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Abstract. In this paper, we have developed two non-blocking algo-
rithms for maintaining acyclicity in a concurrent directed graph. The
first algorithm is based on a wait-free reachability query and the second
one on partial snapshot-based obstruction-free reachability query. Inter-
estingly, we are able to achieve the acyclic property in a dynamic setting
without (1) making use of helping descriptors by other threads, or (2)
clean double collect mechanism. We present a proof to show that the
graph remains acyclic at all times in the concurrent setting. We also
prove that the acyclic graph data-structure operations are linearizable.
We implement both the algorithms in C++ and test through several
micro-benchmarks. Our experimental results illustrate an average of 7x
improvement over the sequential and global-lock implementation.

Keywords: Acyclic graph · Concurrent data structure ·
Linearizability · Lock-freedom

1 Introduction

A graph is a common data-structure that can model many real-world objects and
pairwise relationships among them. Graphs have a huge number of applications
in various fields like social networking, VLSI design, road networks, graphics,
blockchains and many more. Usually, these graphs are dynamic in nature, that
is, they undergo dynamic changes like addition and removal of vertices and/or
edges [9]. These applications also need data-structure which supports dynamic
changes and can expand at run-time depending on the availability of memory in
the machine.

Nowadays, multi-core systems have become ubiquitous. To fully harness the
computational power of these systems, it has become necessary to design efficient
data-structures which can be executed by multiple threads concurrently. In the
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past decade, there have been several efforts to port sequential data-structures
to a concurrent setting, like stacks [12], queues [2,16], sets [10,11,17,23], trees
[5,19].

Most of these data-structure use locks to handle mutual exclusion while doing
any concurrent modifications. However, in an asynchronous shared-memory sys-
tem, where an arbitrary delay or a crash failure of a thread is possible, a lock-
based implementation is vulnerable to arbitrary delays or deadlock. For instance,
a thread could acquire a lock and then sleep (or get swapped out) for a long
time, or the thread could get involved in a deadlock with the other threads
while obtaining locks, or even crash after obtaining a lock.

On the other hand, in a lock-free data-structure, threads do not acquire locks.
Instead, they use atomic hardware instructions such as compare-and-swap, test-
and-set etc. These instructions ensure that at least one non-faulty thread is
guaranteed to finish its operation in a finite number of steps. Therefore, lock-
free data-structures are highly scalable and naturally fault-tolerant.

Although several concurrent data-structures have been developed, concurrent
graph data-structures and the related operations are still largely unexplored. In
several graph applications, one of the crucial requirements is preserving acyclic-
ity. Acyclic graphs are often applied to problems related to databases, data
processing, scheduling, finding the best route during navigation, data compres-
sion, blockchains etc. Applications relying on graphs mostly use a sequential
implementation and the accesses to the shared data-structures are synchronized
through the global-locks, which causes serious performance bottlenecks.

A relevant application is Serialization Graph Testing (SGT) in Databases
[24, Chap 4] and Transactional Memory (TM) [22]. SGT requires maintaining
an acyclic graph on all concurrently executing (database or TM) transactions
with edges between the nodes representing conflicts among them. In a concur-
rent scenario, where multiple threads perform different operations, maintaining
acyclicity without using locks is not a trivial task. Indeed, it requires every
shared memory access to be checked for the violation of the acyclic property,
which necessitates that all the operations be efficient.

Apart from SGT, several popular blockchains maintain acyclic graphs such as
tree structure (Bitcoin [3,18], Ethereum [4] etc.) or general DAGs (Tangle [21]).

1.1 Contributions

In this paper, we present an efficient non-blocking concurrent acyclic directed
graph data-structure. Its operations are similar to the concurrent graph proposed
by Chatterjee et al. [6] with some non-trivial modifications. The contributions
of our work are summarized below:

1. We describe an Abstract Data Type (ADT) that maintains an acyclic directed
graph G = (V,E). It comprises of the following methods on the sets V and
E: (1) Add Vertex: AcyAddV (2) Remove Vertex: AcyRemV, (3) Contains
Vertex: AcyConV (4) Add Edge: AcyAddE (5) Remove Edge: AcyRemE
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and (6) Contains Edge: AcyConE. The ADT remains acyclic after comple-
tion of any of the above operations in G. The acyclic graph is represented as
an adjacency list.

2. We present an efficient concurrent non-blocking implementation of the ADT
(Sect. 3). We present two approaches for maintaining acyclicity: the first one
is based on a wait-free reachability query(SCR: Single Collect Reachable) and
the second one is based on obstruction-free reachability query (DCR: Double
Collect Reachable) similar to the GetPath method of Chatterjee et al. [6]
(Sect. 4).

3. We prove the correctness by showing the operations of the concurrent acyclic
graph data-structure are linearizable [14]. We also prove the non-blocking
progress guarantee, specifically we prove: (a) The operations AcyConV and
AcyConE are wait-free, only if the vertex keys are finite; (b) Among the
two algorithms for maintaining acyclicity, we show that the first algorithm
based on searchability is wait-free, whereas the second algorithm based on
reachability queries is obstruction-free and (c) The operations AcyAddV,
AcyRemV, AcyConV, AcyAddE, AcyRemE, and AcyConE are lock-
free Sect. 5.

4. We implemented the non-blocking algorithms in C++ and evaluated over a
number of micro-benchmarks. Our experimental results depict on an aver-
age of 7x improvement over the sequential and global lock implementation
(Sect. 6).

1.2 Related Work

Kallimanis and Kanellou [15] presented a concurrent graph that supports wait-
free edge updates and traversals. They use an adjacency matrix representation
for the graph, with a bounded number of vertices. As a result, their data-
structure does not allow any insertion or deletion of vertices after initialization
of the graph. This may not be adequate for many real-world applications which
need dynamic modifications of vertices as well as unbounded graph size.

A recent work by Chatterjee et al. [6] proposed a non-blocking concurrent
graph data-structure which allows multiple threads to perform dynamic inser-
tion and deletion of vertices & edges. Our paper extends this data-structure to
maintain acyclicity of a directed graph.

1.3 Overview of the Algorithm Design

Before getting into the technical details (in Sect. 3) of the algorithm, we first pro-
vide an overview of the design. We implement an acyclic concurrent unbounded
directed graph as a concurrent list of linked lists [11] also used by Chatterjee et al.
[6]. The vertex-nodes are placed in a sorted linked-list and the neighboring ver-
tices of each vertex-node are placed in a rooted sorted linked-list of edge-nodes.
To achieve efficient graph traversal, we maintain a pointer from each edge-node
to its corresponding vertex-node. Each vertex-node’s edge-list and vertex-list are
lock-free with respect to concurrent update and lookup operations.
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As we know that lock-freedom is not composable [8] and our algorithm is
a composition of lock-free operations, we prove the liveness of our algorithm
independent of the lock-free list arguments. In addition to that, we also propose
some refined optimizations for the concurrent acyclic graph operations that not
only enhance the performance but also simplify the design.

Our main requirement is preserving acyclicity and one can see that a cycle is
created only after inserting an edge to the graph. So, after the insertion of a new
edge to the graph, we verify if the resulting graph is acyclic or not. If it creates a
cycle, we simply delete the inserted edge from the graph. However, the challenge
is that these intermediate steps must be oblivious to the user and the graph must
always appear to be acyclic. We ensure this by adding a transit field to the edges
that are temporarily added. To verify the acyclic property of the graph, we pro-
pose two efficient algorithms: first one based on a wait-free reachability query and
the second one based on obstruction-free reachability query similar to the Get-

Path operation of [6]. Both the reachability algorithms perform breadth-first
search (BFS) traversal. For the sake of efficiency, we implement BFS traversal
in a non-recursive manner. However, in order to achieve overall performance, we
do not make use of helping descriptors for the reachability queries.

2 System Model and Preliminaries

The Memory Model. We consider an asynchronous shared-memory model
with a finite set of p processors accessed by a finite set of n threads. The non-
faulty threads communicate with each other by invoking methods on the shared
objects. We run our acyclic graph data-structure on a shared-memory multi-
core system with multi-threading enabled which supports atomic read, write,
fetch-and-add (FAA) and compare-and-swap (CAS) instructions.

Correctness. We consider linearizability proposed by Herlihy and Wing [14] as
the correctness criterion for the graph operations. We assume that the execution
generated by a data-structure is a collection of method invocation and response
events. Each invocation of a method call has a subsequent response. An execution
is linearizable if it is possible to assign an atomic event as a linearization point
(LP) inside the execution interval of each method such that the result of each
of these methods is the same as it would be in a sequential execution in which
the methods are ordered by their LPs [14].

Progress. The progress properties specify when a thread invoking operations
on the shared memory objects completes in the presence of other concurrent
threads. In this context, we present an acyclic graph implementation with
operations that satisfies lock-freedom, based on the definitions in Herlihy and
Shavit [13].
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3 The Data Structure

3.1 Abstract Data Type

An acyclic graph is defined as a directed graph G = (V,E), where V is the set of
vertices and E is the set of directed edges. Each edge in E is an ordered pair of
vertices belonging to V . Every vertex has an immutable unique key. The vertex
represented by the key k is denoted k. A directed edge from the vertex k to l is
denoted as e(k, l) ∈ E.

For a concurrent acyclic graph, we define following ADT operations:

1. AcyAddV(k) adds a vertex k to V , only if k /∈ V and then returns true,
otherwise it returns false.

2. AcyRemV(k) deletes a vertex k from V , only if k ∈ V and then returns
true, otherwise it returns false. Once a vertex k is deleted successfully, all
its outgoing and incoming edges are also removed.

3. AcyConV(k) returns true only if k ∈ V , otherwise it returns false.
4. AcyAddE(k, l) operation is slightly involved and works as follows.

(a) It adds an edge e(k, l) to E, if (i) k ∈ V and l ∈ V (ii) e(k, l) /∈ E
and adding it does not create a cycle in the graph. If either of the
conditions (i) or (ii) are not satisfied, the edge is not added to E and
it returns false along with an indicative strings VERTEX NOT PRESENT,
EDGE ALREADY PRESENT or CYCLE DETECTED depending on execution.

(b) If both (i) and (ii) conditions mentioned above are true and there is no
concurrent edge addition, then this method adds the edge e(k, l) to E and
returns true along with an indicative string EDGE ADDED.

(c) If both (i) and (ii) conditions, mentioned in Step 4a, are true and there is
a concurrent edge addition (such as e(u, v)) then the edge e(k, l) may or
may not get added to E. In case, e(k, l) gets added to E, then the method
returns true along with an indicative string EDGE ADDED. Otherwise, it
returns false along with CYCLE DETECTED.

There is an inherent non-determinism in this edge addition procedure. It can
be seen from Step 4c that this method may return false in presence of other
concurrent edge additions. But if the primary requirement is to ensure that
the graph remains acyclic such as in SGT or blockchains, then this behaviour
is acceptable.

5. AcyRemE(k, l) deletes the edge e(k, l) from E, only if e(k, l) ∈ E and k ∈ V
and l ∈ V then it returns true along with an indicative string EDGE REMOVED.
If k /∈ V or l /∈ V , it returns false along with a string VERTEX NOT PRESENT.
If e(k, l) /∈ E, it returns false along with a string EDGE NOT PRESENT.

6. AcyConE(k, l) if e(k, l) ∈ E and k ∈ V and l ∈ V then it returns true along
with a string EDGE PRESENT, otherwise it returns false along with a string
VERTEX OR EDGE NOT PRESENT.

3.2 The Data-Structures

The algorithm uses three kinds of nodes structures: VNode, ENode and BFSNode.
These structures and the adjacency list representation of an acyclic graph are
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shown in Fig. 1. The VNode structure has five fields, two pointers vnext and
enext, an immutable key k, an atomic counter ecount, and a VisitedArray
array. The use of ecount and VisitedArray are described in the later section.
The pointer vnext is an atomic pointer pointing to the next VNode in the vertex-
list, whereas, an enext pointer points to the edge head of the edge-list of a VNode.
Similarly, an ENode structure has three fields, two pointers enext and pointv
and an immutable key l. The enext is an atomic pointer pointing to the next
ENode in the edge-list and pointv points to the corresponding VNode, which
helps direct access to its VNode while performing any traversal like BFS, DFS,
etc. We assume that all the VNodes have a unique identification key k and all
the adjacency ENodes of a VNode have also a unique key l.

Fig. 1. Node structures used in the acyclic graph data-structure: ENode, VNode and
BFSNode. (a) An acyclic graph (b) The concurrent acyclic graph representation of data-
structure for (a).

A BFSNode has three pointers n, next and p, and a counter lecount. The
pointer n holds the corresponding VNode’s address, next points to the next
BFSNode in the BFS-list and p points to the corresponding parent. The local
counter lecount stores n’s ecount value which is used in the CompareTree

and ComparePath methods.
We initialize the vertex-list with dummy head(vh) and tail(vt) (called sen-

tinels) with values -∞ and ∞ respectively. Similarly, each edge-lists is also ini-
tialized with dummy head (eh) and tail (et) (refer Fig. 1).

Our acyclic graph data-structure maintains some invariants: (a) the vertex-
list is sorted based on the VNode’s key value k and each unmarked VNode is
reachable from vh, (b) also each of the edge-lists are sorted based on the ENode’s
key value l and unmarked ENodes are reachable from eh of the corresponding
VNode and (c) the concurrent graph always stays acyclic.

4 Working of the Non-blocking Algorithm

In this section, we describe the technical details of all the acyclic graph opera-
tions.
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Pseudo-code Convention: The acyclic graph algorithm is depicted in Figs. 2,
3, 4, 6. We use p.x to access the member field x of a class object pointer p.To
return multiple variables from an operation, we use 〈x1, x2, . . . , xn〉. To avoid the
overhead of another field in the node structure, we use bit-manipulation: we use
last two significant bits of a pointer p. We define six methods that manipulate
these bits: (a) isMarked(p) and isTransit(p), return true if the last two signif-
icant bits of pointer p are set to 01 and 10, respectively, else, both return false,
(b) MarkedRef(p), UnMarkedRef(p), AddedRef(p) and TransitRef(p)
sets the last two significant bits of the pointer p to 01, 00, 11 and 10, respectively.
An invocation of AcyCVnode(k) creates a new VNode with key k. Similarly,
an invocation of AcyCEnode(k) creates a new ENode with key k in TRANSIT
state (explained below). Whereas, an invocation of AcyCBnode(k) creates a
new BFSNode with vertex k. For a newly created VNode, the pointer fields are
NULL. Similarly, a newly created ENode initialises its pointer fields to NULL as
well. In case of a new BFSNode, the pointer field n, next and p are initialized
with k, NULL and parent node, respectively. Each slot of a VisitedArray in each
VNode is initialized to 0 and the counter ecount is also initialized to 0.

To ensure acyclicity, we use a operation descriptor with a pointer in a single
memory-word with bit-masking. In case of an x86-64 bit architecture, memory
has a 64-bit boundary and the last three least significant bits are unused. So, our
operator descriptor uses the last two significant bit of the pointer. If the last two
bits are set to: (a) 01 then the pointer is MARKED, (b) 10 indicates the pointer is
in TRANSIT, (c) 11 value of the pointer indicates ADDED and (d) 00 indicates the
pointer is unused and unmarked.

We next describe the vertex and edge operations. We use the term method
and operation interchangeably in the rest of this document.

4.1 Acyclic Vertex Operations

The acyclic vertex operations AcyAddV, AcyRemV and AcyConV are
depicted in Fig. 2. The AcyConV method does not help other threads in the
process of traversal from the vertex head vh to the destination vertex. If the keys
in the vertex set are finite, then the AcyConV operation is wait-free.

An AcyAddV(key) operation is invoked by passing the key to be inserted,
in Lines 1 to 14. It first traverses the vertex-list in a lock-free manner starting
from vh using LocV procedure (Line 3) until it finds a vertex with its key
greater than or equal to key. In the process of traversal, it physically deletes
all logically deleted VNodes using CAS operation for helping previously pending
AcyRemV operations. Once it reaches the appropriate location, say currv and
has identified its predecessor, say predv, it checks if the key is already present. If
the key is not present, it attempts to add the new VNode, say newv in between
the predv and currv (Line 9) using CAS operation. If the CAS is unsuccessful,
then these steps are retried. On the other hand, if key is already present then
the method returns false.

Like an AcyAddV, an AcyRemV(key) operation is invoked by passing the
key to be deleted, in Lines 15 to 31. It traverses the vertex-list in a lock-free
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manner starting from vh using LocV procedure (Line 17) until it finds a vertex
with its key greater than or equal to key. Similar to the AcyAddV, during the
traversal it physically deletes all logically removed VNodes using CAS operations
for helping other pending AcyRemV operations. Once it reaches the appropriate
location, say currv and its predecessor, say predv, it checks to see if key is already
present. If present, it attempts to remove currv in two steps (like [11]), (a)
atomically marking the vnext of currv using a CAS (Line 23), and (b) atomically
updating the vnext of the predv to point to the vnext of currv using a CAS
(Line 24). On any unsuccessful CAS, these steps are reattempted. If the key is
not present then, this method returns false.

Fig. 2. Pseudo-codes of AcyAddV, AcyRemV, AcyConV and AcyConE

When a vertex is deleted from a graph, all its incoming and outgoing edges
should also get removed. Once a CAS at Line 23 is successful, the vertex is logically
deleted from the vertex-list and its outgoing edges are deleted atomically. Notice
that, all the incoming edges are logically deleted from the corresponding ENodes
of any edge-lists. This is because each ENode has a direct pointer pointv to its
vertex node and calls isMarked to validate the deleted VNode. Finally, these
ENodes are physically deleted using CAS operation by any other helping edge
operation (which is described later).
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An AcyConV(key) operation, first traverses the vertex-list in a wait-free
manner skipping all the logically marked VNodes until it finds a vertex with
its key greater than or equal to key (in Lines 32 to 42). Once it reaches the
appropriate VNode, it checks if its key value is equal to the key and if it is
unmarked, then it returns true otherwise returns false. AcyConV method
does not help other threads during the traversal.

4.2 Acyclic Edge Operations

The acyclic edge operations AcyAddE and AcyRemE are depicted in Fig. 3
and AcyConE is depicted in Fig. 2.

Fig. 3. Pseudo-codes of AcyAddE and AcyRemE.

An AcyAddE(k, l) operation, begins in Lines 58 to 86 by validating the
presence of the k and l in the vertex-list by invoking AcyConVPlus (Line 59)
and validating that both the vertices are unmarked (Line 64). If the validations
fail, it returns false along with an indicative string VERTEX NOT PRESENT. Once
the validation succeeds, LocE is invoked(Line 67) to find the location to insert
e(k, l) in the edge-list of the k. The operation LocE works similar to the help-
ing method LocV; except that in the traversal phase, it physically deletes two
kinds of logically deleted ENodes (to help a pending incompleted AcyAddE

or AcyRemE operations): (a) ENodes whose VNode has already been logically
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deleted using a CAS, and (b) the logically deleted ENodes using a CAS. The opera-
tion LocE traverses the edge-list until it finds an ENode with its key greater than
or equal to l. Once it reaches the appropriate location, say curre and its prede-
cessor, say prede, it checks if the key l is already present. If the key is already
present, it simply returns false along with an indicative string EDGE ALREADY
PRESENT. Otherwise, it attempts a CAS to add a new e(k, l) with TRANSIT state
in between prede and curre (Line 75). On an unsuccessful CAS, the operation is
re-tried.

Once the edge e(k, l) is inserted in a transit state, it invokes the reachability
method to test whether this edge has created a cycle. As explained earlier, this
method returns false if adding this edge creates a cycle. Further, the reachability
method can return false even if this edge does not create a cycle in presence of
other concurrent AcyAddEmethods.

As mentioned earlier, we have proposed two algorithms to maintain the
acyclicity property. First one is the wait-free reachable algorithm SCR, and the
second one is the obstruction-free reachable algorithm DCR. The detailed work-
ing of these algorithms is given in the subsequent subsections. If the edge e(k, l)
creates a cycle, we delete it by setting its state from TRANSIT to MARKED (Line 81)
and return false along with an indicative string CYCLE DETECTED. Otherwise,
we set the state from TRANSIT to ADDED (Line 77) and return true along with
an indicative string EDGE ADDED. Like AcyAddE, an AcyRemE(k,l) operation
(Lines 87 to 111), first validates the presence of the corresponding VNodes and
check if they are unmarked. If the validations fail, it returns false along with
an indicative string VERTEX NOT PRESENT. Once the validation succeeds, it finds
the location to delete the e(k, l) in the edge-list of the k. Similar to AcyAddE,
in the traversal phase, it also physically deletes two kinds of logically deleted
ENodes: (a) ENodes whose VNode has been logically deleted, and (b) the logi-
cally deleted ENodes. It traverses the edge-list until it finds an ENode with its
key greater than or equal to l. Once it reaches the appropriate location, say
curre and its predecessor, say prede, it checks if the key l is already present. If
the key is not present, it returns false along with a string EDGE NOT PRESENT;
otherwise it attempts to remove curre in two steps: (a) atomically marking the
enext of curre using a CAS (Line 102), and then (b) atomically updating the
enext of prede to point to the enext of curre using a CAS (Line 104). On any
unsuccessful CAS, it reattempts this process. After a successful CAS, it returns
true along with a string EDGE REMOVED.

Similarly, an AcyConE(k,l) operation, in Lines 43 to 57, validates the pres-
ence of the corresponding VNodes. Then it traverses the edge-list of k in a wait-
free manner skipping all logically marked ENodes until it finds an edge with its
key greater than or equal to l. Once it reaches the appropriate ENode, checks
its key value equal to l and it is unmarked and not in TRANSIT state and also
k and l are unmarked, then it returns true along with a string EDGE PRESENT
otherwise it returns false along with a sting VERTEX OR EDGE NOT PRESENT.
Like AcyConV, we also do not allow AcyConE for any helping thread in the
process of traversal.
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4.3 Wait-Free Single Collect Reachable Algorithm

In this subsection, we describe one of our algorithms to detect the cycle of a
concurrent graph in a wait-free manner. As mentioned earlier, a cycle can be
only be formed on adding an edge to the graph. The SCR (k,l) operation,
in Lines 112 to 137, performs non-recursive BFS traversal starting from the
vertex k. Reader can refer [7] to know the working of the BFS traversals in
graphs. In the process of BFS traversal, it explores VNodes which are reachable
from k and unmarked. If it reaches l, then it terminates by returning true
to the AcyAddE operation. Then AcyAddE deletes e(k, l) by setting enext
pointer from the TRANSIT state to MARKED state and returns false along with an
indicative string CYCLE DETECTED. If it is unable to reach l from k after exploring
all reachable VNodes through TRANSIT or ADDED or unmarked ENodes, then it
terminates by returning false to the AcyAddE operation. Now AcyAddE

adds e(l) by setting enext pointer from the TRANSIT state to ADDED state and
then it returns true along with an indicative string EDGE ADDED, which preserves
the acyclic property after AcyAddE (Figs. 4 and 5).

In the process of BFS traversal, we have used a VisitedArray (with size
as that of the number of threads) to put all the visited VNodes locally. This is
because multiple threads repeatedly invoke reachable operation concurrently, a
boolean variable or a boolean array would not suffice like in case of sequential
execution. We have used a thread local variable cnt as a counter for the number

Fig. 4. Pseudo-codes of SCR and BFSTreeCollect.
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Fig. 5. An example working of the methods while preserving acyclicity. (a) The initial
graph, T1, T2 and T3 are concurrently performing operations. The corresponding data-
structure is shown in (b). In (c), T3 is traversing the vertex list, while T1 and T2 have
added their corresponding edges in TRANSIT, T state and performing cycle detection. (d)
T1 has succeeded; and changed the status to ADDED, A. However, T2 failed; it changes
the status to MARKED, M . Meanwhile, T3 finds the respective edge. (e) One possible
linearization of this concurrent execution.

of repeated traversals by a thread. So, a VisitedArray slot maintains cnt value
(see Line 116).

However, an ENode in TRANSIT state cannot be removed by any other con-
current thread other than the thread that added it, only if it creates a cycle. The
threads which are performing cycle detection can see all the ENodes in TRANSIT
or ADDED state. Further, a concurrent AcyConE operation will ignore all the
ENodes with TRANSIT state. This ensures that when an ENode is in the ADDED
state, an AcyAddE operation will return true along with a string EDGE ADDED.

However, it is to be noted that with this algorithm, it is possible that an edge
may not get added to the graph even though it does not create a cycle. This can
happen in the following scenario; two threads T1 and T2 are adding edges lying
in the path of a single cycle. In this case, both the threads detect that the newly
added ENode (in TRANSIT state) has led to the formation of a cycle and both may
delete their respective edges. However, in a sequential execution, only one of the
edges would be removed. But, this implementation is correct w.r.t our sequential
specification (thereby preserving our correctness criteria, linearizability) as the
graph at the end of each operation remains acyclic. The proof of the acyclicity
is given in the technical report [20].

Although the wait-free SCR algorithm does not add an edge at times even
when it does not create a cycle, it can be seen its working is non-trivial. A
trivial algorithm can always return false for AddEdge while not violating
the specification and hence satisfying linearizability. SCR algorithm is much
stronger and allows insertion of edges even in the presence of concurrent updates,
as explained in the working.

4.4 Obstruction-Free Double Collect Reachable Algorithm

In this subsection, we present an obstruction-free reachability, DCR algorithm,
which is designed based on the atomic snapshot algorithm by Afek et al. [1] and
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reachable algorithm by Chatterjee et al. [6]. There is no non-determinism in the
DCR algorithm. It never fails to add an edge if the edge does not create a cycle.
However, unlike wait-free SCR, DCR is obstruction-free. It returns only in the
absence of any other concurrent updates.

The DCR (k,l) algorithm, in Lines 167 to 175, performs a Scan starting
from k. It checks whether l is reachable from k. This reachable information is
returned to the AcyAddE operation and then AcyAddE decides whether to
add e(k, l) (is in the TRANSIT state) to the edge-list of k.

The Scan method, in Lines 176 to 191, first creates two BFS-trees, otree
and ntree to hold the VNodes in two consecutive BFS traversal. It performs
repeated BFS-tree collection by invoking BFSTreeCollect until two consec-
utive collects are the same. The BFSTreeCollect procedure, in Lines 138 to
166, performs a non-recursive BFS traversal starting from the vertex k. In the
process of BFS traversal, it explores all the reachable and unmarked VNodes
through adjacent ENodes which are in the TRANSIT or ADDED or unmarked state.
However, it keeps adding all these VNodes in the bTree(see Line 142, 152, 158).
If it reaches l, then it terminates by returning bTree and a reachable status true
(Line 153) to the Scan method. If it is unable to reach l from k after exploring
all reachable VNodes, then it terminates by returning bTree and a reachable
status false (Line 165) to the Scan method.

Fig. 6. Pseudo-codes of DCR, Scan, CompareTree and ComparePath.
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If two consecutive BFSTreeCollect method return the same boolean sta-
tus value true, then we invoke ComparePath to compare if the two BFS-trees
are same. If both the trees are same, then the Scan method returns true to
DCR operation, which means that l is reachable from k. Then DCR returns
true to the AcyAddE operation and subsequently AcyAddE deletes e(k, l)
by setting enext pointer from the TRANSIT state to the MARKED state and
returns false (this is because e(k, l) created a cycle). However, if two con-
secutive BFSTreeCollect methods return the same status value false, then
we invoke CompareTree to compare if the two BFS-trees are same. If they
are, the Scan method returns false to the DCR operation which implies that
l is not reachable from k. Then DCR returns false to the AcyAddE operation
and then AcyAddE adds e(l) by setting the enext pointer from the TRANSIT
state to ADDED state and then it returns true, which confirms the acyclic prop-
erty after AcyAddE. If two consecutive BFSTreeCollect methods return
the same boolean status value true or false but do not match in the Com-

parePath or CompareTree, then we discard the older BFS-tree and restart
the BFSTreeCollect.

The ComparePath method, in Lines 206 to 219, compares two BFS-tree
based on the path along with the lecount values. It starts from the last BFSNode
and follows the parent pointer p until it reaches to the starting BFSNode or
any mismatch that occurred at a BFSNode. It returns false for any mismatch
occurred, otherwise returns true. Similarly, the CompareTree method, in
Lines 192 to 205, compares two BFS-tree based on all explored VNodes in the
process of BFS traversal and along with the lecount values. It starts from the
starting BFSNode and follows with the next pointer next until it reaches the last
BFSNode or any mismatch that occurred at a BFSNode. It returns false for any
mismatch occurred and otherwise returns true.

To capture the modifications along the path of BFS-traversal, we have an
atomic counter ecount associated with each vertex. During any edge update
operation, before e(k, l) gets physically deleted, the counter ecount of the source
vertex k is certainly incremented at Line 78 or 103 either by the operation that
logically deleted the e(k, l) or any edge helping operations. To verify the double
collect, we compare the BFS-tree along with the counter.

It is to be noted that even though the DCR algorithm is better than SCR as
the specification of AcyAddE operation does not exhibit any non-determinism,
it does not exploit as much concurrency as the SCR algorithm. As explained,
the SCR algorithm is wait-free without using helping descriptors, whereas DCR

is obstruction-free. In Sect. 6, we compared the performance of both these algo-
rithms and as expected observed that SCR performs better.

5 Correctness and Progress Guarantee

In this section, we prove the correctness of our concurrent acyclic graph data-
structure based on LP [14] events inside the execution interval of each of the
operations.
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Theorem 1. The non-blocking concurrent acyclic graph operations are
linearizable.

Theorem 2. For the presented concurrent acyclic graph algorithm, (1). The
operations AcyConV, AcyConE and SCR are wait-free, if the vertex keys
are finite, (2). The operation DCR is obstruction-free and, (3). The operations
AcyAddV, AcyRemV, AcyConV, AcyAddE, AcyRemE, and AcyConE

are lock-free.

The proof of Theorems 1 and 2 can be referred to from the technical report [20].
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Fig. 7. Acyclic graph data-structure.

6 Experimental Evaluation

We performed our tests on 56 cores machine with Intel Xeon (R) CPU E5-2630
v4 running at 2.20 GHz frequency. Each core supports 2 logical threads. Every
core’s L1 cache has 64k, L2 has 256k cache memory private to that core; L3
cache (25 MB) is shared across all cores of a processor. The tests were performed
in a controlled environment, where we were the sole users of the system. The
implementationa has been done in C++ (without any garbage collection) and
threading is achieved by using Posix threads. All the programs were optimized
at -O3 level.

We start our experiments by creating an initial directed graph with 1000 ver-
tices and nearly

(
1000
2

)
/4 ≈ 125000 edges added randomly. Then we create a fixed

number of threads with each thread randomly performing a set of operations cho-
sen by a particular workload distribution. We evaluate the number of operations
finished their execution in unit time and then calculate the throughput. We run
each experiment for 20 seconds and the final data point values are collected
after taking an average of 7 iterations. We present the results for the following
workload distributions for acyclic directed graph over the ordered set of opera-
tions {AcyAddV,AcyRemV,AcyConV,AcyAddE,AcyRemE,AcyConE}
a The source code is available on https://github.com/PDCRL/ConcurrentGraphDS.

https://github.com/PDCRL/ConcurrentGraphDS
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as: (1) High Lookup: (2.5%, 2.5%, 45%, 2.5%, 2.5%, 45%), see the Fig. 7a. (2)
Equal Lookup and Update: (12.5%, 12.5%, 25%, 12.5%, 12.5%, 25%), see the
Fig. 7b. (3) High Update: (22.5%, 22.5%, 5%, 22.5%, 22.5%, 5%), Fig. 7c.

From Fig. 7, we notice that both SCR and DCR algorithms perform well
with the number of threads in comparison with sequential and coarse-lock based
version. The wait-free single collect reachable algorithm performs better than
the obstruction-free double collect reachable algorithm. However, we notice that
the performance of the coarse lock-based algorithm decreases with the number
of threads. Moreover also, it performs worse than even the sequential implemen-
tation. On average, both the non-blocking algorithms are able to achieve nearly
7× times higher throughput over the sequential implementation.

7 Conclusion

In this paper, we presented two efficient non-blocking concurrent algorithms for
maintaining acyclicity in a directed graph where vertices & edges are dynamically
inserted and/or deleted. The first algorithm is based on a wait-free reachability
query, SCR, and the second one is based on partial snapshot-based obstruction-
free reachability query, DCR. Both these algorithms maintain the acyclic prop-
erty of the graph throughout the concurrent execution. We prove that the acyclic
graph data-structure operations are linearizable. We also present a proof to show
that the graph remains acyclic at all times in the concurrent setting. We evalu-
ated both the algorithms in C++ implementation and tested through a number
of micro-benchmarks. Our experimental results show that our proposed algo-
rithms obtain an average of 7x improvement over the sequential implementation
and the coarse lock based ones.

In spite of the performance of the SCR, it suffers from the non-determinism
during concurrent addition of edges. It can be seen that DCR gets rid of the
non-determinism and makes sure that an edge surely gets added if it does not
create a cycle. In the future, we plan to measure the number of false positives
incurred by the SCR algorithm on varying workloads and suggest ways to reduce
them.
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