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Abstract. In this paper we analyze Tendermint, proposed in [12], one of
the most popular blockchains based on PBFT Consensus. Our method-
ology consists in identifying the algorithmic principles of Tendermint
necessary for a specific system model. The current paper dissects Ten-
dermint under two communication models: synchronous and eventually
synchronous ones. This methodology allowed to identify bugs in prelimi-
nary versions of the protocol and to prove its correctness under the most
adversarial conditions: an eventually synchronous communication model
under Byzantine faults. The message complexity of Tendermint is O(n3).
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1 Introduction

A blockchain is a distributed ledger implementing an append-only list of blocks
chained to each other, it serves as an immutable and non repudiable ledger in a
system composed of untrusted processes. The append operation needs to preserve
the chain shape of the data structure, leading to the necessity to have a mecha-
nism allowing processes to agree on the next block to append. Bitcoin blockchain,
for example, employs the proof-of-work mechanism [19], that is, processes willing
to append a new block have to solve a crypto-puzzle and the winning process
will append the new block. While this mechanism does not require a real coordi-
nation between the processes participating to the Bitcoin system, it might lead
to inconsistencies. Indeed, if more than one process solves the crypto-puzzle to
extend the same last block then processes may have blockchains with different
suffix as long as the conflict is unsolved.

In blockchain systems area the recent tendency is to privilege solutions based
on distributed agreement than proof-of-work. This is motivated by the fact that
the majority of proof-of-work based solutions such as Bitcoin or Ethereum are
energetically not viable when efficiency is targeted. Moreover proof of work solu-
tions guarantee the existence of an unique chain only with high probability which
is the major drawback for using blockchains in industrial applications. That is,
forks even though they are rare do still happen with an impact on the consistency
guarantees offered by the system and consensus algorithms play an important
role to prevent inconsistencies. In [8] the authors proved that consensus [27] is
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necessary in order to avoid forks. Therefore, alternatives to proof-of-work have
been recently considered and interestingly, the research in blockchain systems
revived a branch of distributed systems research: Byzantine fault-tolerant pro-
tocols having PBFT consensus protocol as ambassador. It should be noted that
PBFT solutions cannot be used in permissionless settings if the number of par-
ticipants to the agreement is not known in advance. That is, in permissionless
settings, for each block, a subset of processes (called validators in Tendermint)
runs a Byzantine fault-tolerant consensus algorithm to propose the next block
to be appended to the blockchain. All the existing solutions for PBFT consensus
use the number of validators as hardcore information in their algorithm.

Related Work. In the blockchain realm, there exist several Byzantine Fault Tol-
erant Consensus based blockchain proposals (e.g., [3,9,16,17], and [23]).

The consensus problem, as proved in the seminal FLP paper [21], cannot
be solved in an asynchronous message-passing system (when there are no upper
bounds on the message delivery delay) in the presence of one faulty (crash) pro-
cess. Moreover, in [27], the authors prove that consensus cannot be solved in
presence of f Byzantine faulty processes if the overall number of processes n is
less than 3f + 1 in a synchronous message-passing system (where the message
delivery delay is upper bounded). In between those impossibility results, it is still
possible to solve consensus in an asynchronous setting, either adding randomness
[11] (which also proved the impossibility result for n ≤ 3f for any asynchronous
solution) or partial synchrony as in Dwork et al. [18] (DLS) where BFT Consen-
sus is solved an eventual synchronous message-passing system (there is a time
τ after which there is an upper bound on the message delivery delay). DLS
preserves safety during the asynchronous period and the termination only after
τ , when the message transfer delay becomes bounded. The message complexity
of this protocol is O(n4) per epoch and it needs O(n) epochs before deciding.
Finally, Castro and Liskov proposed PBFT [14], a leader-based protocol that
optimizes the performances of the previous solution. If the leader is correct the
complexity boils down to O(n2). Otherwise, a view change mechanism takes
place, to change the leader and resume the computation. The view-change is
used to avoid that, in case of faulty leader, if some correct process decides on a
value v, the other correct processes cannot decide on a value v′ �= v when the
new leader proposes a new value. Such mechanism implies that when a leader
is suspected to be faulty, all processes have to collect enough evidences for the
view-change. That is, the view-change message contains at least 2f + 1 signed
messages and these messages are sent from at least 2f +1 processes which yields
a message complexity of O(n2). These messages are then sent to all processes,
the view-change has then O(n3) message complexity. Since the protocol termi-
nates when there is a correct leader, which may happen for the first time in
epoch f + 1, then in the worst case scenario it has a message complexity of
O(n4). Interestingly, Tendermint as well as similar recent approaches e.g. [2] use
an alternative mechanism for leader replacement that allows to drop message
complexity to O(n3). Basically, processes instead of exchanging all the messages
they already delivered (used previously to trigger a view change), locally keep
track of potentially decided values.
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Our Contribution. In this paper we analyze Tendermint proposed in [12] as one of
the most promising but not fully analyzed blockchain protocols that implements
Byzantine fault tolerant consensus. Tendermint targets an eventual synchronous
system [18], which means that safety has to be guaranteed in the asynchronous
periods and liveness in synchronous ones, when a subset of processes can be
affected by Byzantine failures. To analyze the protocol, we dissect Tendermint
identifying the techniques used to address different challenges in the considered
system model: synchronous round-based communication model and eventual syn-
chronous communication model. For each type of model we provide the corre-
sponding algorithm (a variant of Tendermint [12]) and compute its complexity.
Interestingly, and contrary to the classical view-changed based approaches, mes-
sage complexity in the worst case scenario is O(n3). This is because processes,
instead of exchanging all the messages they already delivered, locally keep track
of potentially decided values to preserve the safety, hence reducing the message
complexity. In the same spirit, HotStuff [2] (a concurrent proposal) incurs the
same message complexity, sharing with Tendermint a linear proposer replace-
ment. Note as well that the proposed methodology allowed us to identify bugs
(see [5]) in the preliminary versions of the protocol ([12,26]).

This paper and [6] target two different consensus algorithms that are core
of two different releases of Tendermint blockchain. In [6] the authors reverse-
engineered and then formalized the Tendermint blockchain protocol implemented
initially by the Tendermint Foundation [31]. [6] allowed to identify several bugs in
the initial version of Tendermint implementation (see [5]). Moreover, we proved
that the termination property cannot be guaranteed in general, and hence an
additional assumption on the execution is needed to solve Consensus. After the
publication of our findings, Tendermint foundation proposed a new algorithm,
[12], that is currently implemented as consensus-core for the new release of Ten-
dermint. The new version of the protocol claimed to include new mechanisms
that removed the need of additional assumptions in order to guarantee the ter-
mination. The pseudo-code proposed in [12] and further implemented by Ten-
dermint foundation still had some bugs at the time when we started to analyse
it, which we reported [30].

In order to help practitioners, and in particular Tendermint foundation, to
detect easily their errors and compare with the existing state of the art, in this
paper we decided to have a bottom up approach by identifying the minimal
building blocks a PBFT-like protocol should include in order to solve consen-
sus function on the considered system and communication model (going from
synchronous to eventually synchronous) and the behavior of Byzantine nodes.
We used Tendermint as case study and identified the mechanisms needed by the
protocol in order to be correct. Our study resulted in three variants of the pro-
tocol for which we analyzed the correctness and the complexity. In this paper,
we included two of the three algorithms (we decided to left aside the trivial one
where Byzantines have a symmetrical behavior and the communication is syn-
chronous). Moreover, the complexity analysis proposed in our paper may help
both practitioners and academics to compare Tendermint to the state of the art
which was an open question so far.
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2 Model

The system is composed of an infinite set Π of sequential processes, namely
Π = {p1, . . . }; Sequential means that a process executes one step at a time.
This does not prevent it from executing several threads with an appropriate
multiplexing. As local processing time are negligible with respect to message
transfer delays, they are considered as equal to zero.

Arrival Model. We assume a finite arrival model [4], i.e. the system has
infinitely many processes Π but each run has only finitely many. The size of the
set Πρ ⊂ Π of processes that participate in each system run is not a priori-known.
We also consider a finite subset V ⊆ Πρ of validators. The set V may change
during any system run and its size n is a-priori known. A process is promoted in
V based on a so-called merit parameter, which can model for instance its stake
in proof-of-stake blockchains. Note that in the current Tendermint implementa-
tion, it is a separate module included in the Cosmos project [25] that is in charge
of implementing the selection of V .

Failure Model. There is no bound on processes that can exhibit a Byzantine
behaviour [29] in the system, but up to f validators can exhibit a Byzantine
behaviour at each point of the execution. A Byzantine process is a process that
behaves arbitrarily. A process (or validator) that exhibits a Byzantine behaviour
is called faulty. Otherwise, it is non-faulty or correct or honest. To be able to
solve the consensus problem, we assume that f < n/3 and more precisely we
consider n = 3f + 1.

Communication Model. Processes communicate by exchanging messages
through an eventually synchronous network [18]. Eventually Synchronous means
that after a finite unknown time τ > 0 there is a bound δ on the message transfer
delay. When τ = 0 the network is synchronous.

In the following we assume the presence of a broadcast primitive. A process
pi by invoking the primitive broadcast(〈TAG,m〉) broadcasts a message, where
TAG is the type of the message, and m its content. To simplify the presentation,
it is assumed that a process can send messages to itself. The primitive broadcast()
is a best effort broadcast, which means that when a correct process broadcasts
a value, eventually all the correct processes deliver it. A process pi receives
a message by executing the primitive delivery(). Messages are created with a
digital signature, and we assume that digital signatures cannot be forged. When
a process pi delivers a message, it knows the process pj that created the message.

Let us note that the assumed broadcast primitive in an open dynamic network
can be implemented through gossiping, i.e. each process sends the message to
current neighbors in the underlying dynamic network graph. In these settings
the finite arrival model is a necessary condition for the system to show eventual
synchrony. Intuitively, a finite arrival implies that message losses due to topology
changes are bounded, so that the propagation delay of a message between two
processes not directly connected can be bounded [10,28].
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Round-Based Execution Model. We assume that each correct process
evolves in rounds. A round consists of three phases, in order: (i) a Send phase,
where the process broadcasts messages computed during the last round, or a
default messages for the first round; (ii) a Delivery phase where the process col-
lects messages sent during the current and previous rounds; and (iii) a Compute
phase where the process uses the messages delivered to change its state. At the
end of a round a process exits from the current round and starts the next round.
Each round has a finite duration, we consider the Send and the Compute phase
as being atomic, they are executed instantaneously, but not the Delivery phase.
In a synchronous network, we assume the duration of the Delivery phase, and so
of the round is δ. We assume that processes have no access to a global clock but
have access to local clocks, these clocks might not be synchronized with each
other but are allowed to have bounded clock skew.

Problem Definition. In this paper we analyze the correctness of Tendermint
protocol with respect to the consensus specification: Termination, every correct
process eventually decides some value; Integrity, no correct process decides
twice; Agreement, if there is a correct process that decides a value v, then
eventually all the correct processes decide v; Validity [13,15], a decided value
is valid, it satisfies the predefined predicate denoted valid().

3 Tendermint Algorithms

Tendermint BFT Consensus protocol [12,26,31] is a variant of PBFT consensus,
at the core layer of the Tendermint blockchain.

The algorithm follows the rotating coordinator paradigm i.e., for each new
block to be appended there is a proposer, chosen among the validators, that pro-
poses the block. If the block is not decided then a new proposer is selected and
so on, until a block is decided by all the correct validators and consensus termi-
nates. In the following we present variants of [12] in synchronous and eventual
synchronous communication models.

Basic Principles of the Protocol. Each block in the blockchain is characterized
by its height h, which is the distance in terms of blocks from the genesis block,
which is at height 0. For each new height, the two protocols (Algorithm 2 for the
synchronous case and Algorithm 4 for the eventual synchronous case) share a
common algorithmic structure, they proceed in epochs, and each epoch e consists
in three rounds: the PRE-PROPOSE round; the PROPOSE round; and the
VOTE round. During the PRE-PROPOSE round, the proposer pre-proposes a
value v to all the other validators. During the PROPOSE round, if a validator
accepts v then it proposes such value. If a validator receives enough proposals
for the same value v then it votes for v during the VOTE round. Finally, if a
validator receives enough votes for v, it decides on v. In this case, enough means
at least 2f +1 occurrences of the same value from 2f +1 different validators and
from each validator only the first value delivered for each round is considered,
(cf. Algorithm 1).
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If the proposer is correct then it pre-proposes the same value to all the
2f +1 correct validators. All the 2f +1 correct validators propose such value, it
follows that all the 2f + 1 correct validators vote for such value and decide for
it. If the proposer is Byzantine it can pre-propose different values to different
correct validators, creating a partition in the proposal value set collected by
validators. Depending on what the remaining Byzantine validators do, some
correct validators may decide on a value v and some other may not1, then a
new epoch starts. In order to not violate the agreement property, validators that
have not decided yet in the previous epoch must only decide for v, for this reason
validators, before vote for some value v, lock on that value, i.e., they will refuse
to propose a further pre-proposed value different than v.

Information from One Epoch to the Next. lockedV alue and validV alue vari-
ables2 carry the potentially decided value from one epoch to the next one. The
lockedV alue idea is the following. If one correct validator decides on v, it means
that it collected 2f + 1 votes for v during the VOTE phase, since there are at
most f Byzantine validators thus there are at least f + 1 correct validators that
voted for v and those validators must not vote for any other different value than
v. For this reason if a validator delivers 2f + 1 proposals for v during the PRO-
POSE round it sets its lockedV alue to v. Since each new pre-proposed value
v′ is proposed if v′ is equal to lockedV alue or validV alue (not true for at lest
f + 1 correct validators that set lockedV alue to v), then there can be at most
2f possible proposals for v′ that are not enough to lock and vote for v′, i.e.,
it is not possible to decide for any value different than v. On the other side, if
no correct validator decided yet, Byzantine faulty validators may force different
correct validators to lock on different values. Let us consider a scenario where
the proposer is Byzantine and proposes v to f + 1 correct validators and then f
Byzantine validators make x ≤ f of them lock on v and a similar scenario can
happen with another value v′ so that we can have different correct validators,
let us say y ≤ f locked on a different value. If any new pre-proposal is checked
only against the lockedV alue then a correct validator locked on a value v refuses
(does not propose) all values different from v, it means that when some correct
validator is locked, the proposer needs to propose some of the value on which the
correct validators are locked on, but such value, in order to be accepted cannot
be checked only against the lockedV alue because we may never have enough
correct validators proposing such value. For this reason validators keep track of
the validV alue and by construction of the algorithm all correct validators have
the same validV alue at the end of the epoch (in the synchronous period). Such
value is then used to set the value to pre-propose and it is further used along
with lockedV alue to accept or not a pre-proposed value.

1 Since there are 3f + 1 validators, there cannot be two different values that collect
2f + 1 distinct votes in the same epoch.

2 validV alue was not present in the previous version of Tendermint [26], that was
suffering from the Live Lock bug [1].
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Algorithm 1. Messages management for validator pi

1: upon 〈TYPE, h, e, message〉 from validator pj do
2: if �c : (〈TYPE, h, e, c〉, pj) ∈ messagesSet then
3: messagesSeti ← messagesSeti ∪ (〈TYPE, h, e, message〉, pj)

Messages Syntax. When the validator pi broadcasts a message 〈TAG, h, e,m〉,
where m contains a value v, we say that pi pre-proposes, proposes or votes v if
TAG=PRE-PROPOSE, TAG=PROPOSE, TAG=VOTE, respectively.

Variables and Data Structures. h is an integer representing the consensus
instance the validator is currently executing. ei is an integer representing the
epoch where the validator pi is, we note that for each height, a validator may
have multiple epochs. decisioni is the decision of validator pi for the consensus
instance h. proposali is the value the validator pi proposes. votei is the value
the validator pi votes. lockedV aluei stores a value which is potentially decided
by some other validator. If validator pi delivers more than 2f + 1 proposes
for the same value v during its PROPOSE round, it sets lockedV aluei to v.
validV aluei stores a value which is potentially decided by some other validator.
If the validator pi delivers at least 2f + 1 proposes for the same value v (from
different validators) whether during its PROPOSE round or its VOTE round,
it sets validV aluei to v. validV alidi is the last value that a validator delivered
at least 2f + 1 times, and can be different than lockedV aluei. The latter two
variables are used as follows: if pi is the next proposer then pi pre-proposes
validV alidi if different from nil. Otherwise, if pi is a validator, it checks the new
pre-proposal against lockedV aluei and validV alidi if those are different from
nil.

Functions. We denote as V alue the set containing all blocks, as MemPool
the set containing all the transactions, and as Messages the set containing all
messages.

– proposer : Height × Epoch → V ⊆ Πρ is a deterministic function which gives
the proposer out of the validators set for a given epoch at a given height in a
round robin fashion.

– valid : V alue → Bool is an application dependent predicate that is satisfied
if the given value is valid w.r.t. the blockchain. If there is a value v such that
valid(v) = true, we say that v is valid. Note that we set valid(nil) = false.

– getValue() return a valid value.
– sendByProposer : Height × Epoch × V alue → Bool is an predicate that gives
true if the given value has been pre-proposed by the proposer of the given
height during the given epoch.

– 2f + 1 : P(Messages) → Bool: checks if there are at least 2f + 1 proposals
(resp. votes) in the given set of messages.

Everything defined above is common to the two algorithms. In each section
we specify the data structures relative to a specific version of the algorithm.
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Algorithm 2. Simplified Algorithm part 1 for height h executed at validator pi

1: Initialization:
2: ei := 0 /* This current epoch number */
3: decisioni := nil /* This variable stocks the decision of the validator pi */
4: lockedV aluei := nil; validV aluei := nil
5: proposali := getV alue() /* This variable stocks the value the validator will (pre-)propose */
6: vi := nil /* Local variable stocking the pre-preposal if delivered */
7: votei := nil

8: Round PRE-PROPOSE(ei) :
9: Send phase:
10: if decisioni 	= nil then
11: ∀v, pj : (〈VOTE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈VOTE, h, ei, v〉
12: return
13: if proposer(h, ei) = pi then
14: broadcast 〈PRE − PROPOSE, h, ei, proposali〉 to all validators
15: Delivery phase:
16: while (timerPrePropose not expired) do
17: if ∃v : sendByProposer(h, ei, v) then
18: vi ← v /* v is the value sent by the proposer */
19: Compute phase:
20: if !valid(vi) then
21: proposali ← nil /* Note that valid(nil) is set to false */
22: else
23: if validV aluei = nil ∨ vi ∈ {lockedV aluei, validV aluei} then
24: proposali ← vi

25: else
26: proposali ← nil

3.1 Byzantine Synchronous System

In Algorithms 1, 2 and 3 we describe the algorithm to solve consensus in a
synchronous system in presence of Byzantine failures. The algorithm proceeds
in 3 rounds for any given epoch at height h:

– Round PRE-PROPOSE (lines 8–26, Algorithm 2): If the validator pi is the
proposer of the epoch, it pre-proposes its proposal value, otherwise, it waits
for the proposal from the proposer. The proposal value of the proposer is its
validV aluei if validV aluei �= nil. If a validator pj delivers the pre-proposal
from the proposer of the epoch, pj checks the validity of the pre-proposal and
if to accept it with respect to the values in validV aluei and lockedV aluei. If
the pre-proposal is accepted and valid, pj sets its proposal proposalj to the
pre-proposal, otherwise it sets it to nil.

– Round PROPOSE (lines 1–13, Algorithm 3): During the PROPOSE round,
each validator broadcasts its proposal, and collects the proposals sent by the
other validators. After the Delivery phase, validator pi has a set of proposals,
and checks if v, pre-proposed by the proposer, was proposed by at least 2f +
1 different validators, if it is the case, and the value is valid, then pi sets
votei, validV aluei and lockedV aluei to v, otherwise it sets votei to nil.

– Round VOTE (lines 14–32, Algorithm 3): In the round VOTE, a correct
validator pi votes votei and broadcasts all the proposals it delivered during
the current epoch. Then pi collects all the messages that were broadcast.
First pi checks if it has delivered at least 2f + 1 of proposal for a value v′

pre-proposed by the proposer of the epoch, in that case, it sets validV aluei



174 Y. Amoussou-Guenou et al.

Algorithm 3. Simplified Algorithm part 2 for height h executed at validator pi

1: Round PROPOSE(ei) :
2: Send phase:
3: if proposali 	= nil then
4: broadcast 〈PROPOSE, h, ei, proposali〉 to all validators
5: Delivery phase:
6: while (timerPropose not expires) do{} /* Collect messages */
7: Compute phase:
8: if ∃v : 2f + 1〈PROPOSE, h, ei, v〉 ∧ valid(v) ∧ sendByProposer(h, ei, v) then
9: lockedV aluei ← v
10: validV aluei ← v
11: votei ← v
12: else
13: votei ← nil

14: Round VOTE(ei) :
15: Send phase:
16: ∀v, pj : (〈PROPOSE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈PROPOSE, h, ei, v〉
17: if votei 	= nil then
18: broadcast 〈VOTE, h, ei, votei〉
19: Delivery phase:
20: while (timerVote not expires) do{} /* Collect messages */
21: Compute phase:
22: if ∃v′ : 2f + 1〈PROPOSE, h, ei, v′〉 ∧ valid(v′) ∧ sendByProposer(h, ei, v′) then
23: validV aluei ← v′

24: if ∃vd, ed : 2f + 1〈VOTE, h, ed, vd〉 ∧ valid(vd) ∧ decisioni = nil then
25: decisioni ← vd

26: else
27: ei ← ei + 1
28: vi ← nil
29: if validV aluei 	= nil then
30: proposali ← validV aluei

31: else
32: proposali ← getV alue()

to that value then it checks if a value v′ pre-proposed by the proposer of the
current epoch is valid and has at least 2f + 1 votes, if it is the case, then
pi decides v′ and goes to the next height; otherwise it increases the epoch
number and updates the value of proposali with respect to validV aluei.

3.2 Byzantine Eventual Synchronous System

This section presents the Algorithm 1, and Algorithms 4, 5 that solve Consensus
in an eventually synchronous model in presence of Byzantine faulty validators.
This algorithm has been reported in an early version of [12] with the bugs fixed
in [30]. To achieve the consensus in this setting two additional variables need to
be used, (i) lockedEpochi is an integer representing the last epoch where valida-
tor pi updated lockedV aluei, and (ii) validEpochi is an integer which represents
the last epoch where pi updates validV aluei. These two new variables are used
to not violate the agreement property during the asynchronous period. During
such period different epochs may overlap at different validators, then it is needed
to keep track of the relative epoch when a validator locks in order to not accept
“outdated” information generated during a previous epoch. Moreover, a round
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Algorithm 4. Tendermint Consensus part 1 for height h executed by pi

1: Initialization:
2: ei := 0 /* Current epoch number */
3: decisioni := nil /* This variable stocks the decision of the validator pi */
4: lockedV aluei := nil; validV aluei := nil
5: lockedEpochi := −1; validEpochi := −1
6: proposali := getV alue() /* This variable stocks the value the validator will (pre-)propose */
7: vi := nil /* Local variable stocking the pre-preposal if delivered */
8: validEpochj := nil /* Local variable stocking the proposer’s validEpoch */
9: votei := nil /* This variable stock the value the validator will vote for */
10: timeoutPrePropose := ΔPre-propose; timeoutPropose := ΔPropose; timeoutVote := ΔVote

11: Round PRE-PROPOSE :
12: Send phase:
13: if decisioni 	= nil then
14: ∀v, pj : (〈VOTE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈VOTE, h, ei, v〉
15: return
16: if proposer(h, ei) = pi then
17: broadcast 〈PRE − PROPOSE, h, ei, proposali, validEpochi〉
18: Delivery phase:
19: set timerPrePropose to timeoutPrePropose
20: while (timerPrePropose not expired) ∧ ¬(∃vj , ej : sendByProposer(h, ei, vj , ej)) do
21: if ∃vj , ej : sendByProposer(h, ei, vj , ej) then
22: vi ← vj /* vj is the value sent by the proposer */
23: validEpochj ← ej /* ej is the validEpoch sent by the proposer */
24: if ¬(∃v, epochProp : sendByProposer(h, ei, v, epochProp)) then
25: timeoutPrePropose ← timeoutPrePropose + 1
26: Compute phase:
27: if 2f + 1 〈PROPOSE, h, validEpochj , vi〉 ∧ validEpochj ≥ lockedEpochi ∧ validEpochj <

ei ∧ valid(vi) then
28: proposali ← vi

29: else
30: if !valid(vi) ∨ (lockedEpochi > validEpochj ∧ lockedV aluei 	= vi) then
31: proposali ← nil /* Note that valid(nil) is set to false */
32: if valid(vi) ∧ (lockedEpochi = −1 ∨ lockedV aluei = vi) then
33: proposali ← vi

duration management mechanism needs to be introduced, i.e. increasing time-
outs. In the previous algorithm, rounds were lasting δ, the known message delay.
In an eventually synchronous system such approach is not feasible, since dur-
ing the asynchronous period messages may take unbounded delay before being
delivered. It follows that, since there are at most f Byzantine faulty validators,
when a validator delivers messages from n − f different validators it can termi-
nate the delivery phase, but such phase may last an unbounded time. On the
contrary, in the PRE-PROPOSE round only the proposer is sending a message,
and generally messages may take a lot of time before being delivered, for such
reasons timeouts need to be used in order to manage the rounds duration and
adapted to message delays, such that once the system enters in the synchronous
period, rounds last enough for messages send during the round to be delivered
before the end of it.

The algorithm proceeds in 3 rounds for any given epoch e at height h. The
description is mainly the same as in Sect. 3.1, thus in the following we underline
just the differences:

– Round PRE-PROPOSE (lines 11–33, Algorithm 4): The description of this
round is mainly the same as before. We highlight the fact that a correct
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Algorithm 5. Tendermint Consensus part 2 for height h executed by pi

1: Round PROPOSE :
2: Send phase:
3: if proposali 	= nil then
4: broadcast 〈PROPOSE, h, ei, proposali〉
5: broadcast 〈HeartBeat,PROPOSE, h, ei〉
6: Delivery phase:
7: set timerPropose to timeoutPropose
8: while (timerPropose not expires) ∧ ¬(2f + 1〈HeartBeat,PROPOSE, h, ei〉) do{} /* Note

that the HeartBeat messages should be from different validators */
9: if ¬(2f + 1〈HeartBeat,PROPOSE, h, ei〉) then
10: timeoutPropose ← timeoutPropose + 1
11: Compute phase:
12: if ∃v′ : 2f + 1〈PROPOSE, h, ei, v′〉 ∧ valid(v′) ∧ sendByProposer(h, ei, v′) then
13: lockedV aluei ← v′

14: lockedEpochi ← ei

15: validV aluei ← v′

16: validEpochi ← ei

17: votei ← v′

18: else
19: votei ← nil

20: Round VOTE :
21: Send phase:
22: ∀v, pj : (〈PROPOSE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈PROPOSE, h, ei, v〉
23: if votei 	= nil then
24: broadcast 〈VOTE, h, ei, votei〉
25: broadcast 〈HeartBeat,VOTE, h, ei〉
26: Delivery phase:
27: set timerVote to timeoutVote
28: while (timerVote not expires) ∧ ¬(2f + 1〈HeartBeat,VOTE, h, ei〉) do{}
29: if ¬(2f + 1〈HeartBeat,VOTE, h, ei〉) then
30: timeoutVote ← timeoutVote + 1
31: Compute phase:
32: if ∃v′′ : 2f + 1〈PROPOSE, h, ei, v′′〉 ∧ valid(v′′) ∧ sendByProposer(h, ei, v′′) then
33: validV aluei ← v′′

34: validEpochi ← ei

35: if ∃vd, ed : 2f + 1〈VOTE, h, ed, vd〉 ∧ valid(vd) ∧ decisioni = nil then
36: decisioni ← vd

37: else
38: ei ← ei + 1
39: vi ← nil
40: if validV aluei 	= nil then
41: proposali ← validV aluei

42: else
43: proposali ← getV alue()

validator pi takes into account also lockedEpochi in order to accept a pre-
proposed value.

– Round PROPOSE (lines 1–19, Algorithm 5): When a correct validator pi

updates lockedV aluei (resp. validV aluei), it also update lockedEpochi (resp.
validEpochi) to the current epoch.

– Round VOTE (lines 20–43, Algorithm 5): If a correct validator pi delivered
at least f + 1 same type of messages from an epoch higher than the current
one, pi moves directly to the PRE-PROPOSE round of that epoch and when
a correct validator pi updates validV aluei, it also update validEpochi to the
current epoch.



Dissecting Tendermint 177

We recall that each validator has a time-out for each round. If during a round
validator pi does not deliver at least 2f + 1 messages sent during that round (or
the pre-proposal for the PRE-PROPOSE round), the corresponding time-out is
increased. Those messages can be values or heartbeats, in the case in which a
correct validator has not a value to propose or vote.

3.3 Correctness Proof of Tendermint Algorithm in a Byzantine
Eventual Synchronous Setting

In this section, we prove the correctness of Algorithms 4 and 5 (Tendermint) in
an eventual synchronous system. Due to the lack of space, the missing proofs
can be found in the technical report [7].

Lemma 1 (Validity). In an eventual synchronous system, Tendermint verifies
the following property: A decided value satisfies the predefined predicate denoted
as valid().

Lemma 2 (Integrity). In an eventual synchronous system, Tendermint ver-
ifies the following property: No correct validator decides twice.

Lemma 3. Let v be a value, e an epoch, and the set Lv,e = {pj : pj correct ∧
lockedV aluej = v ∧ lockedEpochj = e at the end of epoch e}. In an eventual
synchronous system, Tendermint verifies the following property: If |Lv,e| ≥ f +1
then no correct validator pi will have lockedV aluei �= v ∧ lockedEpochi ≥ e, at
the end of each epoch e′ > e, moreover a validator in Lv,e only proposes v or nil
for each epoch e′ > e.

Lemma 4 (Agreement). In an eventual synchronous system, Tendermint ver-
ifies the following property: If there is a correct validator that decides a value v,
then eventually all the correct validators decide v.

Lemma 5 (Termination). In an eventual synchronous system,Tendermint ver-
ifies the following property: Every correct validator eventually decides some value.

Proof. By construction, if a correct validator does not deliver more than 2f +1
messages (or 1 from the proposer in the PRE-PROPOSE round) from different
validators during the corresponding round, it increases the duration of its round,
so eventually during the synchronous period of the system all the correct val-
idators will deliver the pre-proposal, proposals and votes from correct validators
respectively during the PRE-PROPOSE, PROPOSE and the VOTE round. Let
e be the first epoch after that time.

If a correct validator decides before e, by Lemma 4 all correct validators
decide which ends the proof. Otherwise at the beginning of epoch e, no correct
validator decides yet. Let pi be the proposer of e. We assume that pi is correct
and pre-propose v; v is valid since getV alue() always return a valid value (lines
6, Algorithm 4 & line 43, Algorithm 5), and validV aluei is always valid (lines
12 & 32, Algorithm 5). We have 2 cases:
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– Case 1: At the beginning of epoch e, |{pj : pj correct ∧ (lockedEpochj ≤
validEpochi ∨ lockedV aluej = v)}| ≥ 2f + 1.
Let pj be a correct validator where the condition lockedEpochj ≤
validEpochi∨ lockedV aluej = v holds. After the delivery of the pre-proposal
v from i, pj will update proposalj to v (lines 27–33, Algorithm 4). During the
PROPOSE round, pj proposes v (line 4, Algorithm 5), and since there are at
least 2f + 1 similar correct validators they will all propose v, and all correct
validators will deliver at least 2f + 1 proposals for v (line 7, Algorithm 5).
Correct validators will set their vote to v (lines 12–4, Algorithm 5), will vote
v, and will deliver these votes, so at least 2f + 1 of votes (lines 24 & 26,
Algorithm 5). Since we assume that no correct validators decided yet, and
since they deliver at least 2f + 1 votes for v, they will decide v (lines 35–36,
Algorithm 5).

– Case 2: At the beginning of epoch e, |{pj : pj correct ∧ (lockedEpochj ≤
validEpochi ∨ lockedV aluej = v)}| < 2f + 1.
Let pj be a correct validator where the condition lockedEpochj >
validEpochi ∧ lockedV aluej �= v holds. When pi will make the pre-proposal,
pj will set proposalj to nil (line 31, Algorithm 4) and will propose nil (line 4,
Algorithm 5).
By counting only the propose value of the correct validators, no value will
have at least 2f + 1 proposals for v. There are two cases:

• No correct validator delivers at least 2f + 1 proposals for v during the
PROPOSE round, so they will all set their vote to nil, vote nil and go to
the next epoch without changing their state (lines 19 & 24–26 & 37–43,
Algorithm 5).

• If there are some correct validators that delivers at least 2f +1 proposals
for v during the PROPOSE round, which means that some Byzantine
validators send proposals for v to those validators.
As in the previous case, they will vote for v, and since there are 2f +1 of
them, all correct validators will decide v. Otherwise, there are less than
2f +1 correct validators that deliver at least 2f +1 proposals for v. Only
them will vote for v (line 24, Algorithm 5). Without Byzantine validators,
there will be less than 2f + 1 vote for v, no correct validator will decide
(lines 35–36, Algorithm 5) and they will go to the next epoch, if Byzan-
tine validators send votes for v to a correct validator such as it delivers
at least 2f + 1 votes for v during VOTE round, then it will decide (lines
35–36, Algorithm 5), and by Lemma 4 all correct validators will eventu-
ally decide.
Let pk be one of the correct validators that delivers at least 2f + 1 pro-
posals for v during PROPOSE round, it means that lockedV aluek = v
and lockedEpochk = e. It follows that at the end of epoch e, all correct
validators will have validV alue = v and validEpoch = e.

If there is no decision, either no correct validator changes its state, otherwise
all correct validators change their state and have the same validV alue and
validEpoch, eventually a proposer of an epoch will satisfy the case 1, and
that ends the proof.
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If pi, the proposer of epoch e, is Byzantine and more than 2f+1 correct validators
delivered the same message during PRE-PROPOSE round, and the pre-proposal
is valid, the situation is like pi was correct. Otherwise, there are not enough
correct validators that delivered the pre-proposal, or if the pre-proposal is not
valid, then there will be less than 2f +1 correct validators that will propose that
value, which is similar to the case 2.

Since the proposer is selected in a round robin fashion, a correct validator
will eventually be the proposer, and correct validators will decide. �Lemma 5

Theorem 1. In an eventual synchronous system, Tendermint implements the
consensus specification.

3.4 Complexity of Tendermint Algorithm in a Byzantine Eventual
Synchronous Setting

Let us consider the following scenario after the asynchronous period (i.e., after
τ), in which in the first f epochs, ei+1, . . . , ei+f , there are f Byzantine proposers
that make lock only one correct validator at each epoch on f different values
with different lockedEpoch, ei+1, . . . , ei+f . Let pj be the last correct validator
that locked, and let v such value (lockedV aluej = v) with lockedEpochj = ei+f .
Then all the other correct validators have validV alue set to v and validEpoch
set to ei+f . This happens thanks to the fact that when a correct validator
locks on a value then at the end of the epoch every correct validator sets its
validV alue to that value. The algorithm terminates when a pre-proposal is pro-
posed and voted by more than 2f correct validators, i.e, when the pre-proposed
value has validEpoch greater equal than the validator lockedEpoch. Thus, dur-
ing the period of synchrony, the first correct proposer that proposes leads the
algorithm to terminate in f +1 rounds. Let us consider the case in which there f
correct validators locked on f different values with different lockedEpoch before
τ . Let us assume that pj is the last correct validator that locked on a value
v, thus it has the highest lockedEpoch but not all the correct validators have
their validV alue set to v (due to the asynchronous communication). Let us now
consider that after τ the first f proposers are Byzantines and stay silent. The fol-
lowing proposers are correct but their pre-propose value might not be accepted
by enough correct validators as long as pj , with the highest validEpoch and
lockedEpoch proposes. Which eventually happens due to the round robin selec-
tion function. Thus, the protocol terminates in a number of epochs proportional
to the number of validators O(n), while the lower bound to solve BFT Consen-
sus in the worst case scenario is f + 1 [20]. As for message complexity, since at
each epoch, all validators broadcast messages, it follows that during one epoch
the protocol uses O(n2) messages, thus in the worst case scenario the message
complexity is O(n3).
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In the following we address the bit complexity of Tendermint. In Tendermint,
each message is composed as follow:

– PRE-PROPOSE: The marker that the message is from the round PRE-PROPOSE;
two integers one for the current height, and the second for the current epoch;
the proposed value; and an integer representing the epoch on which the pro-
poser last updated its validV alue.

– PROPOSE: The marker that the message is from the round PROPOSE; two inte-
gers representing the current height and the current epoch; and a value which
is the proposed block.

– VOTE: The marker that the message is from the round VOTE; two integers
representing the current height and the current epoch; and a value which is
the voted block.

– HeartBeat: The marker that the HeartBeat is from the round VOTE or PROPOSE;
two integers representing the current height and the current epoch.

A correct validator keeps in memory, for each epoch for a given height, one
message for each type (PROPOSE, VOTE) and at most 2 messages of type HeartBeat
from each validator, and only one PRE-PROPOSE. A correct validator may have at
most 1 message from PRE-PROPOSE, n messages from PROPOSE, n messages from
VOTE, and 2n messages of type HeartBeat. Hence, for each epoch at any given
height, a validator stores at most 4n+1 messages of size O(log n). In the worst
case, for the whole execution, a validator may store O(n2) messages. Therefore,
the bit complexity in the worst case is O(n2 log n).

Note that [24] proposes a bit complexity of O(n3 log n) for an optimal round
complexity using a variant of the tree structure of the Exponential Information
Gathering protocol introduced in [22]. Clearly, there is a tradeoff between the
bit complexity and the round complexity of the Byzantine agreement.

4 Conclusion

The contribution of this work is twofold. First, it analyzes Tendermint consensus
protocol and provides detailed proof of its correctness and complexity. Second,
it dissects such protocol in order to link the algorithmic techniques to the con-
sidered system model. We believe that this methodology can contribute in mak-
ing Byzantine-tolerant consensus algorithms more understandable for developers
and practitioners.
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