
On the Students’ Misconceptions in
Object-Oriented Language Constructs

Pasquale Ardimento1(B) , Mario Luca Bernardi2 , and Marta Cimitile3

1 University of Bari Aldo Moro, Bari, Italy
pasquale.ardimento@uniba.it

2 University Giustino Fortunato, Benevento, Italy
m.bernardi@unifortunato.eu

3 Unitelma Sapienza, Rome, Italy
marta.cimitile@unitelmasapienza.it

Abstract. Analyze the Object-oriented (OO) source code developed by
students provides useful formative tips to instructors. According to this,
it is essential to understand the student’s real difficulties allowing instruc-
tors to shape effective courses. To provide run-time feedback to students
and to study and analyze the evolution of their performances offline and
over time we designed a framework and developed a tool. It allows to
identify students’ misconceptions analysing source code and to create
personalized student reports automatically. In this paper, we present
an empirical study, conducted using our toolchain, that involves 1627
projects extracted from the multi-institution Blackbox dataset. We iden-
tified a violation model for Java language constructs based on established
results in the computing education community. Afterwards, we grouped
such violations in categories and analyzed the relations among them.
Our contributions might be helpful in delivering formative feedback and
supporting instructors who teach Java and object-oriented programming
in general.

Keywords: Object-oriented · Misconceptions · Data analytics

1 Introduction

Since Java-based courses give the first experience in programming to many stu-
dents, the teaching and knowledge transferring activity is thoroughly critical and
arduous [2,10]. For this reason, there is a continuous research of novel teaching
strategies allowing to address student questions as soon as possible providing
timely feedback [32], and preventing retention. These strategies require a high
comprehension of how student perform programming activities a their main dif-
ficulties.

Basing on the above considerations, we aim to understand how students
use Java and its language constructs by analyzing the most common violations
of the Object Oriented paradigm in student source code. Our study is in line
with existing literature regarding the comprehension of student mistakes [4] and
misconceptions [23] to shape the instructor’s teaching strategy. The violations
c© Springer Nature Switzerland AG 2019
D. Burgos et al. (Eds.): HELMeTO 2019, CCIS 1091, pp. 97–112, 2019.
https://doi.org/10.1007/978-3-030-31284-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31284-8_8&domain=pdf
http://orcid.org/0000-0001-6134-2993
http://orcid.org/0000-0002-3223-7032
http://orcid.org/0000-0003-2403-8313
https://doi.org/10.1007/978-3-030-31284-8_8

98 P. Ardimento et al.

are identified from a sample of student source code and organized in categories
covering the most relevant language constructs and tipical quality issues.

This paper proposes an empirical study to characterize the violations and
to identify their relations. The empirical study addresses the following research
questions:

RQ1: What is the volume of violations of object-oriented language constructs in
student source code?

RQ2: Are students who make mistakes in one category inclined to make mistakes
in other categories as well?

To perform the empirical study, we developed a static source code analy-
sis framework and a supporting tool—called Student Profiling Tool (SPT)—to
detect and report violations in student source code for both students (in real-
time) and teachers (allowing offline automatic analyses).

To answer the RQs, we used SPT to analyze a sample of 1627 Java projects
extracted from the Blackbox dataset [5]. The results of the analysis highlight
interesting correlations among the violations belonging to different categories.
We believe that these contributions might be useful to instructors, helping them
to drive the development of novel teaching strategies improving the effectiveness
of Object Oriented courses.

The rest of the paper is organized as follows. In the next section, we describe
related work. In Sect. 3 we introduce the methodology for the creation of the
list of violations and design and development of Student Profiling Framework,
and Tool. Section 4 deals with the empirical study. Discussion and implications
of our findings are in Sect. 5. Finally, Sect. 6 concludes the paper and suggests
future work.

2 Related Work

Object-oriented source code errors have been widely investigated in the liter-
ature. Some studies are focused on the difficulties faced during the learning
process of OOP [18].

In [12], the authors analyse 15,000 code fragments, generated by novice pro-
gramming students. The logic errors have been classified as algorithmic errors,
misinterpretations of the problem, and fundamental misconceptions.

Keuning et al. [17] examine the quality of student code with regards to pro-
gram flow, functions, clarity of expressions, decomposition, and modularization.
They state that novice programmers write source code characterized by signif-
icant quality issues and professional static analysis tools (Checkstyle1, PMD2,
FindBugs3, Sonar4), as currently designed, offer little or no help. Moreover, such
tools appear to be troublesome for preparing new teaching strategies since they
are considered confusing also for experts as to necessitate the development of an
intuitive supporting environment to compare the results of their analyses [6].
1 http://checkstyle.sourceforge.net.
2 https://pmd.github.io.
3 http://findbugs.sourceforge.net.
4 http://www.sonarqube.org.

http://checkstyle.sourceforge.net
https://pmd.github.io
http://findbugs.sourceforge.net
http://www.sonarqube.org

On the Students’ Misconceptions in Object-Oriented Language Constructs 99

Edwards et al. [11], consider the problems detected by several professional
tools for analyzing the code of 3,691 students over five semesters.

Sanders and Thomas [25] propose two checklists for grading student pro-
grams. The checklists are obtained by considering basic object-oriented program-
ming concepts and typical novice misconceptions as identified in the literature.
The evaluation of the checklists is performed in an objects-first CS1 course.

Expresso is an error detection advisory tool [15]. It aims to help teachers to
understand the types of frequent errors students make among a list of the typical
logic, semantic and syntax errors usually made by novice programmers. Madden
and Chambers [20] report a survey about the aspects of the Java language that
students perceive to be most difficult. Conversely, in this paper, we present an
empirical study to characterize Java language violations. In addition, our study
focuses on the analysis of the relationships among categories of language con-
structs to understand the impact of misconceptions in one category concerning
the others. Finally, we exploit a supporting tool that can produce a detailed
report on the violations of the source code given as input.

3 Methodology

As we mentioned in the previous section, the literature widely addressed OO con-
cepts and misconceptions of novice programmers. We started from such miscon-
ceptions of novice programmers to find how these cause mistakes and violations
of language constructs. Similarly to [19,25], we manually inspected a sample
of student programs, namely 162 (∼10%) of 1627 Java projects extracted from
Blackbox [5]. We then turned to the literature highlighting, for each paper, what
kind of misconceptions/errors to expect in student code, (e.g. instance/class con-
flation, problems with abstractions, issues with inheritance and polymorphism,
difficulties with constructors, confusion using attributes and local variables, intri-
cacies with scope). To facilitate our job, we extracted excerpts of code that could
have helped us to focus more specifically on language constructs. Once we found
good violation candidates, for a given language construct, we implemented a
static analysis “recipe” to automatically look for further occurrences in arbi-
trary student source code.

Finally, after multiple iterations, we reached the list described in the follow-
ing, and divided into categories.

3.1 Abstraction Violations

This category deals with wrong usage of abstraction. We considered the following
violations:

– Empty NOn-ABstract method in root class (enoab) In Example 1.1,
method printSmth is an empty non abstract method (enoab) and does not
make any sense. This is not, in fact, the case “when classes provide empty
implementations that override non-empty implementations.” [29]. There is no
overriding in the figure since Enoab is a root class.

100 P. Ardimento et al.

– Class With Implicit Constructor (cwic) Ragonis and Ben-Ari [22] con-
sider “teaching constructors a difficult multiple choice” and they found that
“the professional style of declaring a constructor to initialize attributes from
parameters is to be preferred even though it seems difficult to learn. Other
simpler styles caused serious misconceptions.”. This means that a class with
an implicit constructor (cwic), listed among “simpler styles”, should be
avoided.

– Class Without Instance Fields (cwif) It is well-known that students have
difficulties in understanding the concepts of object and class [23]. In partic-
ular, they have “difficulties in understanding the static aspect of the class
definition”. A class without instance fields (cwif) could be a consequence of
such difficulties, like class Cwif in Example 1.2. Of course, a class with-
out instance fields containing only a main method cannot be considered a
violation.

– Poor Interface usages and definitions (pi) Among the “good coding
practices for Java”, Sivilotti et al. [27] advise to “prefer the use of interface
types (over class types) for all declared types”. In other words, a declared
site (e.g. a local declaration) should use an interface (when such an interface
is available). This is not the case of b in Example 1.3. Another poor use of
interfaces is when there is only a single implementation [26].

Example 1.1. Empty NOn-ABstract
method in root class

public class Enoab {

public void printSmth(){}
public int doSmth(){

int easySum = 2 + 2;
return easySum;

}
}

Example 1.2. Class Without Instance
Fields

public class Cwif {

public void makeStuff(){ //...
}
public int makeOtherStuff(){

return 0;
}

}

Example 1.3. Poor Interfaces

public interface Bable { //...
}

// single implementation
public class B implements Bable {

//...
}
public class B2 implements Bable

{ //...
}

public class A {
public void doSmth() {

// declared site should use an
interface

B b = new B();
}

}

3.2 Attribute Violations

This category deals with wrong definition or use of fields. We considered the
following violations:

– Field Used as Local Variable (fulv) Students have issues in understanding
the “difference between class fields and local variables inside methods”, as

On the Students’ Misconceptions in Object-Oriented Language Constructs 101

stated by Biddle and Tempero [3]. A field written before being read (fulv in
Example 1.4) is an effect of aforementioned issue. Such field should be indeed
a local variable.

– Missed Constant (mc) A class field which is only read should be declared
as constant—like mc in Example 1.5. This is in line with Chen et al. [7] who
discovered misconceptions when students “determine which data member is
appropriate for declaring as constant”. Moreover, Ragonis and Ben-Ari [23]
list “difficulties in understanding the static aspect of the class definition”.

– Local variable shadowing a field (lvsf) The shadowing of a field by
the definition of a local variable with the same name is related to the same
motivations of fulv. This is the case of shadFloat in Example 1.6.

– Public Field Changed by private methods (pfc) “Difficulties under-
standing the influence of method execution on the object state” is another
problem related to the concepts of object and class [23]. A consequence of
aformentioned difficulties is pfChanger() in Example 1.7 where a private
method changes a public field.

– Unused Private Field (upf) This is a well-know warning detected by
popular IDEs but the fact that students still commit this violation means
that instructors should focus more on this aspect. Reasons of this issue could
be the same of fulv. Students maybe have still to figure out how to design a
class and what should or should not be part of it.

Example 1.4. Field Used as Local Vari-
able

public class ClassWithFULV {
private int fulv = 1;
public void

methodUsingFULV(int
c) {
fulv = c + 3;
if(fulv == 4) { //...
}

}
}

Example 1.5. Missed Constant

public class ClassWithMC {
private String mc = ”String”;
public method() {

if (mc.equals(”MISSED”)){
//...

}
} //other methods not writing

on mc
}

Example 1.6. Local Variable Shadowing Field

public class LVSFClass {
private float shadFloat = 0.0;

public float methodF(){
return shadFloat;

}
public void methodS(int d) {

//shadowing instance variable ’shadFloat’ with a local variable with the
same name

float shadFloat = 0.5;
float prod = 0.85∗shadFloat;

}
}

102 P. Ardimento et al.

Example 1.7. Public Field Changed by
private methods

public class ClassWithPFC {
public int pfc = 1;
private void pfChanger(){

this.pfc = 0;
}

}

Example 1.8. Inheritance to Extend Val-
ues

public class Bicycle {
int wheelCount = 2;
void gearDown(){ //...
}

}
public class Car extends Bicycle {

int wheelCount = 4;
}

Example 1.9. Constructor Chain

public class A {...}

public class B extends A {
B(){ super(); }

}

public class D extends B {
D(int n){ super(); }
D(){ this(3); }

}

public class E extends D {
E(){ //...
}

}

3.3 Inheritance Violations

This category deals with wrong definitions or uses of inheritance. We considered
two well known semantic free misuses of inheritance:

– Inheritance to Extend Values (iev) Liberman et al. in [18] report that
inheritance can be mistakenly used to “extend values”. For instance, some stu-
dents think that inheritance can be used to change the values of fields, rather
than for adding attributes or operations. Students with this kind of miscon-
ception can write code that resembles the excerpt shown in Example 1.8.
A variable, wheelCount, with the same name of the superclass (Bicycle) is
added into the subclass (Car). In fact, there is no overriding but the classes
have two different variables named wheelCount, one in Bicycle and one in
Car. Moreover, class Car has two variables named wheelCount—its own and
the one inherited from Bicycle.

– Constructor Chaining (cc) The study in [18] also reports “that many
students fail to understand the chain of constructor calls in object creation”.
A consequence of this failure could be producing the code in Example 1.9.
Class E does not select which constructor of the superclass to use, and thus
the default constructor is chosen—with probably unintended outcomes. Even
though the choice of using the default constructor was deliberate, it is always
worth giving feedback to students to avoid the proliferation of (bad) long-term
habits—as suggested by Ala-Mutka [1].

3.4 Interaction Violations

For what concerns interaction violations, our model considers the following two
cases:

On the Students’ Misconceptions in Object-Oriented Language Constructs 103

– Unused Private Method (upm) Method doC() in Example 1.10 is a pri-
vate method which is never called. This is linked with “difficulties with scope”,
namely with the “private” keyword.

– Static Invocation Through Instance (siti) In Example 1.11, method
doSmthStat() is static and so should be accessed in a static way, but is
accessed by means of this.doSmthStat(). This is connected with what
reported in [24] regarding “understanding this as the current object and
its usage”.

3.5 Polymorphism Violations

Polymorphism is managed, at source code level, with explicit casting. Our model
cover the two major mistakes made by novices:

– Wrong Explicit downCast Students may think that “all down-casts in
an inheritance hierarchy are legal” [18] and this lead to downcasting R to
S—which is wrong, as shown in Example 1.12.

– Unneeded Explicit Cast Another issue with polymorphism is using type-
casting explicitly especially when is not needed at all [16], like the statement
regarding a in Example 1.13. This is a bad practice and usually typical of “pro-
grammers who have not fully understood the object-oriented paradigm use
conditional statements to simulate dynamic dispatch and late binding” [31].

Example 1.10. Unused Private Method
public class SomeClass{

public String doA(){
System.out.println(”do A”);

}
public int doB(int a){

System.out.print(”do B”);
}
private void doC(){ //...
}

}

Example 1.11. Static Invocation
Through Instance

public class G {
private static void doSmthStat(){

//...
}

}
public class ClassWithSITI {

public wrongCall(String s){
this.doSmthStat();

}
}

Example 1.12. Wrong Explicit down-
Cast

public class P extends R {
//...

}
public class R extends S {

//...
}
public class S extends Z {

//...
}
public class Z{

//...
}

public class M {
public void doWEC(){

S s = (S) new R();
}

}

104 P. Ardimento et al.

Example 1.13. Unneeded Explicit
Cast

public class M {

public void doSmth(){
S s = (S) new R();
float f = 2.0;
int a = (int)f/1;

}
}

Example 1.14. Unused Association

public class E { //...
}
public class D {

private E ua = new E();
public void uaMethod(){

System.out.print(”2019”);
}

}

3.6 Relationship Violations

It is reported that “an extension of the difficulty with writing a program that
includes multiple classes is writing a program that includes linked cooperating
classes” [33]. Such difficulty could have led to including associations which are
never used like association to class E in Example 1.14. We call this violation
“unused association (ua)”.

3.7 Quality Metrics Violations

For what concerns quality of produced source code, SPT evaluates product met-
rics. The product metrics summarize intrinsic properties of software components
(such as the internal complexity or the external coupling). We selected the fol-
lowing metrics from the Chidamber-Kemerer (CK) Object-Oriented (OO) metric
suite [8]: WMC (Weighted Method per Class), DIT (Depth of Inheritance Tree),
NOC (Number of Children), RFC (Response for a Class), LCOM (Lack of Cohe-
sion in Methods), CE (Efferent Couplings), NPM (Number of Public Methods),
LCOM3 (Lack of Cohesion in Methods). In order to compute these metrics,
the CKJM tool developed by Spinellis [28] was integrated into SPT as a recipe
module.

3.8 Student Profiling Tool

The purpose of the Student Profiling Tool (SPT), is two-fold: (i) it allows pro-
ducing collective reports to be used as feedback to plan or tune new teach-
ing strategies for the entire classroom; (ii) it gives information regarding the
behaviour of a single student as a personal assessment tool: it provides timely
and personalized feedback based on the source code produced and analyzed [32].
The underlying framework used to implement SPT, Student Profiling Frame-
work (SPF), is shown in Fig. 1. SPF is language-agnostic and must be instanti-
ated to be applied. We have chosen to focus on Java adopting Spoon to build
a per-project Abstract Syntax Tree (AST) performing source code analysis [21].
Specifically, the Source code analysis repository contains the definitions of the
violations (See Sect. 3) which are performed by the static source code analyzer
as well as a set of clustering analyses (See Sect. 4.1). The instructor may fil-
ter the input code clustering the projects in categories and, thus, the analyses

On the Students’ Misconceptions in Object-Oriented Language Constructs 105

Fig. 1. Student profiling framework

Fig. 2. Distribution of the construct categories among the projects (left) and SPT
dashboard (right).

of the language constructs which are not present in a given dataset will not
be executed. Possible data-interchange and integration with existing software
are available thanks to a custom visualisation engine which supports different
types of output (raw text, HTML, LateX). Figure 2, on the right side, shows
the results of a regular SPT session (some information are intentionally omitted
and sample code is used). The instructor’s dashboard gives an instant picture of
the class, reporting statistics by category (top part) in a simple bar chart, top
five violations (on the right) with matching color to understand the category,
and two interactive tables showing the number of violations per student (bot-
tom left) and their breakdown details (bottom right, i.e. “Category|Violation
Type|#violations”). Therefore, the table on the left shows the particular situ-
ation for that student or student project (“168777” in the figure). By clicking
on a particular violation type in the right table, pi for example, the instructor
can visualize the description along with specific information for each violation
(“Class|Related interface|Line” in case of pi). Instead, by choosing any row,
corresponding Java code (with line numbers, syntax highlighting and injected

106 P. Ardimento et al.

comment) is presented with a marker on the line when violations occur. SPT also
allows to create personalized PDF reports. Students will then receive a report
with all their violations explained and suggested further reading. The latter is
chosen by the instructor by modifying a configuration file (it includes lecture
notes, open source books, specific books with chapter, pages and samples).

4 Empirical Study

The goal of this study, conducted exploiting SPT, is to investigate the volume
of violations committed by students with the purpose of understanding which
categories of language constructs are directly related. The quality focus is the
understanding of object-oriented concepts and its relation to the students’ abil-
ity to apply them. The perspective is mainly of researchers interested to inves-
tigate how, in student projects, miscomprehension of object-oriented language
constructs of each category could favor errors on applying the object-oriented
constructs of other categories. The perspective is also of teachers interested in
improving their CS1 object-first courses by monitoring student performances.
From this point of view, SPT allows identifying which constructs of the lan-
guage are the most problematic within a class at a given time during the course
and to study the evolution of the comprehension and ability to apply language
constructs over time. The context of the study covers the data extracted from
Blackbox [5]. BlackBox collects data from users of the online educational software
tool called BlueJ5. The data collected is for academic research and addresses the
issues related to teaching object-oriented languages. BlackBox has been running
for over five years and contains a set of structural information (compiler data,
code revisions, error messages) on over 12 million projects, 1.7 billion source
history entries, and more than 2 billion events happened within the BlueJ envi-
ronment.

4.1 The Context: Selection and Clustering

Due to the generous dimension of the dataset, it was necessary to perform a
clustering step to obtain a set of projects suitable for the study. A set of ad-hoc
scripts allowed to extract such projects by executing the following activities:

– selection of the successful compile events from all the events available in the
repository;

– selection of projects with a number of files greater than two—to be able to
study relationships, and lower than 15—to filter bigger projects;

– for all the compile events associated with files belonging to selected projects,
creation of a CSV file with the following data: (i) identifier of the source
code of a JAVA file, (ii) identifier of an event, (iii) successful compilation
timestamp, and (iv) identifier of the project to which source code belongs to;

– for each project, using the above information to access index-payload6 in the
repository to extract project source code files used for source static analysis.

5 https://www.bluej.org/.
6 “payload files”, at time of writing, go from Jun 12th 2013 to Oct 16th 2017; it was

not possible to get the completed source code before and after this time interval.

https://www.bluej.org/

On the Students’ Misconceptions in Object-Oriented Language Constructs 107

Table 1. Top constructs violations in an excerpt of the dataset with projects pertaining
all the categories.

N. CATEGORY NAME #VIOLATIONS

1 Attributes fulv 3164

2 Attributes mc 2665

3 Abstraction pi 2358

4 Attributes lvsf 504

5 Attributes pfc 352

6 Inheritance cc 286

7 Attributes upf 169

These steps led to a dataset of 1627 projects [9]. The dataset contains source
code concerning different language constructs. Thus, there is no assurance a given
project can be analyzed for all the considered categories. For this reason, SPT
performs project clustering. For each considered project, it executes a static
source code analysis to detect the categories of language constructs that are
included in that project. The subsequent project analysis finds, for each category
identified by the clustering step for that project, the violations described in
Sect. 3.

The left side of Fig. 2 shows the results of the clustering. It reports the num-
ber of projects (vertical columns) contained in each combination of intersections
(pointed lines) of the set of projects associated to each category of language con-
structs (shown in the horizontal lines on the bottom left). A dark dot in a row
means that the corresponding set participates to the intersection. Otherwise, it
means that such a set is excluded. For conciseness, Fig. 2 omits empty intersec-
tions and shows only the relevant combinations of categories. Looking at the
figure, each project can belong to multiple categories and so create an intersec-
tion. For each intersection, we can evaluate the number of associated projects,
i.e. the ones containing language constructs belonging to that category.

For example, 422 projects contain the Abstraction category. An interesting set
contains all the six categories of language constructs (Abstraction, Inheritance,
Relationship, Attributes, Interactions, and Polymorphism) and is comprised of
394 projects out of the total (1627). This set is essential since it contains a well
balanced set of projects (of different sizes) and, for this reason, it is the reference
set used as context of the empirical study.

4.2 Top Categories and Violations

The most violated categories, across all the projects in the dataset (1627), are
Abstraction (42,17%) and Attributes (38,4%), followed by Relationships. The
other categories have a very low rate—less than 6%. The Inheritance is the
less infringed construct. Moreover, the dominant ratio of inheritance mistakes
has a semantic root whereas in this study we are detecting language construct
violations. Our results show that a small fraction of students makes semantic-free
errors when applying inheritance. Another interesting perspective is the analysis

108 P. Ardimento et al.

Fig. 3. Boxplots of the violations distributions for the considered categories of language
constructs.

of top seven violations reported in Table 1, concerning projects belonging to all
the categories.

The most present category is Attributes. Students seem to have problems with
several aspects of handling attributes related to the kind of declared variables, i.e.
most violations are related to instance fields that are defined in place of constants
or used as a local variable, suggesting the lack of understanding of the meaning
of instance variables. Also shadowing among variables is shown as problematical.
Such a violation stands in the fourth place. Even this does not necessarily lead to
a bug it suggests a lack in the comprehension of variable scoping rules. Violations
of Abstraction are at third place in the top seven, for poor interfaces definitions.
It seems students are not able to define interfaces accurately and, even when
interfaces are well declared, they often miss the proper usage preferring the
definition of variables using concrete types. This leads to worse modularization,
increased coupling [30] and the usage of unneeded typecasting [16].

5 Results and Discussion

To address RQ1, we consider all the projects extracted from the blackbox
dataset belonging to all the categories. We evaluate the distributions of number
of violations on these categories using boxplots, as shown in Fig. 3—top-left.
For each category, the figure shows the number of violations distribution, the
inter-quartile range, and median value. The median number of violations of the
projects follows a trend that is similar to the one we have already seen for

On the Students’ Misconceptions in Object-Oriented Language Constructs 109

Table 2. Comparison of violation count distributions with Mann-Whitney test (�
for p−value < 0.001 - ∅ otherwise) and cliff’s delta d (medium and large values are
highlighted in blue).

#violations distribution → ABST ATTR INHE INTE POLY RELA

ABST � d=0.60 ∅ d=0.03 � d=0.55 ∅ d=-0.01 � d=0.29 � d=0.58

ATTR ∅ d=0.04 � d=0.80 ∅ d=0.04 � d=0.95 � d=0.54 � d=0.58

INHE � d=0.50 ∅ d=0.03 � d=0.85 ∅ d=0.01 � d=0.75 � d=0.79

INTE � d=0.12 � d=0.77 ∅ d=0.06 � d=0.97 � d=0.71 � d=0.77

POLY � d=0.11 ∅ d=-0.01 � d=0.22 � d=0.41 � d=0.76 ∅ d=-0.01

RELA ∅ d=0.01 � d=0.25 ∅ d=-0.01 � d=0.78 ∅ d=0.01 � d=0.86

Projects of classes ↑

Fig. 4. Boxplots of the violations distributions for the considered CK metrics.

the total violations. In fact, Abstraction (∼15 violations), Attributes (∼13 vio-
lations) are the most infringed categories in descending order. The remaining
categories (Relationships, Interactions, Inheritance and Polymorphism) have all

110 P. Ardimento et al.

a median number of violations that is less than five with inheritance being the
lowest (with almost three violations per project). The second research question
aims at understanding relationships among language constructs that are inter-
related and, for this reason, cannot be easily taught or learned in isolation. To
address RQ2, we consider the projects violating each category in turn and com-
pute the number of violations on the remaining categories. We compare—using
boxplots, Mann-Whitney test, and Cliff’s delta—the above number of violations
with the number of violations distribution evaluated on all the projects already
calculated for RQ1. We then perform a pairwise comparison applying Mann-
Whitney test and correcting p-values using the Holm’s correction procedure [14].
This procedure sorts the p-values resulting from n tests in ascending order, mul-
tiplying the smallest by n, the next by n − 1, and so on. Finally, in addition
to the statistical comparison, we compute the effect size of the difference using
Cliff’s delta non-parametric effect size measure [13], defined as the probability
that a randomly selected member of one sample has a higher response than a
randomly selected member of the second sample, minus the reverse probability.
Cliff’s delta is considered negligible for |d| < 0.147, small for 0.148 ≤ |d| < 0.33,
medium for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474. Figure 3 and Table 2
report the results to answer RQ2.

The boxplots show the comparison of the number of violation distributions
evaluated for projects violating only one category with the one evaluated for
all the projects. The table shows the pair-wise comparison using the Mann-
Whitney test and Cliff’s delta as a measure of the effect size. As Fig. 3 high-
lights, projects violating the Abstraction category have a significantly higher
distribution (with respect to all the projects) of number of violations for Inher-
itance, Polymorphism, and Relationships language constructs. The effect sizes
confirm all the relations (large for Inheritance and Relationships, and small for
Polymorphism). The third plot in the first row of Fig. 3 shows that projects vio-
lating the Attributes category have a significantly higher number of violations,
with respect to all the projects in the dataset, for Interactions (with a large
effect size of d = 0.95) and, with a still large but lower effect size, for Polymor-
phism (d = 0.54) and Relationships (d = 0.58). This means that students having
misconceptions about attributes and variable handling are more prone to com-
mit errors that are related to object interactions, handling relationships among
classes, and applying polymorphism correctly. With regards to projects violat-
ing Inheritance, results highlight a higher violation count for Polymorphism and
Relationships with a large effect size in both cases.

For what concerning product metrics, boxplots of violations distributions
are reported in Fig. 4. As figure shows, violations are mostly related to coupling
problems (Ce, CBO and LCOM, NPM). Right behind coupling issues, we found
complexity (WMC) and (DIT) with a comparable number of violations.

6 Conclusion and Future Work

We have presented an empirical study concerning 1627 projects of the Blackbox
dataset [5]. The focus is on Java language constructs and their use.

We created a list of violations of language constructs, organized into seven
categories and supported by existing literature in computer science/software

On the Students’ Misconceptions in Object-Oriented Language Constructs 111

engineering education. Next, we developed a tool, SPT, to do static analysis of
Java student code and perform aforementioned empirical study.

The tool [9] can give an instant picture of the trend of a class and their learn-
ing process. Overall, students authored many violations with top three belong-
ing to the categories of Abstraction and Attributes. To understand the rela-
tions between diverse categories we executed a clustering step (available through
SPT). We believe our findings may be beneficial for harmonizing teaching strate-
gies and designing new educational tools. Future work will focus on extending
the list of violations, integrating STP into existing IDEs and also providing an
interface for students to have new insights.

References

1. Ala-Mutka, K.M.: A survey of automated assessment approaches for programming
assignments. Comput. Sci. Educ. 15(2), 83–102 (2005)

2. Ardimento, P., Cimitile, M., Visaggio, G.: Distributed software development with
knowledge experience packages. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013.
LNCS, vol. 8186, pp. 263–273. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41033-8 35

3. Biddle, R., Tempero, E.: Java pitfalls for beginners. ACM SIGCSE Bull. 30(2),
48–52 (1998)

4. Brown, N.C.C., Altadmri, A.: Novice Java programming mistakes: large-scale data
vs. educator beliefs. ACM Trans. Comput. Educ. (TOCE) 17(2), 7 (2017)

5. Brown, N.C.C., AlTadmri, A., Sentance, S., Kölling, M.: Blackbox, five years on: an
evaluation of a large-scale programming data collection project. In: ACM Confer-
ence on International Computing Education Research, ICER 2018, Espoo, Finland,
13–15 August 2018, pp. 196–204 (2018)

6. Buckers, T., et al.: UAV: warnings from multiple automated static analysis tools
at a glance. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 472–476 (2017)

7. Chen, C., Cheng, S., Lin, J.M.: A study of misconceptions and missing conceptions
of novice Java programmers. In: International Conference on Frontiers in Educa-
tion: Computer Science and Computer Engineering (FECS), p. 1. The Steering
Committee of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp) (2012)

8. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

9. CSELAB. Student profiling tool (2018). https://gitlab.com/cselab/spt
10. Denny, P., Luxton-Reilly, A., Tempero, E., Ralph, P.: Objects count so count

objects! In: Conference on International Computing Education Research, pp. 187–
195. ACM (2018)

11. Edwards, S.H., Kandru, N., Rajagopa, M.B.M.: Investigating static analysis errors
in student Java programs. In: ACM Conference on International Computing Edu-
cation Research, ICER 2017, pp. 65–73. ACM, New York (2017)

12. Ettles, A., Luxton-Reilly, A., Denny, P.: Common logic errors made by novice
programmers. In: Australasian Computing Education Conference, ACE 2018, pp.
83–89. ACM, New York (2018)

13. Grissom, R.J., Kim, J.J.: Effect sizes for research: a broad practical approach, 2nd
edn. Lawrence Earlbaum Associates (2005)

14. Holm, S.: A simple sequentially rejective Bonferroni test procedure. Scand. J. Stat.
6, 65–70 (1979)

https://doi.org/10.1007/978-3-642-41033-8_35
https://doi.org/10.1007/978-3-642-41033-8_35
https://gitlab.com/cselab/spt

112 P. Ardimento et al.

15. Hristova, M., Misra, A., Rutter, M., Mercuri, R.: Identifying and correcting Java
programming errors for introductory computer science students. SIGCSE Bull.
35(1), 153–156 (2003)

16. Bergin, J., Agarwal, A., Agarwal, K.: Some deficiencies of C++ in teaching CS1
and CS2. ACM SIGPlan Not. 38(6), 9–13 (2003)

17. Keuning, H., Heeren, B., Jeuring, J.: Code quality issues in student programs. In:
ACM Conference on Innovation and Technology in Computer Science Education,
pp. 110–115. ACM (2017)

18. Liberman, N., Beeri, C., Kolikant, Y.B.: Difficulties in learning inheritance and
polymorphism. Trans. Comput. Educ. 11(1), 4:1–4:23 (2011)

19. Luxton-Reilly, A., Denny, P., Kirk, D., Tempero, E., Yu, S.Y.: On the differences
between correct student solutions. In: ACM Conference on Innovation and Tech-
nology in Computer Science Education, pp. 177–182. ACM (2013)

20. Madden, M., Chambers, D.: Evaluation of student attitudes to learning the Java
language. In: Conference on the Principles and Practice of Programming, PPPJ
2002/IRE 2002, Maynooth, County Kildare, Ireland, Ireland, pp. 125–130. National
University of Ireland (2002)

21. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a
library for implementing analyses and transformations of Java source code. Softw.
Pract. Exp. 46, 1155–1179 (2015)

22. Ragonis, N., Ben-Ari, M.: Teaching constructors: a difficult multiple choice. In:
European Conference on Object-Oriented Programming, Workshop, vol. 3. Citeseer
(2002)

23. Ragonis, N., Ben-Ari, M.: A long-term investigation of the comprehension of OOP
concepts by novices. Comput. Sci. Educ. 15(3), 203–221 (2005)

24. Ragonis, N., Shmallo, R.: On the (mis)understanding of the this reference. In:
ACM SIGCSE Technical Symposium on Computer Science Education, pp. 489–
494. ACM (2017)

25. Sanders, K., Thomas, L.: Checklists for grading object-oriented CS1 programs:
concepts and misconceptions. In: Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2007, Dundee, Scotland, UK,
25–27 June 2007, pp. 166–170 (2007)

26. Schmolitzky, A.: Objects first, interfaces next or interfaces before inheritance.
In: ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 64–67. ACM (2004)

27. Sivilotti, P.A.G., Lang, M.: Interfaces first (and foremost) with Java. In: ACM
Technical Symposium on Computer Science Education, pp. 515–519. ACM (2010)

28. Spinellis, D.: Tool writing: a forgotten art? (software tools). IEEE Softw. 22(4),
9–11 (2005)

29. Tempero, E., Counsell, S., Noble, J.: An empirical study of overriding in open
source Java. In: Australasian Conference on Computer Science, vol. 102, pp. 3–12.
Australian Computer Society Inc (2010)

30. Tempero, E., Ralph, P.: A framework for defining coupling metrics. Sci. Comput.
Program. 166, 214–230 (2018)

31. Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A.: Jdeodorant: identification and
removal of type-checking bad smells. In: 12th European Conference on Software
Maintenance and Reengineering, CSMR 2008, pp. 329–331. IEEE (2008)

32. Wiggins, G.: Seven keys to effective feedback. Educ. Leadersh. 70(1), 11–16 (2012)
33. Xinogalos, S.: Object-oriented design and programming: an investigation of

novices’ conceptions on objects and classes. ACM Trans. Comput. Educ. (TOCE)
15(3), 13 (2015)

	On the Students' Misconceptions in Object-Oriented Language Constructs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Abstraction Violations
	3.2 Attribute Violations
	3.3 Inheritance Violations
	3.4 Interaction Violations
	3.5 Polymorphism Violations
	3.6 Relationship Violations
	3.7 Quality Metrics Violations
	3.8 Student Profiling Tool

	4 Empirical Study
	4.1 The Context: Selection and Clustering
	4.2 Top Categories and Violations

	5 Results and Discussion
	6 Conclusion and Future Work
	References

