
On the Complexity of Fault-Tolerant
Consensus

Dariusz R. Kowalski1,2 and Jaros�law Mirek2(B)

1 School of Computer and Cyber Sciences, Augusta University, Augusta, USA
2 Department of Computer Science, University of Liverpool, Liverpool, UK

{D.Kowalski,J.Mirek}@liverpool.ac.uk

Abstract. We consider the problem of reaching agreement in a dis-
tributed message-passing system prone to crash failures. Crashes are
generated by Constrained adversaries - a Weakly-Adaptive adversary,
who has to fix, in advance, the set of f crash-prone processes, and a
k-Chain-Ordered adversary, who orders all the processes into k disjoint
chains and has to follow this order when crashing them. Apart from
these constraints, both of them may crash processes in an adaptive way
at any time. While commonly used Strongly-Adaptive adversaries model
attacks and Non-Adaptive ones - pre-defined faults, Constrained adver-
saries model more realistic scenarios when there are fault-prone depen-
dent processes, e.g., in hierarchical or dependable software/hardware
systems. In this view, our approach helps to understand better the
crash-tolerant consensus in more realistic executions. We propose time-
efficient consensus algorithms against such adversaries. We complement
our algorithmic results with (almost) tight lower bounds, and extend
the one for Weakly-Adaptive adversaries to hold also for (syntactically)
weaker Non-Adaptive adversaries. Together with the consensus algorithm
against Weakly-Adaptive adversaries (which automatically translates to
the Non-Adaptive adversaries), these results extend the state-of-the-art
of the popular class of Non-Adaptive adversaries, in particular, the result
of Chor, Meritt and Shmoys [7], and prove separation gap between
Constrained adversaries (including Non-Adaptive ones) and Strongly-
Adaptive adversaries, analyzed by Bar-Joseph and Ben-Or [3] and others.

1 Introduction

We study the problem of consensus in synchronous message passing distributed
systems. There are n processes, out of which at most f can crash. Each process is
initialized with a binary input value, and the goal is to agree on a common value
(from the input values) by all processes. Formally, the following three proper-
ties need to be satisfied: agreement: no two processes decide on different values;
validity: only a value among the initial ones may be decided upon; and termi-
nation: each process eventually decides, unless it crashes. In case of randomized

Supported by the Polish National Science Center (NCN) grant UMO-
2017/25/B/ST6/02553.

c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 19–31, 2019.
https://doi.org/10.1007/978-3-030-31277-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_2

20 D. R. Kowalski and J. Mirek

solutions, the specification of consensus needs to be reformulated, which can be
done in various ways (cf., [2]). We consider a classic reformulation in which valid-
ity and agreement are required to hold for every execution, while termination
needs to hold with probability 1. Efficiency of algorithms is measured by the
number of rounds (time complexity) until all non-faulty processes decide. This
work focuses on efficient randomized solutions – time is understood in expected
sense.

Randomization has been used in consensus algorithms for various kinds of
failures specified by adversarial models, see [1,2]. Reason for considering ran-
domization is to overcome inherent limitations of deterministic solutions. Most
surprising benefits of randomization is the solvability of consensus in as small
as constant time [7,9,18]. Feasibility of achieving small upper bounds on per-
formance of algorithms solving consensus in a given distributed environment
depends on the power of adversaries inflicting failures.

1.1 Previous and Related Work

Consensus is one of the fundamental problems in distributed computing, with a
rich history of research done in various settings and systems, cf., [2]. Recently its
popularity grew even further due to applications in emerging technologies such
as blockchains. Below we present only a small digest of literature closely related
with the setting considered in this work.

Consensus is solvable in synchronous systems with processes prone to crash-
ing, although time f +1 is required [10] and sufficient [12] in case of determinis-
tic solutions. Chor, Meritt and Shmoys [7] showed that randomization allows to
obtain a constant expected time algorithm against a Non-Adaptive adversary, if
the minority of processes may crash.

Bar-Joseph and Ben-Or [3] proved a lower bound Ω(f/
√

n log n) on the
expected time for randomized consensus against the Strongly-Adaptive adver-
sary and proposed an algorithm reaching consensus in O(f/

√
n log(2 + f/

√
n))

for any f < n. This solution meets their lower bound, provided that the adver-
sary can fail f = Ω(n) processes. What is more, for such condition these bounds
reformulate to Θ(

√
n/(n log n)).

Fisher, Lynch and Paterson [11] showed that for the message passing model
consensus cannot be solved deterministically in asynchronous settings, even if
only one process may crash. Loui and Abu-Amara [17] showed a corresponding
result for shared memory. These impossibility results can be circumvented when
randomization is used and the consensus termination condition does not hold
with probability 1.

Bracha and Toueg [5] observed that it is impossible to reach consensus by a
randomized algorithm in the asynchronous model with crashes if the majority
of processes are allowed to crash. Ben-Or [4] gave the first randomized algo-
rithm solving consensus in the asynchronous message passing model under the
assumption that the majority of processes are non-faulty.

The consensus problem has been recently considered against different adver-
sarial scenarios. Robinson, Scheideler and Setzer [19] considered the synchronous

On the Complexity of Fault-Tolerant Consensus 21

consensus problem under a late ε-bounded adaptive adversary, whose observa-
tion of the system is delayed by one round and can block up to εn nodes in the
sense that they cannot receive and send messages in a particular round.

1.2 Our Results

Table 1. Time complexity of solutions for the consensus problem against different
adversaries. Formulas with * are presented in this paper.

Strongly-Adaptive Weakly-Adaptive and Non-Adaptive k-Chain-Ordered

Randomized Upper bound O
(√

n
log n

)
[3] O

(√
n

(n−f) log(n/(n−f))

)
* O

(√
k

log k
log(n/k)

)
*

Lower bound Ω

(√
n

log n

)
[3] Ω

(√
n

(n−f) log(n/(n−f))

)
* Ω

(√
k

log k

)
*

Deterministic Upper bound f + 1 [12]

Lower bound f + 1 [10]

We analyze the consensus problem against restricted adaptive adversaries. The
motivation is that a Strongly-Adaptive adversary, typically used for analysis of
randomized consensus algorithms, may not be very realistic; for instance, in
practice some processes could be set as fault-prone in advance, before the execu-
tion of an algorithm, or may be dependent i.e., in hierarchical hardware/software
systems. In this context, a Strongly-Adaptive adversary should be used to model
attacks rather than realistic crash-prone systems. On the other hand, a Non-
Adaptive adversary who must fix all its actions before the execution does not
capture many aspects of fault-prone systems, e.g., attacks or reactive failures
(occurring as an unplanned consequence of some actions of the algorithm in
the system). Therefore, analyzing the complexity of consensus under such con-
straints gives a much better estimate on what may happen in real executions
and, as we demonstrate, leads to new, interesting theoretical findings about the
performance of consensus algorithms.

Table 1 presents time complexities of solutions for the consensus problem
against different adversaries. Results for the Strongly-Adaptive adversary and for
deterministic algorithms are known (see Sect. 1.1), while the other ones are deliv-
ered in this work. We design and analyze a randomized algorithm that reaches

consensus in expected O
(√

n
(n−f) log(n/(n−f))

)
rounds against any Weakly-

Adaptive adversary that may crash up to f < n processes. This result is time

optimal due to the proved lower bound Ω

(√
n

(n−f) log(n/(n−f))

)
on expected

number of rounds.
The lower bound could be also generalized to hold against the (syntactically)

weaker Non-Adaptive adversaries, therefore all the results concerning Weakly-
Adaptive adversaries delivered in this paper hold for Non-Adaptive adversaries as
well. This extends the state-of-the-art of the study of Non-Adaptive adversaries

22 D. R. Kowalski and J. Mirek

done in high volume of previous work, cf., [6,7,13], specifically, an O(1) expected
time algorithm of Chor et al. [7] only for a constant (smaller than 1) fraction
of failures. Our lower bound is the first non-constant formula depending on
the number of crashes proved for this adversary. In view of the lower bound
Ω

(
f√

n logn

)
[3] on the expected number of rounds of any consensus algorithm

against a Strongly-Adaptive adversary crashing at most f processes, our result
shows a separation between the two important classes of adversaries – Non-
Adaptive and Strongly-Adaptive – for the consensus problem, which is one of the
most fundamental problems in distributed computing.

We complement these results by showing how to modify the algorithm
designed for the Weakly-Adaptive adversary, to work against a k-Chain-Ordered
adversary, who has to arrange all processes into an order of k chains, and then
has to preserve this order of crashes in the course of the execution. The algo-
rithm reaches consensus in O

(√
k

log k log(n/k)
)

rounds in expectation. Addi-

tionally, we show a lower bound Ω
(√

k
log k

)
for the problem against a k-Ordered

adversary. Finally, we show that this solution is capable of running against an
arbitrary partial order with a maximal anti-chain of size k. Similarly to results
for the Weakly-Adaptive adversary, formulas obtained for Ordered adversaries
separate them from Strongly-Adaptive ones.

2 Model

Synchronous Distributed System. We assume having a system of n processes
that communicate in the message passing model. This means that processes form
a complete graph where each edge represents a communication link between
two processes. If process v wants to send a message to process w, then this
message is sent via link (v, w). It is worth noticing that links are symmetric, i.e.,
(v, w) = (w, v). We assume that messages are sent instantly.

Following the synchronous model by [3], we assume that computations are
held in a synchronous manner and hence time is divided into rounds consisting
of two phases:

– Phase A - generating local coins and local computation.
– Phase B - sending and receiving messages.

Adversarial Scenarios. Processes are prone to crash-failures that are a result
of the adversary activity. The adversary of our particular interest is an adaptive
one - it can make arbitrary decisions and see all local computations and local
coins, as well as messages intended to be sent by active processes. Therefore, it
can decide to crash processes during phase B. Additionally while deciding that
a certain process will crash, it can decide which subset of messages will reach
their recipients.

In the context of the adversaries in this paper we distinguish three types of
processes:

On the Complexity of Fault-Tolerant Consensus 23

– Crash-prone - processes that can be crashed by the adversary.
– Fault-resistant - processes that are not in the subset of the Weakly-Adaptive

adversary and hence cannot be crashed.
– Non-faulty - processes that survived until the end of the algorithm.

• Strongly-Adaptive and Weakly-Adaptive adversaries. The only restriction for
the Strongly-Adaptive adversary is that it can fail up to f processes, where
0 ≤ f < n.

The Weakly-Adaptive adversary is restricted by the fact that before the algo-
rithm execution it must choose f processes that will be prone to crashes, where
0 ≤ f < n.

Observe that for deterministic algorithms the Weakly-Adaptive adversary is
consistent with the Strongly-Adaptive adversary, because it could simulate the
algorithm before its execution and decide on choosing the most convenient subset
of processes.

• k-Chain-Ordered and k-Ordered adversaries. The notion of a k-Chain-Ordered
adversary originates from partial order relations, hence appropriate notions
and definitions translate straightforwardly. The relation of our particular
interest while considering partially ordered adversaries is the precedence rela-
tion. Precisely, if some process v precedes process w or w precedes v in the
partial order of the adversary, then we say that v and w are comparable.
This means that either process v must be crashed by the adversary before
process w or w must be crashed before v, accordingly. Consequently a subset
of processes where every pair of processes is comparable is called a chain.
On the other hand a subset of processes where no two different processes are
comparable is called an anti-chain.

It is convenient to think about the partial order of the adversary from a Hasse
diagram perspective. The notion of chains and anti-chains seems to be intuitive
when graphically presented, e.g., a chain is a pattern of consecutive crashes that
may occur while an anti-chain gives the adversary freedom to crash in any order
due to non-comparability of processes.

Formally, the k-Chain-Ordered adversary has to arrange all the processes into
a partial order consisting of k disjoint chains of arbitrary length that represent
in what order these processes may be crashed.

By the thickness of a partial order P we understand the maximal size of an
anti-chain in P . An adversary restricted by a wider class of partial orders of
thickness k is called a k-Ordered adversary.

We refer to a wider class of adversaries in this paper, constrained by an
arbitrary partial order, as Ordered adversaries. What is more, adversaries hav-
ing additional limitations, apart from the possible number of crashes (i.e. all
described in this paper but the Strongly-Adaptive adversary), will be called
Constrained adversaries. Note that Ordered adversaries are also restricted by
the number of possible crashes f they may enforce.

24 D. R. Kowalski and J. Mirek

• Non-Adaptive adversaries. The Non-Adaptive adversaries are characterised
by the fact that they must fix all their decisions prior to the execution of the
algorithm and then follow this pattern during the execution.

Consensus Problem. In the consensus problem n processes, each having its
input bit xi ∈ {0, 1}, i ∈ {1, . . . , n}, have to agree on a common output bit
in the presence of the adversary, capable of crashing processes. We require any
consensus protocol to fulfill the following conditions:

– Agreement: all non-faulty processes decide the same value.
– Validity: if all processes have the same initial value x, then x is the only

possible decision value.
– Termination: all non-faulty processes decide with probability 1.

We follow typical assumption that the first two requirements must hold in
any execution, while termination should be satisfied with probability 1.

Complexity Measure and Algorithmic Tools. The main complexity mea-
sure used to benchmark the consensus problem is the number of rounds by which
all non-faulty processes decide on a common value.

Throughout the paper we use black-box fashioned procedures that allow us
to structure the presentation better. We now briefly describe their properties
and later refer to them in the algorithms’ analysis. Details could be found in the
full version of this paper [15].
Leader-Consensus properties. We use the Leader-Consensus procedure as
a black-box tool for reaching consensus on a small group of processes, and we
require that it satisfies the following properties:

• it is executed by a process and takes two values as input: the time for which it
is executed (unless it terminates earlier because consensus was reached) and
the current value of a process;

• the output is a tuple (decided, value), where decided is a boolean variable
indicating whether the consensus value has been decided by a process during
the procedure and value is the current value of a process after the procedure
terminates (if the consensus has been decided – it is the consensus value);

• it satisfies termination, validity and conditional agreement, defined as fol-
lows: for any two processes v, w, if Leader-Consensus executed by v out-
puts (true, x) and Leader-Consensus executed by w outputs (true, y), then
x = y;

• Leader-Consensus(TLC(g), x) satisfies agreement when run by a group of
no more than g processes, with probability at least 9

10 , where TLC is the
expected time complexity function of Leader-Consensus.

We say that an algorithm fulfilling properties above satisfies Conditional-
Consensus. A candidate solution to serve as Leader-Consensus is the Ben-Or
and Bar-Joseph’s SynRan algorithm from [3], and we refer the reader to the
details therein. In particular, to Lemma 4.2 [3], which proves that SynRan
assures conditional agreement besides of other typical properties of consensus.

On the Complexity of Fault-Tolerant Consensus 25

Propagate-Msg Properties. We assume that procedure Propagate-Msg
propagates messages in 1 round with O(n2) message complexity. This is con-
sistent with a scenario where full communication takes place and each process
sends a message to all the processes.

3 Weakly-Adaptive Adversary

In this section we consider the fundamental result i.e. Algorithm A that con-
sists of two main components - a leader election procedure, and a reliable con-
sensus protocol. We combine them together in an appropriate way (cf., Fig. 1),
in order to reach consensus against a Weakly-Adaptive adversary.

Algorithm 1: Algorithm A, pseudocode for process v

1 initialize list LEADERS to an empty list;

2 decided := false;

3 value := xv ;

4 repeat

5 LEADERS := Elect-Leader;

6 if LEADERS contains v then

7 (decided, value) := Leader-Consensus(TLC(|LEADERS|), value) ;

8 if decided then

9 execute Propagate-Msg(value) twice;

10 end

11 else

12 if heard the same consensus value CVw twice from some process w then

13 value := CVw;

14 decided = true;

15 end

16 if heard consensus value CVw once from some process w then

17 value := CVw;

18 end

19 end

20 end

21 else

22 idle for TLC rounds;

23 if heard the same consensus value CVw twice from some process w then

24 value := CVw;

25 decided = true;

26 end

27 if heard consensus value CVw once from some process w then

28 value := CVw;

29 end

30 end

31 clear list LEADERS;

32 until decided;

26 D. R. Kowalski and J. Mirek

Algorithm 2: Elect-Leader, pseudocode for process v

1 coin := 1
n−f

;

2 initialize list LEADERS to an empty list;
3 toss a coin with the probability coin of heads to come up;
4 if heads came up in the previous step then
5 Propagate-Msg(“v”) to all other processes;
6 add v to list LEADERS;

7 end
8 fill in list LEADERS with elected leaders’ identifiers from received messages;
9 return LEADERS;

Leader election

listen who else
is a leader

listen who
is a leader

execute consensus
protocol
for TLC rounds

idle for TLC rounds

decided

propagate consensus
value twice
and halt

consensus not achieved

not decided

consensus achieved consensus not achieved

v chosen as leader v not chosen as leader

consensus consensus heard
not heard

listen for two rounds listen for two rounds listen for two rounds

consensus achieved

and halt

consensus achievedconsensus not achieved

listen for two roundslisten for two rounds
and halt

Fig. 1. Algorithm A flow diagram for process v.

Algorithm A has an iterative character and begins with a leader election
procedure in which we expect to elect O(n

n−f) leaders simultaneously. Leaders
run the Leader-Consensus procedure in which they reach consensus within
their own group with a certain probability. If they do so, this fact is propagated
to all processes via Propagate-Msg so that all processes that were not in the
leaders group, know about small consensus being reached and set their consensus
values accordingly. Communicating this fact, implies reaching consensus by the
whole system. There are several subtle points in this intuitive description to be
clarified, what we do next.

Let us follow Algorithm 1 from the perspective of some process v. At the
beginning of the protocol every process takes part in Elect-Leader procedure
and process v tosses a coin with probability of success equal 1

n−f and either is
chosen to the group of leaders or not. If it is successful, then it communicates
this fact to all processes.

Process v takes part in Leader-Consensus together with other leaders in
order to reach a Conditional-Consensus, what happens with certain probability.
Hence, if Leader-Consensus is successful and the consensus value is fixed, v
tries to convince other processes to this value twice. This is because if some pro-
cess w �= v receives the consensus value (obtained from Leader-Consensus)

On the Complexity of Fault-Tolerant Consensus 27

in the latter round, then it may be sure that other processes received this value
from v as well in the former round (so in fact every process has the same con-
sensus value fixed from that point). Process v could not propagate its value for
the second time if it was not successful in propagating this value to every other
process for the first time – if just one process did not receive the value, this
would indicate a crash of v.

However, if Leader-Consensus is unsuccessful in agreeing on a common
value, the procedure is terminated after a certain number of rounds, which
is fixed as an input value for Leader-Consensus. Even though Conditional-
Consensus was not reached, it might happen that some of the processes, includ-
ing v, terminate the procedure with a decided value. In what follows, these pro-
cesses propagate this value to all other processes, similarly as in the successful
case.

On the other hand, if process v was not chosen to be a leader then it listens to
the channel for an appropriate amount of time and afterwards tries to learn the
consensus value twice. If it is unable to hear the value twice, then it is consistent
with being idle for two rounds. If consensus is not reached, then the protocol
starts again with electing another group of leaders. Nevertheless, if process v
hears a consensus value once, it holds and assigns it as a candidate consensus
value. This guarantees the continuity of the protocol and its validity.

The idea standing behind Algorithm A is built on the fact that if just one
fault-resistant process is elected to the group of leaders then the adversary is
unable to crash it in the course of an execution, and hence consensus is achieved
after a certain expected number of rounds.

Theorem 1. Algorithm A reaches consensus in the expected number
of rounds equal O

(
TLC

(
n

n−f

))
, satisfying termination, agreement and

validity.

Corollary 1. Instantiating Leader-Consensus with SynRan from [3]

results in O
(√

n
(n−f) log(n/(n−f))

)
expected rounds to reach consensus by

Algorithm A.

Theorem 2. The expected number of rounds of any consensus protocol running
against a Weakly-Adaptive or a Non-Adaptive adversary causing up to f crashes

is Ω

(√
n

(n−f) log(n/(n−f))

)
.

4 k-Chain-Ordered and k-Ordered Adversaries

In this section we present Algorithm C - a modification of Algorithm A
specifically tailored to run against the k-Chain-Ordered adversary. Then we also
show that it is capable of running against a k-Ordered adversary.

28 D. R. Kowalski and J. Mirek

Algorithm 3: Algorithm C, pseudocode for process v

1 Algorithm A with Elect-Leader substituted by Gather-Leaders;

The algorithm begins with electing a number of leaders in Gather-Leaders.
However, as the adversary models its pattern of crashes into k disjoint chains
then we would like to elect approximately k leaders.

It may happen that the adversary significantly reduces the number of pro-
cesses and hence the leader election procedure is unsuccessful in electing an
appropriate number of leaders. That is why we adjust the probability of success
by approximating the size of the network before electing leaders. If the initial
number of processes was n and the drop in the number of processes after esti-
mating the size of the network was not significant (less than half the number of
the approximation) then we expect to elect Θ(k) leaders.

Algorithm 4: Gather-Leaders, pseudocode for process v

1 initialize variable n∗;
2 n∗ := Count-Processes;
3 i = �n/n∗�;
4 coin := k

2i−1n∗ ;

5 initialize list LEADERS to an empty list;
6 toss a coin with the probability coin of heads to come up;
7 if heads came up in the previous step then
8 Propagate-Msg(“v”) to all other processes;
9 add v to list LEADERS;

10 end
11 fill in list LEADERS with elected leaders’ identifiers from received messages;
12 return LEADERS;

Algorithm 5: Count-Processes, pseudocode for process v

1 Propagate-Msg(“v”) to all other processes;
2 return the number of ID’s heard ;

Otherwise, if the number of processes was reduced by more than half, the
probability of success is changed and the expected number of elected leaders
is reduced. This helps to shorten executions of Leader-Consensus because a
smaller number of leaders executes the protocol faster. In general if there are n

2i

processes, we expect to elect Θ
(

k
2i

)
leaders.

Elected leaders are expected to be placed uniformly in the adversary’s order
of crashes. If we look at a particular leader v, then he will be present in some
chain ki. What is more, his position within this chain is expected to be in the
middle of ki.

On the Complexity of Fault-Tolerant Consensus 29

Leaders execute the small consensus protocol Leader-Consensus. If they
reach consensus, then they communicate this fact twice to the rest of the sys-
tem. Hence, if the adversary wants to prolong the execution, then it must crash
all leaders. Otherwise, the whole system would reach consensus and end the
protocol.

If leaders are placed uniformly in the adversary’s order, then the adversary
must preserve the pattern of crashes that it declared at first. In what follows,
if there is a leader v that is placed in the middle of chain ki, then half of the
processes preceding v must also be crashed.

When the whole set of leaders is crashed then another group is elected and
the process continues until the adversary spends all its possibilities of failing
processes.

Theorem 3. Algorithm C reaches consensus in the expected number
of rounds equal O(TLC(k) log(n/k)), satisfying termination, agreement and
validity.

Corollary 2. Instantiating Leader-Consensus with SynRan from [3] results

in O
(√

k
log k log(n/k)

)
expected number of rounds to reach consensus by

Algorithm C.

4.1 Algorithm C Against the Adversary Limited by an Arbitrary
Partial Order

Let us consider the adversary that is limited by an arbitrary partial order
relation � on the set of all processes. Two elements in this partially ordered
set are incomparable if neither x � y nor y � x hold. Translating this into our
model, the adversary may crash incomparable elements in any sequence during
the execution of the algorithm. We assume that crashes forced by the adversary
are constrained by some partial order P . Let us recall the following lemma.

Lemma 1 (Dilworth’s theorem [8]). In a finite partial order, the size of a max-
imum anti-chain is equal to the minimum number of chains needed to cover all
elements of the partial order.

Combining Lemma 1 with Theorem 3 and its instantiated form in Corollary
2, we obtain the following.

Theorem 4. Algorithm C reaches consensus in expected O(TLC(k) log(n/k))
number of rounds, against the k-Ordered adversary, satisfying termination,
agreement and validity.

We finish with the lower bound for reaching consensus against the k-Ordered
adversary.

Theorem 5. For any reliable randomized algorithm solving consensus in a
message-passing model and any integer 0 < k ≤ f , there is a k-Ordered adversary
that can force the algorithm to run in Ω(

√
k/ log k) expected number of rounds.

30 D. R. Kowalski and J. Mirek

5 Conclusions and Open Problems

In this work we showed time efficient randomized consensus against the Weakly-
Adaptive, Non-Adaptive and Ordered adversaries generating crashes. We proved
that all these classes of Constrained adaptive adversaries are weaker than the
Strongly-Adaptive one. Our results also extend the state-of-the-art of the study
of popular Non-Adaptive adversaries.

Three main open directions emerge from this work. One is to improve the
message complexity of proposed algorithms and make them resistant to (rarely
expected, but possible) very long executions resulting from unsuccessful proba-
bilistic events. Another open direction could pursue a study of complexities of
other important distributed problems and settings against Weakly-Adaptive and
Ordered adversaries, which are more realistic than the Strongly-Adaptive one
and more general than the Non-Adaptive one, commonly used in the literature.
Finally, there is a scope of proposing and studying other intermediate types of
adversaries, including further study of recently proposed delayed adversaries [14]
and adversaries tailored for dynamic distributed and parallel computing [16].

References

1. Aspnes, J.: Randomized protocols for asynchronous consensus. Distrib. Comput.
16(2–3), 165–175 (2003)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons Inc., USA (2004)

3. Bar-Joseph, Z., Ben-Or, M.: A tight lower bound for randomized synchronous con-
sensus. In: Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing, PODC 1998, New York, NY, USA, pp. 193–199. ACM
(1998)

4. Ben-Or, M.: Another advantage of free choice (extended abstract): completely
asynchronous agreement protocols. In: Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, PODC 1983, New York, NY,
USA, pp. 27–30. ACM (1983)

5. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

6. Chlebus, B.S., Kowalski, D.R.: Locally scalable randomized consensus for syn-
chronous crash failures. In: Proceedings of the Twenty-First Annual Symposium
on Parallelism in Algorithms and Architectures, SPAA 2009, New York, NY, USA,
pp. 290–299. ACM (2009)

7. Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in
realistic failure models. J. ACM 36(3), 591–614 (1989)

8. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
51(1), 161–166 (1950)

9. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

10. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

On the Complexity of Fault-Tolerant Consensus 31

12. Garay, J.A., Moses, Y.: Fully polynomial byzantine agreement in t + 1 rounds. In:
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Comput-
ing, STOC 1993, New York, NY, USA, pp. 31–41. ACM (1993)

13. Gilbert, S., Kowalski, D.R.: Distributed agreement with optimal communication
complexity. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, 17–19 January 2010,
pp. 965–977 (2010)

14. Klonowski, M., Kowalski, D.R., Mirek, J.: Ordered and delayed adversaries and
how to work against them on a shared channel. Distrib. Comput. 1–25, September
2018

15. Kowalski, D.R., Mirek, J.: On the complexity of fault-tolerant consensus. CoRR,
abs/1905.07063 (2019)

16. Kowalski, D.R., Mosteiro, M.A.: Polynomial counting in anonymous dynamic net-
works with applications to anonymous dynamic algebraic computations. In: 45th
International Colloquium on Automata, Languages, and Programming, ICALP
2018, 9–13 July 2018, Prague, Czech Republic, pp. 156:1–156:14 (2018)

17. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes. Adv. Comput. Res. 4(163183), 31 (1987)

18. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on
Foundations of Computer Science (FOCS 1983), pp. 403–409 (1983)

19. Robinson, P., Scheideler, C., Setzer, A.: Breaking the Ω(
√

n) barrier: fast consensus
under a late adversary. In: Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA 2018, Vienna, Austria, 6–18 July 2018,
pp. 173–182 (2018)

	On the Complexity of Fault-Tolerant Consensus
	1 Introduction
	1.1 Previous and Related Work
	1.2 Our Results

	2 Model
	3 Weakly-Adaptive Adversary
	4 k-Chain-Ordered and k-Ordered Adversaries
	4.1 Algorithm C Against the Adversary Limited by an Arbitrary Partial Order

	5 Conclusions and Open Problems
	References

