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Abstract. Software Transactional Memory systems (STMs) have gar-
nered significant interest as an elegant alternative for addressing syn-
chronization and concurrency issues with multi-threaded programming
in multi-core systems. Client programs use STMs by issuing transactions.
STM ensures that transaction either commits or aborts. A transaction
aborted due to conflicts is typically re-issued with the expectation that
it will complete successfully in a subsequent incarnation. However, many
existing STMs fail to provide starvation freedom, i.e., in these systems,
it is possible that concurrency conflicts may prevent an incarnated trans-
action from committing. To overcome this limitation, we systematically
derive a novel starvation free algorithm for multi-version STM. Our algo-
rithm can be used either with the case where the number of versions is
unbounded and garbage collection is used or where only the latest K ver-
sions are maintained, KSFTM . We have demonstrated that our proposed
algorithm performs better than existing state-of-the-art STMs.
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1 Introduction

STMs [1,2] are a convenient programming interface for a programmer to access
shared memory without worrying about consistency issues. STMs often use an
optimistic approach for concurrent execution of transactions (a piece of code
invoked by a thread). In optimistic execution, each transaction reads from the
shared memory, but all write updates are performed on local memory. On com-
pletion, the STM system validates the reads and writes of the transaction. If any
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inconsistency is found, the transaction is aborted, and its local writes are dis-
carded. Otherwise, the transaction is committed, and its local writes are trans-
ferred to the shared memory. A transaction that has begun but has not yet
committed/aborted is referred to as live.

A typical STM is a library which exports the following methods: stm-begin
which begins a transaction, stm-read which reads a transactional object or t-
object, stm-write which writes to a t-object, stm-tryC which tries to commit the
transaction. Typical code for using STMs is as shown in Algorithm 1 which shows
how an insert of a concurrent linked-list library is implemented using STMs.

Correctness: Several correctness-criteria have been proposed for STMs such
as opacity [3], local opacity [4,5]. All these correctness-criteria require that all
the transactions including the aborted ones appear to execute sequentially in
an order that agrees with the order of non-overlapping transactions. Unlike
the correctness-criteria for traditional databases, such as serializability, strict-
serializability [6], the correctness-criteria for STMs ensure that even aborted
transactions read correct values. This ensures that programmers do not see any
undesirable side-effects due to the reads by transaction that get aborted later
such as divide-by-zero, infinite-loops, crashes etc. in the application due to con-
current executions. This additional requirement on aborted transactions is a
fundamental requirement of STMs which differentiates STMs from databases as
observed by Guerraoui & Kapalka [3]. Thus in this paper, we focus on optimistic
executions with the correctness-criterion being local opacity [5].

Algorithm 1. Insert(LL, e): Invoked by a thread to insert an element e into a
linked-list LL. This method is implemented using transactions.

1: retry = 0;
2: while (true) do
3: id = stm-begin (retry);
4: ...
5: v = stm-read(id, x); /* reads value of x as v */
6: ...
7: stm-write(id, x, v′); /* writes a value v′ to x */

8: ...
9: ret = stm-tryC(id); /* stm-tryC can return

commit or abort */
10: if (ret == commit) then break;
11: else retry++;
12: end if
13: end while

Starvation Freedom: In the execution shown in Algorithm 1, there is a pos-
sibility that the transaction which a thread tries to execute gets aborted again
and again. Every time, it executes the transaction, say Ti, Ti conflicts with some
other transaction and hence gets aborted. In other words, the thread is effectively
starved because it is not able to commit Ti successfully.

A well known blocking progress condition associated with concurrent pro-
gramming is starvation-freedom [7, chap. 2], [8]. In the context of STMs,
starvation-freedom ensures that every aborted transaction that is retried
infinitely often eventually commits. It can be defined as: an STM system is said
to be starvation-free if a thread invoking a transaction Ti gets the opportunity
to retry Ti on every abort (due to the presence of a fair underlying scheduler
with bounded termination) and Ti is not parasitic, i.e., Ti will try to commit
given a chance then Ti will eventually commit. Parasitic transactions [9] will not
commit even when given a chance to commit possibly because they are caught
in an infinite loop or some other error.
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Wait-freedom is another interesting progress condition for STMs in which
every transaction commits regardless of the nature of concurrent transactions
and the underlying scheduler [8]. But it was shown by Guerraoui and Kapalka
[9] that it is not possible to achieve wait-freedom in dynamic STMs in which
data sets of transactions are not known in advance. So in this paper, we explore
the weaker progress condition of starvation-freedom for transactional memories
while assuming that the data sets of the transactions are not known in advance.

Related Work on the Starvation-Free STMs: Starvation-freedom in STMs
has been explored by a few researchers in literature such as Gramoli et al. [10],
Waliullah and Stenstrom [11], Spear et al. [12]. Most of these systems work by
assigning priorities to transactions. In case of a conflict between two transactions,
the transaction with lower priority is aborted. They ensure that every aborted
transaction, on being retried a sufficient number of times, will eventually have
the highest priority and hence will commit. We denote such an algorithm as
single-version starvation-free STM or SV-SFTM .

Although SV-SFTM guarantees starvation-freedom, it can still abort many
transactions spuriously. Consider the case where a transaction Ti has the highest
priority. Hence, as per SV-SFTM , Ti cannot be aborted. But if it is slow (for
some reason), then it can cause several other conflicting transactions to abort
and hence, bring down the efficiency and progress of the entire system.

Figure 1 illustrates this problem. Consider the execution: r1(x, 0)r1(y, 0)
w2(x, 10)w2(z, 10)w3(y, 15)w1(z, 7). It has three transactions T1, T2 and T3. Let
T1 have the highest priority. After reading y, suppose T1 becomes slow. Next T2

and T3 want to write to x, z and y respectively and commit. But T2 and T3’s
write operations are in conflict with T1’s read operations. Since T1 has higher
priority and has not committed yet, T2 and T3 have to abort. If these transac-
tions are retried and again conflict with T1 (while it is still live), they will have
to abort again. Thus, any transaction with priority lower than T1 and conflicts
with it has to abort. It is as if T1 has locked the t-objects x, y and does not allow
any other transaction, write to these t-objects and to commit.

Fig. 1. Limitation of single-version starvation free algorithm

Multi-version Starvation-Free STM: A key limitation of single-version
STMs is limited concurrency. As shown above, it is possible that one long trans-
action conflicts with several transactions causing them to abort. This limitation
can be overcome by using multi-version STMs where we store multiple versions
of the data item (either unbounded versions with garbage collection, or bounded
versions where the oldest version is replaced when the number of versions exceeds
the bound).
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Several multi-version STMs have been proposed in the literature [13–16] that
provide increased concurrency. But none of them provide starvation-freedom.
Suppose the execution shown in Fig. 1 uses multiple versions for each t-object.
Then both T2 and T3 create a new version corresponding to each t-object x,
z and y and return commit while not causing T1 to abort as well. T1 reads
the initial value of z, and returns commit. So, by maintaining multiple versions
all the transactions T1, T2, and T3 can commit with equivalent serial history
as T1T2T3 or T1T3T2. Thus multiple versions can help with starvation-freedom
without sacrificing on concurrency. This motivated us to develop a multi-version
starvation-free STM system.

Although multi-version STMs provide greater concurrency, they suffer from
the cost of garbage collection. One way to avoid this is to use bounded-multi-
version STMs, where the number of versions is bounded to be at most K.
Thus, when (K + 1)th version is created, the oldest version is removed. Fur-
thermore, achieving starvation-freedom while using only bounded versions is
especially challenging given that a transaction may rely on the oldest version
that is removed. In that case, it would be necessary to abort that transaction,
making it harder to achieve starvation-freedom.

This paper addresses this gap by developing a starvation-free algorithm for
bounded MVSTMs. Our approach is different from the approach used in SV-
SFTM to provide starvation-freedom in single version STMs (the policy of
aborting lower priority transactions in case of conflict) as it does not work for
MVSTMs. As part of the derivation of our final starvation-free algorithm, we
consider an algorithm PKTO (Priority-based K-version Timestamp Order) that
considers this approach and show that it is insufficient to provide starvation free-
dom.

Contributions of the Paper:

– We propose a multi-version starvation-free STM system as K-version
starvation-free STM or KSFTM for a given parameter K. Here K is the
number of versions of each t-object and can range from 1 to ∞. To the best of
our knowledge, this is the first starvation-free MVSTM. We develop KSFTM
algorithm in a step-wise manner starting from MVTO [13] (Multi-Version
Timestamp Order) as follows:

• First, in Subsect. 3.3, we use the standard idea to provide higher priority
to older transactions. Specifically, we propose priority-based K-version
STM algorithm Priority-based K-version MVTO or PKTO . algorithm
guarantees the safety properties of strict-serializability and local opacity.
However, it is not starvation-free.

• We analyze PKTO to identify the characteristics that will help us to
achieve preventing a transaction from getting aborted forever. This analy-
sis leads us to the development of starvation-free K-version TO or SFKTO
(Subsect. 3.4), a multi-version starvation-free STM obtained by revising
PKTO . But SFKTO does not satisfy correctness, i.e., strict-serializability,
and local opacity.
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• Finally, we extend SFKTO to develop KSFTM (Subsect. 3.5) that pre-
serves the starvation-freedom, strict-serializability, and local opacity. Our
algorithm works on the assumption that any transaction that is not dead-
locked, terminates (commits or aborts) in a bounded time.

– Our experiments (Sect. 4) show that KSFTM gives an average speedup on
the worst-case time to commit of a transaction by a factor of 1.22, 1.89, 23.26
and 13.12 times over PKTO , SV-SFTM , NOrec STM [17] and ESTM [18]
respectively for counter application. KSFTM performs 1.5 and 1.44 times
better than PKTO and SV-SFTM but 1.09 times worse than NOrec for
low contention KMEANS application of STAMP [19] benchmark whereas
KSFTM performs 1.14, 1.4 and 2.63 times better than PKTO , SV-SFTM
and NOrec for LABYRINTH application of STAMP benchmark which has
high contention with long-running transactions.

2 System Model and Preliminaries

Following [5,20], we assume a system of n processes/threads, p1, . . . , pn that
access a collection of transactional objects (or t-objects) via atomic transactions.
Each transaction has a unique identifier. Within a transaction, processes can
perform transactional operations or methods: stm-begin() that begins a transac-
tion, stm-write(x, v) operation that updates a t-object x with value v in its local
memory, the stm-read(x) operation tries to read x, stm-tryC () that tries to com-
mit the transaction and returns commit C if it succeeds. Otherwise, stm-tryA()
that aborts the transaction and returns abort A . For the sake of presentation
simplicity, we assume that the values taken as arguments by stm-write() are
unique.

Operations stm-read() and stm-tryC () may return A , in which case we say
that the operations forcefully abort. Otherwise, we say that the operations have
successfully executed. Each operation is equipped with a unique transaction
identifier. A transaction Ti starts with the first operation and completes when
any of its operations return A or C . We denote any operation that returns A
or C as terminal operations. Hence, operations stm-tryC() and stm-tryA() are
terminal operations. A transaction does not invoke any further operations after
terminal operations.

For a transaction Tk, we denote all the t-objects accessed by its read opera-
tions as rsetk and t-objects accessed by its write operations as wsetk. We denote
all the operations of a transaction Tk as Tk.evts or evtsk.

History: A history is a sequence of events, i.e., a sequence of invocations and
responses of transactional operations. The collection of events is denoted as
H.evts. For simplicity, we only consider sequential histories here: the invocation
of each transactional operation is immediately followed by a matching response.
Therefore, we treat each transactional operation as one atomic event, and let
<H denote the total order on the transactional operations incurred by H. With
this assumption, the only relevant events of a transaction Tk is of the types:
rk(x, v), rk(x,A ), wk(x, v), stm-tryCk(C ) (or ck for short), stm-tryCk(A ),
stm-tryAk(A ) (or ak for short). We identify a history H as tuple 〈H.evts,<H〉.



296 V. P. Chaudhary et al.

Let H|T denote the history consisting of events of T in H, and H|pi denote
the history consisting of events of pi in H. We only consider well-formed histories
here, i.e., no transaction of a process begins before the previous transaction
invocation has completed (either commits or aborts). We also assume that every
history has an initial committed transaction T0 that initializes all the t-objects
with value 0.

The set of transactions that appear in H is denoted by H.txns. The set
of committed (resp., aborted) transactions in H is denoted by H.committed
(resp., H.aborted). The set of incomplete or live transactions in H is denoted by
H.incomp = H.live = (H.txns − H.committed − H.aborted).

For a history H, we construct the completion of H, denoted as H, by inserting
stm-tryAk(A ) immediately after the last event of every transaction Tk ∈ H.live.
But for stm-tryCi of transaction Ti, if it released the lock on first t-object
successfully that means updates made by Ti is consistent so, Ti will immediately
return commit.

Due to lack of space, we define other useful notions used in this paper such
as opacity [3], local opacity [4,5], strict-serializability [6] formally in technical
report [21].

3 The Working of KSFTM Algorithm

In this section, we propose K-version starvation-free STM or KSFTM for a given
parameter K. Here K is the number of versions of each t-object and can range
from 1 to ∞. When K is 1, it boils down to single-version starvation-free STM.
If K is ∞, then KSFTM uses unbounded versions and needs a separate garbage
collection mechanism to delete old versions like other MVSTMs proposed in the
literature [13,14]. We denote KSFTM using unbounded versions as UVSFTM
and the version with garbage collection as UVSFTM-GC .

To explain the intuition behind the KSFTM algorithm, we start with the mod-
ification of MVTO [13,22] algorithm and then make a sequence of modifications to
it to arrive at KSFTM algorithm. The rest of the section is organized as follows.
In Subsect. 3.1, we define starvation freedom and identify assumptions made in
the paper. Subsection 3.2 discusses data structures for all the algorithms devel-
oped in this section. Subsection 3.3 develops PKTO that adds the approach of
providing priority to older transactions in MVTO algorithm. We show why this is
insufficient to provide starvation freedom in multi-version setting. Subsection 3.4
identifies a key idea that can help in providing starvation freedom. Unfortunately,
using this idea alone is insufficient as it can violate strict-serializability and conse-
quently local opacity. Subsection 3.5 describes KSFTM algorithm that simultane-
ously maintains correctness, strict-serializability and local opacity while providing
starvation-freedom.
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Fig. 2. Data structures for maintaining versions

3.1 Starvation-Freedom Explanation

This section starts with the definition of starvation-freedom. Then we describe
the assumption that we make about the scheduler for our algorithm to satisfy
starvation-freedom.

Definition 1. Starvation-Freedom: A STM system is said to be starvation-
free if a thread invoking a non-parasitic transaction Ti gets the opportunity to
retry Ti on every abort, due to the presence of a fair scheduler, then Ti will
eventually commit.

As explained by Herlihy & Shavit [8], a fair scheduler implies that no thread
is forever delayed or crashed. Hence with a fair scheduler, we get that if a thread
acquires locks then it will eventually release the locks. Thus a thread cannot
block out other threads from progressing.

Assumption About Scheduler: In order for starvation-free algorithm
KSFTM (described in Subsect. 3.5) to work correctly, we make the following
assumption about the fair scheduler:

Assumption 1. Bounded-Termination: For any transaction Ti, invoked by
a thread Thx, the fair system scheduler ensures, in the absence of deadlocks, Thx

is given sufficient time on a CPU (and memory etc.) such that Ti terminates
(either commits or aborts) in bounded time.

While the bound for each transaction may be different, we use L to denote the
maximum bound. In other words, in time L, every transaction will either abort
or commit due to the absence of deadlocks.

There are different ways to satisfy the scheduler requirement. For example, a
round-robin scheduler which provides each thread equal amount of time in any
window satisfies this requirement as long as the number of threads is bounded.
In a system with two threads, even if a scheduler provides one thread 1% of CPU
and another thread 99% of the CPU, it satisfies the above requirement. On the
other hand, a scheduler that schedules the threads as ‘T1, T2, T1, T2, T2, T1, T2,
T2, T2, T2, T1, T2, T2, T2, T2, T2, T2, T2, T2, T1, T2(16 times)’ does not satisfy the
above requirement. This is due to the fact that over time, thread 1 gets infinites-
imally smaller portion of the CPU and, hence, the time required for it to complete
(commit or abort) will continue to increase over time.
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In our algorithm, we will ensure that it is deadlock free using standard tech-
niques from the literature. In other words, each thread is in a position to make
progress. We assume that the scheduler provides sufficient CPU time to complete
(either commit or abort) within a bounded time.

3.2 Algorithm Preliminaries

In this sub-section, we describe the invocation of transactions by the application.
Next, we describe the data structures used by the algorithms.

Transaction Invocation: Transactions are invoked by the threads. Suppose a
thread Thx invokes a transaction Ti. If this transaction Ti gets aborted, Thx will
reissue it, as a new incarnation of Ti, say Tj . The thread Thx will continue to
invoke new incarnations of Ti until an incarnation commits.

When the thread Thx invokes a transaction, say Ti, for the first time then the
STM system assigns Ti a unique timestamp called current timestamp or CTS. If
it aborts and retries again as Tj , then its CTS will be different. However, in this
case, the thread Thx will also pass the CTS value of the first incarnation (Ti) to
the STM system. By this, Thx informs the STM that, Tj is not a new invocation
but is an incarnation of Ti. The CTS values are obtained by incrementing a global
atomic counter G tCntr.

We denote the CTS of Ti (first incarnation) as Initial Timestamp or ITS
for all the incarnations of Ti. Thus, the invoking thread Thx passes ctsi to all
the incarnations of Ti (including Tj). Thus for Tj , itsj = ctsi. The transaction
Tj is associated with the timestamps: 〈itsj , ctsj〉. For Ti, which is the initial
incarnation, its ITS and CTS are the same, i.e., itsi = ctsi. For simplicity, we
use the notation that for transaction Tj , j is its CTS, i.e., ctsj = j.

We now state our assumptions about transactions in the system.

Assumption 2. We assume that in the absence of other concurrent conflicting
transactions, every transaction will commit. In other words, (a) if a transac-
tion Ti is executing in a system where other concurrent conflicting transactions
are not present then Ti will not self-abort. (b) Transactions are not parasitic
(explained in Sect. 1).

If transactions self-abort or behave in parasitic manner then providing
starvation-freedom is impossible.

Common Data Structures and STM Methods: Here we describe the com-
mon data structures used by all the algorithms proposed in this section.

In all our algorithms, for each t-object, the algorithms maintain multiple
versions in form of version-list (or vlist). Similar to MVTO [13], each version of
a t-object is a tuple denoted as vTuple and consists of three fields: (1) timestamp
characterizing the transaction that created the version, (2) value, and (3) a
list, read-list (or rl) consisting of transaction ids (or CTSs) that read from this
version.
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Figure 2 illustrates this structure. For a t-object x, we use the notation x[t]
to access the version with timestamp t. Depending on the algorithm considered,
the fields of this structure change.

We assume that the STM system exports the following methods for a trans-
action Ti: (1) stm-begin(t) where t is provided by the invoking thread, Thx.
From our earlier assumption, it is the CTS of the first incarnation or null if
Thx is invoking this transaction for the first time. This method returns a unique
timestamp to Thx which is the CTS/id of the transaction. (2) stm-readi(x) tries
to read t-object x. It returns either value v or A . (3) stm-writei(x, v) operation
that updates a t-object x with value v locally. It returns ok. (4) stm-tryCi() tries
to commit the transaction and returns C if it succeeds. Otherwise, it returns A .

Correctness Criteria: For ease of exposition, we initially consider strict-
serializability as correctness-criterion to illustrate the correctness of the algo-
rithms. Subsequently, we consider a stronger property, local opacity that is more
suitable for STMs.

3.3 Priority-Based MVTO Algorithm

In this subsection, we describe a modification to the multi-version timestamp
ordering (MVTO) algorithm [13,22] to ensure that it provides preference to
transactions that have low ITS, i.e., transactions that have been in the system
for a longer time. We denote the basic algorithm which maintains unbounded
versions as Priority-based MVTO or PMVTO (akin to the original MVTO). We
denote the variant of PMVTO that maintains K versions as PKTO and the
unbounded versions variant with garbage collection as PMVTO-GC .

While providing higher priority to older transactions suffices to provide
starvation-freedom in SV-SFTM , we note that PKTO is not starvation free. The
reason that demonstrates why PKTO is not starvation free forms our basis of
designing SFMVTO that provides starvation-freedom (described in Subsect. 3.4).

We now describe PKTO . This description can be trivially extended to
PMVTO and PMVTO-GC as well.

stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i from
our assumption). The timestamp ts is generated by atomically incrementing the
global counter G tCntr. If the input t is null, then ctsi = itsi = ts as this is
the first incarnation of this transaction. Otherwise, the non-null value of t is
assigned as itsi.

stm-read(x): Transaction Ti reads from a version of x in the shared memory (if
x does not exist in Ti’s local buffer) with timestamp j such that j is the largest
timestamp less than i (among the versions of x), i.e., there exists no version of
x with timestamp k such that j < k < i. After reading this version of x, Ti is
stored in x[j]’s read-list. If no such version exists then Ti is aborted.

stm-write(x, v): Ti stores this write to value x locally in its wseti. If Ti ever
reads x again, this value will be returned.
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stm-tryC : This operation consists of three steps. In Step 1, it checks whether
Ti can be committed. In Step 2, it performs the necessary tasks to mark Ti as a
committed transaction and in Step 3, Ti return commits.

1. Before Ti can commit, it needs to verify that any version it creates does not
violate consistency. Suppose Ti creates a new version of x with timestamp i.
Let j be the largest timestamp smaller than i for which version of x exists.
Let this version be x[j]. Now, Ti needs to make sure that any transaction that
has read x[j] is not affected by the new version created by Ti. There are two
possibilities of concern:
(a) Let Tk be some transaction that has read x[j] and k > i (k = CTS

of Tk). In this scenario, the value read by Tk would be incorrect (w.r.t
strict-serializability) if Ti is allowed to create a new version. In this case,
we say that the transactions Ti and Tk are in conflict. So, we do the
following: (i) if Tk has already committed then Ti is aborted ; (ii) Suppose
Tk is live and itsk is less than itsi. Then again Ti is aborted ; (iii) If Tk is
still live with itsi less than itsk then Tk is aborted.

(b) The previous version x[j] does not exist. This happens when the previous
version x[j] has been overwritten. In this case, Ti is aborted since PKTO
does not know if Ti conflicts with any other transaction Tk that has read
the previous version.

2. After Step 1, we have verified that it is ok for Ti to commit. Now, we have
to create a version of each t-object x in the wset of Ti. This is achieved as
follows:
(a) Ti creates a vTuple 〈i, wseti.x.v, null〉. In this tuple, i (CTS of Ti) is the

timestamp of the new version; wseti.x.v is the value of x is in Ti’s wset,
and the read-list of the vTuple is null.

(b) Suppose the total number of versions of x is K. Then among all the
versions of x, Ti replaces the version with the smallest timestamp with
vTuple 〈i, wseti.x.v, null〉. Otherwise, the vTuple is added to x’s vlist.

3. Transaction Ti is then committed.

The algorithm described here is only the main idea. The actual implemen-
tation will use locks to ensure that each of these methods are linearizable [23].
It can be seen that PKTO gives preference to the transaction having lower ITS
in Step 1a. Transactions having lower ITS have been in the system for a longer
time. Hence, PKTO gives preference to them. The detailed pseudocode along
with the description can be found in the technical report [21]. We have the
following property on the correctness of PKTO .

Property 1. Any history generated by the PKTO is strict-serializable.

Consider a history H generated by PKTO . Let the committed sub-history of H
be CSH = H.subhist(H.committed). It can be shown that CSH is opaque with
the equivalent serialized history SH ′ is one in which all the transactions of CSH
are ordered by their CTSs. Hence, H is strict-serializable.

While PKTO (and PMVTO) satisfies strict-serializability, it fails to prevent
starvation. The key reason is that if transaction Tj conflicts with Tk and Tk has
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already committed, then Tj must be aborted. This is true even if Tj is the oldest
transaction in the system. Furthermore, next incarnation of Tj may have to be
aborted by another transaction T ′

k. This cannot be prevented as conflict between
Tj and T ′

k may not be detected before T ′
k has committed. A detailed illustration

of starvation in PKTO is shown in the technical report [21].

3.4 Modifying PKTO to Obtain SFKTO: Trading Correctness
for Starvation-Freedom

Our goal is to revise PKTO algorithm to ensure that starvation-freedom is sat-
isfied. Specifically, we want the transaction with the lowest ITS to eventually
commit. Once this happens, the next non-committed transaction with the low-
est ITS will commit. Thus, from induction, we can see that every transaction
will eventually commit.

Key Insights for Eliminating Starvation in PKTO: To identify the neces-
sary revision, we first focus on the effect of this algorithm on two transactions,
say T50 and T60 with their CTS values being 50 and 60 respectively. Furthermore,
for the sake of discussion, assume that these transactions only read and write
t-object x. Also, assume that the latest version for x is with ts 40. Each transac-
tion first reads x and then writes x (as part of the stm-tryC operation). We use
r50 and r60 to denote their read operations while w50 and w60 to denote their
stm-tryC operations. Here, a read operation will not fail as there is a previous
version present.

Now, there are six possible permutations of these statements. We identify
these permutations and the action that should be taken for that permutation
in Table 1. In all these permutations, the read operations of a transaction come
before the write operations as the writes to the shared memory occurs only in the
stm-tryC operation (due to optimistic execution) which is the final operation of
a transaction.

From this table, it can be seen that when a conflict is detected, in some cases,
algorithm PKTO must abort T50. In case both the transactions are live, PKTO
has the option of aborting either transaction depending on their ITS. If T60 has

Table 1. Permutations of operations

S. No. Sequence Possible actions by PKTO

1 r50, w50, r60, w60 T60 reads the version written by T50. No conflict
2 r50, r60, w50, w60 Conflict detected at w50. Either abort T50 or T60

3 r50, r60, w60, w50 Conflict detected at w50. Hence, abort T50

4 r60, r50, w60, w50 Conflict detected at w50. Hence, abort T50

5 r60, r50, w50, w60 Conflict detected at w50. Either abort T50 or T60

6 r60, w60, r50, w50 Conflict detected at w50. Hence, abort T50
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lower ITS then in no case, PKTO is required to abort T60. In other words, it is
possible to ensure that the transaction with the lowest ITS and the highest CTS
is never aborted. Although in this example, we considered only one t-object, this
logic can be extended to cases having multiple operations and t-objects.

Next, consider Step 1b of stm-tryC in PKTO algorithm. Suppose a transac-
tion Ti wants to read a t-object but does not find a version with a timestamp
smaller than i. In this case, Ti has to abort. But if Ti has the highest CTS, then
it will certainly find a version to read from. This is because the timestamp of
a version corresponds to the timestamp of the transaction that created it. If Ti

has the highest CTS value then it implies that all versions of all the t-objects
have a timestamp smaller than CTS of Ti. This reinforces the above observation
that a transaction with the lowest ITS and highest CTS is not aborted.

To summarize the discussion, algorithm PKTO has an in-built mechanism
to protect transactions with lowest ITS and highest CTS value. However, this is
different from what we need. Specifically, we want to protect a transaction Ti,
with lowest ITS value. One way to ensure this: if transaction Ti with lowest ITS
keeps getting aborted, eventually it should achieve the highest CTS. Once this
happens, PKTO ensures that Ti cannot be further aborted. In this way, we can
ensure the liveness of all transactions.

The Working of Starvation-Free Algorithm: To realize this idea and
achieve starvation-freedom, we consider another variation of MVTO, Starvation-
Free MVTO or SFMVTO. We specifically consider SFMVTO with K versions,
denoted as SFKTO.

A transaction Ti instead of using the current time as ctsi, uses a potentially
higher timestamp, Working Timestamp - WTS or wtsi. Specifically, it adds
C ∗ (ctsi − itsi) to ctsi, i.e.,

wtsi = ctsi + C ∗ (ctsi − itsi); (1)

where, C is any constant greater than 0. In other words, when the transaction Ti

is issued for the first time, wtsi is same as ctsi(= itsi). However, as transaction
keeps getting aborted, the drift between ctsi and wtsi increases. The value of
wtsi increases with each retry.

Furthermore, in SFKTO algorithm, CTS is replaced with WTS for stm-read,
stm-write and stm-tryC operations of PKTO . In SFKTO, a transaction Ti uses
wtsi to read a version in stm-read. Similarly, Ti uses wtsi in stm-tryC to find
the appropriate previous version (in Step 1b) and to verify if Ti has to be aborted
(in Step 1a). Along the same lines, once Ti decides to commit and create new
versions of x, the timestamp of x will be same as its wtsi (in Step 3). Thus
the timestamp of all the versions in vlist will be WTS of the transactions that
created them.

SFKTO algorithms ensures starvation-freedom in presence of a fair sched-
uler that satisfies Assumption 1 (bounded-termination). While the proof of this
property is somewhat involved, the key idea is that the transaction with lowest
ITS value, say Tlow, will eventually have highest WTS value than all the other
transactions in the system. Then it cannot be aborted. But SFKTO and its
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variant SFMVTO do not satisfy strict-serializability which is illustrated in the
technical report [21].

3.5 Design of KSFTM : Regaining Correctness While Preserving
Starvation-Freedom

In this section, we discuss how principles of PKTO and SFKTO can be combined
to obtain KSFTM that provides both correctness (strict-serializability and local
opacity) as well as starvation-freedom. To achieve this, we first understand why
the initial algorithm, PKTO satisfies strict-serializability. This is because CTS
was used to create the ordering among committed transactions. CTS is based on
real-time ordering. In contrast, SFKTO uses WTS which may not correspond to
the real-time, as WTS may be significantly larger than CTS as shown by history
H1 in Fig. 3.

One straightforward way to modify SFKTO is to delay a committing trans-
action, say Ti with WTS value wtsi until the real-time (G tCntr) catches up to
wtsi. This will ensure that the value of WTS will also become the same as the
real-time thereby guaranteeing strict-serializability. However, this is unaccept-
able, as in practice, it would require transaction Ti locking all the variables it
plans to update and wait. This will adversely affect the performance of the STM
system.

We can allow the transaction Ti to commit before its wtsi has caught up
with the actual time if it does not violate the real-time ordering. Thus, to ensure
that the notion of real-time order is respected by transactions in the course of
their execution in SFKTO, we add extra time constraints. We use the idea of
timestamp ranges. This notion of timestamp ranges was first used by Riegel
et al. [24] in the context of multi-version STMs. Several other researchers have
used this idea since then such as Guerraoui et al. [25], Crain et al. [26] etc.

Thus, in addition to ITS, CTS and WTS, each transaction Ti maintains a
timestamp range: Transaction Lower Timestamp Limit or tltli, and Transaction
Upper Timestamp Limit or tutli. When a transaction Ti begins, tltli is assigned
ctsi and tutli is assigned the largest possible value which we denote as infinity.
When Ti executes a method m in which it reads a version of a t-object x or
creates a new version of x in stm-tryC, tltli is incremented while tutli gets
decremented1.

We require that all the transactions are serialized based on their WTS while
maintaining their real-time order. On executing a method m, Ti is ordered w.r.t
to other transactions that have created a version of x based on increasing order
of WTS. For all transactions Tj which also have created a version of x and
whose wtsj is less than wtsi, tltli is incremented such that tutlj is less than tltli.
Note that all such Tj are serialized before Ti. Similarly, for any transaction Tk

which has created a version of x and whose wtsk is greater than wtsi, tutli is

1 Technically ∞, which is assigned to tutli, cannot be decremented. But here as men-
tioned earlier, we use ∞ to denote the largest possible value that can be represented
in a system.
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decremented such that it becomes less than tltlk. Again, note that all such Tk

are serialized after Ti.
If Ti reads a version x created by Tj then Ti is serialized after Tj and before

any other Tk that also created a version of x such that wtsj < wtsk. The algo-
rithm ensures that wtsj < wtsi < wtsk. For correctness, we again increment tltli
and decrement tutli as above. After the increments of tltli and the decrements
of tutli, if tltli turns out to be greater than tutli then Ti is aborted. Intuitively,
this implies that Ti’s WTS and real-time orders are out of synchrony and cannot
be reconciled.

Finally, when a transaction Ti commits: Ti records its commit time (or
comTimei) by getting the current value of G tCntr and incrementing it by
incrV al which is any value greater than or equal to 1. Then tutli is set to
comTimei if it is not already less than it. Now suppose Ti occurs in real-time
before some other transaction, Tk but does not have any conflict with it. This
step ensures that tutli remains less than tltlk (which is initialized with ctsk).

Fig. 3. Correctness of KSFTM algorithm

We illustrate this technique with the history H1 shown in Fig. 3. When T1

starts its cts1 = 50, tltl1 = 50, tutl1 = ∞. Now when T1 commits, suppose
G tCntr is 70. Hence, tutl1 reduces to 70. Next, when T2 commits, suppose tutl2
reduces to 75 (the current value of G tCntr). As T1, T2 have accessed a common
t-object x in a conflicting manner, tltl2 is incremented to a value greater than
tutl1, say 71. Next, when T3 begins, tltl3 is assigned cts3 which is 80 and tutl3 is
initialized to ∞. When T3 reads 10 from T1, which is r3(x, 10), tutl3 is reduced
to a value less than tltl2(= 71), say 70. But tltl3 is already at 80. Hence, the
limits of T3 have crossed and thus causing T3 to abort. The resulting history
consisting of only committed transactions T1T2 is strict-serializable.

Based on this idea, we next develop a variation of SFKTO, K-version
Starvation-Free STM System or KSFTM . To explain this algorithm, we first
describe the structure of the version of a t-object used. It is a slight variation of
the t-object used in PKTO algorithm. It consists of: (1) timestamp, ts which is
the WTS of the transaction that created this version (and not CTS like PKTO);
(2) the value of the version; (3) a list, called read-list, consisting of transactions ids
(could be CTS as well) that read from this version; (4) version real-time timestamp
or vrt which is the tutl of the transaction that created this version. Thus a version
has information of WTS and tutl of the transaction that created it.
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Now, we describe the main idea behind stm-begin, stm-read, stm-write and
stm-tryC operations of a transaction Ti which is an extension of PKTO . Note
that as per our notation i represents the CTS of Ti.

stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i
from our assumption) which is generated by atomically incrementing the global
counter G tCntr. If the input t is null then ctsi = itsi = ts as this is the first
incarnation of this transaction. Otherwise, the non-null value of t is assigned to
itsi. Then, WTS is computed by Eq. 1. Finally, tltl and tutl are initialized as:
tltli = ctsi, tutli = ∞.

stm-read(x): Transaction Ti reads from a version of x with timestamp j such
that j is the largest timestamp less than wtsi (among the versions x), i.e. there
exists no version k such that j < k < wtsi is true. If no such j exists then Ti is
aborted. Otherwise, after reading this version of x, Ti is stored in j’s rl. Then
we modify tltl, tutl as follows:

1. The version x[j] is created by a transaction with wtsj which is less than wtsi.
Hence, tltli = max(tltli, x[j].vrt + 1).

2. Let p be the timestamp of smallest version larger than i. Then tutli =
min(tutli, x[p].vrt − 1).

3. After these steps, abort Ti if tltl and tutl have crossed, i.e., tltli > tutli.

stm-write(x, v): Ti stores this write to value x locally in its wseti.

stm-tryC : This operation consists of multiple steps:

1. Before Ti can commit, we need to verify that any version it creates is updated
consistently. Ti creates a new version with timestamp wtsi. Hence, we must
ensure that any transaction that read a previous version is unaffected by this
new version. Additionally, creating this version would require an update of
tltl and tutl of Ti and other transactions whose read-write set overlaps with
that of Ti. Thus, Ti first validates each t-object x in its wset as follows:
(a) Ti finds a version of x with timestamp j such that j is the largest times-

tamp less than wtsi (like in stm-read). If there exists no version of x with
a timestamp less than wtsi then Ti is aborted. This is similar to Step 1b
of the stm-tryC of PKTO algorithm.

(b) Among all the transactions that have previously read from j suppose
there is a transaction Tk such that j < wtsi < wtsk. Then (i) if Tk has
already committed then Ti is aborted; (ii) Suppose Tk is live, and itsk is
less than itsi. Then again Ti is aborted; (iii) If Tk is still live with itsi
less than itsk then Tk is aborted.
This step is similar to Step 1a of the stm-tryC of PKTO algorithm.

(c) Next, we must ensure that Ti’s tltl and tutl are updated correctly w.r.t to
other concurrently executing transactions. To achieve this, we adjust tltl,
tutl as follows: (i) Let j be the ts of the largest version smaller than wtsi.
Then tltli = max(tltli, x[j].vrt + 1). Next, for each reading transaction,
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Tr in x[j].read-list, we again set, tltli = max(tltli, tutlr + 1). (ii) Simi-
larly, let p be the ts of the smallest version larger than wtsi. Then, tutli =
min(tutli, x[p].vrt− 1). (Note that we don’t have to check for the trans-
actions in the read-list of x[p] as those transactions will have tltl higher
than x[p].vrt due to stm-read.) (iii) Finally, we get the commit time of
this transaction from G tCntr: comTimei = G tCntr.add&Get(incrV al)
where incrV al is any constant ≥ 1. Then, tutli = min(tutli, comTimei).
After performing these updates, abort Ti if tltl and tutl have crossed, i.e.,
tltli > tutli.

2. After performing the tests of Step 1 over each t-objects x in Ti’s wset, if Ti

has not yet been aborted, we proceed as follows: for each x in wseti create
a vTuple 〈wtsi, wseti.x.v, null, tutli〉. In this tuple, wtsi is the timestamp of
the new version; wseti.x.v is the value of x is in Ti’s wset; the read-list of the
vTuple is null; vrt is tutli (actually it can be any value between tltli and
tutli). Update the vlist of each t-object x similar to Step 2 of stm-tryC of
PKTO .

3. Transaction Ti is then committed.

Step 1c.(iii) of stm-tryC ensures that real-time order between transactions that
are not in conflict. It can be seen that locks have to be used to ensure that
all these methods to execute in a linearizable manner (i.e., atomically). The
detailed pseudo code along with the description can be found in accompanying
technical report [21]. We get the following nice properties on KSFTM with the
complete details in [21]. For simplicity, we assumed C and incrV al to be 0.1 and
1 respectively in our analysis. But the proof and the analysis holds for any value
greater than 0.

Theorem 1. Any history generated by KSFTM is strict-serializable and
locally-opaque.

Theorem 2. KSFTM algorithm ensures starvation-freedom.

4 Experimental Evaluation

For performance evaluation of KSFTM with the state-of-the-art STMs, we
implemented the the algorithms PKTO , SV-SFTM [10–12] along with KSFTM
in C++2 We used the available implementations of NOrec STM [17], and
ESTM [18] developed in C++. Although, only KSFTM and SV-SFTM provide
starvation-freedom, we compared with other STMs as well, to see its performance
in practice.

Experimental System: The experimental system is a 2-socket Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60 GHz with 14 cores per socket and 2 hyper-
threads (HTs) per core, for a total of 56 threads. Each core has a private 32KB
L1 cache and 256 KB L2 cache. The machine has 32 GB of RAM and runs Ubuntu
2 Code is available here: https://github.com/PDCRL/KSFTM.

https://github.com/PDCRL/KSFTM
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16.04.2 LTS. In our implementation, all threads have the same base priority and
we use the default Linux scheduling algorithm. This satisfies the Assumption 1
(bounded-termination) about the scheduler. We ensured that there no parasitic
transactions [27] in our experiments.

Methodology: Here we have considered two different applications: (1) Counter
application - In this, each thread invokes a single transaction which performs 10
reads/writes operations on randomly chosen t-objects. A thread continues to
invoke a transaction until it successfully commits. To obtain high contention,
we have taken large number of threads ranging from 50–250 where each thread
performs its read/write operation over a set of 5 t-objects. We have performed
our tests on three workloads stated as: (W1) Li - Lookup intensive: 90% read,
10% write, (W2) Mi - Mid intensive: 50% read, 50% write and (W3) Ui - Update
intensive: 10% read, 90% write. This application is undoubtedly very flexible as
it allows us to examine performance by tweaking different parameters (refer to
the technical report [21] for details). (2) Two benchmarks from STAMP suite
[19] - (a) We considered KMEANS which has low contention with short running
transactions. The number of data points as 2048 with 16 dimensions and total
clusters as 5. (b) We then considered LABYRINTH which has high contention
with long running transactions. We considered the grid size as 64x64x3 and paths
to route as 48.

To study starvation in the various algorithms, we considered max-time, which
is the maximum time taken by a transaction among all the transactions in a given
experiment to commit from its first invocation. This includes time taken by all
the aborted incarnations of the transaction to execute as well. To reduce the
effect of outliers, we took the average of max-time in ten runs as the final result
for each application.

Results Analysis: Fig. 4 illustrates max-time analysis of KSFTM over the
above mentioned STMs for the counters application under the workloads W1,
W2 and W3 while varying the number of threads from 50 to 250. For KSFTM
and PKTO , we chose the value of K as 5 and C as 0.1 as the best results were
obtained with these parameters (refer to the technical report [21] for details).
We can see that KSFTM performs the best for all the three workloads. KSFTM
gives an average speedup on max-time by a factor of 1.22, 1.89, 23.26 and 13.12
over PKTO , SV-SFTM , NOrec STM and ESTM respectively.

Figure 5(a) shows analysis of max-time for KMEANS while Fig. 5(b) shows
for LABYRINTH. In this analysis we have not considered ESTM as the inte-
grated STAMP code for ESTM is not publicly available. For KMEANS, KSFTM
performs 1.5 and 1.44 times better than PKTO and SV-SFTM . But, NOrec is
performing 1.09 times better than KSFTM . This is because KMEANS has short
running transactions have low contention. As a result, the commit time of the
transactions is also low.

On the other hand for LABYRINTH, KSFTM again performs the best. It
performs 1.14, 1.4 and 2.63 times better than PKTO , SV-SFTM and NOrec
respectively. This is because LABYRINTH has high contention with long run-
ning transactions. This result in longer commit times for transactions.
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Figure 5(c) shows the stability of KSFTM algorithm over time for the counter
application. Here we fixed the number of threads to 32, K as 5, C as 0.1, t-
objects as 1000, along with 5 s warm-up period on W1 workload. Each thread
invokes transactions until its time-bound of 60 s expires. We performed the
experiments on number of transactions committed over time in the increments
5 s. The experiment shows that over time KSFTM is stable which helps to hold
the claim that KSFTM ’s performance will continue in same manner if time is
increased to higher orders.

We have executed several experiments to study various parameters such as
average case analysis, number of aborts, effect of garbage-collection, best value
of K and optimal value of C. These are explained in detail in the technical
report [21].
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5 Conclusion

In this paper, we proposed KSFTM which ensures starvation-freedom while
maintaining K versions for each t-objects. It uses two insights to ensure
starvation-freedom in the context of MVSTMs: (1) using ITS to ensure that
older transactions are given a higher priority, and (2) using WTS to ensure
that conflicting transactions do not commit too quickly before the older trans-
action could commit. We show KSFTM satisfies strict-serializability [6] and
local opacity [4,5]. Our experiments show that KSFTM performs better than
starvation-free state-of-the-arts STMs as well as non-starvation free STMs under
long running transactions with high contention workloads.

Acknowledgments. We are thankful to the anonymous reviewers for carefully read-
ing the paper and providing us valuable suggestions.
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