
Dynamic Partial Order Reduction Under
the Release-Acquire Semantics (Tutorial)

Parosh Aziz Abdulla(B), Mohamed Faouzi Atig, Bengt Jonsson,
and Tuan Phong Ngo

Uppsala University, Uppsala, Sweden
parosh@it.uu.se

Abstract. We describe at a high-level the main concepts in the Release-
Acquire (RA) semantics that is part of the C11 language. Furthermore,
we describe the ideas behind an optimal dynamic partial order reduction
technique that can be used for systematic analysis of concurrent pro-
grams running under RA.

This tutorial is based on the material presented in [5], which also con-
tains the formal definitions of all the models, concepts, and algorithms.

1 Introduction

Concurrent programs are difficult to get correct. The main reasons are the large
number of threads that may arise during a given execution of the program, and
the intricate nature of interactions among these threads. Model checking has been
of the most prominent approaches to program verification during the last three
decades [16]. Given a formal model of a program and a property to be checked,
a model checking algorithm checks automatically whether the program satisfies
the property or not. A limiting factor in the application of model checking is
the state explosion problem which occurs since the size of the state space of
the program grows exponentially with the number of threads. Stateless Model
Checking (SMC) [21] has been proposed as a way to reduce the problem at the
price of sacrificing the completeness of the analysis. The aim is to exploit the
hypothesis that bugs that arise only due to some (usually a small number) of the
possible thread schedulings. In contrast to full model checking, SMC algorithms
are run under two assumptions on the input program:

– Each thread in the program is assumed to be terminating. To enforce this
condition, program loops are unfolded a certain a priori decided number of
times.

– Each thread is assumed to be data-deterministic, and hence the only source
of non-determinism lies in the thread schedulings. To enforce the condition
we analyze the program for a given initial value per variable.

Under these two assumptions, SMC systematically explores the set of all thread
schedulings that are possible during the runs of the program. The SMC explo-
ration is derived by a special run-time scheduler which derives new thread
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-31277-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_1

4 P. A. Abdulla et al.

schedulings whenever it detects that such decisions may affect the interaction
between threads. In such a manner, it is guaranteed that the exploration covers
all possible executions. This also means that the algorithm detects any unex-
pected program results, program crashes, or assertion violations. Due to the
assumptions, we can in general consider SMC as an under-approximate veri-
fication framework in the sense that all reported errors are true bugs in the
program, but certain bugs may remain undetected. Despite not being complete,
SMC offers numerous advantages, namely:

– It is completely automatic.
– It has no false positives.
– It does not consume excessive memory.
– It can easily reproduce the concurrency bugs it detects.

Due to these advantages, SMC has along the years been implemented in numer-
ous tools, such as VeriSoft [23], CDSChecker [18,31], Chess [30], Concuer-
ror [14], rInspect [37], and Nidhugg [1], and successfully applied to realistic con-
current programs [22,27].

Notwithstanding, SMC still faces the state space explosion problem, albeit
in a less severe manner. To circumvent this problem, different techniques have
been proposed to reduce the number of explored executions. The most impor-
tant one is partial order reduction. Partial order techniques were first developed
for full model checking [11,12,15,20,32,36]. It was later integrated in the SMC
framework, and called dynamic partial order reduction (DPOR) [2,3,19,34,35].
DPOR avoids redundant exploration of equivalent executions with the same
order between conflicting instructions. Two executions are regarded as equiva-
lent if they induce the same ordering between conflicting events. It is sufficient
to explore one execution in each equivalence class. The equivalence classes are
sometimes called Mazurkiewicz traces [29]. An important goal is to avoid explor-
ing several traces that belong to the same equivalence class since, after all, such
traces carry the same information with respect to the property to be verified.
Ideally, we would like to design DPOR algorithms that are optimal in the sense
that they explore exactly one interleaving in each equivalence class [2].

In this tutorial, we will consider two issues related to the principles of the
DPOR approach:

– Mazurkiewicz traces distinguish executions based on the ordering of conflict-
ing write operations, and on how reads are ordered wrt. the writes. There-
fore, Mazurkiewicz traces induce an equivalence relation that is occasionally
unnecessarily coarse for checking typical properties such as program crashes
or assertion violations. For instance, it includes coherence order, i.e., the order
in which write events on shared variables reach the memory. Coherence order
is irrelevant for checking the above properties, and hence using Mazurkiewicz
traces is a source of redundancy, inherently limiting the efficiency that can
possibly be achieved in the analysis. In this tutorial, we will consider a weaker
equivalence relation that is still sufficiently strong to guarantee full coverage
of the state space, and that will therefore potentially achieve efficiency levels
that are not possible with current techniques.

Tutorial on DPOR Under RA 5

Fig. 1. A concurrent program P1 with
two threads.

Fig. 2. A run of the program P1.

– The DPOR framework was originally deigned for concurrent program run-
ning under the classical model of Sequential Consistency (SC) [2,19,35]. How-
ever, nowadays most parallel software run on platforms that do not guarantee
SC. More precisely, to satisfy demands on efficiency and energy saving, such
platforms implement optimizations that lead to the relaxation of the inter-
component synchronization, hence offering only weak consistency guarantees.
In recent years, DPOR has also been adapted to hardware-induced relaxed
memory models, such as TSO and PSO [1,37], and language-level concur-
rency models, such as the C/C++ memory model [26,31]. In this tutorial, we
will describe how to extend DPOR to a particular consistency model, namely
the Release-Acquire fragment of C11 [28].

2 Sequential Consistency

We will introduce concurrent programs, define the notions of runs and traces,
and describe (optimal) DPOR algorithms.

2.1 Concurrent Programs

Fig. 1 depicts a program P1 with two threads, namely th1 and th2. The threads
operate on a set X of shared variables, (in this example, one shared variable x),
and a set of local variables (here one variable in each thread, namely a and b in
th1 and th2 respectively). The code of each thread consists of two instructions,
one writing the values 1 resp. 2 to the shared variable x, and one reading the
value of x, and storing the value in the local variables a resp. b.

2.2 Runs and Traces

Fig. 2 depicts a run π of P1 under the Sequential Consistency (SC) semantics. A
run is a sequence of events each corresponding to the execution of one instruction
by a thread. Under SC, instructions are executed in program-order, i.e., in the

6 P. A. Abdulla et al.

same order as they occur in the code of the thread. A run is the interleaving of the
executions of the different threads. In particular, the read and write instructions
are executed atomically. This means that when a write instruction is executed
by a thread, its effect will be immediately visible to all the other threads, and a
read instruction on a variable x will get its value from the latest write instruction
on x. For instance, in the run π of Fig. 2, the value of x read by thread th1 is 1
since the latest write instruction on x assigned the value 1 to x. Notice that we
represent a read event by the value that it reads from the shared variable.

Fig. 3. The trace corresponding to π in Fig. 2.

Next, we define the notion of a trace that we will use to represent sets of runs.
Traces have three advantages in our framework, namely exactness, efficiency, and
abstraction:

– They provide sufficient information for checking different program properties,
and therefore they are an exact representation of program runs.

– The provide a more compact representation than program runs, and therefore
they are more efficient when performing verification.

– They are abstract in the sense that they can easily be adapted to different
memory models.

A trace τ , corresponding to the run π in Fig. 2 is depicted in Fig. 3. We
write π |= τ to denote that τ corresponds to π. A trace is a graph where the
nodes represent events. The edges between the nodes represent four different
relations. The program-order relation po is the order in which the events are
executed by a given thread. The read-form relation rf defines the write event
from which a read event gets its value. The coherence-order relation is defined as
co = ∪x∈Xcox, where cox is a total order defining the order in which the write
events are carried out on the variable x. Finally, the relation fr gives the write
event which overwrites the value that is read by a read event. More precisely, if
e1 reads from e2 and e3 is the immediate successor of e2 in the coherence-order
relation, then e1 precedes e3 in the read-from relation. The relation fr can be
derived from the relations rf and co in the sense that fr = co−1 ◦ rf.

Different memory models can be defined by requiring the acyclicity of differ-
ent fragments of the above relations. For a trace τ , we write τ |= SC to denote
that acyclic(po ∪ rf ∪ cofr) holds, i.e., SC is defined by the constraint that the
union of the four relations should be acyclic. We write π |= SC to denote that
both π |= τ and τ |= SC , i.e., a run is in SC if its trace satisfies the SC condition.

Tutorial on DPOR Under RA 7

Fig. 4. (Optimal) Partial Order Reduction.

Fig. 5. The runs of the program in Fig. 1, together with their traces.

2.3 DPOR

A DPOR algorithm is represented as a black-box in Fig. 4. The algorithm is given
a concurrent program as input and the algorithms generates at least one run
per trace. The algorithm analyzes the traces on-the-fly to check for unexpected
program results, program crashes, or assertion violations. An important goal for
any DPOR algorithm is to generate as a few runs as possible per trace, thus
increasing the efficiency of the analysis. An optimal DPOR algorithm generates
exactly one run per each trace [2,3]. Fig. 5 shows all the six runs of the program
P1 of Fig. 1, together with the corresponding traces. The runs π1 and π5 have
the same trace τ1, and the runs π2 and π6 have the same trace τ2. A possible
outcome of an optimal DPOR algorithm is the set {π1, π2, π3, π4}. The runs π5

and π6 are not generated. The algorithm may as well generate π5 instead of π1

but not both. The same applies to π2 and π6.
We can take one step further by observing that two traces may have identical

program-order and read-from relations and differ only in their coherence-order.

8 P. A. Abdulla et al.

In Fig. 5 this applies to the traces τ3 and τ4. The coherence-order relation is used
to define the memory model, and it has no bearing on the set of assertions that
are satisfied by the program. The latter are solely decided by the program-order
and the read-from relations. Therefore, we can only generate runs that have
different program-order and read-from relations without sacrificing the precision
of the analysis. A super-optimal DPOR algorithm will only generate one of the
runs π3 and π4 since their traces have identical program-order and read-from
relations [5]. Therefore their traces τ3 and τ4 can be “merged” into one trace τ5
which has the same program-order and read-from relations as τ3 and τ4 (Fig. 6).

Fig. 6. Super-Optimal Partial Order Reduction.

3 The Release-Acquire Semantics

We will recall the Release-Acquire semantics, and describe the main ideas of a
DPOR framework for the analysis of concurrent program running under RA. To
that end, we introduce a saturation procedure, and use it to define operations
for adding new events to traces, and finally descries the DPOR algorithm.

3.1 Semantics

The Release-Acquire semantics (RA) is defined by the constraint

∀x ∈ X. acyclic(po ∪ rf ∪ cox ∪ frx)

In other words, for each variable x ∈ X, the union of the program-order and
reads-form relations, together with the restriction of the coherence-order and

Tutorial on DPOR Under RA 9

from-read relations to x should be acyclic. Fig. 7 shows a program P2 with four
threads, and a trace τ of P2 that satisfies RA (denoted τ |= RA). In this case,

τ �|= SC due to the cycle (x := 1)
po−→ (y := 2) coy−→ (y := 1)

po−→ (x :=

2) cox−→ (x := 1). The cycle does not violate the RA semantics since it contains
coherence-order relations on different variables (x and y).

Fig. 7. A concurrent program P2 with four threads.

Fig. 8. A trace of the program in the RA-semantics.

3.2 DPOR

We will describe a super-optimal DPOR algorithm for concurrent programs
under the RA-semantics. The aim of such an algorithms is to satisfy the fol-
lowing criteria for any input program P:

– Soundness: If the algorithm generates a run π then (i) π is a run of P, and
(ii) π |= τ for some trace with τ |= RA.

– Completeness: For any trace τ where π |= τ for some run π of P and τ |= RA,
the algorithm generates a run π′ of P such that π′ |= τ .

– Optimality: The algorithms never generates two runs π1 and π2 such that
there are traces τ1 and τ2, with π1 |= τ1, π2 |= τ2, and τ1 and τ2 have
identical program-order and read-from relations.

Roughly, the DPOR algorithm operates as follows:

– It builds the traces one after one.
– For a given trace τ :

• It builds τ incrementally.
• It extends τ by one event e at a time.

We will describe how traces are extended by events. To do that, we will first
define the notion of saturation.

10 P. A. Abdulla et al.

3.3 Saturation

As mentioned above, coherence-order is not essential for checking assertion viola-
tions. On the other hand, coherence-order is part of the definition of the seman-
tics, so it cannot be neglected completely; otherwise we may generate traces
that do not satisfy the semantics, which makes the DPOR algorithm unsound.
The idea is to saturate traces, i.e., add coherence-order edges by demand during
the analysis, thus ensuring that we only add edges that are necessary to keep
consistency wrt. the semantics. In fact, in the case of RA, saturation is sufficient
to achieve optimality, i.e., never generating two traces with the program-order
and read-from relations. Under the RA semantics, saturation is simple and be
computed in polynomial time (in the size of the trace). To illustrate how, con-
sider the trace in Fig. 9. The trace contains two write events wx

1 and wx
2 , and

one read event rx. The three events satisfy two conditions:

Fig. 9. Saturating a trace under the RA semantics. The coherence-order should point
form the event wx

1 to wx
1 (left part of the figure); otherwise we create a cycle violating

the RA semantics (right part).

– There is a sequence of po- and rf-edges leading from wx
1 to rx.

– rx reads from wx
2 .

In such a case, the saturation procedure adds a co-edge from wx
1 and wx

2 (the
left part of Fig. 9). To see why this is necessary, consider the right part of Fig. 9.
If the co-edge is put in the reverse direction, then we get a cycle that violates
the RA-semantics. In general, for write events e1 and e2, and a read event e3,

all on the same variable x, we add an edge e1
cox−→ e2 whenever e1

(
po∪rf−→

)+

e3

and e2
rf−→ e3. The trace is saturated if the saturation rule does not add any

new edges. A trace can be saturated in polynomial time, since we can compute
the transitive closure of the relation po ∪ rf using, e.g., the Floyd-Warshall
algorithm [17]. The trace in Fig. 10 is not saturated. Due to the path (x :=
2) rf−→ (a := 2)

po−→ (b := 1), and (x := 1) rf−→ (b := 1), the saturation procedure

will add the edge (x := 2) cox−→ (x := 1). Analogously, it will add the edge

(y := 2) coy−→ (y := 1), thus obtaining the trace τ in Fig. 8 which is saturated.
In the DPOR algorithm, all the generated traces are saturated by construc-

tion. In Subsect. 3.4 we see how this can be achieved.

Tutorial on DPOR Under RA 11

Fig. 10. Unsaturated trace.

Fig. 11. Part of a trace before adding a
new event.

Fig. 12. Reading from the wrong write.

3.4 Adding Events to Traces

Suppose that we are given a trace τ that is saturated. We would like to add a
new event e to τ such that the new trace remains saturated. We consider two
cases, namely when e is a read resp. write event. Adding a read event amounts
to two operations:

– Finding the write events, from which we can read the value of the new variable
without violating the RA semantics.

– Adding the necessary (and only the necessary) coherence-order edges to main-
tain saturation.

To illustrate these ideas, consider a saturated trace partially shown in Fig. 11,
with (among others) three write events wx

1 , wx
2 , and wx

3 . Assume that we are
about to add a new read event rx at the marked position. In this example the
event rx is not allowed to read from wx

3 , since this would create a cycle that
violates the RA-semantics as shown in Fig. 12. We say that a write event e1 on
a variable x is readable if there is no other write event e2 on x such that e1 can
reach e2 and e2 can reach the reading thread through the (po∪rf∪cox)-relation.

12 P. A. Abdulla et al.

In Fig. 12, wx
3 is not readable for the read event since wx

1 is “blocking” its path
to the reading thread.

Fig. 13. Adding a new read event.

Assume that wx
2 is readable and that the new event rx reads its value from

wx
2 , as depicted in Fig. 13. Our objective is to make the new trace saturated

(assuming that the original trace was saturated). To that end, we add all the
new coherence-order edges that are necessary according to the RA semantics.
This amounts to applying the saturation rule repeatedly until the trace becomes
saturated. To find out where in the trace to apply the saturation rule, we consider
the so called visible events. These are write events that are readable and can reach
the read event through po- and rf-edges. The write event wx

1 is a visible event
in Fig. 13. For each visible event, we add a coherence edge the write from which
the new event reads (e.g., the edge wx

1
cox−→ wx

2 in Fig. 13). If the original trace
is saturated, and we add the edges from the visible events (as described above)
then the new trace will be saturated.

Adding write events events is a much simpler operation. We only need to add
one program-order edge, as depicted in Fig. 14, If the original trace is saturated,
then the new trace will be saturated, without the need to add any extra edges.

Fig. 14. Adding an new write event.

Tutorial on DPOR Under RA 13

Fig. 15. A concurrent program with four
threads.

Fig. 16. A concurrent program with
four threads.

3.5 Algorithm

Our DPOR algorithm generates systematically different runs of the input pro-
grams, and uses the operations described in the previous sub-section to build the
corresponding traces. At any point of time, the algorithm will be in the middle
of generating one particular run, while also scheduling (start segments) of other
runs to be considered later. The algorithm is implemented recursively where a
new call generates the next node in the recursion tree. The new node may cor-
respond to the next event in the current run in which case we may also schedule
parts of new runs to be considered when the recursive call has returned. The new
node may also correspond to the start of the execution of one of the scheduled
runs. Upon termination, the set of paths in the recursion tree represents the set
of program runs that have been generated. The algorithm will not generate the
full tree at the same time. Instead, it generates one path (corresponding to one
run) at a time.

Figure 15 depicts a concurrent program with four threads. The DPOR algo-
rithm will no-deterministically select a thread and run its next instruction
(Fig. 16). In the current scenario it selects the instruction x := 2. Next, it selects
the instruction a := x. Here, there are two choices. The read event may either
read the initial value of x which is assumed to be 0, or read from the write event
x := 2 that has already been generated. The choice is made non-deterministically.
In the example, the algorithm will read from the initial value. Since, we only want
to generate one run at a time, we schedule the event a := 2 (which corresponds
to a := x reading from x := 2), for future execution (Fig. 16). More precisely, we
call the algorithm recursively with a := 0, and when the recursive call returns,
we consider a := 2 to generate a new run. We call this read-branching, to hint
that the tree branches on the different write events that a given instruction can
read from. In the next step, the algorithm selects a possible next instruction,
which in this case is b := y, for which it selects the only possible value, namely
0. Assume that the algorithm next selects the instruction x := 3 (Fig. 17). The
instruction could have been used by the read instruction a := x. However, this
was not made part of the schedule since the instruction x := 3 had not yet been
detected. An event is called a postponed write if it is generated by the algorithm

14 P. A. Abdulla et al.

Fig. 17. Postponed writes.

Fig. 18. A complete run π1. Fig. 19. The trace of π1.

after a read event that may read it. To get the event a := 3, we also need to
include the sequence of events that happen before it, i.e., the sequence of events
that are needed to generate a := 3. The happens-before sequence is the sequence
of events that proceed the given event by the po- and rf-relations. In our case,
this sequence is b := 0 x := 3. The schedule then will contain the happen-before
sequence as well as the event itself.

The run terminates after executing the instructions c := 0 (no branching
needed), and x := 4 which is a postponed write for a := x (the run π1 Fig. 18).
The trace corresponding to π1 is shown in Fig. 19. The algorithm will now back-
track and considers the schedules. The second schedule a := 2 will induce the
run π2 shown in Fig. 20, with the trace of Fig. 21. In particular, it generates the
postponed write instruction x := 3 for the read instruction a := x. However,
this write instruction (together with its happens-before event b := 0) is already
in the set of schedules, and therefore it will not be added to the set of sched-
ules. This feature guarantees that we never generate two traces with identical
program-order and read-from relations.

Finally, the two remaining schedules will be considered, resulting in runs two
new runs (Fig. 22) whose traces are shown in Fig. 23.

Tutorial on DPOR Under RA 15

The algorithm has generated all the four traces that belong to the program
in Fig. 15 (completeness), has not generated any other traces (soundness), and
all the generated traces have different program-order and read-from relations
(optimality).

Fig. 20. Another run π2. Fig. 21. The trace of π2.

Fig. 22. Two more runs π3 and π4. Fig. 23. The trace of π3 and π4.

4 Related Work

This tutorial is based on the material presented in [5].
Stateless model checking (SMC), coupled with (dynamic) partial order tech-

niques, was initiated in the works of Verisoft [21,23] and CHESS [30], and has
since been developed in several subsequent works, e.g., [2,19,22,27,33]. The
method of [2] is optimal w.r.t. Mazurkiewicz traces under SC.

SMC has been applied to weak memory models such TSO, PSO, and
POWER [1,4,18,37]. SMC has been adapted to (variants of) the C/C++11

16 P. A. Abdulla et al.

memory model, which includes RA, and implemented in tools such as
CDSChecker [31] and Rcmc [26].

Several recent DPOR techniques aim at using a weaker equivalence than
Mazurkiewicz traces [13,24,25,31]. Maximal causality reduction (MCR) is a
technique based on exploring the possible values that reads can see, instead
of the possible value-producing writes, as in our approach. MCR has been devel-
oped for SC [24] and for TSO and PSO [25].

5 Conclusions and Future Work

We have presented the main ideas behind a DPOR algorithm for the analysis of
concurrent programs running under the RA semantics. The algorithm is optimal
in the sense that it generates at most one trace with a given program-order and
read-from relation.

In this tutorial we only consider the RA semantics. It is interesting to extend
the approach to other memory models. In particular, the relaxed fragment of
C/C++11 is challenging since it contains speculative operations that are not
covered in the current framework. However, we believe that speculations can
be handled using a scheme similar to the postponed write mechanism that we
described in this paper.

Other directions for future work include considering probabilistic and game-
based models that describe the manner in which a given message will be read by
a given process. It might then be possible to analyze the system using techniques
for the analysis of probabilistic and game-based extensions of multi-dimension
infinite-state systems, e.g., [6,8,9]. It is also relevant to check whether a given
platform guarantees a given weak memory, using monitoring techniques such
as the one described in [10]. Finally it is interesting to obtain efficient verifica-
tion frameworks by integrating powerful abstraction techniques for infinite-state
systems such as the one in [7].

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 28

2. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: Symposium on Principles of Programming Languages, (POPL), pp.
373–384. ACM, San Diego (2014)

3. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets: a foundation
for optimal dynamic partial order reduction. J. ACM 64(4), 25:1–25:49 (2017).
https://doi.org/10.1145/3073408

4. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
134–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 8

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3073408
https://doi.org/10.1007/978-3-319-41540-6_8

Tutorial on DPOR Under RA 17

5. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model checking
under the release-acquire semantics. PACMPL 2(OOPSLA), 135:1–135:29 (2018).
https://doi.org/10.1145/3276505

6. Abdulla, P.A., Bertrand, N., Rabinovich, A.M., Schnoebelen, P.: Verification of
probabilistic systems with faulty communication. Inf. Comput. 202(2), 141–165
(2005). https://doi.org/10.1016/j.ic.2005.05.008

7. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic
abstraction for programs with dynamic memory heaps. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 341–354. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1 33

8. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M.,
Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45220-1 1

9. Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: 19th IEEE
Symposium on Logic in Computer Science (LICS 2004), 14–17 July 2004, Turku,
Finland, Proceedings, pp. 345–354. IEEE Computer Society (2004). https://doi.
org/10.1109/LICS.2004.1319629

10. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated speci-
fication and verification technique for highly concurrent data structures. In: Piter-
man, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 324–338. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 23

11. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial
order reductions in symbolic verification. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 379–390. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028760

12. Abdulla, P.A., Kindahl, M., Peled, D.A.: An improved search strategy for lossy
channel systems. In: Togashi, A., Mizuno, T., Shiratori, N., Higashino, T. (eds.)
Formal Description Techniques and Protocol Specification, Testing and Verifica-
tion, FORTE X / PSTV XVII’97, IFIP TC6 WG6.1 Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication
Protocols (FORTE X) and Protocol Specification, Testing and Verification (PSTV
XVII), 18–21 November 1997, Osaka, Japan, IFIP Conference Proceedings, vol.
107, pp. 251–264. Chapman & Hall (1997)

13. Chalupa, M., Chatterjee, K., Pavlogiannis, A., Sinha, N., Vaidya, K.: Data-centric
dynamic partial order reduction. Proc. ACM Program. Lang. 2(POPL), 31:1–31:30
(2017). https://doi.org/10.1145/3158119

14. Christakis, M., Gotovos, A., Sagonas, K.: Systematic testing for detecting concur-
rency errors in Erlang programs. In: International Conference on Software Testing.
Verification and Validation, (ICST), pp. 154–163. IEEE, Luxembourg (2013)

15. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.A.: State space reduction using
partial order techniques. STTT 2(3), 279–287 (1999)

16. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2009)

18. Demsky, B., Lam, P.: Satcheck: Sat-directed stateless model checking for SC and
TSO. In: Object-Oriented Programming, Systems, Languages, and Applications,
(OOPSLA), pp. 20–36. ACM, Pittsburgh (2015)

19. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Principles of Programming Languages, POPL, pp. 110–121. ACM,
Long Beach (2005)

https://doi.org/10.1145/3276505
https://doi.org/10.1016/j.ic.2005.05.008
https://doi.org/10.1007/978-3-540-70545-1_33
https://doi.org/10.1007/978-3-540-45220-1_1
https://doi.org/10.1109/LICS.2004.1319629
https://doi.org/10.1109/LICS.2004.1319629
https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1007/BFb0028760
https://doi.org/10.1007/BFb0028760
https://doi.org/10.1145/3158119
https://doi.org/10.1007/978-3-319-10575-8

18 P. A. Abdulla et al.

20. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Ph.D. thesis, University of Liége
(1996). Also, volume 1032 of LNCS, Springer

21. Godefroid, P.: Model checking for programming languages using VeriSoft. In: Prin-
ciples of Programming Languages, POPL, pp. 174–186. ACM Press, Paris (1997)

22. Godefroid, P., Hammer, B., Jagadeesan, L.: Model checking without a model: an
analysis of the heart-beat monitor of a telephone switch using VeriSoft. In: Pro-
ceedings of ACM SIGSOFT International Symposium on Software Testing and
Analysis. pp. 124–133 (1998)

23. Godefroid, P.: Software model checking: the VeriSoft approach. Formal Methods
Syst. Des. 26(2), 77–101 (2005)

24. Huang, J.: Stateless model checking concurrent programs with maximal causality
reduction. In: Programming Language Design and Implementation, PLDI, pp. 165–
174. ACM, Portland (2015)

25. Huang, S., Huang, J.: Maximal causality reduction for TSO and PSO. In: Object-
Oriented Programming, Systems, Languages, and Applications, (OOPSLA), pp.
447–461. ACM, Amsterdam (2016)

26. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. In: POPL (2018, to appear). http://
plv.mpi-sws.org/rcmc/

27. Kokologiannakis, M., Sagonas, K.: Stateless model checking of the linux kernel’s
hierarchical read-copy-update (tree RCU). In: Symposium on Model Checking of
Software, SPIN, pp. 172–181. ACM, Santa Barbara (2017)

28. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22
January 2016, pp. 649–662. ACM (2016)

29. Mazurkiewicz, A.: Trace theory. In: Advances in Petri Nets (1986)
30. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P., Neamtiu, I.: Find-

ing and reproducing heisenbugs in concurrent programs. In: OSDI, pp. 267–280.
USENIX Association (2008)

31. Norris, B., Demsky, B.: A practical approach for model checking C/C++11 code.
ACM Trans. Program. Lang. Syst. 38(3), 10:1–10:51 (2016)

32. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

33. Rodŕıguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order
reduction. In: CONCUR 2015, pp. 456–469 (2015)

34. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reduc-
tions for concolic testing. In: Application of Concurrency to System Design, ACSD,
pp. 132–141. IEEE, Hamburg (2012)

35. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing
of multi-threaded programs. In: Haifa Verification Conference. pp. 166–182 (2007),
lNCS 4383

36. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

37. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed
memory models. In: Programming Language Design and Implementation (PLDI),
pp. 250–259. ACM, Portland (2015)

http://plv.mpi-sws.org/rcmc/
http://plv.mpi-sws.org/rcmc/
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-53863-1_36

	Dynamic Partial Order Reduction Under the Release-Acquire Semantics (Tutorial)
	1 Introduction
	2 Sequential Consistency
	2.1 Concurrent Programs
	2.2 Runs and Traces
	2.3 DPOR

	3 The Release-Acquire Semantics
	3.1 Semantics
	3.2 DPOR
	3.3 Saturation
	3.4 Adding Events to Traces
	3.5 Algorithm

	4 Related Work
	5 Conclusions and Future Work
	References

