
Distributed Online Data Aggregation
in Dynamic Graphs

Quentin Bramas1(B), Toshimitsu Masuzawa3, and Sébastien Tixeuil2

1 University of Strasbourg, ICUBE, CNRS, Strasbourg, France
bramas@unistra.fr

2 Sorbonne University, LIP6, CNRS, Paris, France
3 Osaka University, Suita, Japan

Abstract. We consider the problem of aggregating data in a dynamic
graph, that is, aggregating the data that originates from all nodes in
the graph to a specific node, the sink. We are interested in giving lower
bounds for this problem, under different kinds of adversaries.

In our model, nodes are endowed with unlimited memory and unlim-
ited computational power. Yet, we assume that communications between
nodes are carried out with pairwise interactions, where nodes can
exchange control information before deciding whether they transmit their
data or not, given that each node is allowed to transmit its data at most
once. When a node receives a data from a neighbor, the node may aggre-
gate it with its own data.

We consider three possible adversaries: the online adaptive adversary,
the oblivious adversary, and the randomized adversary that chooses the
pairwise interactions uniformly at random. For the online adaptive and
the oblivious adversaries, we give impossibility results when nodes have
no knowledge about the graph and are not aware of the future. Also, we
give several tight bounds depending on the knowledge (be it topology
related or time related) of the nodes. For the randomized adversary, we
show that the Gathering algorithm, which always commands a node to
transmit, is optimal if nodes have no knowledge at all. Also, we pro-
pose an algorithm called Waiting Greedy, where a node either waits or
transmits depending on some parameter, that is optimal when each node
knows its future pairwise interactions with the sink.

1 Introduction

Dynamic graphs, that is, graphs that evolve over time, can conveniently model
dynamic networks, which recently received a lot of interest from the academic
community (e.g. mobile sensor networks, vehicular networks, disruption tolerant
networks, interaction flows, etc.). Depending on the problem considered, various

This work was performed within the Labex SMART supported by French state funds
managed by the ANR within the Investissements d’Avenir program under reference
ANR-11-IDEX-0004-02. A preliminary 2 pages poster of this work appeared
in IEEE ICDCS 2016 [4].

c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 365–380, 2019.
https://doi.org/10.1007/978-3-030-31277-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_24

366 Q. Bramas et al.

models were used: among others, static graphs can be used to represent a snap-
shot in time of a dynamic graph, functions can be used to define continuously
when an edge appears over time, and sequences of tuples can represent atomic
interactions between nodes over time.

The problem we consider in this paper assumes an arbitrary dynamic net-
work, such as sensors deployed on a human body, cars evolving in a city that
communicate with each other in an ad hoc manner, etc. We suppose that ini-
tially, each node in the network originates some data (e.g. that originates from a
sensor, or from computation), and that these data must be aggregated at some
designated node, the sink. To this goal, a node may send its data to a communi-
cation neighbor at a given time (the duration of this communication is supposed
to be one time unit). We assume that there exists an aggregation function that
takes two data as input and gives one data as output (the function is aggregating
in the sense that the size of the output is supposed to be the same as a single
input, such functions include min, max, etc.).

The main constraint for communications between nodes is that a node is
allowed to send its data (be it its original data, or aggregated data) exactly once
(e.g. to keep energy consumption low). A direct consequence of this constraint
is that a node must aggregate data anytime it receives some, provided it did not
send its data previously. It also implies that a node cannot participate in the
data aggregation protocol once it has transmitted its data. A nice property of any
algorithm implementing this constraint is that the number of communications
is minimum. The problem of aggregating all data at the sink with minimum
duration is called the minimum data aggregation time problem [6]. The essence
of such a data aggregation algorithm is to decide whether or not to send a
node’s data when encountering a given communication neighbor: by waiting, a
node may be able to aggregate more data, while by sending a node disseminates
data but excludes itself for the rest of the computation.

In this paper, we consider that nodes may base their decision on their initial
knowledge and past experience (past interactions with other nodes) only. Then,
an algorithm accommodating those constraints is called an online distributed
data aggregation algorithm. The existence of such an algorithm is conditioned
by the (dynamic) topology, initial knowledge of the nodes (e.g. about their future
communication neighbors), etc.

For simplicity, we assume that interactions between the nodes are carried
out through pairwise operations. Anytime two nodes a and b are communication
neighbors (or, for short, are interacting), either no data transfer happens, or
one of them sends its data to the other, that executes the aggregation function
on both its previously stored data and the received data, the output is then
stored in the (new) stored data of the receiver. In the sequel, we use the term
interaction to refer to a pairwise interaction.

We assume that an adversary controls the dynamics of the network, that is,
the adversary decides which are the interactions. As we consider atomic interac-
tions, the adversary decides what sequence of interactions is to occur in a given
execution. Then, the sequence of static graphs to form the evolving graph can

Distributed Online Data Aggregation in Dynamic Graphs 367

be seen as a sequence of single edge graphs, where the edge denotes the inter-
action that is chosen by the scheduler at this particular moment. Hence, the
time when an interaction occurs is exactly its index in the sequence. Our model
of dynamic graphs as a sequence of interactions differs from existing models on
several points. First, general models like Time-varying-graph [8] make use of con-
tinuous time, which adds a lot of complexity. Also, discrete time general models
such as evolving graph [8] capture the network evolution as a sequence of static
graphs. Our model is a simplification of the evolving graph model where each
static graph has a single edge. Population protocols [2] also consider pairwise
interactions, but focus on finite state anonymous nodes with limited computa-
tional power and unlimited communication power (a given node can transmit
its information many times), while we consider powerful nodes (that can record
their past interactions) that are communication limited (they can send their data
only once). Finally, Dynamic edge-relabeling [7] is similar to population proto-
cols, but the sequence of pairwise interactions occurs inside an evolving graph.
This model shares the same differences as population protocols with our model.

Related Work. The problem of data aggregation has been widely studied in
the context of wireless sensor networks. The literature on this problem can be
divided in two groups depending on the assumption made about the collisions
being handled by an underlying MAC layer.

In the case when collisions are not handled by the MAC layer, the goal is
to find a collision-free schedule that aggregates the data in minimum duration.
The problem was first studied by Annamalai et al. [3], and formally defined
by Chen et al. [9], which proved that the problem is NP-complete. Then, sev-
eral papers [12–14,16] proposed centralized and distributed approximation algo-
rithms for this problem. The best known algorithm is due to Nguyen et al. [12].
More recently, Bramas et al. [6] considered the generalization of the problem to
dynamic wireless sensor networks (modeled by evolving graphs). Bramas et al.
[6] show that the problem remains NP-complete even when restricted to dynamic
WSNs of degree at most 2 (compared to 3 in the static case).

When collisions are handled by the MAC layer, various problems related to
data aggregation have been investigated. The general term in-network aggre-
gation includes several problems such as gathering and routing information in
WSNs, mostly in a practical way. For instance, a survey [11] relates aggrega-
tion functions, routing protocols, and MAC layers with the objective of reducing
resource consumption. Continuous aggregation [1] assumes that data have to be
aggregated, and that the result of the aggregation is then disseminated to all
participating nodes. The main metric is then the delay before aggregated data
is delivered to all nodes, as no particular node plays the role of a sink. Most
related to our concern is the work by Cornejo et al. [10]. In their work, each
node starts with a token, the time is finite and no particular node plays the role
of a sink node. Then, the topology evolves with time, and at each time instant,
a node has at most one neighbor with whom it can interact and send or not its
token. The goal is to minimize the number of nodes that own at least one token.
Assuming an algorithm does not know the future, Cornejo et al. [10] prove that

368 Q. Bramas et al.

its competitive ratio is Ω(n) with high probability (w.r.t. the optimal offline
algorithm) against an oblivious adversary.

Our Contributions. In this paper we define the problem of distributed online
data aggregation in dynamic graphs, and study its complexity. It turns out that
the problem difficulty strongly depends on the power of the adversary (that
chooses which interactions occur in a given execution).

For the oblivious and the online adaptive adversaries, we give several impos-
sibility results when nodes have no knowledge about the future evolution of
the dynamic graph, nor about the topology. Also, when nodes are aware of the
underlying graph (where an edge between two nodes exists if those nodes inter-
act at least once in the execution), the data aggregation is impossible in general.
To examine the possibility cases, we define a cost function whose purpose is
to compare the performance of a distributed online algorithm to the optimal
offline algorithm for the same sequence of interactions. Our results show that if
all interactions in the sequence occur infinitely often, there exists a distributed
online data aggregation algorithm whose cost is finite. Moreover, if the underly-
ing graph is a tree, we present an optimal algorithm.

For the randomized adversary, we first present tight bounds when nodes have
full knowledge about the future interactions in the whole graph. In this case, the
best possible algorithm terminates in Θ(n log(n)) interactions, in expectation
and with high probability. Then, we consider nodes with restricted knowledge,
and we present two optimal distributed online data aggregation algorithms that
differ in the knowledge that is available to nodes. The first algorithm, called
Gathering, assumes nodes have no knowledge whatsoever, and terminates in
O(n2) interactions on average, which we prove is optimal with no knowledge. The
second one, called Waiting Greedy, terminates in O

(
n3/2

√
log(n)

)
interactions

with high probability, which we show is optimal when each node only knows the
time of its next interaction with the sink (the knowledge assumed by Waiting
Greedy).

We believe our research paves the way for stimulating future researches, as
our proof arguments present techniques and analysis that can be of independent
interest for studying dynamic networks.

2 Model

A dynamic graph is modeled as a couple (V, I), where V is a set of nodes and
I = (It)t∈N

is a sequence of pairwise interactions (or simply interactions). An
interaction occurs when two nodes in the network can exchange information.
A special node in V is the sink node, and is denoted by s in the sequel. In the
sequence (It)t∈N

, the index t of an interaction also refers to its time of occurrence.
In the sequel V always denotes the set of nodes, n ≥ 3 its size, and s ∈ V the
sink node.

In general, we consider that nodes in V have unique identifiers, unlimited
memory and unlimited computational power. However, we sometimes consider

Distributed Online Data Aggregation in Dynamic Graphs 369

nodes with no persistent memory between interactions; those nodes are called
oblivious.

Initially, each node in V receives a data. Nodes have different data and a node
can transmit its data at most once. Formally, during an interaction It = {u, v},
if both nodes have not yet transmitted their data, then one of the node has
the possibility to transmit its data to the other node. The receiver aggregates
the received data with its own data. The transmission and the aggregation take
exactly one time unit. If a node decides to transmit its data, then it does not
own any data, and is not able to receive other’s data anymore.

Problem Statement. The data aggregation problem consists in choosing at each
interaction whether a node transmits (and which one) or not so that after a
finite number of interactions, the sink is the only node that owns data. In this
paper we study distributed and online algorithms that solve this problem. Such
algorithms are called distributed online data aggregation (DODA) algorithms.

A DODA is an algorithm that takes as input an interaction It = {u, v}, and
its time of occurrence t ∈ N, and outputs either u, v or ⊥. If a DODA outputs
a node, this node is the receiver of the other node’s data. In more details, if u is
the output, this means that before the interaction both u and v own data, and
the algorithm orders v to transmit its data to u. The algorithm is able to change
the memory of the interacting nodes, for instance to store information that can
be used in future interactions. In the sequel, DODA denotes the set of all DODA
algorithms. And D∅

ODA denotes the set of DODA algorithms that only require
oblivious nodes. Executing a DODA algorithm A on a sequence of interactions
I correspond to executing A on each interaction It ∈ I, and the duration of the
execution is the first time of occurrence of the interaction when the sink becomes
the only node that owns data.

A DODA can require some knowledge to work. A knowledge is a function
(or just an attribute) given to every node that gives some information about the
future, the topology or anything else. By default, a node u ∈ V has two pieces
of information: its identifier u.ID and a boolean u.isSink that is true if u is
the sink, and false otherwise. A DODA algorithm may use additional functions
associated with different knowledge. DODA(i1, i2, . . .) denotes the set of DODA
algorithms that use the functions i1, i2, . . ., representing the knowledge of the
nodes. The first function we define for a node u ∈ V in a dynamic graph (V, I),
is the function u.meetT ime that maps a time t ∈ N with the smallest time t′ > t
such that It′ = {u, s} i.e., the time of the next interaction with the sink (for
u = s, we define s.meetT ime as the identity, t �→ t). Then DODA(meetT ime)
refers to the set of DODA algorithms that use the information meetT ime.

Adversary Models. In this paper we consider three models of adversaries:

– The oblivious adversary. This adversary knows the algorithm’s code, and must
construct the sequence of interactions before the execution starts.

– The adaptive online adversary. This adversary knows the algorithm’s code
and can use the past execution of the algorithm to construct the next interac-
tion. However, it must make its own decision as it does not know in advance

370 Q. Bramas et al.

the decision of the algorithm. In the case of deterministic algorithms, this
adversary is equivalent to the oblivious adversary.

– The randomized adversary. This adversary constructs the sequence of inter-
actions by picking pairwise interactions uniformly at random.

Section 3 presents our results with the oblivious and the adaptive online
adversaries. The results with the randomized adversary are given in Sect. 4.

Definition of Cost. To study and compare different DODA algorithms, we use
a tool slightly different from the competitive analysis that is generally used
to study online algorithms. The competitive ratio of an algorithm is the ratio
between its performance and the optimal offline algorithm’s performance. How-
ever, one can hardly define objectively the performance of an algorithm. For
instance, if we just consider the number of interactions before termination, then
an oblivious adversary can construct a sequence of interactions starting with the
same interaction repeated an arbitrary number of time. In this case, even the
optimal algorithm has infinite duration. Moreover, the adversary can choose the
same interaction repeatedly after that the optimal offline algorithm terminates.
This can prevent any non optimal algorithm from terminating and make it have
an infinite competitive-ratio.

To prevent this we define the cost of an algorithm. Our cost is a way to define
the performance of an algorithm, depending on the performance of the optimal
offline algorithm. We believe our definition of cost is well-suited for a lots of prob-
lems where the adversary has a strong power, especially in dynamic networks.
One of its main advantages is that it is invariant by trivial transformation of the
sequence of interactions, like inserting or deleting duplicate interactions.

For the sake of simplicity, the execution of an offline optimal data aggrega-
tion algorithm, having minimum duration, is called a convergecast. Consider a
sequence of interactions I. Let opt(t) be the ending time of a convergecast on
I, starting at time t ∈ N. If the ending time is infinite (if the optimal offline
algorithm does not terminate) we write opt(t) = ∞. Let T : N≥1 �→ N∪ {∞} be
the function defined as follows:

T (1) = opt(0), ∀i ≥ 1 T (i + 1) = opt(T (i) + 1)

T (i) is the duration of i successive convergecasts (two convergecasts are consec-
utive if the second one starts just after the first one completes).

Let duration(A, I) be the termination time of algorithm A executed on the
sequence of interactions I. Now, we define the cost costA(I) of an algorithm A
on the sequence I, as the smallest integer i such that duration(A, I) ≤ T (i):

costA(I) = min{i | duration(A, I) ≤ T (i)}
This means that costA(I) is an upper bound on the number of successive con-
vergecasts we can perform during the execution of A, on the sequence I. It follows
from the definition that an algorithm performs an optimal data aggregation if
and only if costA(I) = 1.

Distributed Online Data Aggregation in Dynamic Graphs 371

Also, if duration(A, I) = ∞, then it is possible that costA(I) < ∞. Indeed,
if imax = mini{i |T (i) = ∞} is well-defined, then costA(I) = imax, otherwise
costA(I) = ∞.

3 Oblivious and Online Adaptive Adversaries

In this section we give several impossibility results when nodes have no knowl-
edge, and then show several results depending on the amount of knowledge. We
choose to limit our study to some specific knowledge, but one can be interested
in studying the possible solutions for different kind of knowledge.

3.1 Impossibility Results when Nodes Have No Knowledge

Theorem 1. For every algorithm A ∈ DODA, there exists an adaptive online
adversary generating a sequence of interactions I such that costA(I) = ∞.

Proof. Let I be the sequence of interactions among 3 nodes a, b, and the sink
s, defined as follows. I0 = {a, b}. If a transmits, then ∀i > 0, I2i+1 = {a, s} and
I2i+2 = {a, b} so that b is never able to transmit. Symmetrically if b transmits
the same thing happens. If no node transmits, then I1 = {b, s}. If b transmits,
then ∀i > 0, I2i+2 = {a, b} and I2i+3 = {b, s} so that a is never able to transmit.
Otherwise I2 = {a, b} and we continue as in the first time. A never terminates,
and a convergecast is always possible for the offline optimal algorithm, so that
costA(I) = ∞. ��

In the case of deterministic algorithms, the previous theorem is true even
with an oblivious adversary. However, for a randomized algorithm, the problem
is more complex. The following theorem states that the impossibility results for
oblivious randomized algorithm, leaving the case of general randomized algo-
rithms against oblivious adversary as an open question.

Theorem 2. For every randomized algorithm A ∈ D∅
ODA, there exists an obliv-

ious adversary generating a sequence of interactions I such that costA(I) = ∞
with high probability1.

Proof. Let V = {s, u0, . . . , un−2}. In the sequel, indexes are modulo n − 1 i.e.,
∀i, j ≥ 0, ui = uj with i ≡ j mod (n − 1). Let I∞ defined by, for all i ∈
N, I∞

i = {ui, s}. Let I l be the finite sequence, prefix of length l > 0 of I∞.
For every l > 0, the adversary can compute the probability Pl that no node
transmits its data when executing A on I l. (Pl)l>0 is a non-increasing sequence,
it converges to a limit P ≥ 0. For a given l, if Pl ≥ 1/n, there is at least
two nodes whose probability not to transmit when executing A on I l is at least
n− 1

n−2 = 1−O
(

1√
n

)
. To prove this, we can see the probability Pl as the product

of n − 1 probabilities p0, p1, . . ., pn−2 where pi is the probability that node ui

1 An event A occurs with high probability if P (A) > 1 −O (1/ log(n)).

372 Q. Bramas et al.

does not transmit during I l. Those events are independent since the algorithm
is oblivious. Let pd ≥ pd′ be the two greatest probabilities in {pi}0≤i≤n−2, we
have:

(
n−2∏
i=0

pi ≥ 1
n

)
⇒

(
n−2∑
i=0

log(pi) ≥ log
(

1
n

))

⇒
(

(n − 2) log(pd′) ≥ log
(

1
n

))
⇒

(
pd′ ≥ n− 1

n−2

)

This implies that, if P ≥ 1/n, then A does not terminate on the sequence
I∞ with high probability.

Otherwise, let l0 be the smallest index such that Pl0 < 1/n. So that with
high probability, at least one node transmits when executing A on I l0 . Also,
Pl0−1 ≥ 1/n so that the previous argument implies that there is at least two
nodes ud and ud′ whose probability to still have a data (after executing A on
I l0−1) is at least n− 1

n−2 . If l0 = 0 we can choose {ud, ud′} = {u1, u2}. We have
ud �= ul0 or ud′ �= ul0 . Without loss of generality, we can suppose ud �= ul0 , so
that the probability that ud transmits is the same in I l0−1 and in I l0 .

Now, ud is a node whose probability not to transmit when executing A on I l0

is at least n− 1
n−2 = 1 − O

(
1√
n

)
. Let I ′ be the sequence of interactions defined

as follows:

∀i ∈ [0, n − 2] \ {d − 1}, I ′
i = {ui, ui+1}, I ′

d−1 = {ud−1, s}

I ′ is constructed such that ud (the node that has data with high probability)
must send its data along a path that contains all the other nodes in order to
reach the sink. But this path contains a node that does not have a data.

Let I be the sequence of interaction starting with I l0 and followed by I ′

infinitely often. We have shown that with high probability, after l0 interactions,
at least one node transmits its data and the node ud still has a data. The node
that does not have data prevents the data owned by ud from reaching s. So that
A does not terminate, and since a convergecast is always possible for the offline
optimal algorithm, then costA(I) = ∞. ��

3.2 When Nodes Know the Underlying Graph

Let Ḡ be the underlying graph i.e., Ḡ = (V,E) with E = {(u, v) | ∃t ∈ N,
It = {u, v}}. The following results assume that the underlying graph is given
initially to every node.

Theorem 3. If n ≥ 4, then, for every algorithm A ∈ DODA(Ḡ), there exists
an online adaptive adversary generating a sequence of interactions I such that
costA(I) = ∞.

Distributed Online Data Aggregation in Dynamic Graphs 373

Proof. V = {s, u1, u2, u3}. We create a sequence of interactions with the underly-
ing graph Ḡ = (V, {(s, u1), (u1, u2), (u2, u3), (u3, s)}). We start with the following
interactions:

({u1, s}, {u3, s}, {u2, u1}, {u2, u3}) . (1)

If u2 transmits to u1 in I2, then we repeat infinitely often the three following
interactions:

({u1, u2}, {u2, u3}, {u3, s}, ...) .

Else, if u2 transmits to u3 in I3, then we repeat infinitely often the three following
interactions:

({u3, u2}, {u2, u1}, {u1, s}, ...) .

Otherwise, we repeat the four interactions (1), and apply the previous reason-
ing. Then, A never terminates, and a convergecast is always possible, so that
costA(I) = ∞. ��
Theorem 4. If the interactions occurring at least once, occur infinity often,
then there exists A ∈ D∅

ODA(Ḡ) such that costA(I) < ∞ for every sequence of
interactions I. However, costA(I) is unbounded.

Theorem 5. If Ḡ is a tree, there exists A ∈ D∅
ODA(Ḡ) that is optimal.

3.3 If Nodes Know Their Own Future

For a node u ∈ V , u.future denotes the future of u i.e., the sequence of interac-
tions involving u, with their times of occurrences. In this case, according to the
model, two interacting nodes exchange their future and non-oblivious nodes can
store it. This may seem contradictory with the motivation of the problem (that
aims to reduce the number of transmissions). However, it is possible that the
data must be sent only once for reasons not related to energy (such as data that
cannot be duplicated, tokens, etc.). So, even if, in general, oblivious algorithms
should be favored, we still investigated this case for the sake of completeness.

Theorem 6. There exists A ∈ DODA(future) such that costA(I) ≤ n for every
sequence of interactions I.

Proof. One can show that the duration of n − 1 successive convergecasts is suf-
ficient to perform a broadcast from any source. So every node broadcast its
future to the other nodes. After that, all the nodes are aware of the future of
every nodes and can compute an optimal data aggregation schedule. So that it
takes only one convergecast to aggregate the data of the whole network. In total,
n successive convergecasts are sufficient. ��

374 Q. Bramas et al.

4 Randomized Adversary

The randomized adversary constructs the sequence of interactions by picking
a couple of nodes among all possible couples, uniformly at random. Thus, the
underlying graph is a complete graph of n nodes (including the sink) and every
interaction occurs with the same probability p = 2

n(n−1) .
In this section, the complexity is computed on expectation (because the

adversary is randomized) and no more “in the worst case” as previously. In
this case, considering the number of interactions is sufficient to represent the
complexity of an algorithm. We see in Theorem 8 that an offline algorithm ter-
minates in Θ(n log(n)) interactions w.h.p. This bound gives a way to convert the
complexity in term of number of interaction to a cost. Indeed, if an algorithm
A terminates in O(n2) interactions, then it performance is O(n/ log(n)) times
worse than the offline algorithm and costA(I) = O(n/ log(n)) for a randomly
generated sequence of interactions I. For the sake of simplicity, in the remaining
of the section, we give the complexity in terms of number of interactions.

Since an interaction does not depend on previous interactions, the algorithms
we propose here are oblivious i.e., they do not modify the memory of the nodes.
In more details, the output of our algorithms depends only on the current inter-
action and on the information available in the node.

First, we introduce three oblivious DODA algorithms. For the sake of sim-
plicity, we assume that the output is ignored if the interacting nodes do not both
have a data. Also, to break symmetry, we suppose the nodes that interact are
given as input ordered by their identifiers.

– Waiting (W ∈ D∅
ODA): A node transmits only when it is connected to the sink

s: W(u1, u2, t) equals ui if ui = s, and ⊥ otherwise.
– Gathering (GA ∈ D∅

ODA): A node transmits its data when it is connected
to the sink s or to a node having data: GA(u1, u2, t) equals u2 if u2 = s,
otherwise it equals u1

– Waiting Greedy with parameter τ ∈ N (WGτ ∈ D∅
ODA(meetT ime)): The node

with the greatest meet time transmits, if its meet time is greater than τ :

WGτ : (u1, u2, t)=

⎧
⎨
⎩

u1 if m1 ≤ m2 ∧ τ < m2

u2 if m1 > m2 ∧ τ < m1

⊥ otherwise
with

m1 = u1.meetT ime(t)
m2 = u2.meetT ime(t)

One can observe that after time τ , the algorithm acts as the Gathering algorithm.

4.1 Lower Bounds

We show a lower bound Ω(n2) on the number of interactions required for DODA
against the randomized adversary. The lower bound holds for all algorithms
(including randomized ones) that do not have knowledge about future of the
evolving network. The lower bound matches the upper bound of the Gathering
algorithm given in the next subsection. This implies that this bound is tight.

Distributed Online Data Aggregation in Dynamic Graphs 375

Theorem 7. The expected number of interactions required for DODA is Ω(n2).

Proof. We show that the last data transmission requires Ω(n2) interactions in
expectation.

We consider any (randomized) algorithm A and its execution for DODA.
Before the last transmission (from some node, say v, to the sink s), only v has
data except for s.

The probability that v and s interacts in the next interaction is 2
n(n−1) . Thus,

the expected number EI of interactions required for v to transmit to s is:

EI =
n(n − 1)

2

So that the whole aggregation requires at least EI = Ω(n2). ��
We also give a tight bound for algorithms that know the full sequence of

interactions.

Theorem 8. The best algorithm in D∅
ODA(full knowledge) terminates in

Θ(n log(n)) interactions, in expectation and with high probability.

Proof. First, we show that the expected number of interactions of a broadcast
algorithm is Θ(n log n). The first data transmission occurs when the source node
(say v0) interacts with another node. The probability of occurrence of the first
data transmission is 2(n−1)

n(n−1) . After the (i − 1)-th data transmission, i nodes (say
Vi−1 = {v0, v1, . . . , vi−1}) have the data and the i-th data transmission occurs
when a node in Vi−1 interacts with a node not in Vi−1. This happens with
probability 2i(n−i)

n(n−1) .
Thus, if X is the number of interactions required to perform a broadcast,

then we have:

E(X) =
n−1∑
i=1

n(n − 1)
2i(n − i)

=
n(n − 1)

2

n−1∑
i=1

1
i(n − i)

=
n(n − 1)

2n

n−1∑
i=1

(
1
i

+
1

n − i
)

= (n − 1)
n−1∑
i=1

1
i

∈ Θ(n log n).

And the variance is

V ar(X) =

n−1∑

i=1

(
1 − 2i(n− i)

n(n− 1)

)
/

(
2i(n− i)

n(n− 1)

)2

= n(n− 1)

n−1∑

i=1

n(n− 1) − 2i(n− i)

(2i(n− i))2

= O

⎛

⎝n4

�n/2�−1∑

i=1

(
1

i(n− i)

)2
⎞

⎠

The last sum is obtained from the previous one by observing that it is symmetric
with respect to the index i = n/2, and the removed elements (i = �n/2� and

376 Q. Bramas et al.

possibly i = �n/2�) are negligible. We define f : x �→ 1
x2(n−x)2 . Since f is

increasing between 1 and n/2, we have

n/2�−1∑
i=1

f(i) ≤
∫ n/2

1

f(x)dx =
(n−2)n

n−1 + 2 log(n − 1)
n3

= O

(
1
n2

)

So that the variance is in O(n2). Using the Chebyshev’s inequality, we have

P (|X − E(X)| > n log(n)) = O

(
1

log2(n)

)

Therefore, a sequence of Θ(n log(n)) interactions is sufficient to perform a broad-
cast with high probability. By reversing the order of the interactions in the
sequence of interactions, this implies that a sequence of Θ(n log(n)) interac-
tions is also sufficient to perform a convergecast with the same probability.
Aggregating data along the convergecast tree gives a valid data aggregation
schedule. ��
Corollary 1. The best algorithm in DODA(future) terminates in Θ(n log(n))
interactions, in expectation and with high probability.

Proof. If each node starts with its own future, O(n log(n)) interactions are suf-
ficient to retrieve with high probability the future of the whole network. Then
O(n log(n)) interactions are sufficient to aggregate all the data with the full
knowledge. ��

4.2 Algorithm Performance Without Knowledge

Without any knowledge, we show that the Gathering algorithm is optimal.

Theorem 9. The expected number of interactions the Waiting requires to termi-
nate is O(n2 log(n)). The expected number of interactions the Gathering requires
to terminate is O(n2).

4.3 Algorithm Performance with meetT ime

In this subsection we study the performance of our algorithm Waiting Greedy,
find the optimal value of the parameter τ and prove that this is the best possible
algorithm with only the meetT ime information (even if nodes have unbounded
memory). We begin by a lemma to find how many interactions are needed to
have a given number of nodes interacting with the sink.

Lemma 1. If f is a function such that f(n) = o(n) and f(n) = ω(log(n)) then,
in nf(n) interactions, Θ(f(n)) nodes interact with the sink w.h.p.

Distributed Online Data Aggregation in Dynamic Graphs 377

Now we can state our theorem about the performance of Waiting Greedy
depending on the parameter τ . To prove this Theorem, we partition the set of
nodes in two important subsets, L that contains the nodes that interact with
the sink between time τ/2 and τ and Lc its complementary. We show that the
duration of our algorithm comes from two phases, one before time τ/2 when the
nodes in Lc have a high probability to meet another node in L, and one after
τ/2 when the nodes in L meet the sink directly.

Theorem 10. Let f be a function such that f(n) = o(n) and f(n) = ω(log(n)).
The algorithm Waiting Greedy with τ = Θ

(
max

(
nf(n), n2 log(n)/f(n)

))
termi-

nates in τ interactions w.h.p.

Proof. To have an upper bound on the number of interactions needed by Waiting
Greedy to terminate, we decompose the execution in two phases, one between
time 0 and a time t1 and the other between time t1 and a time t2 = τ (for
simplicity, one can take t1 = τ/2). In the last phase, a set of nodes L ⊂ V
interacts at least once directly with the sink. Nodes in L do not transmit to
anyone in the first phase by definition of the algorithm (they have a meetTime
smaller than τ). Nodes in L help the other nodes (in Lc = V \L) to transmit
their data in the first phase. Maybe nodes in Lc can transmit to L in the second
phase, but we do not take this into account, that is why it is an upper bound.

If a node u in Lc interacts with a node in L in the first phase, either it
transmits its data, otherwise (by definition of the algorithm) it has a meetTime
smaller than τ (and smaller than t1 because it is not in L). In every case, a node
in Lc that meets a node in L in the first phase, transmits its data. To prove
the theorem i.e., in order for the algorithm to terminates before τ with high
probability, we prove two claims: (a) the number of nodes in L is f(n) with high
probability if t2 − t1 = nf(n) and (b) all nodes in Lc interact with a node in
L before t1 with high probability if t1 = Θ(n2 log(n)/f(n)). The first claim is
implied by Lemma 1. Now we prove the second claim.

Let X be the number of interactions required for the nodes in Lc to meet a
node in L. The probability of the i-th interaction between a node in Lc (with
a data) and a node in L, after i − 1 such interactions already occurred, is
2f(n)(n − f(n) − i)/n(n − 1). Then we have:

E(X) =
n−f(n)−1∑

i=1

n(n − 1)
2f(n)(n − f(n) − i)

=
n(n − 1)
2f(n)

n−f(n)−1∑
i=1

1
n − f(n) − i

∼+∞
n2

2f(n)
log(n − f(n)) =

n2

2f(n)
log(n(1 − f(n)/n)) ∼+∞

n2 log(n)
2f(n)

V ar(X) =
n−f(n)−1∑

i=1

(
1 − 2f(n)(n−f(n)−i)

n(n−1)

)

(
2f(n)(n−f(n)−i)

n(n−1)

)2 ∼
n−f(n)−1∑

i=1

n4

4f(n)2n2
∼ n3

4f(n)2

Like previously, using the Chebyshev’s inequality, this implies that X =
O

(
n2 log(n)

f(n)

)
w.h.p. ��

378 Q. Bramas et al.

Corollary 2. The algorithm Waiting Greedy, with τ = Θ(n3/2
√

log(n)) termi-
nates in τ interactions with high probability.

Proof. In the last theorem, the bound O
(
max

(
nf(n), n2 log(n)/f(n)

))
is mini-

mized by the function f : n �→ √
n log(n). ��

From the previous corollary, we maximize the performance of our algorithm
by chosing τ = Θ(n3/2

√
log(n)). To prove that no other algorithm has better

performance, we show that, if an algorithm terminates before Θ(n3/2
√

log(n))
interactions, then the number of nodes that do no meet the sink is so big that
they cannot aggregate their data quickly enough. Indeed, when two nodes do
not meet the sink before Θ(n3/2

√
log(n)), then their meetT ime information is

useless for deciding which one should transmit, so we can analyze the aggregation
speed of a large subset of the node.

Theorem 11. Waiting Greedy with τ = Θ(n3/2
√

log(n)) is optimal in
DODA(meetT ime).

Proof. For the sake of contradiction, we suppose the existence of an algorithm
A ∈ DODA(meetT ime) that terminates in T (n) interactions with high probabil-
ity, with T (n) = o

(
n3/2

√
log(n)

)
. Without loss of generality we can suppose

that A does nothing after T (n) interactions. Indeed, the algorithm A′ that exe-
cutes A up to T (n) and does nothing afterward has the same upper bound (since
the bound holds with high probability).

Let L be the set of nodes that interact directly with the sink during the first
T (n) interactions. Let Lc be its complementary in V \{s}. We know from Lemma
1 that #L = O(T (n)/n) = o

(√
n log(n)

)
w.h.p.

We can show that T (n) interactions are not sufficient for all the nodes in
Lc to interact with nodes in L. If nodes in Lc want to send their data to the
sink, some data must be aggregated among nodes in Lc, then the remaining
nodes in Lc that still own data must interact with a node in L before T (n)
interactions (this is not even sufficient to perform the DODA, but is enough to
reach a contradiction).

When two nodes in Lc interact, their meetTime (that are greater than T (n))
and the previous interactions are independent with the future interactions occur-
ring before T (n). This implies that when two nodes in Lc interact, using those
information to decide which node transmits is the same as choosing the sender
randomly. From Theorem 9, this implies that the optimal algorithm to aggregate
data in Lc is the Gathering algorithm.

Now, we show that, even after the nodes in Lc use the Gathering algorithm,
there is with high probability at least one node in Lc that still owns data and
that does not interact with any node in L. This node prevents the termina-
tion of the algorithm before T (n) interactions with high probability, which is a
contradiction.

Formally, we have the following lemmas. Due to space constraints, the proofs
can be found in a technical report [5].

Distributed Online Data Aggregation in Dynamic Graphs 379

Lemma 2. Let g(n) be the number of nodes in Lc. After using the Gathering
algorithm during T (n) interactions, the number of nodes in Lc that still own
data is in ω(

√
n/ log(n)) w.h.p.

Lemma 3. Let H ⊂ Lc be the nodes in Lc that still own data after the gathering.
Then, T (n) interactions are not sufficient for all the nodes in H to interact with
nodes in L, w.h.p.

End of the Proof of Theorem 11. We have shown that T (n) interactions are
not sufficient for the nodes in Lc to transmit their data (directly or indirectly)
to the nodes in L. Indeed, we have shown that the nodes in Lc can apply the
gathering algorithm so that ω(

√
n log(n)) nodes in Lc still own data with high

probability. But, with high probability, one of the ω(
√

n log(n)) remaining nodes
does not interact with a node in L in T (n) interactions. This implies that, with
high probability, at least one node cannot send its data to the sink in T (n)
interactions and an algorithm A with such a bound T does not exist. ��

5 Concluding Remarks

We defined and investigated the complexity of the distributed online data aggre-
gation problem in dynamic graphs where interactions are controlled by an adver-
sary. We obtained various tight complexity results for different adversaries and
node knowledge, that open several scientific challenges:

1. What knowledge has a real impact on the lower bounds or algorithm effi-
ciency?

2. What results can be generalized to a model where nodes can transmit a
constant number of times instead of only once?

3. Can randomized adversaries that use a non-uniform probabilistic distribution
alter significantly the bounds presented here in the same way as in the work
by Yamauchi et al. [15]?

References

1. Abshoff, S., Meyer auf der Heide, F.: Continuous aggregation in dynamic ad-hoc
networks. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 194–
209. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9 16

2. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007)

3. Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On tree-based convergecasting in
wireless sensor networks. In: 2003 IEEE Wireless Communications and Networking,
WCNC 2003, vol. 3, pp. 1942–1947. IEEE (2003)

4. Bramas, Q., Masuzawa, T., Tixeuil, S.: Distributed online data aggregation in
dynamic graphs. In: 36th IEEE International Conference on Distributed Com-
puting Systems, ICDCS 2016, Nara, Japan, 27–30 June 2016, pp. 747–748. IEEE
Computer Society (2016)

https://doi.org/10.1007/978-3-319-09620-9_16

380 Q. Bramas et al.

5. Bramas, Q., Masuzawa, T., Tixeuil, S.: Distributed online data aggregation in
dynamic graphs. arXiv preprint arXiv:1602.01065 (2016)

6. Bramas, Q., Tixeuil, S.: The complexity of data aggregation in static and dynamic
wireless sensor networks. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS,
vol. 9212, pp. 36–50. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21741-3 3

7. Casteigts, A., Chaumette, S., Ferreira, A.: Characterizing topological assump-
tions of distributed algorithms in dynamic networks. In: Kutten, S., Žerovnik, J.
(eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 126–140. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11476-2 11

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

9. Chen, X., Hu, X., Zhu, J.: Minimum data aggregation time problem in wireless
sensor networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp.
133–142. Springer, Heidelberg (2005). https://doi.org/10.1007/11599463 14

10. Cornejo, A., Gilbert, S., Newport, C.: Aggregation in dynamic networks. In: Pro-
ceedings of the 2012 ACM Symposium on Principles of Distributed Computing,
pp. 195–204. ACM (2012)

11. Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network aggregation techniques
for wireless sensor networks: a survey. IEEE Wirel. Commun. 14(2), 70–87 (2007)

12. Nguyen, T.D., Zalyubovskiy, V., Choo, H.: Efficient time latency of data aggrega-
tion based on neighboring dominators in WSNs. In: 2011 IEEE Global Telecom-
munications Conference (GLOBECOM 2011), pp. 1–6. IEEE (2011)

13. Ren, M., Guo, L., Li, J.: A new scheduling algorithm for reducing data aggregation
latency in wireless sensor networks. Int. J. Commun. Netw. Syst. Sci. 3(8), 679
(2010)

14. XiaoHua, X., Li, M., Mao, X.F., Tang, S., Wang, S.G.: A delay-efficient algorithm
for data aggregation in multihop wireless sensor networks. IEEE Trans. Parallel
Distrib. Syst. 22(1), 163–175 (2011)

15. Yamauchi, Y., Tixeuil, S., Kijima, S., Yamashita, M.: Brief announcement: proba-
bilistic stabilization under probabilistic schedulers. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 413–414. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33651-5 34

16. Yu, B., Li, J., Li, Y.: Distributed data aggregation scheduling in wireless sensor
networks. In: IEEE INFOCOM 2009, pp. 2159–2167. IEEE (2009)

http://arxiv.org/abs/1602.01065
https://doi.org/10.1007/978-3-319-21741-3_3
https://doi.org/10.1007/978-3-319-21741-3_3
https://doi.org/10.1007/978-3-642-11476-2_11
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/11599463_14
https://doi.org/10.1007/978-3-642-33651-5_34
https://doi.org/10.1007/978-3-642-33651-5_34

	Distributed Online Data Aggregation in Dynamic Graphs
	1 Introduction
	2 Model
	3 Oblivious and Online Adaptive Adversaries
	3.1 Impossibility Results when Nodes Have No Knowledge
	3.2 When Nodes Know the Underlying Graph
	3.3 If Nodes Know Their Own Future

	4 Randomized Adversary
	4.1 Lower Bounds
	4.2 Algorithm Performance Without Knowledge
	4.3 Algorithm Performance with meetTime

	5 Concluding Remarks
	References

