesis problem using the Z3 Satisfia-
bility Modulo Theories (SMT) solver [5] and utilizes a bounded model checking
strategy to search for a consistent model or prove that no such model exists. In
this work we develop BRE:IN to try and improve the running time of the synthe-
sis methods towards tackling larger networks with more experimental constraints
than currently feasible, utilizing model checking algorithms for temporal logic
properties.

3 BRE:IN Tool

BRE:IN is a command line tool that serves as an extended backend for reason-
ing about interaction networks and is publicly available at github [8]. It uses the
NuSMV model checker [3] to perform the synthesis on the translated models,
whereas the RE:IN tool uses the Z3 SMT solver [5]. BRE:IN allows to use off-the-
shelf verification algorithms to analyze RE:IN models and synthesize concrete

292 J. Goldfeder and H. Kugler

consistent networks. BRE:IN can also make use of the expressiveness of tem-
poral logic to specify behavioral properties not directly expressible in RE:IN.
BRE:IN can encode the models in two different encodings, referred to hence-
forth as modes. While both modes can encode the same ABNs, they differ in
terms of what types of specifications they can handle while performing synthesis.
The first mode, time step, can handle specifications of the same form that RE:IN
deals with, namely where values are ascribed to different experiments at specific
time steps. The second mode, temporal logic, supports specifications that can
contain more complex dynamics using temporal logics. BRE:IN supports both
computation tree logic (CTL) [4] and linear temporal logic (LTL) [14]. In both
modes BRE:IN synthesizes and then enumerates all consistent models (up to a
specified limit) that satisfy the topology, regulation conditions and observation
constraints, see (Fig. 1(C)). Next we describe the functionality of both modes.

time step mode: This mode is designed to deal with the same set of spec-
ifications as in RE:IN. It accepts the same files that RE:IN reads from, namely
a file with a .net extension that describes the network and a file with a .spec
extension that describes the specification. Like in RE:IN, the observation specifi-
cation language only allows for assertions at specific time steps. In several cases,
BRE:IN running in this mode was able to outperform RE:IN.

temporal logic mode: This mode can deal with a larger range of specifica-
tions than RE:IN. It reads from the same model file as before (.net extension),
but instead of reading the specification from .spec files, it deals with one of two
file types, .ctlspec extension (for CTL properties) and .ltlspec extension (for LTL
properties).

This added expressiveness brings two primary advantages. First off, in some
cases, converting the time-step specifications to LTL/CTL can lead to a perfor-
mance boost. The second advantage is that various specifications not expressible
in the more limited time-step format of RE:IN can now be specified. BRE:IN
supports arbitrarily complex CTL and LTL specifications, to allow for more
nuanced and complex specifications than RE:IN. We have also implemented in
the tool a validation component that independently of the synthesis algorithm
checks that the synthesized models indeed satisfy all the experimental observa-
tions, to detect and avoid errors in our tool implementation.

We have implemented interaction network synthesis algorithms in BRE:IN,
and evaluated them on key biological benchmarks studied in RE:IN [6,17], the
runtime for our new tool BRE:IN and a command line version of RE:IN is shown
in Table. 1. There are some cases in which BRE:IN outperformed the original
RE:IN, although in general there are other cases in which RE:IN performed
better. The main advantage in our view is the enhanced expressive power of
temporal logics that can be added on top of the existing specification language.
Temporal logic can be used naturally to specify steady-state behaviour, which is
common in biological experiments (e.g. embryonic stem cell model [6]). RE:IN’s
specification language would require to precisely specify the timepoint in which
the steady-state occurs while our extension provides a more robust way to spec-
ify such dynamics. Another example of temporal logic’s relevance is specifying

BRE:IN - A Backend for Reasoning About Interaction Networks 293

required ordering between events (e.g. cell cycle model [17]) without having to
specify the absolute timing in which the specific events occur. LTL enables speci-
fying explicitly that a certain behaviour must always occur, whereas the existing
specification language can only specify that a certain behaviour is possible.

Table 1. Runtime for benchmarks analyzed with our BRE:IN tool and command line
version of RE:IN, time shown in seconds running on a standard laptop with Intel i5-
4210 CPU at 1.70 GHz and 8.0 GB memory. The benchmarks called ltl1 .. ltl4, ctl1,
ctl2 use temporal logic specifications so can only be directly analyzed with BRE:IN.

Benchmark BRE:IN RE:IN Nodes Semantics

toy 0.5 0.9 5 Sync

pluri1 112.0 130.3 16 sync

pluri2 66.3 72.2 16 sync

pluri3 183.3 588.2 16 sync

pluri4 42.2 19.1 16 sync

myeloid 1.5 2.7 11 async

ltl1 0.3 − 5 sync

ltl2 0.4 − 5 sync

ltl3 6.2 − 16 sync

ltl4 5.7 − 16 sync

ctl1 0.4 − 5 sync

ctl2 0.5 − 11 async

BRE:IN synthesis algorithms can handle Boolean networks with either syn-
chronous or asynchronous semantics (In Table 1 models myeloid, ctl2 are asyn-
chronous, while all the other models are synchronous). In terms of performance,
additional work is still required to scale up the synthesis algorithms to tackle
even larger interaction networks with more experimental constraints, thus we
hope our tool can serve as a reference implementation and encourage additional
research in this direction.

4 Related Work

Developing synthesis and verification methods for biological systems is an active
area of research [1,2,7,10,12,13,16]. Synthesis methods can automate the pro-
cess of model development constrained by experimental data and enable rapid
construction of predictive models. The inherent complexity of synthesis methods
is a major challenge that needs to be addressed to make synthesis algorithms
more broadly applicable in biology. Synthesis in BRE:IN does not consider an
adversarial environment as is typically the case in reactive synthesis [15], extend-
ing the framework in this direction remains a future research direction.

294 J. Goldfeder and H. Kugler

Acknowledgment. The research was partially supported by the Horizon 2020
research and innovation programme for the Bio4Comp project under grant agree-
ment number 732482. This research was also supported by the ISRAEL SCIENCE
FOUNDATION (grant No. 190/19).

References

1. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for sys-
tems biology. PLoS Comput. Biol. 12(1), e1004591 (2016)

2. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36481-1 13

3. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000)

4. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Dunn, S.-J., Martello, G., Yordanov, B., Emmott, S., Smith, A.G.: Defining an
essential transcription factor program for näıve pluripotency. Science 344(6188),
1156–1160 (2014)

7. Fisman, D., Kugler, H.: Temporal reasoning on incomplete paths. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 28–52. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03421-4 3

8. Goldfeder, J., Kugler, H.: https://github.com/kuglerh/BREIN (2019)
9. Goldfeder, J., Kugler, H.: Temporal logic based synthesis of experimentally con-

strained interaction networks. In: Chaves, M., Martins, M.A. (eds.) MLCSB 2018.
LNCS, vol. 11415, pp. 89–104. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19432-1 6

10. Guziolowski, C., et al.: Exhaustively characterizing feasible logic models of a sig-
naling network using answer set programming. Bioinformatics 29(18), 2320–2326
(2013)

11. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

12. Koksal, A.S., Pu, Y., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Synthesis of
biological models from mutation experimentss. In: SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM (2013)

13. Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing
and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 343–357. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9 23

14. Pnueli, A.: The temporal logic of programs. In: Proceedings 18th IEEE Symposium
Foundations of Computer Science, pp. 46–57 (1977)

15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings 16th
ACM Symposium Principles of Program Language, pp. 179–190 (1989)

https://doi.org/10.1007/3-540-36481-1_13
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-03421-4_3
https://github.com/kuglerh/BREIN
https://doi.org/10.1007/978-3-030-19432-1_6
https://doi.org/10.1007/978-3-030-19432-1_6
https://doi.org/10.1007/978-3-319-08867-9_23
https://doi.org/10.1007/978-3-319-08867-9_23

BRE:IN - A Backend for Reasoning About Interaction Networks 295

16. Woodhouse, S., Piterman, N., Wintersteiger, C.M., Göttgens, B., Fisher, J.: SCNS:
a graphical tool for reconstructing executable regulatory networks from single-cell
genomic data. BMC Syst. Biol. 12(1), 59 (2018)

17. Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A
method to identify and analyze biological programs through automated reasoning.
NPJ Syst. Biol. Appl. 2, 16010 (2016)

The Kappa Simulator Made Interactive

Pierre Boutillier(B)

Harvard Medical School, Boston, USA
Pierre Boutillier@hms.harvard.edu

Abstract. Like during software development, interactivity is of tremen-
dous help during model development. The more and the earlier feedback
come, the more efficiently the target is reached. This is true for human
as well as during mechanical model construction. If you try to mechan-
ically learn some parameters for a model by streaming potential values
for example, you would better stop as quickly as possible the simulations
that behave the worst toward the goal. The Kappa simulator KaSim has
been refactored to give the control to the user (human or an other pro-
gram) during the simulation, allowing to pause, restart, observe, modify,
prematurely stop, continue after the original end. Interventions on a sim-
ulation that can be offered as well as their consequences on the design
of a stochastic simulator of rule-based models are describe here.

Keywords: Interactivity · Rule-based modelling ·
Stochastic simulation

1 Introduction

Models in systems biology are useful when in silico runs provide more than what
can easily be observed in vivo. The outcome of executing a model has to super-
sede the cost of gathering necessary information to write it. Computing more
stuff is not enough. Biologists must be able to get these results in a exploitable
way.

Tools have been developed to take advantages of progresses made in formal
methods in the area of system-biology [1–3,5] and efforts have been put for
accessibility to users [4,6]. Nevertheless, unlike in the area of physical simulation
where tremendous effort in term of software development have been put to allow
a real dialogue during runs [7], tools to work at the level of quantitative or
logical simulation are often provided as a kind of black box that is fed at the
beginning of runs with a model, parameters and possibly some queries, and
computes outputs to be analysed afterwards without any possibility to interact
during executions. Model development and analyses are not linear processes at
all though. The first versions of models contain mistakes such as first versions
of software contain bugs. Every computational biologist can tell horror stories
where tardily reported errors cost a night of wasted computation.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 296–301, 2019.
https://doi.org/10.1007/978-3-030-31304-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_16&domain=pdf
http://orcid.org/0000-0001-5370-1597
https://doi.org/10.1007/978-3-030-31304-3_16

The Kappa Simulator Made Interactive 297

As for software, model development is made more efficient by static analyses
returning quickly potential loopholes in models. The other axis to reduce the
length of the modelling loop cycle is interactive execution.

This article defines the basis of an interaction language with a stochastic
simulator and presents how a simulator can be turned from a monolithic software
into an interactive server. It takes the example of KaSim, an interpreter for the
Kappa language. It is more critical in Kappa as temporal transformation are
described at the level of patterns not fully specified species so the state space is
so big that it is even difficult to anticipate what will be interesting to observe.

2 User Interfaces

There are 3 ways to use Kappa. Practical details to use them is on the website
https://kappalanguage.org

2.1 Command Line Interface

The historical way is to use the command line interface. In this case, the model
is written without interactive feedback in files using an external text editor.
The only interactivity comes from a bit of information about the simulation
progress printed on the standard output and the fact that Ctrl-c does not kill the
simulation but pauses it, allowing the user to fire some interventions (presented
later) and resume (or prematurely stop) the simulation.

2.2 Graphical User Interface

The educational way is to use Kappapp, a graphical interface available online
As it runs in a web browser, its efficiency relies on the one of the javascript
interpreter.

The possibility to run simulations at native speed is also provided.
In the Kappapp, the model is editable in a text editor embedded in the app.

On the fly, the model is parsed and errors are immediately reported as you type.
When the parsing is OK, the model is asynchronously sent to KaSa, the static
analyser for Kappa that reports back as soon as the results of its analyses are
available, triggering warning or exhibiting invariants of the model. The user can
therefore notice unexpected consequences of an input when she has it still in
mind.

Once the model seems to match the goal, a simulation can be launched
directly in the app. Results are returned and graphically rendered as soon as they
are available. During the track of the run, a pause button is there to immediately
give back the control, pause and wait for intervention. The intervention can
be either some unplanned requests for more feedback in order to get a better
understanding of the current state/behavior or an anticipated change in the
experimental setting (addition/deletion of a species, shut down/up of a rule, ...)
because what was expected has occurred already so you can move on to the next
step.

https://kappalanguage.org

298 P. Boutillier

2.3 Programmatic Interface

The scientific way to use Kappa is by running a batch of runs of (variants of) a
model.

The first option to do so is non interactive. One can use the command line
interface to launch all the runs and read the output files they generated to gather
and analyse the result.

The best option is to use Kappy, a python wrapper to drive Kappa simulation.
For example, running a simulation for 80 time units of a dummy model where

100 agents A form dimers reversibly and printing the abundance of monomers
every time units looks like:
import kappy
c l i e n t = kappy . KappaStd ()

model = (”%agent : A(x [x .A]) ”
”%var : k on 1e−2 ”
”A(x [.]) ,A(x [.]) <−> A(x [1]) ,A(x [1]) @ k on , 1 ”
”%p lo t : |A(x [.]) | ”
”%i n i t : 100 A() ”)

c l i e n t . add mode l s t r ing (model)
a s t = c l i e n t . p r o j e c t p a r s e ()
sim param = kappy . SimulationParameter (pause cond i t i on =”[T] > 80” ,

p l o t p e r i o d=1)
c l i e n t . s imu l a t i o n s t a r t (sim param)
r e s u l t s = c l i e n t . s imu l a t i o n p l o t ()
c l i e n t . shutdown ()

import matp lo t l i b . pyplot as pyplot
pyplot . p l o t ([d [0] f o r d in r e s u l t s [’ s e r i e s ’]] ,

[d [1] f o r d in r e s u l t s [’ s e r i e s ’]] ,
l a b e l=r e s u l t s [’ legend ’] [1])

pyplot . l egend ()
pyplot . show ()

We can then screen the effect of the constant rate k_on on the amount of
monomer at equilibrium by launching runs for different values.

3 Software Architecture

Internally, all the modes of interaction relies on the same infrastructure. The
elementary binaries are state-full servers that communicate on their standard
input/output through a specific asynchronous JSON based protocol.

This architecture is convenient because it is compatible both with unix pipe-
based communication between processes and WebWorkers, the framework to
mimic threads in javascript. It allows to build both a version purely embedded
in a web-browser and a native code efficient one.

Asynchronicity is very important. As there is only 1 sequential communi-
cation channel, preventing any communication during the wait for a reply of
a computationally heavy request is not an option. Moreover some intermedi-
ary result may be of interest for the user and monopolising the communication

The Kappa Simulator Made Interactive 299

channel forbids to send them. Therefore, a request that may be non immediate
is split in two. One request to launch the computation that just returns “it’s
ongoing” unless there is an obvious problem and one request to poll the results
that also replies immediately either the result once it’s available or “come back
later”.

An ecosystem of server realizing elementary tasks is also an easy way to
introduce parallelization. Instead of multi-threading one process to run a batch
of simulations, you spawn one scheduler and as many simulator processes as you
have simulations to run.

Having a JSON based protocol and documenting it in a “standard” descrip-
tion language (swagger in this case) facilitates the construction of bindings for
script languages as it is done with Python. The R language is the obvious next
candidate where it would be relevant.

4 Intervention Language

Kappa intervention language offers 3 kinds of actions.

real perturbations $UPDATE variable value; to change the rate constant by
which rules are fired and $APPLY integer rule; to apply a rule a given amount
of time in the current state.

$ADD integer species; and $DELETE integer pattern; are syntactic sugar
available for clarity in the predominant cases where the rule to apply has no
left/right hand side.

$RUN; and $STOP; to resume execution or definitely stopping it.

immediate observations that do not interfere with the simulation:
$SNAPSHOT; returns the exact content of the current state of the simula-

tion.
$PRINT algebraic\ expression; computes the value of an expression con-

taining the number of matches in the current state of some graph patterns. For
example, $PRINT |A(x{p})| / |A()| returns the ratio of agent A whose site x
is currently in state p.

continuous observations that make sense only on a time window for which the
recording is started or stopped.

This concern the record of effects of rule application on the activity of rules
by $DIN file name boolean; and the record of occurrences of pattern of interest
via $TRACK pattern boolean;

5 Tutorial

We consider a model made of proteins C with 2 sites a and b that serve as a
catalyst between some proteins A and B by binding independently to an A and
to a B to form some complex ACB so that A and B can potentially interact. Said
in kappa:

300 P. Boutillier

%agent : A(x)
%agent : B(x)
%agent : C(a b)

%var : k on 1e−2

A(x [.]) , C(a [.]) <−> A(x [1]) , C(a [1]) @ 1e−2, 1
B(x [.]) , C(b [.]) <−> B(x [1]) , C(b [1]) @ k on , 1

%p lo t : |A(x [1]) , C(a [1] b [2]) , B(x [2]) |

%i n i t : 100 A() , B()
. −> C() @ 1e−3

The last rule is a way to slowly add some C to see the effect on the amount
of ACB at equilibrium.

During the beginning of the simulation, this number increases with the
amount of C. But, as we follow the progress live, we start to see a stagnation
and even the beginning of a decrease. We stop to check if the number of C really
increases thanks to a

$PRINT |C()|;
Nothing special to see. Maybe, it is a stability problem, let’s try to increase

the stickiness between B and C and restart by
$UPDATE k on 1e−1; $RUN;

Things are even worse! The number of ABC has decreased and keep doing so.
Let’s refill in B maybe:

$ADD 50 B();
it helps temporarily but it keeps decreasing again as the simulation continues.

We pause and inspect the number of available B for binding:
$PRINT |B(x[.])|;

There are barely none. Where are the Bs? Only one way to see:
$SNAPSHOT;

Here, we visualize the explanation: As there are tons of ACs and BCs, there are
no available monomers to bind to an existing dimer. We’ve just re-rediscovered
that too many catalyser ultimately put reactives apart.

6 Conclusion

Learning is an interactive process. Making a tool interactive makes easier (if not
simply possible) for potential users (and especially students) to learn how to use
it, for researcher to learn new facts using it and for computers to learn thanks
to experimenting with it.

The transformation of the Kappa simulator toward this goal involved mainly
to understand in which (software and human) ecosystem it evolves so that to
sort out the mandatory pipes and faucets to provide. Detailing them could ease
the work of adapting some other tools.

The Kappa Simulator Made Interactive 301

Now that simulation runs are interactive, the bottleneck of interactivity is
back to the model construction phase. Model construction is interactive in the
sens that parsing and static analyses are run automatically after every edit but it
is done by redoing all the computation from scratch with the new model. In order
to smoothly handle large models, the framework has to become incremental: new
outputs for modified inputs have to be computed from the previous output using
only the diff between the 2 versions. This is where efforts are put now in the
Kappa ecosystem.

References

1. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74407-8 3

2. Fages, F., Soliman, S.: On robustness computation and optimization in BIOCHAM-
4. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 292–299.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 18

3. Goldstein, B., Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: BioNetGen: software
for rule-based modeling of signal transduction based on the interactions of molec-
ular domains. Bioinformatics 20(17), 3289–3291 (2004). https://doi.org/10.1093/
bioinformatics/bth378

4. Gyori, B.M., Bachman, J.A., Subramanian, K., Muhlich, J.L., Galescu, L., Sorger,
P.K.: From word models to executable models of signaling networks using auto-
mated assembly. Mol. Syst. Biol. 13(11), 954 (2017). http://msb.embopress.org/
content/13/11/954

5. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical
modelling of regulatory networks with ginsim 2.3. Biosystems 97(2), 134–139 (2009).
https://doi.org/10.1016/j.biosystems.2009.04.008. http://www.sciencedirect.com/s
cience/article/pii/S0303264709000665

6. Naldi, A., et al.: The CoLoMoTo interactive notebook: accessible and reproducible
computational analyses for qualitative biological networks. Front. Physiol. 9, 680
(2018). https://doi.org/10.3389/fphys.2018.00680

7. Tek, A., Chavent, M., Baaden, M., Delalande, O., Bourdot, P., Ferey, N.: Advances
in human-protein interaction - interactive and immersive molecular simulations.
In: Cai, W., Hong, H. (eds.) Protein-Protein Interactions, chapater 2. IntechOpen,
Rijeka (2012). https://doi.org/10.5772/36568

https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-319-99429-1_18
https://doi.org/10.1093/bioinformatics/bth378
https://doi.org/10.1093/bioinformatics/bth378
http://msb.embopress.org/content/13/11/954
http://msb.embopress.org/content/13/11/954
https://doi.org/10.1016/j.biosystems.2009.04.008
http://www.sciencedirect.com/science/article/pii/S0303264709000665
http://www.sciencedirect.com/science/article/pii/S0303264709000665
https://doi.org/10.3389/fphys.2018.00680
https://doi.org/10.5772/36568

Biochemical Reaction Networks with
Fuzzy Kinetic Parameters in Snoopy

George Assaf(B), Monika Heiner, and Fei Liu

Computer Science Institute, Brandenburg Technical University,
Postbox 10 13 44, 03013 Cottbus, Germany

{George.Assaf,monika.heiner}@b-tu.de, feiliu@scut.edu.cn

https://www-dssz.informatik.tu-cottbus.de

Abstract. Snoopy is a powerful modelling and simulation tool for vari-
ous types of Petri nets, which have been applied to a wide range of bio-
chemical reaction networks. We present an extended version of Snoopy,
now supporting stochastic, continuous and hybrid Petri Nets with fuzzy
kinetic parameters. Fuzzy parameters are specifically useful when kinetic
parameter values can not be precisely measured or estimated. By run-
ning fuzzy simulation we obtain output bands of the variables of interest
induced by the effect of the fuzzy kinetic parameters.

Keywords: Fuzzy logic · Fuzzy kinetic parameters ·
Fuzzy continuous · Stochastic and hybrid Petri nets ·
Modelling and simulation

1 Objectives

Modelling of biochemical reaction networks is often hampered by paramet-
ric uncertainty. This uncertainty usually comes from unavailable or imprecise
parameters due to some environmental factors or lack of exact knowledge. When
stochastic methods are not appropriate to deal with such models, analysing them
by giving an uncertain band of all outputs of interest might be an alternative.
These uncertain bands describe the effect of uncertain kinetic parameters.

To address these issues, quantitative Petri nets, such as continuous Petri nets
(CPN) and stochastic Petri nets (SPN), have been extended by fuzzy kinetic
parameters yielding fuzzy continuous Petri nets (FCPN) [4] and fuzzy stochastic
Petri nets (FSPN) [6], respectively. We are going to translate this idea to hybrid
Petri nets (HPN), which complements our family of related Petri nets by fuzzy
hybrid Petri nets (FHPN); compare Fig. 1. In all these fuzzy quantitative Petri
nets (FPN for short), a kinetic parameter can either be represented - as usual
- as a crisp number or as a fuzzy number, if the parameter cannot be measured
or estimated precisely.
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-31304-3 17) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 302–307, 2019.
https://doi.org/10.1007/978-3-030-31304-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_17
https://doi.org/10.1007/978-3-030-31304-3_17
https://doi.org/10.1007/978-3-030-31304-3_17

Fuzzy Petri Nets in Snoopy 303

FSPN FCPN

SPN CPN

HPN

FHPN

Fig. 1. Export relation between some of Snoopy ’s Petri net classes. Fuzzy nets differ
from their crisp counterparts just by additional pre-defined data types, supporting
fuzzy numbers, which can be used as kinetic parameters. The new net classes and their
export relation are coloured in red. (Color figure online)

Fuzzy logic uses a degree of belonging defined by a membership function
to describe an element, and thus can represent uncertainties in a model. The
fundamental concept of fuzzy logic is the fuzzy set [7]. A fuzzy set is defined on
a universal set X by its membership function μ which only takes real values in the
closed (unit) interval [0, 1], thus specifying a membership degree for each element
of the universal set. In contrast, for traditional (crisp) sets, the membership
function only takes values of the set {0, 1}.

A fuzzy number is a special (convex and normalized) fuzzy set with the
universal set X given by the set of real numbers. Commonly used fuzzy numbers
include triangular, trapezoidal and Gaussian fuzzy numbers. Snoopy supports
so far triangular fuzzy numbers (TFNs). The α-cut of a fuzzy set at a given
membership degree α ∈ [0, 1] (formally called α level), consists of a crisp subset
of X, in which each element has a membership degree greater than or equal to
the given α level; compare Fig. 2.

2 FPN Simulation

The general idea for simulation and analysis of FPN follows Zadeh’s extension
principle [7], according to which a fuzzy number is represented as a union of
its α-cuts. For this purpose, we decompose all fuzzy parameters into α-cuts,
typically equally spread over the continuous interval [0, 1]. Then we draw sam-
ples at each α level and run – depending on the given model class – stochas-
tic/continuous/hybrid simulations for each sample combination, and we obtain
the corresponding α-cut for each output of interest. Finally, we compose all the
α-cuts and obtain the membership function for each output and how they evolve
over time, which reflect the effect of the uncertainties of the kinetic parameters.

To obtain the output bands of the time series data, we could simply print all
simulation traces together into one plot. This would require to keep all simulation

304 G. Assaf et al.

traces. Instead, to reduce the memory load, we determine for each output variable
the minimum and maximum values of the traces as they evolve over time. The
whole procedure is sketched in Algorithm 1; see also [5] for more details.

Algorithm 1. FPN simulation algorithm.
Data: FPN with M variables (places, species) and K fuzzy kinetic

parameters, J - number of α levels.
Result: Output bands & membership functions of the M variables over

time.
1 for each α level αj , j = 0, 1, . . . J − 1 do
2 for each fuzzy kinetic parameter do
3 Obtain its α-cut;
4 Sampling: discretise the α-cut and obtain crisp values;
5 end
6 for each combination of values for the K fuzzy kinetic parameters do
7 Run stochastic/continuous/hybrid simulation;
8 end
9 end

10 for each variable Ym,m = 1, 2, . . . M do
11 Determine minimum & maximum output values over time to obtain

its output band;
12 Compose all the α-cuts of Ym to obtain its membership function over

time;
13 end

Discretising each α-cut of the fuzzy number(s) independently into crisp values
may produce redundant samples over all levels. This causes unnecessary simu-
lation runs. To address this issue, a more efficient discretising method needs

a

μ

α

J 1

0

α

α1

0
b c

Fig. 2. A triangular fuzzy number (TFN) defined by the triple (a, b, c), with 0 ≤ a ≤
b ≤ c, where a can be read as the pessimistic value, b as the most possible value, and
c as the optimistic value; and its α-cuts, each defining an α level.

Fuzzy Petri Nets in Snoopy 305

to be designed to eliminate redundant samples. Snoopy supports two sampling
strategies.

– Basic Sampling neglects the problem of redundant samples. This strategy
discretises each α level with the same number of samples, except for α = 1,
and samples are equally spread over each α level, compare Fig. 3a. In this
case, the total number of simulation runs is given by NK × J + 1, with N
being the number of samples per level.

– Reduced Sampling takes redundant samples into consideration by reusing
the samples at α = 0 for all levels; compare Fig. 3b. Thus, the number of
samples at α = 0 should be larger than in the basic sampling strategy, to
obtain a suitable resolution of the results. In this case, the total number of
simulation runs is given by NK + (J − 1) × 2 + 1, with N being the number
of samples at α = 0.

(a) Basic sampling strategy. (b) Reduced sampling strategy.

Fig. 3. Sampling strategies. (a) Equidistant samples (here 10) are independently taken
on each level. (b) Reuses the samples at α = 0 (here 19) for all levels, if the fall into
the corresponding cut, complemented by two samples at each level, determined by the
cut with the triangular shape. In both cases, there is only one sample for α = 1.

Reproducibility. The simulation procedure of FPN described in Algorithm 1
has been previously implemented in Matlab [6]. However, Matlab requires pro-
gramming skills and needs quite a lot of experience. To overcome this issue, we
extended Snoopy [3], a unifying platform-independent and user-friendly Petri
net tool, for modelling and simulating of FPN .

Please note, we choose to represent biochemical networks as Petri nets. How-
ever, our approach can be equally applied to any related modelling approach for
biochemical reaction networks involving fuzzy kinetic parameters.

306 G. Assaf et al.

3 Use Cases

This section assumes that the reader has some basic understanding of modelling
and simulating of biochemical reaction networks using Petri nets in Snoopy.
Otherwise, the textbook chapter [1] might be a good starting point to acquire
this knowledge. The workflow is basically the same for all FPN classes. Here,
we choose to discuss it by an FCPN example.

For reasons of space, all following references to figures or tables relate to the
Appendix, which can be retrieved from Snoopy ’s website, see Sect. 4.

FCPN modelling starts with creating a new ‘Fuzzy Continuous Petri Net’ file.
This can first of all be done by exploiting Snoopy ’s export feature, which permits
to conveniently convert existing models into related net classes; compare the
export relation given in Fig. 1. These exports involve some obvious adjustments,
e.g., converting a CPN into an FCPN just creates a special case of an FCPN
with all kinetic parameters being crisp, compare Fig. 4. An FCPN model can
also be built from scratch by creating a new (empty) FCPN file; compare Fig. 5.
FCPN modelling is similar to that of standard CPN , meaning continuous places
and transitions have to be introduced and interconnected as required to represent
the given biochemical reaction network. Figure 6 shows an FCPN example called
decay dimerisation model which is adopted from [4]. The FCPN model shares
the structure with its crisp CPN counterpart.

The crucial difference consists in the constants; a user can now also introduce
constants of TFN data type which define Triangular Fuzzy Numbers. These fuzzy
numbers can then be used as kinetic parameters when setting up reaction rates.
Figure 7 illustrates constant definitions in Snoopy according to the constants
shown in Table 1, where k3 and k4 are defined as TFNs by three positive real
numbers each.

Model Simulation. The FCPN simulation dialog, see Fig. 8, consists of the
same settings as the standard CPN simulation dialog, but extended by the
‘Fuzzy Setting’ sub-section which consists of the following items:

1. alpha levels: specifies the number of α levels; the default value is 10.
2. discretisation points: specifies the number of sample points per level; the

default value is 10.
3. sampling strategy: the user can choose between two options: “Basic sam-

pling” and “Reduced Sampling”.

Once the user clicks the start simulation button, Snoopy will notify the user
about the number of simulations to be launched. When the simulation has fin-
ished, the user can view the simulation results by double clicking on the default
view which displays the uncertain band of the selected species (upper viewer)
and their composed membership function (lower viewer) at time point 0 (by
default). Moreover, the user can view the composed membership function of the
selected species at specific time points using the scroll bar or entering the time

Fuzzy Petri Nets in Snoopy 307

point directly in the field ‘Time Point’ located at the lower right corner of the
viewer window; see Fig. 9.

FSPN modelling and simulation is similar to that of FCPN . The main
difference consists in choosing a suitable stochastic simulator, e.g. Gillespie’s
stochastic simulation algorithm. Figure 10 shows one FSPN example called
yeast polarisation model adopted from [6], and Fig. 11 gives two uncertain bands
of the species G a and G bg and their corresponding membership functions at
simulation time point 15.

FHPN modelling and simulation can be easily achieved by following the
same workflow as demonstrated for FCPN and FSPN .

4 Installation and Future Work

Snoopy is a free and platform-independent software, which can be download from
its official website https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/
Snoopy. Snoopy operates under Windows, Mac/OSX and for selected Linux dis-
tributions. FPN test cases can be retrieved from https://www-dssz.informatik.
tu-cottbus.de/DSSZ/Software/Examples.

Future work will include the generation of configuration scripts to delegate
the time-consuming simulation step to the command-line tool Spike [2], which
will run the simulations parallelised on a server.

Acknowledgement. Snoopy uses software libraries that have been developed by for-
mer staff members and numerous student projects at Brandenburg Technical University
(BTU), chair Data Structures and Software Dependability.

This work has been supported by National Natural Science Foundation of China
(61873094), Science and Technology Program of Guangzhou, China (201804010246),
and Natural Science Foundation of Guangdong Province of China (2018A030313338).

References

1. Blätke, M., Heiner, M., Marwan, W.: BioModel engineering with petri nets. In:
Chapter 7, pp. 141–193. Elsevier Inc., March 2015

2. Chodak, J., Heiner, M.: Spike - reproducible simulation experiments with configu-
ration file branching. In: Bortolussi, L., Sanguinetti, G. (eds.): CMSB 2019. LNBI,
vol. 11773, pp. 315–321. Springer, Heidelberg (2019)

3. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying
Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol.
7347, pp. 398–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
31131-4 22

4. Liu, F., Chen, S., Heiner, M., Song, H.: Modelling biological systems with uncertain
kinetic data using continuous Petri nets. BMC Syst. Biol. 12, 64–74 (2018)

5. Liu, F., Heiner, M., Gilbert, D.: Fuzzy Petri nets for modelling of uncertain biological
systems. Brief. Bioinf. (2018). https://doi.org/10.1093/bib/bby118

6. Liu, F., Heiner, M., Yang, M.: Fuzzy stochastic Petri nets for modeling biological
systems with uncertain kinetic parameters. PLoS ONE 11(2), e0149674 (2016).
https://doi.org/10.1371/journal.pone.0149674

7. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1093/bib/bby118
https://doi.org/10.1371/journal.pone.0149674

Compartmental Modeling Software:
A Fast, Discrete Stochastic
Framework for Biochemical

and Epidemiological Simulation

Christopher W. Lorton1(B), Joshua L. Proctor1, Min K. Roh1,
and Philip A. Welkhoff2

1 Institute for Disease Modeling, Bellevue, WA 98005, USA
CMS@idmod.org

2 Bill and Melinda Gates Foundation, Seattle, WA 98109, USA

Abstract. The compartmental modeling software (CMS) is an open
source computational framework that can simulate discrete, stochastic
reaction models which are often utilized to describe complex systems
from epidemiology and systems biology. In this article, we report the
computational requirements, the novel input model language, the avail-
able numerical solvers, and the output file format for CMS. In addi-
tion, the CMS code repository also includes a library of example model
files, unit and regression tests, and documentation. Two examples, one
from systems biology and the other from computational epidemiology,
are included that highlight the functionality of CMS. We believe the cre-
ation of computational frameworks such as CMS will advance our scien-
tific understanding of complex systems as well as encourage collaborative
efforts for code development and knowledge sharing.

Keywords: Stochastic simulation · Compartmental · Open source

1 Introduction

Developing fast, efficient, and scalable computational frameworks is integral to
investigating a broad set of epidemiological and biological systems. Here, we
present a new open-source computational framework, called the compartmental
modeling software (CMS), which enables the simulation of discrete, stochastic
reaction models. The CMS framework is highly flexible: the new model descrip-
tion language enables rapid model development; a broad set of available numer-
ical algorithms allows users to optimize simulations based on model structure or
computational speed requirements; and the standardized model output empow-
ers a wide-variety a visualization tools. In this article, we report the functionality
of the CMS framework while highlighting the key components of the software.

C. W. Lorton, J. L. Proctor and M. K. Roh—Co-first author.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 308–314, 2019.
https://doi.org/10.1007/978-3-030-31304-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_18

Compartmental Modeling Software 309

Fig. 1. An overview of the CMS software.

Open-source frameworks have been previously developed for discrete,
stochastic compartmental modeling [20], including advancements that account
for event handling [25], access via open-source software such as Python [6], and
adaptations to cloud-based platforms [15]. Our new CMS framework broadens
the scope and scale of previous open-source software. For example, CMS includes
more recently developed rare-event probability estimation algorithms [13,24].
Moreover, spatial simulation algorithms [9,14,22] are also integrated to accom-
modate spatial diffusion processes. Reaction propensities, time delays [8,10], and
state- and time- dependent events can be fully customized in the CMS frame-
work. Coupling these features with software documentation, unit and regression
tests, and object-oriented development, CMS is a novel and flexible framework
to allow for modeling of complex, physical systems.

2 Compartmental Modeling Software

In this section, we briefly explain the major components of CMS. An overview
of the CMS schematics is given in Fig. 1. For more detail, see the CMS docu-
mentation [1] as well as the GitHub repository for the associated code [2].

2.1 Platform and Computational Requirements

CMS was developed in C# and C++ and tested with NUnit framework [4]. It runs
on 64-bit Windows 7 or later with any 64-bit Intel CPU. The CMS Visual Studio
solution file has been updated to work with Visual Studio 2017 and targets the
.NET Framework version 4.6.

2.2 Execution Pathways

Command line invocation is the most common usage for CMS. However, CMS
can be executed in any language or scripting tool that can load Microsoft .NET
technology. For example, CMS can be integrated into MATLAB or into Python
through a package such as pythonnet [5].

310 C. W. Lorton et al.

2.3 Input Language and Configuration

A custom model description language, named the epidemiological modeling lan-
guage (EMODL), was created to support the unique features of CMS and accom-
modate future expansion. The EMODL syntax was developed to be human inter-
pretable allowing users to quickly learn, adapt, and develop models for simulation
as compared to mark-up languages such as SBML. Moreover, the EMODL syn-
tax allows for efficient formulation of time- and state-based events as well as
delays common to epidemiological models. It also supports custom propensity
formulation, enabling the inclusion of empirically measured infectious periods
for epidemiological models, in addition to the traditional propensities for mass-
action kinetics. Runtime and solver-specific parameters are listed in a JavaScript
Object Notation (JSON) [3] formatted configuration file. Parameters such as
solver name, ensemble size, length of simulation, random number generator and
output format are included in this configuration file.

2.4 Discrete Stochastic Solvers in CMS

CMS offers a comprehensive suite of stochastic solvers. It contains a total of
16 solvers, whose capabilities range from exact sampling of the true underlying
probability distribution of the master equation (ME), fast approximation of the
ME, spatial (network) simulations, and rare event probability estimation. We
briefly describe each category below. In each subsection, we refer the reader to the
original publication for mathematical derivations and computational complexity.

Exact Methods. The time evolution of systems are fully described by the solu-
tion of the ME, which provides the probability of every possible system state
configuration at any given time. The ME is analytically intractable for most sys-
tems, but exact numerical solvers can estimate these probabilities numerically
by sampling from the ME. Gillespie’s stochastic simulation algorithm (SSA) [18]
is the most well-known exact method for simulating systems in stochastic chemi-
cal kinetics. CMS offers two known implementations of SSA—direct method and
first reaction method—that are theoretically equivalent to each other. CMS also
features Gibson and Bruck’s next reaction method [17] as well as the SSA with
time delays [8,10].

Approximate Methods. While the exact methods produce accurate time tra-
jectories, explicitly simulating every reaction may be prohibitively slow for some
systems. Approximate algorithms have been developed to accelerate the simula-
tion at the expense of accuracy. CMS includes three approximate solvers—two
implementations of τ -leaping [12] and one of R-leaping [7].

Tau-leaping is the most popularly used approximate method, and CMS offers
two implementations for choosing a time step (τ)—adaptive and fixed. The adap-
tive time step selection mechanism also includes a check to avoid negative pop-
ulation [11] by reverting to SSA when appropriate. The fixed time step method
assumes that the chosen τ is small enough to produce accurate trajectories.
When this assumption is not met, negative population counts can occur.

Compartmental Modeling Software 311

Spatial Simulation Methods. Spatial simulation in CMS is possible via three
different solvers—inhomogeneous SSA (ISSA) [22], diffusive finite state projec-
tion (DFSP) [14], and fractional diffusion (FD) [9]. ISSA divides a system into
homogeneous subvolumes, and diffusive transfers are treated as a unimolecular
reaction. Therefore, it can be prohibitively slow when fast diffusion is present.
The other two methods are more efficient than the ISSA when diffusion occurs
frequently with respect to the number of reaction events. DFSP solves the diffu-
sion master equation by adapting the Finite State Projection (FSP) method [23],
while FD is based on Lie-Trotter operator splitting of the diffusion and reaction
terms. Unlike ISSA and DFSP, fractional diffusion allows for jumping to a distant
locale with non-zero probability.

Rare Event Probability Methods. In addition to generation of time trajec-
tories, CMS allows for efficient estimation of a rare event probability via the dou-
bly weighted SSA (dwSSA) [13] and the state-dependent dwSSA (sdwSSA) [24].
Both algorithms utilize importance sampling, whose optimal parameters are
determined by the information-theoretic concept of cross entropy. While the
dwSSA assigns a single importance sampling parameter per reaction, the
sdwSSA creates a list of state-dependent importance sampling parameters in
order to further reduce the variance in the rare event probability estimate.

Exploratory Methods. The CMS framework is designed to enable efficient
prototyping of new methods. A new solver can be easily implemented by extend-
ing the base solver. Four prototype methods are included in the CMS, and we
refer to the documentation page [1] for further details. We note that solvers in
this category are included as an example of ongoing method development and
are not currently supported by the developers.

2.5 Output Files

There are three output formats available in the CMS—comma-separated values
(CSV), JSON [3], and MATLAB (MAT). By default, CMS creates trajecto-
ries.csv in the output directory, with the realization index appended to each
observable name specified in the EMODL file. Output-related options, such as
compression and heading, can be specified in the configuration file.

3 Examples

3.1 Schlögl Process

The Schlögl process is a canonical example of a chemical system exhibiting bista-
bility. This model consists of the following four reactions:

B1 + 2X
k1−⇀↽−
k2

3X and B2
k3−⇀↽−
k4

X.

312 C. W. Lorton et al.

Fig. 2. (a) illustrates the bistable distribution of population of species X at the final
time t = 5. (b) illustrates one realization of a stochastic Polio outbreak, a paralyzed
child (case) detection, and the delayed start of a vaccination campaign.

We take the system description including parameters and initial condition
from [19] that produces bistable behavior in X: k1 = 3 × 10−7, k2 = 10−4,
k3 = 10−3, k4 = 3.5, and x0 = [105, 2 × 105, 250], where x0 denotes the initial
population of B1, B2, and X. Using the SSA solver, an ensemble of N = 1e5
simulations were generated to produce the distribution of X shown in Fig. 2(a).

3.2 Vaccination Campaigns for Eradicating Poliomyelitis

Globally, the number of poliomyelitis cases has dramatically decreased over the
past two decades and may be the second human infectious disease to be erad-
icated [21]. The broad functionality of CMS can be utilized to model current
vaccination questions such as programmatic mobilization time to arrest a small
polio outbreak. We implement an established discrete, stochastic compartmen-
tal model of the spread of Polio [16]. We add two essential components to this
model: a probabilistic case detection matching the 1 to 200 case to infection rate
for polio and a vaccination campaign that is initiated after a fixed time duration
following case detection.

We simulate the model starting with a population of 1000 individuals and
one imported infection. When a case is detected, the model enforces a sixty day
operational delay before a vaccination campaign begins. Figure 2(b) illustrates
one realization of this model; note that a single case is detected on day 26 and
vaccination begins on day 86. Due to the vaccination in this scenario, we do not
detect another paralyzed child. To generate this realization, we utilize the SSA
numerical algorithm, allow for a simulation duration of 365 days, and sample
the state of the system each day. The model file, config file, and output file for
this example can be found in the examples folder at [2].

4 Conclusion

Simulating biological and epidemiological processes with low population counts,
such as nearing elimination of an infectious disease, requires the ability to simu-

Compartmental Modeling Software 313

late discrete, stochastic reaction models. The compartmental modeling software
(CMS) is a novel, extensible framework used to generate an ensemble of trajec-
tories that approximate the true underlying probability distribution described
by the model and initial condition. CMS was designed to enable rapid model
development with a custom model language, allow for user flexibility in choos-
ing model-specific numerical solvers, and output the model trajectories into easy
to visualize formats. Moreover, CMS is an open-source project allowing for com-
munity development; the object-oriented programming and class structure of the
code allows for intuitive modifications of the code-base such as the inclusion of
new numerical solvers or random number generators.

A number of challenges face the widespread adoption of our framework as
a modeling tool. The source code has been written in C# which is not widely
utilized in university settings. Also, CMS does not currently make use of multi-
threading, multi-core CPUs, or GPU resources. Despite these limitations, CMS
can be deployed across multiple virtual machines since the memory and disk
requirements are minimal. In the near term, we plan on adding a Docker build
file to the GitHub repository for portability of the tool to Linux and MacOS
as well as for development and a reproducible environment for execution; we
are also developing an API from Python to enable users to call into the CMS
executable. More broadly, we believe computational tools such as CMS will help
provide insights into realistic biological and epidemiological systems.

Acknowledgements. JLP, MKR, CWL, and PW would like to thank Bill and
Melinda Gates for their active support of the Institute for Disease Modeling and their
sponsorship through the Global Good Fund. The authors would also like to thank
Mandy Izzo for her assistance illustrating Fig. 1.

References

1. CMS Documentation. http://idmod.org/docs/cms/
2. CMS Repository. https://github.com/InstituteforDiseaseModeling/IDM-CMS
3. JSON organization. http://www.json.org
4. NUnit 3.6.1. https://github.com/nunit/nunit/releases/3.6.1
5. Python for .NET. http://pythonnet.github.io/
6. Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: GillesPy: a python package

for stochastic model building and simulation. IEEE Life Sci. Lett. 2(3), 35–38
(2016)

7. Auger, A., Chatelain, P., Koumoutsakos, P.: R-leaping: accelerating the stochastic
simulation algorithm by reaction leaps. J. Chem. Phys. 125(8), 084103 (2006).
https://doi.org/10.1063/1.2218339

8. Barrio, M., Burrage, K., Leier, A., Tian, T.: Oscillatory regulation of hes1: discrete
stochastic delay modelling and simulation. PLoS Comput. Biol. 2(9), e117 (2006).
https://doi.org/10.1371/journal.pcbi.0020117

9. Bayati, B.S.: Fractional diffusion-reaction stochastic simulations. J. Chem. Phys.
138(10), 104117 (2013). https://doi.org/10.1063/1.4794696

10. Cai, X.: Exact stochastic simulation of coupled chemical reactions with delays. J.
Chem. Phys. 126(12), 124108 (2007). https://doi.org/10.1063/1.2710253

http://idmod.org/docs/cms/
https://github.com/InstituteforDiseaseModeling/IDM-CMS
http://www.json.org
https://github.com/nunit/nunit/releases/3.6.1
http://pythonnet.github.io/
https://doi.org/10.1063/1.2218339
https://doi.org/10.1371/journal.pcbi.0020117
https://doi.org/10.1063/1.4794696
https://doi.org/10.1063/1.2710253

314 C. W. Lorton et al.

11. Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit
poisson tau-leaping. J. Chem. Phys. 123(5), 054104 (2005). https://doi.org/10.
1063/1.1992473

12. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-
leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006). https://doi.
org/10.1063/1.2159468

13. Daigle, B.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of
rare event probabilities in biochemical systems. J. Chem. Phys. 134(4), 044110
(2011). https://doi.org/10.1063/1.3522769

14. Drawert, B., Lawson, M.J., Petzold, L., Khammash, M.: The diffusive finite state
projection algorithm for efficient simulation of the stochastic reaction-diffusion
master equation. J. Chem. Phys. 132(7), 074101 (2010). https://doi.org/10.1063/
1.3310809

15. Drawert, B., Trogdon, M., Toor, S., Petzold, L., Hellander, A.: Molns: a cloud
platform for interactive, reproducible, and scalable spatial stochastic computa-
tional experiments in systems biology using pyurdme. SIAM J. Sci. Comput. 38(3),
C179–C202 (2016)

16. Eichner, M., Dietz, K.: Eradication of poliomyelitis: when can one be sure that
polio virus transmission has been terminated? Am. J Epidemiol. 143(8), 816–822
(1996)

17. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000).
https://doi.org/10.1021/jp993732q

18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977). https://doi.org/10.1021/j100540a008

19. Gillespie, D.T.: Markov Processes: An Introduction for Physical Scientists. ACA-
DEMIC PR INC, Cambridge (1991). https://www.ebook.de/de/product/3655742/
danieltgillespiemarkovprocessesanintroductionforphysicalscientists.html

20. Hucka, M., et al.: The systems biology markup language (sbml): a medium for
representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

21. Kew, O., Pallansch, M.: Breaking the last chains of poliovirus transmission:
progress and challenges in global polio eradication. Annu. Rev. Virol. 5, 427–451
(2018)

22. Lampoudi, S., Gillespie, D.T., Petzold, L.R.: The multinomial simulation algorithm
for discrete stochastic simulation of reaction-diffusion systems. J. Chem. Phys.
130(9), 094104 (2009). https://doi.org/10.1063/1.3074302

23. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006). https://
doi.org/10.1063/1.2145882

24. Roh, M.K., Daigle, B.J., Gillespie, D.T., Petzold, L.R.: State-dependent doubly
weighted stochastic simulation algorithm for automatic characterization of stochas-
tic biochemical rare events. J. Chem. Phys. 135(23), 234108 (2011). https://doi.
org/10.1063/1.3668100

25. Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: Stochkit2: software
for discrete stochastic simulation of biochemical systems with events. Bioinformat-
ics 27(17), 2457–2458 (2011)

https://doi.org/10.1063/1.1992473
https://doi.org/10.1063/1.1992473
https://doi.org/10.1063/1.2159468
https://doi.org/10.1063/1.2159468
https://doi.org/10.1063/1.3522769
https://doi.org/10.1063/1.3310809
https://doi.org/10.1063/1.3310809
https://doi.org/10.1021/jp993732q
https://doi.org/10.1021/j100540a008
https://www.ebook.de/de/product/3655742/danieltgillespiemarkovprocessesanintroductionforphysicalscientists.html
https://www.ebook.de/de/product/3655742/danieltgillespiemarkovprocessesanintroductionforphysicalscientists.html
https://doi.org/10.1063/1.3074302
https://doi.org/10.1063/1.2145882
https://doi.org/10.1063/1.2145882
https://doi.org/10.1063/1.3668100
https://doi.org/10.1063/1.3668100

Spike – Reproducible Simulation
Experiments with Configuration

File Branching

Jacek Chodak(B) and Monika Heiner

Computer Science Institute, Brandenburg Technical University,
Postbox 10 13 44, 03013 Cottbus, Germany
{jacek.chodak,monika.heiner}@b-tu.de

https://www-dssz.informatik.tu-cottbus.de

Abstract. This paper presents Spike - a command line tool for contin-
uous, stochastic & hybrid simulation of biochemical reaction networks
represented as (coloured) Petri nets. It supports import from and export
to various Petri net data formats, and also imports SBML models. Spike’s
abilities include the configuration of models by changing stoichiometries
(arc weights), initial conditions (markings) and kinetic parameters. It
also unfolds coloured stochastic/continuous/hybrid Petri nets. To comply
with the demand for reproducible simulation experiments, Spike builds
on a script language in a human-readable format. Its core features permit
the design of a set of simulation experiments by a single configuration file.
These simulation experiments can be executed in parallel on a multi-core
machine; distributed execution is in preparation.

Keywords: Continuous · Stochastic · Hybrid ·
Coloured (hierarchical) Petri nets · Parallel simulation ·
Configuration · Reproducibility · Parameter scanning

1 Objectives

Spike is a command line tool for the efficient execution of multiple simulation
experiments of biochemical reaction networks, which we happen to represent as
Petri nets interpreted in the stochastic, continuous or hybrid paradigm. Simu-
lation of biochemical models can be time and memory consuming. Thus, simu-
lations should be delegated for performance reasons to be executed on a server.
Additionally, when experiments require to run multiple simulations, the time
spent can be particularly long, when the individual simulations are merely exe-
cuted one after another. Frequently, it is required to prepare a set of simu-
lation experiments in order to find appropriate model parameters (e.g., ini-
tial conditions, kinetic parameters) or simulator options (e.g., simulator type,
length of simulation traces, resolution of the traces recorded). Doing this man-
ually, by preparing a new simulation run for each new model and/or simulator

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 315–321, 2019.
https://doi.org/10.1007/978-3-030-31304-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_19

316 J. Chodak and M. Heiner

configuration is time consuming and potentially error-prone. The reproducibility
of the entire experiment suffers, if one of the runs is not well documented.

Spike has been designed to address all these issues. To achieve this, it builds
on a human-readable configuration script, supporting the efficient specification
of multiple model configurations as well as multiple simulator configurations in a
single file. Each specific model and simulator configuration determines a specific
simulation experiment, for which Spike creates a separate branch, ready to be
executed on a server, with all branches treated as parallel processes. According
to our experience, storing configurations in self-contained scripts allows for a
simplified workflow and reproducible simulations in a user-friendly way.

2 Functionality

Spike is a slim, but powerful brother of Snoopy [2]; it is the latest addition to
the PetriNuts family of tools for modelling, analysing and simulating a variety
of related models, for which we use Petri nets as umbrella modelling paradigm.
Spike deals with quantitative Petri nets, comprising stochastic, continuous and
hybrid Petri nets, which are specifically tailored to the investigation of bio-
chemical reaction networks. Correspondingly, Spike is capable to run three basic
types of simulations: stochastic, continuous and hybrid, each comes with sev-
eral algorithms, among them are: Gillespie’s SSA, tau leaping, and delta leaping
for stochastic simulations; a number of basic and stiff ODEs solvers for contin-
uous simulation; HRSSA and accelerated HRSSA for hybrid simulation (for a
complete list and related references see the Appendix of this paper on Spike’s
website). Simulation of coloured stochastic, continuous and hybrid Petri nets is
supported by automatically unfolding them to their uncoloured counterparts.

A given model is simulated according to the specified simulation type, despite
of place and transition types in the model. That means, all places and transi-
tions are converted to the appropriate type. For example, if a user wants to
run stochastic simulation on a continuous model, all continuous places (vari-
ables, species) are converted to discrete places, and all continuous transitions
(reactions) to stochastic transitions; and vice versa for stochastic models to be
simulated continuously.

Spike also offers transformation between various exchange data formats and
some basic model reductions.

Simulation. The main focus of Spike lays on efficient and reproducible sim-
ulation. Spike’s core features allow, among others, to configure the model (via
parameters specifying arc weights, initial marking, kinetic parameters) and the
simulator (via the usual, simulator-dependent options) over sets of arguments
(parameter/option scanning). An argument is a value passed to a parameter or
option. The set of argument sets triggers a so-called branching process. A new
configuration branch is created for each argument set (if there is more than one).
The set of configuration branches can be executed sequentially or in parallel.

Spike – Reproducible Simulation Experiments 317

The simulation results can be saved in CSV files which can be used later for
analysis or visualisation. They may comprise any user-defined combinations of
traces over place markings, transition rates, and observers (auxiliary variables).

Conversion. Spike supports the following data formats and conversion among
them according to Table 1:

– ANDL and CANDL - human-readable formats for Petri nets and coloured
Petri nets, respectively, used internally by the PetriNuts framework,

– SBML (Systems Biology Markup Language) - an XML-based representation
format designed to exchange computational models within the systems biol-
ogy community [3],

– PNML - an XML-based interchange format for qualitative Petri nets [4] used
within the Petri net community,

– ERODE - a tool for the evaluation and reduction of chemical reaction net-
works [1].

Table 1. Data format conversions currently supported by Spike.

From To

ANDL PNML, ERODE

CANDL ANDL, PNML, ERODE

SBML ANDL, PNML, ERODE

ERODE ANDL, PNML

Reduction. Spike is also able to structurally reduce a model by pruning clean
siphons (a set of empty places, the marking of which will never be changed
because any reaction which would cause a change depends on this set) and
constant places (places, occurring only as side conditions). In both cases, clean
siphons and constant places can be calculated by Spike or loaded from a file. It
is also possible to save results of the calculation to a file, which can be used later
by Spike or for other analysis purposes.

Further reductions may be applied by converting a model to the ERODE
format, if the model is to be read as ordinary differential equations (ODEs).
Reductions of a model can have a significant impact on simulation runtime.

Reproducibility. To comply with the demand for reproducible simulations,
Spike reads a script which allows for model and simulator configuration. The
script is human-readable and does not require any special tools for editing – a
simple text editor is enough. The configuration script includes:

– definition of (named) constants, which can get a specific value or a set of
values, either specified by a list or an interval; supported data types: boolean,
integer, real, string;

318 J. Chodak and M. Heiner

– specification of model parameters and simulator options, using either con-
stants or (direct) values as arguments; values can be given as a single specific
value or a set of values, specified by a list or an interval;

– definition of observers (auxiliary variables) allow for extra measures by defin-
ing numerical functions; depending on the type of observer, it can involve,
beside constants, places, transitions or simultaneously places and transitions;

– specification of multiple exports of simulation results by use of regular expres-
sions over the nodes of which the simulation traces are to be recorded; it is
possible to combine the results of places, transitions and observers, coloured
and uncoloured, in one CSV file.

These features permit, among others, to simulate a given model configuration
with different simulator configurations, or to simulate a set of model configura-
tions by a given simulator configuration (parameter scanning); see Sect. 4.

In agreement with its aim of reproducibility, Spike does not assume any
default values; all simulator options need to be given.

3 Architecture

Spike has a modular structure, where the modules are basically decoupled from
each other. This allows for easily adding new features.

Modules communicate with each other using command patterns and a queue
of commands which is globally accessible. Each module has its own list of com-
mands with specific parameters, which must be registered to the queue during
initialisations of a module. Table 2 shows a summary of all commands currently
available in Spike.

Table 2. List of Spike’s modules with their commands.

Module Command Description

Main version display version of Spike

CLI help display help for a given command

Configuration exe execute configuration script

Converter load load a model from a given file

save save a model to a given file

prune prune a model

eval evaluate constants

unfold unfold a coloured model

Simulation sim run a simulation of the model

Commands are processed in a sequential way. Each command is executed
by the module which is responsible for it. Let’s consider the following use case

Spike – Reproducible Simulation Experiments 319

illustrated in Fig. 1 – the execution of a simple configuration script. When the
command “exe” is at the head of the command queue, the module Configure
will execute it. During execution, the configuration module communicates with
other modules by appending new commands to the queue.

Fig. 1. Flow of commands through Spike’s modules when a user types the command
“exe”.

When Spike is executing the configuration script, a set of configuration
branches is possibly created and then executed sequentially or in parallel,
depending on the available hardware. Each branch is treated as a separate pro-
cess (Spike instance). Spike creates two types of processes. One so-called master
process and one or more slave processes. The processes communicate with each
other via network sockets. Communication is asynchronous and follows the mes-
sage queue pattern.

The master process acts as broker and owner of the simulation experiment.
It takes care of creating the slave processes. Each slave process is responsible
for executing exactly one branch of the Spike configuration script. The number
of slave processes running in parallel depends on an option passed to Spike via
its command line interface (CLI). If only one slave process is allowed, then each
simulation branch will be execute sequentially; that means, the master process
will wait for the end of the execution of one branch, before starting the execution
of the next one. Otherwise, the master process will start slave processes at most
in the number specified by the Spike option. If the number of branches exceeds
the number of allowed slave processes, the master process will postpone the start
of new ones, until one of currently running processes will have finished its task.

Starting a slave process by Spike does not mean that the number of running
threads (parallel tasks executed internally by a process) is equal to the num-
ber of processes. Each process can create a number of threads. The number of
threads may depend on the applied simulation algorithm. For example, stochas-
tic simulation may involve multi-threading to execute in parallel the independent
individual runs, which are later averaged.

4 Use Cases

Spike permits to run simulations on a server as well as on the user side. It
can be done in batch mode or by integration of Spike as a service. Algorithm 1

320 J. Chodak and M. Heiner

Algorithm 1. Use case: multiple simulator configurations.
1 Load model;
2 Determine model configuration;
3 Determine set of simulator configurations;
4 for each simulator configuration do
5 Create new configuration branch;
6 Run simulation;
7 Save results of the simulation;

8 end

Algorithm 2. Use case: multiple parameter scanning.
1 Load model;
2 Determine simulator configuration;
3 for each unique combination of parameter values do
4 Determine model configuration;
5 Create new configuration branch;
6 Run simulation;
7 Save results of the simulation;

8 end

illustrates a typical scenario, which allows, e.g., to compare how a model behaves
under different simulation algorithms, e.g. for performance comparison, or under
different configurations of a given simulation algorithm, e.g. number of stochastic
runs to be averaged. In turn, Algorithm 2 presents the use case of parameter
scanning in order to compare the effect of different parameter values for a given
model, while keeping the simulator options constant.

Of course, both scenarios can be combined. The detailed discussion of more
scenarios exceeds the given space limit.

5 Installation and Future Work

Spike is written in C++ and available for Linux, Mac/OSX and Windows. Bina-
ries are statically linked and can be downloaded from Spike’s website https://
www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike, where one also finds
the Appendix of this paper, installation instruction and a set of examples.

Spike is still under development. Future work will incorporate sophisticated
model reduction, model decomposition, and distributed simulation, either for a
set of simulations or a decomposed model; we are open for further suggestions.

Acknowledgement. Spike uses software libraries (data format conversions, simula-
tion algorithms) which have been previously developed by former staff members and
numerous student projects at Brandenburg Technical University (BTU), chair Data
Structures and Software Dependability.

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike

Spike – Reproducible Simulation Experiments 321

References

1. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

2. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying
petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol.
7347, pp. 398–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
31131-4 22

3. Hucka, M.: Systems biology markup language (SBML). Encycl. Comput. Neurosci.,
pp. 2943–2944 (2015)

4. Petri Net Markup Language (PNML): Systems and software engineering - High-level
Petri nets - Part 2: Transfer format (2009). ISO/IEC 15909–2:2011

https://doi.org/10.1007/978-3-662-54580-5_19
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-642-31131-4_22

KAMIStudio: An Environment
for Biocuration of Cellular

Signalling Knowledge

Russ Harmer and Eugenia Oshurko(B)

Univ Lyon, EnsL, UCBL, CNRS, LIP, 69342 Lyon Cedex 07, France
{russell.harmer,ievgeniia.oshurko}@ens-lyon.fr

Abstract. In this paper we present KAMIStudio, an environment for
biocuration of cellular signalling knowledge based on the KAMI frame-
work. The environment provides an interface for the aggregation of
decontextualized knowledge about individual protein-protein interac-
tions, its interactive visualization, instantiation into signalling models
and the subsequent generation of Kappa scripts that can be further used
to study the dynamics of the modelled systems.

1 Introduction

Cellular signalling underlies many fundamental processes of living cells from
responses to a changing environment to cell proliferation and apoptosis. Sig-
nalling abnormalities are responsible for common and serious diseases such as
cancer and diabetes. However, the immense complexity of cellular signalling
systems makes them extremely hard to model and analyse. These systems are
comprised of a large number of complex interacting agents which makes tra-
ditional modelling approaches (ODE-based, reaction-based) simply unfeasible.
The rule-based modelling approach (proposed by Kappa [2] and BioNetGen [3])
overcomes the problem of explosion in the number of agent species and even
allows for automated discovery of signalling pathways leading to some events
of interest. However, manually building and maintaining large rule-based mod-
els remains cumbersome, prone to errors and, in practice, impossible for large
models.

While different rules express conditions for individual interactions between
agents, these interactions are not necessarily independent and may share interac-
tion mechanisms (e.g. generic mechanisms of binding through conserved domains
such as SH2). At the same time, the representation level proposed by rule-
based modelling languages does not capture interaction mechanisms, therefore an
update of knowledge about an interaction mechanism may require manual iden-
tification and update of all the related rules (e.g. that describe bindings through
the same domain). Moreover, this representation does not capture conditions on
the presence or absence of conserved protein domains and specific key residues
that may alter the interaction capabilities of different agent variants (e.g. splice
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 322–328, 2019.
https://doi.org/10.1007/978-3-030-31304-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_20&domain=pdf
http://orcid.org/0000-0002-0817-1029
http://orcid.org/0000-0003-1218-8170
https://doi.org/10.1007/978-3-030-31304-3_20

KAMIStudio: An Environment for Biocuration 323

variants that do not have a particular domain cannot perform interactions that
require this domain). This compromises reuse of the knowledge expressed with
rule-based models and its adaptation to different contexts, for example, to model
systems that contain modified agents such as mutants or splice variants.

To tackle these problems, KAMI proposes a bio-curation framework that aims
to de-contextualize protein-protein interaction (PPI) knowledge [6]. It enables
the collation of knowledge about potential individual PPIs and their necessary
conditions and the semi-automatic aggregation of this knowledge into a coherent
corpus identifying interaction agents and mechanisms according to some body of
grounding knowledge. It then allows the reuse of this knowledge for the automatic
generation of models in different systems, by specifying which agents are present
in these systems, that determines which interaction mechanisms are realizable.
We refer to the latter process as instantiaton of knowledge in different contexts
from which we automatically generate executable models such as Kappa scripts.

KAMI distinguishes two types of ‘knowledge bodies’: corpora and models.
Corpora contain de-contextualized knowledge: agents of interactions are called
protoforms and represent a neighbourhood in the sequence space of a gene.
By associating regions, residues and states to a specific protoform we repre-
sent a feasible neighbourhood of its variants. Interactions in a corpus represent
potential interactions and the necessary conditions for them to occur. Models
contain knowledge instantiated in given contexts: agents are concrete proteins
and rules describe the interactions between these proteins. The knowledge rep-
resentation system is based on graphs [6]. PPIs are encoded with small graphs
called nuggets whose nodes represent agents, their components and actions. The
body of grounding knowledge is represented with the action graph which defines
the kinds of entities and interactions that can exist in a model. Every node in a
nugget maps homomorphically to some node in the action graph and by this it
is identified with a kind of entity or an action mechanism.

The bio-curation pipeline implemented in KAMI, illustrated in Fig. 1, is dis-
cussed in detail in Sect. 2. In Sect. 3, we present KAMIStudio, a standalone web-
based application that provides a curation environment based on the KAMI
framework. It allows to create and store corpora, instantiate models, input and
visualize knowledge as well as automatically generate executable Kappa models.

Individual PPIs

Aggregation

Corpus

Context 1
Context 2

Context 3

Instantiation

Model 1

Model 2

Model 3

Fig. 1. Biocuration pipeline of KAMI

324 R. Harmer and E. Oshurko

Attempts to facilitate model building and its decoupling from knowledge
curation have been made in MetaKappa [5], rxncon [7] and INDRA [4,8]. How-
ever, to our knowledge, none of them manage to solve the above problems.

Notably, INDRA aims at similar problems but does so with a significantly
different approach: while KAMI provides a semantically rigorous framework for
curation of de-contextualized knowledge about generic mechanisms of PPIs (at
the last step of which resides the generation of concrete models), INDRA allows
the extraction of (contextualized) knowledge about concrete PPIs into a ‘pool’
of independent statements and employs various techniques (both systematic and
ad hoc) to assemble these statements into models.

2 Main Features

KAMIStudio provides features for semi-automatic curation of large corpora of
cellular signalling knowledge including: interactive visualization of knowledge
stored in corpora and models; input of individual PPIs to a corpus through intu-
itive forms as well as batch import from JSON-formatted interactions resulting
in the automatic aggregation of the new knowledge to the corpus; an interface
for specifying protein variants; automatic instantiation of corpora into models
using protein variants; and automatic generation of Kappa scripts from models.

Visualization. KAMIStudio provides capabilities for interactive visualization of
KAMI corpora and models. The user can interact with graphs in various ways:
click on graph elements to view (and modify) the attached meta-data, zoom,
pan, drag the nodes. Moreover, using the meta-data attached to the graph ele-
ments KAMIStudio provides cross-referencing to the common databases such as
UniProt and InterPro. Such interactive capabilities may provide some additional
insights on the knowledge, e.g. on the structure of the underlying PPI network,
its connected components or its hub nodes and may also suggest manual edits
necessary to make the data consistent with the modeller’s viewpoint.

Aggregation. The approach to automatic knowledge aggregation used in KAMI
is based on the identification of agents of interactions, their components and
the mechanisms of interactions. Unlike the identification of interaction agents
and their components, the problem of identification of interaction mechanisms
is highly non-trivial and is performed automatically only for the interactions
of specific conserved protein domains whose semantics is hard-wired in KAMI’s
background knowledge (currently protein kinase and SH2 domains). In practice,
a mechanism in KAMI is encoded with a single element of a knowledge corpora
(for example, a single binding or modification node of the action graph), and by
default such an element is created for every interaction provided in a nugget.
The strategy of automatic aggregation is conservative and for any two individual
interactions KAMI assumes that “the interaction mechanisms are not known
to be the same” (unless it is known according to the background knowledge,
discussed in more details in [6]). KAMIStudio provides an interface for manual

KAMIStudio: An Environment for Biocuration 325

intervention in the aggregation process and allows the user to select different
action nodes and merge them, by which stating “I know that these interactions
are instances of the same mechanism”.

The identification of two mechanisms as “the same” has a direct influence
on the dynamics of the underlying system (usually expressed as two interactions
being conflicting). Figure 2 illustrates two nuggets aggregated in two different
ways, i.e. producing the action graph with two different interaction mechanisms
(2a) or with the same mechanism (2b).

EGFR pY

Y1092p

SHC1 pY

Y317p

GRB2SH2

BND1

BND2

(a) Different interaction mechanisms

EGFR pY

Y1092p

SHC1 pY

Y317p

GRB2SH2BND

(b) Single interaction mechanism

Fig. 2. Schematic example of two nugget graphs aggregated into two different action
graphs. Small unlabeled graphs on the top represent nuggets, large labeled graphs
on the bottom—two different action graphs, arrows from the nuggets to the action
graphs—graph homomorphism. The action graphs are interpreted as (a) the inter-
actions described by nuggets are not known to share the same mechanism and (b)
interactions share the same mechanism.

Instantation. Different protein variants (or isoforms) derived from the same gene
arise as the result of alternative splicing and mutations whose principal targets
are regions and residues respectively. KAMIStudio provides an intuitive interface
for specifying and storing protein variants. The knowledge instantiation process
consists in an update of a given knowledge corpora, given variant definitions in
concrete contexts (e. g. different cell types, wild type vs. mutants). This update
is performed automatically in KAMI and may lead to the invalidation of some
interactions, i. e. these interactions no longer take place in a given context.
KAMIStudio allows to select subsets of variants for automatic instantiation of
concrete signalling models. By default (i.e. if no variants are specified), KAMI
uses “wild-type variants” which are obtained from the canonical gene sequences
(retrieved from corresponding UniProt entries). In addition, KAMIStudio allows
the user to specify custom wild-type variants that will be used as the default
variants during the instantiation. The models produced as the result are stored
and can be further modified manually and used to generate Kappa.

326 R. Harmer and E. Oshurko

Kappa Generation. The Kappa generation capabilities provided in KAMIStudio
are compatible with version 4 of the Kappa language. It consists of two main
steps: the generation of agent signatures and the generation of rules.

To generate Kappa agents, KAMIStudio inspects the action graph and gen-
erates a distinct agent per protoform. It encodes protein variants derived from
the same protoform with a dedicated Kappa-site called variant in order to
optimize the simulation performance of KaSim4 [1]. Then, for each agent, it
explores all the derived variants and creates a site per (not necessarily directly)
adjacent state node. As the state nodes in KAMI represent binary on/off states,
every such site is of the form site name{0 1}. After this, KAMI adds a site
per adjacent KAMI-site node and binding node (in both cases the nodes are
not required to be directly adjacent, but can be adjacent to some components
of the current variant). For example, the gene EGFR with two variants WT and
p60, phosphorylable residue Y1092 and a binding site pY would correspond to
the Kappa agent signature EGFR(variant{WT p60}, pY1092{0 1}, pY site).
To generate Kappa rules KAMI examines nuggets together with their mapping
to the action graph (example in Fig. 3). As it was previously mentioned, for a
given agent every adjacent binding action (therefore every binding mechanism)
gives a rise to a separate Kappa site. This represents the main subtlety of the
Kappa generation process as for every binding nugget in KAMI we need to
identify the site corresponding to the interaction mechanism of the binding. In
KAMI’s knowledge representation framework interaction rates are encoded in
the interaction nodes of nuggets. However, KAMI does not enforce them to be
specified as these rates for some interactions may be unknown or depend on the
context. Therefore, to generate valid Kappa, KAMI allows the user to specify
default rates for binding, unbinding and modification interactions in a model;
these rates are used to generate Kappa rules for nuggets whose rates are not
available.

EGFR(pY10921 pY[.]), GRB2(SH2 site1[.])->

EGFR(pY10921 pY[1]), GRB2(SH2 site1[1])

SHC1(pY3171 pY[.]), GRB2(SH2 site2[.]) ->

SHC1(pY3171 pY[1]), GRB2(SH2 site2[1])

(a) Kappa rules for Fig. 2a

EGFR(pY10921 pY[.]), GRB2(SH2 site[.]) ->

EGFR(pY10921 pY[1]), GRB2(SH2 site[1])

SHC1(pY3171 pY[.]), GRB2(SH2 site[.]) ->

SHC1(pY3171 pY[1]), GRB2(SH2 site[1])

(b) Kappa rules for Fig. 2b

Fig. 3. The automatically generated Kappa rules for the example of Fig. 2.

3 Technical Description

KAMIStudio is a web-based application: its server can be started locally and
its functionality can be used in a browser via the provided client. The knowl-
edge representation and update-related backend is based on the Python libraries
ReGraph and KAMI1. To store data, KAMIStudio uses two noSQL database tech-
nologies: Neo4j and MongoDB. The full version can be installed from the source
1 https://github.com/Kappa-Dev/ReGraph, https://github.com/Kappa-Dev/KAMI.

https://github.com/Kappa-Dev/ReGraph
https://github.com/Kappa-Dev/KAMI

KAMIStudio: An Environment for Biocuration 327

https://github.com/Kappa-Dev/KAMIStudio and run locally (detailed installa-
tion instructions can be found in the github repository). In addition, a read-only
demo is available online at http://kamistudio.ens-lyon.fr/.

The online demo contains three example corpora: EGFR signalling built from
a subset of individual PPIs involved in the EGFR signalling pathway, pYNET
20 and pYNET 200 built from respectively 20 and 200 random PPIs involv-
ing tyrosine phosphorylations and bindings of SH2 domains to phosphotyrosine-
containing sites. The demo also contains three models that can be used to gen-
erate Kappa scripts. The first model is an instantiation of the EGFR signalling
corpus using splice variants and mutants of genes EGFR and GRB2. The two
other models represent instantiations of pYNET 20 and pYNET 200 using the
wild-type variants. These models are built by aggregation of independent PPIs
without pre-conceived pathways in mind. Superficial look at the action graph
of the pYNET 20 model reveals a number of disconnected components most of
which correspond to individual PPIs, which suggests to the modeller some gaps
in the collected knowledge. On the other hand, the action graph of the pYNET
200 model starts exhibiting a large connected component, which suggests the
potential emergence of pathways.

4 Future Work

Together with the bio-curation framework of KAMI and its corresponding
Python library, KAMIStudio is currently in an active development phase. There-
fore, a great of amount of work remains to be done to make it a full-blown
curation environment. Among the main features envisaged are a query language
for browsing corpora and models, a richer annotation system for represented
PPIs, a system of version control and static analysis of corpora (e.g. nugget rela-
tions, reachability of a molecular species). In addition, we plan to provide richer
means of representation and generation of Kappa that would allow, for example,
to accommodate knowledge on kinetic refinements, negative conditions of PPIs,
etc.

References

1. Boutillier, P., Ehrhard, T., Krivine, J.: Incremental update for graph rewriting. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 201–228. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1 8

2. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74407-8 3

3. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical
systems with bionetgen. In: Systems Biology, pp. 113–167. Springer, Cham (2009).
https://doi.org/10.1007/978-1-59745-525-1 5

https://github.com/Kappa-Dev/KAMIStudio
http://kamistudio.ens-lyon.fr/
https://doi.org/10.1007/978-3-662-54434-1_8
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-1-59745-525-1_5

328 R. Harmer and E. Oshurko

4. Gyori, B.M., Bachman, J.A., Subramanian, K., Muhlich, J.L., Galescu, L., Sorger,
P.K.: From word models to executable models of signaling networks using automated
assembly. Mol. Syst. Biol. 13(11), 954 (2017)

5. Harmer, R.: Rule-based modelling and tunable resolution. EPTCS 9, 65–72 (2009)
6. Harmer, R., Le Cornec, Y.S., Légaré, S., Oshurko, I.: Bio-curation for cellular sig-

nalling: the KAMI project. In: CMSB 2017, pp. 3–19 (2017)
7. Romers, J.C., Krantz, M.: rxncon 2.0: a language for executable molecular systems

biology. BioRxiv, p. 107136 (2017)
8. Todorov, P.V., Gyori, B.M., Bachman, J.A., Sorger, P.K.: INDRA-IPM: interactive

pathway modeling using natural language with automated assembly. Bioinformatics,
btz289 (2019)

A New Version of DAISY to Test
Structural Identifiability

of Biological Models

M. P. Saccomani1(B) , G. Bellu2, S. Audoly2, and L. d’Angió2

1 Department of Information Engineering, University of Padova, Padova, Italy
mariapia.saccomani@unipd.it

2 Department of Mathematics, University of Cagliari, Cagliari, Italy
https://www.dei.unipd.it/persona/0A7F06976D2D39F73AEDD095D97CF91A

Abstract. Often ODE models in systems biology, medical research, epi-
demiology, ecology and many other areas, contain unknown parame-
ters which need to be estimated from experimental data. Identifiabil-
ity deals with the uniqueness of the relation between model parameters
and ODE solution thus being a prerequisite for the well-posedness of
parameter estimation. In this paper a novel extension of the software
tool DAISY (Differential Algebra for Identifiability of SYstems) is pre-
sented. DAISY performs structural identifiability analysis for linear and
nonlinear dynamic models described by polynomial or rational ODE’s.
The major upgrades of this new version regard the ability to include in
the identifiability analysis either known and unknown model initial con-
ditions, the possibility of entering a parameter estimate to calculate all
the equivalent parameter solutions, the portability to MacOS platforms
and an user-friendly interface. These upgrades make DAISY surely more
general and easy to use. Practical examples are presented. DAISY is
available at the web site daisy.dei.unipd.it.

Keywords: Identifiability software · Global identifiability ·
Biological models · Nonlinear ODE systems

1 Introduction

Biological and biomedical systems dynamics are generally modeled by nonlinear
ordinary differential equations (e.g. Michaelis-Menten equation), whose param-
eter identification is often difficult due to experimental limitations and/or ill-
posedness. Given the increased model complexity, many models may be param-
eterized redundantly, so that multiple or even an infinite number of equiva-
lent parameter values may lead to the same input-output behaviour. Equivalent
parameterizations can describe the same trajectory of the measurable data, but
may generally be associated with different dynamic evolution of the internal (not
directly measurable) variables. Such a situation is undesirable since mathemat-
ical models are principally used to predict unmeasurable quantities.
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 329–334, 2019.
https://doi.org/10.1007/978-3-030-31304-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_21&domain=pdf
http://orcid.org/0000-0002-7088-0678
https://daisy.dei.unipd.it/
https://doi.org/10.1007/978-3-030-31304-3_21

330 M. P. Saccomani et al.

A fundamental prerequisite for parameter estimation in dynamical models,
is the structural identifiability (see e.g. [1,2]). Structural identifiability analysis
of nonlinear systems is in general very difficult since it requires to check the
solvability of an unusually large system of nonlinear algebraic equations. Nev-
ertheless, checking the uniqueness of the parameter solution (structural global
identifiability) is crucial especially before investing resources in performing deli-
cate experiments which may otherwise provide unreliable numerical estimate of
the unknown parameters [3]. Note that identifiability analysis does not require
experimental data as it should just check a mathematical property of a model.

The primary goal of DAISY is to bring to systems biology and biomedi-
cal research a piece of software for checking identifiability which, although being
based on a rather sophisticated set of mathematical tools, does not require knowl-
edge of higher mathematics and computer algebra by the user and yet allows to
tackle problems which are hard and computationally intensive in a transparent
way, without requiring any knowledge of high-level programming languages.

In the literature software checking identifiability of biological models gener-
ally deals with practical identifiability. These statistical model fitting software
[4,5] check local identifiability but cannot however provide a mathematically
rigorous answer to the uniqueness problem. Recently software to check struc-
tural global identifiability, based on analytic calculations, have been proposed
together with some comparisons among their performances [8,9].

DAISY is based on differential algebra and provides an analytic method to
check structural identifiability [1]. It is difficult to define up to which model
size DAISY survives because it does not depend only on the number of ODE
equations, but also on that of the unknown parameters and on the number
and types of nonlinearities present in the ODE. The new version of DAISY
successfully deals with models for which the previous version failed. We applied
DAISY to many biological models of the recent literature.

In this paper we present the recent upgrades which have been implemented
in the new version of DAISY. The principal goals of this new version are:

1. to include in the identifiability analysis the known as well as the unknown
initial conditions;

2. the possibility to enter the parameter estimate obtained with a whatever opti-
mization algorithm to obtain all the equivalent parameter solutions (which
equivalently describe the output function);

3. the portability to the MacOS platform (not only Windows);
4. the new friendly interface which makes for a much easier use of DAISY.

2 Checking a Priori Identifiability

Consider a nonlinear dynamic system described in state space form

ẋ(t) = f(x(t),θ) +
m∑

i=1

gi(x(t),θ)ui(t), (1)

y(t) = h(x(t),u(t),θ) (2)

A New Version of DAISY to Test Structural Identifiability 331

with initial condition x(0) = x0, with state x(t) ∈ R
n, input u(t) ∈ R

q, output
y(t) ∈ R

m and constant unknown parameter vector θ belonging to some open
subset Θ ⊆ R

p. Here functions f , g1, . . . ,gm and h are assumed to be vectors of
rational functions in x. Also we assume that u is a free variable not depending
on y. The affine structure in u is not essential and could be relaxed. Equality
constraints (linear or nonlinear) on θ may be also present.

Let y = ψx0(θ,u) be the input-output map of the system (1, 2) started at
the initial state x0 (we assume that this map exists).

One says that the system (1, 2) is structurally globally (or uniquely) identifi-
able from input-output data if, for at least a generic set of points θ∗ ∈ Θ, there
exists (at least) one input function u such that the equation

ψx0(θ,u) = ψx0(θ
∗,u) (3)

has only one solution θ = θ∗ for all x0 in a generic subset of Rn.
If Eq. (3) has a finite (more than one) or an infinite number of solution θ

the system (1, 2) is locally or non identifiable respectively.
To check structural identifiability DAISY uses a method based on differential

algebra. We refer the reader to [1,6] where the original algorithm is described in
detail. By a suitable elimination technique, this algorithm permits to calculate
the characteristic set, a minimal set of differential polynomials which provides
the input-output relation of the model: a set of r polynomial equations involving
only the known variables (u,y) and their time derivatives, thereby describing
all input-output pairs satisfying the original dynamic model. The coefficients of
the input-output relation are known. In particular they are (nonlinear) algebraic
functions of the unknown parameters of the original model. The resulting system
of nonlinear equations in the unknown model parameters may be solved by the
Buchberger’s algorithm. This is a computer algebra algorithm which calculates
the Groebner basis, a set of polynomials with specific properties which deter-
mines if the system admits only one solution, or a finite or an infinite number
of solutions for each parameter, thus allowing one to distinguish between global
or local or non identifiability.

3 The New Version of DAISY

In this section the upgrades of the new version of the algorithm are illustrated,
while for the description of the algorithm itself and of its implementation the
reader is referred to [6,7].

3.1 Identifiability with Known and Unknown Initial Conditions

The calculation of the characteristic set is independent from the initial condi-
tions. In the new version of DAISY, the initial conditions are included in the
algorithm in both cases of known and unknown initial conditions. In particu-
lar, the initial condition values (numerical if known, symbolic if unknown) are

332 M. P. Saccomani et al.

substituted where they appear in the polynomials of the characteristic set of
the model. These polynomials are evaluated at time t = 0 and included in the
exhaustive summary. In this case the assumptions of algebraic observability [2]
(automatically checked by DAISY itself), and of accessibility [1] are required.

Note that a model can change its identifiability properties depending on its
initial conditions. For example, consider the following three compartments model

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = −(k21 + k31 + k01)x1 + k12x2 + k13x3 + u1 x1(0) = x10

ẋ2 = k21x1 − k12x2 x2(0) = x20

ẋ3 = k31x1 − k13x3 x3(0) = x30

y = x1

(4)

with known initial conditions the model is globally identifiable, while with only
the known constraint x2(0) = x3(0) the model becomes locally identifiable. In
this case, the parameter estimation from the experimental data possibly provides
only one of the two parameter solutions. By ignoring the second one, one can
misinterpret the biological results. This shows the relevance of including initial
conditions in the identifiability test, as the new version of DAISY does.

3.2 Calculation of All the Equivalent Parameter Solutions

A new important feature of DAISY is the introduction of a flag which gives to
the user the possibility of assigning a specific numerical value to the parameter
vector in order to do the calculations required by the algorithm. Instead, the
previous version of DAISY a randomly chosen value was automatically assigned
to the parameter vector. This is because, in the structural identifiability, the
goal is to know the number of parameter solutions, not their values. The novelty
allows to use DAISY in conjunction with practical identifiability algorithms and
this provides very interesting results [3]:

1. in case of local identifiability (finite number of solutions), given a parameter
estimate obtained with a whatever optimization procedure, the numerical values
of all the remaining solutions equivalently describing the output function [10];

2. in case of nonidentifiable models, the analytic relations between the cor-
related parameters; thus by knowing one solution, one can analytically know all
the others equivalently describing the output function.

Because of this improvement, a joint use of the two different identifiability
methodologies, namely structural and practical identifiability, which are tradi-
tionally regarded as disjoint, has been recently proposed [10]. Practically, these
findings can constitute a rational and powerful tool for the biological investigator
to disentangle the various causes of non identifiability assessed with sensitivity-
based approaches, and to provide reliable results.

3.3 The New Interface

The new version of the identifiability software tool DAISY is freely available at
the web site daisy.dei.unipd.it. Implementations of DAISY are now available on

https://daisy.dei.unipd.it/

A New Version of DAISY to Test Structural Identifiability 333

most variants not only of Microsoft Windows (as the old one was) but also of
Apple Macintosh. This will surely enlarge the DAISY users community (so far,
about 600 people have downloaded DAISY).

The novel extension of DAISY is available, after registration, together with
a README file where instructions for installation are reported, a User Manual
where there are detailed instructions about its usage and a folder MOD with
the input and the output files of some examples. Almost all these instructions
are also available to the user in the interface without the need of registration.
DAISY is written in the symbolic language REDUCE [11] thus the user needs
to install REDUCE on its computer. Instructions to do this are given in the
DAISY interface.

3.4 A Case Study

To give an idea of what kind of models DAISY can deal with, a recently proposed
HIV model [12] is used here as an example:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ċ = k1C + k3CI − k2CXI/(k8 + XI) − k5C H

ĊI = (k1 − k3)CI + k2CXI/(k8 + XI)
˙CH = (k1 − k4)CH + k5C H − k2CHXI/(k8 + XI) + k3CHI
˙CHI = (k1 − k3 − k4)CHI + k2CHXI/(k8 + XI)

Ḣ = k6CH − k7H

ẊI = −k9XI
y1 = CH + CHI
y2 = C + CI
y3 = H

(5)

where C,CI,CH,CHI,H,XI are the state variables, y1, y2 and y3 the measured
outputs, θ = [k1, k2, k3, k4, k5, k6, k7, k8, k9] is the unknown parameter vector.
To check structural identifiability with DAISY, the dynamical model should be
provided in a separate file in a specific format. This file should contain the ODE
defining the dynamic system (1, 2) together with their known or unknown initial
conditions, an ordered list of input, output and state variables, a list of unknown
parameters and, if present, equality constraints among the parameters. In less
then 10 s. DAISY shows that the model is globally identifiable in a PC with at
least an i5 CPU and a RAM of 4.0 GB (for lack of space the output of DAISY
is not reported). This result implies that the parameter estimation problem
is well-posed and thus the cost function defined by an optimization algorithm
has only one global minimum. Obviously, it is worth noting that if a model
is structurally identifiable, it may nevertheless turn out to be practically non-
identifiable. In this case the inability to unequivocally estimate model parameters
may be caused by a number of distinct reasons, among which: (1) excessive noise
in the measurements, (2) poor or very sparse sampling schedules, (3) poorly
designed experiments, where measurement locations or inputs are missing or
insufficiently informative. However, if the model turns out to be practically non
identifiable, only by first checking structural identifiability it is possible to know

334 M. P. Saccomani et al.

if the problem lays on a too complex model-experiment structure or on the above
reasons related to experimental data.

4 Conclusions

We have described a novel extension of DAISY (Differential Algebra for Identi-
fiability of SYstems), a general software tool allowing biomedical researchers to
perform global identifiability analysis for linear and nonlinear dynamic models.
In particular, DAISY effectively facilitates the solution to the underappreci-
ated problem of determining if unique parameter estimation from the experi-
mental data is theoretically possible. Although DAISY is a computer-algebra
code implementing a differential algebra algorithm, high-level programming lan-
guages, mathematical and computer algebra skills are not a prerequisite for using
the software. These upgrades make DAISY surely more general and easy to use.

References

1. Saccomani, M.P., Audoly, S., D’Angiò, L.: Parameter identifiability of nonlinear
systems: the role of initial conditions. Automatica 39, 619–632 (2003)

2. Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parameteriza-
tions. Automatica 30(2), 265–276 (1994)

3. Saccomani, M.P., Thomaseth, K.: The union between structural and practical iden-
tifiability makes strength in reducing oncological model complexity: a case study.
Complexity (2018). Article ID 2380650, 10 p

4. Balsa-Canto, E., Banga, J.R.: AMIGO, a toolbox for advanced model identification
in systems biology using global optimization. Bioinformatics 27(16), 2311–2313
(2011). https://doi.org/10.1093/bioinformatics/btr370

5. Hoops, S., et al.: COPASI: a COmplex PAthway SImulator. Bioinformatics 22,
3067–74 (2006)

6. Bellu, G., Saccomani, M.P., Audoly, S., D’Angiò, L.: DAISY: a new software tool to
test global identifiability of biological and physiological systems. Comput. Method
Progr. Biomed. 88, 52–61 (2007)

7. Saccomani, M.P., Audoly, S., Bellu, G., D’Angiò, L.: Examples of testing global
identifiability of biological and biomedical models with the DAISY software. Com-
put. Biol. Med. 40(4), 402–407 (2010)

8. Hong, H., Ovchinnikov, A., Pogudin, G., Yao, C.: SIAN: software for structural
identifiability of ODE models. Bioinformatics arXiv:1812.10180v1 (in press)

9. Ligon, T.S., et al.: GenSSI 2.0: multi-experiment structural identifiability analysis
of SBML models. Bioinformatics 34(8), 1421–1423 (2017). 10.1093/bioinformat-
ics/btx735

10. Thomaseth, K., Saccomani, M.P.: Local identifiability analysis of nonlinear ODE
models: how to determine all candidate solutions. IFAC PapersOnLine 51–2, 529–
534 (2018)

11. REDUCE Computer Algebra System at SourceForge. http://reduce-algebra.sourc
eforge.net. Accessed 28 Sep 2015

12. Browne, E.P., Letham, B., Rudin, C.A.: Computational model of inhibition of
HIV-1 by interferon-alpha. PLoS ONE 11(3), e0152316 (2016). https://doi.org/
10.1371/journal.pone.0152316

https://doi.org/10.1093/bioinformatics/btr370
http://arxiv.org/abs/1812.10180v1
http://reduce-algebra.sourceforge.net
http://reduce-algebra.sourceforge.net
https://doi.org/10.1371/journal.pone.0152316
https://doi.org/10.1371/journal.pone.0152316

Extended Abstracts (Posters and
Highlight Talks)

Semi-quantitative Abstraction
and Analysis of Chemical Reaction
Networks (Extended Abstract)

Milan Češka1(B) and Jan Křet́ınský2

1 Brno University of Technology, FIT, IT4I Centre of Excellence,
Brno, Czech Republic
ceskam@fit.vutbr.cz

2 Technical University of Munich, Munich, Germany

Introduction. Chemical Reaction Networks (CRNs) are a versatile language
widely used for modelling and analysis of biochemical systems [4] as well as
for high-level programming of molecular devices [1,14]. Motivated by numerous
potential applications ranging from system biology to synthetic biology, var-
ious techniques allowing simulation and formal analysis of CRNs have been
proposed [2,7,10,13], and embodied in the design process of biochemical sys-
tems [6,11,12]. The time-evolution of CRNs is governed by the Chemical Master
Equation (CME), which describes the probability of the molecular counts of each
chemical species. Many important biochemical systems lead to complex dynam-
ics that includes state space explosion, stochasticity, stiffness, and multimodality
of the population distributions [9,15], and that fundamentally limits the class of
systems the existing techniques can effectively handle. More importantly, biol-
ogist and engineers often seek for plausible explanations why the system under
study has or has not the required behaviour. In many cases, a set of system simu-
lations/trajectories or population distributions are not sufficient and the ability
to provide an accurate explanation for the temporal or steady-state behaviour
is another major challenge for the existing techniques.

In order to cope with the computational complexity of the analysis and in
order to obtain explanations of the behaviour, we shift the focus from quanti-
tatively precise results to a more qualitative analysis, closer to how a human
would behold the system. Yet we insist on providing at least rough timing infor-
mation on the behaviour as well as rough classification of probability of differ-
ent behaviours at the extent of “very likely”, “few percent”, “barely possible”,
so that we can conclude on issues such as time to extinction or bimodality of
behaviour. This gives rise to our semi-quantitative approach. We stipulate that
analyses in this framework reflect quantities in orders of magnitude, both for
time duration and probabilities, but not more than that. This paradigm shift is

This work has been accepted to the 31st International Conference on Computer-Aided
Verification (CAV’19). The full version of the paper is available at [3]. The work
has been supported by the Czech Science Foundation grant No. GA19-24397S, the
IT4Innovations excellence in science project No. LQ1602, and the German Research
Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded Verification”.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 337–341, 2019.
https://doi.org/10.1007/978-3-030-31304-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_22

338 M. Češka and J. Křet́ınský

reflected on two levels: (1) We abstract systems into semi-quantitative models.
(2) We analyse systems in a semi-quantitative way. While each of the two can
be combined with a traditional abstraction/analysis, when combined together
they provide powerful means to understand systems’ behaviour with virtually
no computational cost.

Semi-quantitative Models. The states of the models contain information on
the current amount of objects of each species as an interval spanning often sev-
eral orders of magnitude, unless instructed otherwise. For instance, if an amount
of a certain species is to be closely monitored (as a part of the input speci-
fication/property of the system) then this abstraction can be finer. Similarly,
whenever the analysis of a previous version of the abstraction points to the lack
of precision in certain states, preventing us to conclude which of the possible
behaviours is prevalent, the corresponding refinement can take place. Further,
the rates of the transitions are also captured only with such imprecision. The
crucial point allowing for existence of such models that are small, yet faithful,
is our concept of acceleration. It captures certain sequences of transitions. It
eliminates most of the non-determinism that paralyses other types of abstrac-
tions, which are too over-approximative, unable to conclude anything, but safety
properties.

Semi-quantitative Analysis. Instead of performing exact transient or steady-
state analysis, we can consider most probable transitions and then carefully lift
this to most probable temporal behaviours. Technically, this is done by alter-
nating between transient and steady-state analysis where only some rates and
transitions are taken into account at different iterations. In order to further
facilitate the resulting insight of the human on the result of the analysis, we pro-
vide an algorithm to perform this analysis with virtually no computation effort
and thus possibly manually. The trivial computations immediately pinpoint why
certain behaviours occur. Moreover, less likely behaviours can also be identified
easily, to any desired degree of probability (dozens of percent, promilles etc.).

Summary. The first step of our approach yields tiny models, allowing for a
synoptic observation of the model; due to their size these models can be either
analysed easily using standard means, or can be subject to the second step.
The second step provides an efficient approximative analysis, which is also very
illustrative due to the limited use of quantities. It can be applied to any system;
however, it is particularly interesting in connection with the models coming from
the first step since (i) no extra effort (size, computation) is wasted on overly
precise treatment that is ignored by the other step, and (ii) together they yield
an understandable explanation of the behaviour. An entertaining feature of this
paradigm is that the stiffer (with rates at hugely different time scales) the system
is the easier it is to analyse.

To demonstrate the capabilities of our approach, we consider three chal-
lenging and biologically relevant case studies that have been used in literature
to evaluate state-of-the-art methods for the CRN analysis. It has been shown
that many approaches fail, either due to time-outs or incapability to capture

Semi-quantitative Abstraction and Analysis of CRNs 339

Table 1. Gene expression. The rates are in h−1.

Doff
0.05−−→ Don Don

0.05−−→ Doff Don
10−→ Don + RNA RNA

1−→ ∅
RNA

4−→ RNA + P P
1−→ ∅ P + Doff

0.0015−−−−→ P + Don

Fig. 1. Pruned abstraction for the gene expression model using the coarse discretisation
(left) and after the refinement (right). The state vector is [P, RNA, Doff , Don]. (Color
figure online)

differences in behaviours, and some tailored ones require considerable compu-
tational effort, e.g. an hour of computation. Our experiments clearly show that
the proposed approach can deliver results that yield qualitatively same informa-
tion, more understanding and can be computed in minutes by hand (or within
a fraction of a second by computer).

Demonstration: Analysis of Stochastic Gene Expression Model [8]. The
CRN underlying the stochastic gene expression model is described in Table 1.
As discussed in [5,10], the system oscillates between two phases characterised by
the Don state and the Doff state, respectively. Biologists are interested in how
the distribution of the Don and Doff states is aligned with the distribution of
RNA and protein P.

In order to demonstrate the refinement step and its effect on the accuracy of
the model, we start with a very coarse abstraction. It distinguishes only the zero
population and the non-zero populations. The pruned abstract model obtained
using our approach is depicted in Fig. 1 (left). The full one before pruning is
shown in Fig. 6 [3, Appendix].

The proposed analysis of the model identifies the key trends in the system
dynamic. The red transitions, representing iterations 1–3 of the semi-quantitative
analysis, capture the most probable paths in the system. The green component
includes states with DNA on where the system oscillates. The component is
reached via the blue state with Doff and no RNAs/P. The blue state is promptly
reached from the initial state and then the system waits (roughly 100 h according

340 M. Češka and J. Křet́ınský

our rate abstraction) for the next DNA activation. The component is left via a
deactivation in the iteration 4 (the blue dotted transition). The estimation of the
exit time is 100 h. The deactivation is then followed by fast red transitions leading
to the blue state, where the system waits for the next activation. We obtain an
oscillation between the blue state and the green component, representing the
expected oscillation between the Don and Doff states.

As expected, this abstraction does not clearly predict the bimodal distri-
bution on the RNA/P populations – the green component includes states with
both the zero and the non-zero population of the mRNA and the protein. In
order to obtain a more accurate analysis of the system, we refine the population
discretisation using a single level threshold for P and DNA, that is equal to 100
and 10, respectively (the rates in the CRN indicate that the population of P
reaches higher values).

Figure 1 (right) depicts the pruned abstract model with the new discreti-
sation (the full model is depicted in Fig. 7 [3, Appendix]. We again obtain the
oscillation between the green component representing DNAon states and the blue
DNAoff state. The states in the green component more accurately predicts that
in the DNAon states the populations of RNA and P are high and drop to zero
only for short time periods. The figure also shows orange transitions within the
iteration 2 that extend the green component by two states. Note that the sys-
tem promptly returns from these states back to the green component. After the
deactivation in the iteration 4, the system takes (within the same iteration) the
fast transitions (solid blue) leading to the blue component where system waits
for another activation and where the mRNA/protein populations decrease. The
expected time spent in states on blue solid transitions is small and thus we
can reliably predict the bimodal distribution of the mRNA/P populations and
its correlation with the DNA state. The refined abstraction also reveals that
the switching time from the DNAon mode to the DNAoff mode is lower. These
predications are in accordance with the results obtained in [10]. See in Fig. 8 [3,
Appendix] that is adopted from [10] and illustrates these results.

To conclude this case study, we observe a very aligned agreement between the
results obtained using our approach with virtually no computational cost and
results in [10] obtained via advanced and time consuming numerical methods.

References

1. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci.
23(02), 247–271 (2013)

2. Cardelli, L., Kwiatkowska, M., Laurenti, L.: A Stochastic hybrid approximation for
chemical kinetics based on the linear noise approximation. In: Bartocci, E., Lio,
P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 147–167. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45177-0 10

3. Češka, M., Křet́ınský, J.: Semi-quantitative abstraction and analysis of chemical
reaction networks. Tech. Rep. abs/1905.09914 (2019)

4. Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analysis
of mass-action kinetics. IEEE Control Syst. Mag. 29(4), 60–78 (2009)

https://doi.org/10.1007/978-3-319-45177-0_10
https://arxiv.org/abs/1905.09914

Semi-quantitative Abstraction and Analysis of CRNs 341

5. Gandhi, S.J., Zenklusen, D., Lionnet, T., Singer, R.H.: Transcription of functionally
related constitutive genes is not coordinated. Nat. Struct. Mol. Biol. 18(1), 27
(2011)

6. Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixão, T., Petrov, T.:
Model checking gene regulatory networks. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 469–483. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 47

7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

8. Golding, I., Paulsson, J., Zawilski, S.M., Cox, E.C.: Real-time kinetics of gene
activity in individual bacteria. Cell 123(6), 1025–1036 (2005)

9. Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic
biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)

10. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional
moments (MCM) for the chemical master equation. J. Math. Biol. 69(3), 1–49
(2013)

11. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilis-
tic model checking of complex biological pathways. Theor. Comput. Sci. 391(3),
239–257 (2008)

12. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and
analysis of DNA strand displacement devices using probabilistic model checking.
J. R. Soc. Interface 9(72), 1470–1485 (2012)

13. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of cou-
pled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)

14. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Nat. Acad. Sci. U.S.A. 107(12), 5393–5398 (2010)

15. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier,
Amsterdam (1992)

https://doi.org/10.1007/978-3-662-46681-0_47
https://doi.org/10.1007/978-3-662-46681-0_47

Bayesian Parameter Estimation
for Stochastic Reaction Networks
from Steady-State Observations

Ankit Gupta1, Mustafa Khammash1, and Guido Sanguinetti2(B)

1 Department of Biosystems Science and Engineering, ETH Zürich,
Zürich, Switzerland

2 School of Informatics, University of Edinburgh, Edinburgh, Scotland
gsanguin@inf.ed.ac.uk

Stochasticity is a fundamental feature of biology at the single cell level. Quanti-
tative experimental data ranging from microscopy to single-cell transcriptomic
is continually expanding our understanding of the role of stochasticity in gene
expression and other cellular processes. Computational modelling has played a
fundamental role in elucidating the potential function of stochasticity in biolog-
ical dynamics, creating a fertile field of interaction between the computational
and life sciences (see e.g. [7]).

While methods for forward simulation of stochastic processes are well devel-
oped, the inverse problem of parametrizing a stochastic reaction network from
data is still a very active field of research (see e.g. [6] for a recent review). In
this abstract, we are focussed on Bayesian methods, due to their ability to per-
form full uncertainty quantification and treat noise in a principled way. These
methods have seen intensive research particularly for the case of time-series
data, where powerful techniques based on particle filtering/particle Markov chain
Monte Carlo (MCMC) can be naturally deployed. Unfortunately, time series data
from single cells is still relatively rare compared to steady state data, which are
relatively under-studied in the statistical literature.

Here we build on recent developments both in the statistics and stochastic
literature to provide an effective and accurate Bayesian inference algorithm for
steady state data. The main ingredients of our approach are the stationary Finite
State Projection (sFSP) of [4], and the random truncation approach of [3]. In
the following, we introduce the basic concepts, describe the novel algorithm and
briefly illustrate its performance on a case study of a toggle-switch network.

We consider a reaction network consisting of species S1, . . . ,SM involved in
K reactions where each reaction k = 1, . . . , K has the form

M∑

i=1

νikSi −→
M∑

i=1

ν′
ikSi. (1)

For each reaction k, the vector ζk = (ν′
1k−ν1k, . . . , ν′

Mk−νMk) ∈ Z
M denotes the

stoichiometry vector and a pre-selected propensity function λk : NM
0 → [0,∞)

specifies the rate of firing of the reaction. We assume that the propensities depend
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 342–346, 2019.
https://doi.org/10.1007/978-3-030-31304-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_23

Bayesian Parameter Estimation for Stochastic Reaction Networks 343

on a parameter vector θ; in the standard mass-action formulation, these are
the reaction rates, but more complex scenarios (e.g. Michaelis-Menten or Hill
dynamics) are possible too. In the commonly used continuous-time Markov chain
(CTMC) model of a reaction network [1], the state at time t is simply the vector
of species copy-numbers X(t) = (X1(t), . . . , XM (t)) ∈ N

M
0 at time t and at

state X(t) = x, reaction k fires at rate λk(x) and moves the state to (x + ζk).
The probability vector time-evolution is given by the famous Chemical Master
Equation (CME) which is expressible as

dp

dt
= QT p(t). (2)

where Q = [Qij] is the bi-infinite transition rate matrix.
Even though the CME is a first-order linear system of ODEs, solving it ana-

lytically is infeasible as the number of ODEs is infinite. Many different approxi-
mation schemes have been constructed to solve the CME [6]; here we focus on the
Finite State Projection (FSP) [5] algorithm that approximately solves the CME
by considering the reaction dynamics on a finite truncated state-space En ⊂ E
where all the outgoing transitions lead to an absorbing state. It is known that
over finite time-periods the absorption probability can be made arbitrarily small
by choosing a large enough truncated state-space and this yields an accurate
estimation of the CME solution.

For fixed parameters θ, the CME gives the probability of observing a par-
ticular state X(t) = x at time t. In this paper, we are interested in solving the
inverse problem: Given observations of the state of the CTMC D, what is the
implied probability distribution over the parameter vector θ?

In the classical Bayesian setting, the posterior distribution for the unknown
parameter θ given the data D is proportional to the product of the likelihood and
the prior distribution. If the likelihood �(θ) can be computed then one can use
Markov Chain Monte Carlo (MCMC) approaches (like the Metropolis-Hastings
algorithm) to obtain a sample from the posterior distribution and consequently
infer θ. Unfortunately, computing the likelihood �(θ) is equivalent to solving the
CME, which is infeasible. Approximation schemes such as the FSP introduce a
bias in the estimation of the likelihood. It is unclear how this bias is reflected
in the quality of parameter estimates; empirical evidence (not shown) suggest
that in certain cases the bias can lead to very large errors in the estimation.
Georgoulas et al. [3] devised a scheme that enables this unbiased estimation by
randomizing the FSP truncation. To see how this works, suppose {En : n =
n0, n0 + 1, . . . } is an increasing family of truncated state-spaces that converge
to the full state-space E as n → ∞ (i.e. ∪∞

n=1En = E) and let p
(n)
θ (t) denote the

FSP-based approximation of pθ(t) with truncated state-space En. Moreover for
some a ∈ (0, 1) let η be a geometric random variable with p.m.f.

P(η = m) = (1 − a)am for m = 0, 1, (3)

344 A. Gupta et al.

Then it can be shown that

pθ(t) = E

⎡

⎣p
(n0)
θ (t) +

η∑

j=0

a−j
(
p
(j+n0+1)
θ (t) − p

(j+n0)
θ (t)

)
⎤

⎦ (4)

which implies that the random vector inside the r.h.s. expectation is an unbiased
estimator for pθ(t). Therefore, in the MCMC approach, using this random vari-
able to estimate each likelihood yields unbiased samples from the true posterior
distribution.

Neither the FSP nor the Bayesian algorithm of [3] can however be used when
the experimental data D is at steady-state, which is often the case in biological
studies. Intuitively, this is because all trajectories of the system will hit the
absorbing state in the run up to steady state, so that any finite state projection
will collapse at steady state.

Recently the stationary Finite State Projection (sFSP) [4] was developed to
solve this issue. It modifies the FSP by directing all the outgoing transitions
to a designated state-space within the truncated state-space En. Under certain
stability conditions for the original CTMC, sFSP provides an accurate estimate
of the true stationary distribution and since sFSP relies on solving a linear-
algebraic system of equations (rather than ODEs) it feasibly applies to a larger
class of networks than FSP. In spite of the accuracy of sFSP, a small bias in the
estimate is unavoidable due to the finiteness of the truncated state-space.

Unfortunately, the sFSP does not share the monotonic behaviour of the FSP,
meaning that increasing the size of the truncated space may decrease the proba-
bility mass associated with some states. This means that the random truncation
approach of Georgoulas et al. [3] can fail in this steady-state setting because it
can lead to negative estimates of the stationary probabilities which are mean-
ingless. In other words, if π

(n)
θ denotes the sFSP-based approximation of πθ with

truncated state-space En, then the vector π
(j+n0+1)
θ − π

(j+n0)
θ can have negative

components.
In order to avoid negative components in the estimated stationary distribu-

tion we devise another random truncation approach. This approach is based on
the simple observation that for any a ∈ (0, 1)

πθ = lim
n→∞

∑n
j=0 a−jπ

(j+n0)
θ∑n

j=0 a−j

Hence if η is a geometric random variable (3) with parameter a close to 1 then

π
(η)
θ =

∑η
j=0 a−jπ

(j+n0)
θ∑η

j=0 a−j

serves as an accurate estimator for the true stationary distribution πθ. Using
π
(η)
θ we can estimate the likelihood and obtain samples from the posterior via a

MCMC procedure to infer the unknown parameter θ. A theoretical analysis of

Bayesian Parameter Estimation for Stochastic Reaction Networks 345

Fig. 1. Inference results for the toggle-switch model [2] using the sFSP-based random
truncation approach.

the bias and variance of this estimator is deferred to another venue. Our empirical
results indicate that this sFSP-based random truncation approach works better
than an analogous approach where the truncation size is fixed a priori.

We now consider the non-linear toggle switch network proposed by Gardner
[2]. It has two species S1 and S2 with four simple reactions

∅ λ1−→ S1, S1
λ2−→ ∅, ∅ λ3−→ S2 and S2

λ4−→ ∅,
where the propensity functions λi-s follow mass action kinetics. We set the
parameters as θ1 = 20, θ2 = 3.5, θ3 = 50, θ4 = 2.7, θ5 = 1.5 and θ6 = 1. We
obtain stationary S2 data D of size 1000 from SSA trajectories. The measure-
ment noise variance is σ2

m = 0.25. We infer both θ1 and θ5 from this noisy data
D using our approach and the results are shown in Fig. 1.

The results on this simple example network indicate a promising level of accu-
racy and a reasonable computational complexity. A more thorough exploration
of the practical usability of the algorithm is a priority for future work.

References

1. Anderson, D., Kurtz, T.: Continuous time Markov chain models for chemical reac-
tion networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.) Design
and Analysis of Biomolecular Circuits. Springer, New York (2011). https://doi.org/
10.1007/978-1-4419-6766-4 1

2. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch
in Escherichia coli. Nature 403(6767), 339–342 (2000)

3. Georgoulas, A., Hillston, J., Sanguinetti, G.: Unbiased Bayesian inference for pop-
ulation Markov jump processes via random truncations. Stat. Comput. 27(4), 991–
1002 (2017)

4. Gupta, A., Mikelson, J., Khammash, M.: A finite state projection algorithm for the
stationary solution of the chemical master equation. J. Chem. Phys 147(15), 154101
(2017)

https://doi.org/10.1007/978-1-4419-6766-4_1
https://doi.org/10.1007/978-1-4419-6766-4_1

346 A. Gupta et al.

5. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)

6. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for
stochastic biochemical kinetics–a tutorial review. J. Phys. A Math Theor. 50(9),
093001 (2017)

7. Székely Jr., T., Burrage, K.: Stochastic simulation in systems biology. Comput.
Struct. Biotechnol. J. 12(20–21), 14–25 (2014)

Wasserstein Distances for Estimating
Parameters in Stochastic

Reaction Networks

Kaan Öcal1,2(B), Ramon Grima2, and Guido Sanguinetti1

1 School of Informatics, University of Edinburgh, Edinburgh, UK
{kaan.ocal,g.sanguinetti}@ed.ac.uk

2 School of Biological Sciences, University of Edinburgh, Edinburgh, UK
ramon.grima@ed.ac.uk

Keywords: Wasserstein distance · Bayesian optimization ·
Chemical master equation · Parameter estimation

Modern experimental methods such as flow cytometry and fluorescence in-situ
hybridization (FISH) allow the measurement of cell-by-cell molecule numbers for
RNA, proteins and other substances for large numbers of cells at a time, opening
up new possibilities for the quantitative analysis of biological systems. Of par-
ticular interest is the study of biological reaction systems describing processes
such as gene expression, cellular signalling and metabolism on a molecular level.
It is well established that many of these processes are inherently stochastic [1–3]
and that deterministic approaches to their study can fail to capture properties
essential for our understanding of these systems [4,5]. Despite recent technolog-
ical and conceptual advances, modelling and inference for stochastic models of
reaction networks remains challenging due to additional complexities not present
in the deterministic case. The Chemical Master Equation (CME) [6] in particu-
lar, while frequently used to model many types of reaction networks, is difficult
to solve exactly, and parameter inference in practice often relies on a variety
of approximation schemes whose accuracy can vary widely and unpredictably
depending on the context [6–8].

Methods for inferring parameters from population snapshot data often rely
on continuum approximations to the CME or on computing moments of the
resulting distributions [9–12], two approaches with limited applicability in prac-
tice. Continuum approximations can break down in the presence of low copy
number species such as mRNA (often present at copy numbers of less than 20 in
cells [13]), while computing moments usually requires the use of moment closure
approximations, validity conditions for which are not well-understood and still
an active topic of research [8,14,15]. Direct likelihood-based parameter estima-
tion [16,17] typically requires approximating the CME numerically in order to
compute the likelihoods, which is computationally expensive for larger systems.

We propose a new method to estimate parameters with the CME by simulat-
ing it at various parameter settings and computing the discrepancy between sim-
ulated observations and experimental data in order to construct a probabilistic
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 347–351, 2019.
https://doi.org/10.1007/978-3-030-31304-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_24

348 K. Öcal et al.

model of where the correct parameters are most likely to be found. We introduce
the use of Wasserstein distances for quantifying the discrepancy between simu-
lated and experimentally measured distributions and train a Gaussian Process
to learn these distances for all parameter values. We subsequently use Bayesian
optimization to minimize the Wasserstein distance by iteratively computing the
next best parameter set to simulate, keeping the number of simulations that
need to be run at a minimum. Our approach is suitable for any simulator-based
model of reaction networks for which alternative inference methods may not be
readily available, e.g. Brownian Dynamics.

Wasserstein distances [18,19], also called Earth Mover’s distances in the lit-
erature, are a family of distance metrics between probability distributions based
on the amount of probability mass that has to be moved in order to convert one
probability distribution into another (Fig. 1b). They provide an intuitive and
interpretable quantification of similarity between probability distributions, are
well-suited for computations in the context of reaction networks and overcome
several limitations of standard measures such as KL divergences and the total
variation distance. We perform parameter estimation by minimizing the distance
between experimental data and simulator output, called the Wasserstein loss in
the sequel, in order to obtain distributional fits which capture both qualitative
and quantitative aspects of the input data.

Since the functional dependence of the Wasserstein loss with respect to the
parameters is not available in closed form and can only be evaluated point-
wise at considerable computational cost by running the Stochastic Simulation
Algorithm [20] we train a Gaussian Process to learn the Wasserstein loss for all
parameter settings, incorporating uncertainty about regions of parameter space
that have not been explored. We then use Bayesian optimization to repeatedly
identify parameter settings which are likely to be optimal, compute the Wasser-
stein loss at the chosen parameters and update the Gaussian Process with the
obtained data until the correct parameters have been identified. This approach
is able to find parameter settings minimizing the Wasserstein loss efficiently in
terms of the number of simulations needed and, unlike classical optimization
methods, is robust to the observation noise typically present in sampling-based
computations.

We tested our method on the classical three-stage gene expression model
studied in [21], given by the following reactions:

G
ρm−−−→ G + M M

ρp−−−→ M + P M
δm−−−→ ∅ (1)

G
σd−−⇀↽−−
σa

G∗ P
1−−→ ∅

Here G and G∗ denote a gene in its activated and inactivated state, M the corre-
sponding mRNA and P the translated protein. Based on simulated observations
of joint mRNA and protein counts in the steady state we infer the five parame-
ters of this model using our approach. We are able to obtain parameter estimates
closely reproducing the input observations as displayed in Fig. 1a. We found that
our method performs well for a range of models, including a genetic feedback loop

Wasserstein Distances for Estimating Parameters 349

Fig. 1. (a) Inference for the three-stage gene expression model, showing the joint
mRNA/protein distributions for observed data (contours) and the parameters esti-
mated using Bayesian optimization (shaded). The table shows the means (m) and
standard deviations (s) of mRNA and protein numbers as well as their Pearson corre-
lation coefficient (r). (b) Visualization of a transport plan between two one-dimensional
distributions. Wasserstein distances measure how much probability mass needs to be
moved to convert one distribution into the other by finding an optimal transport plan
between the two.

inspired from [22] to which classical moment-based inference methods cannot be
applied.

Bayesian optimization has been successfully applied for identifying parame-
ters in cosmology [23], genomic prediction [24] and in the context of maximum
likelihood estimation for general Markov processes [25]. Given the large num-
ber of computational models in biology we hope that our adaptation of Bayesian
optimization to the context of biochemical reaction networks will provide a step-
ping stone for other inference problems in the field and allow scientists to use
expensive simulation-based models more effectively in the future.

350 K. Öcal et al.

Acknowledgments. This work was supported in part by the EPSRC Centre for Doc-
toral Training in Data Science, funded by the UK Engineering and Physical Sciences
Research Council (grant EP/L016427/1) and the University of Edinburgh.

References

1. Elowitz, M.B.: Stochastic gene expression in a single cell. Science 297(5584), 1183–
1186 (2002)

2. Choi, P.J., Cai, L., Frieda, K., Xie, X.S.: A stochastic single-molecule event triggers
phenotype switching of a bacterial cell. Science 322(5900), 442–446 (2008)

3. Kiviet, D.J., Nghe, P., Walker, N., Boulineau, S., Sunderlikova, V., Tans, S.J.:
Stochasticity of metabolism and growth at the single-cell level. Nature 514(7522),
376–379 (2014)

4. Morton-Firth, C.J., Bray, D.: Predicting temporal fluctuations in an intracellular
signalling pathway. J. Theor. Biol. 192(1), 117–128 (1998)

5. McAdams, H.H., Arkin, A.: It’s a noisy business! Genetic regulation at the nanomo-
lar scale. Trends Genet. 15(2), 65–69 (1999)

6. van Kampen, N.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier,
Amsterdam (2007)

7. Cao, Z., Grima, R.: Linear mapping approximation of gene regulatory networks
with stochastic dynamics. Nat. Commun. 9(1), 3305 (2018)

8. Schnoerr, D., Sanguinetti, G., Grima, R.: Comparison of different moment-closure
approximations for stochastic chemical kinetics. J. Chem. Phys. 143(18), 185101
(2015)

9. Zechner, C., et al.: Moment-based inference predicts bimodality in transient gene
expression. Proc. Nat. Acad. Sci. 109(21), 8340–8345 (2012)

10. Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and exper-
iment design for stochastic biochemical reaction networks. ACM Trans. Model.
Comput. Simul. 25(2), 8:1–8:25 (2015)

11. Fröhlich, F., Thomas, P., Kazeroonian, A., Theis, F.J., Grima, R., Hasenauer, J.:
Inference for stochastic chemical kinetics using moment equations and system size
expansion. PLOS Comput. Biol. 12(7), e1005030 (2016)

12. Cinquemani, E.: Identifiability and reconstruction of biochemical reaction networks
from population snapshot data. Processes 6(9), 136 (2018)

13. Marguerat, S., Schmidt, A., Codlin, S., Chen, W., Aebersold, R., Bähler, J.: Quan-
titative analysis of fission yeast transcriptomes and proteomes in proliferating and
quiescent cells. Cell 151(3), 671–683 (2012)

14. Schnoerr, D., Sanguinetti, G., Grima, R.: Validity conditions for moment closure
approximations in stochastic chemical kinetics. J. Chem. Phys. 141(8), 084103
(2014)

15. Schilling, C., Bogomolov, S., Henzinger, T.A., Podelski, A., Ruess, J.: Adaptive
moment closure for parameter inference of biochemical reaction networks. Biosys-
tems 149, 15–25 (2016)

16. Neuert, G., Munsky, B., Tan, R.Z., Teytelman, L., Khammash, M., Oudenaar-
den, A.V.: Systematic identification of signal-activated stochastic gene regulation.
Science 339(6119), 584–587 (2013)

17. Munsky, B., Li, G., Fox, Z.R., Shepherd, D.P., Neuert, G.: Distribution shapes
govern the discovery of predictive models for gene regulation. Proc. Nat. Acad.
Sci. 115(29), 7533–7538 (2018)

Wasserstein Distances for Estimating Parameters 351

18. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematis-
chen Wissenschaften. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-
71050-9

19. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach.
Learn. 11(5–6), 355–607 (2019)

20. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

21. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression.
Proc. Nat. Acad. Sci. 105(45), 17256–17261 (2008)

22. Cao, Z., Grima, R.: Accuracy of parameter estimation for auto-regulatory tran-
scriptional feedback loops from noisy data. J. Roy. Soc. Interface 16(153), 20180967
(2019)

23. Leclercq, F.: Bayesian optimisation for likelihood-free cosmological inference. Phys.
Rev. D 98(6), 063511 (2018)

24. Tanaka, R., Iwata, H.: Bayesian optimization for genomic selection: a method for
discovering the best genotype among a large number of candidates. Theor. Appl.
Genet. 131(1), 93–105 (2018)

25. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from
logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 7

https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-642-40196-1_7
https://doi.org/10.1007/978-3-642-40196-1_7

On Inferring Reactions from Data
Time Series by a Statistical Learning

Greedy Heuristics

Julien Martinelli1,2, Jeremy Grignard1,3, Sylvain Soliman1,
and François Fages1(B)

1 Inria Saclay-̂Ile de France, Palaiseau, France
francois.fages@inria.fr

2 INSERM U935, Villejuif, France
3 Institut de Recherches Servier, Croissy sur Seine, France

Abstract. With the automation of biological experiments and the
increase of quality of single cell data that can now be obtained by phos-
phoproteomic and time lapse videomicroscopy, automating the building
of mechanistic models from these data time series becomes conceivable
and a necessity for many new applications. While learning numerical
parameters to fit a given model structure to observed data is now a
quite well understood subject, learning the structure of the model is a
more challenging problem that previous attempts failed to solve with-
out relying quite heavily on prior knowledge about that structure. In
this paper, we consider mechanistic models based on chemical reaction
networks (CRN) with their continuous dynamics based on ordinary dif-
ferential equations, and finite time series about the time evolution of con-
centration of molecular species for a given time horizon and a finite set of
perturbed initial conditions. We present a greedy heuristics unsupervised
statistical learning algorithm to infer reactions with a time complexity
for inferring one reaction in O(t.n2) where n is the number of species
and t the number of observed transitions in the traces. We evaluate
this algorithm both on simulated data from hidden CRNs, and on real
videomicroscopy single cell data about the circadian clock and cell cycle
progression of NIH3T3 embryonic fibroblasts. In all cases, our algorithm
is able to infer meaningful reactions, though generally not a complete set
for instance in presence of multiple time scales or highly variable traces.

1 Introduction

Recent breakthroughs in Machine Learning are paving the way for new kinds
of algorithms for analysing data and making diagnosis and predictions in biol-
ogy and medicine. While capable of making accurate predictions, the direct
application of machine learning methods do not provide however a biological
understanding of the underlying processes nor explanation for the predictions,
and may be not accepted in the biomedical domain. For these reasons, a lot
of work aims at providing explanations for the predictions made as output of
neural networks or other machine learning algorithms trained on data.
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 352–355, 2019.
https://doi.org/10.1007/978-3-030-31304-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_25

On Inferring Reactions from Data Time Series 353

Another approach is to try to learn mechanistic models that will make predic-
tions instead of learning directly the predictions from the data. Building mecha-
nistic models of cell processes is however a hard work which necessitates to deter-
mine the biochemical mechanisms that are responsible for the high level functions
of the cell and its behaviors in normal and perturbed conditions. Automating
this process would enable new applications such as automated experiment design
or patient-tailored therapeutics.

The main difficulty is to be able to discriminate between causality and cor-
relations in data time series [4]. Most of the work on network inference concerns
either undirected interaction graph models, or influence models such as gene
regulatory network but then requiring prior knowledge on the structure of the
network. The DREAM challenges are used to measure progress in this field.

Less work is devoted to the learning of reaction models and chemical reaction
networks (CRNs). In [1], this problem is defined as the minimization of a fit-
ness criterion based on the compatibility of the learned mechanistic model with
the observed traces. An evolutionary algorithm is proposed via a two-step iter-
ative procedure: first a set of reactions is inferred, then mass action law kinetic
parameters are estimated.

In this paper, we present a greedy heuristics with low computational com-
plexity for inferring reactions from data time series. This unsupervised statistical
learning algorithm does not require prior knowledge nor training. We consider
at most binary reactions with mass-action, Michaelian or order 4 Hill kinetics.
Based on a pairing of the variations of molecular species in each observed tran-
sition, the algorithm repeatedly infers the reaction that minimizes the standard
deviation of the inferred rate function among all the observed transitions where
the reaction can occur. Once inferred, the contributions of that reaction to state
change in the set of observed transitions are subtracted before inferring the next
reaction. Figure 1 shows the flowchart and low complexity of this algorithm [3].

Fig. 1. Flowchart of our CRN learning algorithm and complexity.

354 J. Martinelli et al.

2 Evaluation on Simulation Traces

In the context of evaluating the learning algorithm on simulation traces, the hid-
den CRN used to generate the traces can be used to compare the learned CRN
in terms of correct reactions (true positives), wrong reactions (false positives)
and missing reactions (false negatives). On a simple chain of 4 reactions with
mass action law kinetics over 5 molecular species, our algorithm is able to recon-
struct the CRN from a single simulation trace (Fig. 2) with a low sensitivity to
statistical learning thresholds.

Fig. 2. Chain example: simulation trace and learned CRN.

Fig. 3. Cell cycle model of Tyson [5] and learned reactions from the canonical trace
where cd is present.

On the simulation trace depicted in Fig. 3 of the yeast cell cycle model of
Tyson [5], our algorithm infers reactions corresponding to the observable slow
dynamics of that system. In particular, the discrepancies concerning the synthe-
sis reaction of the cyclin can be very well explained by the existence of multiple
time scales in this model. When it is produced, the Cyclin is indeed immediately
complexed with Cdc and phosphorylated by very fast reactions. Therefore the
free state of the Cyclin cannot be observed and what is inferred is the synthesis

On Inferring Reactions from Data Time Series 355

of the fast equilibrium state where the Cyclin is in complex form. On the other
hand, the autocatalysis reaction cannot be recovered since our algorithm does
not consider stoichiometric coefficients other than {−1, 0, 1}.

3 Evaluation on Videomicroscopy Data

Figure 4 shows the results on videomicroscopy data obtained over 3 days of
NIH3T3 embryonic mice fibroblasts, using FUCCI markers of the cell cycle, and
Rev-erb-α marker of the circadian clock, with a total of 91 tracked cell traces
and 26000 observed state transitions [2]. It is remarkable that, despite the very
high variability of cell behaviors, the stochasticity of the cell cycle, and the noise
of measurements, meaningful reactions coupling the cell cycle progression with
the circadian clock marker could be inferred from this dataset, in just 5 mn CPU
time on a laptop.

On-going work concerns strategies to automatically adapt the threshold
parameters of this statistical algorithm to the quality of the trace dataset.

Fig. 4. Inferred reactions on videomicroscopy data of embryonic NIH3T3 fibroblasts [2].

References

1. Choi, K., Hellerstein, J., Wiley, H.S., Sauro, H.M.: Inferring reaction networks using
perturbation data. Bio arXiv (2018)

2. Feillet, C., et al.: Phase locking and multiple oscillating attractors for the coupled
mammalian clock and cell cycle. Proc. Nat. Acad. Sci. U.S.A. 111(27), 9828–9833
(2014)

3. Martinelli, J., Grignard, J., Soliman, S., Fages, F.: A statistical unsupervised learn-
ing algorithm for inferring reaction networks from time series data. In: ICML Work-
shop on Computational Biology. Long Beach (June 2019)

4. Pearl, J.: Causality: Models Reasoning and Inference, 2nd edn. Cambridge Univer-
sity Press, New York (2009)

5. Tyson, J.J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proc.
Nat. Acad. Sci. 88(16), 7328–7332 (1991)

Barbaric Robustness Monitoring
Revisited for STL* in Parasim

David Šafránek(B), Matej Troják, Vojtěch Br̊uža, Tomáš Vejpustek,
Jan Papoušek, Martin Demko, Samuel Pastva, Aleš Pejznoch, and Luboš Brim

Faculty of Informatics, Masaryk University, Brno, Czech Republic
safranek@fi.muni.cz

Abstract. In our previous work, we have introduced an extension of sig-
nal temporal logic called STL* that allows expressing freezing of values
referred within temporal operators. The extension is important especially
to express several aspects of signals that cannot be expressed in plain
STL (e.g., presence of local extremes and their mutual relationships, non-
trivial oscillatory behaviour such as damped oscillations, etc.). In this
short paper, we address the tool Parasim that includes an implementa-
tion of the algorithm for computing robustness with respect to an STL*
specification. The tool is in its current version considered as a prototype
implementation of the algorithms for STL* robust monitoring of ODE
models.

1 Introduction

The problem of evaluating robustness is important to obtain deeper understand-
ing of the role of parameters on the presence of a specified behaviour [12].
A robustness measure provides a tool that significantly helps to compare sev-
eral models presenting the specified behaviour [2]. There are many examples in
systems biology literature that have used robustness analysis to get mechanistic
insights into a certain phenomenon [1,11].

There exist two major approaches of defining and analysing robustness
in the context of ODE models and temporal logic specifications. The behaviour-
oriented approach has been explored in [8] for Metric Temporal Logic (MTL),
further extended in [6] for Signal Temporal Logic (STL) and implemented in
the tool Breach [5] (standing for “barbaric reachability”, technically being based
on clever parameter space sampling by utilising sensitivity of systems dynamics
wrt parameters). Another way to look at perturbations is from the perspective
of utilising LTL (or CTL) with first-order constraints over reals [10] and using
the validity domain of a formula as the choice for robustness measure.

In our previous work, we have introduced an extension of signal temporal
logic called STL* that allows to express freezing of values referred within tem-
poral operators [3]. The extension is important especially to express several

This work has been partially supported by the Czech Science Foundation grant No.
18-00178S.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 356–359, 2019.
https://doi.org/10.1007/978-3-030-31304-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_26

Barbaric Robustness Monitoring Revisited for STL* in Parasim 357

aspects of signals that cannot be expressed in plain STL (e.g., presence of local
extremes and their mutual relationships, non-trivial oscillatory behaviour such
as damped oscillations, etc.). Based on [8], we have defined quantitative seman-
tics of STL* [4] allowing to compute robustness of STL* formulae for a given
ODE model and a bounded parameter perturbation.

In this short paper, we describe the tool Parasim and the related technol-
ogy. The most interesting feature of the tool that distinghuishes it from the
tools mentioned above is definitely the algorithm for computing robustness with
respect to an STL* specification.

2 Background

We briefly summarise the notions related with STL* introduced in [3].

Definition 1 (Signal). Let n ∈ N and T = [0, τ] where τ ∈ R≥0. Then x : T →
R

n
≥0 is a bounded-time continuous signal and T its time domain.

Definition 2. Let I be a finite set of indices of freezing operators. Syntax of
STL* is defined by the following grammar:

ϕ :: = p | true | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2 | ∗i ϕ
where i ∈ I, true denotes the true constant, p is a linear predicate over contin-
uous model variables and I ⊆ R≥0 is a closed non-singular interval.

Quantitative semantics of a formula ϕ interpreted on a signal x, denoted by
ρ(ϕ, x, t, t∗), is given for each time point t ∈ T and a frozen time vector t∗.
Further we denote ρ(ϕ, x) = ρ(ϕ, x, 0, 0) the robustness of the entire signal x
starting at the point x(0) measured with respect to formula ϕ. The value ρ(ϕ, x)
under-approximates the distance of x from the set of signals where ϕ has different
truth value. Note that predicates in STL* are restricted to be linear. This allows
solving the robustness of predicates by convex programming (see [4] for details).

The algorithm for computing the robustness for a given bounded time signal
x(t) expects the signal to be sampled into a discrete-time series of values. Numer-
ical simulations have exactly such shape (they can be considered as piece-wise
constant signals where the value changes only finitely many times). The algo-
rithm traverses the formula starting from predicates and following the induc-
tive definition of robustness. For every subformula, the signal is processed by
analysing all the sampled points.

3 Parasim Description

Parasim is a Java-based open-source tool with graphical user interface for com-
puting robustness of an STL* formula in an ODE model with respect to param-
eter perturbations. Given an SBML model, a formula and a perturbation set in

358 D. Šafránek et al.

the form of a hyperrectangle in R
n, Parasim samples the perturbation set into

points and for each point simulates the model and computes robustness of the
resulting signal with respect to STL* robustness measure defined in [4]. In the
neighbourhood of signals with low robustness, additional points are sampled. To
reduce analysis execution time, formula optimising algorithms are implemented
and incorporated into the robustness monitoring procedure.

Parasim accepts the user input in the form of Extensible Markup Language
documents (XML). The input is organised in terms of projects stored in separated
data folders of the local file system. The project is determined by an SBML
model, a property file containing STL* formulae, a simulation configuration file
including a list of settings of the ODE solver, and a perturbation configuration
file including a list of settings of perturbations – each perturbation is set by
a particular region of initial conditions and values of perturbed parameters.
The experiment session is then determined by selecting a model, a particular
property, a simulation configuration, and a perturbation set. The Parasim GUI
is depicted in Fig. 1.

After invoking the analysis procedure, a sample of simulations is computed
depending on the particular iteration limit specifying the number of refinements
of the perturbation space sampling. Every simulation is associated with a value of
the computed robustness for the particular property. Visualisation of the results
is provided in terms of interactive 2D projections showing the points in the
perturbation space (green/red points show areas where the property is satis-
fied/violated, the corresponding positive/negative robustness degree is shown
by the colour shade).

One of the advantages of Parasim is its modular architecture which enables
its efficient extension. The recent version employs Octave [7] and the Simulation
Core library [9].

Fig. 1. (left) Project specification in Parasim GUI. (right) Results of robustness mon-
itoring visualised on a two-dimensional projection of the sampled parameter space.
(Color figure online)

Barbaric Robustness Monitoring Revisited for STL* in Parasim 359

4 Conclusions and Future Work

In the proposed poster presentation, we would like to address the main aspects of
the tool Parasim as overviewed in this abstract. Detailed information on Parasim
and its user documentation are freely available on the Parasim website1. The
tool is in its current version considered as a prototype implementation of the
algorithms for STL* robust monitoring of ODE models. The tool has not been
published before in terms of a dedicated paper or a poster presentation. For
future work, we plan to publish online version of the tool that will include parallel
implementation of the algorithms running in multicore environments.

References

1. Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature
6636(387), 913–917 (1997)

2. Bates, D.G., Cosentino, C.: Validation and invalidation of systems biology models
using robustness analysis. IET Syst. Biol. 5(4), 229–244 (2011)

3. Brim, L., Dluhoš, P., Šafránek, D., Vejpustek, T.: STL*: extending signal temporal
logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)

4. Brim, L., Vejpustek, T., Šafránek, D., Fabriková, J.: Robustness analysis for value-
freezing signal temporal logic. arXiv:1309.0867 (2013)

5. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

6. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

7. Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave Version 3.8.1
Manual: A High-level Interactive Language for Numerical Computations. CreateS-
pace Independent Publishing Platform, Scotts Valley (2014)

8. Fainekos, G., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)

9. Keller, R., et al.: The systems biology simulation core algorithm. BMC Syst. Biol.
7(1), 55 (2013)

10. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for
robustness analysis with applications to synthetic gene networks. Bioinformatics
25, 169–178 (2009)

11. Steuer, R., Waldherr, S., Sourjik, V., Kollmann, M.: Robust signal processing in
living cells. PLoS Comput. Biol. 7(11), e1002218 (2011)

12. Streif, S., et al.: Robustness analysis, prediction and estimation for uncertain bio-
chemical networks. IFAC Proc. Volumes 46(32), 1–20 (2013)

1 https://github.com/sybila/parasim/.

http://arxiv.org/abs/1309.0867
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://github.com/sybila/parasim/

Symmetry Breaking for GATA-1/PU.1
Model

Lenka Přibylová(B) and Barbora Losová

Department of Mathematics and Statistics, Faculty of Science, Masaryk University,
Kotlářská 2, 611 37 Brno, Czech Republic

pribylova@math.muni.cz

Abstract. This paper explains a substantial feature of symmetry break-
ing of dynamical systems that include bistability from the mathematical
point of view to highlight important consequences of this phenomenon
to biochemical and system biology studies since symmetry breaking as a
bifurcation itself can serve as a source of branching. We take hematopoi-
etic stem cells modeling as a particular case.

Keywords: Bistability · Symmetry breaking · Pitchfork bifurcation ·
GATA-1/PU.1 model · Biochemical switch

1 Symmetry Breaking Phenomenon

Symmetry breaking is an important, but neglected, phenomenon that occurs in
various types of models. As a particular case we take GATA-1/PU.1 biochemical
switch model1 in a symmetric nondimensionalized form proposed by Roeder and
Glauche in [6].

Let us consider the following model

dg

dτ
= −g +

sg2 + ukup2

1 + g2 + kup2 + (kr + ε)gp
,

dp

dτ
= −p +

sp2 + ukug2

1 + p2 + kug2 + krgp
,

(1)

where s, u, ku and kr are nonnegative parameters related to reaction rate con-
stants and g and p are nondimensional state variables describing concentrations
of transcription factors GATA-1 and PU.1 and τ describes the nondimensional
time. Parameter ε in the neighbourhood of zero breaks the symmetry of the

1 There is an increasing number of studies that develop qualitative as well as quantita-
tive mechanistic models of hematopoietic stem cells at different levels of resolution,
see e.g. [1,4–6,8] and others.

This work was supported by grant Mathematical and statistical modeling number
MUNI/A/1503/2018.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 360–363, 2019.
https://doi.org/10.1007/978-3-030-31304-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_27

Symmetry Breaking for GATA-1/PU.1 Model 361

Fig. 1. The manifold of steady states of the model (1), s is a bifurcation parameter,
ε = 0, kr = 0.5, ku = 0.8, u = 1.

Fig. 2. The manifolds of steady states of the model (1), s is a bifurcation parameter,
ε = −0.001, kr = 0.5, ku = 0.8, u = 1.

Fig. 3. The manifolds of steady states of the model (1), s is a bifurcation parameter,
ε = 0.001, kr = 0.5, ku = 0.8, u = 1.

362 L. Přibylová and B. Losová

model. We computed equilibrium manifold and bifurcation points of (1) analyti-
cally using the Gröbner basis method in both symmetric (ε = 0) and asymmetric
cases. The equilibrium manifolds are implicitly given as

g
(
10000 ε3g7 + 10000 ε2g8 − 10000 ε2g7s + 11000 ε2g7 + 8000 ε2g6s − 250 ε g8

+ 27000 ε g7s − 39250 ε g6s2 + 12500 ε g5s3 + 26500 ε2g6 − 20500 ε2g5s

− 11380 ε g7 + 20000 ε g6s + 8000 ε g5s2 + 1495 g8 − 9620 g7s + 34375 g6s2

− 36250 g5s3 + 10000 g4s4 + 18760 ε g6 + 16000 ε g5s − 35000 ε g4s2 + 2470 g7

− 17960 g6s + 300 g5s2 + 30000 g4s3 − 10000 g3s4 + 12500 ε2g4 − 3480 ε g5

− 23000 ε g4s + 10000 ε g3s2 + 7591 g6 + 5605 g5s + 14400 g4s2 − 20000 g3s3

+ 12450 ε g4 + 22500 ε g3s + 9932 g5 − 64900 g4s − 2200 g3s2 + 20000 g2s3

+ 11400 ε g3 − 10000 ε g2s + 25308 g4 + 8550 g3s + 10000 g2s2 + 19904 g3

− 31800 sg2 − 10000 gs2 + 21300 g2 − 8000 gs + 4000 g + 8000
)

= 0,
(2)

and
p

(
10000 ε2p8 − 20000 ε2p7s + 10000 ε2p6s2 − 10000 ε2p7 + 20000 ε2p6s

− 10000 ε2p5s2 − 250 ε p8 − 23500 ε p7s + 43750 ε p6s2 − 20000 ε p5s3

+ 20000 ε2p6 − 20000 ε2p5s + 4800 ε p7 + 23200 ε p6s − 50000 ε p5s2

+ 20000 ε p4s3 + 1495 p8 − 9620 p7s + 34375 p6s2 − 36250 p5s3 + 10000 p4s4

− 20000 ε2p5 + 20000 ε2p4s − 25100 ε p6 − 16900 ε p5s + 40000 ε p4s2

+ 2470 p7 − 17960 p6s + 300 p5s2 + 30000 p4s3 − 10000 p3s4 + 10000 ε2p4

+ 14600 ε p5 + 42200 ε p4s − 40000 ε p3s2 + 7591 p6 + 5605 p5s + 14400 p4s2

− 20000 p3s3 − 10000 ε2p3 − 26850 ε p4 − 20000 ε p3s + 9932 p5 − 64900 p4s

− 2200 p3s2 + 20000 p2s3 + 7800 ε p3 + 20000 ε p2s + 25308 p4 + 8550 p3s

+ 10000 p2s2 + 19904 p3 − 31800 sp2 − 10000 ps2 + 21300 p2 − 8000 ps

+ 4000 p + 8000) = 0.
(3)

We used software Maple for Gröbner basis computations. For more details about
Gröbner basis see [2], usage in applied bifurcation theory can be found in [3].

It can be proved that in the symmetric case the system undergoes a pitchfork
bifurcation (as can be seen from Fig. 1, stable branches are depicted with solid
lines and unstable branches with dashed lines.). Figures 2 and 3 illustrate the
symmetry breaking near the pitchfork bifurcation point. Roeder and Glauche in
[6] simulated the asymmetric case numerically, they showed a case with a similar
bifurcation diagram with two basins of attraction separated by the unstable
branch. We have fully analytical results. The similarity of bifurcation diagrams
is a very important result implied by the fact that solutions of (1) depend on
parameters continuously, so it is not a coincidence. Near the pitchfork bifurcation
point, the steady state branches can merge from fold or transcritical bifurcation
points. Symmetry breaking itself serves as a bifurcation phenomenon (see e.g.
section 20.3 Stability of bifurcations under perturbations in [9] or in [7]).

Symmetry Breaking for GATA-1/PU.1 Model 363

2 Conclusion

From the mathematical point of view, the symmetric case is structurally unstable
and there is zero probability that the parameters are symmetric in an experi-
mentally measured system. But that doesn’t mean that the symmetric model
is irrelevant. The mean parameter values of the population of stem cells should
be close to this symmetric case and their variance guarantees the differentia-
tion and maturation of both types of the cells on the two branches that merge
from the fold or transcritical bifurcation points. On the other hand, a disorder
in hematopoietic differentiation could be caused by a shift out of the pitch-
fork parameters neighborhood. Branching would not be possible too far from
the pitchfork bifurcation, so this shift can model a hematopoietic differentia-
tion failure in principal. Moreover, it is in full agreement with typical results
of adaptive dynamics that explain evolutionary branching of evolutionary sta-
ble equilibria as pitchfork bifurcation phenomena. Symmetry breaking seems
to be generic since the parameter of symmetricity is necessarily a bifurcation
parameter of higher codimension. For biochemical dynamical systems (or evolv-
ing systems generally) it implies that such branching mechanism happens for any
generic symmetry breaking of the pitchfork bifurcation and it could be expected
in evolutionary and maturing systems, including stem cells dynamics.

References

1. Bokes, P., King, J.R., Loose, M.: A bistable genetic switch which does not require
high co-operativity at the promoter: a two-timescale model for the PU.1-GATA-1
interaction. Math. Med. Biol. J. IMA 26(2), 117–132 (2009)

2. Cox, D., Little, J., OShea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-16721-3

3. Hajnová, V., Přibylová, L.: Bifurcation manifolds in predator-prey models computed
by Gröbner basis method. Math. Biosci. 312, 1–7 (2019)

4. May, G., et al.: Dynamic analysis of gene expression and genome-wide transcription
factor binding during lineage specification of multipotent progenitors. Cell Stem
Cell 13(6), 754–768 (2013)

5. Olariu, V., Peterson, C.: Kinetic models of hematopoietic differentiation. Wiley
Interdisc. Rev. Syst. Biol. Med. 11(1), e1424 (2019)

6. Roeder, I., Glauche, I.: Towards an understanding of lineage specification in
hematopoietic stem cells: a mathematical model for the interaction of transcrip-
tion factors GATA-1 and PU.1. J. Theor. Biol. 241(4), 852–865 (2006)

7. Seydel, R.: Practical Bifurcation and Stability Analysis, vol. 5. Springer, New York
(2009). https://doi.org/10.1007/978-1-4419-1740-9

8. Tian, T., Smith-Miles, K.: Mathematical modeling of GATA-switching for regulating
the differentiation of hematopoietic stem cell. BMC Syst. Biol. 8, S8 (2014). BioMed
Central

9. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol.
2. Springer, New York (2003). https://doi.org/10.1007/b97481

https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-1-4419-1740-9
https://doi.org/10.1007/b97481

Scalable Control of Asynchronous
Boolean Networks

Cui Su1, Soumya Paul2, and Jun Pang1,2(B)

1 Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Esch-sur-Alzette, Luxembourg

jun.pang@uni.lu
2 Faculty of Science, Technology and Communication, University of Luxembourg,

Esch-sur-Alzette, Luxembourg

Abstract. We summarise our recent research results on developing effi-
cient and scalable control methods for gene regulatory networks modelled
as asynchronous Boolean networks. Our methods compute a minimal
subset of nodes of a given Boolean network, such that (different types
of) perturbations of these nodes, in one step or a sequence of steps, can
drive the network (from an initial state) to a target steady state.

1 Introduction

The ground-breaking discovery of cell reprogramming has overturned the con-
ventional thinking that cell differentiation was irreversible. With cell reprogram-
ming techniques, it is possible to reprogram cell fates in many different ways,
such as trans-differentiation, de-differentiation, retro-differentiation, etc. This
has opened up a great opportunity for regenerative medicine to treat the most
devastating diseases, such as Parkinson’s disease, Alzheimer’s disease, etc.

A big obstacle for the application of in vivo cell reprogramming is the effec-
tive identification of target genes. Numerical-experimental methods are infeasi-
ble [13], due to the combinatorial complexity of target genes and high experi-
mental costs. This gives rise to the need of computational modelling of gene reg-
ulatory networks (GRNs), which makes it possible to analyse GRNs with formal
reasoning and tools. Among various modelling frameworks, Boolean networks
(BNs) have distinct advantages: being simple and yet able to capture impor-
tant properties of nonlinear dynamical GRNs [2]. In BNs, genes are modelled as
binary nodes, being either ‘expressed’ or ‘not expressed’. Activation/inhibition
regulations between genes are described by Boolean functions. The updating of
nodes can be either synchronous or asynchronous. The steady states of GRNs
are described as attractors, to one of which the system eventually settles down.

Asynchronous BNs are considered more realistic than synchronous BNs,
because only the asynchronous updating allows for the biological processes occur-
ring on different time-scales [7]. Owing to the non-determinism of asynchronous
BNs, the control methods for synchronous BNs [3,15] are not applicable to asyn-
chronous BNs. Recently, a stable motif based method was developed to control
c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 364–367, 2019.
https://doi.org/10.1007/978-3-030-31304-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_28

Scalable Control of Boolean Networks 365

asynchronous BNs [14]. However, this method does not guarantee the minimality
of the control sets, which may result in unnecessary experimental costs.

The limitations of the existing methods motivate us to develop scalable,
efficient and practical methods to control asynchronous BNs.

2 Control Problems in Boolean Networks

Attractors of a BN characterise cell phenotypes, which are biologically observ-
able states [2]. Only the control of attractors is meaningful. Thus, the control
objective for GRNs, in the context of asynchronous BNs, can be described as:
finding a subset of nodes, called driver nodes, such that the control of these
nodes can drive the network (from a source attractor) to a target attractor. If
the source state is known, we call it source-target control; otherwise, we call it
target control.

The control (perturbation) of a node means to change the expression of the
node to either ‘1’ or ‘0’. Based on the amount of time that the control is applied,
we distinguish the following three types of controls:

(a) instantaneous control – the control is applied instantaneously;
(b) temporary control – the control is applied for finite steps and then released;
(c) permanent control – the control is applied for all the following time steps.

Thanks to the rapid advances in cell reprogramming, these three controls can be
realised in biological experiments with different bimolecular tools. In particular,
for the source-target control, based on the number of control steps, we also have:

(a) one-step control – perturbations are applied simultaneously for one step;
(b) sequential control – perturbations are applied in a sequence of steps.

3 Results

The major challenge in the control of asynchronous BNs lies in the infamous
state space explosion problem: the state space grows exponentially with respect
to the number of nodes of a BN. It prohibits the efficiency, scalability and mini-
mality of the control methods. To cope with this problem, we employ the ‘divide
and conquer’ strategy to explore both the structural and dynamical properties
of a BN. As shown in Table 1, we have developed efficient methods to solve the
minimal one-step source-target control with instantaneous, temporary and per-
manent perturbations [8,9,11], the minimal sequential source-target control with
instantaneous perturbations [4,5], as well as the target control with instanta-
neous perturbations [1]. Among these methods, sequential source-target control
identifies a sequence of intermediate states and the associated perturbations. At
each control step, we apply a set of perturbations, wait until the network reaches
the intermediate state and then apply another set of perturbations. Based on the
status of intermediate states, we have developed a general sequential control [5],
where any state (transient states or steady states) can act as intermediate states,

366 C. Su et al.

Table 1. Different control strategies for asynchronous BNs.

Instantaneous
control

Temporary
control

Permanent
control

Source-target control One-step control [8,9] [11]

Sequential control [4,5]

Target control One-step control [1]

and an attractor-based sequential control [4], where only steady states can play
the role of intermediate states.

Our methods are implemented as part of the software ASSA-PBN [6]. We
have evaluated our methods on a variety of real-life biological networks.1 The
results show that our methods are quite efficient in terms of the computation time
and scale well for large networks. Moreover, our methods identify the minimal
control sets for different strategies, which can reduce the experimental costs to a
great extent. For the source-target control, both sequential control methods [4,5]
require less perturbations than the one-step control [8,9]. The attractor-based
sequential control [4] is considered more practical than the general sequential
control [5], since it uses biologically observable states as intermediate states
and thus only requires partial observability of the system. Considering different
types of perturbations, the temporary perturbation is preferable than the instan-
taneous and permanent perturbations due to: (1) temporary control requires the
least number of perturbations, which not only leads to less experimental costs,
but also makes the experiments easier to conduct; and (2) temporary perturba-
tions are eventually released and thus less invasive. In this way, we can avoid
some unknown side effects compared to permanent perturbations.

Furthermore, in order to make the results more practical, experimental con-
straints need to be incorporated. We have made the following improvements to
integrate practical and experimental concerns.

– Our methods can avoid certain perturbations (perturbing a gene from
‘expressed’ to ‘not expressed’ and/or the reverse direction) during the com-
putation. In this case, we can avoid perturbing genes that are essential for
cell survival and genes that are hard or expensive to perturb.

– For attractor-based sequential source-target control, our method can avoid
undesired attractors as intermediate states, such as apoptosis.

– Considering the minimal solution may not be the best solution, an upper
bound of the number of perturbations can be set as a prerequisite. Then our
methods can compute all the solutions within that upper bound.

4 Discussion and Future Work

Due to the diversity of GRNs, it is less likely to find one strategy that suits
different networks. Furthermore, the cost and success rate of different cell
1 We refer details on their evaluation to our previous works [1,4,5,8,9,11].

Scalable Control of Boolean Networks 367

reprogramming techniques vary a lot. Taking these into consideration, we can
compute a bunch of reprogramming paths with different control methods. After-
wards, biologists can make a choice from the provided solutions based on specific
biological systems and experimental settings.

Given the strengths of temporary perturbations, currently we are working
on sequential source-target control and target control with temporary perturba-
tions. In future, we plan to extend our work to the control of PBNs [10,12].

References

1. Baudin, A., Paul, S., Su, C., Pang, J.: Controlling large Boolean networks with
single-step perturbations. Bioinformatics 35, i558–i567 (2019)

2. Kauffman, S.A.: Homeostasis and differentiation in random genetic control net-
works. Nature 224, 177–178 (1969)

3. Kim, J., Park, S., Cho, K.: Discovery of a kernel for controlling biomolecular reg-
ulatory networks. Sci. Rep. 3, 2223 (2013)

4. Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential reprogramming of
Boolean networks made practical. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB
2019. LNBI, pp. 3–19. Springer, Cham (2019)

5. Mandon, H., Su, C., Pang, J., Paul, S., Haar, S., Paulevé, L.: Algorithms for the
sequential reprogramming of Boolean networks. IEEE/ACM Trans. Comput. Biol.
Bioinf. (2019, accepted)

6. Mizera, A., Pang, J., Su, C., Yuan, Q.: ASSA-PBN: a toolbox for probabilistic
Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(4), 1203–1216
(2018)

7. Papin, J.A., Hunter, T., Palsson, B.O., Subramaniam, S.: Reconstruction of cellular
signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6(2),
99 (2005)

8. Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards
the control of Boolean networks. In: Proceedings of the 9th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, pp. 11–20. ACM
Press (2018)

9. Paul, S., Su, C., Pang, J., Mizera, A.: An efficient approach towards the source-
target control of Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf.
(2019, accepted)

10. Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling
and Control of Gene Regulatory Networks. SIAM Press, New York (2010)

11. Su, C., Paul, S., Pang, J.: Controlling large Boolean networks with temporary and
permanent perturbations. In: Proceedings of the 23rd International Symposium on
Formal Methods. LNCS. Springer (2019, accepted)

12. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Sauter, T.: optPBN: an
optimisation toolbox for probabilistic Boolean networks. PLoS ONE 9(7), e98001
(2014)

13. Wang, L.Z., et al.: A geometrical approach to control and controllability of non-
linear dynamical networks. Nat. Commun. 7, 11323 (2016)

14. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLoS Comput. Biol. 11(4), e1004193 (2015)

15. Zhao, Y., Kim, J., Filippone, M.: Aggregation algorithm towards large-scale
Boolean network analysis. IEEE Trans. Autom. Control 58(8), 1976–1985 (2013)

Transcriptional Response of SK-N-AS
Cells to Methamidophos
(Extended Abstract)

Akos Vertes1, Albert-Baskar Arul1, Peter Avar1, Andrew R. Korte1,
Lida Parvin1, Ziad J. Sahab1, Deborah I. Bunin2, Merrill Knapp2,

Denise Nishita2, Andrew Poggio2, Mark-Oliver Stehr2, Carolyn L. Talcott2(B),
Brian M. Davis3, Christine A. Morton3, Christopher J. Sevinsky3,

and Maria I. Zavodszky3

1 Department of Chemistry, George Washington University,
Washington, DC 20052, USA

2 SRI International, Menlo Park, CA 94025, USA
carolyn.talcott@gmail.com

3 GE Global Research, Niskayuna, NY 12309, USA

Abstract. Transcriptomics response of SK-N-AS cells to methami-
dophos (an acetylcholine esterase inhibitor) exposure was measured at 10
time points between 0.5 and 48 h. The data was analyzed using a com-
bination of traditional statistical methods, machine learning techniques,
and methods to infer causal relations between time profiles. We identified
several processes that appeared to be upregulated in cells treated with
methamidophos including: unfolded protein response, response to cAMP,
calcium ion response, and cell-cell signaling. The data confirmed the
expected consequence of acetylcholine buildup. Transcripts with poten-
tially key roles were identified by anomaly detection using convolutional
autoencoders and Generative Adversarial Networks, and causal networks
relating these transcripts were inferred using Siamese convolutional net-
works and time warp causal inference.

1 Introduction

Rapid determination of the mechanism of action (MoA) of an unknown or novel
xenobiotic (toxin, drug, pathogen) and its consequences is important both sci-
entifically and for biodefense. Time series data generated by omics experimental
techniques provides a wealth of data about change in relative concentrations of
transcripts, proteins and metabolites. For example, chemically perturbing cells
can result in thousands of mRNAs with at least a 2 fold expression change. The
challenge is to get the most information purely from the data, before augment-
ing the conclusions with knowledge from databases and literature. Thus, it is
important to consider not only what changes, but how it changes over time, to
identify key responders and how they organize into cellular processes.

Sponsored by the US Army Research Office and the Defense Advanced Research
Projects Agency; accomplished under Cooperative Agreement W911NF-14-2-0020.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 368–372, 2019.
https://doi.org/10.1007/978-3-030-31304-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_29&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_29

Transcriptional Response of SK-N-AS Cells to Methamidophos 369

As part of the DARPA Rapid Threat Assessment project we developed a
suite of data analysis methods to identify candidate biological players and pro-
cesses that make up the cellular response to a challenge. These included tradi-
tional statistical analysis, shape/feature analysis, Gaussian process representa-
tion, machine learning methods for identifying anomalies and methods to infer
causal relations. The methods were developed using data from HepG2/C3A
cells exposed to a series of different drugs each affecting different known cel-
lular processes. To test the robustness and generality of the analysis methods we
selected a different cell type (SK-N-AS human neuroblastoma cells) and toxin
(the organophosphate methamidophos). We expected the biological noise to be
different in a different cell type. We also expected the timing and organization
of response to an organophosphate to be different from the previously tested
drugs. Thus we expected the new experiment would be a step to validating that
our algorithms and data analysis scheme work in a more general setting.

2 Data Analysis

Transcriptomic response of SK-N-AS cells to methamidophos (an acetylcholine
esterase inhibitor) exposure was measured at 10 time points between 0.5 and 48
h. The data was analyzed using a combination of traditional statistical meth-
ods, machine learning techniques, and methods to infer causal relations between
time profiles. Figure 1 shows a schematic of our data analysis process. The left
branch uses log2 fold change (basic) time profiles derived from the means of the
control and treated signals in the usual way. Up/down charts map transcripts to
the first time point the log2 fold change magnitude passes 1. Regulation inter-
vals delimit times that log2 fold change stays above 0.75 or below −0.75. The
right branch uses time profiles obtained by Gaussian process (GP) modeling
[8]. Using these time profiles, transcripts are clustered (k-means using PCA to
reduce dimensionality), and ranked by contribution to PCA components and by
two machine learning algorithms, one using autoencoder techniques (see [8]) and
one using Generative Adversarial Nets (GANs) [2]. Transcripts are ranked highly
as anomalies according to how poorly they are reconstructed from the autoen-
coding, or how unsure the trained GAN discriminator is that the time profile
represents a transcript. Transcripts are also given a ‘real/typical’ ranking accord-
ing to how confident the GAN discriminator is that the time profile represents
a transcript. Two algorithms were used to infer potential ‘causal’ edges between
time profiles. The Timewarp algorithm inputs basic time profiles and uses a vari-
ant of the Needleman-Wunsch alignment algorithm [5] to align time profiles. the
Siamese twin causality detection algorithm [6] is based on two Siamese neural
networks [1]. One Siamese network is trained to detect undirected causality; the
other is trained to detect lag. Lag detection is used to direct the undirected
causality edges. The results of the analyses, along with an indication of satisfac-
tion of several significance filters, are collected in a ‘feature’ table that can be
sorted to highlight features of interest. We used the significance filters to select
a set of top ranking transcripts, Top20X, as the starting point for further iden-
tifying MoA candidates in two categories: biological processes, transcripts. To

370 A. Vertes et al.

Input Transcriptomics Data

up/dn charts
regulation intervals Clustered

transcripts

Autoencoder ranks
GAN atypical ranks
GAN typical ranks

Siamese Twin
Causality

Feature summary tables

processes
Selected

transcripts

Knowledge
bases

Time Warp
Causality

Fig. 1. Data analysis schematic

identify candidate processes we used PatherDB over representation analysis [4]
combined with our GO term annotations of k-means clusters [8]. The Top20X
transcripts were also annotated with specific GO terms using Uniprot and our
database of curated experimental results.

3 Discussion

Our data analysis found four processes as candidate elements of the broader
MoA of methamidophos: unfolded protein response (UPR), cAMP response,
calcium ion related processes, and cell-cell signaling. As a form of confirmation,
we also used data from other experiments and pathway databases to identify
transcripts expected to be regulated in these processes. We also built a model of
acetylcholine buildup as a consequence of the inhibition of acetylcholinesterase
(ACHE). The resulting model suggested three downstream effects: increase in
DAG (modeled by PMA response), increase in IP3, and active G-protein-coupled
receptor (GPCR). Increase in IP3 induces release of calcium ion consistent with
the identified calcium ion related response. The cAMP response could be con-
nected to the acetylcholine signal through the G protein binding partners of
ChRm3 or the calcium ion release [9]. G2 arrest, hypothesized based on cyclin
time profiles, is a pause in the cell life cycle due to detected problems, such as
DNA damage. Nine of the Top20X transcripts are annotated with DNA damage
related terms. The strong UPR response suggests another reason for a G2 arrest.

Transcriptional Response of SK-N-AS Cells to Methamidophos 371

Timewarp causality inference found relations among transcripts related to
ER-stress/UPR, with some connections supported by ENCODE. Siamese twin
causality inference found relations among transcripts related ER-stress/UPR,
DNA damage, and calcium ion response. The causal relation found between
DDIT3 (aka CHOP) and GDF15 in the context of ER stress is supported by
work reported in Li et al. [3]. We have not yet found evidence supporting or
disagreeing with the other hypothesized relations. In both cases, many of the
related transcripts were highly ranked as GAN typical/real or GAN anomalies.

4 Conclusion

We applied a novel combination of Gaussian process modeling, anomaly rank-
ing, and causal inference algorithms to analyze transcriptomics data gathered
from SK-N-AS cells treated with methamidophos. Our analysis revealed poten-
tially interesting downstream effects of methamidophos (see [7] for details). The
anomaly ranking and causal inference approaches seem promising. Much more
work remains to fully understand what features they are finding and the relevant
biology.1

References

1. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a “siamese” time delay neural network. In: Cowan, J.D., Tesauro, G., Alspec-
tor, J. (eds.) Advances in Neural Information Processing Systems, vol. 6, pp. 737–
744. Morgan-Kaufmann (1994)

2. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th
International Conference on Neural Information Processing Systems, NIPS 2014,
vol. 2, pp. 2672–2680. MIT Press (2014)

3. Li, D., Zhang, H., Zhong, Y.: Hepatic GDF15 is regulated by CHOP of the unfolded
protein response and alleviates NAFLD progression in obese mice. Biochem. Bio-
phys. Res. Commun. 498, 388–394 (2018)

4. Mi, H., et al.: PANTHER version 11: expanded annotation data from gene ontology
and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res.
45(D1), D183–D189 (2017)

5. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453
(1970)

1 Disclaimer. Research was sponsored by the U.S. Army Research Office and the
Defense Advanced Research Projects Agency and was accomplished under Cooper-
ative Agreement Number W911NF-14-2-0020. The views and conclusions contained
in this document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the Army Research
Office, DARPA, or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

372 A. Vertes et al.

6. Stehr, M.O., et al.: Learning causality: synthesis of large-scale causal networks from
high-dimensional time series data. CoRR abs/1905.02291 (2019). http://arxiv.org/
abs/1905.02291

7. Talcott, C., et al.: Transcriptional response of SK-N-AS cells to methamidophos:
extended version (2019). http://www.csl.sri.com/users/clt/XYZ/methamidophosX.
pdf

8. Vertes, A., et al.: Inferring mechanism of action of an unknown compound from time
series omics data. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095,
pp. 238–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 14

9. Willoughby, D., Cooper, D.M.F.: Organization and Ca++ regulation of adenylyl
cyclases in camp microdomains. Physiol. Rev. 87(3), 965–1010 (2007)

http://arxiv.org/abs/1905.02291
http://arxiv.org/abs/1905.02291
http://www.csl.sri.com/users/clt/XYZ/methamidophosX.pdf
http://www.csl.sri.com/users/clt/XYZ/methamidophosX.pdf
https://doi.org/10.1007/978-3-319-99429-1_14

Separators for Polynomial Dynamic
Systems with Linear Complexity

Ines Abdeljaoued-Tej1,4(B) , Alia Benkahla1 , Ghassen Haddad1,2,
and Annick Valibouze3

1 Laboratory BIMS in Institute Pasteur of Tunis, LR16IPT09,
University of Tunis El Manar, Tunis, Tunisia

inestej@gmail.com
2 Laboratory Jacques Louis Lions (LJLL), Sorbonne University, Paris, France

3 Sorbonne University, CNRS, LIP6, LPSM, 75005 Paris, France
4 University of Carthage, ESSAI, Tunis, Tunisia

Abstract. Computation biology helps to understand processes in organ-
isms from interaction of molecules to complex functions of whole organs.
Therefore, there is a need for mathematical methods and models that
deliver logical explanations in a reasonable time. We propose herein a
method based on algebraic separators, which are special polynomials
abundantly studied in effective Galois theory. These polynomials are used
in modelling discrete data related to cellular pathways affected in cancer
and targeting therapies.

Keywords: Polynomial dynamical system · Algebraic separators ·
Finite field · Mathematical modelling · Discrete data

1 Introduction

A polynomial dynamical system is a tool used for understanding the behaviour
of complex systems over time. It deals with biological systems that study and
describes the interactions between micro-biological outputs. It finds its roots
in symbolic computation and mathematical modelling. One of the precursors of
the polynomial dynamical system is Thomas with his Boolean dynamical system
[12]. In the last decade, several studies have been made, including contributions
in hybrid systems biology [1,2]. The algebraic method presented in this paper
adopts the techniques of Galois theory to issues of bio-systems. This approach
can effectively model the important size of the biological data, with relatively
simple tools: the calculation of elementary symmetric polynomials in the case of
Boolean or the fundamental modulus in the polynomial case.

We present a method for creating polynomial dynamical systems (in discrete
time) to capture biological data. The first use of a polynomial dynamical sys-
tem (PDS) on system biology was published in [6]: the model is a deterministic
graphical model which depends on the degree p of data discretization (p = 2 in

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 373–378, 2019.
https://doi.org/10.1007/978-3-030-31304-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_30&domain=pdf
http://orcid.org/0000-0002-1796-7897
http://orcid.org/0000-0001-9988-3250
https://doi.org/10.1007/978-3-030-31304-3_30

374 I. Abdeljaoued-Tej et al.

Boolean modelling). Thus, when n entries evolve in time, the dynamical func-
tion can be represented by n polynomials which describe a table of pn possible
states. Our researches were inspired by a classical method applied on Lagrange
interpolation [5]. The proposed method is based on determining polynomial sep-
arators (which can be done using Galois theory). Finding polynomial separators
has been used in classification, and this idea applied to biological modelling was
presented in [14]. We were guided by the use of the Tchebotarev’s fundamental
modulus to develop our algorithm. Algebraic separators are directly determined
by using symmetric functions, or by linear combinations of fundamental mod-
ulus. A vast literature on the subject of polynomial interpolation and ideals of
points is available [3,8,9]. Our approach avoids heavy calculations of Gröbner
bases and provides a polynomial model in linear time. The computation of a
basic polynomial dynamical system, as detailed in this work, can perfectly be
computed in parallel.

2 Methods

In the following, we fix n a positive integer and p a prime integer called the
degree of discretization. Let Fp be the Galois field Z/pZ of p elements. We
consider the polynomial dynamical systems (PDS) f = (f1, . . . , fn) of dimen-
sion n whose components fj , j ∈ [1, n], are polynomials of the quotient ring
Fp[x]/〈xp

1 − x1, . . . , x
p
n − xn〉, i.e., polynomials on the n variables in the n-tuple

x = (x1, . . . , xn) with coefficients in Fp and degree smaller than p − 1 in each
variable. The set F

n
p contains the pn possible states of the experiment. At each

time t ∈ [0,m], the vector st = (st,1, . . . , st,n) ∈ F
n
p is called the state of the

system at time t. A such trajectory of length m+1 s0 �→ s1 �→ . . . �→ sm is called
a discrete trajectory. The goal of this work is to compute a PDS f satisfying at
each time t ∈ [0,m − 1]: f(st) = st+1 or, more precisely, fj(st) = st+1,j for each
j ∈ [1, n]. Note that if f is a such PDS then f ′ = (f ′

1, . . . , f
′
n) is also a such PDS

iff for each j ∈ [1, n], fj − f ′
j belongs to Id(V) = {h ∈ Fp[x] | h(s) = 0,∀s ∈ V },

the ideal of the affine variety V = {s0, . . . , sm−1} ⊂ F
n
p . It is possible to separate

an element of V with respect to others thanks to a polynomial of Fp[x]:

Definition 1. Let V ⊂ F
n
p and s be a state in V . A separator of s in V is a

polynomial r in Fp[x] such that r(s) = 1 and r(x) = 0 for each x ∈ V \{s}.
The m respective separators of the m states in V are to interpolation in several
variables what Lagrange polynomials are to interpolation in only one variable:
they are used to calculate a PDS f that we search.

Let s = (s1, . . . , sn) ∈ F
n
p . In Fp[x], the maximal ideal Id({s}) of s-relations is

generated by q1 = x1−s1, q2 = x2−s2, . . . , qn = xn−sn. The set q = {q1, . . . , qn}
is called by N. Tchebotarev the set of fundamental modulus of s [11]. We have
for all u ∈ F

n
p : ∀j ∈ [1, n] qj(u) = 0 iff u = s; in other words V (Id({s}) = {s}.

It is the particular case of Galois theory in which the Galois group over the field
Fp of the polynomial (x − s1) · · · (x − sn) is the identity group. Let J be the
set of indices j for which all elements of V = {s0, s1, . . . , sm−1} have the same

Separators for Polynomial Dynamic Systems with Linear Complexity 375

j-th coordinate: J = {j ∈ [1, n] | ∀l ∈ [0,m] sl,j = s0,j}; on the coordinates
indexed by j no separation is possible. Fix S = {1, . . . , n}\J , the minimum
subset of {1, . . . , n} which separates V ’s elements, S is called separator set of
V . We keep our calculations for a data set of genes products which vary at
least once: these are S’s elements. In particular, for V = F

n
p , the separator set

is S = {1, . . . , n}. Let us consider the theorem that lights us on the algebraic
computation of separators:

Theorem 1. Let V = {s0, s1, . . . , sm−1} ⊂ F
n
p , S be the separator set of V ,

s ∈ V and q1, . . . , qn be its fundamental modulus. Let be the following polynomials
in Fp[x]:

g(x) =
∏

j∈S

∏

l∈E

(qj(x) − l) satisfying g(s) 	= 0 and r(x) =
g(x)
g(s)

(1)

where E = {qj(u) | j ∈ S , u ∈ V : qj(u) 	= 0} ⊂ Fp\{0}. Then r is a separator
of s in V .

Proof. Let s ∈ V . As Id({s}) = {q1, . . . , qn}, we have g(s) = (
∏

l∈E −l)Card(S);
then g(s) 	= 0 because p is prime and E ⊂ Fp\{0}. So r(s) = 1. Now let
u ∈ V \{s}. As u 	= s there exists j ∈ [1, n] such that qj(u) 	= 0; then, by
definition of E, l = qj(u) ∈ E; as the g(u)’s factor qj(u) − l equals 0, r(u) = 0
also
�
As the separators of V ’s elements are independent of each other, their computa-
tion by applying Theorem 1 may be made simultaneously. So, the computation
of a PDS can be done in a distributive manner. We can easily verify that com-
puting separators in parallel have stated complexity of O(nm) where n is the
number of variables and m is the number of data points.

3 Boolean Case

We suppose, for simplicity, that the separator’s set S of V is {1, . . . , n}. In
case p = 2, the set E of Theorem 1 is reduced to {1} and a separator r of
s ∈ V can be expressed in a compact form. Indeed, we can prove that r(x) =
1 +

∑n
i=1(−1)i ei(q) ∈ F2[x], where e1(q), . . . , en(q) are the classical first n

elementary symmetric functions into the elements of q = {q1, . . . , qn}, the set of
fundamental modulus of s. To quickly calculate the ei(q), we use tools developed
in [13].

To illustrate our approach, we consider a data set of reduced number of
genes involved in bladder cancer therapy [15]. These genes are either inhibited
or activated over time: we take an example of n = 4 genes (gene1, . . . , gene4)
that evolve under different conditions; the genes are common to two cell lines,
noted C1 and C2 in Table 1. For each cell line, we have a trajectory s0 �→ s1 �→ s2
of length m + 1 = 3 where the coordinates of states st are given in the columns
of the following array:

376 I. Abdeljaoued-Tej et al.

Table 1. Example of n = 4 genes, common to two cell lines C1 and C2 in three steps
of time.

Gene cell lines C1 at 0h: s0 C1 at 24h: s1 C1 at 72h: s2 C2 at 0h: s0 C2 at 24h: s1 C2 at 72h: s2

gene1 1 1 0 1 0 0

gene2 0 1 1 1 1 0

gene3 1 0 0 1 0 1

gene4 1 1 0 0 1 0

Let us compute a model for each cell line, which allows us to compare their
change and progression over time. We denote by fCk a PDS which describes
Ck, k = 1, 2. We assume that the value of variables appearing in each compo-
nent of a PDS is a key of the gene’s behaviour for a biological system. What
counts is to have a model that sticks most to the realities of data. We denote
by qCk

t the set of fundamental modulus of the state st of Ck, k = 1, 2 and rCk
t

its separator. We have rCk
t (x) = 1 − e1(qCk

t) + e2(qCk
t) − e3(qCk

t) + e4(qCk
t)

where qC1
0 = {x1 + 1, x2, x3 + 1, x4 + 1},qC1

1 = {x1 + 1, x2 + 1, x3, x4 + 1},
and qC2

0 = {x1 + 1, x2 + 1, x3 + 1, x4},qC2
1 = {x1, x2 + 1, x3, x4 + 1}. We

compute them in parallel: rC1
0 (x) = a + x1x3x4, rC1

1 (x) = a + x1x2x4,
rC2
0 (x) = a + x1x2x3 and rC2

1 (x) = a + x1x2x4 + x2x3x4 + x2x4 where
a = x1x2x3x4 and we deduce our two PDS fCk by applying this formula:
fCk
j = s1,j r

Ck
0 (x) + s2,j r

Ck
1 (x). The SageMath [10] function that implements

our method returns: fC1 = (a + x1x3x4, x1x2x4 + x1x3x4, 0, a + x1x3x4) and
fC2 = (0, a + x1x2x3, a + x1x2x4 + x2x3x4 + x2x4, a + x1x2x3).

The wiring diagram and the state space graph of the given input data could
be computed with tools developed in [4]. Describing a gene network in terms of
polynomial dynamical system has advantages. First, it describes gene interac-
tions in an explicitly numerical form. Second, these are causal relations between
genes: for a cell line Ck a coefficient xi in a function fCk

j determines the effect
of genei on genej .

4 Future Work

Many biological systems are modelled with discrete models. Here, we use a
classical method based on generalised Lagrange’s interpolation. This work pro-
poses a linear algorithm to learn polynomial dynamical systems in the frame of
biological networks. It enables us to propose quickly models to biologists in a
simple way: it takes into account the sparsity of biological experimental data.
This paper details an approach allowing separators’ computation: we present
a method based on Galois theory’s tools as the fundamental modulus or ele-
mentary symmetric functions. In this context, we developed an analytic method
of easily readable expression and easily interpreted specific data. There is only
one parameter p introduced into the model, unlike the continuous model using

Separators for Polynomial Dynamic Systems with Linear Complexity 377

differential equations which must be added a number of constraints and parame-
ters for successful modelling. The inference of gene interrelations from temporal
data of gene expression follows a method using algebraic separators. Clearly,
further research will be required on experimental data. Continuing research on
this field appears fully justified because of the simplicity of this approach [16].
The improvement in [7] is similar to our work where the complexity is linear.
We discuss the reverse engineering of biological networks using algebraic meth-
ods. The main contribution of this method is to offer an effective alternative to
Gröbner basis methods by introducing algebraic separators from effective Galois
theory. The strong point of this method for the mentioned above objectives are
the linear complexity and the ability of parallel computation of separators.

References

1. Benkahla, A., Guizani-Tabbane, L., Abdeljaoued-Tej, I., BenMiled, S., Dellagi, K.:
Systems biology and infectious diseases. In: Handbook of Research on Systems
Biology Applications in Medicine, vol. 1, pp. 377–402 (2008)

2. Bortolussi, L., Policriti, A.: Hybrid Systems and Biology. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68894-5 12

3. Ceria, M., Mora, T., Visconti, A.: Efficient computation of squarefree separator
polynomials. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS
2018. LNCS, vol. 10931, pp. 98–104. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96418-8 12

4. Dimitrova, E.S., Vera-Licona, P., McGee, J., Laubenbacher, R.C.: Discretization
of time series data. J. Comput. Biol. 17, 853–868 (2010)

5. Lagrange, J.: Réflexions sur la résolution algébrique des équations (1770)
6. Laubenbacher, R.: A computer algebra approach to biological systems. In: Pro-

ceedings of the 2003 International Symposium on Symbolic and Algebraic Compu-
tation. ACM, New York (2003)

7. Lundqvist, S.: Complexity of comparing monomials and two improvements of the
Buchberger-Möller algorithm. In: Calmet, J., Geiselmann, W., Müller-Quade, J.
(eds.) Mathematical Methods in Computer Science. LNCS, vol. 5393, pp. 105–125.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89994-5 9

8. Lundqvist, S.: Vector space bases associated to vanishing ideals of points. J. Pure
Appl. Algebra 214(4), 309–321 (2010)

9. Mora, T.: The FGLM problem and Möeller’s algorithm on zero-dimensional ideals.
In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds.) Gröbner Bases,
Coding, and Cryptography, pp. 27–45. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-540-93806-4 3

10. Stein, W., Joyner, D., Developers, T.S.: SageMath (System for algebra and geome-
try experimentation), the Sage Mathematics Software System (2019). http://www.
sagemath.org

11. Tchebotarev, N.: Gründzüge des Galois’shen Theorie. P. Noordhoff (1950)
12. Thomas, R.: Kinetic Logic: A Boolean Approach to the Analysis of Complex Reg-

ulatory Systems. Lecture Notes in Biomathematics, vol. 29. Springer, Heidelberg
(1979). https://doi.org/10.1007/978-3-642-49321-8

13. Valibouze, A.: Symbolic computation with symmetric polynomials, an extension
to MACSYMA. In: Kaltofen, E., Watt, S.M. (eds.) Computers and Mathemat-
ics, pp. 308–320. Springer, New York (1989). https://doi.org/10.1007/978-1-4613-
9647-5 35

https://doi.org/10.1007/978-3-540-68894-5_12
https://doi.org/10.1007/978-3-319-96418-8_12
https://doi.org/10.1007/978-3-319-96418-8_12
https://doi.org/10.1007/978-3-540-89994-5_9
https://doi.org/10.1007/978-3-540-93806-4_3
https://doi.org/10.1007/978-3-540-93806-4_3
http://www.sagemath.org
http://www.sagemath.org
https://doi.org/10.1007/978-3-642-49321-8
https://doi.org/10.1007/978-1-4613-9647-5_35
https://doi.org/10.1007/978-1-4613-9647-5_35

378 I. Abdeljaoued-Tej et al.

14. Valibouze, A., Abdeljaoued, I., BenKahla, A.: Galoisian separators for biologi-
cal systems. In: Mathematics Algorithms Proofs - Formalization of Mathematics,
Monastir, Tunisia (2009)

15. Van Kessel, K.E., Zuiverloon, T.C., Alberts, A.R., Boormans, J.L., Zwarthoff, E.C.:
Targeted therapies in bladder cancer: an overview of in vivo research. Nat. Rev.
Urol. 12(12), 681 (2015)

16. Wang, X., Zhang, S., Dong, T.: A bivariate preprocessing paradigm for the
Buchberger-Möller algorithm. J. Comput. Appl. Math. 234(12), 3344–3355 (2010)

Bounding First Passage Times
in Chemical Reaction Networks

Poster Abstract

Michael Backenköhler1(B), Luca Bortolussi1,2, and Verena Wolf1

1 Saarland University, Saarbrücken, Germany
michael.backenkoehler@uni-saarland.de

2 University of Trieste, Trieste, Italy

1 Goal

Chemical reaction networks describe the interaction of different molecular species
in a well-stirred reactor. For example,

∅
10−→ M and M + M

0.1−−→ D (1)

describes an influx of monomers M and their dimerization to form D. Under
many circumstances the system’s behavior over time is best described stochas-
tically by a Continuous-time Markov Chain (CTMC) Xt, t ≥ 0 over all possible
molecular counts.

The analysis of such systems is challenging because often state spaces are
large or even infinite and exact solutions are rarely available. We are interested
in the property of first passage times. This, for example, would be the time τ
the population of M reaches the threshold of 10 molecules with X0 = 0 at time
t = 0 or 8 times units elapsed:

τ := inf{t ≥ 0 | Xt ≥ 10} ∧ 8 . (2)

This stopping time is a random variable itself. We tackle the problem of bounding
the mean first-passage time E (τ), i.e. identifying tight bounds lτ and uτ such
that

lτ ≤ E (τ) ≤ uτ . (3)

2 Methods

We use an approach for the generalized moment problem, popularized by Lasserre
[7], which has been applied in many contexts. Recently, it has been adapted to
chemical reaction networks [2–6,10] to bound population moments in both, the
steady-state and transient context. We extend the dynamic approach to compute
bounds on the first hitting time distribution. The main idea of this approach is
to multiply a time-weighting term with the differential equations describing the

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 379–382, 2019.
https://doi.org/10.1007/978-3-030-31304-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_31

380 M. Backenköhler et al.

Fig. 1. The decomposition of the exit location probability measure for τ = inf{t ≥ 0 |
Xt ≥ 10} ∧ 4. The shaded area indicates the structure of the occupation measure. 3
example trajectories are additionally plotted with their exit location highlighted. The
plots are based on 50,000 SSA samples.

moment dynamics. These equations are integrated w.r.t. time [3,10]. This leads
to an expected value of a martingale process of the form

Z
(k,m)
t := T kXm

t − 0kxm
0 +

∑

i

ci

∫ T

0

tkiXmi
t dt , (4)

where T is the time horizon, x0 the initial counts, and ci, mi are determined by
the differential equations describing the moment dynamics. With this process in
place, we can adopt the technique presented by Lasserre in the context of option
pricing models [8].

Given the stopping time τ by Doob’s optional sampling theorem E(Z(k,m)
t) =

0 and thus

0 = E
(
τkXm

τ

) − 0kxm
0 +

∑

i

ciE

(∫ τ

0

tkiXmi
t dt

)
. (5)

This gives us constraints on the moments of the expected occupation measure
zkm and the exit location probability measure ykm, where

zkm := E

(∫ τ

0

tkXm
t dt

)
and ykm := E

(
τkXm

τ

)
. (6)

We can decompose the exit location measure by conditioning on reaching the
maximal time-horizon: ykm = 10mv1k + 8kv2m, where

v1k := E
(
τk | τ < T

)
Pr(τ < 8), v2k := E

(
Xk

τ | τ = T
)
Pr(τ = 8) .

This way we have three measures coupled through linear constraints. The decom-
position is illustrated in Fig. 1.

Bounding First Passage Times in Chemical Reaction Networks 381

Fig. 2. First passage times for the dimerization model with τ = inf{t ≥ 0 | Xt ≥
10}∧ 100. The dashed red line denotes the sampled mean first passage time. (left) The
sample distribution of τ based on 100,000 SSA samples. (right) The bounds based on
constraints up to different moment orders.

It is well known, that the moment matrix M of a positive measure is positive
semi-definite (PSD). For a one-dimensional distribution, for example, this means

M � 0 ⇔ vT Mv ≥ 0, ∀v ∈ R
3 , where M =

⎡

⎣
E

(
X0

)
E

(
X1

)
E

(
X2

)

E
(
X1

)
E

(
X2

)
E

(
X3

)

E
(
X2

)
E

(
X3

)
E

(
X4

)

⎤

⎦ .

The restriction of measures to certain subsets of the state space can also be
expressed in terms of PSD constraints.

We therefore have an optimization problem at hand that contains equality
constraints on the moments via (5) and PSD constraints on the moments matri-
ces. Optimization problems of this form are semi-definite programs and can be
solved numerically.

3 Results

We derived the moment constraints (5) symbolically for all k,m up to a fixed
order and solved the resulting SDP using the MOSEK solver [9] via the CVXPY
modeling framework [1]. The results for the dimerization example are summa-
rized in Fig. 2. We observe very tight bounds when the order is increased suf-
ficiently. This implementation of this method is numerically challenging due to
the extreme differences in magnitude between moments of different orders. This
necessitates an appropriate scaling of moments [2,3]. The scaling becomes more
difficult with increased population sizes.

Acknowledgements. This work was supported by the DFG project MULTIMODE.

382 M. Backenköhler et al.

References

1. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex
optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

2. Dowdy, G.R., Barton, P.I.: Bounds on stochastic chemical kinetic systems at steady
state. J. Chem. Phys. 148(8), 084106 (2018)

3. Dowdy, G.R., Barton, P.I.: Dynamic bounds on stochastic chemical kinetic systems
using semidefinite programming. J. Chem. Phys. 149(7), 074103 (2018)

4. Ghusinga, K.R., Lamperski, A., Singh, A.: Moment analysis of stochastic hybrid
systems using semidefinite programming. arXiv preprint: arXiv:1802.00376 (2018)

5. Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and
upper bounds on stationary moments in stochastic biochemical systems. Phys.
Biol. 14(4), 04LT01 (2017)

6. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: Rigorous bounds on the station-
ary distributions of the chemical master equation via mathematical programming.
arXiv preprint: arXiv:1702.05468 (2017)

7. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications, vol. 1.
World Scientific, Singapore (2010)

8. Lasserre, J.B., Prieto-Rumeau, T., Zervos, M.: Pricing a class of exotic options via
moments and SDP relaxations. Math. Finance 16(3), 469–494 (2006)

9. MOSEK ApS: MOSEK Optimizer API for C 8.1.0.67 (2018). https://docs.mosek.
com/8.1/capi/index.html

10. Sakurai, Y., Hori, Y.: Bounding transient moments of stochastic chemical reactions.
IEEE Control Syst. Lett. 3(2), 290–295 (2019)

http://arxiv.org/abs/1802.00376
http://arxiv.org/abs/1702.05468
https://docs.mosek.com/8.1/capi/index.html
https://docs.mosek.com/8.1/capi/index.html

Data-Informed Parameter Synthesis
for Population Markov Chains

Matej Hajnal2,4(B), Morgane Nouvian1,3, Tatjana Petrov2,3(B),
and David Šafránek4(B)

1 Department of Biology, University of Konstanz, Konstanz, Germany
2 Department of Computer and Information Sciences,

University of Konstanz, Konstanz, Germany
matej.hajnal@gmail.com, tatjana.petrov@gmail.com

3 Centre for the Advanced Study of Collective Behaviour,
University of Konstanz, 78464 Konstanz, Germany

4 Systems Biology Laboratory, Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

safranek@fi.muni.cz

Population models are widely used to model different phenomena: animal col-
lectives such as social insects, flocking birds, schooling fish, or humans within
societies, as well as molecular species inside a cell, cells forming a tissue. Ani-
mal collectives show remarkable self-organisation towards emergent behaviours
without centralised control. Quantitative models of the underlying mechanisms
can directly serve important societal concerns (for example, prediction of seismic
activity [5]), inspire the design of distributed algorithms (for example, ant colony
algorithm [1]), or aid robust design and engineering of collective, adaptive sys-
tems under given functionality and resources, which is recently gaining attention
in vision of smart cities [3,4]. Quantitative prediction of the behaviour of a pop-
ulation of agents over time and space, each having several behavioural modes,
results in a high-dimensional, non-linear, and stochastic system [2]. Hence, com-
putational modelling with population models is challenging, especially when the
model parameters are unknown and experiments are expensive.

In this work, we investigate how to obtain the parameters for single agent
behaviour, based on data collected for a population. Measurements for differ-
ent population sizes are especially important when studying social feedback: an
adaptation of individual’s behaviour to the changing context of the population.
For example, honeybees protect their colonies against vertebrates by releasing
an alarm pheromone to recruit a large number of defenders into a massive sting-

This work has been presented at Hybrid Systems and Biology - HSB 2019. TP’s research
is supported by the Ministry of Science, Research and the Arts of the state of Baden-
Württemberg, and the DFG Centre of Excellence 2117 ‘Centre for the Advanced Study
of Collective Behaviour’ (ID: 422037984), MH’s research is supported by Young Scholar
Fund (YSF), project no. P83943018FP430 /18. MN’s research is supported by the
Mentorship grant from the Zukunftskolleg. DŠ’s research is supported by the Czech
Grant Agency grant no. GA18-00178S.

c© Springer Nature Switzerland AG 2019
L. Bortolussi and G. Sanguinetti (Eds.): CMSB 2019, LNBI 11773, pp. 383–386, 2019.
https://doi.org/10.1007/978-3-030-31304-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_32&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_32

384 M. Hajnal et al.

ing response [6]. However, these workers will then die from abdominal damage
caused by the sting tearing loose [7]. In order to achieve a balanced trade-off
towards efficient defence, yet no critical worker loss, each bee’s response to the
same amount of pheromone may vary greatly, depending on its social context,
which, in the case of bees, has been experimentally validated.

To tackle this problem, we assume a simple communication scheme among
identical individuals, such that n individuals together form a discrete-time
Markov chain (DTMC) M with at most n parameters. Each population even-
tually reaches one of its terminal strongly connected components (tSCC) in
the underlying MC. A graphical representation of a population model for three
agents is given in Fig. 1. We employ the theoretical steady-state assumption that
is commonly used in biological modelling scenarios: we assume that the experi-
mental observations can be taken when the steady state is reached, hence that
experimental measurements allow us to estimate probabilities of reaching any of
the tSCCs in the form of a confidence interval (for any desired confidence level
α). We assume V denotes a set of model parameters, each defined over domain
[0, 1]. Our major goal is to synthesise a viable parameter space Θ, Θ ⊆ [0, 1]|V|,
such that the following condition is satisfied:

θ ∈ Θ if and only if M(θ) |=
∧

all tSCCs

ϕ(tSCC | data) (1)

where ϕ(tSCC | data) expresses that reaching a tSCC is achieved within the
confidence interval estimated from experimental data. In contrast to traditional

init

1
2
, 1, 1

1
2
, 1
2
, 1

1
2
, 1
2
, 1
2

0, 1
2
, 1

q1

1, 1, 1

0, 1, 1

0, 0, 1

3p2(1− p)

(1− p)3

3p(1− p)2

q1

p3

1− q1

q2

1− q2

1

1

1

1− q1
1

Fig. 1. Parametric Markov chain representing population of three bees with parameters
V = {p, q1, q2}. Parameter p represents the initial probability that an agent solves the
task, while qi representes the probability of success in the second attempt. A vector
labelling states represents state of the individual agent (1 denotes success, 1

2
denotes

the second chance, 0 denotes no success)

Data-Informed Parameter Synthesis for Population Markov Chains 385

Fig. 2. An example of visualisation of parameter space refinement with two different
intervals inferred from the data in the respective column. Parameter point from which
the data were obtained is p = 0.81, q = 0.92 - shown as a blue cross. (Color figure
online)

parameter inference techniques which return a single estimate, the parameter
synthesis approach gives a quantitative characterisation of the entire domain of
satisfying parameter values.

We propose and implement a workflow for obtaining the viable parameter
space for a simple population model. Analysis of the parameter space consists
of two steps: first, we obtain a symbolic characterisation of the distribution over
tSCCs in form of multivariate rational functions, leveraging the existing tools
for parameter synthesis. Second, we employ CEGAR-like reasoning (candidate
region generation and checking) for determining the viable parameter space, until
the desired proportion of the domain (called coverage) is reached. Refined space
– result of this part can be visualised in the case of 2-dimensional space as a
green area – see Fig. 2. We implemented several variants of the search algorithm,
and tested the performance on synthetic data sets. It is worth noting that, for
showcasing the framework, we here implemented a workflow for a specific class
of population models which have acyclic underlying transition system and each
tSCC contains one state (being strongly inspired by the propagation of alarm
pheromones in honeybees). The framework is applicable to any general DTMC
and any persistence or repeated reachability temporal logic property.

References

1. Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.):
ANTS 2008. LNCS, vol. 5217. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-87527-7

2. Giardina, I.: Collective behavior in animal groups: theoretical models and empirical
studies. HFSP J. 2(4), 205–219 (2008)

3. Hillston, J.: Challenges for quantitative analysis of collective adaptive systems.
In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 14–21.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 2

https://doi.org/10.1007/978-3-540-87527-7
https://doi.org/10.1007/978-3-540-87527-7
https://doi.org/10.1007/978-3-319-05119-2_2

386 M. Hajnal et al.

4. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016.
LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-34096-8 4

5. Mai, M., et al.: Monitoring pre-seismic activity changes in a domestic animal col-
lective in central Italy. In: EGU General Assembly Conference Abstracts, vol. 20,
p. 19348 (2018)

6. Nouvian, M., Reinhard, J., Giurfa, M.: The defensive response of the honeybee Apis
mellifera. J. Exp. Biol. 219(22), 3505–3517 (2016)

7. Shorter, J.R., Rueppell, O.: A review on self-destructive defense behaviors in social
insects. Insectes Sociaux 59(1), 1–10 (2012)

https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4

Author Index

Abdeljaoued-Tej, Ines 373
Allart, Emilie 266
Antoneli, Fernando 60
Arul, Albert-Baskar 368
Assaf, George 302
Audoly, S. 329
Avar, Peter 368

Backenköhler, Michael 42, 379
Ballarini, Paolo 207
Bartocci, Ezio 120
Bellu, G. 329
Benkahla, Alia 373
Bentriou, Mahmoud 207
Bokes, Pavol 140
Bortolussi, Luca 42, 379
Boutillier, Pierre 296
Breton, Marc 188
Brim, Luboš 356
Brůža, Vojtěch 356
Bunin, Deborah I. 368

Češka, Milan 337
Chodak, Jacek 315
Cournède, Paul-Henry 207

d’Angió, L. 329
Dalchau, Neil 224
Davis, Brian M. 368
Degrand, Elisabeth 78
Delaplace, Franck 20
Demko, Martin 356

Fages, François 78, 352
Feng, Lu 188

Goldfeder, Judah 289
Grignard, Jeremy 352
Grima, Ramon 347
Guet, Calin 155
Gupta, Ankit 342

Haar, Stefan 3
Haddad, Ghassen 373
Hajnal, Matej 383
Harmer, Russ 322
Heiner, Monika 302, 315
Hemery, Mathieu 78
Henzinger, Thomas A. 155
Hillston, Jane 120
Hodgkinson, Arran 60

Igler, Claudia 155
Innocentini, Guilherme C. P. 60
Ivanov, Sergiu 20

Khammash, Mustafa 342
Knapp, Merrill 368
Korte, Andrew R. 368
Křetínský, Jan 337
Kugler, Hillel 289

Lamp, Josephine 188
Liu, Fei 302
Lorton, Christopher W. 308
Losová, Barbora 360

Mandon, Hugues 3
Margetiny, Filip 120
Martinelli, Julien 352
Morton, Christine A. 368

Nenzi, Laura 188
Niehren, Joachim 266
Nishita, Denise 368
Nouvian, Morgane 383
Nowicka, Melania 96

Öcal, Kaan 347
Oshurko, Eugenia 322

Pang, Jun 3, 364
Papoušek, Jan 356

Pardo, Jérémie 20
Parvin, Lida 368
Pastva, Samuel 356
Paul, Soumya 364
Paulevé, Loïc 3
Pejznoch, Aleš 356
Pérez-Verona, Isabel Cristina 248
Petrov, Tatjana 155, 383
Phillips, Andrew 224
Piho, Paul 120
Poggio, Andrew 368
Přibylová, Lenka 360
Proctor, Joshua L. 308

Radulescu, Ovidiu 60
Ribchester, Richard R. 120
Roh, Min K. 308

Saccomani, M. P. 329
Šafránek, David 356, 383
Sahab, Ziad J. 368
Sanguinetti, Guido 342, 347
Sevinsky, Christopher J. 368
Sezgin, Ali 155
Siebert, Heike 96

Silvetti, Simone 188
Singh, Abhyudai 140
Soliman, Sylvain 352
Spaccasassi, Carlo 224
Stehr, Mark-Oliver 368
Su, Cui 3, 364

Talcott, Carolyn L. 368
Tribastone, Mirco 248
Troják, Matej 356

Valibouze, Annick 373
Vandin, Andrea 248
Vejpustek, Tomáš 356
Versari, Cristian 266
Vertes, Akos 368

Welkhoff, Philip A. 308
Wolf, Verena 42, 379

Yordanov, Boyan 224

Zavodszky, Maria I. 368

388 Author Index

	Preface
	Organization
	Contents
	Regular Papers
	Sequential Reprogramming of Boolean Networks Made Practical
	1 Introduction
	2 Background
	2.1 Boolean Networks
	2.2 Dynamics of Boolean Networks
	2.3 Attractors and Basins of Attraction

	3 Attractor-Based Sequential Reprogramming
	3.1 Motivation
	3.2 The Reprogramming Problem
	3.3 Algorithm

	4 Evaluation
	4.1 Reprogramming Strategies
	4.2 Benchmark Biological Networks
	4.3 Results on the Myeloid Differentiation Network
	4.4 Results on the Benchmark Biological Networks

	5 Discussion
	References

	Sequential Reprogramming of Biological Network Fate
	1 Introduction
	2 Boolean Control Network
	2.1 Boolean Network
	2.2 Boolean Control Network
	2.3 Control Sequence Dynamics

	3 Control Sequence Discovery
	3.1 Complexity of CoFaSe
	3.2 Bounds on Sequence Size
	3.3 Bounds on Sequence Size for ConEvs Dynamics
	3.4 Inference of Minimal Parsimonious Contracted Control Sequences

	4 Conclusion
	References

	Control Variates for Stochastic Simulation of Chemical Reaction Networks
	1 Introduction
	2 Related Work
	3 Stochastic Chemical Kinetics
	4 Moment Constraints
	5 Control Variates
	6 Moment-Based Variance Reduction
	7 Case Studies
	8 Conclusion
	References

	Effective Computational Methods for Hybrid Stochastic Gene Networks
	1 Introduction
	2 Methods
	2.1 PDMP Models of Gene Networks
	2.2 ON/OFF Gene Networks
	2.3 Monte-Carlo Method
	2.4 Push-Forward Method

	3 Results
	3.1 Convergence of the Push-Forward Method
	3.2 Testing the Push-Forward Method

	4 Discussion and Conclusion
	A Appendix: Mean and Variance of the Protein
	B Appendix: Details of the Derivation of (13) and (14)
	C Appendix: Proof of the Theorem1
	References

	On Chemical Reaction Network Design by a Nested Evolution Algorithm
	1 Introduction
	2 CRN Design by PIVP Compilation
	3 CRN Design by Artificial Evolution
	3.1 Nested Evolution Algorithms for Structure and Kinetics
	3.2 Parallel Implementation

	4 Evolved CRN for Mathematical Functions
	4.1 Functions of Time
	4.2 Functions of Input Variables

	5 Comparison to Natural CRNs in BioModels
	6 Conclusion
	References

	Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm
	1 Introduction
	2 Preliminaries
	2.1 miRNA Expression Data
	2.2 Single-Circuit Classifier
	2.3 Distributed Classifier
	2.4 Evaluation

	3 Genetic Algorithm
	3.1 General Description
	3.2 Population
	3.3 Fitness Function and Evaluation
	3.4 Operators

	4 Case Study
	4.1 Breast Cancer Data
	4.2 Parameter Tuning
	4.3 Cross-Validation
	4.4 Analysis of Input Viability
	4.5 Comparison to Other Methods

	5 Discussion
	References

	Extending a Hodgkin-Huxley Model for Larval Drosophila Muscle Excitability via Particle Swarm Fitting
	1 Introduction
	2 Background
	2.1 Action Potentials
	2.2 Hodgkin-Huxley Type Models
	2.3 Particle Swarm Optimisation

	3 Model
	4 Parameter Estimation Problem
	4.1 Data Preprocessing
	4.2 PSO Fitting
	4.3 Implementation

	5 Results
	6 Conclusion
	References

	Cell Volume Distributions in Exponentially Growing Populations
	1 Introduction
	2 Model Fundamentals
	3 Stochastic Simulation
	4 Periodicity
	5 Large-Time Single-Cell Behaviour
	6 Large-Time Population Behaviour
	7 Results
	8 Conclusions
	References

	Transient Memory in Gene Regulation
	1 Introduction
	2 Preliminaries and Background
	2.1 Transients in Gene Expression Without Feedback

	3 Problem Statement
	4 Searching for Long Lived Transients
	4.1 Model Implementation

	5 Results
	6 Discussion
	References

	A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Clinical Dataset Description
	3.2 STL Learning for Individual Patient Behaviors
	3.3 STL Learning for Clustered Population Behaviors

	4 Learning Results for Individual Behaviors
	4.1 Personalized Bounds from Repeated Rules
	4.2 Unique Formula Relationships
	4.3 Behavioral Interventions
	4.4 Occurrences of Good and Bad Control
	4.5 Example Use Case

	5 Learning Results for Population Behaviors
	6 Related Work
	7 Discussion and Conclusion
	References

	Reachability Design Through Approximate Bayesian Computation
	1 Introduction
	2 Background
	2.1 Continuous-Time Markov Chains
	2.2 Temporal Logic and Reachability Problems
	2.3 Hybrid Automata Specification Language
	2.4 The ABC Method
	2.5 ABC Population Monte-Carlo

	3 ABC for Reachability Design
	3.1 Reachability Distances
	3.2 HASL Specifications for Measuring Reachability Distance
	3.3 ABC with Reachability Distances

	4 Experiments
	5 Conclusion
	References

	Fast Enumeration of Non-isomorphic Chemical Reaction Networks
	1 Introduction
	2 Methods
	2.1 Complex-Species Graph Encoding
	2.2 Isomorph-Free Complex-Species Graphs Enumeration
	2.3 Enumeration Invariants and Implementation Details

	3 Results
	3.1 Complete Enumeration of Non-isomorphic 2-Species CRNs
	3.2 Enumeration of Non-isomorphic CRNs with More Than 2 Species
	3.3 The Non-isomorphic CRNs Fraction
	3.4 Checking Properties of CRNs with External Tools

	4 Discussion
	A Definitions
	B Proofs
	C Complex-Multiplicity-Species Graph
	D Counts of Non-isomorphic CRNs
	D.1 No Filters
	D.2 Reversible CRNs
	D.3 Non-trivial Dynamics

	References

	A Large-Scale Assessment of Exact Model Reduction in the BioModels Repository
	1 Introduction
	2 Background
	3 Experimental Set-Up
	3.1 Overview of the BioModels Repository
	3.2 Model Conversion
	3.3 Repository Preprocessing
	3.4 Reduction Results

	4 Case Studies
	5 Concluding Remarks
	References

	Computing Difference Abstractions of Metabolic Networks Under Kinetic Constraints
	1 Introduction
	2 Qualitative Reasoning on Metabolic Reaction Networks
	3 Preliminaries
	4 -Abstractions
	5 Abstracting Concrete Differences
	6 First-Order Logic
	7 Difference Abstraction
	8 Objective
	9 Exact Algorithms
	10 Heuristic Algorithm Based on Minimal Support Consequences
	11 Experimental Results
	References

	Tool Papers
	BRE:IN - A Backend for Reasoning About Interaction Networks with Temporal Logic
	1 Introduction
	2 Background
	3 BRE:IN Tool
	4 Related Work
	References

	The Kappa Simulator Made Interactive
	1 Introduction
	2 User Interfaces
	2.1 Command Line Interface
	2.2 Graphical User Interface
	2.3 Programmatic Interface

	3 Software Architecture
	4 Intervention Language
	5 Tutorial
	6 Conclusion
	References

	Biochemical Reaction Networks with Fuzzy Kinetic Parameters in Snoopy
	1 Objectives
	2 FPN Simulation
	3 Use Cases
	4 Installation and Future Work
	References

	Compartmental Modeling Software: A Fast, Discrete Stochastic Framework for Biochemical and Epidemiological Simulation
	1 Introduction
	2 Compartmental Modeling Software
	2.1 Platform and Computational Requirements
	2.2 Execution Pathways
	2.3 Input Language and Configuration
	2.4 Discrete Stochastic Solvers in CMS
	2.5 Output Files

	3 Examples
	3.1 Schlögl Process
	3.2 Vaccination Campaigns for Eradicating Poliomyelitis

	4 Conclusion
	References

	Spike – Reproducible Simulation Experiments with Configuration File Branching
	1 Objectives
	2 Functionality
	3 Architecture
	4 Use Cases
	5 Installation and Future Work
	References

	KAMIStudio: An Environment for Biocuration of Cellular Signalling Knowledge
	1 Introduction
	2 Main Features
	3 Technical Description
	4 Future Work
	References

	A New Version of DAISY to Test Structural Identifiability of Biological Models
	1 Introduction
	2 Checking a Priori Identifiability
	3 The New Version of DAISY
	3.1 Identifiability with Known and Unknown Initial Conditions
	3.2 Calculation of All the Equivalent Parameter Solutions
	3.3 The New Interface
	3.4 A Case Study

	4 Conclusions
	References

	Extended Abstracts (Posters and Highlight Talks)
	Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks (Extended Abstract)
	References

	Bayesian Parameter Estimation for Stochastic Reaction Networks from Steady-State Observations
	References

	Wasserstein Distances for Estimating Parameters in Stochastic Reaction Networks
	References

	On Inferring Reactions from Data Time Series by a Statistical Learning Greedy Heuristics
	1 Introduction
	2 Evaluation on Simulation Traces
	3 Evaluation on Videomicroscopy Data
	References

	Barbaric Robustness Monitoring Revisited for STL* in Parasim
	1 Introduction
	2 Background
	3 Parasim Description
	4 Conclusions and Future Work
	References

	Symmetry Breaking for GATA-1/PU.1 Model
	1 Symmetry Breaking Phenomenon
	2 Conclusion
	References

	Scalable Control of Asynchronous Boolean Networks
	1 Introduction
	2 Control Problems in Boolean Networks
	3 Results
	4 Discussion and Future Work
	References

	Transcriptional Response of SK-N-AS Cells to Methamidophos (Extended Abstract)
	1 Introduction
	2 Data Analysis
	3 Discussion
	4 Conclusion
	References

	Separators for Polynomial Dynamic Systems with Linear Complexity
	1 Introduction
	2 Methods
	3 Boolean Case
	4 Future Work
	References

	Bounding First Passage Times in Chemical Reaction Networks
	1 Goal
	2 Methods
	3 Results
	References

	Data-Informed Parameter Synthesis for Population Markov Chains
	References

	Author Index

