
Self-stabilizing Snapshot Objects
for Asynchronous Failure-Prone

Networked Systems

Chryssis Georgiou1, Oskar Lundström2, and Elad Michael Schiller2(B)

1 Computer Science, University of Cyprus, Nicosia, Cyprus
chryssis@cs.ucy.ac.cy

2 Computer Science and Engineering, Chalmers University Technology,
Gothenburg, Sweden

osklunds@student.chalmers.se, elad@chalmers.se

Abstract. A snapshot object simulates the behavior of an array of
single-writer/multi-reader shared registers that can be read atomically.
Delporte-Gallet et al. proposed two fault-tolerant algorithms for snap-
shot objects in asynchronous crash-prone message-passing systems. Their
first algorithm is non-blocking ; it allows snapshot operations to terminate
once all write operations had ceased. It uses O(n) messages of O(n · ν)
bits, where n is the number of nodes and ν is the number of bits it
takes to represent the object. Their second algorithm allows snapshot
operations to always terminate independently of write operations. It
incurs O(n2) messages. The fault model of Delporte-Gallet et al. consid-
ers node failures (crashes). We aim at the design of even more robust
snapshot objects. We do so through the lenses of self-stabilization—
a very strong notion of fault-tolerance. In addition to Delporte-Gallet
et al.’s fault model, a self-stabilizing algorithm can recover after the
occurrence of transient faults; these faults represent arbitrary violations
of the assumptions according to which the system was designed to oper-
ate (as long as the code stays intact). In particular, in this work, we
propose self-stabilizing variations of Delporte-Gallet et al.’s non-blocking
algorithm and always-terminating algorithm. Our algorithms have simi-
lar communication costs to the ones by Delporte-Gallet et al. and O(1)
recovery time (in terms of asynchronous cycles) from transient faults.
The main differences are that our proposal considers repeated gossiping
of O(ν) bits messages and deals with bounded space, which is a prereq-
uisite for self-stabilization.

1 Introduction

We propose self-stabilizing implementations of shared memory snapshot objects
for asynchronous bounded space networked systems whose nodes may crash.
Context and Motivation. Shared registers are fundamental objects that facili-
tate synchronization in distributed systems. In the context of networked systems,
they provide a higher abstraction level than simple end-to-end communication,
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 113–130, 2019.
https://doi.org/10.1007/978-3-030-31277-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_8


114 C. Georgiou et al.

which provides persistent and consistent distributed storage that can simplify the
design and analysis of dependable distributed systems. Snapshot objects extend
shared registers. They provide a way to further make the design and analysis of
algorithms that base their implementation on shared registers easier. Snapshot
objects allow an algorithm to construct consistent global states of the shared
storage in a way that does not disrupt the system computation. Their efficient
and fault-tolerant implementation is a fundamental problem, as there are many
examples of algorithms that are built on top of snapshot objects.
Task Description. Consider a fault-tolerant distributed system of n asyn-
chronous nodes that are prone to failures. Their interaction is based on the emu-
lation of Single-Writer/Multi-Reader (SWMR) shared registers over a message-
passing communication system. Snapshot objects can read the entire array of
system registers [1,2]. The system lets each node update its own register via
write() operations and retrieve the value of all shared registers via snapshot()
operations. Note that these snapshot operations may occur concurrently with
the write operations that individual nodes perform. We are particularly inter-
ested in the study of atomic snapshot objects that are linearizable: the operations
write() and snapshot() appear as if they have been executed instantaneously, one
after the other (i.e., they appear to preserve real-time ordering).
Fault Model. We consider an asynchronous message-passing system in which
nodes may crash and packets may be lost, duplicated and reordered. In addition
to these failures, we also aim to recover from transient faults, i.e., any tempo-
rary violation of assumptions according to which the system was designed to
behave, e.g., the corruption of control variables, such as the program counter
and operation indices, which are responsible for the correct operation of the
studied system, or operational assumptions, such as that at least half of the sys-
tem nodes never fail. Since the occurrence of these failures can be combined, we
assume that these transient faults alter the system state in unpredictable ways.
In particular, when modeling the system, we assume that these violations bring
the system to an arbitrary state from which a self-stabilizing algorithm should
recover the system. Therefore, starting from an arbitrary state, the correctness
proof of self-stabilizing systems [3] has to show the return to a “correct behavior”
within a bounded period. The complexity measure of self-stabilizing systems is
the length of the recovery period.
Related Work. We follow the design criteria of self-stabilization, which was
proposed by Dijkstra [3] and detailed in [4]. Our overview of the related work
focuses on self-stabilizing algorithms for shared-memory objects. Attiya et al. [5]
implemented SWMR atomic shared-memory in an asynchronous networked sys-
tem. Delporte-Gallet et al. [6] claim that when stacking the shared-memory
atomic snapshot algorithm of [1] on the shared-memory emulation of [5] (with
some improvements), the number of messages per snapshot operation is 8n and
it takes 4 round trips. Their proposal, instead, takes 2n message per snapshot
and just one round trip to complete. Our solution follows the non-stacking app-
roach of Delporte-Gallet and it tolerates any failure (in any communication or
operation invocation pattern) that [6] can as well as recover after the occurrence



Self-stabilizing Snapshot Objects 115

of transient faults that arbitrarily corrupt the system state. The literature on
self-stabilization includes a practically-self-stabilizing variation for the work of
Attiya et al. [5] by Alon et al. [7]. Their proposal guarantees wait-free recovery
from transient faults. However, there is no bound on the recovery time. Dolev
et al. [8] consider MWMR atomic storage that is wait-free in the absence of
transient faults. They guarantee a bounded time recovery from transient faults
in the presence of a fair scheduler. They demonstrate the algorithm’s ability to
recover from transient faults using unbounded counters and in the presence of
fair scheduling. Then they deal with the event of integer overflow via a consensus-
based procedure. Since integer variables can have 64-bits, their algorithm seldom
uses this non-wait-free procedure for dealing with integer overflows. In fact, they
model integer overflow events as transient faults, which implies bounded recov-
ery time from transient faults in the seldom presence of a fair scheduler (using
bounded memory). They call these systems self-stabilizing systems in the pres-
ence of seldom fairness. Our work adopts these design criteria. We are unaware
of self-stabilizing algorithms for snapshot objects that can recover from node
failures. We note that “stacking” of self-stabilizing algorithms for asynchronous
message-passing systems is not straightforward; the existing “stacking” needs
schedule fairness [4, Section 2.7].
Contributions. We propose self-stabilizing algorithms for snapshot objects in
networked systems. To the best of our knowledge, we are the first to consider
both node failures and transient faults. Specifically, we propose:
(1) A self-stabilizing variation on the non-blocking algorithm by Delporte-Gallet
et al. (Sect. 3). As by Delporte-Gallet et al., each snapshot or write operation
uses O(n) messages of O(ν ·n) bits, where n is the number of nodes and ν is the
number of bits for encoding the object. Our communication costs are slightly
higher due to O(n2) gossip messages of O(ν) bits, where ν is the number of bits
it takes to represent the object.
(2) A self-stabilizing variation on the always-terminating algorithm by Delporte-
Gallet et al. (Sect. 4). Our algorithm can: (i) recover from of transient faults,
and (ii) both write and snapshot operations always terminate (regardless of
the invocation patterns of any operation). We achieve (ii) by choosing to use
safe registers for storing the result of recent snapshot operations, rather than
a reliable broadcast mechanism, which often has higher communication costs.
Moreover, instead of dealing with one snapshot task at a time, we take care of
several at a time. We also consider an input parameter, δ. For the case of δ = 0,
our self-stabilizing algorithm guarantees an always-termination behavior (as in
the non-self-stabilizing algorithm by Delporte-Gallet et al.) that blocks all write
operation upon the invocation of any snapshot operation at the cost of O(n2)
messages. For the case of δ > 0, our solution aims at using O(n) messages per
snapshot operation while monitoring the number of concurrent write operations.
Once our algorithm notices that a snapshot operation runs concurrently with
at least δ write operations, it blocks all write operations and uses O(n2) mes-
sages for completing the snapshot operations. Thus, the proposed algorithm can
trade communication costs with an O(δ) bound on snapshot operation latency.



116 C. Georgiou et al.

Moreover, between any two consecutive periods in which snapshot operations
block the system for write operations, the algorithm guarantees that at least δ
write operations can occur.

The proposed algorithms use unbounded counters. In Sect. 5 we explain how
to bound these counters. Due to the page limit, omitted details and proofs appear
in [9], together with an explanation on how to extend our solutions to reconfig-
urable ones.

2 System Settings

We consider an asynchronous message-passing system. The system includes the
set P of n failure-prone nodes whose identifiers are unique and totally ordered
in P. Any pair of nodes have access to a bidirectional bounded capacity commu-
nication channel that has no guarantees on the communication delays.

Each node runs a program, which we model as a sequence of (atomic) steps.
Each step starts with an internal computation and finishes with a single com-
munication operation, i.e., message send or receive. The state, si, of pi ∈ P
includes all of pi’s variables and the set of all incoming communication channels.
Note that pi’s step can change si and remove a message from channelj,i (upon
message arrival) or add a message in channeli,j (when a message is sent). The
term system state refers to a tuple, c = (s1, s2, · · · , sn), where each si is pi’s
state. An execution R = c0, a0, c1, a1, . . . is an alternating sequence of system
states cx and steps ax, such that each cx+1, except, c0, is obtained from the
preceding state cx by the execution of step ax. Let R′ and R′′ be a prefix, and
resp., a suffix of R, such that R′ is a finite sequence, which starts with a system
state and ends with a step ax ∈ R′, and R′′ is an unbounded sequence, which
starts in the system state that immediately follows step ax ∈ R. The proof of
the algorithms considers the number of (asynchronous) cycles of a fair execution,
i.e., every step that is applicable infinitely often is executed infinitely often and
fair communication is kept. The first (asynchronous) cycle (with round-trips) of
a fair execution R = R′′ ◦ R′′′ is the shortest prefix R′′ of R, such that each
non-failing node executes in R′′ at least one complete iteration of its do forever
loop (and completes the round trips associated with the messages sent during
that iteration), where ◦ denotes the concatenation operator. The second cycle
in execution R is the first cycle in suffix R′′ of execution R, and so on.

Fault Model. We assume communication fairness, i.e., if pi sends a message
infinitely often to pj , node pj receives that message infinitely often. We note
that without this assumption, the communication channel between any two cor-
rect nodes eventually becomes non-functional. We consider standard terms for
characterizing node failures [10]. A crash failure considers the case in which a
node stops taking steps forever and there is no way to detect this failure. We
say that a failing node resumes when it returns to take steps without restarting
its program—the literature sometimes refer to this as an undetectable restart.
The case of a detectable restart allows the node to restart all of its variables.
We assume that each node has access to a quorum service, e.g., [8, Section 13],



Self-stabilizing Snapshot Objects 117

that deals with packet loss, reordering, and duplication. A failure of node pi ∈ P
implies that it stops executing any step without any warning. The number of
failing nodes is at most f and 2f < n for the sake of guaranteeing correct-
ness [11]. In the absence of transient faults, failing nodes can simply crash, as
in Delporte-Gallet et al. [6]. In the presence of transient faults, we assume that
failing nodes resume within some unknown finite time and restart their program
after initializing all of their variables (including the control variables). The latter
assumption is needed only for recovering from transient faults; in [9] we explain
how to remove this assumption. As already mentioned, we consider arbitrary
violations of the assumptions according to which the system and the communi-
cation network were designed to operate. We refer to these violations as transient
faults and assume that they can corrupt the system state arbitrarily (while keep-
ing the program code intact). The occurrence of a transient fault is rare. Thus,
we assume that transient faults occur before the system execution starts [4].
Moreover, it leaves the system to start in an arbitrary state.

Dijkstra’s Self-stabilization Criterion. The set of legal executions (LE)
refers to all the executions in which the requirements of the task T hold. We say
that a system state c is legitimate when every execution R that starts from c is
in LE. An algorithm is self-stabilizing with respect to the task of LE, when
every (unbounded) execution R of the algorithm reaches within a bounded
period a suffix Rlegal ∈ LE that is legal. That is, Dijkstra [3] requires that
∀R : ∃R′ : R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ N, where the length of R′ is
the complexity measure, which we refer to as the recovery time.

Self-stabilization in the Presence of Seldom Fairness. As a variation of
Dijkstra’s self-stabilization criterion, Dolev et al. [8] proposed design criteria in
which (i) any execution R = RrecoveryPeriod ◦ R′ : R′ ∈ LE, which starts in
an arbitrary system state and has a prefix (RrecoveryPeriod) that is fair, reaches
a legitimate system state within a bounded prefix RrecoveryPeriod. (Note that
the legal suffix R′ is not required to be fair.) Moreover, (ii) any execution R =
R′′ ◦ RglobalReset ◦ R′′′ ◦ RglobalReset ◦ . . . : R′′, R′′′, . . . ∈ LE in which the prefix
of R is legal, and not necessarily fair but includes at most O(n · zmax) write or
snapshot operations, has a suffix, RglobalReset ◦ R′′′ ◦ RglobalReset ◦ . . ., such that
RglobalReset is required to be fair and bounded in length, but it might permit the
violation of liveness requirements, i.e., a bounded number of operations might
be aborted (as long as the safety requirement holds). Furthermore, R′′′ is legal
and not necessarily fair, but includes at least zmax write or snapshot operations
before the system reaches another RglobalReset. Since we can choose zmax ∈ Z

+

to be a very large value, say 264, and the occurrence of transient faults is rare,
we refer to the proposed criteria as one for self-stabilizing systems that their
execution fairness is unrequited except for seldom periods. We note that self-
stabilizing algorithms (that follows Dijkstra’s criterion) often assume fairness
throughout R.



118 C. Georgiou et al.

3 The Non-blocking Algorithm

The non-blocking solution to snapshot object emulation by [6, Algorithm 1]
allows writes to terminate regardless of the invocation patterns of any other oper-
ation (as long as the invoking nodes do not fail during the operation). However,
snapshot operation termination is guaranteed only after the last write operation.
We discuss Delporte-Gallet et al. [6, Algorithm 1]’s solution before proposing
our self-stabilizing variation.

Fig. 1. Examples of Algorithm 1’s executions.
The upper drawing illustrates a case of a terminat-
ing snapshot operation (dashed line arrows) that
occurs between two write operations (solid line
arrows). The acknowledgments of these messages
are arrows that start with circles and squares,
respectively. The lower drawing depicts the exe-
cution of Algorithm 1’s self-stabilizing version for
the same case illustrated in the upper drawing.
Note that the gossip messages do not interfere
with other messages.

Delporte-Gallet et al.’s Non-
blocking Algorithm. Algo-
rithm 1 presents [6, Algo-
rithm 1] using our presentation
style; the boxed code lines are
irrelevant to [6, Algorithm 1].
The node state appears in
lines 2 to 4 and automatic vari-
ables (which are allocated and
deallocated automatically when
program flow enters and leaves
the variable’s scope) are defined
using the let keyword, e.g., the
variable prev (line 19). Also,
when a message arrives, we use
the parameter name xJ to refer
to the arriving value for the mes-
sage field x.

Node pi stores the array reg
(line 4), such that the k-th entry
stores the most recent informa-
tion about node pk’s object and reg[i] stores pi’s actual object. Every entry
is a pair of the form (v, ts), where the field v is an object value and ts is an
unbounded object index. The relation � can compare (v, ts) and (v′, ts′) accord-
ing to the write operation indices (line 1). Node pi also has an index for the
snapshot operations, i.e., ssn.
The write(v) Operation. Algorithm 1’s write(v) operation appears in lines 12
to 15 (client-side) and lines 17 to 23 (server-side). The client-side operation
write(v) stores the pair (v, ts) in reg[i] (line 13), where pi is the calling node
and ts is a unique operation index. Upon the arrival of a WRITE message to pi

from pj (line 26), the server-side code is ran. Node pi updates reg according to
the timestamps of the arriving values (line 27). Then, pi replies to pj with the
message WRITEack (line 31), which includes pi’s local perception of the system
shared registers. Getting back to the client-side, pi repeatedly broadcasts the
message WRITE to all nodes until it receives replies from a majority of them
(line 14). Once that happens, it uses the arriving values for keeping reg up-to-
date (line 15).



Self-stabilizing Snapshot Objects 119

The snapshot(v) Operation. Algorithm 1’s snapshot() operation appears in
lines 17 to 23 (client-side) and lines 29 to 31 (server-side). Delporte-Gallet et
al. [6, Algorithm 1] is non-blocking w.r.t. snapshot operations (in the absence of
writes). Thus, the client-side is written as a repeat-until loop. Node pi tries to
query the system for the most recent value of the shared registrars. As said, the
success of such attempts depends on the absence of writes. Thus, before each
such broadcast, pi copies reg’s value to prev (line 19) and exits the repeat-until
loop once the updated value of reg indicates the obscene of concurrent writes.

The Proposed Unbounded Self-stabilizing Variation. We propose Algo-
rithm 1 as an extension of Delporte-Gallet et al. [6, Algorithm 1]. The boxed
code lines mark our additions. We denote variable X’s value at node pi by Xi.
Algorithm 1 considers the case in which any of pi’s operation indices, ssni and



120 C. Georgiou et al.

tsi, is smaller than some other ssn or ts value, say, ssnm, regi[i].ts, regj [i].ts
or regm[i].ts, where Xm appears in the X field of some on transit message. For
the case of corrupted ssn values, pi’s client-side ignores arriving messages with
ssn values that do not match ssni (line 20). The do-forever loop removes any
stored snapshot reply whose ssn field is not ssni. For the case of corrupted
ts values, pi’s do-forever loop makes sure that tsi is not smaller than regi[i].ts
(line 10) before gossiping to every node pj ∈ P its local copy of the shared register
(line 11). Also, upon the arrival of such gossip messages, Algorithm 1 merges the
arriving information with the local one (line 25). Moreover, when replies from
write or snapshot messages arrive to pi, it merges the arriving ts value with
the one in tsi (line 6). Figure 1’s upper and lower drawings depict executions of
the non-self-stabilizing algorithm [6], and respectively, our self-stabilizing version
(Algorithm 1). The drawings illustrate a write operation that is followed by a
snapshot operation and then a second write. We use this example for comparing
Algorithms 1, 2 and 3 (the latter two are presented in Sect. 4). The complete
discussion for Algorithm 1 and proof details appear in [9].

Theorem 1 (Recovery). Within O(1) cycles, a fair execution of Algorithm 1
reaches a state c in which (i) tsi’s value is not smaller than any pi’s timestamp
value. Also, if node pi takes a step immediately after c that includes line 13, then
in c it holds that tsi = regi[i].ts = regj [i].ts and for every messages m that is
in transit from pi to pj or pj to pi it holds that m.reg[i].ts = tsi. Moreover, (ii)
ssni is not smaller than any pi’s snapshot sequence number.

Proof Sketch. Arguments (1) to (3) show invariant (i). (1) The values
installed in tsi, regi[i].ts, regj [i].ts, regi[i] and regj [i] are non-decreasing,
since their values are never decremented. (2) Within O(1) cycles, tsi ≥
regi[i].ts, since pi executes line 10 at least once in every cycle. (3) Within
O(1) cycles, regi[i].ts ≥ regm[i].ts and regi[i].ts ≥ regJ [i].ts whenever pj

raises SNAPSHOTack(regJ, ssn) or WRITE(regJ), where m′ is a message
on transit from pj to pk and denote regm′ as values of the reg filed in m′,
and pi, pj , pk ∈ P are non-failing nodes (and i = k possibly holds). More-
over, regj [i].ts ≥ regm′ [i].ts and regi[i].ts ≥ regJ [i].ts whenever pk raises
GOSSIP(regJ), WRITEack(regJ) or SNAPSHOTack(regJ, •). The proof fol-
lows by the nodes’ message exchange. Invariant (ii) follows by arguments similar
to (1) to (3). �

4 The Always-Terminating Algorithm

Delporte-Gallet et al. [6, Algorithm 2] guarantee termination for any invocation
pattern of write and snapshot operations, as long as the invoking nodes do
not fail during these operations. Its advantage over Delporte-Gallet et al. [6,
Algorithm 1] is that it can deal with an infinite number of concurrent write
operations. Before proposing our self-stabilizing always-terminating solution, we
bring [6, Algorithm 2] in Algorithm 2 using the presentation style of this paper.



Self-stabilizing Snapshot Objects 121

Delporte-Gallet et al.’s Always-Terminating Algorithm. Delporte-Gallet
et al. [6, Algorithm 2] use a job-stealing scheme for allowing rapid termination
of snapshot operations. Node pi ∈ P starts its snapshot operation by queueing
this new task at all nodes pj ∈ P. Once pj receives pi’s new task and when
that task reaches the queue front, pj starts the baseSnapshot(s, t) procedure,
which is similar to Algorithm 1’s snapshot() operation. This joint participation
in all snapshot operations makes sure that all nodes are aware of all on-going
snapshot operations. Moreover, it allows the nodes to make sure that no write()
can stand in the way of on-going snapshot operations. To that end, the nodes
wait until the oldest snapshot operation terminates before proceeding with later
operations. Specifically, they defer write operations that run concurrently with
snapshot operations. This guarantees termination of snapshot operations via the
interleaving and synchronization of snapshot and write operations.

reliableBroadcast reliableBroadcastSNAPSHOT/ SNAPSHOTack

Fig. 2. Algorithm 2’s run for the case of Fig. 1’s upper
drawing.

Algorithm 2 extends
Algorithm 1 (non-self-
stabilizing version, which
does not include the
boxed code lines) in the
sense that it uses all of
Algorithm 1’s variables
and an additional one,
array repSnap, which
snapshot() operations use.
The entry repSnap[x, y] holds the outcome of px’s y-th snapshot operation, where
no explicit bound on the number of invocations of snapshot operations is given.
Note that bounded space is a prerequisite for self-stabilization.
The write(v) Operation and the baseWrite() Function. Since write(v) operations
are preemptible, pi cannot always start immediately to write. Instead, pi stores
v in writePendi together with a unique operation index (line 43). It then runs
the operation as a background task (line 37) using baseWrite() (lines 47 to 50).
The snapshot() Operation. A call to snapshot() (line 45) causes pi to reliably
broadcast, via the primitive reliableBroadcast, a new ssn index in a SNAP to all
nodes in P. Node pi then places it as a background task (line 46).
The baseSnapshot() Function. As in Algorithm 1’s snapshot, the repeat-until
loop iterates until the retrieved reg vector equals to the one that was known
prior to the last repeat-until iteration. Then, pi stores in repSnap[s, t], via a
reliable broadcast of the END message, the snapshot result (line 58 and 65).
Synchronization Between the baseWrite() and baseSnapshot() functions. Algo-
rithm 2 interleaves the background tasks in a do forever loop (lines 37 to 41). As
long as there is an awaiting write task, node pi runs the baseWrite() function
(line 37). Also, if there is an awaiting snapshot task, node pi selects the oldest
task, (source, sn), and uses the baseSnapshot(source, sn) function. Here, Algo-
rithm 2 blocks until repSnap[source, sn] contains the result of that snapshot
task.



122 C. Georgiou et al.

Figure 2 depicts an example of Algorithm 2’s execution where a write oper-
ation is followed by a snapshot operation. Each snapshot is handled separately
and the communications of each such operation requires O(n2) messages.

An Unbounded Self-stabilizing Always-Terminating algorithm. We pro-
pose Algorithm 3 as a variation of Delporte-Gallet et al. [6, Algorithm 2]. Algo-
rithms 2 and 3 differ mainly in their ability to recover from transient faults. This
implies some constraints. E.g., Algorithm 3 must have a clear bound on the num-
ber of pending snapshot tasks. For the sake of simple presentation, Algorithm 3
assumes that the system needs, for each node, to cater for at most one pending
snapshot task. We avoid the use of a reliable broadcast, which Delporte-Gallet
et al. use, and instead, we use a simpler mechanism for safe registers.

Algorithm 3 can defer snapshot tasks until either (i) at least one node was
able to observe at least δ concurrent write operations, where δ is an input param-



Self-stabilizing Snapshot Objects 123

eter, or (ii) there are no concurrent write operations. The tunable parameter δ
balances between the latency (with respect to snapshot operations) and commu-
nication costs. I.e., for the case of δ being a very high (finite) value, Algorithm 3
guarantees termination in a way that resembles [6, Algorithm 1], which uses
O(n) messages per snapshot operation, and for the case of δ = 0, Algorithm 3
behaves in a way that resembles [6, Algorithm 2], which uses O(n2) messages
per snapshot.
Algorithm Details. Algorithm 3 lets every node disseminate its (at most one)
pending snapshot task and use a safe register for facilitating the delivery of the
task result to its initiator. I.e., once a node finishes a snapshot task, it broadcasts
the result to all nodes and waits for replies from a majority of nodes, which may
possibly include the initiator of the snapshot task (see safeReg(), line 70). This
way, if node pj notices that it has the result of an ongoing snapshot task, it sends
that result to the node who initiated the task.
The do forever loop. Algorithm 3’s do forever loop (lines 73 to 79), includes a
number of lines for cleaning stale information, e.g., out-of-synch SNAPSHOTack
messages (line 73), out-dated operation indices (line 74), illogical vector-clocks
(line 75) or corrupted pndTsk entries (line 76). The gossiping of operation indices
(lines 77 and 97) also helps to remove stale information (as in Algorithm 1 but
only with the addition of sns values). The synchronization between write and
snapshot operations (lines 78 and 79) starts with a write, if there is any such
pending task (line 78), before running its own snapshot task, if there is any such
pending, as well as any snapshot task (initiated by others) for which pi observed
that at least δ write operations occur concurrently with it (line 79).
The baseSnapshot() Function and the SNAPSHOT Message. Algorithm 3
maintains the state of every snapshot task in the array pndTsk. The entry
pndTski[k] = (sns, vc, fnl) includes: (i) the index sns of the most recent snap-
shot operation that pk ∈ P has initiated and pi is aware of, (ii) the vector clock
representation of regk (i.e., just the timestamps of regk, cf. line 68) and (iii) the
final result fnl of the snapshot operation (or ⊥, in case it is still running).

The baseSnapshot() function includes an outer loop part (lines 86 and 93),
an inner loop part (lines 86 to 89), and a result update part (lines 90 to 92). The
outer loop increments the snapshot index, ssn (line 86), so that it can consider
a new query attempt by the inner loop. The outer loop ends when there are no
more pending snapshot tasks that this call to baseSnapshot() needs to handle.
The inner loop broadcasts SNAPSHOT messages, which includes all the pending
snapshot tasks, (S ∩Δ), that are relevant to this call to baseSnapshot() together
with the local current value of reg and the snapshot query index ssn. The inner
loop ends when acknowledgments are received from a majority of processors and
the received values are merged (line 89). The results are updated by writing to an
emulated safe shared register (line 90) whenever prev = reg. In case the results
do not allow pi to terminate its snapshot task (line 92), Algorithm 3 uses the
query results for storing the timestamps in the field vs. This allows to balance
a trade-off between snapshot operation latency and communication costs, as we
explain next.



124 C. Georgiou et al.

The Use of the Input Parameter δ for Balancing the Trade-off Between Snapshot
Operation Latency and Communication Costs. For the case of δ = 0, since no
snapshot task is to be deferred, the set Δ (line 69) includes all the nodes for
which there is no stored result, i.e., pndTsk[k].fnl = ⊥. The case of δ > 0 uses
the fact that Algorithm 3 samples the vector clock value of regk and stores it in
pndTsk[k].vc (line 92) once it had completed at least one iteration of the repeat-
until loop (line 88 and 89). I.e., the sampling of the vector clock is an event that
occurs not before the start of pk’s snapshot (that has the index pndTsk[k].sns).
Many-jobs-stealing scheme for reduced blocking periods. Whenever pndTsk[k].fnl
�= ⊥ and sns > 0, we consider pk’s task as active. To the end of helping all
actives tasks, pi samples the set of currently pending task (Si ∩ Δi) (line 86)
before starting the inner repeat-until loop (lines 88 to 89) and broadcasting the
client-side message SNAPSHOT, which includes the most recent snapshot task
information. The server-side reception of this message (lines 102 to 103), updates
the local information (line 104) and sends the reply to the client-side (lines 105
to 106). Note that if the receiver notices that it has the result of an ongoing
snapshot task, then it sends that result to the requesting processor (line 106).
The safeReg() Function and the SAVE Message. The safeReg() function
considers a snapshot task that was initiated by node pk ∈ P. This function is
responsible for storing the results of snapshot tasks in a safe register. It does so
by broadcasting the client-side message SAVE to all nodes in the system (line 70).
Upon the arrival of the SAVE message to the server-side, the receiver stores the
arriving information, as long as the arriving information is more recent than the
local one. Then, the server-side replies with a SAVEack message to the client-side,
who is waiting for a majority of such replies (line 70).

SNAPSHOT/ SNAPSHOTack SAFE

Fig. 3. The upper drawing depicts an example of
Algorithm 3’s execution for a case that is equiva-
lent to the one depicted in the upper drawing of
Fig. 2, i.e., only one snapshot operation. The lower
drawing illustrates the case of concurrent invoca-
tions of snapshot operations by all nodes.

Figure 3 depicts two exam-
ples of Algorithm 3’s execution.
In the upper drawing, a write
operation is followed by a snap-
shot operation. Note that fewer
messages are considered when
comparing to Fig. 2’s example.
The lower drawing illustrates
the case of concurrent invoca-
tions of snapshot operations by
all nodes. Observe the poten-
tial improvement with respect
to number of messages (in the
upper drawing) and through-
put (in the lower drawing) since
Algorithm 2 uses O(n2) mes-
sages for each snapshot task and
handles only one snapshot task
at a time.



Self-stabilizing Snapshot Objects 125



126 C. Georgiou et al.

Correctness. The complete discussion and proof details appear in [9].

Definition 1 (Consistent system states and executions). (i) Let c be a
system state in which tsi is greater than or equal to any pi’s timestamp values
in the variables and fields related to ts. We say that the ts’ timestamps are
consistent in c. (ii) Let c be a system state in which ssni is greater than or equal
to any pi’s snapshot sequence numbers in the variables and fields related to ssn.
We say that the ssn’s snapshot sequence numbers are consistent in c. (iii) Let c
be a system state in which snsi is not smaller than any pi’s snapshot index sns.
Moreover, ∀pi ∈ P : snsi = pndTski[i].sns and ∀pi, pj ∈ P : pndTskj [i].sns ≤
pndTski[i].sns. We say that the sns’s snapshot indices are consistent in c. (iv)
Let c be a system state in which ∀pi, pk ∈ P : pndTski[k].vc � VCi holds, where
VCi is the returned value from VC() (line 68). We say that the vector clock values
are consistent in c. We say that system state c is consistent if it is consistent with
respect to invariants (i) to (iv). Let R be an execution of Algorithm 3 that all of
its system states are consistent and R′ be a suffix of R. We say that execution
R′ is consistent (with respect to R) if any message arriving in R′ was indeed
sent in R and any reply arriving in R′ has a matching request in R.

Theorem 2 (Recovery). Let R be Algorithm 3’s fair execution. Within O(1)
cycles in R, the system reaches a consistent state c ∈ R (Definition 1). Within
O(1) cycles after c, the system starts a consistent execution R′.

Proof Sketch. Note that Theorem 1 implies invariants (i) and (ii) of Defini-
tion 1 also for the case of Algorithm 3, because they use the similar lines of code
for asserting these invariants. For invariant (iii), sns and pndTsk in Algorithm 3
follow the same propagation patterns as ts and reg in Algorithm 1. Moreover,
within a cycle, every pi ∈ P executes line 76. Thus, invariant (iii)’s proof fol-
lows similar arguments to the ones in Theorem 1’s proof. Invariant (iv)’s proof is
implied by the fact that within a cycle, pi ∈ P executes line 75. By the definition
of cycles (Sect. 2), within a cycle, R reaches a suffix R′, such that every received
message during R′ was sent during R. By repeating the previous argument, it
holds that within O(1) cycles, R reaches a suffix R′ in which for every received
reply has an associated request that was sent during R. �

Theorem 3 (Algorithm 3’s termination and linearization). Let R be
Algorithm 3’s consistent execution (Definition 1). Suppose that there exists pi ∈
P, such that in R’s second system state, it holds that pndTski[i] = (s, •,⊥) and
s > 0. Within O(δ) cycles, the system reaches c ∈ R : pndTski[i] = (s, •, x) :
x �= ⊥.

Proof Sketch. Lemma 1 sketches the key arguments of the termination proof.

Lemma 1 (Algorithm 3’s termination). Within O(δ) cycles, the system
reaches a state c ∈ R in which either: (i) for any non-failing node pj ∈ P it holds
that i ∈ Δj (line 69) and pndTskj [i] = (s, •,⊥), (ii) ∀M ⊆ P : |M | > |P|/2 :
∃pj∈M : pndTskj [i] = (s, •, x) : x �= ⊥ or (iii) pndTski[i] = (s, •, x) : x �= ⊥.



Self-stabilizing Snapshot Objects 127

Proof Sketch. We show that R has a prefix R′ that includes O(δ) cycles, such
that none of the lemma invariants hold during R′.

Claim (a). There is no step ai ∈ R′ in which pi evaluate the if-statement
condition in line 90 to be true (or one of the lemma invariants holds).

Proof of Claim. Towards a contradiction, suppose that ai ∈ R calls safeRegi().
Arguments (1) and (2) show that this happens for the case of k = i, and that
invariant (ii) holds. Argument (1): ai includes the execution of line 90. This is
because, once in O(1) cycles, pi calls baseSnapshoti(Si) (line 79), which does
not change the value of Si. Argument (2): invariant (ii) holds. The function
safeRegi({(•, r) : r �= ⊥}) (line 70) repeatedly broadcasts SAVE({(•, r) : r �= ⊥})
until pi receives SAVEack({(•, r) : r �= ⊥}) from a majority. Theorem 2 and R′s
consistency imply that every received SAVEack is associated with a SAVE that
was sent in R. Invariant (ii) holds due to the majority intersection property. ��
Claim (b). Within O(1) asynchronous cycles, the system reaches a state c′ ∈ R′ in
which for any non-faulty node pj ∈ P it holds that pndTskj [i] = (s, y, •) : y �= ⊥.

Proof of Claim. For the case of j = i, we note that claim (a) implies that (i, •) ∈
Si holds and the execution of line 92 in every call for baseSnapshot(Si). For the
j �= i case, we note that within O(1) cycles, pi executes lines 86 and 87 in which
pi broadcasts SNAPSHOT({(•,pndTski[i].vc), •}), such that pndTski[i].vc �= ⊥
holds by the case of j = i. Once pj receives this message, pndTskj [i].vc �= ⊥
holds (line 104). The above arguments for the case of j �= i can be repeated as
long as invariant (iii) does not hold. Thus, the arrival of such a SNAPSHOT
message to all pj ∈ P occurs within O(1) asynchronous cycles. ��
Claim (c). Let c′ ∈ R′ be a system state in which for any non-faulty node pj ∈ P
it holds that pndTskj [i] = (s, y, •) : y �= ⊥. Let x be the number of iterations of
the outer loop in baseSnapshot() (lines 86 and 93) that node pi takes between
c′ and c′′ ∈ R′, where c′′ is a system state after which it takes at most O(δ)
asynchronous cycles until the system reach the state c′′′ in which at least one of
the lemma invariants holds. The value of x is actually finite and x ≤ δ.

Proof of Claim. Argument (1): during the outer loop in baseSnapshot() (lines 86
and 93), pi tests the if-statement condition at line 90 and that condition does
not hold, due to Claim (a). Argument (2): suppose that there are at least x con-
secutive and complete iterations of pi’s outer loop in baseSnapshot() (lines 86
and 93) between c′ and c′′ in which the if-statement condition at line 90 does
not hold. Then, there are at least x write operations that run concurrently with
the snapshot operation that has the index of s, since the only way that the if-
statement condition in line 90 does not hold in a repeated manner is by repeated
changes of ts fields in regi during the different executions of lines 86 to 89 (due
to line 80 of write()). We define the function Si() so that whenever pi’s program
counter is outside of the function baseSnapshot(), Si() returns Δi. Otherwise,
it returns (Si ∩ Δi). Argument (3): there exists x′ ≤ δ for which (i, •) ∈ Si(),
where x′ is the number of consecutive and complete iterations of pi’s outer loop in



128 C. Georgiou et al.

baseSnapshot() between c′ and c′′ in which the if-statement condition at line 90
does not hold. This is because Argument (2) implies that the number of itera-
tions continues to grow. During every such iteration there are increments of the
summation

∑
�∈{1,...,n} VCi[�] − pndTski[i].vc[�] until it is at least δ, and thus,

(i, •) ∈ Si() holds (line 69 , for the case of k = i). Argument (4): suppose that
pi has taken at least x′ iterations of the outer loop in baseSnapshot() (lines 86
and 93) after system state c′. After this, suppose that the system has reached
a state c′′ in which i ∈ Δi, where c′′ is defined in Argument (3). Within O(1)
cycles after c′′, the system reaches c′′′ in which i ∈ Δj holds for any non-failing
pj ∈ P. Within O(1) asynchronous cycles after c′′, it holds that regj ’s ts fields
are not smaller than the ones of regi’s ts fields in c′′ (because in every iteration
of the outer loop in baseSnapshot(), pi broadcasts regi and these broadcasts
arrive within one cycle to pj , who updates regj). The rest of the proof shows
that i ∈ Δj holds (line 69, case of k = i), as in Argument (3). ��
This completes the proof of the lemma. �

The rest of the theorem’s proof considers the case in which (i) in any system
state of R, it holds that pndTski[i] = (s, •,⊥), s > 0 and any majority M ⊆
P : |M | > |P|/2 include at least one pj ∈ M , such that pndTskj [i] = (s, •, x) :
x �= ⊥, or (ii) in any system state of R, it holds that pndTski[i] = (s, •,⊥),
s > 0 and for any non-failing node pj ∈ P it holds that i ∈ Δj (line 69) and
pndTskj [i] = (s, •,⊥). The idea is to show that within O(1) cycles, the system
is in state c ∈ R in which pndTski[i] = (s, •, x) : x �= ⊥. For the case (i), the
proof shows that pi receives a SNAPSHOTack message that matches the first
condition in line 88 due to a reply to an SNAPSHOT message in line 105. The
proof of case (ii) follows by the fact that all non-failing nodes participate in a
helping scheme that solves pi’s task and then write the result to a safe register
by calling safeReg() in line 90.
Linearizability. We note that the baseWrite(wp) functions in Algorithms 2
and 3 are identical. Moreover, Algorithm 2’s lines 53 to 55 are similar to Algo-
rithm 3’s lines 86 to 89, but differ in the following manner: (i) the dissemination
of the operation tasks is done outside of Algorithm 2’s lines 53 to 55 but inside of
Algorithm 3’s lines 86, and (ii) Algorithm 2 considers one snapshot operation at
a time whereas Algorithm 3 considers many snapshot operations. The lineariz-
ability proof of Delporte-Gallet et al. [6, Lemma 7] is independent of the task
dissemination and result propagation. Moreover, it shows a way to select lin-
earization points according to some partition. The proof there explicitly allows
the same partition to include more than one snapshot result. �

5 Bounded Variations on Algorithms 1 and 3

There is a technique for transforming a self-stabilizing atomic register algo-
rithm that uses unbounded operation indices into one with bounded indices,
see [8, Section 10]: [Step-1] once pi notices an index that is at least MAXINT =
264 − 1, it disables new operations and starts gossiping of the maximal indices



Self-stabilizing Snapshot Objects 129

(while merging the arriving information with the local one). [Step-2] once all
nodes share the same maximal indices, the procedure uses a consensus-based
global reset procedure for replacing, per operation type, the highest opera-
tion index with its initial value, 0, while keeping the values of all shared reg-
isters unchanged. After the end of the global reset procedure, all operations are
enabled.
Self-stabilizing Global Reset Procedure. The implementation of the self-
stabilizing procedure for global reset can be based on existing mechanisms, such
as the one by Awerbuch et al. [12]. We note that the system settings of Awerbuch
et al. [12] assume execution fairness. This assumption is allowed by our system
settings (Sect. 2). This is because we assume that reaching MAXINT can only
occur due to a transient fault. Thus, execution fairness, which implies all nodes
are eventually alive, is seldom required (only for recovering from transient faults).

6 Discussion

We showed how to transform the two non-self-stabilizing algorithms of Delporte-
Gallet et al. [6] into ones that can recover after the occurrence of transient
faults. This requires some non-trivial considerations that are imperative for self-
stabilizing systems, such as the explicit use of bounded memory and the reoc-
curring clean-up of stale information. Interestingly, these considerations are not
restrictive for the case of Delporte-Gallet et al. [6]. As a future direction, we
propose to consider the techniques presented here for providing self-stabilizing
versions of more advanced algorithms, e.g., [13].

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Anderson, J.H.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195
(1994)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing

systems. J. ACM 42(1), 124–142 (1995)
6. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Implementing snap-

shot objects on top of crash-prone asynchronous message-passing systems. IEEE
Trans. Parallel Distrib. Syst. 29(9), 2033–2045 (2018)

7. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Prac-
tically stabilizing SWMR atomic memory in message-passing systems. J. Comput.
Syst. Sci. 81(4), 692–701 (2015)

8. Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared
atomic memory in seldomly fair message passing networks. CoRR abs/1806.03498
(2018)



130 C. Georgiou et al.

9. Georgiou, C., Lundström, O., Schiller, E.M.: Self-stabilizing snapshot objects for
asynchronous failure-prone networked systems. CoRR (2019)

10. Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algo-
rithms and Complexity. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers (2011)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
12. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by

local checking and global reset. In: Tel, G., Vitányi, P. (eds.) WDAG 1994.
LNCS, vol. 857, pp. 326–339. Springer, Heidelberg (1994). https://doi.org/10.1007/
BFb0020443

13. Imbs, D., Mostéfaoui, A., Perrin, M., Raynal, M.: Set-constrained delivery broad-
cast: Definition, abstraction power, and computability limits. In: 19th Distributed
Computing and Networking, ICDCN, ACM (2018) 7:1–7:10

https://doi.org/10.1007/BFb0020443
https://doi.org/10.1007/BFb0020443

	Self-stabilizing Snapshot Objects for Asynchronous Failure-Prone Networked Systems
	1 Introduction
	2 System Settings
	3 The Non-blocking Algorithm
	4 The Always-Terminating Algorithm
	5 Bounded Variations on Algorithms 1 and 3
	6 Discussion
	References




