
Recoverable Mutual Exclusion
with Abortability

Prasad Jayanti and Anup Joshi(B)

Dartmouth College, Hanover, NH 03755, USA
anupj@cs.dartmouth.edu

Abstract. In light of recent advances in non-volatile main memory tech-
nology, there has been a flurry of research in designing algorithms that are
resilient to process crashes. As a result of main memory non-volatility, a
process is allowed to crash any time during the execution, without affect-
ing the state of the data stored in the main memory. With the assumption
that a process eventually restarts after a crash, prior works have focused
on designing mutual exclusion algorithms that use the non-volatile main
memory to recover from such crashes. Such mutual exclusion algorithms
that provide multiple processes with a mutually exclusive access to a
shared resource in the presence of process crashes are called Recoverable
Mutual Exclusion (RME) algorithms. We present the first RME algo-
rithm where a process has the ability to abort executing the algorithm,
if it decides to give up its request for a shared resource before being
granted access to that resource. With n being the maximum number of
processes for which the algorithm is designed, in the absence of a crash
our algorithm guarantees a worst-case remote memory references (RMR)
complexity of O(log n) per passage on the Distributed Shared Memory
(DSM) machines, and a complexity of O(log n) or O(n) on Cache Coher-
ent (CC) machines, depending on how caches are managed.

Keywords: Concurrent algorithm · Synchronization ·
Mutual exclusion · Recoverable algorithm · Fault tolerance ·
Non-volatile main memory · Shared memory · Multi-core algorithms

1 Introduction

Recent advances in non-volatile main memory (NVMM) technology [1–3] have
given rise to designing algorithms that are resilient to process crashes. These
memory technologies allow interfacing the processor directly with the non-
volatile main memory. Therefore, in the event of a process crash, the system
restarts the crashed process and the process then recovers from the crash by
consulting the contents of the NVMM.

The first author is grateful to the Frank family and Dartmouth College for their support
through James Frank Family Professorship of Computer Science.
The second author is grateful for the support from Dartmouth College.

c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 217–232, 2019.
https://doi.org/10.1007/978-3-030-31277-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_14


218 P. Jayanti and A. Joshi

To leverage this advantage given by the NVMM, there has been a keen inter-
est recently in designing algorithms for such systems. A starting point is to
design a variant of the classical mutual exclusion problem [4] in which the objec-
tive is to protect access to a shared resource in a manner that atmost one process
has access to the resource at any point in time. Thus, it began with Golab and
Ramaraju [5] reformulating the classical mutual exclusion problem into the novel
Recoverable Mutual Exclusion (RME) problem in 2016. After which there has
been a flurry of research in designing algorithms for the RME problem [6–10].
The main interest in these works has been in designing algorithms with vari-
ous desirable properties while maintaining the remote memory reference (RMR)
complexity for Cache-Coherent (CC) multiprocessors and Distributed Shared
Memory (DSM) multiprocessors to a minimum.

A straightforward approach to recover from process crashes would be to shut
down the entire system and restart it. However, a motive behind designing RME
algorithms is to make the crashes less disruptive to other processes which do not
crash. Therefore, repairing the damage due to a crash by using the NVMM is far
less demanding to a process that did not crash since it does not suffer from such
a full-system restart. However, prior works on RME fall short in a crucial aspect
when compared to solutions to the classical mutual exclusion problem. Imagine a
real-time system with multiple threads that uses one of these RME algorithms to
secure access to a critical shared resource. In the event of a crash the waiting time of
a non-crashing thread would still be increased by the time it takes for the crashing
process to recover from its crash. This issue is further amplified when the crashes
are frequent and the system is operating under tight deadlines. Hence, it makes
sense for a waiting thread to be able to abort its attempt to acquire access to the
shared resource, and not miss any of its other deadlines. Although classical mutual
exclusion algorithms are amenable to support the ability to abort, unfortunately,
none of the prior works on the RME problem support such an ability to abort.

In this paper, we present the first RME algorithm that provides the abort
functionality. Our algorithm has a bounded RMR on the CC and DSM machines
besides possessing some additional desirable properties.

RelatedResearch. All of the prior work on RME has focused on designing algo-
rithms that do not provide abortability as a capability.Golab andRamaraju [5] for-
malized the RME problem and designed several algorithms by adapting traditional
mutual exclusion algorithms. Ramaraju [11], Jayanti and Joshi [7], and Jayanti et
al. [9] designed RME algorithms that support the First-Come-First-Served prop-
erty [12]. Golab and Hendler [6] presented an algorithm that has sub-logarithmic
RMR complexity on CC machines. In another work, Golab and Hendler [8] pre-
sented an algorithm that has the ideal O(1) passage complexity, but this result
assumes that all processes in the system crash simultaneously. Recently, Jayanti
et al. [10] presented a unified algorithm that has a sub-logarithmic RMR complex-
ity on both CC and DSM machines. For works not on RME but on the theme of
crash-restart systems using non-volatile main-memory, Attiya et al. [13] present
linearizable implementations of recoverable objects.



Recoverable Mutual Exclusion with Abortability 219

When it comes to abortability for classical mutual exclusion problem, Scott
[14] and Scott and Scherer [15] designed abortable algorithms that build on
the queue-based algorithms [16,17]. Jayanti [18] designed an algorithm based
on read, write, and comparison primitives having O(log n) RMR complexity
which is also optimal [19]. Lee [20] designed an algorithm for CC machines that
uses the Fetch-and-Add and Fetch-and-Store primitives. Alon and Morrison [21]
designed an algorithm for CC machines that has a sub-logarithmic RMR com-
plexity and uses the read, write, Fetch-And-Store, and comparison primitives.
Recently, Jayanti and Jayanti [22] designed an algorithm for the CC and DSM
machines that has a constant amortized RMR complexity and uses the read,
write, and Fetch-And-Store primitives. While the works mentioned so far have
been deterministic algorithms, randomized versions of classical mutual exclu-
sion with abortability exist. Pareek and Woelfel [23] give a sublogarithmic RMR
complexity randomized algorithm and Giakkoupis and Woelfel [24] give an O(1)
expected amortized RMR complexity randomized algorithm.

Our Contribution. We show that, as with classical mutual exclusion, the
recoverable mutual exclusion problem is amenable to abortability with a reason-
able RMR complexity. We present the first abortable RME algorithm for the CC
and DSM machines using only read, write, and comparison primitives. We design
our algorithm by developing on ideas from a prior RME algorithm by Jayanti
and Joshi [7]. Our algorithm has an RMR complexity of O(f +log n) when used
on DSM machines and certain type of CC machines, but it has O(f + n) RMR
complexity on another type of CC machines (see Sect. 3.4 for full details), where
n is the number of processes for which the algorithm is designed and f is the
number of times a process crashes between the time it invokes and exits the
algorithm. Attiya et al. [19] proved a lower bound that the RMR complexity
is Ω(log n) for even classical mutual exclusion algorithms that use read, write,
and comparison primitives. Therefore, our algorithm adds only O(1) RMR per
crash on the DSM machines. In addition to the above, our algorithm satisfies the
First-Come-First-Served [12] property. It would be interesting if it is possible to
bring down the RMR complexity to O(f + log n) for all CC machines.

2 Model and Problem Specification

Our system consists of n asynchronous processes named 1, 2, . . . , n and
atomic persistent variables (which include shared variables and variables used
by a single process). The persistent variables support the operations read,
write, and compare&swap (CAS). The CAS operation has the signature:
CAS(X, old, new), where X is a variable name, and old and new are some val-
ues. A CAS(X, old, new) operation atomically changes X’s value to new, if X
contained the value old, and returns true; otherwise, it returns false and leaves
X unchanged. The persistent variables are assumed to reside in the non-volatile



220 P. Jayanti and A. Joshi

main memory (NVMM) [1–3], which allows them to retain their values in the
event of a process crash. Note, our algorithm also uses process local variables,
which are assumed to be stored in the process registers (we clarify in the descrip-
tion of the algorithm the nature of variables used). A configuration of the system
is specified by the values of all shared variables and the states of the n processes,
where the state of a process p is in turn specified by the value of PCp, p’s pro-
gram counter, and the values of p’s local variables. The configuration changes
when a process takes a step. Any process can execute either a normal step or a
crash step at any time. In a normal step of p, p executes the instruction pointed
by its program counter PCp. A crash step models the crash of a process and can
occur regardless of what portion of code the process is executing.

The Abortable RME Problem. In the RME problem, each process repeat-
edly cycles through four sections of code—Remainder, Try, Critical, and Exit
sections. An algorithm for RME specifies the code for the Try and Exit sections
of each process. If a process p executes a normal step when in Remainder, p
moves to Try; and if p executes a normal step when in CS, p moves to Exit
(therefore, we encapsulate the CS of p with one normal step). A crash step of p
sets PCp to point to its Remainder section and sets all other registers of p to ⊥.
In addition, in the Abortable RME problem, p can receive an external signal to
abort continuing to the CS while inside Try, in which case p may execute Exit
without executing CS to go back to the Remainder1. A run of an algorithm is an
infinite sequence of steps. We assume every run satisfies the following conditions:
(i) if a process is in Try, Critical, or Exit sections, it later executes a (normal
or crash) step, and (ii) if a process enters Remainder because of a crash step, it
later executes a normal step.

RMR Complexity and Passages. In a CC machine each process has a cache.
A read operation by a process p on a shared variable X fetches a copy of X
from shared memory to p’s cache, if a copy is not already present. Any non-
read operation on X by any process invalidates copies of X at all caches. An
operation on X by p counts as a remote memory reference (RMR) if either the
operation is not a read or X’s copy is not in p’s cache. When a process crashes,
we assume that its cache contents are lost. In a DSM machine, instead of caches,
shared memory is partitioned, with one partition residing at each process, and
each shared variable resides in exactly one partition. Any operation (read or
non-read) by a process on a shared variable X is counted as an RMR if X is not
in p’s partition.

A passage of a process p in a run starts when p enters Try (from Remainder)
and ends at the earliest later time when p returns to Remainder (either because
p crashes or because p completes Exit and moves back to Remainder). A super-
passage of a process p in a run starts when p either enters Try for the first

1 p might have already set itself up to enter the CS, or could be executing the CS, in
which case it executes Exit after completing the CS.



Recoverable Mutual Exclusion with Abortability 221

time in the run or when p enters Try for the first time after the previous super-
passage has ended, and it ends when p returns to Remainder not by a crash step
but by completing the Exit section. Note that p’s super-passage can contain an
unbounded number of p’s passages because of its repeated crashes during the
super-passage. The passage RMR complexity (respectively, super-passage RMR
complexity) of an RME algorithm is the worst-case number of RMRs that a
process incurs in a passage (respectively, in a super-passage). We express this
RMR complexity in terms of n and f , where n is the number of processes for
which the algorithm is designed and f is the number of times the process crashes
during the super-passage.

Problem Statement. The goal is to design an algorithm (i.e., code for Try and
Exit sections) for the Abortable RME problem, such that, all of the following
conditions are met in every run of the algorithm. Conditions P1, P4, P5 are
from Golab and Ramaraju [5], and P2, P6, P7, P8 are from Jayanti and Joshi
[7]. The additional property P3 and the modifications needed for other properties
to accomodate abortability are emphasized in italics.

P1. Mutual Exclusion: At most one process is in the CS at any point.
P2. Bounded Exit: There is a bound b such that, if a process p is in the Exit

section and it executes steps without crashing, it enters the Remainder
section in atmost b of its own steps.

P3. Bounded Abort: There is a bound b such that, if a process p receives the
abort signal and p executes steps without crashing, then p enters the CS or
the Remainder section in b of its own steps.
This property captures the intuition that a process frees itself from all wait-
ing once it receives the abort signal.

P4. Starvation Freedom: If the total number of crashes in the run is finite and a
process p has infinite number of steps, then p enters the CS in each super-
passage in which it does not receive an abort signal.

P5. Critical Section Reentry (CSR) [5]: If a process p crashes while in the CS,
then no other process enters the CS during the interval from p’s crash to
the point in the run when p next enters the CS.

P6. Wait-Free Critical Section Reentry (Wait-Free CSR) [7]: There is a bound
b such that, if a process p crashes while in the CS, then p reenters the CS
before completing b consecutive normal steps.

P7. First-Come-First-Served (FCFS) [7]: There is a bound b such that, if a pro-
cess p performs b contiguous normal steps in its super-passage s before
another process p′ initiates its super-passage s′ and p does not receive an
abort signal in s, then p′ does not enter the CS in super-passage s′ before p
first enters the CS in super-passage s′.

P8. Well-formedness: Let s be a normal step by p in which p completes the
Try section, and s′ be the latest step by p before s in which p starts a
super-passage or p crashes outside of the Try section in CS, or Exit. Well-
formedness stipulates where the control moves to after step s, as follows:



222 P. Jayanti and A. Joshi

– If s′ is a step when the super-passage starts, then s moves control to CS,
Exit section or Remainder section.

– If s′ is a crash step while p is in Try section, then s moves control to CS,
Exit section or Remainder section.

– If s′ is a crash step while p is in CS, then s moves control to CS.
– If s′ is a crash step while p is in Exit, then s moves control to CS, Exit

section, or Remainder section.

3 The Algorithm

We present our abortable RME algorithm in Fig. 1. The algorithm is designed for
n processes, with each process getting a distinct name from the set {1, 2, . . . , n}.
All the persistent variables used by our algorithm are stored in the non-volatile
main memory. Variables with names in small letters and a subscript of p to
their name are variables local to the process p, and are stored in p’s registers.
We assume that the CS is an idempotent block of code, which allows a process
to re-execute it from start even if the process crashes in the middle of the CS.
We assume that the external signal to an arbitrary process p asking it to abort
is made available at AbortSignal[p] as a boolean value, with a value of true
indicating that the signal is active and a value of false indicating otherwise. Our
algorithm is obtained by expanding on ideas of Jayanti and Joshi’s [7] algorithm.
Therefore, like their algorithm, our algorithm relies on a special object called
min-array. For more details about the min-array, please read the description of
Registry in Sect. 3.1.

3.1 Shared Variables and Their Purpose

We describe below the role played by each shared variable used in the algorithm.

Go[p]: This is a flag that process p waits on before entering the CS and supports
the read, write, and CAS operations. To achieve the local-spin property, Go[p]
is allocated to p’s memory module on DSM machines. This variable is set to
a non-zero integer value by p inside the Try Section. A process q makes p the
owner of the CS first, and then q releases p from its wait loop by assigning 0 to
Go[p]. In our algorithm it is also possible that a process r �= q notices that p is
the owner of the CS and hence may try to set Go[p] to 0 by attempting a CAS
operation on this variable. Hence, in such cases a different process r, instead of
q who captured CS for p, releases p from its wait.

Token: Token is an integer variable supporting read and CAS operations.
Token is used to implement a counter so that its values can be used to assign
token numbers to processes requesting the CS: in the Try section, a process reads
Token to get its token number and then increments Token. The token thus
obtained by a process is used for the entirety of its super-passage.



Recoverable Mutual Exclusion with Abortability 223

Fig. 1. Abortable RME Algorithm. Code for process p.

Registry: Registry is a min-array that has the same purpose as the one
in Jayanti and Joshi’s [7] work, which we reiterate here for clarity. The min-
array, henceforth referred only as Registry, is an array and has n loca-
tions, one per process. It supports two operations: write() and findmin().
Registry.write(p, v), when executed by p, sets Registry[p] to v. The opera-
tion Registry.findmin() returns the minimum value in the array. Like in [7],



224 P. Jayanti and A. Joshi

Registry acts like a queue by holding the names of processes waiting to enter
the CS, and orders them according to their token numbers. p inserts in Registry
an element (p, tokp) (Line 7), where tokp holds p’s token number (we call this step
by p as “registering” its super-passage). When exiting or aborting, p deletes this
element (Line 13) by writing (p,∞) (we call this step by p as “unregistering” its
super-passage). The elements in Registry are ordered according to their token
numbers: (p, t) < (q, t′) if t < t′ or t = t′ ∧ p < q. Thus, the findmin() opera-
tion returns (p, t), where p is the process in Registry with the smallest token. If
Registry is empty (i.e., every location in the array is empty), findmin() returns
a value (q,∞), with some process name q. We require that the two operations
satisfy wait-freedom and idempotence, which allows the algorithm to repeatedly
execute these operations in presence of a crash. As mentioned in Sect. 4 of [7],
the implementation given in Appendix A of [7] does satisfy these properties. We
therefore use that implementation in our algorithm. Their implementation of
Registry uses read, write, and CAS and is adapted from f -arrays [25].

CSStatus: This variable is a record with three fields: (bit, peer, peertok). The
first field, bit, is a single bit field denoting whether the CS is occupied or not.
A value of 0 in the bit indicates the CS is free and in that case peer denotes
the process that last wrote to CSStatus while using peertok as the token for
its super-passage. If the value of the bit is 1, it indicates the CS is occupied
and in that case, peer denotes the name of the process that currently owns the
CS and peertok is the token used by the process with name peer for its current
super-passage. The operations supported by CSStatus are read and CAS.

Exiting[p]: This is a boolean variable that supports the read and write opera-
tions. p might crash while executing the Exit section, so we use the Exiting[p]
variable to remind p that it was executing the Exit section. Hence, Exiting[p] =
true indicates that p should be executing the Exit section after restarting from
a crash; Exiting[p] = false indicates p is yet to execute the Exit section in the
current super-passage.

A Remark on Wrap-Around of Token Numbers. In our algorithm the
bit size of the token numbers generated using Token is constrained by the
peertok field of CSStatus. Assuming a word length of 64-bits, a reasonable
assumption on modern multiprocessor systems, we argue as follows that wrap-
around of token numbers is not a practical concern. Assume that the system
consists of 16, 384 processes, it would therefore need 14 bits to represent each
process. Accounting for the bit field from CSStatus, we are left with 49 bits
to represent a token number. For the token number to wrap around, there must
be 249 passages. If there are 220 (a million) passages per second, it would take
17 years for the token number to wrap around. Therefore, wrap-around is not a
practical concern.



Recoverable Mutual Exclusion with Abortability 225

3.2 Informal Description

In this section we informally describe the working of our algorithm presented
in Fig. 1. We first describe how a process p would execute the Try and Exit
section in absence of a crash or an abort signal, and then proceed to explain the
algorithm if a crash is encountered anywhere or an abort signal is activated.

Crash-Free and Abort-Free Super-Passage. When p wants to enter the
CS from the Remainder section, it starts executing the Try section. Lines 1–3
perform a check if the preceding passage by p ended in a crash. Our algorithm
maintains the invariant that whenever p is starting a super-passage, the following
holds about the shared variables: CSStatus �= (1, p, ∗) (i.e., CSStatus says that
p is not the owner of CS), Exiting[p] = false, and Go[p] = 0. Therefore, after
reading the above shared variables, none of the if conditions from Lines 1–3 are
met, hence, p proceeds execution from Line 4. At Line 4 p obtains a token for
itself and then increments the global counter (Line 5). It then saves the obtained
token into Go[p] (Line 6) for its own use so that in the event of a crash it does
not obtain a different token. Then, at Line 7, it inserts its name, tagged with
its token, into the Registry (i.e., p “registers” its super-passage). If p executes
normal steps upto Line 7 in super-passage s before another process q initiates its
super-passage s′ and p does not receive an abort signal in s, then q does not enter
the CS in s′ before p first enters the CS in s (this is useful for the FCFS property).
After executing Line 7, p executes the promote() procedure (Line 8) whose job
is to capture the CS for the longest waiting process q registered in Registry
and inform q that it no longer needs to wait (we describe the procedure in detail
shortly). Following this, p waits until it is informed that it no longer needs to
wait (Line 9) all the while simultaneously checking if it received an abort signal
(Line 10). If p reads that AbortSignal[p] = true at Line 10, it has received the
external signal to abort continuing to the CS, hence, it starts executing the Exit
section at Line 12. Upon being informed about its turn to enter the CS (i.e.,
Go[p] = 0), p enters the CS. Note, we assume that starting when p enters the
CS and so long as it is executing the CS PCp remains 11, except after crashes
where for a brief while p executes some code from Try to get back to CS and
PCp changes back to 11. When p leaves the CS, it first sets a checkpoint at
Line 12 signifying that it has started executing the Exit section by writing true
into Exiting[p], so that in the event of a crash it comes back to Exit section.
At Line 13, it removes its own name from the Registry (i.e., it “unregisters”
its own super-passage). Following that it executes Lines 14–15 whose job is to
check if p entered Exit section upon receiving an abort signal. Since at present
we are considering a super-passage in absence of a crash or an abort signal, p
entered the CS on noticing Go[p] = 0. Hence, at Line 14 p takes note of the
current value of Go[p] and at Line 15 it checks if that value is 0. By the above,
the if condition at Line 15 is not met, hence, p resumes execution from Line 19.
At Line 19 p reads the current content of CSStatus. Our algorithm maintains
the invariant that so long as p has ownership of the CS, CSStatus has the
value (1, p, tokp), where tokp is the value of p’s token for current super-passage.



226 P. Jayanti and A. Joshi

Therefore, the if condition at Line 20 is met, hence p marks the CS as available
by performing the CAS at Line 20. Following this, p tries to capture the CS for
the longest waiting process by executing promote() (Line 21). Whether p lets
another process into the CS or not, it completes its own super-passage by setting
Exiting[p] to false (Line 22) to indicate that it has completed executing the
Exit Section.

Executing promote(). We describe the promote() procedure as follows. This
procedure identifies a process that has been waiting the longest to enter the CS,
and lets that process into the CS, if the CS is free. To this purpose, at Line 23,
p reads the contents of CSStatus. If the first bit of CSStatus is 0, it means
the CS is free, therefore, p performs this check at Line 24. If p finds that the bit
is 0, at Line 25 p retrieves the information of the longest waiting process q from
Registry (i.e., the name of that process and its token). It then checks if q has a
valid token at Line 26 (if an invalid token number denoted by ∞ is received, it
means the Registry is empty). If so, then p tries to install q as the new owner of
the CS. p does this by performing a CAS at Line 26 that attempts to write into
CSStatus the information of q. A successful CAS will indicate that q is the one
who is going to occupy the CS now. Note, while p is executing Lines 24–26 in
the manner described above, another process might be executing the same lines
and could execute Line 26 before p. This would result in p’s CAS at Line 26
to fail. It is also possible that p succeeded in doing the CAS at Line 26, but
crashed immediately. Our algorithm ensures that if p crashes while performing
the promote() procedure, it will come back to re-execute the procedure from
start. And in that re-execution of promote(), p will notice that the if condition
at Line 24 does not meet (although, it had captured the CS for q prior to the
crash). In either of the two cases described above, in Lines 27–28 p takes the
responsibility to “wake” any process that is currently occupying the CS. Hence,
at Line 27, p again reads CSStatus to identify the process r whose name was
last written into CSStatus. If p finds that the first bit of CSStatus is 1, it does
a CAS on Go[r] to write a 0 (Line 28). If r was not woken up already, this CAS
ensures that it is woken up now. Otherwise, p’s CAS is bound to fail because
either Go[r] = 0 already or r started a new super-passage with a different token
in Go[r] (which was written at Line 6).

Servicing an Abort Signal. Next we describe how p services an abort when it
notices that an abort signal has been activated after reading AbortSignal[p].
p notices the abort signal when it reads AbortSignal[p] at Line 10 and as a
result it starts executing the Exit section at Line 12. At Line 12 p first sets a
checkpoint to signify that it has started executing the Exit section by writing
true into Exiting[p], so that in the event of a crash it comes back to Exit
section. At Line 13, it unregisters its own super-passage by removing its name
from the Registry. Following that it executes Lines 14–15 whose job is to check
if p entered Exit section upon receiving an abort signal from the Remainder.
Suppose it finds that tokp = 0 (i.e., Go[p] = 0), which is possible because some



Recoverable Mutual Exclusion with Abortability 227

other process captured the CS for p while p left the Try section for aborting.
In that case, it executes the remaining Exit section as described above. This
is because the case is as if p entered the CS and then is completing its super-
passage by executing Exit section. Assume otherwise that it finds tokp �= 0 (i.e.,
Go[p] �= 0). It then reads the contents of CSStatus at Line 16 and checks if
the CS is free by checking the first bit of CSStatus (Line 17). If it finds that
the CS is free, p attempts to update the content of CSStatus by writing its
own name and token into it by performing a CAS at Line 17. This updating of
the content of CSStatus in spite of CS being free might not be intuitive, but
it is one of the subtle features of our algorithm which we will explain shortly. p
then clears its own token from its Go[p] variable to prepare itself for the next
super-passage (Line 18). Note, when aborting Go[p] might hold a token value
p obtained for its current super-passage. If Go[p] is not explicitly wiped, on
its next super-passage p might re-use its old token due to Lines 2–3. This will
lead to a violation of FCFS property, hence, clearing its own token from Go[p]
at Line 18 is important. From Line 19 onwards p executes the Exit section as
described above. However, it is important to note that having to do Lines 19–20
is another subtle feature of our algorithm, whose discussion we defer for later.

Recovery from a Crash. When p begins a passage after the preceding pas-
sage ended in a crash, p starts by reading Exiting[p] at Line 1. If it finds that
Exiting[p] = true, then p crashed while executing the Exit section in the pre-
vious passage. p could be executing the Exit section in the previous passage as
a result of an abort or due to p coming out of CS prior to crash. In any case, p
executes the Exit section from Line 12. Our Exit section is designed to be idem-
potent, i.e., if p crashes in the middle of Exit section and re-executes it from the
start multiple times, then it would appear to take effect once. Hence, it allows
us to execute the Exit section from Line 12 after a crash in the Exit section. If
Exiting[p] = false, then p reads the contents of Go[p] and CSStatus (Lines 2–
3). If p finds that CSStatus == (1, p, ∗) (i.e., p has ownership of the CS with
a certain token) and Go[p] = 0, then p has exclusive access to the CS. Hence,
p moves to the CS at Line 11. Otherwise, p checks if tokp �= 0 at Line 3, which
implies that it has obtained a token prior to the crash, stored it in Go[p], but
does not have the ownership of CS yet. In that case p goes on to continue with
the super-passage from Line 7, where it starts with registering the super-passage
and continuing as described above. If p finds that tokp = 0, it means p is yet to
even get a token for itself. In that case p starts from Line 4 as if it started a new
super-passage (see description above).

3.3 Subtle Features of the Algorithm

In the description of the algorithm given above, we deferred the discussion
of a few subtle features of the algorithm. We discuss those subtle features in
this section, namely, (A) Maintaining Go[p] as an integer variable instead of a
boolean, (B) why does a process p perform a blind CAS on Go[peerp] at Line 28,



228 P. Jayanti and A. Joshi

(C) updating the content of CSStatus at Line 17 in spite of CS being free, and
(D) performing Lines 19–20 even when servicing an abort. We demonstrate
below the reason behind performing these operations as follows.

TheNeed forFeatureA. In local-spinmutual exclusion algorithms (e.g., [7,16])
it is generally the case that the spin variable is a boolean flag. However, in our algo-
rithmaprocess spins on an integer for a specific reasonwhichwedescribe as follows.
Suppose a boolean flag was used instead of an integer, the following scenario shows
that it would result in violating mutual exclusion property. Suppose process p is in
the CS in a configuration where every other process is in the Remainder section. A
process q from the Remainder section needs access to the CS and hence executes
the Try section and eventually makes a call to the promote() procedure at Line 8
in the Try. q executes the promote() procedure upto but not including Line 27,
where it is supposed to wake up the current owner of the CS. At this point p comes
out of the CS and starts executing the Exit section so that it eventually calls the
promote() procedure. p executes Lines23–27 to make q the new owner of CS, reads
the content ofCSStatus into bitp (= 1) and peerp (= q) at Line 27, and at Line 28
p stops (i.e., just before letting q into the CS). At this point q resumes execution
from Line 27, notes that it itself is now the owner of the CS and hence sets its own
Go flag to true at Line 28. Therefore, q enters the CS, completes executing it, and
then eventually finishes its super-passage. Now assume that another process r exe-
cutes the Try section, finds the CS to be free and hence puts itself into the CS. After
this q again decides to enter the CS, hence it starts a new super-passage. It executes
the Try section to find the CS to be occupied by r, hence it waits for its turn by
looping at Lines 9–10. At this moment, p which had stopped at Line 28 resumes
its execution and since it read the first bit of CSStatus to be 1 with peerp = q,
p lets q into the CS by writing true into Go[q]. q reads the Go[q] flag and enters
the CS. Since in the next configuration q and r are in the CS, mutual exclusion is
violated. To avoid this issue we use theGo flag as an integer variable so thatGo[q]
either stores 0 or the token q uses for its current super-passage. This way when p
resumes later as described in the scenario above, it tries to CAS into Go[q] with a
token that q used in its earlier super-passage. Such a CAS is bound to fail in the
scenario above since Go[q] would use a new token in the next super-passage.

The Need for Feature B. Our algorithm is based on a previous RME algo-
rithm by Jayanti and Joshi [7] in which the delegation of ownership of the CS
to a process and writing to the spin variable of that process is done by a single
process. However, in our algorithm from this paper a process p performs a blind
CAS on Go[peerp] at Line 28, if it finds that a process peerp occupies the CS,
although p might not have made peerp the owner of the CS. The reason behind
designing the algorithm this way is as follows. Suppose a process p is executing
the promote() procedure such that it executes Lines 23–27, where it is makes
a process q the owner of the CS. However, p crashes just before writing 0 to
Go[q] at Line 28. When p restarts, it cannot tell by reading any of the shared



Recoverable Mutual Exclusion with Abortability 229

variables if it was the one who made q the owner of the CS (unlike in [7], where
reading the CSOwner variable would give this information). Hence, regardless
of whether p made q the owner of CS or not, p assumes the responsibility of
waking q from its wait loop and performs the CAS at Line 28.

The Need for Feature C. When p is aborting from its super-passage by
executing the Exit section, at Line 17 it performs a CAS on CSStatus to declare
that the CS is free in spite of noticing that the CS is free and the first bit of
CSStatus is 0 already. As we describe below, if this step is not performed, p
could be made the owner of CS even though p has aborted its super-passage and
is in the Remainder section. Assume that the CAS at Line 17 is not performed
and the if block at Lines 15–18 contains only one step to write the value 0 to
Go[p]. Assume there is a process q in the CS and all other processes including
p are in the Remainder section. p decides to acquire access to CS, therefore,
it executes the Try section and waits for its turn by looping at Lines 9–10.
q then comes out of the CS and starts executing the Exit section. q executes
the Exit section all the way calling the promote() procedure and right upto
Line 25 and stops at Line 26. Therefore, the value of CSStatus = (0, q, tokq)
and q has read p’s entry from Registry such that q is enabled to perform the
CAS at Line 26 and would succeed in doing so. At this moment p decides to
abort its super-passage and hence it starts executing the Exit section. p first
removes its entry from Registry at Line 13 (therefore, Registry becomes
empty now). Since p was not woken up by q to go into the CS, Go[p] = tokp,
hence p writes 0 to Go[p] at Line 18. The if condition at Line 20 is not met (since
CSStatus = (0, q, tokq)), therefore, p calls the promote() procedure at Line 21.
Inside the call to promote(), p finds that the Registry is empty at Line 25, and
the if condition at Line 28 is not met because CSStatus = (0, q, tokq). Hence,
p completes promote() without modifying any shared variable, goes back to Exit
where it writes false to Exiting[p] and then goes back to Remainder. At this
point q resumes execution and performs the CAS at Line 26. Since CSStatus
is unchanged in the meantime, q succeeds in doing the CAS thus making p the
owner of the CS. This situation is undesirable because p is in the Remainder
section and is made the owner of the CS. If instead the CAS at Line 18 is
performed by p, then q’s CAS at Line 26 would not succeed and hence the
undesirable situation is avoided.

The Need for Feature D. When p aborts from its super-passage, it is possible
that p is made the owner of the CS even though it is aborting. In such a scenario
it is necessary that p relinquishes its ownership of the CS and continues with the
abort. We demonstrate below (with an argument similar to the above) that not
performing Lines 19–20 when p is aborting leads to an undesirable scenario. Like
above, assume there is a process q in the CS and all other processes including
p are in the Remainder section. p decides to acquire access to CS, therefore,
it executes the Try section and waits for its turn by looping at Lines 9–10. q
then comes out of the CS and starts executing the Exit section. q executes the



230 P. Jayanti and A. Joshi

Exit section all the way calling the promote() procedure and right upto Line 27
and stops at Line 28. Therefore, the value of CSStatus = (1, p, tokp) and q is
enabled to perform the CAS at Line 28. At this moment p decides to abort its
super-passage and hence it starts executing the Exit section. p first removes its
entry from Registry at Line 13 (therefore, Registry becomes empty now).
Since p was not woken up by q to go into the CS, Go[p] = tokp, hence p writes
0 to Go[p] (the if condition at Line 17 fails due to the value of CSStatus).
By our assumption p does not perform Lines 19–20 but executes promote()
procedure at Line 21 where it sets its own Go[p] variable to 0 at Line 28 (because
CSStatus = (1, p, tokp)). It then goes back to the Remainder after updating
Exiting[p]. At this moment q starts taking steps and is unsuccessful at the CAS
at Line 28. q then goes back to the Remainder after updating Exiting[q]. It
follows that CSStatus = (1, p, tokp), where tokp is the token p used in previous
super-passage, although p is in Remainder. Had p performed Lines 19–20, it
would have updated CSStatus to (0, p, tokp) denoting that the CS should be
kept free.

3.4 RMR Complexity

We discuss the RMR complexity a process incurs per passage as follows. As
described in Lemma 2 of Jayanti and Joshi’s work [7], the Registry.write()
operation incurs O(log n) RMRs and the Registry.findmin() operation incurs
O(1) RMRs on both CC and DSM machines. On DSM machines, where we host
the variables Go[p] and Exiting[p] in p’s memory partition, p’s operations on
these variables incur zero RMRs. Therefore, on DSM machines our algorithm
incurs O(log n) RMR per passage.

On CC machines, similarly, it would be tempting to believe that all these
other operations incur constant RMRs, however, it depends on the way the cache
is managed in the machine. Therefore, for this discussion we divide CC machines
into two categories: (1) strict CC machines and (2) relaxed CC machines, which
we describe below and discuss how the RMR is calculated in each category. On
strict CC machines, a process will incur an RMR when a failed CAS is performed
on a variable it is about to read even though the process had a cached copy of
the variable prior to the CAS. On relaxed CC machines a process will not incur
an RMR if a CAS operation fails on a variable it is about to read. Note, this
behavior of incurring RMRs on CC machines is in addition to our discussion
from Sect. 2. Therefore, the RMR complexity remains O(log n) on the relaxed
CC machines (similar to DSM machines), but shoots up to O(n) on strict CC
machines for the following reason. Assume a process p is waiting to enter the
CS at Line 9, n/2 − 1 processes are in the Remainder section and there are n/2
processes that are about to execute Line 28 to perform a CAS on Go[p]. Out of
these processes only one performs the CAS, goes back to the Remainder while
letting p into the CS due to the CAS, and the rest n/2− 1 process have still not
executed Line 28. Now there are n/2 processes in the Remainder section, p in
the CS, and n/2 − 1 processes that are about to execute Line 28 to perform a
CAS on Go[p]. Assume p completes the CS, executes the Exit section, and goes



Recoverable Mutual Exclusion with Abortability 231

back to Remainder section. Meanwhile the n/2 processes from Remainder come
out of the Remainder for a new passage and queue up. p then queues up behind
these processes with a new token and starts waiting at Line 9 to enter the CS.
At this moment those n/2 − 1 processes that had stopped at Line 28 execute a
step causing a failed CAS. This causes p to incur an RMR for every failed CAS
incurring O(n) RMRs. Therefore, on strict CC machines our algorithm incurs
O(n) RMRs per passage. To summarize, the algorithm incurs O(log n) RMRs
per passage on DSM and relaxed CC machines, and O(n) RMRs per passage on
strict CC machines. Likewise, it incurs O(f + log n) RMRs per super-passage
on DSM and relaxed CC machines, and O(f + n) RMRs per super-passage on
strict CC machines.

3.5 Main Theorem

The theorem below summarizes the result of our paper.

Theorem 1. The algorithm in Fig. 1 is an abortable recoverable mutual exclu-
sion algorithm for n processes and satisfies properties P1-P8 described in Sect. 2.
The algorithm incurs O(log n) RMRs per passage on DSM and relaxed CC
machines and O(n) RMRs per passage on strict CC machines.

References

1. Raoux, S., et al.: Phase-change random access memory: a scalable technology. IBM
J. Res. Dev. 52(4/5), 465 (2008)

2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453(7191), 80 (2008)

3. Tehrani, S., et al.: Magnetoresistive random access memory using magnetic tunnel
junctions. Proce. IEEE 91(5), 703–714 (2003)

4. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

5. Golab, W., Ramaraju, A.: Recoverable mutual exclusion: [extended abstract]. In:
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, pp. 65–74. ACM, New York (2016)

6. Golab, W., Hendler, D.: Recoverable mutual exclusion in sub-logarithmic time.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 2017, pp. 211–220. ACM, New York (2017)

7. Jayanti, P., Joshi, A.: Recoverable FCFS mutual exclusion with wait-free recovery.
In: 31st International Symposium on Distributed Computing, DISC 2017, pp. 30:1–
30:15 (2017)

8. Golab, W., Hendler, D.: Recoverable mutual exclusion under system-wide failures.
In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Com-
puting, PODC 2018, pp. 17–26. ACM, New York (2018)

9. Jayanti, P., Jayanti, S., Joshi, A.: Optimal recoverable mutual exclusion using only
FASAS. In: Podelski, A., Täıani, F. (eds.) NETYS 2018. LNCS, vol. 11028, pp.
191–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05529-5 13

https://doi.org/10.1007/978-3-030-05529-5_13


232 P. Jayanti and A. Joshi

10. Jayanti, P., Jayanti, S., Joshi, A.: Recoverable Mutual Exclusion with Sub-
logarithmic RMR Complexity on CC and DSM machines. In: Accepted for publi-
cation in PODC 2019 (2019)

11. Ramaraju, A.: RGLock: recoverable mutual exclusion for non-volatile main mem-
ory systems. Master’s thesis, University of Waterloo (2015)

12. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

13. Attiya, H., Ben-Baruch, O., Hendler, D.: Nesting-safe recoverable linearizability:
modular constructions for non-volatile memory. In: Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pp. 7–16. ACM (2018)

14. Scott, M.L.: Non-blocking timeout in scalable queue-based spin locks. In: Proceed-
ings of the Twenty-First Annual Symposium on Principles of Distributed Comput-
ing, PODC 2002, pp. 31–40. ACM, New York (2002)

15. Scott, M.L., Scherer, W.N.: Scalable queue-based spin locks with timeout. In: Pro-
ceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming, PPoPP 2001, pp. 44–52. ACM, New York (2001)

16. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

17. Craig, T.S.: Building FIFO and priority-queuing spin locks from atomic swap.
Technical report TR-93-02-02, Department of Computer Science, University of
Washington, February 1993

18. Jayanti, P.: Adaptive and efficient abortable mutual exclusion. In: Proceedings of
the Twenty-Second Annual Symposium on Principles of Distributed Computing,
PODC 2003, pp. 295–304. ACM, New York (2003)

19. Attiya, H., Hendler, D., Woelfel, P.: Tight RMR lower bounds for mutual exclusion
and other problems. In: Proceedings of the Fortieth ACM Symposium on Theory
of Computing, STOC 2008, pp. 217–226. ACM, New York (2008)

20. Lee, H.: Fast local-spin abortable mutual exclusion with bounded space. In: Lu, C.,
Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 364–379.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1 27

21. Alon, A., Morrison, A.: Deterministic abortable mutual exclusion with subloga-
rithmic adaptive RMR complexity. In: Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC 2018, pp. 27–36. ACM, New York
(2018)

22. Jayanti, P., Jayanti, S.V.: Constant amortized RMR complexity deterministic
abortable mutual exclusion algorithm for CC and DSM models. In: Accepted for
publication in PODC 2019 (2019)

23. Pareek, A., Woelfel, P.: RMR-efficient randomized abortable mutual exclusion. In:
Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 267–281. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33651-5 19

24. Giakkoupis, G., Woelfel, P.: Randomized abortable mutual exclusion with constant
amortized RMR complexity on the CC model. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, PODC 2017, pp. 221–229. ACM,
New York (2017)

25. Jayanti, P.: f -arrays: implementation and applications. In: Proceedings of the
Twenty-First Symposium on Principles of Distributed Computing, PODC 2002,
pp. 270–279. ACM, New York (2002)

https://doi.org/10.1007/978-3-642-17653-1_27
https://doi.org/10.1007/978-3-642-33651-5_19

	Recoverable Mutual Exclusion with Abortability
	1 Introduction
	2 Model and Problem Specification
	3 The Algorithm
	3.1 Shared Variables and Their Purpose
	3.2 Informal Description
	3.3 Subtle Features of the Algorithm
	3.4 RMR Complexity
	3.5 Main Theorem

	References




