
Liveness in Broadcast Networks

Peter Chini(B), Roland Meyer, and Prakash Saivasan

TU Braunschweig, Braunschweig, Germany
{p.chini,roland.meyer,p.saivasan}@tu-bs.de

Abstract. We study two liveness verification problems for broadcast
networks, a system model of identical clients communicating via message
passing. The first problem is liveness verification. It asks whether there
is a computation such that one of the clients visits a final state infinitely
often. The complexity of the problem has been open since 2010 when it
was shown to be P-hard and solvable in EXPSPACE. We close the gap by a
polynomial-time algorithm. The algorithm relies on a characterization of
live computations in terms of paths in a suitable graph, combined with a
fixed-point iteration to efficiently check the existence of such paths. The
second problem is fair liveness verification. It asks for a computation
where all participating clients visit a final state infinitely often. We adjust
the algorithm to also solve fair liveness in polynomial time.

1 Introduction

Parameterized systems consist of an arbitrary number of identical clients that
communicate via some mechanism like a shared memory or message passing [3].
Parameterized systems appear in various applications. In distributed algorithms,
a group of clients has to form a consensus [29]. In cache-coherence protocols,
coherence has to be guaranteed for data shared among threads [10]. Developing
parameterized systems is difficult. The desired functionality has to be achieved
not only for a single system instance but for an arbitrary number of clients that
is not known a priori. The proposed solutions are generally tricky and sometimes
buggy [2], which has lead to substantial interest in parameterized verification [7],
verification algorithms for parameterized systems.

Broadcast networks are a particularly successful model for parameterized
verification [4,6,8,9,11,12,17,20,21,24,36]. A broadcast network consists of an
arbitrary number of identical finite-state automata communicating via passing
messages. We call these automata clients, because they reflect the interaction
of a single client in the parameterized system with its environment. When a
client sends a message (by taking a send transition), at the same time a number
of clients receive the message (by taking a corresponding receive transition). A
client ready to receive a message may decide to ignore it, and it may be the case
that nobody receives the message.

What makes broadcast networks interesting is the surprisingly low complex-
ity of their verification problems. Earlier works have concentrated on safety
verification. In the coverability problem, the question is whether at least one
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 52–66, 2019.
https://doi.org/10.1007/978-3-030-31277-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_4

Liveness in Broadcast Networks 53

participating client can reach an unsafe state. The problem has been shown to
be solvable in polynomial time [11]. In the synchronization problem, all clients
need to visit a final state at the same time. Although seemingly harder than
coverability, it turned out to be solvable in polynomial time as well [23]. Both
problems remain in P if the communication topology is slightly restricted [4], a
strengthening that usually leads to undecidability results [4,12].

The focus of our work is on liveness verification. Liveness properties formulate
good events that should happen during a computation. To give an example, one
would state that every request has to be followed by a response. In the setting
of broadcast networks, liveness verification was studied in [12]. The problem
generalizes coverability in that at least one client needs to visit a final state
infinitely many times. The problem was shown to be solvable in EXPSPACE by
a reduction to repeated coverability in Petri Nets [18,22]. The only known lower
bound, however, is P-hardness [11].

Our contribution is an algorithm that solves the liveness verification problem
in polynomial time. It closes the aforementioned gap. We also address a fair
variant of liveness verification where all clients participating infinitely often in
a computation have to see a final state infinitely often, a requirement known
as compassion [33]. We give an instrumentation that compiles away compassion
and reduces the problem to finding cycles. By our results, safety and liveness
verification have the same complexity, a phenomenon that has been observed in
other models as well [17,19,24,25].

Our results yield efficient algorithms for (fair) model checking broadcast net-
works against linear-time specifications [32]. If the specification is given as an
automaton [37], we compute a product with the clients and run our algorithms.

At the heart of our liveness verification algorithm is a fixed-point iteration
that terminates in polynomial time. It relies on an efficient representation of
computations. We first characterize live computations in terms of paths in a
suitable graph. Since the graph is of exponential size, we cannot immediately
apply a path finding algorithm. Instead, we show that a path exists if and only
if there is a path in some normal form. Paths in normal form can then be found
efficiently by the fixed-point iteration. The normal form result is inspired by
ideas presented in [23].

Related Work. We already discussed the related work on safety and liveness
verification of broadcast networks. Broadcast networks [12,20,36] were intro-
duced to verify ad hoc networks [28,35]. Ad hoc networks are reconfigurable in
that the number of clients as well as their communication topology may change
during the computation. If the transition relation is compatible with the topol-
ogy, safety verification has been shown to be decidable [27]. Related studies
do not assume compatibility but restrict the topology [26]. If the dependencies
among clients are bounded [30], safety verification is decidable independent of
the transition relation [38,39]. Verification tools turn these decision procedures
into practice [15,31]. D’Osualdo and Ong suggested a typing discipline for the
communication topology [16]. In [4], decidability and undecidability results for

54 P. Chini et al.

reachability problems were proven for a locally changing topology. The case when
communication is fixed along a given graph was studied in [1]. Topologies with
bounded diameter were considered in [13]. Perfect communication where a sent
message is received by all clients was studied in [20]. Networks with commu-
nication failures were considered in [14]. Probabilistic broadcast networks were
studied in [5]. In [6], a variant of broadcast networks was considered where the
clients follow a local strategy.

Broadcast networks are related to the leader-contributor model. It has a
fixed leader and an arbitrary number of identical contributors that communicate
via a shared memory. The model was introduced in [24]. The case when the
leader and all contributors are finite-state automata was considered in [21] and
the corresponding reachability problem was proven to be NP-complete. In [9],
the authors took a parameterized complexity look at the reachability problem
and proved it fixed-parameter tractable. Liveness verification for this model was
studied in [17]. The authors show that repeated reachability is NP-complete.
Networks with shared memory and randomized scheduler were studied in [8].

For a survey of parameterized verification we refer to [7].

2 Broadcast Networks

We introduce the model of broadcast networks of interest in this paper. Our
presentation avoids an explicit characterization of the communication topology
in terms of graphs. A broadcast network is a concurrent system consisting of
an arbitrary but finite number of identical clients that communicate by passing
messages to each other. Formally, it is a pair N = (D,P). The domain D is a
finite set of messages that can be used for communication. A message a ∈ D can
either be sent, !a, or received, ?a. The set Ops(D) = {!a, ?a | a ∈ D} captures
the communication operations a client can perform. For modeling the identical
clients, we abstract away the internal behavior and focus on the communication
with others via Ops(D). With this, the clients are given in the form of a finite
state automaton P = (Q, I, δ), where Q is a finite set of states, I ⊆ Q is a set
of initial states, and δ ⊆ Q × Ops(D) × Q is the transition relation. We extend
δ to words in Ops(D)∗ and write q

w−→ q′ instead of (q, w, q′) ∈ δ.
During a communication phase in N , one client sends a message that is

received by a number of other clients. This induces a change of the current
state in each client participating in the communication. We use configura-
tions to display the current states of the clients. A configuration is a tuple
c = (q1, . . . , qk) ∈ Qk, k ∈ N. We use Set(c) to denote the set of client
states occurring in c. To access the components of c, we use c[i] = qi. As the
number of clients in the system is arbitrary but fixed, we define the set of all
configurations to be CF =

⋃
k∈N

Qk. The set of initial configurations is given
by CF 0 =

⋃
k∈N

Ik. The communication is modeled by a transition relation
among configurations. Let c′ = (q′

1, . . . , q
′
k) be another configuration with k

clients and a ∈ D a message. We have a transition c
a−→N c′ if the following

conditions hold: (1) there is a sender, an i ∈ [1..k] such that qi
!a−→ q′

i, (2) there

Liveness in Broadcast Networks 55

is a number of receivers, a set R ⊆ [1..k] \ {i} such that qj
?a−→ q′

j for each
j ∈ R, and (3) all other clients stay idle, for all j /∈ R ∪ {i} we have qj = q′

j .
We use idx (c a−→N c′) = R ∪ {i} to denote the indices of clients that con-
tributed to the transition. We extend the transition relation to words w ∈ D∗

and write c
w−→N c′. Such a sequence of consecutive transitions is called a com-

putation of N . Note that all configurations appearing in a computation have
the same number of clients. We write c →∗

N c′ if there is a word w ∈ D∗

with c
w−→N c′. If |w| ≥ 1, we also use c →+

N c′. Where appropriate, we skip
N in the index. We are interested in infinite computations, infinite sequences
π = c0 → c1 → . . . of consecutive transitions. Such a computation is initialized,
if c0 ∈ CF 0. We use Inf(π) = {i ∈ N | ∃∞j : i ∈ idx (cj → cj+1)} to denote
the set of clients that participate in the computation infinitely often. We let
Fin(π) = {i ∈ N | ∃∞j : cj [i] ∈ F} represent the set of clients that visit final
states infinitely often.

3 Liveness

We consider the liveness verification problem for broadcast networks. Given a
broadcast network N = (D,P) with P = (Q, I, δ) and a set of final states F ⊆ Q,
the problem asks whether there is an infinite initialized computation π in which
at least one client visits a final state from F infinitely often, Fin(π) �= ∅.

Liveness Verification
Input: A broadcast network N = (D,P) and final states F ⊆ Q.
Question: Is there an initialized computation π with Fin(π) �= ∅?

The liveness verification problem was introduced as repeated coverability in
[12]. We show the following:

Theorem 1. The liveness verification problem is P-complete.

P-hardness is due to [11]. Our contribution is a matching polynomial-time deci-
sion procedure. Key to our algorithm is the following lemma which relates the
existence of an infinite computation to the existence of a finite one.

Lemma 2. There is an infinite computation c0 → c1 → . . . that visits states
in F infinitely often if and only if there is a finite computation of the form
c0 →∗ c →+ c with Set(c) ∩ F �= ∅.
If there is a computation of the form c0 →∗ c →+ c with Set(c) ∩ F �= ∅,
then c →+ c can be iterated infinitely often to obtain an infinite computation
visiting F infinitely often. In turn, in any infinite sequence from Qk one can find
a repeating configuration (pigeon hole principle). This in particular holds for the
infinite sequence of configurations containing final states.

Our polynomial-time algorithm for the liveness verification problem looks for
an appropriate reachable configuration c that can be iterated. The difficulty is
that we have a parameterized system, and therefore the number of configurations

56 P. Chini et al.

is not finite. Our approach is to devise a finite graph in which we search for a
cycle that mimics the cycle on c. While the graph yields a decision procedure, it
will be of exponential size and a naive search for a cycle will require exponential
time. We show in a second step how to find a cycle in polynomial time.

The graph underlying our algorithm is inspired by the powerset construction
for the determinization of finite state automata [34]. The vertices keep track
of sets of states S that a client may be in. Different from finite-state automata,
however, there is not only one client in a state s ∈ S but arbitrarily (but finitely)
many. As a consequence, a transition from s to s′ may have two effects. Some of
the clients in s change their state to s′ while others stay in s. In that case, the
set of states is updated to S′ = S ∪ {s′}. Alternatively, all clients may change
their state to s′, in which case we get S′ = (S \ {s}) ∪ {s′}.

Formally, the graph of interest is G = (V,→G). The vertices are tuples of sets
of states, V =

⋃
k≤|Q| P(Q)k. The parameter k will become clear in a moment.

To define the edges, we need some more notation. For S ⊆ Q and a ∈ D, let

post?a(S) = {r′ ∈ Q | ∃r ∈ S : r
?a−→ r′}

denote the set of successors of S under transitions receiving a. The set of states
in S where receives of a are enabled is denoted by

enabled?a(S) = {r ∈ S | post?a({r}) �= ∅}.
There is a directed edge V1 →G V2 from vertex V1 = (S1, . . . , Sk) to vertex

V2 = (S′
1, . . . , S

′
k) if the following three conditions are satisfied: (1) there is an

index j ∈ [1..k], states s ∈ Sj and s′ ∈ S′
j , and an element a from the domain D

such that s
!a−→ s′ is a send transition. (2) For each i ∈ [1..k] there are sets of

states Geni ⊆ post?a(Si) and Kill i ⊆ enabled?a(Si) such that

S′
i =

{
(Si \ Kill i) ∪ Geni, for i �= j,

(Uj \ Kill j) ∪ Genj ∪ {s′}, for i = j

where Uj is either Sj or Sj \{s}. (3) For each index i ∈ [1..k] and state q ∈ Kill i,
the intersection post?a(q) ∩ Geni is non-empty.

Intuitively, an edge in the graph mimics a transition in the broadcast network
without making explicit the configurations. Condition (1) requires a sender, a
component j capable of sending a message a. Clients receiving this message
are represented by (2). The set Geni consists of those states that are reached
by clients performing a corresponding receive transition. These states are added
to Si. As mentioned above, states can get killed. If, during a receive transition, all
clients decide to move to the target state, the original state will not be present
anymore. We capture those states in the set Kill i and remove them from Si.
Condition (3) is needed to guarantee that each killed state is replaced by a
target state. Note that for component j we add s′ due to the send transition.
Moreover, we need to distinguish whether state s gets killed or not.

The following lemma relates a cycle in the constructed graph with a cyclic
computation of the form c →+ c. It is crucial for our result.

Liveness in Broadcast Networks 57

Lemma 3. There is a cycle ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm}) in G if and

only if there is a configuration c with Set(c) = {s1, . . . sm} and c →+ c.

The lemma explains the restriction of the nodes in the graph to k-tuples of sets
of states, with k ≤ |Q|. We explore the transitions for every possible state in c,
and there are at most |Q| different states that have to be considered. We have
to keep the sets of states separately to make sure that, for every starting state,
the corresponding clients perform a cyclic computation.

Proof. We first fix some notations that we use throughout the proof. Let c ∈ Qn

be any configuration and s ∈ Set(c). By Posc(s) = {i ∈ [1..n] | c[i] = s} we
denote the positions of c storing state s. Given a second configuration d ∈ Qn,
we use the set Targetc(s, d) = {d[i] | i ∈ Posc(s)} to represent those states that
occur in d at the positions Posc(s). Intuitively, if there is a sequence of transitions
from c to d, these are the target states of those positions of c that store s.

Consider a computation π = c →+ c with Set(c) = {s1, . . . , sm}. We show
that there is a cycle ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm}) in G. To this end,
assume π is of the form π = c → c1 → · · · → c� → c. Since c → c1 is a transition
in the broadcast network, there is an edge

({s1}, . . . , {sm}) →G (Targetc(s1, c1), . . . ,Targetc(sm, c1))

in G where each state si gets replaced by the set of target states in c1. Applying
this argument inductively, we get a path in the graph:

({s1}, . . . , {sm}) →G (Targetc(s1, c1), . . . ,Targetc(sm, c1))
→G (Targetc(s1, c2), . . . ,Targetc(sm, c2))
→G . . .

→G (Targetc(s1, c), . . . ,Targetc(sm, c)).

Since Targetc(si, c) = {si},we found the desired cycle.
For the other direction, let a cycle σ = ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm})
be given. We construct from σ a computation π = c →+ c in the broadcast
network such that Set(c) = {s1, . . . , sm}. The difficulty in constructing π is to
ensure that at any point in time there are enough clients in appropriate states.
For instance, if a transition s

!a−→ s′ occurs, we need to decide on how many
clients to move to s′. Having too few clients in s′ may stall the computation at a
later point: there may be a number of sends required that can only be obtained
by transitions from s′. If there are too few clients in s′, we cannot guarantee the
sends. The solution is to start with enough clients in any state. With invariants
we guarantee that at any point in time, the number of clients in the needed
states suffices.

Let cycle σ be V0 →G V1 →G · · · →G V� with V0 = V� = ({s1}, . . . , {sm}).
Further, let Vj = (S1

j , . . . , Sm
j). We will construct the computation π over config-

urations in Qn where n = m · |Q|�. The idea is to have |Q|� clients for each of the
m components of the vertices Vi occurring in σ. To access the clients belonging

58 P. Chini et al.

to a particular component, we split up configurations in Qn into blocks, intervals
I(i) = [(i − 1) · |Q|� + 1 .. i · |Q|�] for each i ∈ [1..m]. Let d ∈ Qn be arbitrary.
For i ∈ [1..m], let Bd(i) = {d[t] | t ∈ I(i)} be the set of states occurring in the
i-th block of d. Moreover, we blockwise collect clients that are currently in a
particular state s ∈ Q. Let the set Posd(i, s) = {t ∈ I(i) | d[t] = s} be those
positions of d in the i-th block that store state s.

We fix the configuration c ∈ Qn. For each component i ∈ [1..m], in the i-th
block it contains |Q|� copies of the state si. Formally, Bc(i) = {si}. Our goal
is to construct the computation π = c0 →+ c1 →+ · · · →+ c� with c0 = c� =
c such that the following two invariants are satisfied. (1) For each j ∈ [0..�]
and i ∈ [1..m] we have Bcj

(i) ⊆ Si
j . (2) For any state s in a set Si

j we have
|Poscj

(i, s)| ≥ |Q|�−j . Intuitively, (1) means that during the computation π we
visit at most those states that occur in the cycle σ. Invariant (2) guarantees that
at each configuration cj there are enough clients available in these states.

We construct π inductively. The base case is given by configuration c0 = c
which satisfies invariants (1) and (2) by definition. For the induction step, assume
cj is already constructed such that (1) and (2) hold for the configuration. Our
first goal is to construct a configuration d such that cj →+ d and d satisfies
invariant (2). In a second step we show to construct a computation d →∗ cj+1.

In the cycle σ there is an edge Vj →G Vj+1. From the definition of →G we
get a component t ∈ [1..m], states s ∈ St

j and s′ ∈ St
j+1, and an a ∈ D such that

there is a send transition s
!a−→ s′. Moreover, there are sets Gent ⊆ post?a(St

j)
and Kill t ⊆ enabled?a(St

j) such that the following equality holds:

St
j+1 = (Ut \ Kill t) ∪ Gent ∪ {s′}.

Here, Ut is either St
j or St

j \{s}. We focus on t and take care of other components
later. We apply a case distinction for the states in St

j+1.
Let q be a state in St

j+1 \ {s′}. If q ∈ Gent, there exists a p ∈ St
j such that

p
?a−→ q. We apply this transition to |Q|�−(j+1) many clients in the t-th block of

configuration cj . If q ∈ Ut \Kill t and q not in Gent, then certainly q ∈ Ut ⊆ St
j .

In this case, we let |Q|�−(j+1) many clients of block t stay idle in state q. For
state s′, we apply a sequence of sends. More precise, we apply the transition
s

!a−→ s′ to |Q|�−(j+1) many clients in block t of cj . The first of these sends
synchronizes with the previously described receive transitions. The other sends
do not have any receivers. For components different from t, we apply the same
procedure. Since there are only receive transitions, we also let them synchronize
with the first send of a. This leads to a computation τ

cj
a−→ d1

a−→ d2
a−→ . . .

a−→ d|Q|�−(j+1)
= d.

We argue that the computation τ is valid : there are enough clients in cj such
that τ can be carried out. We again focus on component t, the reasoning for the
other components is similar. Let p ∈ Set(cj) = St

j . Note that the equality is due
to invariants (1) and (2). We count the clients of cj in state p (in block t) that

Liveness in Broadcast Networks 59

are needed to perform τ . We need

|Q|�−(j+1) · |post?a(p) ∪ {p, s′}| ≤ |Q|�−(j+1) · |Q| = |Q|�−j

of these clients. The set post?a(p) ∪ {p, s′} appears as a consequence of the case
distinction above: there may be transitions mapping p to a state in post?a(p), it
may happen that clients stay idle in p, and in the case p = s, we need to add s′

for the send transition. Since |Poscj
(t, p)| ≥ |Q|�−j by invariant (2), we get that

τ is a valid computation. Moreover, note that configuration d satisfies invariant
(2) for j + 1: for each state q ∈ St

j+1, the computation τ was constructed such
that |Posd(t, q)| ≥ |Q|�−(j+1).

To satisfy invariant (1), we need to erase states that are present in d but
not in St

j+1. To this end, we reconsider the set Kill t ⊆ enabled?a(St
j). For each

state p ∈ Kill t, we know by the definition of →G that post?a(p) ∩ Gent �= ∅.
Hence, there is a q ∈ St

j+1 such that p
?a−→ q. We apply this transition to all

clients in d currently in state p that were not active in the computation τ . In
case Ut = St

j \ {s}, we apply the send s
!a−→ s′ to all clients that are still in s and

were not active in τ . Altogether, this leads to a computation η = d →∗ cj+1.
There is a subtlety in the definition of η. There may be no send transition

for the receivers to synchronize with since s may not need to be erased. In this
case, we synchronize the receive transitions of η with the last send of τ . This
does not change the result.

Computation η substitutes the states in Kill t and state s, depending on Ut,
by states in St

j+1. But this means that in the t-th block of cj+1, there are only
states of St

j+1 left. Hence, Bcj+1(t) ⊆ St
j+1, and invariant (1) holds.

After the construction of π = c →+ c�, it is left to argue that c� = c. But this
is due to the fact that invariant (1) holds for c� and St

� = ({s1}, . . . , {sm}). �
The graph G is of exponential size. To obtain a polynomial-time procedure,

we cannot just search it for a cycle as required by Lemma 3. Instead, we now
show that if such a cycle exists, then there is a cycle in a certain normal form.
Hence, it suffices to look for a normal-form cycle. As we will show, this can be
done in polynomial time. We define the normal form more generally for paths.

A path is in normal form, if it takes the shape V1 →∗
G Vm →∗

G Vn such
that the following conditions hold. In the prefix V1 →∗

G Vm the sets of states
increase monotonically, Vi � Vi+1 for all i ∈ [1..m − 1]. Here, � denotes the
componentwise inclusion. In the suffix Vm →∗

G Vn, the sets of states decrease
monotonically, Vi � Vi+1 for all i ∈ [m..n − 1]. The following lemma states that
if there is a path in the graph, then there is also a path in normal form. The
intuition is that the variants of the transitions that decrease the sets of states
can be postponed towards the end of the computation.

Lemma 4. There is a path from V1 to V2 in G if and only if there is a path in
normal form from V1 to V2.

60 P. Chini et al.

Proof. If V1 →∗
G V2 is a path in normal form, there is nothing to prove. For the

other direction, let σ = V1 →∗
G V2 be an arbitrary path. To get a path in normal

form, we first simulate the edges of σ in such a way that no states are deleted.
In a second step, we erase the states that should have been deleted. We have to
respect a particular deletion order ensuring that we construct a valid path.

Let σ = U1 →G U2 →G · · · →G U� with U1 = V1 and U� = V2. We inductively
construct an increasing path σinc = U ′

1 →G · · · →G U ′
� with U ′

j � Ui or all i ≤ j
by mimicking the edges of σ.

For the base case, we set U ′
1 = U1. Now assume σinc has already been con-

structed up to vertex U ′
j . There is an edge e = Uj →G Uj+1 in σ. Since U ′

j � Uj ,
we can simulate e on U ′

j : all states needed to execute the edge are present in U ′
j .

Moreover, we can mimic e such that no state gets deleted. This is achieved by
setting the corresponding Kill sets to be empty. Hence, we get an edge U ′

j → U ′
j+1

with U ′
j+1 � U ′

j (no deletion) and U ′
j+1 � Uj+1 (simulation of e).

The states in V ′
2 = U ′

� that are not in V2 are those states that were deleted
along σ. We construct a decreasing path σdec = V ′

2 →∗
G V2, deleting all these

states. To this end, let V ′
2 = (T1, . . . , Tm) and V2 = (S1, . . . , Sm). An edge in σ

deletes sets of states in each component i ∈ [1..m]. Hence, to mimic the deletion,
we need to consider subsets of Del =

⋃
i∈[1..m](Ti \Si)×{i}. Note that the index

i in a tuple (s, i) displays the component the state s is in.
Consider the equivalence relation ∼ over Del defined by (x, i) ∼ (y, t) if and

only if the last occurrence of x in component i and y in component t in the path σ
coincide. Intuitively, two elements are equivalent if they get deleted at the same
time and do not appear again in σ. We introduce an order on the equivalence
classes: [(x, i)]∼ < [(y, t)]∼ if and only if the last occurrence of (x, i) was before
the last occurrence of (y, t). Since the order is total, we get a partition of Del
into equivalence classes P1, . . . , Pn such that Pj < Pj+1 for each j ∈ [1..n − 1].

We construct σdec = K0 →G · · · →G Kn with K0 = V ′
2 and Kn = V2 as

follows. During each edge Kj−1 →G Kj , we delete precisely the elements in Pj

and do not add further states. Deleting Pj is due to an edge e = Uk →G Uk+1 of
σ. We mimic e in such a way that no state gets added and set the corresponding
Gen sets to the empty set. Since we respect the order < with the deletions,
the simulation of e is possible. Suppose, we need a state s in component t to
simulate e but the state is not available in component t of Kj−1. Then it was
deleted before, (s, t) ∈ P1 ∪ · · · ∪ Pj−1. But this contradicts that s is present in
Uk. Hence, all the needed states are available.

Since after the last edge of σdec we have deleted all elements from Del , we
get that Kn = V2. This concludes the proof. �

Using the normal-form result in Lemma 4, we now give a polynomial-time
algorithm to check whether ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm}). The idea is
to mimic the monotonically increasing prefix of the computation by a suitable
post operator, the monotonically decreasing suffix by a suitable pre operator, and
intersect the two. The difficulty in computing an appropriate post operator is to
ensure that the receive operations are enabled by sends leading to a state in the
intersection, and similar for the pre. The solution is to use a greatest fixed-point

Liveness in Broadcast Networks 61

computation. In a first Kleene iteration step, we determine the ordinary post+

of ({s1}, . . . , {sm}) and intersect it with the pre∗. In the next step, we constrain
the post+ and the pre∗ computations to visiting only states in the previous
intersection. The results are intersected again, which may remove further states.
Hence, the computation is repeated relative to the new intersection. The thing
to note is that we do not work with standard post and pre operators but with
operators that are constrained by (tuples of) sets of states.

For the definition of the operators, consider C = (C1, . . . , Cm) ∈ P(Q)m for
an m ≤ |Q|. Given a sequence of sets of states X1, . . . , Xm where each Xi ⊆ Ci,
we define postC(X1, . . . , Xm) = (X ′

1, . . . , X
′
m) with

X ′
i = {s′ ∈ Q | ∃s ∈ Xi : s

!a−→P↓Ci
s′}

∪ {s′ ∈ Q | ∃s1, s2 ∈ X� : ∃s ∈ Xi : s1
!a−→P↓C�

s2 ∧ s
?a−→P↓Ci

s′} .

Here, P ↓Ci
denotes the automaton obtained from P by restricting it to the

states Ci. Similarly, we define preC(X1, . . . , Xm) = (X ′
1, . . . , X

′
m) with

X ′
i = {s ∈ Q | ∃s′ ∈ Xi : s

!a−→P↓Ci
s′}

∪ {s ∈ Q | ∃s1, s2 ∈ X� : ∃s′ ∈ Xi : s1
!a−→P↓C�

s2 ∧ s
?a−→P↓Ci

s′}.

The next lemma shows that the (reflexive) transitive closures of these operators
can be computed in polynomial time.

Lemma 5. The closures post+C(X1, . . . , Xm) and pre∗
C(X1, . . . , Xm) can be com-

puted in polynomial time.

Proof. Both closures can be computed by a saturation. For post+C(X1, . . . , Xm),
we keep m sets R1, . . . , Rm, each being the post of a component. Initially, we set
Ri = Xi. The defining equation of X ′

i in post+C(X1, . . . , Xm) gives the saturation.
One just needs to substitute Xi by Ri and X� by R� on the right hand side. The
resulting set of states is added to Ri. This process is applied consecutively to
each component and then repeated until the sets Ri do not change anymore, the
fixed point is reached.

The saturation terminates in polynomial time. After updating Ri in each
component, we either already terminated or added at least one new state to a
set Ri. Since there are m ≤ |Q| of these sets and each one is a subset of Q,
we need to update the sets Ri at most |Q|2 many times. For a single of these
updates, the dominant time factor comes from finding appropriate send and
receive transitions. This can be achieved in O(|δ|2) time.

Computing the closure pre∗
C(X1, . . . , Xm) is similar. One can apply the above

saturation and only needs to reverse the transitions in the client. �
As argued above, the existence of a cycle reduces to finding a fixed point.

The following lemma shows that it can be computed efficiently.

62 P. Chini et al.

Lemma 6. There is a cycle ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm}) if and only

if there is a non-trivial solution to the equation

C = post+C({s1}, . . . , {sm}) ∩ pre∗
C({s1}, . . . , {sm}) .

Such a solution can be found in polynomial time.

Proof. We use a Kleene iteration to compute the greatest fixed point. It invokes
Lemma 5 as a subroutine. Every step of the Kleene iteration reduces the number
of states in C by at least one, and initially there are at most |Q| entries with |Q|
states each. Hence, we terminate after quadratically many iteration steps.

It is left to prove correctness. Let ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm})

be a cycle in G. By Lemma 4 we can assume it to be in normal form. Let
({s1}, . . . , {sm}) →+

G C be the increasing part and C →∗
G ({s1}, . . . , {sm}) the

decreasing part. Then, C is a solution to the equation.
For the other direction, let a solution C be given. Since C is contained

in post+C({s1}, . . . , {sm}) we can construct a monotonically increasing path
({s1}, . . . , {sm}) →+

G C. Similarly, since C ⊆ pre∗
C({s1}, . . . , {sm}), we get a

decreasing path C →∗
G ({s1}, . . . , {sm}). Hence, we get the desired cycle. �

What is yet open is the question on which states s1 to sm to perform the
search for a cycle. After all, we need that the corresponding configuration is
reachable from an initial configuration. The idea is to use the set of all states
reachable from an initial state in the client. Note that there is a live computation
if and only if there is a live computation involving all those states. Indeed, if a
state is not active during the cycle, the corresponding clients will stop moving
after an initial set-up phase. Since the states reachable from an initial state can
be computed in polynomial time [11], the proof of Theorem 1 is completed.

The liveness verification problem does not take fairness into account. A client
may contribute to the live computation (and help the distinguished client reach
a final state) without ever making progress towards its own final state.

4 Fair Liveness

We study the fair liveness verification problem that strengthens the requirement
on the computation sought. Given a broadcast network N = (D,P) with clients
P = (Q, I, δ) and a set of final states F ⊆ Q, the problem asks whether there is an
infinite initialized computation π in which clients that send or receive messages
infinitely often also visit their final states infinitely often, Inf(π) ⊆ Fin(π). This
requirement is also known as compassion or strong fairness [33].

Fair Liveness Verification
Input: A broadcast network N = (D,P) and final states F ⊆ Q.
Question: Is there an initialized computation π with Inf(π) ⊆ Fin(π)?

We solve the problem by applying the cycle finding algorithm from Sect. 3 to
an instrumentation of the given broadcast network. Formally, given an instance

Liveness in Broadcast Networks 63

(N , F) of fair liveness, we construct a new broadcast network NF , containing
several copies of Q. Recall that Q is the set of client states in N . The construc-
tion ensures that cycles over Q in NF correspond to cycles in N where each
participating client sees a final state. Such cycles make up a fair computation.
The main result is the following.

Theorem 7. Fair liveness verification is in P.

To explain the instrumentation, we need the notion of a good computation,
where good means the computation respects fairness. Computation c1 →+ cn

is good for F , denoted c1 ⇒F cn, if every client i that makes a move during
the computation, i ∈ idx (cj → cj+1) for some j, also sees a final state in the
computation, ck[i] ∈ F for some k. The following strengthens Lemma 2.

Lemma 8. There is a fair computation from c0 if and only if c0 →∗ c ⇒F c.

The broadcast network NF is designed to detect good cycles c ⇒F c. The
idea is to let the clients compute in phases. The original state space Q is the
first phase. As soon as a client participates in the computation, it moves to a
second phase given by a copy Q̂ of Q. From this copy it enters a third phase Q̃
upon seeing a final state. From Q̃ it may return to Q.

Let the given broadcast network be N = (D,P) with P = (Q, I, δ). We
define NF = (D ∪ {n}, PF) with fresh symbol n /∈ D and extended client

PF = (Q̄, Ĩ, δ̄) where Q̄ = Q ∪ Q̂ ∪ Q̃.

For every transition (q, a, q′) ∈ δ, we have (q, a, q̂′), (q̂, a, q̂′), (q̃, a, q̃′) ∈ δ̄. For
every final state q ∈ F we have (q̂, !n, q̃) ∈ δ̄. For every state q ∈ Q we have
(q̃, !n, q) ∈ δ̄. Configuration c admits a good cycle if and only if there is a cycle
at c in the instrumented broadcast network. Even more, also an initial prefix
can be mimicked by computations in the third phase.

Lemma 9. c0 →∗ c ⇒F c in N if and only if c̃0 →∗ c →+ c in NF .

We argue that the cycle can be mimicked, the reasoning for the prefix is simpler.
A good cycle entails a cycle in the instrumented broadcast network. For the
reverse direction, note that in c all clients are in states from Q. As soon as a
client participates in the computation, it will move to Q̂. To return to Q, the
client will have to see a final state. This makes the computation good.

For the proof of Theorem 7, it is left to state the algorithm for finding a
computation c̃0 →∗ c →+ c in NF . We compute the states reachable from an
initial state in NF . As we are interested in a configuration c over Q, we intersect
this set with Q. Both steps can be done in polynomial time. Let s1 up to sm be
the states in the intersection. To these states we apply the fixed-point iteration
from Lemma 6. By Lemma 3, the iteration witnesses the existence of a cycle over
a configuration c of NF that involves only the states s1 up to sm.

64 P. Chini et al.

References

1. Abdulla, P.A., Atig, M.F., Rezine, O.: Verification of directed acyclic ad hoc net-
works. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -2013. LNCS, vol.
7892, pp. 193–208. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38592-6 14

2. Akhiani, H., et al.: Cache coherence verification with TLA%. In: Wing, J.M., Wood-
cock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, p. 1871. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48118-4 62

3. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

4. Balasubramanian, A.R., Bertrand, N., Markey, N.: Parameterized verification
of synchronization in constrained reconfigurable broadcast networks. In: Beyer, D.,
Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 38–54. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 3

5. Bertrand, N., Fournier, P., Sangnier, A.: Playing with probabilities in reconfig-
urable broadcast networks. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol.
8412, pp. 134–148. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54830-7 9

6. Bertrand, N., Fournier, P., Sangnier, A.: Distributed local strategies in broadcast
networks. In: CONCUR. LIPIcs, vol. 42, pp. 44–57. Schloss Dagstuhl (2015)

7. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

8. Bouyer, P., Markey, N., Randour, M., Sangnier, A., Stan, D.: Reachability in net-
works of register protocols under stochastic schedulers. In: ICALP. LIPIcs, vol. 55,
pp. 106:1–106:14. Schloss Dagstuhl (2016)

9. Chini, P., Meyer, R., Saivasan, P.: Fine-grained complexity of safety verification.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 20–37.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 2

10. Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 8

11. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: FSTTCS.
LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl (2012)

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc net-
works. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp.
313–327. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-
4 22

13. Delzanno, G., Sangnier, A., Zavattaro, G.: On the power of cliques in the param-
eterized verification of ad hoc networks. In: Hofmann, M. (ed.) FoSSaCS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19805-2 30

14. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of ad hoc networks with
node and communication failures. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30793-5 15

15. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of erlang-style
concurrency. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp.
454–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-
9 24

https://doi.org/10.1007/978-3-642-38592-6_14
https://doi.org/10.1007/978-3-642-38592-6_14
https://doi.org/10.1007/3-540-48118-4_62
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.1007/978-3-319-89963-3_2
https://doi.org/10.1007/10722167_8
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-19805-2_30
https://doi.org/10.1007/978-3-642-19805-2_30
https://doi.org/10.1007/978-3-642-30793-5_15
https://doi.org/10.1007/978-3-642-30793-5_15
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/978-3-642-38856-9_24

Liveness in Broadcast Networks 65

16. D’Osualdo, E., Luke Ong, C.-H.: On hierarchical communication topologies in the
π-calculus. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 149–175.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 7

17. Durand-Gasselin, A., Esparza, J., Ganty, P., Majumdar, R.: Model checking param-
eterized asynchronous shared-memory systems. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 67–84. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21690-4 5

18. Esparza, J.: Some applications of Petri nets to the analysis of parameterised sys-
tems (talk). In: WISP (2003)

19. Esparza, J.: Keeping a crowd safe: on the complexity of parameterized verification
(invited talk). In: STACS. LIPIcs, vol. 25, pp. 1–10. Schloss Dagstuhl (2014)

20. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS, pp. 352–359. IEEE (1999)

21. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 124–140. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 8

22. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bull. EATCS
52, 244–262 (1994)

23. Fournier, P.: Parameterized verification of networks of many identical processes.
Ph.D. thesis, University of Rennes 1 (2015)

24. Hague, M.: Parameterised pushdown systems with non-atomic writes. In: FSTTCS.
LIPIcs, vol. 13, pp. 457–468. Schloss Dagstuhl (2011)

25. Hague, M., Meyer, R., Muskalla, S., Zimmermann, M.: Parity to safety in polyno-
mial time for pushdown and collapsible pushdown systems. In: MFCS. LIPIcs, vol.
117, pp. 57:1–57:15. Schloss Dagstuhl (2018)

26. Hüchting, R., Majumdar, R., Meyer, R.: Bounds on mobility. In: Baldan, P., Gorla,
D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 357–371. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44584-6 25

27. Joshi, S., König, B.: Applying the graph minor theorem to the verification of
graph transformation systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 214–226. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70545-1 21

28. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 197–211. Springer, Heidelberg (2006). https://
doi.org/10.1007/11691372 13

29. Konnov, I.V., Lazic, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL,
pp. 719–734. ACM (2017)

30. Meyer, R.: On boundedness in depth in the π-calculus. In: Ausiello, G., Karhumäki,
J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol. 273, pp. 477–489. Springer,
Boston, MA (2008). https://doi.org/10.1007/978-0-387-09680-3 32

31. Meyer, R., Strazny, T.: Petruchio: from dynamic networks to nets. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 175–179. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 19

32. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
33. Pnueli, A., Sa’ar, Y.: All you need is compassion. In: Logozzo, F., Peled, D.A.,

Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 233–247. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78163-9 21

https://doi.org/10.1007/978-3-662-49498-1_7
https://doi.org/10.1007/978-3-319-21690-4_5
https://doi.org/10.1007/978-3-319-21690-4_5
https://doi.org/10.1007/978-3-642-39799-8_8
https://doi.org/10.1007/978-3-642-39799-8_8
https://doi.org/10.1007/978-3-662-44584-6_25
https://doi.org/10.1007/978-3-540-70545-1_21
https://doi.org/10.1007/978-3-540-70545-1_21
https://doi.org/10.1007/11691372_13
https://doi.org/10.1007/11691372_13
https://doi.org/10.1007/978-0-387-09680-3_32
https://doi.org/10.1007/978-3-642-14295-6_19
https://doi.org/10.1007/978-3-540-78163-9_21

66 P. Chini et al.

34. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959)

35. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification
of ad hoc routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78800-3 3

36. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-based model checking of ad
hoc network protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 603–619. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04081-8 40

37. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 322–331. IEEE (1986)

38. Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded pro-
cesses. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 94–108. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9 8

39. Zufferey, D.: Analysis of Dynamic Message Passing Programs (a framework for
the analysis of depth-bounded systems). Ph.D. thesis, Institute of Science and
Technology (2013)

https://doi.org/10.1007/978-3-540-78800-3_3
https://doi.org/10.1007/978-3-540-78800-3_3
https://doi.org/10.1007/978-3-642-04081-8_40
https://doi.org/10.1007/978-3-642-04081-8_40
https://doi.org/10.1007/978-3-642-12032-9_8

	Liveness in Broadcast Networks
	1 Introduction
	2 Broadcast Networks
	3 Liveness
	4 Fair Liveness
	References

