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Abstract. In a future quantum world with a large quantum computer,
the security of the digital signatures used for Bitcoin transactions will
be broken by Shor’s algorithm. Bitcoin has to switch to post-quantum
cryptography. In this paper, we show that the post quantum signatures
based on LWE and ring LWE are the most promising to use in the
presence of large quantum computers running Shor’s algorithm.
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1 Introduction

The influence of new technologies on the economy and individuals has given
birth to a new interpretation of money that makes life more easier. This new
interpretation aims to emigrate from cash to an electronic money recorded in
electronic devices. The use of electronic money is encouraged in several countries.
It also has a lot of benefits, so transactions have become easy, cheap, more reli-
able and can be done anywhere and at anytime. The increase of frauds and the
different attacks launched by the hackers, gave birth to the privacy and authen-
tication problem for this kind of electronic system with this kind of danger. In
this context cryptography offers multiple solutions to overcome these sensitive
data protection issues in e-commerce.

An important application of cryptography is to secure Bitcoin. Bitcoin is
a peer-to-peer network without any central authority such as banks or gov-
ernments. It was presented in 2008 by Satoshi Nakomoto [17]. To authorize
payments or transfers, Bitcoin uses the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) [12] with the hash function SHA-256 [13], and the Koblitz curve
secp256k1 with the equation:

secp256k1 : y2 = x3 +7 (mod p1), p1 = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

The curve secp256k1 was proposed in 2000 by the Standards for Efficient Cryp-
tography Group of Certicom in the standards for efficient cryptography SEC2
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 281–288, 2019.
https://doi.org/10.1007/978-3-030-31277-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_19


282 M. C. Semmouni et al.

and is used in Bitcoin since 2009. The Koblitz curve has many advantages when
used in industrial applications, especially efficiency, security and shortness of the
key, but the main problem is its weakness in front of quantum attacks.

In this paper, we study the possibility of using the digital signature
TESLA# [8] (pronounced “Tesla Sharp”) for Bitcoin system. TESLA# has many
advantages.

• TESLA# is based on the Ring Learning with Errors (R-LWE) assumption
which makes it a prominent candidate for a post-quantum digital signature.

• TESLA# improves all its predecessors such as Ring-Tesla [3] and Tesla.
• TESLA# has a fast key generation, signing and verification.
• TESLA# has highly secure parameters at the level of both pre-quantum and

post-quantum cryptography.
• TESLA# has a secure implementation against timing and cache attacks.

We show that TESLA# is an efficient signature scheme in the context of Bitcoin
which avoids quantum attacks. We recommend to use it in the future: it is better
to use Momentum proof of work which is better than the standard proof of
work [2] used todays on Bitcoin Blockchain transaction.

The rest of this paper is organized as follows. In Sect. 2, we recall some facts
on Bitcoin and secp256k1. In Sect. 3, we introduce lattices and describe the
digital signature scheme TESLA#. In Sect. 4 we study its security. In Sect. 5 we
describe the use of TESLA# in Bitcoin. We conclude the paper in Sect. 6.

2 Description of the Cryptography Used in Bitcoin

Bitcoin is a peer-to-peer decentralized digital currency based on asymmetric
cryptography. It was first proposed by Satoshi Nakamoto [17] in 2008 and
exploited since 2009. It is a proof of work based on cryptocurrency which makes
miners able to mining on Bitcoin, and users to transfer directly without the use
of an intermediary such as a bank or a government, using just their addresses.
Bitcoin is implemented using the Elliptic Curve Digital Signature Algorithm
(ECDSA) to verify ownership transactions on the network, with the Koblitz
curve Secp256k1. This curve Secp256k1 is define over a finite field Fp as follows:

• The prime number is p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.
• The equation curve is y2 ≡ x3 + 7 (mod p).
• The maximum length of the keys is �log2(p)� = 256.

The hard problem upon which the security is based is the Elliptic Curve Loga-
rithm Problem ECDLP. Unfortunately, the problem can be solved by a quantum
computer running Shor’s algorithm [19]. For 256 bits, Shor’s algorithm needs
only 3848 seconds to solve ECDLP.

3 The Digital Signature Scheme TESLA#

In this section, we show how to avoid quantum attacks on Bitcoin with ECDSA
by using the lattice-based signature TESLA# [8].
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3.1 Lattice

The arithmetic used in TESLA# is based on lattices.

Definition 1. Let B = {b1, . . . , bn}, bi ∈ R
m be a set of n linearly independent

vectors of m coordinates with n ≤ m. The lattice L associated to B is the discrete
additive subgroup of Rm containing all integer linear combinations of the vectors
of B:

L(B) =

{
n∑

i=1

xibi | xi ∈ Z

}
.

The integer n is the dimension of the lattice and m is the rank. When m =
n, the lattice is called full-rank. The basis B can be represented as a matrix
B = [b1, . . . , bn]. The determinant of the lattice is defined by det(L) =

√
BT · B

where B is considered here as the matrix of the vectors b1, . . . , bn. In the theory
of lattices, several problems are considered hard and are resistant to quantum
computers. Lattice-based cryptography is based on the hardness of some lattice
problems such as SVP, CVP, and LWE. We list below the main hard problems.

1. The Shortest Vector Problem (SVP): Given a lattice basis B, find the
shortest nonzero vector in L(B).

2. The Closest Vector Problem (CVP): Given a lattice basis B and a target
vector v0 not in the lattice L(B), find v ∈ L(B), the closest vector to v0.

3. Learning With Errors Problem (LWE): Let A be a n × n matrix which
is uniformly distributed in Z/qZ. Let s and e be two unknown vectors. The
LWE problem is to find s and e using A and As+e with the shortest non-zero
vector for the Euclidean norm.

4. Ring-Learning With Errors Problem (Ring-LWE): Ring-LWE prob-
lem is similar than the LWE problem where the unknown parameters s and
e are vectors from a the ring of polynomials Rq = Zq[x]/(xn + 1).

3.2 The Digital Signature Scheme TESLA#

Tesla# [8] is a candidate for post-quantum digital signatures. It is provably
secure with a security reduction to the Ring Learning With Errors (Ring-LWE)
problem. The digital signature scheme TESLA# is composed by three algo-
rithms: the key generation algorithm, the signing algorithm, and the verification
algorithm.

4 The Security of TESLA#

The Ring-LWE problem is a hard assumption, that was introduced in [16]
together with a (quantum) worst case to average-case reduction to certain prob-
lems over ideal lattices.

The security of TESLA# stems from the hardness of the Ring Learning
with Errors (Ring-LWE) problem. The Ring-LWE problem can be seen as an
instantiation of the LWE problem. In this section we present the main attacks
against Tesla# signature and countermeasures to avoid these attacks.
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4.1 The Decoding Attack

An LWE instance (A,As + e) is seen as an instance of the bounded distance
decoding problem (BDDP). The most basic way of solving a BDD instance is
using Babai’s Nearest Plane algorithm [6]. This method can be described as
follows: First Suppose that there is multiple samples (A,As + e) of an LWE
instance parameterized by n, α and q. Second, perform lattice reduction basis
on the lattice L(AT ) to obtain a new basis B, where AT is the transpose of
A. Babai’s Nearest Plane algorithm works by recursively computing the closest
vector on the sublattice spanned by subsets of the the reduced basis. This attack
is based on reducing the lattice by lattice reduction techniques such as LLL [15].

The probability to recover the vector s by Babai’s Nearest Plane algorithm
is approximated by

m∏
i=1

erf

(‖b∗
i ‖

√
π

2αq

)
,

where {b∗
1, ..., b

∗
m} is the Gram-Schmidt orthogonal basis. To ovoid the attack by

Baba’s technique, the probability must be small, that is
∏m

i=1 erf

(‖b∗
i ‖

√
π

2αq

)
<

ε for a small parameter ε .
On the other hand, the complexity of the LLL algorithm is O

(
en3C log M

)
where C > (2/

√
3)1/6 and M is maximum length of the basis vectors {b1, ..., bn},

that is M = maxn
i=1 ‖bi‖. As a consequence, to ovoid the LLL algorithm attack,

the dimension n of the lattice should be large.

4.2 Lattice Reduction

Lattice reduction is to find short vectors in the scaled dual lattice. We construct
this lattice from a given A ∈ Z

m×n
q by computing a basis for the nullspace of

AT over Zq, lift to Z and extend by qI ∈ Z
m×m
q to make it q-ary and compute a

basis for L, we obtain at the end the scaled dual lattice L = {x ∈ Z
m
q |xA ≡ 0

mod q}. Lattice reduction will return the shortest non-zero vector b0 which by
definition is a short vector in L, so that b0A ≡ 0 mod q which is exactly solving
the Short Integer Solutions problem.

So 〈b0, As + e〉 = 〈b0, e〉, which follows a Gaussian distribution and it often
returns small samples for both b0 and e.

Given an LWE instance characterised by n, α, q and a vector b0 of length
‖b0‖ in the scaled dual lattice LT = {x ∈ Z

m
q |xA ≡ 0 mod q}, the advantage of

distinguishing 〈b0, e〉 from random is close to e−π(‖b0‖α)2 . So if ‖b0‖ is too large
then the (Gaussian) distribution of 〈b0, e〉 will be too flat to distinguish from
random. To avoid this attacks ‖b0‖α must be large enough.

4.3 Non-lattice Attacks

There are two non-lattice approaches to solve LWE, namely the attack based on
the algorithm by Blum, Kalai, and Wassermann (BKW) [7] and the algorithm
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by Arora and Ge [5]. Both algorithms require a large number of LWE samples
to be applied efficiently.

BKW solves LWE via the SIS strategy, given m samples (A, c) following Dn
σ ,

we require short vectors ui in the scaled dual lattice of the lattice generated by
the rows of A. BKW creates these vectors by adding elements from a tables with
qb entries each, where each table is used to find collisions on b components of a
(a row of A). The BKW algorithm shows that subexponential algorithms exist
for learning parity functions in the presence of noise: the BKW algorithm solves
the Learning Parity with Noise problem in time 2O(n/logn) [1].

An alternative approach, proposed by Arora and Ge, is used to solve LWE
by setting up a system of noise-free non-linear polynomials of which the secret
s is a root [5]. Polynomials are constructed from the observation that the error,
when falling in the range [−t, t] (for some t ∈ Z such that 2t + 1 < q), is always
a root of the polynomial P (x) = x

∏t
i=1(x + i)(x − i). Then, we know that the

secret s is a root of P (a · x − c) constructed from LWE samples. Arora and Ge,
offer an algorithm for solving LWE in time 2O(n2ξ) where ξ is a constant such
that αq = nξ.

Both algorithms require a (very) large number of LWE samples to be applied
efficiently. TESLA# inherits the property from Ring-TESLA that Gaussian sam-
pling is only needed for key pair generation. Instances for [3] are given far less
LWE samples, so TESLA# also will give less LWE samples. TESLA# is resistant
to such attacks.

4.4 Timing Attacks

Tesla# uses an isochronous (Constant time) Gaussian sampler [8] that improve
the Gaussian sampler proposed first by Ducas et al. [10]. This improved Gaussian
sampler is used to speed up the computation of TESLA#’s key generation and to
protect against timing attacks by taking the “same time” of execution regardless
of the private data. The design of new algorithm consists to sample according
to the Bernoulli distribution Be−t/2σ2 with t is an l-bit integer.

4.5 Parameters Recommendation

For hardness guarantees [9], the ring Rq must be instantiated so that q ≡ 1
mod 2n, and the Gaussian parameter σ

√
2π must be greater than or equal to

two. The parameters presented in [8] provide 128-bit post-quantum security and
256-bit classical security for TESLA#.

5 Using TESLA# for Bitcoin

In this section, we show how to provide more security for Bitcoin systems in the
presence of quantum computers.
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5.1 Hash Function

In the Bitcoin, the Koblitz curve secp256k1 is combined with the hash function
SHA-256 in the ECDSA signature process while TESLA# uses BLAKE2 [4] and
the more recent and more secure hash function SHA-3 [11].

5.2 Authentication Process

An efficient quantum algorithm to solve ECDLP problem was given by Shor.
Since Bitcoin signature scheme is ECDSA based on ECDLP problem, these
attack will impact Bitcoin authentication system security. The bitcoin signature
used for authentication is generated by signing the hash of the transaction and
the public key belongs to the payer. Both the signature and public key prove the
transaction is created by the owner of the bitcoin address.

In Bitcoin system, authentication with cryptographic digital signature is used
to secure and authorize payments or transfers. In this paper we demonstrate
that TESLA# is a secure signature against the quantum attacks and gives a
fast signing and verifying signing, also private key will not be revelated from the
public key so the address and transactions will become secure. TESLA# is an
efficient signature in the context of Bitcoin to avoid quantum attacks, it could
be used to replace the ECDSA digital signature based on Elliptic curve Discret
Logarithm Problem which is breakable by a Shor’s algorithm.

5.3 Bitcoin Mining

The security of Bitcoin is based on mining with Proof Of Work, in this phase
the most important parameter is the hash function. For the present architecture
of Bitcoin, the hash function is SHA-256.

Thanks to Grover’s quantum search algorithm [14], it is now possible to
perform the Bitcoin proof of work using a quadratical fewer hashes needed in
standard proof of work using SHA-256, so the use of another type of hash fuction
is recommended. To enhance the secuity of mining, it is better to use Momentum
proof of work which is better than the standard proof of work [2] which is used
for Bitcoin transaction.

6 Conclusion

We have studied and compared the digital signature ECDSA based on the
Koblitz elliptic curve secp256k1 and the digital signature TESLA# based on
lattices and the Learning with error problem for use in Bitcoin. Our analysis
shows that the signature TESLA# is more secure than ECDSA, especially for
Shor’s quantum attack on the elliptic discrete lograrithm problem. We conclude
that TESLA# is more suitable and secure for use in the Bitcoin, especially for
long term applications.
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