
CUDA-DTM: Distributed Transactional
Memory for GPU Clusters

Samuel Irving1, Sui Chen1, Lu Peng1(B), Costas Busch1, Maurice Herlihy2,
and Christopher J. Michael1

1 Louisiana State University, Baton Rouge, LA 70803, USA
lpeng@lsu.edu

2 Brown University, Providence, RI 02912, USA

Abstract. We present CUDA-DTM, the first ever Distributed Trans-
actional Memory framework written in CUDA for large scale GPU clus-
ters. Transactional Memory has become an attractive auto-coherence
scheme for GPU applications with irregular memory access patterns due
to its ability to avoid serializing threads while still maintaining pro-
grammability. We extend GPU Software Transactional Memory to allow
threads across many GPUs to access a coherent distributed shared mem-
ory space and propose a scheme for GPU-to-GPU communication using
CUDA-Aware MPI. The performance of CUDA-DTM is evaluated using
a suite of seven irregular memory access benchmarks with varying degrees
of compute intensity, contention, and node-to-node communication fre-
quency. Using a cluster of 256 devices, our experiments show that GPU
clusters using CUDA-DTM can be up to 115x faster than CPU clusters.

Keywords: Distributed Transactional Memory · GPU cluster · CUDA

1 Introduction

Because today’s CPU clock speeds are increasing slowly, if at all, some compu-
tationally intensive applications are turning to specialized hardware accelerators
such as graphics processing units. Originally developed for graphics applications,
GPUs have become more versatile, and are now widely used for increasingly
complex scientific and machine learning applications. Though traditional GPU
applications required little or no coordination among concurrent threads, GPUs
are now routinely used for irregular applications that often require complex
synchronization schemes to ensure the integrity of data shared by concurrent
threads.

Conventional synchronization approaches typically rely on locking: a coher-
ence strategy in which a thread must acquire an exclusive lock before accessing
shared data. Though conceptually simple, locking schemes for irregular mem-
ory access applications are notoriously difficult to develop and debug on tra-
ditional systems due to well-known pitfalls: Priority Inversion occurs when a
lower-priority thread holding a lock is preempted by a higher-priority thread;
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 183–199, 2019.
https://doi.org/10.1007/978-3-030-31277-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_12


184 S. Irving et al.

Convoying occurs when a thread holding a lock is delayed, causing a queue of
waiting threads to form; and most importantly, a deadlock, in which overall
progress halts indefinitely, can occur if multiple threads attempt to acquire a
set of locks in different orders. These pitfalls are especially difficult to avoid
in GPU and cluster computing applications, where the degree of parallelism is
orders-of-magnitude higher than traditional applications.

Transactional Memory (TM) [8] is an increasingly popular alternative syn-
chronization model in which programmers simply mark the beginning and end of
critical sections so the system can treat those regions as “Transactions”, which
appear to execute atomically with respect to other transactions. At runtime,
a complex conflict-detection system, invisible to the programmer, guarantees
forward progress and that deadlocks cannot arise. The allure of Transactional
Memory is that it commonly achieves performance comparable to that of custom
lock-based solutions despite requiring only minimal effort. The programmabil-
ity advantages of Transactional Memory are magnified in situations where high
degrees of parallelism make lock-based solutions difficult to design and debug.

This paper investigates the performance of the first scalable Distributed
Transactional Memory (DTM) [9] system for large-scale clusters of GPUs. Indi-
vidual GPU threads are granted access to a coherent distributed shared memory
space and can perform fine-granularity remote memory operations without halt-
ing the kernel or halting other threads within the same warp. Inter-node commu-
nication is achieved using active support from the host CPU, which sends and
receives messages on behalf of the GPU. Coherence is automatically ensured
using Transactional Memory, which guarantees lock-freedom, serializability, and
forward progress while requiring minimal effort from programmers.

2 Related Work

There exists much prior work on the use of STM for single-device irregular
memory access applications on the GPU. Cederman et al. [2] first proposed the
use of STM on GPUs and evaluate two STM protocols. Xu et al. [17] proposed
GPUSTM with encounter-time lock sorting to avoid deadlocks. Holey et al. [10]
propose and evaluate multiple single-device GPU STM protocols. Shen et al. [15]
propose a priority-rule based STM system for GPUs in which ownership of data
objects can be stolen from other threads. Villegas et al. [16] propose APUTM,
an STM design in which transactions are simultaneously executed on the GPU
and host CPU. STM has been also used to maintain NVRAM persistence for
GPUs [5].

There also exists much prior work in the hardware acceleration of TM on
GPUs. Kilo TM [6] is a hardware-based GPU transactional memory system that
supports weakly-isolated transactions in GPU kernel code; this work has been
extended many times including by Chen et al. who recently described how to
relax read-write conflicts with multi-version memory and Snapshot Isolation [4]
and two early conflict resolution schemes [3].

There is much ongoing research in DTM for CPU clusters where it is most
commonly implemented using a data-flow model, in which transactions are



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 185

immobile and shared memory objects are dynamically moved between nodes [9].
DTM has been implemented in many software languages, most notably C++
[12]. There is ongoing research on how best to scale DTM to very large numbers
of threads [14].

3 Design

CUDA-DTM provides an API that allows GPU programmers to treat all GPUs
as a single unified compute resource and all storage resource as a single unified
memory space. Individual GPU threads across all devices are assigned unique
global thread IDs and allowed to access shared virtual memory space using
unique global virtual memory addresses. CUDA-DTM is designed for clusters
with heterogeneous nodes, each containing one or more GPU accelerators that
can access the network vicariously through the host processor.

Fig. 1. Cluster-level overview of CUDA-DTM.

A lightweight STM coherence protocol allows programmers to ensure
deadlock-free coherence automatically. CUDA-DTM uses custom GPU-to-GPU
communication on top of CUDA-Aware MPI. A cluster level overview of CUDA-
DTM is shown in Fig. 1.

CUDA-DTM is designed for heterogeneous clusters in which nodes are
equipped with GPU accelerators, which are the only devices executing transac-
tions, and host CPUs, which facilitate communication between GPUs. As shown
in Fig. 1, the current CUDA-DTM design assumes only the CPU has direct
access to the Network Interface Card (NIC) and thus must be responsible for all
network communication. Node-to-Node communication is achieved using MPI.
The stages for communication between devices and the network via the host in a
CUDA-DTM cluster are shown in Fig. 2. Only local threads are allowed to access



186 S. Irving et al.

Fig. 2. Node-level overview of CUDA-DTM showing the control-flow cycle.

the local virtual memory slice directly. A system of message passing, shared data
structures, and active support from host threads enable transactions to move to
the node containing the requisite data.

Slices of the shared memory space are stored in each GPUs memory. GPU
worker threads perform local data operations directly on the slice of virtual mem-
ory. CUDA-DTM uses a control-flow model, in which objects are immobile and
remote procedure calls are used to move work between nodes. When a transaction
accesses a virtual memory address that does not resolve locally, a remote proce-
dure call is used to create a new sub-transaction on the remote node, termed a
Remote Nested Transaction [13], by passing transaction inputs and an abbrevi-
ated execution history; this process is repeated each time transaction execution
accesses data outside the local memory slice, resulting in a hierarchy structure
in which top-level transactions may be comprised of many nested transactions,
each detecting its own conflicts and capable of being aborted and restarted inde-
pendently described in [13]. The entire hierarchy of nested transactions must be
committed simultaneously.

This control-flow Remote Nested Transaction strategy only requires remote
communication when transaction execution leaves the local memory slice,
thereby avoiding the frequent broadcasts required by some data-flow models
[9] and eliminating the need for a global clock, which can also have a significant
communication overhead.

In the current design, shared memory is evenly distributed between nodes,
and thus the owner of any virtual address can be found using the most-significant
8 bits of the 32-bit virtual address. Remote Nested Transaction creations and
forwarded inputs, for which the critical section has not yet started, are sent to
remote nodes by support threads on the host CPU. Outgoing messages are first
accumulated on device before a “ready to send” message is passed into pinned
host memory. A host support thread then uses CUDA-Aware MPI to send a
batch of messages to the correct destination.



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 187

Fig. 3. Device-level overview of CUDA-DTM showing the two core data structures
facilitating transaction control-flow.

Support threads on the host processor ensure that incoming messages accu-
mulate in an “inbox” in GPU global memory. GPU worker threads pull work
assignments out of the inbox and perform work depending on the contents of
the message; types of messages in the system and the two data structures that
function as an inbox are shown in Fig. 3. The inbox consists of (1) an Input
Queue, which accumulates the parameters for un-started transactions, and (2)
the Transaction State Cache which is used to store the current state and access
history of transactions that have entered the critical section on the current node.
Host support threads are capable of accessing these structures during kernel exe-
cution using asynchronous CUDA memcpys.

Communication between GPUs is facilitated by two structures stored in
global memory: the Input Queue and the Transaction State Cache, as shown
in Fig. 3. The input queue receives blocks of inputs, each containing the parame-
ters for an un-started transaction; the size and usage of each input is application
specific. The Transaction State Cache is used to store undo-logs for Transactions
that are waiting for the result of a Remote Nested Transactions. Each working
thread on the GPU has a Transaction State Cache Set that it is responsible for
which is regularly polled when no other work is available.

During the execution of a transaction, a transaction state is created and
maintained in local memory; the active transaction state is modified when per-
forming atomic operations to the shadow entries stored locally using the conflict
detection rules described in Sect. 3.1. When execution of a transaction accesses
a virtual memory address outside of the current node and must create a Remote
Nested Transaction, an entry is created in the Transaction State Cache; the entry
contains the unique transaction ID, created using the unique thread ID shifted
and then added to a private counter, the largest address accessed so far, the
undo-log, and state variable indicating the transaction has not yet been aborted
nor committed. Remote Nested Transactions are created directly in the remote



188 S. Irving et al.

Transaction State Cache of the node containing the desired data; Transaction
State entries are stored such that they can be copied directly from memory using
CUDA-Aware MPI. Similarly, the results of a transaction can be sent directly
into the Transaction State cache – overwriting the state variable so working
threads can see that a transaction has been committed or aborted. Serialization
and deserialization are handled entirely by CUDA when communicating between
device and host and entirely by MPI when communicating between nodes.

3.1 Transactional Memory Model

CUDA-DTM detects and resolves conflicts using a modified version of the Pes-
simistic Software Transactional Memory (PSTM) protocol described in [10] built
on top of the virtual memory system described above. The use of a distributed
memory space is invisible to the transactional memory protocol as a new remote
nested transaction is created each time execution moves between nodes.

Ownership is tracked via 32-bit Shadow Entries that store the unique virtual
transaction id number for the transaction that is accessing the corresponding
object; shadow entries are all initialized to be 0. This design uses a single-copy
model in which there is only one write-able copy of each object in the system;
while this forces the serialization of accesses to individual objects, it also min-
imizes the storage and compute overheads of the system, allowing the working
data set size to be very large.

Threads in the same warp are allowed to execute simultaneous transactions
using a private state variable, which masks off threads that have been aborted
or are waiting for work. Live-locks are prevented using exponential back-off,
in which transactions that are aborted multiple times are forced to wait an
exponentially increasing length of time before restarting.

PSTM was chosen for our design due to its simplicity, low overheads, and its
eager conflict detection – which aborts transactions early and can help reduce
the number of remote messages.

When a transaction begins execution or is restarted: its local state is set
to ACTIVE and its local undo log is cleared, as shown in Algorithm 1. Each
transaction maintains a private undo log in local memory which can be used to
reverse changes to local shadow entries and shared memory in the event of an
abortion. A single transaction may create several Remote Nested Transactions,
each with its own private undo log on its respective node.



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 189

At validation, any transaction whose state is still ACTIVE is ready to be
committed, as shown in Algorithm 2. A thread’s state is only set to ABORTED
after failing to acquire exclusive control over a specific shared memory address.
Setting the state to ABORTED effectively masks off threads when other threads
in the same warp are still ACTIVE.

If still ACTIVE at validation time, all changes performed by the transaction
must be made permanent by simply releasing all locks acquired during execution,
as shown in Algorithm 3. If this transaction is a Remote Nested Transaction that
was created by a parent transaction on another node, then a result message must
be sent to the parent node.

In the event of an abort, a thread must iterate through the undo log, restore
the original object values, and reset ownership of the corresponding shadow



190 S. Irving et al.

entries as shown in Algorithm 4. If this transaction is a Remote Nested Trans-
action, then a result message must be sent to the parent node indicating that all
transactions must be restarted; otherwise, the transaction will resume execution
when the thread warp re-executes TX begin.

For simplicity, we combine TX read and TX write into TX access, as shown
in Algorithm 5, because PSTM does not distinguish between read and write
operations when detecting conflicts. PSTM pessimistically assumes that any
address touched by a transaction will eventually be modified, and thus a trans-
action should immediately be aborted if it fails to acquire exclusive control over
a specific shared memory address.

Although transactions can perform speculative writes to shared memory,
other threads cannot read these values until the transaction commits and the
corresponding shadow entry is released.

When TX access is called using a virtual address that is mapped to a differ-
ent node, execution of the current transaction must be suspended and a Remote
Nested Transaction created. Execution of the parent transaction is suspended
by first storing the undo-log into the local Transaction State Cache and, if the
transaction originated on the current node, assigning it a unique ID. The work-
ing thread indicates the target node when creating a Remote Nested Transaction
Start message, along with variables required to begin execution on the remote
node, and includes the largest address accessed so far. This message is inserted
into the appropriate remote GPU Transaction State Cache where a new trans-
action state is created including a new local-only undo-log and a reference to the
originating node that will ultimately receive a message indicating the result of
the transaction. The process of creating a Remote Nested Transaction, suspend-
ing, and resuming transactions is handled entirely by the CUDA-DTM system
and is invisible to the programmer.

To gain ownership of an object, a thread will perform an Atomic Compare-
and-Swap operation (CAS) on the object’s corresponding shadow entry, as shown
in Algorithm 6. This CAS operation attempts to atomically exchange the current
shadow entry value with the thread’s unique, non-zero id. This exchange is only
performed if the expected value of “0” is found; otherwise, the function returns
the value discovered before the exchange. If the function returns a non-zero value,
then the current transaction has failed to gain ownership and may abort. If the
exchange is successful, the transaction is allowed to proceed.

Our modified PSTM allows transactions to use blocking atomic operations
when accessing addresses in increasing order; this is tracked by storing the max-
address-locked-so-far (termed “maxAddr” in Algorithm 5). This strategy reduces
the total number of abortions, as a transaction is only aborted when trying and
failing to acquire a lock out of order. Transactions can proceed as normal if
an out of order lock is successfully acquired on the first try. After successfully
accessing a shared memory object, its address and current value are inserted
into the undo log so that speculative changes can be reversed in the event of an
abortion (referred to as (addr, objects[addr]) in Algorithm 5).



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 191

3.2 Communication

GPU worker threads provide virtual memory addresses to the CUDA-DTM API,
which performs the necessary communication operations under-the-hood. Oper-
ations using virtual addresses that are mapped to local physical addresses resolve
quickly because the object and shadow entry are stored in local global memory.
However, when a virtual address is mapped to a remote physical address, the API
automatically creates a Remote Nested Transaction that continues execution on
the remote device that contains the requisite data.

Fig. 4. Timing of the communication protocol stages showing the execution of a
Remote Nested Transaction (Color figure online).

The CUDA-DTM communication protocol uses three asynchronous messages
passes, as shown in Fig. 4: (1) the originating thread writes a message to an
outbox in global memory (orange dashed arrow) and then sets a “ready” Boolean
in host memory to “true”; (2) a support thread on the host detects that the
“ready” Boolean is true for a outbox and sends the message to the correct node
using an asynchronous MPI write to remote host memory (thick blue arrow);
(3) support threads in the remote node’s host receive the incoming message and
place it in the correct thread’s inbox using an asynchronous cudaMemCpy (green
line with circle on the end).

Depending on how aggressively messages are batched, all threads may have
a designated inbox in global device memory and a designated outbox in pinned
host memory.

After creating a Remote Nested Transaction, worker threads are allowed to
begin execution of a new transaction; worker threads cycle between responsibil-
ities when blocked waiting for remote communication by polling the transaction
state cache and input queue (purple double-sided arrow).

Figure 4 shows the timing of GPU-to-GPU communication for transactions
that have already begun the critical section of a transaction that increments
multiple addresses. (1) Warp 0 is initially un-diverged and all threads begin
virtual memory increments using different virtual memory addresses. Of the
threads shown, only thread 31’s virtual memory address is mapped to a physical
address on a remote node. Threads 0 and 1 are forced to wait while Thread 31



192 S. Irving et al.

enters its transaction state into the transaction state cache, builds a Remote
Nested Transaction creation message and notifies the host that a message is
waiting to send. Finally, the rest of the warp quickly make copies of the desired
objects from global memory. (2) In this example, the transaction state cache and
input queue have no available work for Thread 31 to begin, so Threads 0 and 1
continue to perform virtual memory operations while Thread 31 is masked off.
When other threads in the warp use the CUDA-DTM API, thread 31 polls the
input queue and checks the state of its suspended transaction waiting for work.
(3) After five memory operations, the warp finally re-converges when thread 31
receives the Nested Transaction Result.

(4) In this example, ten host threads are responsible for supporting the local
GPU worker threads. Responsibility for checking outboxes for readiness is evenly
divided among host threads, and thus support thread 1 sees outbox 31 is ready,
uses the message’s address to calculate its destination, and sends the message to
node 2 using an asynchronous MPI write operation. (5) On node 2, host support
thread 1 checks thread 31’s inbox, discovers a new message, and copies the
message into device memory using an asynchronous CUDA copy. (6) Thread 31
on Node 2, having been polling its inbox for incoming work, receives the result of
the Nested Transaction from Node 1-Thread 31, begins execution of the Nested
Transaction on the new node using a fresh-undo log. Here, the desired virtual
memory address resolves locally and the increment is completed successfully.
Having reached the end of the Nested Transaction, Node 2’s thread 31 commits
the transaction by releasing ownership of local shadow entries and destroying
the corresponding entry in the transaction state cache. Thread 31 creates a
new Nested Transaction Result message indicating the transaction is complete
and sends it to the originating Node 0. (7) Support thread 1 on host 2 detects
an outgoing message is ready and sends the message back to host 1 where (8)
support thread 1 on host 1 copies the final transaction result into the inbox of
the originating worker thread using CUDA asynchronous copy to device.

CUDA-Aware MPI is used in cases where outgoing messages can be batched
together in global memory, all bound for the same destination. In these cases,
only the owner of the final message added to the batch is forced to notify the
host that the batch is ready to send. The protocol is achieved using single-writer,
single-reader arrays when possible, avoiding the need for atomic operations that
increase overheads.

4 Experimental Analysis

For this experiment, we use a set of seven irregular memory access benchmarks
commonly used for studying TM; the benchmarks differ in length, composition,
contention, and shared data size. A 128-node cluster featuring two CPUs and
two GPUs per node is used for this experiment using a 56 GB/s Infiniband
oversubscribed mesh; each CPU is a 2.8 GHz E5-2689v2 Xeon processor with
64 GB RAM; each GPU is a NVIDIA Tesla K20x connected via an Intel 82801
PCIe bridge. CUDA-DTM is compiled using CUDA v9.2.148 and MVAPICH2
version 2.2.



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 193

Coherence protocols are detailed in Table 1. Transactions are only executed
by GPU threads in the GPU and CUDA-DTM configurations.

For this work we use seven benchmarks commonly used to profile TM perfor-
mance: Histogram (HIST) [1], in which the results of a random number generator
are stored in a shared array; two variants of the Hash Table benchmark [7]: one
in which each transaction inserts a single element (HASH-S), and one where
each transaction inserts four elements simultaneously (HASH-M), as described
in [10]; Linked-List (LL) [7], in which elements are inserted into a sorted List;
KMeans [11]; and two graph algorithms: Single-Source Shortest Path (SSSP) [1]
and Graph-Cut (GCut), which finds the minimum cut of a graph using Karger’s
algorithm [4].

Table 1. Coherence protocols

Cluster Protocol Devices Max threads per device

CPU Single-CPU STM using std::threads 1 10

GPU Single-GPU STM 1 4096 × 1024

CPU DTM Hybrid-MPI DTM using std::threads 256 10

CUDA DTM DTM for GPUs, supported by Hybrid MPI 256 4096 × 1024 + 10 on Host

Using 128 nodes, CUDA-DTM achieves a harmonic mean speedup of 1,748x
over the single-node, multi-threaded CPU baseline across the 10 benchmarks
used in this study, as shown in Fig. 5. Similarly, CUDA-DTM achieves a harmonic
mean speedup of 6.9x over a CPU cluster of the same size due to the performance
advantages of the GPU architecture. CPU DTM achieves slightly less than a
256x speedup over a single CPU due to the high parallelizability of all seven
benchmarks and long run times hiding network latencies. The near-ideal speedup
of CPU DTM suggests that the 56 Gb/s bandwidth of the network is never
saturated with messages.

Fig. 5. The performances of CUDA-DTM and CPU DTM on a 128 node cluster nor-
malized by single-node CPU performance.

The speedups achieved by CUDA-DTM are best explained by the execution
time breakdown shown in Fig. 6. Using Figs. 5 and 6, we see that CUDA-DTM



194 S. Irving et al.

Fig. 6. (Left) CUDA-DTM execution time breakdown and (Right) CUDA-DTM
Speedup over CPU DTM vs. remote communication intensity.

achieves a speedup of 25 to 115x over the CPU for compute intensive bench-
marks, in which execution time is dominated by arithmetic operations, consis-
tent with the ∼70x higher theoretical peak throughput of the GPU. Similarly, we
see CUDA-DTM achieves a speedup of 2.5 to 4.2x for memory intensive bench-
marks, in which execution time is mostly spent chasing pointers through shared
memory, similar to the ∼4.2x higher theoretical bandwidth of the GPU (250
GB/s vs 59.7 GB/s). Finally, we see the smallest speedup for benchmarks with
high contention, as the advantages of the massive number of GPU threads is
limited by blocking atomic operations during the critical section. Remote com-
munication is only a very small percentage of the execution time despite varying
degrees of remote-communication intensity.

CUDA-DTM’s sensitivity to the remote-communication intensity of the
workload is visualized in Fig. 6. Here we see benchmarks with the most infre-
quent remote communications generally show the largest speedup over the CPU,
though the magnitude of the speedup is heavily impacted by the type of opera-
tions used between remote communication. Benchmarks with the highest com-
munication intensity are also memory-intensive, limiting the potential speedup
to the ∼4.2x higher memory bandwidth of the GPU. The best performing bench-
mark, KMeans, is very FLOP intensive, benefiting from both the high volume
of operations between remote messages and the ∼70x higher computational
throughput of the GPU. CUDA-DTM’s speedup will converge on 1x as the
remote intensity increases, because the GPU has no communication advantages
over the CPU.

Figure 7 shows the average number of messages generated per committed
transaction for each benchmark. GCut generates the fewest messages per trans-
action while showing the smallest speedup over the CPU while HIST, HASH-S,
and HASH-M all show largest speedups despite delivering at least one message
per transaction. LL generates over 100 messages per transaction while searching
the shared List for the proper data insertion point; we use this graph to suggest
that the bottleneck of each benchmark is not the inter-node bandwidth, as the
GPU has no inter-node bandwidth advantages over the CPU. KMeans generates
very few messages, as centroids are only globally averaged after long spans of
intra-node averaging. Similarly, GCut runs isolated instances of Karger’s algo-
rithm on each node, only generating messages when a new lowest-min-cut-so-far
is discovered.



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 195

Fig. 7. (Left) Avg number of remote messages generated per transaction showing vary-
ing degrees of network intensity. (Right) Breakdown of remote message types.

The types of remote messages generated by each transaction are profiled in
Fig. 7. HIST, HASH-S, and LL almost never have critical sections that span
multiple nodes; nearly all messages are Forwards. HASH-M is similar to its -S
counterpart, except the critical section almost always spans multiple nodes; in
HASH-M threads will likely perform many non-atomic operations after locking
shadow entries but since the critical section has started the transaction must
always created Remote Nested Transactions. The remaining benchmarks gen-
erate Remote Nested Transaction Start- and Result- messages in nearly equal
number, due to low abortion rates and only using the network during the critical
section.

Compute intensive workloads have the potential for the largest speedup on
GPU clusters due to the ∼70x higher theoretical computational throughput.
Figure 8 shows that KMeans, HIST, and both HASH benchmarks have a much
higher compute intensity than the remaining benchmarks.

Fig. 8. Average number of arithmetic operations per committed transaction.

The KMeans benchmark exhibits nearly ideal behavior for the GPU and thus
show the best performance improvements over the CPU in our experiments, as
shown in Fig. 8. In these benchmarks, each transaction performs a long series
of distance calculations before acquiring a single lock for a brief critical section.
The computation intensity, and thus the magnitude of the GPU advantage, of
the benchmark is proportional to the number of dimensions for each data point.
Remote communication is minimal, as each node effectively runs in isolation
before using a binary-tree style reduction and time between these synchroniza-
tions is long. KMeans achieves more than the expected ∼70x speedup, and closer



196 S. Irving et al.

to the ideal ∼140x higher FLOPS reported in the K20x specifications due to the
very infrequent usage of remote communication and shared memory and com-
paratively higher FLOP density.

The Histogram, HASH-S, and HASH-M benchmarks show large improve-
ments over the CPU in our experiments, though not as large as KMeans, as
shown in Figure 8. These benchmarks perform a long series of shift and XOR
operations on integers to produce random keys to be inserted into a shared data
structure using an Xorshift random number generating algorithm. Performance
is again compute-bound, this time dominated by shift and XOR operations, and
thus the GPU has a large advantage. The large volume of integer operations is
again sufficient to hide the time spent searching for the linked-list insertion points
in both HASH benchmarks and the remote memory access resulting from each
transaction. Similarly, the increased contention of the HASH-M benchmark has
little impact on performance due to the compute intensity of the random key cal-
culations. Histogram outperforms HASH-S and HASH-M because it requires no
memory operations outside of the critical section; HASH-S and HASH-M require
long searches through linked lists, though HASH-M benefits from requiring 4x
as many integer operations as HASH-S.

We profile the number of non-atomic virtual memory operations per com-
mitted transaction and show the results in Fig. 9. Memory intensive applications
can benefit from the ∼4.2x higher bandwidth of GPU global memory and the
increased parallelism of cluster computing. We observe the LL benchmark has
the largest volume of memory accesses and recall from Fig. 6 that execution time
is overwhelmingly spent performing memory accesses.

Fig. 9. Average number of local memory accesses per transaction.

Figure 9 shows benchmarks that still benefit from the GPU’s higher global
memory bandwidth, despite the remote communication overheads. CUDA-DTM
shows a 4.2x speedup over the CPU DTM baseline, though performance is limited
by irregular memory access patterns, the overheads of transaction record keeping,
and warp divergence. Execution time is dominated by long searches through
memory, which hides the large average number of messages sent per transaction.
The expected speedup for memory-intensive applications is calculated using the
CPUs reported 59.7 GB/s max memory bandwidth and the GPUs reported
250 GB/s global memory bandwidth, as the much faster GPU shared memory



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 197

cannot be used for atomic operations nor is it sufficiently large to store the
virtual memory slice.

We measure the contention of each benchmark using the average number of
shadow entries modified per transaction and the average time required to gain
data ownership. KMeans and HIST require a single lock, as their critical sections
make changes to one shared object.

Benchmarks that require changes to dynamic data structures require two
locks per insertion: one for allocating a new object and one for updating the
pointer on an existing object; as such, HASH-S and LL require exactly two locks
for each transaction and HASH-M, which inserts four objects simultaneously,
requires exactly eight. Contention in these benchmarks is low because changes
are diluted in a very large number of shared objects.

GCut requires exactly two locks to merge two lists together by updating a
pointer, though contention increases during execution as vertices are merged and
the number of shared objects decreases; as result, the amount of time required to
acquire each lock increases as shown in Fig. 10. SSSP is the only benchmarks in
this study which require a variable number of locks, though the average in each is
low. The average and maximum transaction length, 32 in each case, is determined
by the topology of the graph. The minimum, only one in each benchmark, is used
when the propagation rules do not require visiting any neighbors.

Fig. 10. Normalized wait time per lock.

Figure 10 shows the average amount of time required to successfully complete
a CAS operation on a single shadow entry. Times are normalized by that of
the HASH-S benchmark, in which contention is the lowest due to the large
number of shared objects and short amount of time spent in the critical section.
GCut has the longest wait time by far, due to the decreasing shared data size
and thus the increasing contention. Despite KMeans high performance, the time
spent acquiring locks is second highest due to very small shared memory size
and the large number of threads; KMeans performance is still dominated by
FLOPs and the impact of the high contention is hidden. However, SSSP and
GCut are unable to hide lock-acquisition latency using global memory accesses
or arithmetic operations, and their performance suffers as shown in Fig. 10, in
which they achieve only a fraction of the theoretical ∼4.2x speedup from higher
bandwidth.



198 S. Irving et al.

SSSP and Min-Cut are both graph based benchmarks where a subset of the
graph must be locked and modified by each transaction; performance is limited
by longer transactions (2 to 32 shadow entries each) resulting in high contention
(35x higher than the average of all benchmarks), which limits the advantages of
the GPUs high parallelism.

5 Conclusion

We propose CUDA-DTM, the first implementation of a coherent distributed
shared memory system for GPU clusters using Distributed Transactional Mem-
ory. This paper demonstrates that a GPU cluster can outperform a CPU cluster
in non-network intensive workloads despite irregular memory accesses and the
overheads of accessing virtual memory. We also demonstrate that the strengths
of the GPU, namely the high arithmetic operation throughput and higher mem-
ory bandwidth, offer large performance advantages over the CPU despite the
large number of moving pieces required to support irregular distributed mem-
ory access. Our design allows programmers to use coherent remote memory
operations without worrying about deadlocks from thread-divergence or lock
competition.

References

1. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs
on GPUS. In: 2012 IEEE International Symposium on Workload Characterization
(IISWC), pp. 141–151. IEEE (2012)

2. Cederman, D., Tsigas, P., Chaudhry, M.T.: Towards a software transactional mem-
ory for graphics processors. In: EGPGV, pp. 121–129 (2010)

3. Chen, S., Peng, L.: Efficient GPU hardware transactional memory through early
conflict resolution. In: 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 274–284. IEEE (2016)

4. Chen, S., Peng, L., Irving, S.: Accelerating GPU hardware transactional memory
with snapshot isolation. In: 2017 ACM/IEEE 44th Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 282–294. IEEE (2017)

5. Chen, S., Zhang, F., Liu, L., Peng, L.: Efficient GPU NVRAM persistent with
helper warps. In: ACM/IEEE International Conference on Design Automation
(DAC). ACM/IEEE (2019)

6. Fung, W.W., Singh, I., Brownsword, A., Aamodt, T.M.: Hardware transactional
memory for GPU architectures. In: Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 296–307. ACM (2011)

7. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: ACM SIGPLAN Notices, vol. 50, pp. 1–10. ACM (2015)

8. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures, vol. 21. ACM (1993)

9. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distrib. Comput. 20(3), 195–208 (2007)



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 199

10. Holey, A., Zhai, A.: Lightweight software transactions on GPUs. In: 2014 43rd
International Conference on Parallel Processing (ICPP), pp. 461–470. IEEE (2014)

11. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: stanford transac-
tional applications for multi-processing. In: 2008 IEEE International Symposium
on Workload Characterization, pp. 35–46. IEEE (2008)

12. Mishra, S., Turcu, A., Palmieri, R., Ravindran, B.: HyflowCPP: a distributed trans-
actional memory framework for c++. In: 2013 12th IEEE International Symposium
on Network Computing and Applications (NCA), pp. 219–226. IEEE (2013)

13. Moss, J.E.B.: Nested transactions: an approach to reliable distributed computing.
Technical report, Massachusetts Institute of Tech Cambridge Lab for Computer
Science (1981)

14. Sharma, G., Busch, C.: Distributed transactional memory for general networks.
Distrib. Comput. 27(5), 329–362 (2014)

15. Shen, Q., Sharp, C., Blewitt, W., Ushaw, G., Morgan, G.: PR-STM: priority rule
based software transactions for the GPU. In: Träff, J.L., Hunold, S., Versaci, F.
(eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 361–372. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48096-0 28

16. Villegas, A., Navarro, A., Asenjo, R., Plata, O.: Toward a software transactional
memory for heterogeneous CPU-GPU processors. J. Supercomput. 1–16 (2017).
https://link.springer.com/article/10.1007/s11227-018-2347-0#citeas

17. Xu, Y., Wang, R., Goswami, N., Li, T., Gao, L., Qian, D.: Software transactional
memory for GPU architectures. In: Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, p. 1. ACM (2014)

https://doi.org/10.1007/978-3-662-48096-0_28
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11227-018-2347-0#citeas 

	CUDA-DTM: Distributed Transactional Memory for GPU Clusters
	1 Introduction
	2 Related Work
	3 Design
	3.1 Transactional Memory Model
	3.2 Communication

	4 Experimental Analysis
	5 Conclusion
	References




