
Continuous vs. Discrete Asynchronous
Moves: A Certified Approach for Mobile

Robots

Thibaut Balabonski1, Pierre Courtieu2, Robin Pelle1, Lionel Rieg3,
Sébastien Tixeuil4, and Xavier Urbain5(B)

1 LRI, CNRS UMR 8623, Université Paris-Sud, Université Paris-Saclay,
Orsay, France

2 CÉDRIC – Conservatoire national des arts et métiers, Paris, France
3 Université Grenoble Alpes, Grenoble INP, VERIMAG,

38401 Saint Martin d’Hères, France
4 Sorbonne Université, CNRS, LIP6, 75005 Paris, France

5 Université Claude Bernard Lyon-1, LIRIS CNRS UMR 5205, Université de Lyon,
Lyon, France

xavier.urbain@liris.cnrs.fr

Abstract. Oblivious Mobile Robots have been studied both in contin-
uous Euclidean spaces, and discrete spaces (that is, graphs). However
the obtained literature forms distinct sets of results for the two settings.
In our view, the continuous model reflects well the physicality of robots
operating in some real environment, while the discrete model reflects well
the digital nature of autonomous robots, whose sensors and computing
capabilities are inherently finite.

We explore the possibility of bridging results between the two mod-
els. Our approach is certified using the Coq proof assistant and the
Pactole framework, which we extend to the most general asynchronous
model without compromising its genericity. Our extended framework is
then used to formally prove the equivalence between atomic moves in a
discrete space (the classical “robots on graphs” model) and non-atomic
moves in a continuous unidimensional space when robot vision sensors
are discrete (robots move in straigth lines between positions, but their
observations are at source and destination positions only), irrespective of
the problem being solved. Our effort consolidates the integration between
the model, the problem specification, and its proof that is advocated by
the Pactole framework.

Keywords: Formal proof · Proof assistant · Coq ·
Mobile autonomous robots · Distributed algorithms

A preliminary brief announcement of this work appears in SSS 2018 [2].
This work was partially supported by Project CoPRAH of the Fédération Informatique
de Lyon, and the CNRS peps ins2i project DiDASCaL.
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 93–109, 2019.
https://doi.org/10.1007/978-3-030-31277-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_7


94 T. Balabonski et al.

1 Introduction

Networks of mobile robots captured the attention of the distributed computing
community, as they promise new application (rescue, exploration, surveillance) in
potentially harmful environments. Originally introduced in 1999 by Suzuki and
Yamashita [40], the model has been refined since by many authors while growing
in popularity (see [28] for a comprehensive textbook). From a theoretical point
of view, the interest lies in characterising, for each of these various refinements,
the exact conditions that enable solving a particular task.

In the model we consider, all robots are anonymous and operate using the
same embedded program through repeated Look-Compute-Move cycles. In each
cycle, a robot first “looks” at its environment and obtains a snapshot containing
some information about the locations of all robots, expressed in the robot’s
own self-centred coordinate system, whose scale and orientation might not be
consistent with the other robots’ coordinate systems (or even with the same
robot’s coordinate system from a previous cycle). Then the robot “computes” a
destination, still in its own coordinate system, based only on the snapshot it just
obtained (which means the robot is oblivious, in the sense that its behaviour is
independent of the past history of execution). Finally the robot “moves” towards
the computed destination.

Different levels of synchronisation between robots have been considered. The
weakest [28] (and most realistic) is the asynchronous model (ASYNC), where
each robot performs its Look, Compute and Move actions at its own pace,
which may not be consistent with that of other robots. The strongest [40] is
the fully synchronous model (FSYNC), where all robots perform simultaneously
and atomically all of these three steps. An intermediate level [40] is called semi-
synchronous (SSYNC), where the computation is organised in rounds and only
a subset of the robots are active at any given round; the active robots in a round
performing exactly one atomic Look-Compute-Move cycle.

The general model is agnostic to the shape of the space where the robots
operate, which can be the real line, a two dimensional Euclidean space, a discrete
space (a.k.a. a graph), or even another space with a more intricate topology. To
date, two independent lines of research focused on (i) continuous Euclidean
spaces, and (ii) graphs, studying different sets of problems and using distinct
algorithmic techniques.

1.1 Continuous vs. discrete spaces

The core problem to solve in the context of mobile robot networks that operate in
bidimensional continuous spaces is pattern formation, where robots starting from
distinct initial positions have to form a given geometric pattern. Arbitrary pat-
terns can be formed when robots have memory [13,40] or common knowledge [29],
otherwise only a subset of patterns can be achieved [30,42,45]. Forming a point
as the target pattern is known as gathering [3,16,17,37,40], where robots have
to meet at a single point in space in finite time, not known beforehand. The



Continuous vs. Discrete Asynchronous Moves 95

problem is generally impossible to solve [17,37,40] unless the setting is fully syn-
chronous [3] or robots are endowed with multiplicity detection [16]. Recently,
researchers considered tridimensional Euclidean spaces [41,43,44], where robots
must solve plane formation, that is, land on a common plane (not determined
beforehand) in finite time. It turns out that robots cannot form a plane from most
of the semi-regular polyhedra, while they can form a plane from every regular
polyhedron (except a regular icosahedron). In the context of robots operating on
graphs, typical problems are terminating exploration [15,21–23,26,27,35], where
robots must explore all nodes of a given graph and then stop moving forever,
exclusive perpetual exploration [5,9–11,20], where robots must explore all nodes
of a graph forever without ever colliding, exclusive searching [8,19,20], where
robots must capture an intruder in the graph without colliding, and gather-
ing [12,20,32–34], where robots must meet at a given node in finite time, not
determined beforehand.

Although some of the studied problems overlap (e.g. gathering), the algo-
rithmic techniques that enable solving problems are substantially different. On
the one hand, robots operating in continuous spaces may typically use fractional
distance moves to another robot, or non-straight moves in order to make the
algorithm progress, two options that are not possible in the discrete model. On
the other hand, in the asynchronous continuous setting, a robot may be seen
by another robot as it is moving, hence at some arbitrary position between its
source and destination point within a cycle, something that is impossible to
observe in the discrete setting. Indeed, all aforementioned works for robots on
graph consider that their moves are atomic, even in the ASYNC setting, which
may seem unrealistic to a practitioner.

1.2 Related Works

Designing and proving mobile robot protocols is notoriously difficult. Formal
methods encompass a long-lasting path of research that is meant to overcome
errors of human origin. Unsurprisingly, this mechanised approach to protocol
correctness was successively used in the context of mobile robots [1,3,4,6,7,10,
17,21,36,38,39].

In the discrete setting, model-checking proved useful to find bugs (usually in
the ASYNC setting) in existing literature [7,24,25] and formally check the cor-
rectness of published algorithms [7,21,38]. Automatic program synthesis [10,36]
can be used to obtain automatically algorithms that are “correct-by-design”. How-
ever, those approaches are limited to small instances with few robots. General-
ising to an arbitrary number of robots with similar approaches is doubtful as
Sangnier et al. [39] proved that safety and reachability problems become unde-
cidable in the parameterised case.

When robots move freely in a continuous bidimensional Euclidean space,
to the best of our knowledge the only formal framework available is the Pactole
framework.1 Pactole enabled the use of higher-order logic to certify impossibility

1 https://pactole.liris.cnrs.fr.

https://pactole.liris.cnrs.fr


96 T. Balabonski et al.

results [1,4,17] as well as certifying the correctness of algorithms [3,18], possi-
bly for an arbitrary number of robots (hence in a scalable manner). Pactole was
recently extended by Balabonski et al. [4] to handle discrete spaces as well as con-
tinuous spaces, thanks to its modular design. However, to this paper, Pactole only
allowed one to express specifications and proofs with the FSYNC and SSYNC
models.

1.3 Our Contribution

In this paper, we explore the possibility of establishing a first bridge between
the continuous movements and discrete observation vs. discrete movements and
observation in the context of autonomous mobile robots. Our position is that the
continuous model reflects well the physicality of robots operating in some envi-
ronment, while the discrete model reflects well the digital nature of autonomous
robots, whose sensors and computing capabilities are inherently finite. For this
purpose, we consider that robots make continuous, non atomic moves, but only
sense in a discrete manner the position of robots. Our approach is certified using
the Coq proof assistant and the Pactole framework.

In more details, we first extend the Pactole framework to handle the ASYNC
model, preserving its modularity by keeping the operating space and the robots
algorithm both abstract. This permits to retain the same formal framework for
both continuous and discrete spaces, and the possibility for mobile robots to
be faulty (even possibly malicious a.k.a. Byzantine). Then, as an application of
the new framework, we formally prove the equivalence between atomic moves in
a discrete space (the classical model for robots operating on graphs) and non-
atomic moves in a continuous unidimensional space when robot vision sensors
are discrete (that is, robots are only able to see another robot on a node when
they perform the Look phase, but robots can move anywhere on a straight line
between two adjacent nodes), irrespective of the problem being solved. Our effort
consolidates the integration between the model, the problem specification, and
its proof that is advocated by the Pactole framework.

Pactole and the formal developments of this work are available at https://
pactole.liris.cnrs.fr.

2 The Asynchronous Look-Compute-Move Model

The complete lack of synchronisation makes reasoning in the ASYNC model
particularly error prone. Nevertheless, being the most realistic model, it is widely
used in the literature. In this section, we describe how to include the ASYNC
model in the Pactole framework.

The formalisation of the Look-Compute-Move model in Pactole for FSYNC
and SSYNC has been described in [1,3,18]. We briefly recall what we need here,
and emphasise what characterises the ASYNC model.

https://pactole.liris.cnrs.fr
https://pactole.liris.cnrs.fr


Continuous vs. Discrete Asynchronous Moves 97

2.1 Configurations

Locations. The notion of location is a parameter of the Pactole framework and
is left abstract in this section, as it depends on the nature of the space in which
the robots operate. In Sect. 3, we present two different spaces based on graphs,
one in which the robots are only located on vertices of the graph, and the other
in which the robots can also be located on edges.

Configurations associate a conformation to a robot. In the original Pactole model,
robots were mapped to locations only. To reflect in ASYNC the lack of synchro-
nisation and of uniformity of robot actions, and to add generality to the model,
we enrich configurations to map a robot id to a conformation (RobotConf) con-
sisting of the current location, and information about movement: namely source
and target locations. We can also add other information relating to individual
robots such as their speeds or internal states. This allows for some robots to move
while others are looking or computing. Note that integrating more information
into the configuration does not give the robots extra power: they only “see” a
configuration through their sensors, the result being what we call a spectrum in
the sequel (see below).

Record Info : Type := { source: Location ; target: Location}.
Record RobotConf := { loc :> Location; robot_info: Info }.
Definition configuration := identifier → RobotConf.

We may now consider robots to be in two possible states summarised in Fig. 1:
an Idle state and a Moving state. An idle robot is ready to start a new cycle
with a simple Look/Compute action performing the usual Look and Compute
phases. Merging these two actions is justified by the fact that the computation is
based on the snapshot taken during the Look action only, thus its result cannot
be changed by any other event taking place after the Look action. A robot is
considered to be moving whenever its current and target locations are different,
and becomes idle again when it reaches its target location (thus an idle robot
that decides not to move stays idle).

Idle Moving

Look/Compute

Move

MoveLook/Compute

Fig. 1. States and actions of the robots



98 T. Balabonski et al.

Spectra and Robograms. We call the embedded program the robots use to define
their moves a robogram. It consists of a function pgm that simply returns a des-
tination location when given a perception (spectrum) of the environment and
the robot’s perception of its current location. Spectra inhabit an arbitrary type
that is part of the description of the model and contributes to its genericity.
Indeed, depending on the robots’ capabilities, the perception usually contains
less information that the complete configuration: anonymous robots cannot see
names, they may lack detection of multiplicity, frames of reference may not
be shared, vision can be limited, etc. In the case of ASYNC in particular, the
robots generally do not perceive the additional information describing the ongo-
ing movements of other robots. The forbidden information is pruned from the
configuration, using the function Spect.from_config which returns a spectrum,
to be given as input to the robogram’s pgm.

Depending on the space considered, the destination returned may be
restricted, e.g., to locations that are close enough to the starting location. The
pack of theses possible constraints with the declaration of the function pgm con-
stitutes what we call a robogram.

Record robogram := { pgm: Spect.t → Location.t → Location.t;
(* + constraints *) }.

2.2 ASYNC Executions

For all synchronisation models, an execution is a sequence of configurations,
each of which is deduced from the previous one, based on the robogram and on
a scheduler (called a demon) that assigns a change (or not) of conformation to
each robot and which is considered as an adversary. To mimic this behaviour,
our formal model does not introduce any extra information: execution steps are
completely characterised through a transition function by: (i) the current config-
uration, (ii) the demon’s choices for the step (a demonic action), and (iii) the
considered protocol. Executions are simply streams of consecutive configurations
for that function.

Demonic Actions. Formally, each demonic action can request a moving robot
to travel further towards its target, or an idle robot to initiate a new move. In
each of these cases the demon provides its choices through the action: either
the distance travelled along an ongoing move for a Move action, or a frame of
reference for the perception of a robot for a Look/Compute action.

Inductive action {A} :=
| Move (dist: A) (* moving distance *)
| LookCompute (Location.t → Iso.t). (* change frame of ref *)

This choice (Move or LookCompute) is performed by the function step. When
relevant, demonic actions also relocate Byzantine robots in an arbitrary way (the
regular states and actions being per se irrelevant for these robots).



Continuous vs. Discrete Asynchronous Moves 99

We have no control on the choices made by the demon, which is why we
call it an adversary. It must nonetheless still make meaningful choices, which we
model by the following constraint: only idle robots (that is, robots that are at
their target location) may receive an order to look and compute.

step_LookCompute : ∀ robot robot_conf ref_change,
step robot robot_conf = LookCompute ref_change
→ robot_conf.loc = robot_conf.robot_info.target

Transition Function. One obtains successive configurations by running the robo-
gram according to the current demonic action and configuration.

This is done by the function round computing new conformations
(RobotConf) in a configuration, for each robot identifier r, according to a
demonic action da:

1. If r is Byzantine, it is relocated directly by da on LookCompute actions, and
ignores Move ones.

2. Else, if r carries further its ongoing move (Move action), its current location
is updated to the location it reached during this move (the way this reached
location is computed may depend on the underlying space). In the diagram
in Fig. 1, this corresponds to:

– the Move transition from Moving to Idle when r reaches its target loca-
tion,

– the Move loop around Moving when r does not reach its target location,
– a Move loop (not shown) around Idle if r was already at its target location.

3. Else, a new target location is defined as follows:
(a) The local frame of reference provided by da is used to convert the config-

uration according to the relevant local point of view,
(b) The resulting local configuration is transformed into a spectrum using

from_config,
(c) The obtained spectrum is passed as a parameter to the robogram, which

returns the target location.
(d) The target location is converted from the local frame to the global one.
The robot’s conformation is updated with the obtained location as new target,
and with the current location as new source. In the diagram in Fig. 1, this
corresponds to:

– the Look/Compute transition from Idle to Moving when r’s current and
target locations are different,

– the Look/Compute loop around Idle when r’s current and target location
are equal.

To define a full execution, the function execute rbg d config iterates
round starting from configuration config, using robogram rbg and demon d.
Note that a step in an ASYNC execution does not always imply a change in the
multiset of inhabited locations, as some robots may undergo a change of state
only.



100 T. Balabonski et al.

3 Application: Formal Equivalence Between Discrete and
Continuous Models

In a discrete setting, the simplest possible location type is discrete graphs where
robots can only be located on vertices. A robogram takes as parameters a spec-
trum (perception) and a current location based on robots located on vertices,
and returns a vertex as destination location. Travel along an edge is unnoticed as
the target vertex is supposed to be reached instantaneously. Particularly simple,
this model is convenient for reasoning; it may however be considered as rather
artificial.

A more realistic point of view is given by continuous models, which take
into account the continuous movements of the robots. We nevertheless restrict
ourselves to discrete observations: each robot is only perceived as being close to
some reference point. As a consequence, the space can still be seen as a graph (the
graph of the chosen reference points) and the robots are always observed on the
vertices. The movement of a robot between two vertices however is now continu-
ous. The corresponding edge is parameterised by a travel ratio called threshold,
which is compared to the position of a robot along the edge to determine whether
the robot is perceived at the source or target vertex. Computed destinations are
still vertices.

We propose formalisations for these two models in our formal framework, and
prove formally their equivalence in the context of oblivious robots with discrete
observations, regardless of their actual observation capabilities.

3.1 Discrete Graphs

A formal model for graphs has been provided, and illustrated for SSYNC in [4]
to which we refer for further details. Briefly, a graph is defined as a pair (V, E)

of two sets, the vertices and the edges. Each edge has a source vertex and a
target vertex, given by functions src and tgt respectively. A change of frame
of reference is supported by a graph isomorphism (the type of which is written
Iso.t in the formalisation). We want to extend this model by combining it with
the ASYNC aspects presented above.

A graph Graph and a set Names of robots of some size N being given, we
provide a model DGF in which the ASYNC notions described above are blended.

Module DGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The locations are given by the set V of vertices of the graph.
Given a spectrum, a robogram computes as destination a location that must

be reachable from (i.e., adjacent to) the current location of the robot. It is thus
required that the target is linked through an edge to the current location. This
is simply an additional constraint pgm_range to the definition of a robogram.

A moving robot travelling instantaneously between its source and target loca-
tions, the notion of travel distance degenerates into a Boolean choice: the robot
either jumps to its destination, or stays at its current location. Hence the only



Continuous vs. Discrete Asynchronous Moves 101

effort in defining an ASYNC discrete graph in our formal model is to instantiate
the parameter A in the definition of the demonic action with bool.

Further note that for technical reasons we will use, in our case study, a version
of these discrete graphs enriched with a field threshold that will remain unused
in the discrete case. This way both kinds of graphs will inhabit the same datatype,
thus easing comparisons.

3.2 Continuous Graphs with Discrete Observations

As in the discrete model, a graph and a set of robots being given, we provide a
model CGF in which both ASYNC and continuous moves are embedded.

Module CGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The type of locations is richer, and distinguishes two cases: a robot is either
on a vertex of the graph (OnVertex) or at some position along an edge other
than its source or target (OnEdge). A position along an edge is given by a position
ratio p of its length such that 0 < p < 1 (thus making actual lengths unnecessary
in the model). We represent these ratios using arbitrary reals and a continuous
bijection between reals and the interval ]0, 1[.

Inductive location := OnVertex (l : Graph.V)
| OnEdge (e : Graph.E) (p : R).

Discrete observation is understood as a limitation (capability) of the robots’
sensors. As such, it is naturally included in the spectrum. For example, with
anonymous robots enjoying multiplicity detection, the spectrum of a configura-
tion is based on multisets of locations, however it does not show robots’ locations
with accuracy. Instead, each robot is seen at the “nearest” vertex: a robot located
at some position ratio p along an edge is perceived at its source if p is less than or
equal to the edge threshold, and at its target otherwise. For this, it is sufficient
to use the following projection function in the construction of a spectrum from
a configuration whenever the position of a robot is looked up.

Definition LocC2D (locC : CGF.Location.t) : DGF.Location.t :=
match locC with

| CGF.OnVertex l ⇒ l
| CGF.OnEdge e p ⇒ if Rle_dec p (Graph.threshold e)

then Graph.src e else Graph.tgt e
end.

Thus the type of spectra is exactly the same as in the discrete model. Note
that we also require the returned destination to be a vertex in the additional
constraints embedded in the definition of a robogram.

The parameter provided by the demonic action in a Move transition is more
precise than in the discrete setting: it can be any moving ratio m in the interval
[0, 1]. The transition function then interprets this moving ratio the following
way:



102 T. Balabonski et al.

– If the robot is on the source vertex of its ongoing move, m = 0 means staying
there, m = 1 means going directly to the destination vertex, and 0 < m < 1
means going at the corresponding position along the edge between the current
vertex and the destination vertex.

– If the robot is at some position p on an edge, then it goes to the position m+p
on the same edge. In case m+ p ≥ 1 the robot goes to the target vertex.

– If the robot is already on the destination vertex, then it stays there.

For this model to make sense, the configurations must satisfy the following prop-
erties:

– The source and target locations of robots are vertices, with an edge going
from the source to the target.

– If a robot is on a vertex, it is either its source or its target vertex.
– If a robot is on an edge, the latter has the same source and target vertices as

the robot.

These properties are collected in a good_conf property, which is shown to be
preserved by the transition function round.

Lemma good_conf_round: ∀
(config: CGF.Config.t) (rbg: robogram)

(da: DGF.demonic_action),
good_conf config → good_conf (round rbg da config).

Hence we restrict our initial configurations to configurations in which these prop-
erties hold, and this ensures that the configurations will remain well-formed in
any execution.

3.3 Simulation of the Discrete Model in the Continuous Model

To prove that the discrete model and the continuous model with discrete obser-
vation are equivalent for oblivious robots, we show that any given robogram
produces the same executions in both models. We firstly establish in Theo-
rem graph_equivD2C that for any “discrete” execution, there is a demon such
that this execution can take place in the continuous model with discrete obser-
vation context.

First remark that any robogram in one of the models can also be read as a
robogram of the other model, thanks to the following facts:

– the first parameter of a robogram is a spectrum, and the types of spectra are
the same in both models,

– the current position of the robot is always a vertex since the general model
assumes that the robogram is applied only for idle robots, which are located
on vertices,

– the destination returned by a robogram is a vertex.



Continuous vs. Discrete Asynchronous Moves 103

Technically the types are different and a translation has to be applied to see a
discrete robogram as continuous or a continuous robogram as discrete, but the
translation only casts l � CGF.OnVertex l in both directions.

We define a translation ConfigD2C from discrete to continuous configura-
tions, and show that this translation relates any execution step in the discrete
model with an execution step of the same robogram in the continuous model.
Since for any given underlying graph the locations of the discrete model are a
subset of the locations of the continuous model, the translation of the configu-
rations is straightforward: mapping each vertex l to the (continuous) location
CFG.OnVertex l. The property then reads as follows: for any robogram rbg,
demonic action da and configuration c in the discrete model, there is a demonic
action da’ in the continuous model such that the diagram in Fig. 2 is satisfied.

c next_c

c’ next_c’

DGF.round rbg da

ConfigD2CConfigC2D

CGF.round rbg da’

ConfigD2CConfigC2D

Fig. 2. Bisimulation

Theorem graph_equivD2C: ∀ (c: DGF.Config.t)(rbg: DGF.robogram)
(da: DGF.demonic_action),

∃ (da’: CGF.demonic_action),
ConfigD2C (DGF.round rbg da c)

≡CGF CGF.round (rbgD2C rbg) da’ (ConfigD2C c).

The proof of this lemma requires to provide a demonic action da’ in the contin-
uous model, which is again obtained by quite a simple translation of the discrete
action da. In particular, the boolean parameter associated to a move action is
canonically translated to either 0 or 1, and the conversion to the local frame of
reference needs not be translated (since both models have the same underlying
graph). Note that, since demonic actions are associated to constraints (namely
step_LookCompute), the definition of a new demonic action requires a proof that
these constraints are satisfied. Once this witness is provided, the proof amounts
to reasoning by cases on the various parameters of the transition function: is the
robot Byzantine or not? is the scheduled action a move or a new activation? is
the parameter of the move true or false?

From this, we deduce that any execution in the discrete model can be simu-
lated in the continuous model. The reciprocal property, which is more complex,
is detailed in the next section.



104 T. Balabonski et al.

3.4 Simulation of the Continuous Model in the Discrete Model

Configurations in the continuous model can also be translated to configurations
in the discrete model. The translation ConfigC2D uses the location projection
function LocC2D already defined in the description of spectra in the continuous
model.

This translation allows us to state a second simulation result, similar to
the previous one but relating continuous executions steps to discrete ones (that
is, reading the diagram in Fig. 2 from bottom to top).

Theorem graph_equivC2D: ∀(c’: CGF.Config.t)(rbg: CGF.robogram)
(da’: CGF.demonic_action),

CGF.good_conf c’ →
∃ da, ConfigC2D (CGF.round rbg da’ c’)

≡DGF DGF.round (rbgC2D rbg) da (ConfigC2D c’).

The definition of the witness da is subtler than in the previous lemma.
The case where an idle robot is activated and computes a new destination
(LookCompute action) is straightforward, since again we can use the same iso-
morphism. The Move case however cannot be treated using only the information
in the continuous action da’: when a continuous demonic action provides a move
ratio, we have to translate it into a boolean choice describing whether the move
will end in the region of the source vertex or in the region of the target ver-
tex. That is, we have to know whether the movement will pass the threshold
or not. This requires knowing not only the demonic action da’, but also the
configuration c’. The full definition then takes the following form:

Definition daC2D (daC: CGF.demonic_action) (confC: CGF.Config.t):
DGF.demonic_action :=

{| DGF.relocate_byz := fun b ⇒ LocC2D (daC.relocate_byz b);
DGF.step := fun robot robot_conf ⇒

(* Here we assume that {robot_conf} is the projection
of {confC robot} *)

(* Consider the action given by the continuous demon... *)
match daC.step robot (confC robot) with

(* a Look/Compute action is preserved, *)
| CGF.LookCompute ref_change ⇒ DGF.LookCompute ref_change
(* a Move action requires checking the current location

of the robot. *)
| CGF.Move m ⇒

match (confC robot).loc with
(* If the robot is on a vertex, then compare {m} to

the threshold of the edge to target vertex {e}. *)
| CGF.OnVertex _ ⇒

match (Graph.find_edge robot_conf.robot_info.source
robot_conf.robot_info.target)

with
| Some e ⇒ if Rle_dec m (Graph.threshold e)

then DGF.Move false else DGF.Move true
| None ⇒ DGF.Move false

end



Continuous vs. Discrete Asynchronous Moves 105

(* If the robot is on an edge do the same after adding
the current position ratio to {m}. *)

| CGF.OnEdge e p ⇒
if Rle_dec p (Graph.threshold e)
then if Rle_dec (m + p) (Graph.threshold e)

then DGF.Move false else DGF.Move true
else DGF.Move false

end
end |}.

Again, the proof is by cases on all the parameters of the transition function,
which are more numerous than in the previous case since the definition of the
demonic action da’ itself distinguishes many more cases.

These two simulation results, taken together, mean that any execution in
any of the two models (discrete or continuous) can be related to an equivalent
execution in the other model.

4 Concluding Remarks

Our work established the first formal bridge between two previously distinct
models for oblivious mobile robots. From a practical point of view, the formal
equivalence we provide between the discrete model and the continuous model
with discrete sensors sheds new light about what is actually computable in real
environments by limited capabilities robots. Furthermore, our work hints at pos-
sible new paths for future research:

– The first issue we plan to tackle is that of realistic sensing models for mobile
robots. Actual robots endowed with omnidirectional 3D visibility sensors typ-
ically use a digital camera with a set of parabolic mirrors [14], which implies
that the accuracy of the localisation of a robot varies with the distance to
its target robot. In our modeling, the threshold for a given edge e is the
same for all participating robots, while a threshold that varies according
to the distance of the observing robot to e would be more realistic. Adding
this possibility to our framework is not difficult thanks to its modularity, but
the equivalence proof is then likely to fail in the extended model.

– Another important long-term open question raised by our work is that of
model equivalence beyond oblivious mobile robots. Our approach considers
the equivalence of executions and is hence agnostic with regards to the actual
problem being solved; it also enables Byzantine robots. It would be interest-
ing to consider model equivalences with other classical distributed computing
models (e.g. Problem A in robot model m with f faulty robots is equivalent
to problem B in asynchronous shared memory model m′ with f ′ faulty pro-
cesses). A natural candidate case study would be the Consensus vs. Robot
Gathering problem [31].



106 T. Balabonski et al.

References

1. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossi-
bility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama,
Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03089-0_13

2. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Brief
announcement continuous vs. discrete asynchronous moves: a certified approach for
mobile robots. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp.
404–408. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_29

3. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering
without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit,
F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49259-9_2

4. Balabonski, T., Pelle, R., Rieg, L., Tixeuil, S.: A foundational framework for cer-
tified impossibility results with mobile robots on graphs. In: Bellavista, P., Garg,
V.K., (eds.) Proceedings of the 19th International Conference on Distributed Com-
puting and Networking, ICDCN 2018, Varanasi, India, 4–7 January 2018, pp. 5:1–
5:10. ACM (2018)

5. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous graph exploration
without collision by mobile robots. Inf. Process. Lett. 109(2), 98–103 (2008)

6. Bérard, B., et al.: Formal methods for mobile robots: current results and open
problems. Int. J. Inform. Soc. 7(3), 101–114 (2015). Invited Paper

7. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6),
459–487 (2016)

8. Blin, L., Burman, J., Nisse, N.: Exclusive graph searching. Algorithmica 77(3),
942–969 (2017)

9. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15763-9_29

10. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and
assessing fine-grained metrics in robot networks protocols. In 33rd IEEE Interna-
tional Symposium on Reliable Distributed Systems Workshops, SRDS Workshops
2014, Nara, Japan, 6–9 October 2014, pp. 50–59. IEEE (2014)

11. Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive
perpetual grid exploration without sense of direction. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 251–265. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-2_18

12. Bonnet, F., Potop-Butucaru, M., Tixeuil, S.: Asynchronous gathering in rings with
4 robots. In: Mitton, N., Loscri, V., Mouradian, A. (eds.) ADHOC-NOW 2016.
LNCS, vol. 9724, pp. 311–324. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40509-4_22

13. Bouzid, Z., Dolev, S., Potop-Butucaru, M., Tixeuil, S.: RoboCast: asynchronous
communication in robot networks. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 16–31. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17653-1_2

https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-030-03232-6_29
https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-25873-2_18
https://doi.org/10.1007/978-3-319-40509-4_22
https://doi.org/10.1007/978-3-319-40509-4_22
https://doi.org/10.1007/978-3-642-17653-1_2
https://doi.org/10.1007/978-3-642-17653-1_2


Continuous vs. Discrete Asynchronous Moves 107

14. Caron, G., Mouaddib, E.M., Marchand, É.: 3D model based tracking for omnidi-
rectional vision: a new spherical approach. Robot. Auton. Syst. 60(8), 1056–1068
(2012)

15. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–
219. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_20

16. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

17. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115, 447–452 (2015)

18. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS,
vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53426-7_14

19. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive
searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017)

20. D’Angelo, G., Stefano, G.D., Navarra, A., Nisse, N., Suchan, K.: Computing on
rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4),
1055–1096 (2015)

21. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33536-5_7

22. Devismes, S., Lamani, A., Petit, F., Tixeuil, S.: Optimal torus exploration by
oblivious robots. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS,
vol. 9466, pp. 183–199. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26850-7_13

23. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-
synchronous oblivious robots. Theoret. Comput. Sci. 498, 10–27 (2013)

24. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57708-1_12

25. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In:
Aspnes, J., Felber, P. (edS.) Principles of Distributed Systems - 21th Interna-
tional Conference (OPODIS 2017), Leibniz International Proceedings in Informat-
ics (LIPIcs), Lisbon, Portugal, December 2017. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik

26. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
tree exploration by asynchronous oblivious robots. Theoret. Comput. Sci. 411(14–
15), 1583–1598 (2010)

27. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicat-
ing: ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–
583 (2013)

28. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, California (2012)

29. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theoret. Comput. Sci. 407(1–3),
412–447 (2008)

https://doi.org/10.1007/978-3-642-16926-7_20
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1007/978-3-319-57708-1_12


108 T. Balabonski et al.

30. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern
formation by anonymous oblivious mobile robots. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33651-5_22

31. Izumi, T., Bouzid, Z., Tixeuil, S., Wada, K.: Brief announcement: the BG-
simulation for Byzantine mobile robots. In: Peleg, D. (ed.) DISC 2011. LNCS,
vol. 6950, pp. 330–331. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24100-0_32

32. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1_9

33. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–
161. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2_14

34. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of
robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32589-2_48

35. Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring explo-
ration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1_15

36. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile
robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11764-5_17

37. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoret. Comput. Sci. 384(2–3), 222–231 (2007)

38. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Verification of asynchronous mobile-
robots in partially-known environments. In: Chen, Q., Torroni, P., Villata, S., Hsu,
J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 185–200. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25524-8_12

39. Sangnier, A., Sznajder, N., Potop-Butucaru, M., Tixeuil, S.: Parameterized verifica-
tion of algorithms for oblivious robots on a ring. In: Formal Methods in Computer
Aided Design, Vienna, Austria, October 2017

40. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

41. Tomita, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots without chirality. In: Aspnes, J., Bessani, A., Felber, P.,
Leitão, J. (eds.) 21st International Conference on Principles of Distributed Sys-
tems, OPODIS 2017. LIPIcs, vol. 95, Lisbon, Portugal, 18–20 December 2017, pp.
13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

42. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoret. Comput. Sci. 411(26–28), 2433–2453 (2010)

43. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three-dimensional Euclidean space. J. ACM 64(3),
16:1–16:43 (2017)

https://doi.org/10.1007/978-3-642-33651-5_22
https://doi.org/10.1007/978-3-642-33651-5_22
https://doi.org/10.1007/978-3-642-24100-0_32
https://doi.org/10.1007/978-3-642-24100-0_32
https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.1007/978-3-642-22212-2_14
https://doi.org/10.1007/978-3-642-32589-2_48
https://doi.org/10.1007/978-3-642-13284-1_15
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-319-25524-8_12


Continuous vs. Discrete Asynchronous Moves 109

44. Yamauchi, Y., Uehara, T., Yamashita, T.: Brief announcement: pattern formation
problem for synchronous mobile robots in the three dimensional euclidean space.
In: Giakkoupis, G. (ed.) Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp.
447–449. ACM (2016)

45. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited vis-
ibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 201–212. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-
9_17

https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-03578-9_17

	Continuous vs. Discrete Asynchronous Moves: A Certified Approach for Mobile Robots
	1 Introduction
	1.1 Continuous vs. discrete spaces
	1.2 Related Works
	1.3 Our Contribution

	2 The Asynchronous Look-Compute-Move Model
	2.1 Configurations
	2.2 ASYNC Executions

	3 Application: Formal Equivalence Between Discrete and Continuous Models
	3.1 Discrete Graphs
	3.2 Continuous Graphs with Discrete Observations
	3.3 Simulation of the Discrete Model in the Continuous Model
	3.4 Simulation of the Continuous Model in the Discrete Model

	4 Concluding Remarks
	References




