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Preface

This volume contains the papers presented at the 7th International Conference on
NETworked sYStems (NETYS 2019) held during June 19–21, 2019, in Marrakech,
Morocco.

The aim of the NETYS conference series is to bring together researchers and
engineers from both the theory and practice of distributed and networked systems. The
scope of NETYS 2019 covered all aspects related to the design and development
of these systems, including, but not restricted to, concurrent and distributed algorithms,
parallel/concurrent/distributed programming, multi-core architectures, formal
verification, distributed databases, cloud systems, networks, security, formal verifica-
tion, etc. NETYS provides a forum to report on best practices and novel algorithms,
results, and techniques on networked systems.

The Program Committee (PC) of NETYS 2019 included researchers from 16
countries. There were 60 papers submitted to the conference (in addition there were 14
abstract-only submissions). The PC selected 23 contributions out of the 60 full paper
submissions for regular presentations at the conference (which represents an acceptance
rate of 38,33%). Every submitted paper was read and evaluated by at least three
members of the PC. The PC was assisted by more than 29 external reviewers. Revised
and expanded versions of several selected papers may be considered for publication in
the Springer journal Distributed Computing.

The program also included invited talks by Parosh Abdulla (Uppsala University,
Sweden), Paul Attie (Augusta University, USA), Suresh Jagannathan (Purdue
University, USA), Somesh Jha (University of Wisconsin, USA), Dariusz Kowalski
(Augusta University, USA), and Marc Shapiro (Inria Paris, France).

The Best Paper Award was presented to “Recoverable Mutual Exclusion with
Abortability.” The Best Student Paper Award of NETYS 2019 was presented to the
papers “Checking Causal Consistency of Distributed Databases” and “Liveness in
Broadcast Networks.”

NETYS is coupled with the METIS Spring School which aims at introducing young
researchers to the domain of distributed and networked systems through tutorials on
basics, as well as talks on new research topics and current trends in this domain. This
year, VDS 2019, the Workshop on Verification of Distributed Systems, was also
co-located with NETYS.

We are grateful to all members of the Program and Organizing Committees, to all
referees for their cooperation, and to Springer for their professional support during the
production phase of the proceedings.



Finally, we would like to thank the sponsoring institutions without whom NETYS
2019 could not have been a reality. We are also thankful to all authors of submitted
papers and to all participants of the conference. Their interest in this conference and
contributions to the discipline are greatly appreciated.

August 2019 Mohamed Faouzi Atig
Alexander A. Schwarzmann
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Keynote Talks



How to Structure Your Concurrent Program
and Its Verification

Paul Attie

Augusta University, USA

Abstract. I present some local methods for both writing and verifying large
concurrent programs: pairwise normal form, dynamic addition of pairwise
interactions, and deadlock-freedom via subsystem checking. In pairwise normal
form, a process Pi is a set of actions, where each action is a conjunction of
smaller pairwise-actions, over the neighbours of Pi (the processes that Pi

interacts directly with). Variables are shared among pairs. This provides for
locality and modifiability in program design, and for tractability in verification.
Mutex among n processes can be expressed as 2-process mutex among every
pair. If 2-process mutex is enforced among some pairs only, I obtain generalized
dining philosophers. If some 2-process mutexes are replaced by a version which
gives priority to one process, I obtain readers-writers. Verification of pairwise
safety and liveness can be carried out by model-checking each pair in isolation,
thereby avoiding state-explosion. Pairs can be added dynamically, at run time.
This enables an infinite-state system to be expressed as a countably infinite
number of finite-state processes. I introduce the first sound and complete
characterization of deadlock for concurrent programs. Most approaches to
deadlock observe that a wait-for cycle is necessary for deadlock. However,
a cycle is not sufficient for deadlock, since a process in the wait-for cycle can
choose to interact with a process outside the cycle. This leads to high degree of
incompleteness in such methods. My approach analyzes the AND-OR
generalization of a wait-for cycle, which is necessary and sufficient for a
deadlock. I then impose local conditions (over small subsystems) which prevent
the creation of such AND-OR wait-for cycles. My methods have been
implemented in the Eshmun tool.



Automated Reasoning for Weak Consistency

Suresh Jagannathan

Purdue University, USA

Abstract. Modern distributed applications often replicate data across geo-
graphically diverse locations to enable trust decentralization, guarantee
low-latency access to application state, and provide high availability even in the
face of node and network failures. Replication complicates program reasoning,
however, since not all copies of an object are guaranteed to hold the same state
at the same time. Existing verification approaches impose a high cognitive
burden on developers to establish necessary invariants and derive sophisticated
proof strategies to ensure application correctness in these environments. In this
talk, I describe several techniques to enable automated verification of distributed
applications in the face of weak-consistency that greatly alleviates this burden.
Our solutions employ new logical specification formalisms, novel symbolic
execution and model-checking abstractions, and tailored static analyses that
collectively enable the construction of trustworthy (geo-replicated) distributed
applications, without requiring extensive programmer involvement to enable
verification.



Towards Semantic Adversarial Examples

Somesh Jha

University of Wisconsin, USA

Abstract. Fueled by massive amounts of data, models produced by
machine-learning (ML) algorithms, especially deep neural networks, are being
used in diverse domains where trustworthiness is a concern, including auto-
motive systems, finance, health care, natural language processing, and malware
detection. Of particular concern is the use of ML algorithms in cyber-physical
systems (CPS), such as self-driving cars and aviation, where an adversary can
cause serious consequences. However, existing approaches to generating
adversarial examples and devising robust ML algorithms mostly ignore the
semantics and context of the overall system containing the ML component. For
example, in an autonomous vehicle using deep learning for perception, not
every adversarial example for the neural network might lead to a harmful
consequence. Moreover, one may want to prioritize the search for adversarial
examples towards those that significantly modify the desired semantics of the
overall system. Along the same lines, existing algorithms for constructing robust
ML algorithms ignore the specification of the overall system. In this talk, we
argue that the semantics and specification of the overall system has a crucial role
to play in this line of research. We present preliminary research results that
support this claim.



Living on the Edge, Safely or: Life
without Consensus

Marc Shapiro

Inria Paris, France

Abstract. The centre-of-gravity of cloud is moving towards the edge. At edge
scale, the opposition between the requirements of availability and ensuring
correctness precludes any single simple answer. Choosing the right trade-off is a
most vexing issue for application developers. To address this, we propose an
application-driven approach, Just-Right Consistency (JRC). JRC derives a
consistency model that is adapted to the specific application, being sufficient to
maintain its invariants, otherwise remaining as available as possible.
In order to maintain its invariants, even sequential code follows some stan-

dard patterns. We leverage mechanisms that uphold several of these patterns
while maintaining availability:
Conflict-Free Replicated Data Types (CRDTs) ensure that concurrent updates

can be merged; Causal Consistency preserves relative ordering; Available
Transactions preserve grouping. Together, these mechanisms form the TCC+
model. Furthermore, our CISE logic and analysis tools distinguish cases, in the
remaining pattern, where the application’s semantics requires synchronisation or
not. This talk presents the challenges of edge-scale computing and the basics
of the JRC approach by following the concrete example of a healthcare network.
This research is supported in part by European projects SyncFree and Light-
Kone, and by ANR project RainbowFS.
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Dynamic Partial Order Reduction Under
the Release-Acquire Semantics (Tutorial)

Parosh Aziz Abdulla(B), Mohamed Faouzi Atig, Bengt Jonsson,
and Tuan Phong Ngo

Uppsala University, Uppsala, Sweden
parosh@it.uu.se

Abstract. We describe at a high-level the main concepts in the Release-
Acquire (RA) semantics that is part of the C11 language. Furthermore,
we describe the ideas behind an optimal dynamic partial order reduction
technique that can be used for systematic analysis of concurrent pro-
grams running under RA.

This tutorial is based on the material presented in [5], which also con-
tains the formal definitions of all the models, concepts, and algorithms.

1 Introduction

Concurrent programs are difficult to get correct. The main reasons are the large
number of threads that may arise during a given execution of the program, and
the intricate nature of interactions among these threads. Model checking has been
of the most prominent approaches to program verification during the last three
decades [16]. Given a formal model of a program and a property to be checked,
a model checking algorithm checks automatically whether the program satisfies
the property or not. A limiting factor in the application of model checking is
the state explosion problem which occurs since the size of the state space of
the program grows exponentially with the number of threads. Stateless Model
Checking (SMC) [21] has been proposed as a way to reduce the problem at the
price of sacrificing the completeness of the analysis. The aim is to exploit the
hypothesis that bugs that arise only due to some (usually a small number) of the
possible thread schedulings. In contrast to full model checking, SMC algorithms
are run under two assumptions on the input program:

– Each thread in the program is assumed to be terminating. To enforce this
condition, program loops are unfolded a certain a priori decided number of
times.

– Each thread is assumed to be data-deterministic, and hence the only source
of non-determinism lies in the thread schedulings. To enforce the condition
we analyze the program for a given initial value per variable.

Under these two assumptions, SMC systematically explores the set of all thread
schedulings that are possible during the runs of the program. The SMC explo-
ration is derived by a special run-time scheduler which derives new thread
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-31277-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_1
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schedulings whenever it detects that such decisions may affect the interaction
between threads. In such a manner, it is guaranteed that the exploration covers
all possible executions. This also means that the algorithm detects any unex-
pected program results, program crashes, or assertion violations. Due to the
assumptions, we can in general consider SMC as an under-approximate veri-
fication framework in the sense that all reported errors are true bugs in the
program, but certain bugs may remain undetected. Despite not being complete,
SMC offers numerous advantages, namely:

– It is completely automatic.
– It has no false positives.
– It does not consume excessive memory.
– It can easily reproduce the concurrency bugs it detects.

Due to these advantages, SMC has along the years been implemented in numer-
ous tools, such as VeriSoft [23], CDSChecker [18,31], Chess [30], Concuer-
ror [14], rInspect [37], and Nidhugg [1], and successfully applied to realistic con-
current programs [22,27].

Notwithstanding, SMC still faces the state space explosion problem, albeit
in a less severe manner. To circumvent this problem, different techniques have
been proposed to reduce the number of explored executions. The most impor-
tant one is partial order reduction. Partial order techniques were first developed
for full model checking [11,12,15,20,32,36]. It was later integrated in the SMC
framework, and called dynamic partial order reduction (DPOR) [2,3,19,34,35].
DPOR avoids redundant exploration of equivalent executions with the same
order between conflicting instructions. Two executions are regarded as equiva-
lent if they induce the same ordering between conflicting events. It is sufficient
to explore one execution in each equivalence class. The equivalence classes are
sometimes called Mazurkiewicz traces [29]. An important goal is to avoid explor-
ing several traces that belong to the same equivalence class since, after all, such
traces carry the same information with respect to the property to be verified.
Ideally, we would like to design DPOR algorithms that are optimal in the sense
that they explore exactly one interleaving in each equivalence class [2].

In this tutorial, we will consider two issues related to the principles of the
DPOR approach:

– Mazurkiewicz traces distinguish executions based on the ordering of conflict-
ing write operations, and on how reads are ordered wrt. the writes. There-
fore, Mazurkiewicz traces induce an equivalence relation that is occasionally
unnecessarily coarse for checking typical properties such as program crashes
or assertion violations. For instance, it includes coherence order, i.e., the order
in which write events on shared variables reach the memory. Coherence order
is irrelevant for checking the above properties, and hence using Mazurkiewicz
traces is a source of redundancy, inherently limiting the efficiency that can
possibly be achieved in the analysis. In this tutorial, we will consider a weaker
equivalence relation that is still sufficiently strong to guarantee full coverage
of the state space, and that will therefore potentially achieve efficiency levels
that are not possible with current techniques.
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Fig. 1. A concurrent program P1 with
two threads.

Fig. 2. A run of the program P1.

– The DPOR framework was originally deigned for concurrent program run-
ning under the classical model of Sequential Consistency (SC) [2,19,35]. How-
ever, nowadays most parallel software run on platforms that do not guarantee
SC. More precisely, to satisfy demands on efficiency and energy saving, such
platforms implement optimizations that lead to the relaxation of the inter-
component synchronization, hence offering only weak consistency guarantees.
In recent years, DPOR has also been adapted to hardware-induced relaxed
memory models, such as TSO and PSO [1,37], and language-level concur-
rency models, such as the C/C++ memory model [26,31]. In this tutorial, we
will describe how to extend DPOR to a particular consistency model, namely
the Release-Acquire fragment of C11 [28].

2 Sequential Consistency

We will introduce concurrent programs, define the notions of runs and traces,
and describe (optimal) DPOR algorithms.

2.1 Concurrent Programs

Fig. 1 depicts a program P1 with two threads, namely th1 and th2. The threads
operate on a set X of shared variables, (in this example, one shared variable x),
and a set of local variables (here one variable in each thread, namely a and b in
th1 and th2 respectively). The code of each thread consists of two instructions,
one writing the values 1 resp. 2 to the shared variable x, and one reading the
value of x, and storing the value in the local variables a resp. b.

2.2 Runs and Traces

Fig. 2 depicts a run π of P1 under the Sequential Consistency (SC) semantics. A
run is a sequence of events each corresponding to the execution of one instruction
by a thread. Under SC, instructions are executed in program-order, i.e., in the
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same order as they occur in the code of the thread. A run is the interleaving of the
executions of the different threads. In particular, the read and write instructions
are executed atomically. This means that when a write instruction is executed
by a thread, its effect will be immediately visible to all the other threads, and a
read instruction on a variable x will get its value from the latest write instruction
on x. For instance, in the run π of Fig. 2, the value of x read by thread th1 is 1
since the latest write instruction on x assigned the value 1 to x. Notice that we
represent a read event by the value that it reads from the shared variable.

Fig. 3. The trace corresponding to π in Fig. 2.

Next, we define the notion of a trace that we will use to represent sets of runs.
Traces have three advantages in our framework, namely exactness, efficiency, and
abstraction:

– They provide sufficient information for checking different program properties,
and therefore they are an exact representation of program runs.

– The provide a more compact representation than program runs, and therefore
they are more efficient when performing verification.

– They are abstract in the sense that they can easily be adapted to different
memory models.

A trace τ , corresponding to the run π in Fig. 2 is depicted in Fig. 3. We
write π |= τ to denote that τ corresponds to π. A trace is a graph where the
nodes represent events. The edges between the nodes represent four different
relations. The program-order relation po is the order in which the events are
executed by a given thread. The read-form relation rf defines the write event
from which a read event gets its value. The coherence-order relation is defined as
co = ∪x∈Xcox, where cox is a total order defining the order in which the write
events are carried out on the variable x. Finally, the relation fr gives the write
event which overwrites the value that is read by a read event. More precisely, if
e1 reads from e2 and e3 is the immediate successor of e2 in the coherence-order
relation, then e1 precedes e3 in the read-from relation. The relation fr can be
derived from the relations rf and co in the sense that fr = co−1 ◦ rf.

Different memory models can be defined by requiring the acyclicity of differ-
ent fragments of the above relations. For a trace τ , we write τ |= SC to denote
that acyclic(po ∪ rf ∪ cofr) holds, i.e., SC is defined by the constraint that the
union of the four relations should be acyclic. We write π |= SC to denote that
both π |= τ and τ |= SC , i.e., a run is in SC if its trace satisfies the SC condition.
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Fig. 4. (Optimal) Partial Order Reduction.

Fig. 5. The runs of the program in Fig. 1, together with their traces.

2.3 DPOR

A DPOR algorithm is represented as a black-box in Fig. 4. The algorithm is given
a concurrent program as input and the algorithms generates at least one run
per trace. The algorithm analyzes the traces on-the-fly to check for unexpected
program results, program crashes, or assertion violations. An important goal for
any DPOR algorithm is to generate as a few runs as possible per trace, thus
increasing the efficiency of the analysis. An optimal DPOR algorithm generates
exactly one run per each trace [2,3]. Fig. 5 shows all the six runs of the program
P1 of Fig. 1, together with the corresponding traces. The runs π1 and π5 have
the same trace τ1, and the runs π2 and π6 have the same trace τ2. A possible
outcome of an optimal DPOR algorithm is the set {π1, π2, π3, π4}. The runs π5

and π6 are not generated. The algorithm may as well generate π5 instead of π1

but not both. The same applies to π2 and π6.
We can take one step further by observing that two traces may have identical

program-order and read-from relations and differ only in their coherence-order.
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In Fig. 5 this applies to the traces τ3 and τ4. The coherence-order relation is used
to define the memory model, and it has no bearing on the set of assertions that
are satisfied by the program. The latter are solely decided by the program-order
and the read-from relations. Therefore, we can only generate runs that have
different program-order and read-from relations without sacrificing the precision
of the analysis. A super-optimal DPOR algorithm will only generate one of the
runs π3 and π4 since their traces have identical program-order and read-from
relations [5]. Therefore their traces τ3 and τ4 can be “merged” into one trace τ5
which has the same program-order and read-from relations as τ3 and τ4 (Fig. 6).

Fig. 6. Super-Optimal Partial Order Reduction.

3 The Release-Acquire Semantics

We will recall the Release-Acquire semantics, and describe the main ideas of a
DPOR framework for the analysis of concurrent program running under RA. To
that end, we introduce a saturation procedure, and use it to define operations
for adding new events to traces, and finally descries the DPOR algorithm.

3.1 Semantics

The Release-Acquire semantics (RA) is defined by the constraint

∀x ∈ X. acyclic(po ∪ rf ∪ cox ∪ frx)

In other words, for each variable x ∈ X, the union of the program-order and
reads-form relations, together with the restriction of the coherence-order and
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from-read relations to x should be acyclic. Fig. 7 shows a program P2 with four
threads, and a trace τ of P2 that satisfies RA (denoted τ |= RA). In this case,

τ �|= SC due to the cycle (x := 1)
po−→ (y := 2) coy−→ (y := 1)

po−→ (x :=

2) cox−→ (x := 1). The cycle does not violate the RA semantics since it contains
coherence-order relations on different variables (x and y).

Fig. 7. A concurrent program P2 with four threads.

Fig. 8. A trace of the program in the RA-semantics.

3.2 DPOR

We will describe a super-optimal DPOR algorithm for concurrent programs
under the RA-semantics. The aim of such an algorithms is to satisfy the fol-
lowing criteria for any input program P:

– Soundness: If the algorithm generates a run π then (i) π is a run of P, and
(ii) π |= τ for some trace with τ |= RA.

– Completeness: For any trace τ where π |= τ for some run π of P and τ |= RA,
the algorithm generates a run π′ of P such that π′ |= τ .

– Optimality: The algorithms never generates two runs π1 and π2 such that
there are traces τ1 and τ2, with π1 |= τ1, π2 |= τ2, and τ1 and τ2 have
identical program-order and read-from relations.

Roughly, the DPOR algorithm operates as follows:

– It builds the traces one after one.
– For a given trace τ :

• It builds τ incrementally.
• It extends τ by one event e at a time.

We will describe how traces are extended by events. To do that, we will first
define the notion of saturation.
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3.3 Saturation

As mentioned above, coherence-order is not essential for checking assertion viola-
tions. On the other hand, coherence-order is part of the definition of the seman-
tics, so it cannot be neglected completely; otherwise we may generate traces
that do not satisfy the semantics, which makes the DPOR algorithm unsound.
The idea is to saturate traces, i.e., add coherence-order edges by demand during
the analysis, thus ensuring that we only add edges that are necessary to keep
consistency wrt. the semantics. In fact, in the case of RA, saturation is sufficient
to achieve optimality, i.e., never generating two traces with the program-order
and read-from relations. Under the RA semantics, saturation is simple and be
computed in polynomial time (in the size of the trace). To illustrate how, con-
sider the trace in Fig. 9. The trace contains two write events wx

1 and wx
2 , and

one read event rx. The three events satisfy two conditions:

Fig. 9. Saturating a trace under the RA semantics. The coherence-order should point
form the event wx

1 to wx
1 (left part of the figure); otherwise we create a cycle violating

the RA semantics (right part).

– There is a sequence of po- and rf-edges leading from wx
1 to rx.

– rx reads from wx
2 .

In such a case, the saturation procedure adds a co-edge from wx
1 and wx

2 (the
left part of Fig. 9). To see why this is necessary, consider the right part of Fig. 9.
If the co-edge is put in the reverse direction, then we get a cycle that violates
the RA-semantics. In general, for write events e1 and e2, and a read event e3,

all on the same variable x, we add an edge e1
cox−→ e2 whenever e1

(
po∪rf−→

)+

e3

and e2
rf−→ e3. The trace is saturated if the saturation rule does not add any

new edges. A trace can be saturated in polynomial time, since we can compute
the transitive closure of the relation po ∪ rf using, e.g., the Floyd-Warshall
algorithm [17]. The trace in Fig. 10 is not saturated. Due to the path (x :=
2) rf−→ (a := 2)

po−→ (b := 1), and (x := 1) rf−→ (b := 1), the saturation procedure

will add the edge (x := 2) cox−→ (x := 1). Analogously, it will add the edge

(y := 2) coy−→ (y := 1), thus obtaining the trace τ in Fig. 8 which is saturated.
In the DPOR algorithm, all the generated traces are saturated by construc-

tion. In Subsect. 3.4 we see how this can be achieved.
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Fig. 10. Unsaturated trace.

Fig. 11. Part of a trace before adding a
new event.

Fig. 12. Reading from the wrong write.

3.4 Adding Events to Traces

Suppose that we are given a trace τ that is saturated. We would like to add a
new event e to τ such that the new trace remains saturated. We consider two
cases, namely when e is a read resp. write event. Adding a read event amounts
to two operations:

– Finding the write events, from which we can read the value of the new variable
without violating the RA semantics.

– Adding the necessary (and only the necessary) coherence-order edges to main-
tain saturation.

To illustrate these ideas, consider a saturated trace partially shown in Fig. 11,
with (among others) three write events wx

1 , wx
2 , and wx

3 . Assume that we are
about to add a new read event rx at the marked position. In this example the
event rx is not allowed to read from wx

3 , since this would create a cycle that
violates the RA-semantics as shown in Fig. 12. We say that a write event e1 on
a variable x is readable if there is no other write event e2 on x such that e1 can
reach e2 and e2 can reach the reading thread through the (po∪rf∪cox)-relation.
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In Fig. 12, wx
3 is not readable for the read event since wx

1 is “blocking” its path
to the reading thread.

Fig. 13. Adding a new read event.

Assume that wx
2 is readable and that the new event rx reads its value from

wx
2 , as depicted in Fig. 13. Our objective is to make the new trace saturated

(assuming that the original trace was saturated). To that end, we add all the
new coherence-order edges that are necessary according to the RA semantics.
This amounts to applying the saturation rule repeatedly until the trace becomes
saturated. To find out where in the trace to apply the saturation rule, we consider
the so called visible events. These are write events that are readable and can reach
the read event through po- and rf-edges. The write event wx

1 is a visible event
in Fig. 13. For each visible event, we add a coherence edge the write from which
the new event reads (e.g., the edge wx

1
cox−→ wx

2 in Fig. 13). If the original trace
is saturated, and we add the edges from the visible events (as described above)
then the new trace will be saturated.

Adding write events events is a much simpler operation. We only need to add
one program-order edge, as depicted in Fig. 14, If the original trace is saturated,
then the new trace will be saturated, without the need to add any extra edges.

Fig. 14. Adding an new write event.
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Fig. 15. A concurrent program with four
threads.

Fig. 16. A concurrent program with
four threads.

3.5 Algorithm

Our DPOR algorithm generates systematically different runs of the input pro-
grams, and uses the operations described in the previous sub-section to build the
corresponding traces. At any point of time, the algorithm will be in the middle
of generating one particular run, while also scheduling (start segments) of other
runs to be considered later. The algorithm is implemented recursively where a
new call generates the next node in the recursion tree. The new node may cor-
respond to the next event in the current run in which case we may also schedule
parts of new runs to be considered when the recursive call has returned. The new
node may also correspond to the start of the execution of one of the scheduled
runs. Upon termination, the set of paths in the recursion tree represents the set
of program runs that have been generated. The algorithm will not generate the
full tree at the same time. Instead, it generates one path (corresponding to one
run) at a time.

Figure 15 depicts a concurrent program with four threads. The DPOR algo-
rithm will no-deterministically select a thread and run its next instruction
(Fig. 16). In the current scenario it selects the instruction x := 2. Next, it selects
the instruction a := x. Here, there are two choices. The read event may either
read the initial value of x which is assumed to be 0, or read from the write event
x := 2 that has already been generated. The choice is made non-deterministically.
In the example, the algorithm will read from the initial value. Since, we only want
to generate one run at a time, we schedule the event a := 2 (which corresponds
to a := x reading from x := 2), for future execution (Fig. 16). More precisely, we
call the algorithm recursively with a := 0, and when the recursive call returns,
we consider a := 2 to generate a new run. We call this read-branching, to hint
that the tree branches on the different write events that a given instruction can
read from. In the next step, the algorithm selects a possible next instruction,
which in this case is b := y, for which it selects the only possible value, namely
0. Assume that the algorithm next selects the instruction x := 3 (Fig. 17). The
instruction could have been used by the read instruction a := x. However, this
was not made part of the schedule since the instruction x := 3 had not yet been
detected. An event is called a postponed write if it is generated by the algorithm
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Fig. 17. Postponed writes.

Fig. 18. A complete run π1. Fig. 19. The trace of π1.

after a read event that may read it. To get the event a := 3, we also need to
include the sequence of events that happen before it, i.e., the sequence of events
that are needed to generate a := 3. The happens-before sequence is the sequence
of events that proceed the given event by the po- and rf-relations. In our case,
this sequence is b := 0 x := 3. The schedule then will contain the happen-before
sequence as well as the event itself.

The run terminates after executing the instructions c := 0 (no branching
needed), and x := 4 which is a postponed write for a := x (the run π1 Fig. 18).
The trace corresponding to π1 is shown in Fig. 19. The algorithm will now back-
track and considers the schedules. The second schedule a := 2 will induce the
run π2 shown in Fig. 20, with the trace of Fig. 21. In particular, it generates the
postponed write instruction x := 3 for the read instruction a := x. However,
this write instruction (together with its happens-before event b := 0) is already
in the set of schedules, and therefore it will not be added to the set of sched-
ules. This feature guarantees that we never generate two traces with identical
program-order and read-from relations.

Finally, the two remaining schedules will be considered, resulting in runs two
new runs (Fig. 22) whose traces are shown in Fig. 23.
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The algorithm has generated all the four traces that belong to the program
in Fig. 15 (completeness), has not generated any other traces (soundness), and
all the generated traces have different program-order and read-from relations
(optimality).

Fig. 20. Another run π2. Fig. 21. The trace of π2.

Fig. 22. Two more runs π3 and π4. Fig. 23. The trace of π3 and π4.

4 Related Work

This tutorial is based on the material presented in [5].
Stateless model checking (SMC), coupled with (dynamic) partial order tech-

niques, was initiated in the works of Verisoft [21,23] and CHESS [30], and has
since been developed in several subsequent works, e.g., [2,19,22,27,33]. The
method of [2] is optimal w.r.t. Mazurkiewicz traces under SC.

SMC has been applied to weak memory models such TSO, PSO, and
POWER [1,4,18,37]. SMC has been adapted to (variants of) the C/C++11
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memory model, which includes RA, and implemented in tools such as
CDSChecker [31] and Rcmc [26].

Several recent DPOR techniques aim at using a weaker equivalence than
Mazurkiewicz traces [13,24,25,31]. Maximal causality reduction (MCR) is a
technique based on exploring the possible values that reads can see, instead
of the possible value-producing writes, as in our approach. MCR has been devel-
oped for SC [24] and for TSO and PSO [25].

5 Conclusions and Future Work

We have presented the main ideas behind a DPOR algorithm for the analysis of
concurrent programs running under the RA semantics. The algorithm is optimal
in the sense that it generates at most one trace with a given program-order and
read-from relation.

In this tutorial we only consider the RA semantics. It is interesting to extend
the approach to other memory models. In particular, the relaxed fragment of
C/C++11 is challenging since it contains speculative operations that are not
covered in the current framework. However, we believe that speculations can
be handled using a scheme similar to the postponed write mechanism that we
described in this paper.

Other directions for future work include considering probabilistic and game-
based models that describe the manner in which a given message will be read by
a given process. It might then be possible to analyze the system using techniques
for the analysis of probabilistic and game-based extensions of multi-dimension
infinite-state systems, e.g., [6,8,9]. It is also relevant to check whether a given
platform guarantees a given weak memory, using monitoring techniques such
as the one described in [10]. Finally it is interesting to obtain efficient verifica-
tion frameworks by integrating powerful abstraction techniques for infinite-state
systems such as the one in [7].
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Abstract. We consider the problem of reaching agreement in a dis-
tributed message-passing system prone to crash failures. Crashes are
generated by Constrained adversaries - a Weakly-Adaptive adversary,
who has to fix, in advance, the set of f crash-prone processes, and a
k-Chain-Ordered adversary, who orders all the processes into k disjoint
chains and has to follow this order when crashing them. Apart from
these constraints, both of them may crash processes in an adaptive way
at any time. While commonly used Strongly-Adaptive adversaries model
attacks and Non-Adaptive ones - pre-defined faults, Constrained adver-
saries model more realistic scenarios when there are fault-prone depen-
dent processes, e.g., in hierarchical or dependable software/hardware
systems. In this view, our approach helps to understand better the
crash-tolerant consensus in more realistic executions. We propose time-
efficient consensus algorithms against such adversaries. We complement
our algorithmic results with (almost) tight lower bounds, and extend
the one for Weakly-Adaptive adversaries to hold also for (syntactically)
weaker Non-Adaptive adversaries. Together with the consensus algorithm
against Weakly-Adaptive adversaries (which automatically translates to
the Non-Adaptive adversaries), these results extend the state-of-the-art
of the popular class of Non-Adaptive adversaries, in particular, the result
of Chor, Meritt and Shmoys [7], and prove separation gap between
Constrained adversaries (including Non-Adaptive ones) and Strongly-
Adaptive adversaries, analyzed by Bar-Joseph and Ben-Or [3] and others.

1 Introduction

We study the problem of consensus in synchronous message passing distributed
systems. There are n processes, out of which at most f can crash. Each process is
initialized with a binary input value, and the goal is to agree on a common value
(from the input values) by all processes. Formally, the following three proper-
ties need to be satisfied: agreement: no two processes decide on different values;
validity: only a value among the initial ones may be decided upon; and termi-
nation: each process eventually decides, unless it crashes. In case of randomized
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solutions, the specification of consensus needs to be reformulated, which can be
done in various ways (cf., [2]). We consider a classic reformulation in which valid-
ity and agreement are required to hold for every execution, while termination
needs to hold with probability 1. Efficiency of algorithms is measured by the
number of rounds (time complexity) until all non-faulty processes decide. This
work focuses on efficient randomized solutions – time is understood in expected
sense.

Randomization has been used in consensus algorithms for various kinds of
failures specified by adversarial models, see [1,2]. Reason for considering ran-
domization is to overcome inherent limitations of deterministic solutions. Most
surprising benefits of randomization is the solvability of consensus in as small
as constant time [7,9,18]. Feasibility of achieving small upper bounds on per-
formance of algorithms solving consensus in a given distributed environment
depends on the power of adversaries inflicting failures.

1.1 Previous and Related Work

Consensus is one of the fundamental problems in distributed computing, with a
rich history of research done in various settings and systems, cf., [2]. Recently its
popularity grew even further due to applications in emerging technologies such
as blockchains. Below we present only a small digest of literature closely related
with the setting considered in this work.

Consensus is solvable in synchronous systems with processes prone to crash-
ing, although time f +1 is required [10] and sufficient [12] in case of determinis-
tic solutions. Chor, Meritt and Shmoys [7] showed that randomization allows to
obtain a constant expected time algorithm against a Non-Adaptive adversary, if
the minority of processes may crash.

Bar-Joseph and Ben-Or [3] proved a lower bound Ω(f/
√

n log n) on the
expected time for randomized consensus against the Strongly-Adaptive adver-
sary and proposed an algorithm reaching consensus in O(f/

√
n log(2 + f/

√
n))

for any f < n. This solution meets their lower bound, provided that the adver-
sary can fail f = Ω(n) processes. What is more, for such condition these bounds
reformulate to Θ(

√
n/(n log n)).

Fisher, Lynch and Paterson [11] showed that for the message passing model
consensus cannot be solved deterministically in asynchronous settings, even if
only one process may crash. Loui and Abu-Amara [17] showed a corresponding
result for shared memory. These impossibility results can be circumvented when
randomization is used and the consensus termination condition does not hold
with probability 1.

Bracha and Toueg [5] observed that it is impossible to reach consensus by a
randomized algorithm in the asynchronous model with crashes if the majority
of processes are allowed to crash. Ben-Or [4] gave the first randomized algo-
rithm solving consensus in the asynchronous message passing model under the
assumption that the majority of processes are non-faulty.

The consensus problem has been recently considered against different adver-
sarial scenarios. Robinson, Scheideler and Setzer [19] considered the synchronous
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consensus problem under a late ε-bounded adaptive adversary, whose observa-
tion of the system is delayed by one round and can block up to εn nodes in the
sense that they cannot receive and send messages in a particular round.

1.2 Our Results

Table 1. Time complexity of solutions for the consensus problem against different
adversaries. Formulas with * are presented in this paper.

Strongly-Adaptive Weakly-Adaptive and Non-Adaptive k-Chain-Ordered

Randomized Upper bound O
(√

n
log n

)
[3] O

(√
n

(n−f) log(n/(n−f))

)
* O

(√
k

log k
log(n/k)

)
*

Lower bound Ω

(√
n

log n

)
[3] Ω

(√
n

(n−f) log(n/(n−f))

)
* Ω

(√
k

log k

)
*

Deterministic Upper bound f + 1 [12]

Lower bound f + 1 [10]

We analyze the consensus problem against restricted adaptive adversaries. The
motivation is that a Strongly-Adaptive adversary, typically used for analysis of
randomized consensus algorithms, may not be very realistic; for instance, in
practice some processes could be set as fault-prone in advance, before the execu-
tion of an algorithm, or may be dependent i.e., in hierarchical hardware/software
systems. In this context, a Strongly-Adaptive adversary should be used to model
attacks rather than realistic crash-prone systems. On the other hand, a Non-
Adaptive adversary who must fix all its actions before the execution does not
capture many aspects of fault-prone systems, e.g., attacks or reactive failures
(occurring as an unplanned consequence of some actions of the algorithm in
the system). Therefore, analyzing the complexity of consensus under such con-
straints gives a much better estimate on what may happen in real executions
and, as we demonstrate, leads to new, interesting theoretical findings about the
performance of consensus algorithms.

Table 1 presents time complexities of solutions for the consensus problem
against different adversaries. Results for the Strongly-Adaptive adversary and for
deterministic algorithms are known (see Sect. 1.1), while the other ones are deliv-
ered in this work. We design and analyze a randomized algorithm that reaches

consensus in expected O
(√

n
(n−f) log(n/(n−f))

)
rounds against any Weakly-

Adaptive adversary that may crash up to f < n processes. This result is time

optimal due to the proved lower bound Ω

(√
n

(n−f) log(n/(n−f))

)
on expected

number of rounds.
The lower bound could be also generalized to hold against the (syntactically)

weaker Non-Adaptive adversaries, therefore all the results concerning Weakly-
Adaptive adversaries delivered in this paper hold for Non-Adaptive adversaries as
well. This extends the state-of-the-art of the study of Non-Adaptive adversaries
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done in high volume of previous work, cf., [6,7,13], specifically, an O(1) expected
time algorithm of Chor et al. [7] only for a constant (smaller than 1) fraction
of failures. Our lower bound is the first non-constant formula depending on
the number of crashes proved for this adversary. In view of the lower bound
Ω

(
f√

n logn

)
[3] on the expected number of rounds of any consensus algorithm

against a Strongly-Adaptive adversary crashing at most f processes, our result
shows a separation between the two important classes of adversaries – Non-
Adaptive and Strongly-Adaptive – for the consensus problem, which is one of the
most fundamental problems in distributed computing.

We complement these results by showing how to modify the algorithm
designed for the Weakly-Adaptive adversary, to work against a k-Chain-Ordered
adversary, who has to arrange all processes into an order of k chains, and then
has to preserve this order of crashes in the course of the execution. The algo-
rithm reaches consensus in O

(√
k

log k log(n/k)
)

rounds in expectation. Addi-

tionally, we show a lower bound Ω
(√

k
log k

)
for the problem against a k-Ordered

adversary. Finally, we show that this solution is capable of running against an
arbitrary partial order with a maximal anti-chain of size k. Similarly to results
for the Weakly-Adaptive adversary, formulas obtained for Ordered adversaries
separate them from Strongly-Adaptive ones.

2 Model

Synchronous Distributed System. We assume having a system of n processes
that communicate in the message passing model. This means that processes form
a complete graph where each edge represents a communication link between
two processes. If process v wants to send a message to process w, then this
message is sent via link (v, w). It is worth noticing that links are symmetric, i.e.,
(v, w) = (w, v). We assume that messages are sent instantly.

Following the synchronous model by [3], we assume that computations are
held in a synchronous manner and hence time is divided into rounds consisting
of two phases:

– Phase A - generating local coins and local computation.
– Phase B - sending and receiving messages.

Adversarial Scenarios. Processes are prone to crash-failures that are a result
of the adversary activity. The adversary of our particular interest is an adaptive
one - it can make arbitrary decisions and see all local computations and local
coins, as well as messages intended to be sent by active processes. Therefore, it
can decide to crash processes during phase B. Additionally while deciding that
a certain process will crash, it can decide which subset of messages will reach
their recipients.

In the context of the adversaries in this paper we distinguish three types of
processes:
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– Crash-prone - processes that can be crashed by the adversary.
– Fault-resistant - processes that are not in the subset of the Weakly-Adaptive

adversary and hence cannot be crashed.
– Non-faulty - processes that survived until the end of the algorithm.

• Strongly-Adaptive and Weakly-Adaptive adversaries. The only restriction for
the Strongly-Adaptive adversary is that it can fail up to f processes, where
0 ≤ f < n.

The Weakly-Adaptive adversary is restricted by the fact that before the algo-
rithm execution it must choose f processes that will be prone to crashes, where
0 ≤ f < n.

Observe that for deterministic algorithms the Weakly-Adaptive adversary is
consistent with the Strongly-Adaptive adversary, because it could simulate the
algorithm before its execution and decide on choosing the most convenient subset
of processes.

• k-Chain-Ordered and k-Ordered adversaries. The notion of a k-Chain-Ordered
adversary originates from partial order relations, hence appropriate notions
and definitions translate straightforwardly. The relation of our particular
interest while considering partially ordered adversaries is the precedence rela-
tion. Precisely, if some process v precedes process w or w precedes v in the
partial order of the adversary, then we say that v and w are comparable.
This means that either process v must be crashed by the adversary before
process w or w must be crashed before v, accordingly. Consequently a subset
of processes where every pair of processes is comparable is called a chain.
On the other hand a subset of processes where no two different processes are
comparable is called an anti-chain.

It is convenient to think about the partial order of the adversary from a Hasse
diagram perspective. The notion of chains and anti-chains seems to be intuitive
when graphically presented, e.g., a chain is a pattern of consecutive crashes that
may occur while an anti-chain gives the adversary freedom to crash in any order
due to non-comparability of processes.

Formally, the k-Chain-Ordered adversary has to arrange all the processes into
a partial order consisting of k disjoint chains of arbitrary length that represent
in what order these processes may be crashed.

By the thickness of a partial order P we understand the maximal size of an
anti-chain in P . An adversary restricted by a wider class of partial orders of
thickness k is called a k-Ordered adversary.

We refer to a wider class of adversaries in this paper, constrained by an
arbitrary partial order, as Ordered adversaries. What is more, adversaries hav-
ing additional limitations, apart from the possible number of crashes (i.e. all
described in this paper but the Strongly-Adaptive adversary), will be called
Constrained adversaries. Note that Ordered adversaries are also restricted by
the number of possible crashes f they may enforce.
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• Non-Adaptive adversaries. The Non-Adaptive adversaries are characterised
by the fact that they must fix all their decisions prior to the execution of the
algorithm and then follow this pattern during the execution.

Consensus Problem. In the consensus problem n processes, each having its
input bit xi ∈ {0, 1}, i ∈ {1, . . . , n}, have to agree on a common output bit
in the presence of the adversary, capable of crashing processes. We require any
consensus protocol to fulfill the following conditions:

– Agreement: all non-faulty processes decide the same value.
– Validity: if all processes have the same initial value x, then x is the only

possible decision value.
– Termination: all non-faulty processes decide with probability 1.

We follow typical assumption that the first two requirements must hold in
any execution, while termination should be satisfied with probability 1.

Complexity Measure and Algorithmic Tools. The main complexity mea-
sure used to benchmark the consensus problem is the number of rounds by which
all non-faulty processes decide on a common value.

Throughout the paper we use black-box fashioned procedures that allow us
to structure the presentation better. We now briefly describe their properties
and later refer to them in the algorithms’ analysis. Details could be found in the
full version of this paper [15].
Leader-Consensus properties. We use the Leader-Consensus procedure as
a black-box tool for reaching consensus on a small group of processes, and we
require that it satisfies the following properties:

• it is executed by a process and takes two values as input: the time for which it
is executed (unless it terminates earlier because consensus was reached) and
the current value of a process;

• the output is a tuple (decided, value), where decided is a boolean variable
indicating whether the consensus value has been decided by a process during
the procedure and value is the current value of a process after the procedure
terminates (if the consensus has been decided – it is the consensus value);

• it satisfies termination, validity and conditional agreement, defined as fol-
lows: for any two processes v, w, if Leader-Consensus executed by v out-
puts (true, x) and Leader-Consensus executed by w outputs (true, y), then
x = y;

• Leader-Consensus(TLC(g), x) satisfies agreement when run by a group of
no more than g processes, with probability at least 9

10 , where TLC is the
expected time complexity function of Leader-Consensus.

We say that an algorithm fulfilling properties above satisfies Conditional-
Consensus. A candidate solution to serve as Leader-Consensus is the Ben-Or
and Bar-Joseph’s SynRan algorithm from [3], and we refer the reader to the
details therein. In particular, to Lemma 4.2 [3], which proves that SynRan
assures conditional agreement besides of other typical properties of consensus.
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Propagate-Msg Properties. We assume that procedure Propagate-Msg
propagates messages in 1 round with O(n2) message complexity. This is con-
sistent with a scenario where full communication takes place and each process
sends a message to all the processes.

3 Weakly-Adaptive Adversary

In this section we consider the fundamental result i.e. Algorithm A that con-
sists of two main components - a leader election procedure, and a reliable con-
sensus protocol. We combine them together in an appropriate way (cf., Fig. 1),
in order to reach consensus against a Weakly-Adaptive adversary.

Algorithm 1: Algorithm A, pseudocode for process v

1 initialize list LEADERS to an empty list;

2 decided := false;

3 value := xv ;

4 repeat

5 LEADERS := Elect-Leader;

6 if LEADERS contains v then

7 (decided, value) := Leader-Consensus(TLC(|LEADERS|), value) ;

8 if decided then

9 execute Propagate-Msg(value) twice;

10 end

11 else

12 if heard the same consensus value CVw twice from some process w then

13 value := CVw;

14 decided = true;

15 end

16 if heard consensus value CVw once from some process w then

17 value := CVw;

18 end

19 end

20 end

21 else

22 idle for TLC rounds;

23 if heard the same consensus value CVw twice from some process w then

24 value := CVw;

25 decided = true;

26 end

27 if heard consensus value CVw once from some process w then

28 value := CVw;

29 end

30 end

31 clear list LEADERS;

32 until decided;
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Algorithm 2: Elect-Leader, pseudocode for process v

1 coin := 1
n−f

;

2 initialize list LEADERS to an empty list;
3 toss a coin with the probability coin of heads to come up;
4 if heads came up in the previous step then
5 Propagate-Msg(“v”) to all other processes;
6 add v to list LEADERS;

7 end
8 fill in list LEADERS with elected leaders’ identifiers from received messages;
9 return LEADERS;

Leader election

listen who else
is a leader

listen who
is a leader

execute consensus
protocol
for TLC rounds

idle for TLC rounds

decided

propagate consensus
value twice
and halt

consensus not achieved

not decided

consensus achieved consensus not achieved

v chosen as leader v not chosen as leader

consensus consensus heard
not heard

listen for two rounds listen for two rounds listen for two rounds

consensus achieved

and halt

consensus achievedconsensus not achieved

listen for two roundslisten for two rounds
and halt

Fig. 1. Algorithm A flow diagram for process v.

Algorithm A has an iterative character and begins with a leader election
procedure in which we expect to elect O( n

n−f ) leaders simultaneously. Leaders
run the Leader-Consensus procedure in which they reach consensus within
their own group with a certain probability. If they do so, this fact is propagated
to all processes via Propagate-Msg so that all processes that were not in the
leaders group, know about small consensus being reached and set their consensus
values accordingly. Communicating this fact, implies reaching consensus by the
whole system. There are several subtle points in this intuitive description to be
clarified, what we do next.

Let us follow Algorithm 1 from the perspective of some process v. At the
beginning of the protocol every process takes part in Elect-Leader procedure
and process v tosses a coin with probability of success equal 1

n−f and either is
chosen to the group of leaders or not. If it is successful, then it communicates
this fact to all processes.

Process v takes part in Leader-Consensus together with other leaders in
order to reach a Conditional-Consensus, what happens with certain probability.
Hence, if Leader-Consensus is successful and the consensus value is fixed, v
tries to convince other processes to this value twice. This is because if some pro-
cess w �= v receives the consensus value (obtained from Leader-Consensus)
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in the latter round, then it may be sure that other processes received this value
from v as well in the former round (so in fact every process has the same con-
sensus value fixed from that point). Process v could not propagate its value for
the second time if it was not successful in propagating this value to every other
process for the first time – if just one process did not receive the value, this
would indicate a crash of v.

However, if Leader-Consensus is unsuccessful in agreeing on a common
value, the procedure is terminated after a certain number of rounds, which
is fixed as an input value for Leader-Consensus. Even though Conditional-
Consensus was not reached, it might happen that some of the processes, includ-
ing v, terminate the procedure with a decided value. In what follows, these pro-
cesses propagate this value to all other processes, similarly as in the successful
case.

On the other hand, if process v was not chosen to be a leader then it listens to
the channel for an appropriate amount of time and afterwards tries to learn the
consensus value twice. If it is unable to hear the value twice, then it is consistent
with being idle for two rounds. If consensus is not reached, then the protocol
starts again with electing another group of leaders. Nevertheless, if process v
hears a consensus value once, it holds and assigns it as a candidate consensus
value. This guarantees the continuity of the protocol and its validity.

The idea standing behind Algorithm A is built on the fact that if just one
fault-resistant process is elected to the group of leaders then the adversary is
unable to crash it in the course of an execution, and hence consensus is achieved
after a certain expected number of rounds.

Theorem 1. Algorithm A reaches consensus in the expected number
of rounds equal O

(
TLC

(
n

n−f

))
, satisfying termination, agreement and

validity.

Corollary 1. Instantiating Leader-Consensus with SynRan from [3]

results in O
(√

n
(n−f) log(n/(n−f))

)
expected rounds to reach consensus by

Algorithm A.

Theorem 2. The expected number of rounds of any consensus protocol running
against a Weakly-Adaptive or a Non-Adaptive adversary causing up to f crashes

is Ω

(√
n

(n−f) log(n/(n−f))

)
.

4 k-Chain-Ordered and k-Ordered Adversaries

In this section we present Algorithm C - a modification of Algorithm A
specifically tailored to run against the k-Chain-Ordered adversary. Then we also
show that it is capable of running against a k-Ordered adversary.
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Algorithm 3: Algorithm C, pseudocode for process v

1 Algorithm A with Elect-Leader substituted by Gather-Leaders;

The algorithm begins with electing a number of leaders in Gather-Leaders.
However, as the adversary models its pattern of crashes into k disjoint chains
then we would like to elect approximately k leaders.

It may happen that the adversary significantly reduces the number of pro-
cesses and hence the leader election procedure is unsuccessful in electing an
appropriate number of leaders. That is why we adjust the probability of success
by approximating the size of the network before electing leaders. If the initial
number of processes was n and the drop in the number of processes after esti-
mating the size of the network was not significant (less than half the number of
the approximation) then we expect to elect Θ(k) leaders.

Algorithm 4: Gather-Leaders, pseudocode for process v

1 initialize variable n∗;
2 n∗ := Count-Processes;
3 i = �n/n∗�;
4 coin := k

2i−1n∗ ;

5 initialize list LEADERS to an empty list;
6 toss a coin with the probability coin of heads to come up;
7 if heads came up in the previous step then
8 Propagate-Msg(“v”) to all other processes;
9 add v to list LEADERS;

10 end
11 fill in list LEADERS with elected leaders’ identifiers from received messages;
12 return LEADERS;

Algorithm 5: Count-Processes, pseudocode for process v

1 Propagate-Msg(“v”) to all other processes;
2 return the number of ID’s heard ;

Otherwise, if the number of processes was reduced by more than half, the
probability of success is changed and the expected number of elected leaders
is reduced. This helps to shorten executions of Leader-Consensus because a
smaller number of leaders executes the protocol faster. In general if there are n

2i

processes, we expect to elect Θ
(

k
2i

)
leaders.

Elected leaders are expected to be placed uniformly in the adversary’s order
of crashes. If we look at a particular leader v, then he will be present in some
chain ki. What is more, his position within this chain is expected to be in the
middle of ki.
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Leaders execute the small consensus protocol Leader-Consensus. If they
reach consensus, then they communicate this fact twice to the rest of the sys-
tem. Hence, if the adversary wants to prolong the execution, then it must crash
all leaders. Otherwise, the whole system would reach consensus and end the
protocol.

If leaders are placed uniformly in the adversary’s order, then the adversary
must preserve the pattern of crashes that it declared at first. In what follows,
if there is a leader v that is placed in the middle of chain ki, then half of the
processes preceding v must also be crashed.

When the whole set of leaders is crashed then another group is elected and
the process continues until the adversary spends all its possibilities of failing
processes.

Theorem 3. Algorithm C reaches consensus in the expected number
of rounds equal O(TLC(k) log(n/k)), satisfying termination, agreement and
validity.

Corollary 2. Instantiating Leader-Consensus with SynRan from [3] results

in O
(√

k
log k log(n/k)

)
expected number of rounds to reach consensus by

Algorithm C.

4.1 Algorithm C Against the Adversary Limited by an Arbitrary
Partial Order

Let us consider the adversary that is limited by an arbitrary partial order
relation � on the set of all processes. Two elements in this partially ordered
set are incomparable if neither x � y nor y � x hold. Translating this into our
model, the adversary may crash incomparable elements in any sequence during
the execution of the algorithm. We assume that crashes forced by the adversary
are constrained by some partial order P . Let us recall the following lemma.

Lemma 1 (Dilworth’s theorem [8]). In a finite partial order, the size of a max-
imum anti-chain is equal to the minimum number of chains needed to cover all
elements of the partial order.

Combining Lemma 1 with Theorem 3 and its instantiated form in Corollary
2, we obtain the following.

Theorem 4. Algorithm C reaches consensus in expected O(TLC(k) log(n/k))
number of rounds, against the k-Ordered adversary, satisfying termination,
agreement and validity.

We finish with the lower bound for reaching consensus against the k-Ordered
adversary.

Theorem 5. For any reliable randomized algorithm solving consensus in a
message-passing model and any integer 0 < k ≤ f , there is a k-Ordered adversary
that can force the algorithm to run in Ω(

√
k/ log k) expected number of rounds.
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5 Conclusions and Open Problems

In this work we showed time efficient randomized consensus against the Weakly-
Adaptive, Non-Adaptive and Ordered adversaries generating crashes. We proved
that all these classes of Constrained adaptive adversaries are weaker than the
Strongly-Adaptive one. Our results also extend the state-of-the-art of the study
of popular Non-Adaptive adversaries.

Three main open directions emerge from this work. One is to improve the
message complexity of proposed algorithms and make them resistant to (rarely
expected, but possible) very long executions resulting from unsuccessful proba-
bilistic events. Another open direction could pursue a study of complexities of
other important distributed problems and settings against Weakly-Adaptive and
Ordered adversaries, which are more realistic than the Strongly-Adaptive one
and more general than the Non-Adaptive one, commonly used in the literature.
Finally, there is a scope of proposing and studying other intermediate types of
adversaries, including further study of recently proposed delayed adversaries [14]
and adversaries tailored for dynamic distributed and parallel computing [16].
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Abstract. Causal consistency is one of the strongest models that can
be implemented to ensure availability and partition tolerance in dis-
tributed systems. In this paper, we propose a tool to check automati-
cally the conformance of distributed/concurrent systems executions to
causal consistency models. Our approach consists in reducing the prob-
lem of checking if an execution is causally consistent to solving Datalog
queries. The reduction is based on complete characterizations of the exe-
cutions violating causal consistency in terms of the existence of cycles
in suitably defined relations between the operations occurring in these
executions. We have implemented the reduction in a testing tool for
distributed databases, and carried out several experiments on real case
studies, showing the efficiency of the suggested approach.

1 Introduction

Causal consistency [23] is one of the most implemented models for distributed
systems. Contrary to strong consistency [19] (Linearizability [20] and Sequen-
tial Consistency [22]), causal consistency can be implemented in the presence of
faults while ensuring availability. Several implementations of different variants
of causal consistency (such as causal convergence [25] and causal memory [6])
have been developed i.e., [8,12,13,21,24,26,27]. However, the development of
such implementations that meet both consistency requirements and availability
and performance requirements is an extremely hard and error prone task. Hence,
developing efficient approaches to check the correctness of executions w.r.t con-
sistency models such as causal consistency is crucial. This paper presents an
approach and a tool for checking automatically the conformance of the compu-
tations of a system to causal consistency. More precisely, we address the problem
of, given a computation, checking its conformance to causal consistency. We
consider this problem for three variants of causal consistency that are used
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in practice. Solving this problem constitutes the cornerstone for developing
dynamic verification and testing algorithms for causal consistency.

Bouajjani et al. [9] studied the complexity of checking causal consistency
for a given computation and showed that it is polynomial time. In addition,
they formalized the different variations of causal consistency and proposed a
reduction of this problem to the occurrence of a finite number of small “bad-
patterns” in the computations (i.e., some small sets of events occurring in the
computations in some particular order). In this paper, we build on that work in
order to define a practical approach and a tool for checking causal consistency,
and to apply this tool to real-life case studies. Our approach consists basically in
reducing the problem of detecting the existence of bad patterns defined in [9] in
computations to the problem of solving a Datalog queries. The fact that solving
Datalog queries is polynomial time and that our reduction is polynomial in the
size of the computation, allows to solve the conformance checking for causal
consistency in polynomial time and match the theoretical complexity bound of
the problem. We have implemented our approach in an efficient testing tool
for distributed systems, and carried out several experiments on real distributed
databases, showing the efficiency and performance of this approach. To the best
of our knowledge, this is the first efficient and full-automated testing tool for
causal consistency verification.

The rest of this paper is as follows, Sect. 2 presents preliminaries that include
the used notations and the system model. Section 3 is dedicated to defining
the causal consistency models. Section 4 recalls the characterization of causal
consistency violations introduced in [9]. Section 5 presents our reduction of the
problem of conformance checking for causal consistency to the problem of solving
Datalog queries. Section 6 describes our testing tool, the case studies we have
considered, and the experimental results we obtained. Section 7 presents related
work, and finally conclusions are drown in Sect. 8.

2 Preliminaries

Notations. Given a set O and a relation R ⊆ O × O, we use the notation
R(o1, o2) to denote the fact that (o1, o2) ∈ R. If R is an order, it denotes the
fact that o1 precedes o2 in this order. The transitive closure of R is denoted by
R+. The reflexive closure of R is denoted by R∗.

System Model. We consider a distributed system model in which a system is
composed of several processes (sites) connected over a network. Each process
performs operations on objects (variables) Var = {x, y, . . .}. These objects are
called replicated objects and their state is replicated at all processes. Clients
interact with the system by performing operations. Assuming an unspecified set
of values Val and a set of operation identifiers IdO. We define the set of operations
as Op = {readi(x, v),writei(x, v) : i ∈ IdO, x ∈ Var, v ∈ Val}. Where readi(x, v) is
a read operation reading a value v from a variable x and writei(x, v) is a write
operation writing a value v on a variable x. The set of read operations is R(O),
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The set of write operations is W(O). The variable accessed by an operation o is
denoted by var(o).

Histories. We consider an abstract notion of an execution called history which
includes write and read operations. The operations performed by the same pro-
cess are ordered by a program order po. We assume that histories include a
write-read relation that matches each read operation to the write operation writ-
ten its return value.

Formally, a history 〈O, po,wr〉 is a set of read or write operations O along
with a partial program order po and a write-read relation wr ⊆ W(O) × R(O),
such that if wr(write(x, v), read(x′, v′)), then x = x′ and v = v′. For o1, o2
∈ O, po(o1, o2) means that o1, o2 were issued by the same process and o1 was
submitted before o2. We mention that the write-read relation can only be defined
for differentiated histories.

Differentiated Histories. A history 〈O, po,wr〉 is differentiated if each value
is written at most once, i.e., for all write operations write(x, v) and write(x, v′),
v �= v′.

Data Independence. An implementation is data-independent if its behavior
does not depend on the handled values. We consider in this paper implementa-
tions that are data-independent which is a natural assumption that corresponds
to a wide range of existing implementations. Under this assumption, it is good
enough to consider differentiated histories [9]. Thus, all histories in this paper
are differentiated. In addition, we assume that all variables are initiated to the
value 0, i.e., for all write operations write(x, v), v �= 0.

3 Causal Consistency

We introduce in the following three variations of causal consistency.

3.1 Weak Causal Consistency

The weakest variation of causal consistency is called weak causal consistency
(CC, for short). A history is CC if all operations that are in a causal relation
(causally-related) are seen in the same order by all processes. The relation of
causality is given by the program order or the write-read relation or any transitive
composition of these relations. Formally, a history 〈O, po,wr〉 is CC if po∪wr∪rw
is acyclic where the read-write relation rw is defined as

rw(read(x, v),write(x, v′)) iff co(write(x, v),write(x, v′)) and
wr(write(x, v), read(x, v)), for some write(x, v)

Example 1. The history Fig. 1d is CC, we can consider that write(x, 1) is not
causally-related to write(x, 2).
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Example 2. The history Fig. 1e is not CC. The reason is that, we have
co(write(x, 1), write(x, 2)) by the transitivity which include po(write(x, 1),
write(y, 1)) and wr(write(y, 1), read(y, 1)) and po(read(y, 1), write(x, 2)). How-
ever, in p3 we have po(read(x, 2), read(x, 1)) which is not allowed by CC.

p1:
write(z, 1)
write(x, 1)
write(y, 1)

p2:
write(x, 2)
read(z, 0)
read(y, 1)
read(x, 2)

(a) CCv but not CM

p1:
write(x, 1)
read(x, 2)

p2:
write(x, 2)
read(x, 1)

(b) CM but not CCv

p1:
write(x, 1)
read(y, 0)
write(y, 1)
read(x, 1)

p2:
write(x, 2)
read(y, 0)
write(y, 2)
read(x, 2)

(c) CC , CCv and CM

p1:
write(x, 1)

p2:
write(x, 2)
read(x, 1)
read(x, 2)

(d) CC but not CCv nor CM

p1:
write(x, 1)
write(y, 1)

p2:
read(y, 1)
write(x, 2)

p3:
read(x, 2)
read(x, 1)

(e) not CC (nor CCv, nor CM)

Fig. 1. Histories illustrating the differences between the causal consistency models CC,
CCv, and CM.

3.2 Causal Convergence

Causal convergence (CCv, for short) is stronger than CC. It requires that concur-
rent operations are observed in the same order by all processes. The definition
of CCv is based on a notion of conflict. Intuitively, two writes w1 and w2 on the
same variable are in conflict, if w1 is causally-related to a read taking its value
from w2. Formally, the conflict relation cf is defined as

cf(write(x, v),write(x, v′)) iff co(write(x, v), read(x, v′)) and
wr(write(x, v′), read(x, v′)), for some read(x, v′)

Then a history is CCv if it is CC and po ∪ wr ∪ cf is acyclic.

Example 3. The history Fig. 1a is CCv, we can set an order in which write(x, 1)
is ordered before write(x, 2).

Example 4. The history Fig. 1b is not CCv. In order to read read(x, 2), write(x, 1)
must be ordered before write(x, 2). On the other hand, to read read(x, 1),
write(x, 2) must be ordered before write(x, 1), thus we get a cycle in po∪wr ∪ cf.
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3.3 Causal Memory

The third model we consider is causal memory (CM, for short) that is also stronger
than CC. It requires that each process should observe concurrent operations in
the same order. In addition, this order should be maintained throughout its
whole execution, but it can differ from one process to another.

Formally, a history is CM if it is CC and for each operation o in the history,
the relation hbo is acyclic. The hbo relation is defined as follows.

Let 〈O, po,wr〉 be a history, for all operation o ∈ O, we define hbo be the
smallest transitive relation such that:

1. if two operations are in causal relation, and each one is causally-related to o,
then they are related by hbo, i.e., if co(o1, o), and co∗(o2, o), then hbo(o1, o2)
and

2. two write operations w1 and w2 are hbo-related if w1 precedes in hbo a read
getting its value from w2, and that read precedes o in the program order, i.e.,
hbo(write(x, v),write(x, v′)) if hbo(write(x, v), read(x, v′)) and
wr(write(x, v′), read(x, v′)), and po∗(read(x, v′), o), for some read(x, v′).

As we noticed above, CC is weaker that CCv and CM. For instance, the history
in Fig. 1d is CC but not CCv nor CM. It is CC, we can consider that write(x, 1) is
not causally-related to write(x, 2). On the other hand, for reading the value 1
the process p2 decides to order write(x, 2) before write(x, 1), then it changes this
order to read the value 2. This is not allowed under CM nor under CCv.

Both CCv and CM require that each process should observe concurrent opera-
tions in the same order. In CM this order can differ from one process to another.
It seems that this intuitive description implies that CCv is stronger than CM but
these two models are actually incomparable. The following examples illustrate
the differences between these models.

Example 5. For instance, the history in Fig. 1b is CM, but not by CCv. It is not CCv
because reading the value 1 from x in the p1 implies that write(x, 1) is ordered
after write(x, 2) while reading the value 2 from x in p2 implies that it write(x, 2) is
ordered after write(x, 1). This is allowed by CM as different processes can observe
concurrent write operations in different orders. Then, the history in Fig. 1a is CCv
but not CM. CCv requires that concurrent operations should be observed in the
same order by all processes. Thus a possible order for concurrent write operations
write(x, 1) and write(x, 2) is to order write(x, 2) after write(x, 1). Under CM, in
order to read read(z, 0), write(x, 1) should be ordered after write(x, 2) while to
read 2 from x, write(x, 2) must be ordered after write(x, 1) (write(x, 1) must
have been observed because p2 reads 1 from y and the writes on x and y are
causally-related).

4 Causal Consistency Violations

4.1 Bad-Patterns

In [9], computations that are violations of CC, CCv or CM are caracterised by the
occurrence within them of a finite number of particular (small) sets of ordered
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events, called bad-patterns. We recall these bad-patterns in this section. The
Tables 1 and 2 represent the bad-patterns of each model and their definitions
respectively.

Table 1. Bad-patterns for each causal consistency model

CC CCv CM

CyclicCO CyclicCO CyclicCO

WriteCOInitRead WriteCOInitRead WriteCOInitRead

ThinAirRead ThinAirRead ThinAirRead

WriteCORead WriteCORead WriteCORead

CyclicCF WriteHBInitRead

CyclicHB

Table 2. Bad-patterns definitions

CyclicCO the causality relation co is cylic

WriteCOInitRead a read(x, 0) is causally preceded by a write(x, v) (i.e.,
co(read(x, 0),write(x, v))) such that v �= 0

ThinAirRead there is a read(x, v) operation that read a value v such
that v �= 0 that it is never written before.(it can not be
related to any write by a wr relation)

WriteCORead there exist write operations w1, w2 such that var(w1) =
var(w2) and a read operation r1 such that wr(w1, r1). In
addition, co(w1, w2) and co(w2, r1).

WriteHBInitRead there exist a read(x, 0) and a write(x, v) (v �= 0) such that
hbo(read(x, 0),write(x, v)) for some operation o

CyclicHB the hbo relation is cyclic for some operation o

CyclicCF the union of cf and co (cf ∪ co) is cyclic

Fact 1 ([9]). A history h is CC if it does not contain any of the bad-patterns
CyclicCO, WriteCOInitRead, ThinAirRead and WriteCORead.

Fact 2 ([9]). A history h is CCv if it is CC and does not contain the bad-pattern
CyclicCF.

Fact 3 ([9]). A history h is CM if it is CC and does not contain any of the bad-
patterns WriteHBInitRead and CyclicHB.

Example 6. 1. The history in Fig. 1a contains the bad-pattern
WriteCORead so it is not CC. The write(x, 1) is causally ordered before
write(x, 2) by the transitivity. On the other hand, the process p3 read
read(x, 1) from write(x, 1) (wr(write(x, 1), read(x, 1))). The read read(x, 1)
is also causally-related to write(x, 2) by transitivity. However, the history in
Fig. 1c does not contain any one of the bad-pattern so it is CC, CCv and CM.
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2. The History in Fig. 1b is not CCv as it contains the bad-pattern CyclicCF. In
order to read read(x, 2), write(x, 2) must precedes write(x, 2) in the conflict
order. On the other hand, to read read(x, 1), write(x, 2) must be ordered in
the conflict order before write(x, 1). Thus lead to CyclicCF bad-pattern.

3. The history 1a contains the bad-pattern WriteHBInitRead so it is not CM.
Let’s consider hb = hbread(x,2). We have po(write(z, 1), write(x, 1)) and
hb(write(x, 1), write(x, 2)) (co(write(x, 1), read(x, 2) implies
co(write(x, 1), write(x, 2)) and po(write(x, 2), read(z, 0)), thus by transitivity
we have hb(write(z, 1), read(z, 0))

4.2 Algorithm of Causal Consistency Verification

Algorithm 1 verifies whether a given history satisfies a given causal consistency
model.

Input: A history h = 〈O, po,wr〉 and a causal consistency model M
Output: SAT iff h satisfies M

1 if a bad-pattern is found then
2 return UNSAT ;
3 else
4 return SAT ;
5 end

Algorithm 1: Checking Causal Consistency.

Theorem 1. Algorithm 1 returns SAT iff the input history h satisfies the causal
consistency model.

5 Reduction to Datalog Queries Solving

In this section, we show our reduction of the problem of checking whether a
given computation is a CC, CCv or CM violation to the problem of Datalog queries
solving. Datalog is a logic programming language that does not allow functions as
predicate arguments. The advantage of using Datalog is that it provides a high
level language for naturally defining constraints on relations and that solving
queries is polynomial time [29].

5.1 Datalog

A rule in datalog is a statement of the following form:

r1(v1) : -r2(v2), ..., ri(vi)

Where i ≥ 1, ri are the names of predicates (relations) and vi are arguments. A
Datalog program is a finite set of Datalog rules over the same schema [5]. The
LHS is called the rule head and represents the outcome of the query, while the
RHS is called the rule body.
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Example 7. For instance, this Datalog program computes the transitivity closure
of a given graph.

trans(X,Y) :- edge(X,Y).

trans(X,Y) :- trans(X,Z), trans(Z,Y).

Where the fact edge(a,b) means that there exists a direct edge from a to b.

In the literature, there are three definitions for the semantics of Datalog pro-
grams, model theoretic, proof-theoretic and fixpoint semantics [5]. In this paper,
we have considered the fix-point semantics.

Fix-Point Semantics. This approach is based on the fix-point theory. A fixed
point of a function f() is an element e from its domain which is mapped by
the function to itself i.e., f(e) = e. An operator called immediate consequence
operator is defined from the Datalog program rules. This operator is applied
repeatedly on existing facts in order to get new facts until getting a fixed point.
It is a constructive definition of Datalog programs semantics.

5.2 Histories Encoding

In our approach, extracted relations from a history (po, wr...) are represented
as predicates called facts, while the algorithm for fixed point computation is
formulated as Datalog recursive relations called inference rules.

We first introduce all the facts. For instance, consider the fact po(a, b) which
represents the program order from the operation a to the operation b (similarly
po(b, c)),

po(a,b).

po(b,c).

We have defined the necessary relations for our approach.

– rd(X), X is a read operation.
– wrt(X), X is a write operation.
– po(X,Y), X precedes Y in the po order.
– wr(X,Y), Y read the value from a write operation X (wr relation).
– co(X,Y), X precedes Y in the causal order.
– sv(X,Y), the operations X and Y accessed to the same variable.

Then, we define the inference rules. For instance, the following rule says that the
causal relation co is transitive.

co(X,Z) :- co(X,Y), co(Y,Z).
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5.3 Bad-Patterns Encoding

We have expressed all the bad-patterns as Datalog inference rules, except

ThinAirRead that we verify externally as it contains a universal quantifica-
tion over all operations. There exist two kinds of bad-patterns. The first type
is related to the existence of a cycle in a relation. For instance, the bad-pattern
CyclicCO that can be expressed as

:- co(X,Y), co(Y,X).

Intuitively, this means that there exist no operations X and Y such that X
precedes Y in the causal order and Y also precedes X in the causal order. Since
co is transitive, we can simply write it as

:- co(X,X).

The second type is related to the occurrence of some operations in some partic-
ular order. For instance, WriteCORead can be expressed as follows

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

Intuitively, this means that there exist no write operations X and Y on the
same variable and a read operation Z which takes the value from X such that X
precedes Y in the causal order and Y precedes Z in the causal order.

Example 8. This example represents the history Fig. 1b Datalog program:

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% Inference rules

co(X,Y) :- po(X,Y).
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co(X,Y) :- wr(X,Y).

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

5.4 Complexity

Our reduction is polynomial time in the size of the computation. For a given exe-
cution, the relations po and wr can be extracted directly (as all the considered
execution are differentiated) and their size is relative to the computation size.
Moreover, the size of bad-patterns is constant on the execution and the com-
plexity of evaluating a Datalog programs is PTIME [29]. Thus, the complexity
of our approach is PTIME, which meet the complexity shown in [9].

6 Experimental Evaluation

We have investigated the efficiency and scalability of our tool (named CausalC-
Checker) by applying it to two real-life distributed transactional databases,
CockroachDB [1] and Galera [2].

Histories Generation: The Fig. 2 presents the general architecture of the used
testing procedure in the next experiments. Histories are generated using random
clients with the parameters, the number of sessions, the number of transactions
per session, the number of events per transaction (in this paper, we consider one
event per transaction), and the number of variables. A client is generated by the
generator of histories (Algorithm 2) by choosing randomly the type of operation
(read or write) in each transaction, the variable and a value for write opera-
tions. That constitutes non executed histories that are the histories which do
not contain the return values of read operations. Each client performs a session,
communicates with the database cluster by executing operations (read/write)
and gets the return values for read operations. The recorded histories are called
executed histories in the Fig. 2. We ensure that all histories are differentiated.
These histories are the input of our CausalC-Checker.

Fig. 2. The General architecture of the histories checking procedure
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6.1 Case Study 1: CockroachDB

We have used the highly available and strongly consistent distributed database
CockroachDB [1] (v2.1.0) that is built on a transactional strongly-consistent
key-value store. Considering one operation per transaction lead to our model.
We have examined the effect of the number of operations on runtime for a fixed
number of processes (4 processes) and the effect of the number of processes.
We have tested 200 histories for each configuration and calculated the average
runtime.

Input: nClient, nTransaction, nEvent, nVariable
Output: A non executed history

1 lastWrite ← ∅;
2 foreach v ∈ 1..nVariable do
3 lastWrite(v) ← 0;
4 end
5 history ← ∅;
6 foreach 1..nClient do
7 Client ← ∅;
8 foreach 1..nTransaction do
9 Transaction ← ∅;

10 foreach 1..nEvent do
11 Event ← new(Event);
12 Event.operation ← uniformly choose({Read,Write});
13 Event.variable ← uniformly choose({1..nVariable});
14 if Event.operation = Write then
15 Event.value ← lastWrite(Event.variable) + 1;
16 lastWrite(Event.variable) ← lastWrite(Event.variable) + 1;

17 end
18 Transaction.push(Event);
19 end
20 Client.push(Transaction);
21 end
22 history.push(Client);
23 end
24 return history;

Algorithm 2: The histories generator algorithm

We have checked CC, CCv and CM for all generated histories. Figure 3 shows the
results. The graphs 3a, c and d show the runtime while increasing the number
of operations from 100 to 600, in augmentations of 100 (with a fixed number
of processes, 4 processes). The graphs 3b, e and f report the runtime when
increasing the number of processes from 2 to 6, in augmentations of 1. For each
number of processes x we have considered 50x operations.

The graph 3c resp., graph 3d, shows the evolution of CC and CCv verification
resp., CM verification, runtime while increasing the number of operations. The
graph 3e resp., graph 3f, shows the evolution of CC and CCv verification resp.,
CM verification, runtime while increasing the number of processes.
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(a) Checking Causal Consistency while
varying the number of operations.

(b) Checking Causal Consistency while
varying the number of processes.

(c) Checking CC and CCv while varying
the number of operations.

(d) Checking CM while varying the num-
ber of operations.

(e) Checking CC and CCv while varying
the number of processes.

(f) Checking CM while varying the num-
ber of processes.

Fig. 3. Checking Causal Consistency for CockreachDB histories.

Our approach is more efficient in the case of CC and CCv verification compared
to the CM case. All the tested histories were valid w.r.t. all the considered causal
consistency models.
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6.2 Case Study 2: Galera

We have also used the cluster called Galera [2] (v3.20). Galera Cluster is
a database cluster based on synchronous replication and Oracle’s InnoD-
B/MySQL. It is expected to implement Snapshot isolation when transactions
are processed in separated nodes.

Similarly to the first case study, we have studied the evolution of runtime
while increasing the number of operations from 100 to 600, in augmentations of
100. We have verified 200 histories for each number of operations and compute
the runtime average.

The graphs in Fig. 4 show the impact of increasing the number of operations
on runtime while fixing the number of processes (4 processes). The graph 4b
reports the evolution of CC and CCv verification runtime. On the other hand, the
graph 4c shows the evolution of CM checking runtime.

(a) Checking Causal Consistency while
varying the number of operations.

(b) Checking CC and CCv while varying
the number of operations.

(c) Checking CM while varying the number
of operations.

(d) Comparing CM and CC violations run-
times while varying the number of opera-
tions.

Fig. 4. Checking causal consistency for Galera histories.
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We have found that 1.25% of the Galera tested histories violate causal consis-
tency, that confirms the bugs submitted on Github [3]. We mention that 73.3% of
the detected CM violations are also CC violations. The suggested approach scales
well and detects violations on the used version of Galera DB.

The experiments show that our approach is efficient for both verification of
valid computations and detection of violations, especially in the case of CC and
CCv. The gap between CC (CCv) and CM runtimes reported in the graphs 3a, b
and 4a is due to the fact that in CM, we compute the hbo relation and check the
bad-patterns for each operation. Since CM costs more compared to CC in terms of
runtime (Fig. 4d) and the most CM violations in practice are CC violations (73.3%
in the Galera case), one can start by verifying CC first.

7 Related Work

Several works have considered the problem of checking strong consistency models
such as Linearizability and Sequential consistency (SC) [4,7,11,14,16–18,28,30].
However, few have addressed the problem of checking weak consistency models.
Emmi and Enea [15] proposes an algorithm to optimize the consistency checking
based on the notion of minimal-visibility. However, their work relies on some
specific relaxations in those criteria, leading to the naive enumeration in the
context of strong consistency models such as SC and TSO (Total store order-
ing). Bouajjani et al. [10] presents a formalization of eventual consistency for
replicated objects and reduces the problem of checking eventual consistency to
reachability and model checking problems.

Bouajjani et al. [9] considers the problem of checking causal consistency.
They present the formalization of the different variations of causal consistency
(CC, CCv and CM) we use in this work and a complete characterization of the
violations of those models. In addition, they show that checking if an execution
is conforme to one of those models is polynomial time. However, this work does
not propose any implementation.

8 Conclusion

We have presented a tool for checking automatically that given computations
of a system are causally consistent. Our procedure for solving this conformance
problem is based on implementing the theoretical approach introduced in [9]
where causal consistency violations are characterised in terms of the occurrence
of some particular bad-patterns. We build on this work by reducing the prob-
lem of detecting the existence of these patterns in computations to the problem
of solving Datalog queries. We have applied our algorithm to two real-life case
studies. The experimental results show that in the case of CC and CCv our app-
roach is efficient and scalable. In the CM case, the costs grow polynomially but
much faster than in the case of CC and CCv. Nevertheless, it turned out that
interestingly, most of the CM violations that we found are in fact CC violations,
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and therefore can be caught using a more efficient procedure. Still, an interest-
ing question for future work is whether CM has an alternative characterization
leading to a better conformance checking procedure.
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Abstract. We study two liveness verification problems for broadcast
networks, a system model of identical clients communicating via message
passing. The first problem is liveness verification. It asks whether there
is a computation such that one of the clients visits a final state infinitely
often. The complexity of the problem has been open since 2010 when it
was shown to be P-hard and solvable in EXPSPACE. We close the gap by a
polynomial-time algorithm. The algorithm relies on a characterization of
live computations in terms of paths in a suitable graph, combined with a
fixed-point iteration to efficiently check the existence of such paths. The
second problem is fair liveness verification. It asks for a computation
where all participating clients visit a final state infinitely often. We adjust
the algorithm to also solve fair liveness in polynomial time.

1 Introduction

Parameterized systems consist of an arbitrary number of identical clients that
communicate via some mechanism like a shared memory or message passing [3].
Parameterized systems appear in various applications. In distributed algorithms,
a group of clients has to form a consensus [29]. In cache-coherence protocols,
coherence has to be guaranteed for data shared among threads [10]. Developing
parameterized systems is difficult. The desired functionality has to be achieved
not only for a single system instance but for an arbitrary number of clients that
is not known a priori. The proposed solutions are generally tricky and sometimes
buggy [2], which has lead to substantial interest in parameterized verification [7],
verification algorithms for parameterized systems.

Broadcast networks are a particularly successful model for parameterized
verification [4,6,8,9,11,12,17,20,21,24,36]. A broadcast network consists of an
arbitrary number of identical finite-state automata communicating via passing
messages. We call these automata clients, because they reflect the interaction
of a single client in the parameterized system with its environment. When a
client sends a message (by taking a send transition), at the same time a number
of clients receive the message (by taking a corresponding receive transition). A
client ready to receive a message may decide to ignore it, and it may be the case
that nobody receives the message.

What makes broadcast networks interesting is the surprisingly low complex-
ity of their verification problems. Earlier works have concentrated on safety
verification. In the coverability problem, the question is whether at least one
c© Springer Nature Switzerland AG 2019
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participating client can reach an unsafe state. The problem has been shown to
be solvable in polynomial time [11]. In the synchronization problem, all clients
need to visit a final state at the same time. Although seemingly harder than
coverability, it turned out to be solvable in polynomial time as well [23]. Both
problems remain in P if the communication topology is slightly restricted [4], a
strengthening that usually leads to undecidability results [4,12].

The focus of our work is on liveness verification. Liveness properties formulate
good events that should happen during a computation. To give an example, one
would state that every request has to be followed by a response. In the setting
of broadcast networks, liveness verification was studied in [12]. The problem
generalizes coverability in that at least one client needs to visit a final state
infinitely many times. The problem was shown to be solvable in EXPSPACE by
a reduction to repeated coverability in Petri Nets [18,22]. The only known lower
bound, however, is P-hardness [11].

Our contribution is an algorithm that solves the liveness verification problem
in polynomial time. It closes the aforementioned gap. We also address a fair
variant of liveness verification where all clients participating infinitely often in
a computation have to see a final state infinitely often, a requirement known
as compassion [33]. We give an instrumentation that compiles away compassion
and reduces the problem to finding cycles. By our results, safety and liveness
verification have the same complexity, a phenomenon that has been observed in
other models as well [17,19,24,25].

Our results yield efficient algorithms for (fair) model checking broadcast net-
works against linear-time specifications [32]. If the specification is given as an
automaton [37], we compute a product with the clients and run our algorithms.

At the heart of our liveness verification algorithm is a fixed-point iteration
that terminates in polynomial time. It relies on an efficient representation of
computations. We first characterize live computations in terms of paths in a
suitable graph. Since the graph is of exponential size, we cannot immediately
apply a path finding algorithm. Instead, we show that a path exists if and only
if there is a path in some normal form. Paths in normal form can then be found
efficiently by the fixed-point iteration. The normal form result is inspired by
ideas presented in [23].

Related Work. We already discussed the related work on safety and liveness
verification of broadcast networks. Broadcast networks [12,20,36] were intro-
duced to verify ad hoc networks [28,35]. Ad hoc networks are reconfigurable in
that the number of clients as well as their communication topology may change
during the computation. If the transition relation is compatible with the topol-
ogy, safety verification has been shown to be decidable [27]. Related studies
do not assume compatibility but restrict the topology [26]. If the dependencies
among clients are bounded [30], safety verification is decidable independent of
the transition relation [38,39]. Verification tools turn these decision procedures
into practice [15,31]. D’Osualdo and Ong suggested a typing discipline for the
communication topology [16]. In [4], decidability and undecidability results for
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reachability problems were proven for a locally changing topology. The case when
communication is fixed along a given graph was studied in [1]. Topologies with
bounded diameter were considered in [13]. Perfect communication where a sent
message is received by all clients was studied in [20]. Networks with commu-
nication failures were considered in [14]. Probabilistic broadcast networks were
studied in [5]. In [6], a variant of broadcast networks was considered where the
clients follow a local strategy.

Broadcast networks are related to the leader-contributor model. It has a
fixed leader and an arbitrary number of identical contributors that communicate
via a shared memory. The model was introduced in [24]. The case when the
leader and all contributors are finite-state automata was considered in [21] and
the corresponding reachability problem was proven to be NP-complete. In [9],
the authors took a parameterized complexity look at the reachability problem
and proved it fixed-parameter tractable. Liveness verification for this model was
studied in [17]. The authors show that repeated reachability is NP-complete.
Networks with shared memory and randomized scheduler were studied in [8].

For a survey of parameterized verification we refer to [7].

2 Broadcast Networks

We introduce the model of broadcast networks of interest in this paper. Our
presentation avoids an explicit characterization of the communication topology
in terms of graphs. A broadcast network is a concurrent system consisting of
an arbitrary but finite number of identical clients that communicate by passing
messages to each other. Formally, it is a pair N = (D,P ). The domain D is a
finite set of messages that can be used for communication. A message a ∈ D can
either be sent, !a, or received, ?a. The set Ops(D) = {!a, ?a | a ∈ D} captures
the communication operations a client can perform. For modeling the identical
clients, we abstract away the internal behavior and focus on the communication
with others via Ops(D). With this, the clients are given in the form of a finite
state automaton P = (Q, I, δ), where Q is a finite set of states, I ⊆ Q is a set
of initial states, and δ ⊆ Q × Ops(D) × Q is the transition relation. We extend
δ to words in Ops(D)∗ and write q

w−→ q′ instead of (q, w, q′) ∈ δ.
During a communication phase in N , one client sends a message that is

received by a number of other clients. This induces a change of the current
state in each client participating in the communication. We use configura-
tions to display the current states of the clients. A configuration is a tuple
c = (q1, . . . , qk) ∈ Qk, k ∈ N. We use Set(c) to denote the set of client
states occurring in c. To access the components of c, we use c[i] = qi. As the
number of clients in the system is arbitrary but fixed, we define the set of all
configurations to be CF =

⋃
k∈N

Qk. The set of initial configurations is given
by CF 0 =

⋃
k∈N

Ik. The communication is modeled by a transition relation
among configurations. Let c′ = (q′

1, . . . , q
′
k) be another configuration with k

clients and a ∈ D a message. We have a transition c
a−→N c′ if the following

conditions hold: (1) there is a sender, an i ∈ [1..k] such that qi
!a−→ q′

i, (2) there
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is a number of receivers, a set R ⊆ [1..k] \ {i} such that qj
?a−→ q′

j for each
j ∈ R, and (3) all other clients stay idle, for all j /∈ R ∪ {i} we have qj = q′

j .
We use idx (c a−→N c′) = R ∪ {i} to denote the indices of clients that con-
tributed to the transition. We extend the transition relation to words w ∈ D∗

and write c
w−→N c′. Such a sequence of consecutive transitions is called a com-

putation of N . Note that all configurations appearing in a computation have
the same number of clients. We write c →∗

N c′ if there is a word w ∈ D∗

with c
w−→N c′. If |w| ≥ 1, we also use c →+

N c′. Where appropriate, we skip
N in the index. We are interested in infinite computations, infinite sequences
π = c0 → c1 → . . . of consecutive transitions. Such a computation is initialized,
if c0 ∈ CF 0. We use Inf(π) = {i ∈ N | ∃∞j : i ∈ idx (cj → cj+1)} to denote
the set of clients that participate in the computation infinitely often. We let
Fin(π) = {i ∈ N | ∃∞j : cj [i] ∈ F} represent the set of clients that visit final
states infinitely often.

3 Liveness

We consider the liveness verification problem for broadcast networks. Given a
broadcast network N = (D,P ) with P = (Q, I, δ) and a set of final states F ⊆ Q,
the problem asks whether there is an infinite initialized computation π in which
at least one client visits a final state from F infinitely often, Fin(π) �= ∅.

Liveness Verification
Input: A broadcast network N = (D,P ) and final states F ⊆ Q.
Question: Is there an initialized computation π with Fin(π) �= ∅?

The liveness verification problem was introduced as repeated coverability in
[12]. We show the following:

Theorem 1. The liveness verification problem is P-complete.

P-hardness is due to [11]. Our contribution is a matching polynomial-time deci-
sion procedure. Key to our algorithm is the following lemma which relates the
existence of an infinite computation to the existence of a finite one.

Lemma 2. There is an infinite computation c0 → c1 → . . . that visits states
in F infinitely often if and only if there is a finite computation of the form
c0 →∗ c →+ c with Set(c) ∩ F �= ∅.
If there is a computation of the form c0 →∗ c →+ c with Set(c) ∩ F �= ∅,
then c →+ c can be iterated infinitely often to obtain an infinite computation
visiting F infinitely often. In turn, in any infinite sequence from Qk one can find
a repeating configuration (pigeon hole principle). This in particular holds for the
infinite sequence of configurations containing final states.

Our polynomial-time algorithm for the liveness verification problem looks for
an appropriate reachable configuration c that can be iterated. The difficulty is
that we have a parameterized system, and therefore the number of configurations
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is not finite. Our approach is to devise a finite graph in which we search for a
cycle that mimics the cycle on c. While the graph yields a decision procedure, it
will be of exponential size and a naive search for a cycle will require exponential
time. We show in a second step how to find a cycle in polynomial time.

The graph underlying our algorithm is inspired by the powerset construction
for the determinization of finite state automata [34]. The vertices keep track
of sets of states S that a client may be in. Different from finite-state automata,
however, there is not only one client in a state s ∈ S but arbitrarily (but finitely)
many. As a consequence, a transition from s to s′ may have two effects. Some of
the clients in s change their state to s′ while others stay in s. In that case, the
set of states is updated to S′ = S ∪ {s′}. Alternatively, all clients may change
their state to s′, in which case we get S′ = (S \ {s}) ∪ {s′}.

Formally, the graph of interest is G = (V,→G). The vertices are tuples of sets
of states, V =

⋃
k≤|Q| P(Q)k. The parameter k will become clear in a moment.

To define the edges, we need some more notation. For S ⊆ Q and a ∈ D, let

post?a(S) = {r′ ∈ Q | ∃r ∈ S : r
?a−→ r′}

denote the set of successors of S under transitions receiving a. The set of states
in S where receives of a are enabled is denoted by

enabled?a(S) = {r ∈ S | post?a({r}) �= ∅}.
There is a directed edge V1 →G V2 from vertex V1 = (S1, . . . , Sk) to vertex

V2 = (S′
1, . . . , S

′
k) if the following three conditions are satisfied: (1) there is an

index j ∈ [1..k], states s ∈ Sj and s′ ∈ S′
j , and an element a from the domain D

such that s
!a−→ s′ is a send transition. (2) For each i ∈ [1..k] there are sets of

states Geni ⊆ post?a(Si) and Kill i ⊆ enabled?a(Si) such that

S′
i =

{
(Si \ Kill i) ∪ Geni, for i �= j,

(Uj \ Kill j) ∪ Genj ∪ {s′}, for i = j

where Uj is either Sj or Sj \{s}. (3) For each index i ∈ [1..k] and state q ∈ Kill i,
the intersection post?a(q) ∩ Geni is non-empty.

Intuitively, an edge in the graph mimics a transition in the broadcast network
without making explicit the configurations. Condition (1) requires a sender, a
component j capable of sending a message a. Clients receiving this message
are represented by (2). The set Geni consists of those states that are reached
by clients performing a corresponding receive transition. These states are added
to Si. As mentioned above, states can get killed. If, during a receive transition, all
clients decide to move to the target state, the original state will not be present
anymore. We capture those states in the set Kill i and remove them from Si.
Condition (3) is needed to guarantee that each killed state is replaced by a
target state. Note that for component j we add s′ due to the send transition.
Moreover, we need to distinguish whether state s gets killed or not.

The following lemma relates a cycle in the constructed graph with a cyclic
computation of the form c →+ c. It is crucial for our result.
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Lemma 3. There is a cycle ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm}) in G if and

only if there is a configuration c with Set(c) = {s1, . . . sm} and c →+ c.

The lemma explains the restriction of the nodes in the graph to k-tuples of sets
of states, with k ≤ |Q|. We explore the transitions for every possible state in c,
and there are at most |Q| different states that have to be considered. We have
to keep the sets of states separately to make sure that, for every starting state,
the corresponding clients perform a cyclic computation.

Proof. We first fix some notations that we use throughout the proof. Let c ∈ Qn

be any configuration and s ∈ Set(c). By Posc(s) = {i ∈ [1..n] | c[i] = s} we
denote the positions of c storing state s. Given a second configuration d ∈ Qn,
we use the set Targetc(s, d) = {d[i] | i ∈ Posc(s)} to represent those states that
occur in d at the positions Posc(s). Intuitively, if there is a sequence of transitions
from c to d, these are the target states of those positions of c that store s.

Consider a computation π = c →+ c with Set(c) = {s1, . . . , sm}. We show
that there is a cycle ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm}) in G. To this end,
assume π is of the form π = c → c1 → · · · → c� → c. Since c → c1 is a transition
in the broadcast network, there is an edge

({s1}, . . . , {sm}) →G (Targetc(s1, c1), . . . ,Targetc(sm, c1))

in G where each state si gets replaced by the set of target states in c1. Applying
this argument inductively, we get a path in the graph:

({s1}, . . . , {sm}) →G (Targetc(s1, c1), . . . ,Targetc(sm, c1))
→G (Targetc(s1, c2), . . . ,Targetc(sm, c2))
→G . . .

→G (Targetc(s1, c), . . . ,Targetc(sm, c)).

Since Targetc(si, c) = {si},we found the desired cycle.
For the other direction, let a cycle σ = ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm})
be given. We construct from σ a computation π = c →+ c in the broadcast
network such that Set(c) = {s1, . . . , sm}. The difficulty in constructing π is to
ensure that at any point in time there are enough clients in appropriate states.
For instance, if a transition s

!a−→ s′ occurs, we need to decide on how many
clients to move to s′. Having too few clients in s′ may stall the computation at a
later point: there may be a number of sends required that can only be obtained
by transitions from s′. If there are too few clients in s′, we cannot guarantee the
sends. The solution is to start with enough clients in any state. With invariants
we guarantee that at any point in time, the number of clients in the needed
states suffices.

Let cycle σ be V0 →G V1 →G · · · →G V� with V0 = V� = ({s1}, . . . , {sm}).
Further, let Vj = (S1

j , . . . , Sm
j ). We will construct the computation π over config-

urations in Qn where n = m · |Q|�. The idea is to have |Q|� clients for each of the
m components of the vertices Vi occurring in σ. To access the clients belonging
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to a particular component, we split up configurations in Qn into blocks, intervals
I(i) = [(i − 1) · |Q|� + 1 .. i · |Q|�] for each i ∈ [1..m]. Let d ∈ Qn be arbitrary.
For i ∈ [1..m], let Bd(i) = {d[t] | t ∈ I(i)} be the set of states occurring in the
i-th block of d. Moreover, we blockwise collect clients that are currently in a
particular state s ∈ Q. Let the set Posd(i, s) = {t ∈ I(i) | d[t] = s} be those
positions of d in the i-th block that store state s.

We fix the configuration c ∈ Qn. For each component i ∈ [1..m], in the i-th
block it contains |Q|� copies of the state si. Formally, Bc(i) = {si}. Our goal
is to construct the computation π = c0 →+ c1 →+ · · · →+ c� with c0 = c� =
c such that the following two invariants are satisfied. (1) For each j ∈ [0..�]
and i ∈ [1..m] we have Bcj

(i) ⊆ Si
j . (2) For any state s in a set Si

j we have
|Poscj

(i, s)| ≥ |Q|�−j . Intuitively, (1) means that during the computation π we
visit at most those states that occur in the cycle σ. Invariant (2) guarantees that
at each configuration cj there are enough clients available in these states.

We construct π inductively. The base case is given by configuration c0 = c
which satisfies invariants (1) and (2) by definition. For the induction step, assume
cj is already constructed such that (1) and (2) hold for the configuration. Our
first goal is to construct a configuration d such that cj →+ d and d satisfies
invariant (2). In a second step we show to construct a computation d →∗ cj+1.

In the cycle σ there is an edge Vj →G Vj+1. From the definition of →G we
get a component t ∈ [1..m], states s ∈ St

j and s′ ∈ St
j+1, and an a ∈ D such that

there is a send transition s
!a−→ s′. Moreover, there are sets Gent ⊆ post?a(St

j)
and Kill t ⊆ enabled?a(St

j) such that the following equality holds:

St
j+1 = (Ut \ Kill t) ∪ Gent ∪ {s′}.

Here, Ut is either St
j or St

j \{s}. We focus on t and take care of other components
later. We apply a case distinction for the states in St

j+1.
Let q be a state in St

j+1 \ {s′}. If q ∈ Gent, there exists a p ∈ St
j such that

p
?a−→ q. We apply this transition to |Q|�−(j+1) many clients in the t-th block of

configuration cj . If q ∈ Ut \Kill t and q not in Gent, then certainly q ∈ Ut ⊆ St
j .

In this case, we let |Q|�−(j+1) many clients of block t stay idle in state q. For
state s′, we apply a sequence of sends. More precise, we apply the transition
s

!a−→ s′ to |Q|�−(j+1) many clients in block t of cj . The first of these sends
synchronizes with the previously described receive transitions. The other sends
do not have any receivers. For components different from t, we apply the same
procedure. Since there are only receive transitions, we also let them synchronize
with the first send of a. This leads to a computation τ

cj
a−→ d1

a−→ d2
a−→ . . .

a−→ d|Q|�−(j+1)
= d.

We argue that the computation τ is valid : there are enough clients in cj such
that τ can be carried out. We again focus on component t, the reasoning for the
other components is similar. Let p ∈ Set(cj) = St

j . Note that the equality is due
to invariants (1) and (2). We count the clients of cj in state p (in block t) that
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are needed to perform τ . We need

|Q|�−(j+1) · |post?a(p) ∪ {p, s′}| ≤ |Q|�−(j+1) · |Q| = |Q|�−j

of these clients. The set post?a(p) ∪ {p, s′} appears as a consequence of the case
distinction above: there may be transitions mapping p to a state in post?a(p), it
may happen that clients stay idle in p, and in the case p = s, we need to add s′

for the send transition. Since |Poscj
(t, p)| ≥ |Q|�−j by invariant (2), we get that

τ is a valid computation. Moreover, note that configuration d satisfies invariant
(2) for j + 1: for each state q ∈ St

j+1, the computation τ was constructed such
that |Posd(t, q)| ≥ |Q|�−(j+1).

To satisfy invariant (1), we need to erase states that are present in d but
not in St

j+1. To this end, we reconsider the set Kill t ⊆ enabled?a(St
j). For each

state p ∈ Kill t, we know by the definition of →G that post?a(p) ∩ Gent �= ∅.
Hence, there is a q ∈ St

j+1 such that p
?a−→ q. We apply this transition to all

clients in d currently in state p that were not active in the computation τ . In
case Ut = St

j \ {s}, we apply the send s
!a−→ s′ to all clients that are still in s and

were not active in τ . Altogether, this leads to a computation η = d →∗ cj+1.
There is a subtlety in the definition of η. There may be no send transition

for the receivers to synchronize with since s may not need to be erased. In this
case, we synchronize the receive transitions of η with the last send of τ . This
does not change the result.

Computation η substitutes the states in Kill t and state s, depending on Ut,
by states in St

j+1. But this means that in the t-th block of cj+1, there are only
states of St

j+1 left. Hence, Bcj+1(t) ⊆ St
j+1, and invariant (1) holds.

After the construction of π = c →+ c�, it is left to argue that c� = c. But this
is due to the fact that invariant (1) holds for c� and St

� = ({s1}, . . . , {sm}). �

The graph G is of exponential size. To obtain a polynomial-time procedure,

we cannot just search it for a cycle as required by Lemma 3. Instead, we now
show that if such a cycle exists, then there is a cycle in a certain normal form.
Hence, it suffices to look for a normal-form cycle. As we will show, this can be
done in polynomial time. We define the normal form more generally for paths.

A path is in normal form, if it takes the shape V1 →∗
G Vm →∗

G Vn such
that the following conditions hold. In the prefix V1 →∗

G Vm the sets of states
increase monotonically, Vi � Vi+1 for all i ∈ [1..m − 1]. Here, � denotes the
componentwise inclusion. In the suffix Vm →∗

G Vn, the sets of states decrease
monotonically, Vi � Vi+1 for all i ∈ [m..n − 1]. The following lemma states that
if there is a path in the graph, then there is also a path in normal form. The
intuition is that the variants of the transitions that decrease the sets of states
can be postponed towards the end of the computation.

Lemma 4. There is a path from V1 to V2 in G if and only if there is a path in
normal form from V1 to V2.
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Proof. If V1 →∗
G V2 is a path in normal form, there is nothing to prove. For the

other direction, let σ = V1 →∗
G V2 be an arbitrary path. To get a path in normal

form, we first simulate the edges of σ in such a way that no states are deleted.
In a second step, we erase the states that should have been deleted. We have to
respect a particular deletion order ensuring that we construct a valid path.

Let σ = U1 →G U2 →G · · · →G U� with U1 = V1 and U� = V2. We inductively
construct an increasing path σinc = U ′

1 →G · · · →G U ′
� with U ′

j � Ui or all i ≤ j
by mimicking the edges of σ.

For the base case, we set U ′
1 = U1. Now assume σinc has already been con-

structed up to vertex U ′
j . There is an edge e = Uj →G Uj+1 in σ. Since U ′

j � Uj ,
we can simulate e on U ′

j : all states needed to execute the edge are present in U ′
j .

Moreover, we can mimic e such that no state gets deleted. This is achieved by
setting the corresponding Kill sets to be empty. Hence, we get an edge U ′

j → U ′
j+1

with U ′
j+1 � U ′

j (no deletion) and U ′
j+1 � Uj+1 (simulation of e).

The states in V ′
2 = U ′

� that are not in V2 are those states that were deleted
along σ. We construct a decreasing path σdec = V ′

2 →∗
G V2, deleting all these

states. To this end, let V ′
2 = (T1, . . . , Tm) and V2 = (S1, . . . , Sm). An edge in σ

deletes sets of states in each component i ∈ [1..m]. Hence, to mimic the deletion,
we need to consider subsets of Del =

⋃
i∈[1..m](Ti \Si)×{i}. Note that the index

i in a tuple (s, i) displays the component the state s is in.
Consider the equivalence relation ∼ over Del defined by (x, i) ∼ (y, t) if and

only if the last occurrence of x in component i and y in component t in the path σ
coincide. Intuitively, two elements are equivalent if they get deleted at the same
time and do not appear again in σ. We introduce an order on the equivalence
classes: [(x, i)]∼ < [(y, t)]∼ if and only if the last occurrence of (x, i) was before
the last occurrence of (y, t). Since the order is total, we get a partition of Del
into equivalence classes P1, . . . , Pn such that Pj < Pj+1 for each j ∈ [1..n − 1].

We construct σdec = K0 →G · · · →G Kn with K0 = V ′
2 and Kn = V2 as

follows. During each edge Kj−1 →G Kj , we delete precisely the elements in Pj

and do not add further states. Deleting Pj is due to an edge e = Uk →G Uk+1 of
σ. We mimic e in such a way that no state gets added and set the corresponding
Gen sets to the empty set. Since we respect the order < with the deletions,
the simulation of e is possible. Suppose, we need a state s in component t to
simulate e but the state is not available in component t of Kj−1. Then it was
deleted before, (s, t) ∈ P1 ∪ · · · ∪ Pj−1. But this contradicts that s is present in
Uk. Hence, all the needed states are available.

Since after the last edge of σdec we have deleted all elements from Del , we
get that Kn = V2. This concludes the proof. �


Using the normal-form result in Lemma 4, we now give a polynomial-time
algorithm to check whether ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm}). The idea is
to mimic the monotonically increasing prefix of the computation by a suitable
post operator, the monotonically decreasing suffix by a suitable pre operator, and
intersect the two. The difficulty in computing an appropriate post operator is to
ensure that the receive operations are enabled by sends leading to a state in the
intersection, and similar for the pre. The solution is to use a greatest fixed-point



Liveness in Broadcast Networks 61

computation. In a first Kleene iteration step, we determine the ordinary post+

of ({s1}, . . . , {sm}) and intersect it with the pre∗. In the next step, we constrain
the post+ and the pre∗ computations to visiting only states in the previous
intersection. The results are intersected again, which may remove further states.
Hence, the computation is repeated relative to the new intersection. The thing
to note is that we do not work with standard post and pre operators but with
operators that are constrained by (tuples of) sets of states.

For the definition of the operators, consider C = (C1, . . . , Cm) ∈ P(Q)m for
an m ≤ |Q|. Given a sequence of sets of states X1, . . . , Xm where each Xi ⊆ Ci,
we define postC(X1, . . . , Xm) = (X ′

1, . . . , X
′
m) with

X ′
i = {s′ ∈ Q | ∃s ∈ Xi : s

!a−→P↓Ci
s′}

∪ {s′ ∈ Q | ∃s1, s2 ∈ X� : ∃s ∈ Xi : s1
!a−→P↓C�

s2 ∧ s
?a−→P↓Ci

s′} .

Here, P ↓Ci
denotes the automaton obtained from P by restricting it to the

states Ci. Similarly, we define preC(X1, . . . , Xm) = (X ′
1, . . . , X

′
m) with

X ′
i = {s ∈ Q | ∃s′ ∈ Xi : s

!a−→P↓Ci
s′}

∪ {s ∈ Q | ∃s1, s2 ∈ X� : ∃s′ ∈ Xi : s1
!a−→P↓C�

s2 ∧ s
?a−→P↓Ci

s′}.

The next lemma shows that the (reflexive) transitive closures of these operators
can be computed in polynomial time.

Lemma 5. The closures post+C(X1, . . . , Xm) and pre∗
C(X1, . . . , Xm) can be com-

puted in polynomial time.

Proof. Both closures can be computed by a saturation. For post+C(X1, . . . , Xm),
we keep m sets R1, . . . , Rm, each being the post of a component. Initially, we set
Ri = Xi. The defining equation of X ′

i in post+C(X1, . . . , Xm) gives the saturation.
One just needs to substitute Xi by Ri and X� by R� on the right hand side. The
resulting set of states is added to Ri. This process is applied consecutively to
each component and then repeated until the sets Ri do not change anymore, the
fixed point is reached.

The saturation terminates in polynomial time. After updating Ri in each
component, we either already terminated or added at least one new state to a
set Ri. Since there are m ≤ |Q| of these sets and each one is a subset of Q,
we need to update the sets Ri at most |Q|2 many times. For a single of these
updates, the dominant time factor comes from finding appropriate send and
receive transitions. This can be achieved in O(|δ|2) time.

Computing the closure pre∗
C(X1, . . . , Xm) is similar. One can apply the above

saturation and only needs to reverse the transitions in the client. �

As argued above, the existence of a cycle reduces to finding a fixed point.

The following lemma shows that it can be computed efficiently.
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Lemma 6. There is a cycle ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm}) if and only

if there is a non-trivial solution to the equation

C = post+C({s1}, . . . , {sm}) ∩ pre∗
C({s1}, . . . , {sm}) .

Such a solution can be found in polynomial time.

Proof. We use a Kleene iteration to compute the greatest fixed point. It invokes
Lemma 5 as a subroutine. Every step of the Kleene iteration reduces the number
of states in C by at least one, and initially there are at most |Q| entries with |Q|
states each. Hence, we terminate after quadratically many iteration steps.

It is left to prove correctness. Let ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm})

be a cycle in G. By Lemma 4 we can assume it to be in normal form. Let
({s1}, . . . , {sm}) →+

G C be the increasing part and C →∗
G ({s1}, . . . , {sm}) the

decreasing part. Then, C is a solution to the equation.
For the other direction, let a solution C be given. Since C is contained

in post+C({s1}, . . . , {sm}) we can construct a monotonically increasing path
({s1}, . . . , {sm}) →+

G C. Similarly, since C ⊆ pre∗
C({s1}, . . . , {sm}), we get a

decreasing path C →∗
G ({s1}, . . . , {sm}). Hence, we get the desired cycle. �


What is yet open is the question on which states s1 to sm to perform the
search for a cycle. After all, we need that the corresponding configuration is
reachable from an initial configuration. The idea is to use the set of all states
reachable from an initial state in the client. Note that there is a live computation
if and only if there is a live computation involving all those states. Indeed, if a
state is not active during the cycle, the corresponding clients will stop moving
after an initial set-up phase. Since the states reachable from an initial state can
be computed in polynomial time [11], the proof of Theorem 1 is completed.

The liveness verification problem does not take fairness into account. A client
may contribute to the live computation (and help the distinguished client reach
a final state) without ever making progress towards its own final state.

4 Fair Liveness

We study the fair liveness verification problem that strengthens the requirement
on the computation sought. Given a broadcast network N = (D,P ) with clients
P = (Q, I, δ) and a set of final states F ⊆ Q, the problem asks whether there is an
infinite initialized computation π in which clients that send or receive messages
infinitely often also visit their final states infinitely often, Inf(π) ⊆ Fin(π). This
requirement is also known as compassion or strong fairness [33].

Fair Liveness Verification
Input: A broadcast network N = (D,P ) and final states F ⊆ Q.
Question: Is there an initialized computation π with Inf(π) ⊆ Fin(π)?

We solve the problem by applying the cycle finding algorithm from Sect. 3 to
an instrumentation of the given broadcast network. Formally, given an instance



Liveness in Broadcast Networks 63

(N , F ) of fair liveness, we construct a new broadcast network NF , containing
several copies of Q. Recall that Q is the set of client states in N . The construc-
tion ensures that cycles over Q in NF correspond to cycles in N where each
participating client sees a final state. Such cycles make up a fair computation.
The main result is the following.

Theorem 7. Fair liveness verification is in P.

To explain the instrumentation, we need the notion of a good computation,
where good means the computation respects fairness. Computation c1 →+ cn

is good for F , denoted c1 ⇒F cn, if every client i that makes a move during
the computation, i ∈ idx (cj → cj+1) for some j, also sees a final state in the
computation, ck[i] ∈ F for some k. The following strengthens Lemma 2.

Lemma 8. There is a fair computation from c0 if and only if c0 →∗ c ⇒F c.

The broadcast network NF is designed to detect good cycles c ⇒F c. The
idea is to let the clients compute in phases. The original state space Q is the
first phase. As soon as a client participates in the computation, it moves to a
second phase given by a copy Q̂ of Q. From this copy it enters a third phase Q̃
upon seeing a final state. From Q̃ it may return to Q.

Let the given broadcast network be N = (D,P ) with P = (Q, I, δ). We
define NF = (D ∪ {n}, PF ) with fresh symbol n /∈ D and extended client

PF = (Q̄, Ĩ, δ̄) where Q̄ = Q ∪ Q̂ ∪ Q̃.

For every transition (q, a, q′) ∈ δ, we have (q, a, q̂′), (q̂, a, q̂′), (q̃, a, q̃′) ∈ δ̄. For
every final state q ∈ F we have (q̂, !n, q̃) ∈ δ̄. For every state q ∈ Q we have
(q̃, !n, q) ∈ δ̄. Configuration c admits a good cycle if and only if there is a cycle
at c in the instrumented broadcast network. Even more, also an initial prefix
can be mimicked by computations in the third phase.

Lemma 9. c0 →∗ c ⇒F c in N if and only if c̃0 →∗ c →+ c in NF .

We argue that the cycle can be mimicked, the reasoning for the prefix is simpler.
A good cycle entails a cycle in the instrumented broadcast network. For the
reverse direction, note that in c all clients are in states from Q. As soon as a
client participates in the computation, it will move to Q̂. To return to Q, the
client will have to see a final state. This makes the computation good.

For the proof of Theorem 7, it is left to state the algorithm for finding a
computation c̃0 →∗ c →+ c in NF . We compute the states reachable from an
initial state in NF . As we are interested in a configuration c over Q, we intersect
this set with Q. Both steps can be done in polynomial time. Let s1 up to sm be
the states in the intersection. To these states we apply the fixed-point iteration
from Lemma 6. By Lemma 3, the iteration witnesses the existence of a cycle over
a configuration c of NF that involves only the states s1 up to sm.
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Abstract. UML State Machine diagrams are widely used for behav-
ioral modeling. They describe all of the possible states of a system and
show its lifetime behavior. Nevertheless, they lack of semantics. A State
Machine diagram may be interpreted in different manners that can lead
to unwanted situations. In this paper, we propose a formal verification
phase for UML State Machine diagrams using a formal language. The
aim is to ensure UML State Machine diagrams properties to designers
and to highlight errors. Petri nets, a formal notation for concurrent sys-
tems, are suitable for modeling systems behavior and they are well sup-
ported by analysis tools. Based on Model-Driven Engineering, we define
a transformation from UML State Machine diagrams to Petri nets. The
resulting Petri nets models are formally verified regarding properties.
We also define a post-interpretation of the verification results in terms
of UML State Machine diagrams.

Keywords: UML State Machine diagrams · Petri nets ·
Formal verification · Model transformation · Model-Driven Engineering

1 Introduction

UML State Machine diagram (UML-SMD) is a behavior model which describes
discrete behavior of a system through states and transitions, and expresses its
usage protocol. A UML-SMD uses additional information such as textual spec-
ification of actions and guards. The exact syntax of actions and guards is not
defined within the UML specification. This leads to use languages such as English
or more formally, expressions in a programming language (e.g., Java).

UML-SMDs can be interpreted in several ways, which can lead to undesirable
situations. Then, a verification phase using a formal language is a necessary step.
Another problem when verifying UML-SMDs is the lack of interpretation of the
obtained results for designers who are not familiar with formal languages.

Many formal languages are used to formally verify UML-SMDs such as
Automata or Petri Nets. In this work, we chose to use Petri Nets (PNs) due to
their similarity to system behavior modeling represented with states and transi-
tions. In this work, we present a Model-Driven Engineering approach transform-
ing UML-SMDs to PNs for a formal verification purpose. We first implement a
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mapping between UML-SMDs and PNs. Then we analyse the PNs and present
a post-interpretation phase of the verification results in terms of UML-SMDs.

Fig. 1. An example of a UML State Machine diagram

The rest of the paper is structured as follows. Section 2 presents a reminder of
UML State Machine diagrams and Petri nets. In Sect. 3 we present our transfor-
mation process and an illustration example. In Sect. 4 we conduct a case study
with erroneous models to demonstrate our proposal along with the interpreta-
tion phase. Section 5 summarizes a brief state of the art while Sect. 6 concludes
our paper.

2 Preliminaries

UML State Machine Diagrams: Within the Unified Modelling Language
(UML), State Machine diagrams provide a graphical notation for describing
dynamic aspects of system behaviour. UML-SMDs depict how an object reacts
to different events. Creating a UML-SMD aims to explore the complex behavior
of an object, an actor, a subsystem or a real-time system. For an introduction
to UML-SMDs, you may refer to [1]. The UML-SMDs notation consists of main
elements which are Events, States, Guard Conditions, Actions, Transitions and
Pseudo States. Figure 1 presents a UML-SMD example of a simple game with
States (New game, Win, Loss, Game end) and Transitions (Start, Lose, Win,
End). Also, the UML-SMDs use other nodes such as joins, forks, junctions, or
choices to graphically represent the flow of control. A UML-SMD is a graphical
state diagram and a textual representation that accurately captures both the
states topology and the actions. For that, a formal verification phase is primor-
dial in order to obtain safe UML-SMDs. The objective is to ensure that the
modeled system, or a part of it, is valid and satisfy behavioral properties. The
properties we want to check concern the soundness (i.e., Correctness, Safety)
and the vivacity (i.e., Liveness) of the desired system. These properties are:

– Correctness: System accuracy regarding modeling, elements connection and
required properties to define within objects

– Safety (Deadlock-free): Non existence of failure behavior of the system or a
part of it (system should not crash)

– Liveness: Termination of all the possible paths of the system (every path
eventually terminates)
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Petri Nets: PNs are a graphical mathematical language for modeling dis-
tributed systems. They are used to describe and study systems that can be
concurrent, distributed, parallel or stochastic. A PN is represented by a directed
and valued graph, in which nodes represent places (conditions, signified by cir-
cles) and transitions (events that may occur, signified by bars). Directed arcs
(signified by arrows) describe which places are preconditions and/or postcondi-
tions for which transitions. Figure 2 shows an example of a PN with places (New
game, Win, Loss, Game end) and transitions (Start, Win, Lose, End). For an
introduction to PNs, you may refer to [2].

Fig. 2. An example of a Petri net model

Fig. 3. UML State Machine diagrams metamodel

PNs have formal semantics that allow performing formal analysis and they
are very well supported by analysis tools. They offer a graphical notation for
stepwise processes that include choice, iteration, and simultaneous execution.
The analysis results of a PN model may reveal failure cases and then enable
improvement of it. PNs provide a good balance between modeling power and
analyzability. They allow to verify structural and reachability properties such as
Liveness, Boundedness and Safety.
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3 Transforming UML State Machines into Petri Nets

To transform a UML-SMD into a PN model, we use a Model Driven Engineering
approach which supplies concepts, languages and tools to create and transform
models based on their metamodels and transformation rules respectively. Dif-
ferent metamodels exist for UML-SMDs. In order to stick with its specification
and all its elements, and based on the different metamodels we found, we pro-
pose and use the metamodel illustrated in Fig. 3. A UML-SMD is composed of
Nodes and Transitions. A Node can be a State or a PseudoState. A State can
be Initial, Final or a Simple State which is composed of Actions. For Petri net,
many metamodels can be found in the literature too. Figure 4 presents the used
metamodel for Petri nets in the transformation process. A Petri net contains
Nodes and Arcs. A Node can be a Place or a Transition.

Fig. 4. Petri nets metamodel

Table 1. Mapping UML State Machine diagrams into Petri nets

UML State Machine object Petri net module Illustration
Transition Arc

Node→State→Final Place
Node→State→Initial

Place + Arc + Transition
Node→State→Simple State
Node→PseudoState: Fork
Node→PseudoState: Junction

Node→PseudoState: Join Place* + Arc* + Transition

Node→PseudoState: Choice Place + Arc* + Transition*

Action Arc + Place + Arc + Transition
*: many
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Our transformation consists in three steps. First, we define the transforma-
tion rules that transform UML-SMDs elements to PN elements (cf. Table 1).
Then, we applied these rules to a UML-SMD. The obtained result is a PN. This
latter is transformed into a textual PN file for analysis and verification. The gen-
erated textual PN is conform to TINA (TIme petri Net Analyzer) [3], a toolbox
for editing and analysing PNs. The metamodels and the transformations rules
(UMLSMD2PN and PN2TPN) are respectively defined using Ecore (a model
defining manipulable concepts in Eclipse Modeling Framework (EMF) [4]) and
the ATLAS Transformation Language (ATL) [5] within Eclipse IDE. In the next
section, we will illustrate our transformation with a case study.

4 Case Study

To illustrate our proposal, we conduct a case study. First, we apply the transfor-
mation process to some UML-SMD examples about smart home components with
modeling errors as shown in Fig. 5. The example (a) presents an error at the user
state which will trigger the state Location and the UML-SMD will be blocked in
the join node, and the example (b) presents an error in the transitions between the
states Windows and Close which will run infinitely. Then, we analyse the gener-
ated PN shown in Fig. 6 using the TINA toolbox in order to interpret the analysis

(a)

(b)

Fig. 5. The UML State Machine diagram examples

(a)

(b)

Fig. 6. The generated Petri nets from the UML State Machine diagrams in Fig. 5
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results in term of UML-SMDs properties. Note that all The UML-SMDs are valid
within the editor (Eclipse), and that we have not listed all experienced examples
to respect the page limit.

Table 2. Analysis results of the generated Petri nets (cf. Fig. 6) and their interpretation

Model Analysis results UML interpretation

(a) Bounded; Not live; 1 Dead place; 1 Dead transition ⊗ Liveness ⊗ Safety

(b) Not bounded; Not live; The marking increases to infinity ⊗ Liveness ⊗ Safety ⊗
Correctness

⊗ Unsatisfied property

The analysis results of the generated PN and their interpretation in term of
UML-SMDs are shown in Table 2. The analysis of the model (a) shows that the
PN contains 1 dead transition and 1 dead place. Also, the PN is not live. In
fact, in the corresponding UML-SMD (a), the Simple State User will never be
targeted. Note that the syntax checks of all the PNs are successful.

Our approach will allow the detection of expected errors. The aim is to pre-
vent structural errors to the UML-SMDs designers while remaining within the
design phase before the delicate implementation phase. The proposed transfor-
mation and interpretation phase enable to verify all the required UML State
Machines properties cited in Sect. 2.

5 Related Works

Several works exists to formally verify UML-SMDs. We can classify them into
two categories: PN-based and non PN-based approaches. Since there is a lot of
contributions in transforming UML-SMDs for formal verification purpose, we
limit this related works section to transformations that take into account the
semantic power of the target language, the consistency of the transformation
and the properties to be verified. For the non PN-based approaches, most of the
existing approaches use model checking techniques such as [6–9].

Using PNs, many works exist in translating UML-SMDs to PNs derivative
and extensions. In [10], UML State Machines are automatically translated into
generalized stochastic PNs and a composition of the resulting net models suitable
for reaching a given analysis goal (validation, performance evaluation) in order
to apply mathematical techniques on UML models for system validation since
they lack of formal semantics. The authors of [11] describe a methodology to
develop a colored PN of a system. The technic is to derive a system-level colored
PN from UML-SMDs then, this system can be analyzed by various formal PN
analysis techniques. The goal is the validation of UML behavioral specifications.

A mapping approach between systems specified using UML diagrams and
colored PN notations is proposed in [12] to support systematic simulation of
such models. Along with a description of a prototype tool, simulation results are
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provided in form of self-defined trace files and Message Sequence Charts. In order
to formalize non-concurrent UML-SMDs, the works in [13] and [14] introduce
an algorithm to automatically generate a colored PN model associated with a
State Machine description to provide a formal specification. However, the authors
do not consider concurrent aspects such as fork and join. They implement this
translation in an automated manner using the model-to-text transformation tool
Acceleo for the application of model checking techniques that could guarantee
the system safety. In [15], a PN based approach to Formally Verify UML State
Diagrams is proposed. By translating UML state diagrams into Coloured PNs,
desired properties can be checked automatically. The issue is to supply formal
verification techniques of UML diagrams that are completely automatic and
transparent to the designer.

The works cited above still present limitations such as the lack of verification
of the all desired properties. Some approaches aim to check only one or two of
these properties while others try to verify all the properties but take into account
a limited UML-SMDs elements. Other works only present a transformation pro-
cess without the analysis phase. Another lack is the absence of interpretation of
the results of analysis in terms of the source language (UML-SMDs) to designers.

Our proposal overcomes these limits by taking account all the necessary
elements of UML-SMDs, allowing the verification of properties such as Safety,
Liveness and Correctness of the modeled diagrams and offering a post interpre-
tation phase in term of UML-SMDs for designers who are not supposed to be
familiar with the used target formalism (PNs).

6 Conclusion

In this paper, we present a formal verification phase for UML State Machine
diagrams. Using an MDE approach, we transform UML State Machine dia-
grams into Petri nets for validation and verification of these latter regarding
their structures. We also present the interpretation of the verification results
to UML designers who are not supposed to be familiar with the used formal
languages. This phase that is not taken into account by other existing transfor-
mations.
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6. David, A., Möller, M.O., Yi, W.: Formal verification of UML statecharts with real-
time extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 218–232. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-
5 15

7. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural sub-
set of UML statechart diagrams using the SPIN model-checker. Formal Aspects
Comput. 11(6), 637–664 (1999)

8. Knapp, A., Merz, S.: Model checking and code generation for UML state machines
and collaborations. In: Proceedings 5th Wsh. Tools for System Design and Verifi-
cation, pp. 59–64 (2002)

9. Jussila, T., Dubrovin, J., Junttila, T., Latvala, T., Porres, I., Linz, J.K.U.:
Model checking dynamic and hierarchical UML state machines. In: Proceedings
MoDeV2a: Model Development, Validation and Verification, Genova, Italy, pp.
94–110 (2006)

10. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and stat-
echarts to analysable Petri net models. In: Proceedings of the 3rd International
Workshop on Software and Performance, Rome, Italy, pp. 35–45. ACM, July 2002

11. Saldhana, J., Shatz, S. M.: UML diagrams to object Petri net models: an approach
for modeling and analysis. In: International Conference on Software Engineering
and Knowledge Engineering, Chicago, IL, USA, pp. 103–110, July 2000

12. Hu, Z., Shatz, S.M.: Mapping UML diagrams to a Petri net notation for system
simulation. In: International Conference on Software Engineering and Knowledge
Engineering, Anbert, Canada, pp. 213–219, June 2004
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Abstract. We apply a probably approximately correct learning algo-
rithm for multiplicity automata to generate quantitative models of sys-
tem behaviors with a statistical guarantee. Using the generated model,
we give two analysis algorithms to estimate the minimum and average
values of system behaviors. We show how to apply the learning algorithm
even when the alphabet is not fixed. The experimental result is encour-
aging; the estimation made by our approach is almost as precise as the
exact reference answer obtained by a brute-force enumeration.

1 Introduction

Limited resources such as time and space are crucial factors in system evaluation.
Quantitative analysis of system behaviors subsequently has become an important
research issue in recent years [12,13]. Usually, models are required to describe
system behaviors during analysis. Quantitative model construction, however, can
be as difficult as the analysis itself if not more. Consider analyzing the amount
of data transmission in web browsing. When a user clicks on a hyperlink, a new
page is generated and sent from the server through Internet. Suppose we would
like to estimate the average amount of data transmission from a certain website
over k hyperlink clicks. Usually, the first thing to do is to construct a system
model with a suitable abstraction. However, it is not immediately clear how to
build an abstract quantitative model for such system behaviors automatically.

We apply a probably approximately correct (PAC) learning algorithm for mul-
tiplicity automata to generate abstract models for quantitative system behav-
iors. Multiplicity automata are the class of weighted automata over the semiring
(R,+,×, 0, 1). We model system behaviors by words in the alphabet of a mul-
tiplicity automaton. The quantity (such as the amount of data transmission)
associated with a system behavior is hence the result of the automaton on the
input word. Through a teacher who simulates the system on a given input and
measures the quantity of interest, the learning algorithm can infer a multiplicity
automaton as an approximation to quantitative system behaviors with a statis-
tical guarantee. Unlike most applications in verification, we do not aim for exact
c© Springer Nature Switzerland AG 2019
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quantitative models of system behaviors but their approximations instead. For
quantitative analysis, quantities of system behaviors (such as response time, dis-
tance to a target, heat generation, and power consumption) are often measured
and hence imprecise. Inferring exact quantitative models is not very meaningful
in the presence of measurement errors. Moreover, exact learning is impossible
when the target cannot be characterized mechanically or expressed by the model
in use. Indeed, approximate quantitative models may suffice for certain quanti-
tative analyses such as average response time. Exact models are not necessary
for such analyses even if they are attainable.

After a multiplicity automaton is inferred, we show how to analyze the min-
imum and average values of system behaviors with a fixed length k in Sect. 5.
The transitions of a multiplicity automaton with an alphabet of size n can be
represented by a matrix whose entries are polynomials of degree n. For behaviors
of length k, they can be represented by a multivariate polynomial of degree kn.
The polynomial enables us to perform various quantitative analyses with stan-
dard mathematical tools. For instance, we can compute an approximation of the
minimum amount of data transmission for k hyperlink clicks in web browsing
by gradient descent.

Some practical issues on applying learning to quantitative analysis are
addressed in Sect. 6. The algorithm assumes a fixed alphabet. In practice, the
alphabet may not be known in advance. We give an algorithm which increases
the alphabet when necessary. Also, note that the inferred quantitative model
is just an approximation, it may give meaningless values (such as a negative
amount of data transmission) on certain behaviors due to its inaccuracy. We
give a simple amendment to prevent meaningless analysis results.

Our approach has several advantages. For example, once the mapping
between words and system behaviors has been decided, the approach runs fully
automatically. After the quantitative models are computed, different analyses
can be performed on them without further simulation. For instance, suppose
we would like to analyze the average amount of data transmission for 1, . . . , k
hyperlink clicks from the home page. These k analyses can all be carried out on
the same inferred approximate model. The quantitative model can also be reused
for other types of analyses (such as the maximum amount of data transmission).
The experimental results in Sect. 8 suggest that the estimation produced by
our learning-based approach is almost as precise as the exact reference answer
obtained by a brute-force enumeration.

Related Works. Exact learning algorithms for classical automata was first pro-
posed by Angluin [2]. The result has been generalized to the class of multiplicity
automata in [5,16]. The concept of probably approximately correct (PAC) learn-
ing was first proposed by Valiant in his seminal work [19]. The idea of turning an
exact learning algorithm to a PAC learning algorithm can be found in [3]. PAC
learning has been applied to testing and verification [9,11,20]. The work [20]
considers the problem from a theoretical aspect. It focuses on issues such as
the lower bound on the number of required queries to infer a system model.
The work [11] tests if the output of a graph-manipulating program is bipartite,
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k-colorable, etc. The authors of [9] apply PAC-learning to infer a model of a com-
puter program and then verify if any assertion violation can occur in the model.
To the best of our knowledge, PAC-learning techniques have not been applied
to infer quantitative models of systems before. Both our approach and statisti-
cal model checking [14,17,21] provide a statistical guarantee. Statistical model
checking assumes a given model while ours generates models with a statistical
guarantee. The inferred models can be reused for different properties.

Contributions. The contributions of our work are threefold.

(a) A framework that automatically extracts quantitative models via learning
with a statistical guarantee.

(b) Efficient and effective algorithms to check interesting quantitative properties
of multiplicity automata.

(c) Careful analysis of the capacity of the learning algorithm when applied to
construct quantitative models and suggestions on effective optimizations.

2 Preliminaries

We assume N is the set of natural numbers. Matrices and vectors are over real
numbers R. For a matrix M , [M ](i,∗) is the i-th row of M and [M ](i,j) is the
entry at row i and column j. For a vector u , u(i) is its i-th entry. We assume all
vectors in this paper are column vectors. We use Rm×n and R

k to denote the sets
of matrices of size m×n and column vectors of size k, respectively. The product
of two matrices M1,M2 is denoted as M1M2 and the product of k copies of M
is denoted as Mk. We use a, b, c, d to denote symbols, w, x, y to denote words, λ
to denote the empty word, and v to denote variables. The concatenation of two
words x, y is denoted as x · y. The set of integers {k | m ≤ k ≤ n} is denoted as
[m,n] and [n] is a shorthand for [1, n].

A multiplicity automaton (MA) A = (M, b) over a finite alphabet Σ is rep-
resented as a set of transition matrices M = {Ma ∈ R

n×n | a ∈ Σ} (one matrix
for each symbol in Σ) and an output vector b ∈ R

n. The output of an MA A cor-
responding to a word w = d1d2 · · · dm ∈ Σ+ is A(w) = [Md1Md2 . . . Mdm

](1,∗)b
and A(λ) = b(1). Intuitively, the entry [Ma](i,j) is the weight of the transition
from state qi to qj with symbol a and b(i) is the weight of the state qi. The
initial state is q1. The output of an MA w.r.t. a word w is the sum of the weight
of all runs (sequences of transitions) corresponding to w, where the weight of a
run is the product of the weights of the last state and all transitions in the run.
An example of an MA from the view of a set of matrices and also the view of a
labeled state-transition system is given in Fig. 1.

0 1
(a, 1) (a, 1)

(b, 1)
(a, 1)
(b, 1)

Ma =
[
1 1
0 1

]
, Mb =

[
1 0
0 1

]
, b =

[
0
1

]

(Transition Matrices) (Output Vector)

Fig. 1. An MA computes the number of occurrences of symbol a (Example 5.3 of [6]).
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The Hankel matrix (HM) of a function f : Σ∗ → R is an infinite matrix F
indexed with words from Σ∗ such that [F ](x,y) = f(x · y). Let f : Σ∗ → R be a
function with the corresponding HM F . For short, we use the rank of f , denoted
rank(f), to mean the rank of the HM corresponding to f . We say an MA A is
equivalent to f iff ∀w ∈ Σ∗ : A(w) = f(w). It has been shown in [8,10] that
if r = rank(f) is finite then the smallest MA A equivalent to f has r states.
More concretely, let [F ](x1,∗), [F ](x2,∗), . . . , [F ](xr,∗) be r independent rows of F
with x1 = λ. One can construct an equivalent MA A = (M, b) from F as
follows. The output vector b is ([F ](x1,λ), [F ](x2,λ), . . . , [F ](xr,λ)). The transition
matrices Ma ∈ M can be obtained by solving the following equation for each
a ∈ Σ, i ∈ [r]:

[F ](xi·a,∗) =
∑

j∈[r]

[Ma](i,j)[F ](xj ,∗). (1)

Intuitively, Eq. (1) states that the weight from the state represented by the word
xi · a to any state q is equivalent to the sum of the weights from state qi to all
other state qj via the symbol a multiplies the weight from qj to q for all j ∈ [r].

3 Learning Algorithm of Multiplicity Automata

Now we have all the building blocks required to describe the learning algo-
rithm for MA proposed by Beimel et al. [4], under the minimal adequate teacher
(MAT) model by Angluin [2]. The MAT model assumes the existence of a teacher
answering two types of queries about a function f : Σ∗ → R: (a) On membership
queries of a word w, denoted Mem(w), the teacher replies f(w). (b) On equiva-
lence queries of an MA Ah, denoted Equ(Ah), the teacher replies true when A
is equivalent to f . Otherwise, it replies false accompanying with a word w s.t.
Ah(w) �= f(w). Let F be the HM of the target function f . When r = rank(f) is
finite, it is sufficient to characterize f using an r × r sub-matrix of F (with rank
r) [4]. The learning algorithm (in Fig. 2) tries to find such an r × r matrix.

Assume that the rank of the target function f is finite and let r = rank(f).
For the MA learning algorithm in Fig. 2, the content of [FY ](x,∗), [FY ](x·a,∗) can
be obtained by r(r + r|Σ|) membership queries, where Y is the set of current
experiments. The existence of a prefix satisfying conditions (a) and (b) is guar-
anteed by Claim 3.1 of [4] and it takes only polynomially many membership
queries to find such a prefix. Observe that adding yl+1 to Y is sufficient to make
the row of xl+1 independent with all other rows in X. The learning algorithm
will find an MA with r states that is equivalent to f in r iterations.

Probably Approximately Correct Learning
The MA learning algorithm assumes a teacher who can answer equivalence
queries. This assumption is invalid in many practical settings. Angluin [3] showed
that even if we substitute equivalence testing with sampling, we can still make
statistical claims about the difference between the target and inferred model.

Assume the target function for MA learning is f : Σ∗ → R and a probability
distribution D over Σ∗ is given. We use ϕ(w) to denote that the inferred MA
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Fig. 2. The learning algorithm for MA

Ah and f are consistent on w, i.e., Ah(w) = f(w). The term Probw⇐D[¬ϕ(w)]
denotes the probability that ϕ(w) is false for w chosen randomly according to D.
For a hypothesis of the form

H : Probw⇐D[¬ϕ(w)] ≤ ε,

we call ε the error parameter and use confidence to denote the least probabil-
ity that the hypothesis H is correct. We say that an inferred MA is probably
approximately correct (PAC) [19] w.r.t. ε and δ, denoted PAC (ε, δ), if H holds
with confidence δ. In the example of estimating the amount of data transmission,
f(w) denotes the actual amount of data transmission with the input w and Ah is
the inferred MA. Consider the uniform distribution Dk over all words of length
k and (ε, δ) = (0.1, 0.9). We say Ah is PAC (ε, δ) if with probability at least 90%,
the probability that f(w) and Ah(w) are different is bounded by 10% when w
is chosen uniformly from words of length k.

The task of an equivalence query Equ(Ah) is changed from checking exact
equivalence to checking approximate equivalence. More concretely, Step(II) in
Fig. 2 is replaced with the one in Fig. 3.

The teacher answers the i-th equivalence query by picking ni samples accord-
ing to D and testing if Ah(w) = f(w) for all samples w. The number of samples
ni needed to establish that Ah is PAC (ε, δ) is given by Angluin in [3] (page 326).
Note that the target function f is not necessary of a finite rank. When f is of
an infinite rank, the learning algorithm can still infer an MA A approximating
f with a statistical guarantee.
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Fig. 3. Replacing equivalence query with sampling. It assumes the following additional
input: a distribution D over Σ∗, the parameters 0 < ε, δ < 1.

4 Overview

The learning algorithm for MA will be applied to construct a quantitative model
of system behaviors. Fix an alphabet Σ for system actions. Assume that the
system behavior on w ∈ Σ∗ can be modeled by the quantity f(w) ∈ R for some
unknown f : Σ∗ → R.

The framework has three components: Teacher, Learner, and Analyzer. The
Learner obtains information about the target system by posing queries to the
Teacher. The Teacher measures the quantity f(w) by simulating the system on w.
On a membership query Mem(w), the Teacher answers the query by measuring
the quantity f(w). On an equivalence query Equ(Ah), the Teacher checks if
Ah(w) and the measured quantity f(w) coincide on a number of randomly chosen
w. If so, the Teacher concludes that the MA Ah represents the unknown function
f with a statistical guarantee and the Learner will pass Ah to the Analyzer for
further analysis. Otherwise, the Teacher returns w0 with Ah(w0) �= f(w0).

Once an approximation A to the unknown function f is obtained
from the Learner, the Analyzer transforms A to a multivariate polynomial
gk(d1, d2, . . . , dk) which encodes A(d1d2 · · · dk) for any d1d2 · · · dk ∈ Σk. The
transformation to the polynomial form allows us to perform various quantitative
analyses using powerful mathematical tools. Particularly, we are interested in
the minimum and average of system behaviors on inputs of length k. Section 5
explains how to analyze such properties based on the polynomial gk.

Limitations of the learning algorithm are found during our case studies. The
learning algorithm presumes a fixed alphabet. The alphabet, however, is not
predetermined when we analyze the average amount of data transmission from a
website. In the example, the number of hyperlinks per page (the size of alphabet)
is not known a priori. Moreover, recall that the inferred MA A is an approxima-
tion to the unknown function f . When A is used to compute the minimum of
f , the result can be a value that is not a possible outcome of the system under
analysis. For instance, a negative minimum waiting time may be computed from
A. We develop approaches to address those practical limitations in Sect. 6.

In Sects. 7 and 8, four examples are used to showcase how to design effective
Teachers and evaluate the performance of the proposed approach. The experi-
mental results suggest that the estimation made by our approach is very precise;
it is very close to the exact reference answer obtained by enumeration.
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5 Analyzing Properties of Multiplicity Automata

When the learning algorithm finds an MA A for the target system, the next
step is to analyze the quantitative properties of A. Two interesting quantitative
properties of MA are identified: (1) the minimum/maximum output value of
an MA from an input of length k and (2) the average output value of an MA
from all inputs of length k. A naive way to compute the minimum/maximum
or average output values of a given MA is to enumerate all inputs of length k
and compute the corresponding output. It is easy to see that the naive approach
cannot scale to a large k. So our goal is to develop more efficient algorithms to
compute these values.

Assuming that the Analyzer receives an MA A = (M, b), where M =
{Ma ∈ R

n×n | a ∈ Σ} and Σ ⊂ N, from the Learner. It will transform A
to a multivariate polynomial gk(d1, d2, . . . , dk) : Rk → R that outputs the value
of A(d1d2 · · · dk) when d1d2 · · · dk ∈ Σk.

The transformation is similar to the one in [4] using interpolation. We first
define p(v), an n × n matrix of polynomials over the variable v, as follows.

p(v) =
∑

a∈Σ

⎛

⎝

⎛

⎝
∏

b∈Σ\{a}

v − b

a − b

⎞

⎠ Ma

⎞

⎠

Example 1. Consider the MA in Fig. 1. We use 0, 1 to represent a, b, respectively.
Then

p(v) = (
v − 1
0 − 1

Ma) + (
v − 0
1 − 0

Mb) =
[
1 (1 − v)
0 1

]
.

Observe that ∀a ∈ Σ : p(a) = Ma. Then gk(v1, . . . , vk) is defined as
gk(v1, . . . , vk) = [p(v1)p(v2) . . . p(vk)](1,∗)b. Observe that gk(v1, . . . , vk) is indeed
a multivariate polynomial satisfying all requirements specified above. In princi-
ple, standard calculus techniques can be applied to analyze properties (such as
optimal values or average) of the multivariate polynomial gk(v1, . . . , vk). How-
ever, gk(v1, . . . , vk) contains many monomials with very large rational coef-
ficients. It takes a lot of time to compute the exact polynomial because all
those rational coefficients have to be computed symbolically. On the other hand,
approximating those rational coefficients using floating-point numbers gives very
inaccurate analysis results due to numerical errors. Although the multivariate
polynomial gk represents A in theory, it is very costly to compute gk explicitly
and hence is not immediately useful in practice. Below we describe more practical
approaches to compute the minimum/maximum and average value of gk.

Computing the Minimum/Maximum Value of gk The global optimization
problem of multivariate polynomial is known to be very difficult. It is already
NP-hard when the degree is 4 [15]. Here we suggest to use the gradient descent
(GD) algorithm or any similar algorithm1 to find a local minimum/maximum of
gk instead.
1 In our implementation, we use a similar gradient-based algorithm, called sequential
quadratic programming (SQP) [7], implemented in the fmincon function of Matlab.
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Let V = {vi | i ∈ [k]}. Intuitively, the GD algorithm begins with an arbi-
trarily chosen initial assignment η : V → R. It searches in gk the direction
from η leading to the steepest downward gradient and picks another assignment
by moving from η toward the chosen direction for a distance. The steeper the
gradient is, the longer the distance is. The algorithm repeats the above pro-
cedure to obtain better assignments. It terminates when, e.g., the distance to
move becomes very small, which indicates that an assignment close to a local
minimum/maximum is reached. Note that the GD algorithm does not need the
polynomial gk explicitly. It only requires the values of gk on the selected assign-
ments. Since gk(d1, . . . , dk) = [p(d1)p(d2) . . . p(dk)](1,∗)b, we simply use the MA
A to compute the values of p(d1), p(d2), . . . , p(dk) on given assignments. When
the GD algorithm is applied to our analysis, it begins with an arbitrarily chosen
assignment from V to the discrete domain Σk. However, the GD algorithm may
still find an assignment η′ outside Σk when it terminates. In this case, our pro-
cedure searches all “neighboring” assignments to η′ over Σk and pick the one
with the minimum/maximum output w.r.t gk.

Computing the Average Value of gk

The average value can be obtained by computing the sum using the following
formula and then dividing it by |Σ|k.

∑

d1∈Σ

∑

d2∈Σ

. . .
∑

dk∈Σ

gk(d1, . . . , dk)

=
∑

d1∈Σ

∑

d2∈Σ

. . .
∑

dk∈Σ

[p(d1)p(d2) . . . p(dk)](1,∗)b (2)

=

[(
∑

d1∈Σ

p(d1)

) (
∑

d2∈Σ

p(d2)

)
. . .

(
∑

dk∈Σ

p(dk)

)]

(1,∗)
b

=

⎡

⎣
(

∑

d∈Σ

Md

)k
⎤

⎦

(1,∗)

b (3)

Sometimes we are only interested in the average value w.r.t. a subset S of Σ.
Such an average value can be computed by replacing Σ in (3) with S. Observe
that the computation of (2) is more expensive than (3). The former uses k|Σ|k
matrix product operations, while the latter uses only k product operations.

6 Optimizations

In this section, approaches to address some practical limitations of our learning-
based algorithm are discussed.

Learning the Alphabet Symbols Incrementally. Recall that the MA learning algo-
rithm assumes a finite alphabet Σ. The assumption does not hold for systems
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such as a website. We propose an adaption to the learning algorithm to elimi-
nate the assumption. The main idea is to incrementally build the alphabet Σ.
Initially, we assume Σ = ∅.2 If a word w sampled according to D contains new
symbols, i.e., sym(w) �⊆ Σ, we reassign Σ := Σ∪sym(w) and use Step(I) of the
learning algorithm to rebuild Ah. The update of the alphabet Σ will eventually
terminate, provided that the distribution D is over words constructed from a
finite alphabet. The algorithm is obtained by modifying the Step(II) in Fig. 2
to the one in Fig. 4. Later we will see in Sect. 8.1 that applying the optimization
improves the overall performance by roughly 10% even for systems where Σ can
be predetermined.

Fig. 4. The PAC learning algorithm for MA that does not require to know the alphabet
beforehand. It assumes the following additional input: a distribution D over words
constructed from an unknown finite alphabet, the parameters 0 < ε, δ < 1 and the
initial value Σ = ∅.

Double Check the Learned Minimum/Maximum Value. Let A be the MA inferred
by the learning algorithm and f : Σ∗ → R be an unknown function representing
the behavior of the system under analysis. Assume that our approach finds a
minimum value on A with the input w̄. Since A is an approximation of f , it can
be the case that A(w̄) �= f(w̄). Sometimes, a result of this kind is meaningless,
e.g., the result can be a negative amount of people. In such a case, we suggest to
return w̄ as a counterexample to the MA learning algorithm to refine the conjec-
ture further. The immediate benefit of the optimization is that we can guarantee
that the model and the system are consistent at the inferred minimum/maximum
value.

7 An Example: Calculator

In this section, we demonstrate how our approach works using a simple but
concrete example, a “calculator” with numeral buttons 0 to 9 and operator
buttons + and −. We want to compute the average and maximal output values
the calculator can produce with an input of length k. Here a natural choice is to
2 The algorithm also works when Σ is a non-empty subset of system actions.
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map each button to a symbol in [0, 11] because we have 12 buttons in total. We
use the mapping that buttons 0 to 9 are mapped to the corresponding number
in [0, 9] and +,− are mapped to 10, 11, respectively. We use an underline to
emphasize the segmentation of symbols, e.g., to distinguish 1 0 and 10. A word in
[0, 11]∗ is evaluated in the same way as Matlab does. For example, [[3 3 4]] = 334,
[[3 10 4]] = 7 (interpreted as 3+4), and [[1 10 11 2]] = −1 (interpreted as 1+(−2)).
Here [[w]] is the evaluation of w in Matlab. For an incomplete expression (e.g.,
the empty word λ or 10 11, which is interpreted as +−), its evaluation is 1.

Fig. 5. Iteration 1

The PAC-learning algorithm for MA requires a distribu-
tion over words in [0, 11]∗ that will be used for sampling.
We use the so-called monkey distribution with a stop prob-
ability p. The distribution tries to simulate the behavior of
a monkey playing a system. The monkey has no preference
on which button to push and hence each symbol is assumed
to have the same chance to be pushed. There is a probabil-
ity p (checked after each button pushing) that the monkey
is bored and decides to stop pushing more buttons. A sim-
ilar idea has been used in software testing under the name
“monkey testing”, which is included as a standard testing
tool in Android Studio [1]. The monkey distribution can be
viewed as a generalization of the geometric distribution in probability theory to
finite words. The average length of word sampled by the monkey distribution
is 1/p.

We demonstrate the first two iterations of applying the MA learning algo-
rithm to learning the calculator model in Figs. 5 and 6. Assume the parameters
(ε, δ, p) = (0.05, 0.9, 0.2). On the left of Fig. 5, we show the rows of FY w.r.t. X
and its one step extension. These numbers are sufficient to establish all transi-
tion matrices and the output vector. For example, now we have x1 = λ, l = 1
and consider the case a = 9 and i = 1, from the equation

[9] = [FY ](λ·9,∗) = [FY ](xi·a,∗) =
∑

j∈[l]

[Ma](i,j)[FY ](xj ,∗) =

∑

j∈[1]

[M9](1,j)
[FY ](xj ,∗) = [M9](1,1)

[FY ](λ,∗) = [M9](1,1)
[1],

we can derive M9 = [9]. On the right of Fig. 5, we show the first conjectured
MA Ah1 . The teacher returns the first counterexample ce1 = 6 8. Observe that
Ah1(ce1) = 48 while f(ce1) = 68. By analyzing ce1, we found its prefix 6 8
satisfies both conditions stated in the step(II) of Fig. 2 with y = λ as follows.

(a) [FY ](6,∗) = [6] = [M6](1,1)[FY ](λ,∗) =
∑

j∈[1][M6](1,j)[FY ](xj ,∗)
(b) [FY ](6 8,λ) = 68 �= 48 = [M6](1,1)[FY ](λ·8,λ) =

∑
j∈[1][M6](1,j)[FY ](xj ·8,λ)
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Fig. 6. Iteration 2

Hence we add (6, 8) to (X,Y ) and pro-
ceed to iteration 2. Similarly, on the left of
Fig. 6, we show the rows of FY w.r.t. X and
its one step extension. On the right of Fig. 6
we show the conjectured MA Ah2 . The con-
struction of Ah2 is similar to Ah1 . Still, Ah2

is incorrect evidenced by the counterexample
ce2 = 11 11. Observe that Ah2(ce2) = 127

5 while
f(ce2) = 1. The learning algorithm will analyze
ce2 and extend the sets X and Y . It repeats
the above procedure until finds an MA Ah that
is PAC (ε, δ). That is, with confidence 90%, if a
word w is sampled using the monkey distribu-
tion, the probability that Ah(w) �= f(w) is less
than 5%.

8 Evaluation

The evaluation has several objectives: (1) evaluate the precision of the estimated
quantitative numbers obtained by our approach, (2) test the scalability of the
MA learning algorithm, (3) check effectiveness of the proposed optimizations.
We first use the calculator example to perform an in-depth evaluation of our
approach from all the aspects mentioned above.

We further examine the generality of the proposed approach in estimation
precision using three more examples: “operating system scheduling”, “missionar-
ies and cannibals”, and “amount of data transmission in a website”. Our imple-
mentation is in Matlab and Perl and is available at https://github.com/fmlab-
iis/ma-learning/wiki.

8.1 Calculator

Precision of the Estimation Made by Our Approach. In Table 1, we compare the
approximate average values obtained via learning and the exact values obtained
directly from the calculator.

Table 1. Comparing the approximate average computed via learning and the exact
answer obtained directly from the calculator. The parameters (ε, δ, p) = (0.1, 0.9, 0.2).

Length 5 Length 10 Length 15 Length 20 Length 25 Length 30

Learning 4.8 × 105 4.6 × 1010 4.4 × 1015 4.2 × 1020 4.1 × 1025 3.8 × 1030

Exact 4.5 × 105 4.5 × 1010 4.5 × 1015 4.5 × 1020 4.5 × 1025 4.5 × 1030

Difference (%) 6% 2% 2% 7% 9% 16%

https://github.com/fmlab-iis/ma-learning/wiki
https://github.com/fmlab-iis/ma-learning/wiki
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Recall that the average sample length is 1/p = 5. We compare the inferred
approximation with exact value on length up to 30. To make the result easier to
verify, we compute the average of words over the alphabet [0, 9] ⊂ [0, 11]3. All
words in [0, 9]k are complete Matlab expressions and we can easily compute by
hand that the average of a length k word in [0, 9]k is 4.5× 10k. Still, we want to
emphasize that the learning algorithm and also the inferred MA A is over the
complete alphabet [0, 11].

Considerations on the Choice of Alphabet Symbols. Observe that our mapping
from buttons to alphabet symbols keeps the natural order of the numeral but-
tons. Below we evaluate whether such a mapping is helpful to the performance
of our approach. We call the mapping we introduced before the natural map-
ping. Here we define the random mapping which assign randomly each button
to a number in [0, 11]. The result of the experiment is in Table 2, which is the
summary of 20 runs for each alphabet mapping. The results in the row “Enu-
meration” is obtained by a brute-force enumeration of all words w of length 5
and then computing the average of their evaluation in Matlab. The column
“#Mem. Queries” is partitioned into three parts: “HM”,“PAC”, and “CE”,
which denotes those for filling the HM, PAC-based sampling, and counterex-
ample analysis, respectively. Observe that more than a half of the membership
queries are used for filling the HM.

Table 2. Comparing the performance of natural and random alphabet mappings. The
parameters (ε, δ, p) = (0.2, 0.8, 0.1).

Time in
learning (sec.)

#Equ. queries #Mem. queries Length 5

HM PAC CE Average Maximum

Natural 60.01 11 1622 106 615 20152.64 98646.75

Random 122.65 14 2922 168 1038 18460.47 99449.60

Enumeration 20969.34 99999

The analysis using the natural mapping is clearly more efficient than the one
with random mapping; with the natural mapping, it takes only 60 s to find a MA
with PAC guarantee. We believe the reason is that it is easier for the learning
algorithm to find “regularity” when the mapping is natural. This is supported by
the fact that the size of the MA learned with the natural mapping is significantly
smaller than the one with a random mapping. The lesson learned here is that to
use a natural mapping when it is possible for the system under analysis.

Considerations on the Choice of Distribution. We evaluate the impact of choos-
ing different distributions. Beside the monkey distribution, we introduce the
other two distributions. (a) A uniform distribution over all words of length 5.
3 Recall that the algorithm in Sect. 5 allows us to focus on a subset of [0, 11].



Synthesize Models for Quantitative Analysis Using Automata Learning 87

(b) A uniform distribution over all words of length smaller than or equals to 5.
The average result of 20 runs of each distribution is in Table 3. We found that our
quantitative analysis is very stable w.r.t. the choice of sampling distributions.
Observe that a word of length longer than 5 will never be sampled using the two
uniform distributions, but the estimated values on length 7 are still very precise.
We believe this is due to the fact the MA learning algorithm is very good in
generalizing the collected samples. Note that the HM may still contain entries
corresponding to words of length longer than 5.

Table 3. Comparing the performance using different sampling distributions. (ε, δ) =
(0.2, 0.8). We use the random alphabet mapping.

Length 3 Length 5 Length 7

Avg. Max. Avg. Max. Avg. Max.

Monkey (p = 0.2) 281.93 995 18464.92 99590 1207020.65 9956008

Uniform(=5) 281.88 995 18460.63 99477 1206739.71 9920706

Uniform(≤5) 281.87 994 18455.93 99510 1206126.91 9949555

Enumeration 301.36 999 20969.34 99999 1456246.39 9999999

Incremental Alphabet Refinement. We use a 10 min timeout period and the
parameters (ε, δ, p) = (0.2, 0.8, 0.1) to evaluate the performance difference of
our approach when the incremental alphabet refinement optimization is turned
on and off. We execute 100 MA learning tasks for each setting. If a task cannot
be completed within the timeout period, we use 600 s as its execution time. The
setting when the optimization is turned off has 20 timeouts and the average
execution time is 166.96 s. The one with the optimization turned on has only 17
timeouts and the average execution time is 150.99 s. Here we can see that the
gain in execution time with the optimization is roughly 10%.

Distribution of the Execution Time. We investigate the performance bottle-
neck of MA learning. The top 4 time-consuming component are (1) filling the
Hankel matrices, (2) building the transition matrices, (3) processing PAC-based
equivalence queries by sampling, and (4) counterexample analysis. The results
are presented in Table 4. We set the error rate to almost zero so the learning
algorithm will never terminate. The stop probability p is set to 0.1. Beside the
standard 12-button calculator, we also tried calculator with 22 and 42 buttons,
i.e., with numeral button 0–19 and 0–39, respectively. We list the time spent in
iterations 10, 20, 40, and 80. The result indicates that most of the time is spent
in (1) and hence should have the highest priority for further optimizations. For
the 80-th iteration of the case |Σ| = 12, the time spent in PAC-equivalence
query dominates the total execution time. The reason is that the inferred MA is
already very close to the actual behavior of the calculator. So the teacher needs
to sample and test a large number of words before preceding to the next iter-
ation. Also observe that if the time budget is one hour, the learning algorithm
can find an MA with more than 40 states even if the alphabet size is 42.
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Table 4. The time used in different steps of MA learning.

|Σ| Iter. Time in seconds

Filling the HM Building the TM PAC Equ. query CE analysis Total

12 10 11.08 2.91 2.52 11.03 27.60

20 59.07 15.76 40.74 72.90 188.83

40 315.00 114.06 241.49 112.90 784.20

80 1950.94 941.27 2223.31 372.71 5490.04

22 10 19.98 4.91 1.77 8.65 35.36

20 108.63 28.87 7.10 45.78 160.47

40 675.50 203.77 38.81 38.67 956.90

80 5283.39 1725.94 398.66 203.06 7611.33

42 10 46.68 9.19 1.08 5.36 62.33

20 297.34 57.74 4.79 11.18 371.10

40 2124.13 412.61 34.18 30.23 2601.25

80 23672.27 3800.65 263.59 155.37 27892.06

8.2 Operating System Scheduling

An operating system (OS) on a uniprocessor machine maintains a queue of pro-
cesses that are ready to run. Depending on the scheduling policy, the OS may
deactivate the running process, insert it into the queue, and then remove some
process p from the queue and activate p for a certain time period. In this example,
we assume the first come first serve (FCFS) scheduling policy [18]. We assume
no processes will arrive simultaneously.

We are interested in the waiting time of a process (the total time period in
which the process is ready to run but not activated). We assume the maximal
execution time is 10 time units for all processes and define a set of alphabet
Σ = [0, 10]. Basically, for a word w = a0a1 . . . al, the symbol ai indicates that at
the i-th time unit (1) a new process with execution time ai is arrived and ready
to run if ai > 0, or (2) no new process arrived if ai = 0. For example, 20053
means jobs that require 2, 5, 3 time units arrive at time 1, 4, 5, respectively. The
output f(w) is computed by simulating the OS under the FCFS policy. Table 5
summaries the results of running the analysis 3 times. The result is surprisingly
promising; our analysis is as precise as the result obtained by enumerating all
words of length k.

8.3 Missionaries and Cannibals

The missionaries and cannibals example is one of the classical river-crossing
problems. In our setting, 3 missionaries and 3 cannibals want to cross a river
using a boat under the following constraints: (1) the boat can carry at most 3
people; (2) at least one person is required to row the boat; (3) if there are more
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Table 5. Performance on “Operating System Scheduling”. The parameters (ε, δ, p) =
(0.1, 0.9, 0.2). The row “Enumeration” is obtained by enumerating all words of length k.

Time (sec.) #Equ. queries Length 3 Length 5 Length 7

Avg. Max. Avg. Max. Avg. Max.

Learning 212.08 22.33 4.50 9.00 9.00 18.00 13.50 27.00

Enumeration 4.50 9.00 9.00 18.00 13.50 27.00

cannibals than missionaries present on a bank (or on a boat), then the cannibals
will devour the missionaries. To analyze the missionaries and cannibals example
with MA, we define the set of alphabet Σ = {(i, j) | i + j ∈ [3]}. For a word
w = (i0, j0)(i1, j1) . . . (il, jl), the symbol (ik, jk) indicates that ik missionaries
and jk cannibals row the boat (1) from the source bank to the destination bank
if k is even, or (2) in the other direction if k is odd. Our goal is to estimate
the number of people on the destination bank at the k-th step. We encode the
number of people on the destination bank in the power of 2. That is, 2n denotes
there are n people on the destination bank. Then moving one person to the
destination bank becomes ×2 and removing one becomes ÷2.

Observe that by encoding the number of missionaries and cannibals at each
bank and the position of the boat as the states of an MA, one can obtain a deter-
ministic MA that precisely computes the number of people on the destination
bank. Each alphabet symbol will move the MA from one state to only one tar-
get state and update the number of people on the destination bank accordingly
using ×2 and ÷2. The number of states are bounded by 36 × 2. The boat has
two positions and each person has at most three statuses: at the source, at the
destination, and being devoured. So we know that rank of the target function is
finite, although its value can be high.

Table 6 summaries the results of running the analysis 20 times. The output
f(w) is computed by simulating the move of the boat according to w. In general,
our method produces a very precise estimation on the average output value. In
this case, the maximum value we obtained is only sub-optimal. We believe this
is caused by a special feature of the example: once we made an incorrect step,
some missionaries will be devoured and there is no way to resurrect them. So the
imprecision of the model will cause a huge impact to the estimated maximum
value. Similarly, we obtain the reference answer by enumeration. We only have
results up to length 7 because it takes more than 10 h to compute the reference
answer when the length is 7.

8.4 Amount of Data Transmission in a Website

Average and worst-case response time are important measures of the perfor-
mance of a website. For static web pages, the response time is usually propor-
tional to the size of the page being transmitted. In the experiment, we estimate
the average and maximum size of data transmitted during k page visits.
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Table 6. Performance on “Missionaries and Cannibals”. The parameters (ε, δ, p) =
(0.1, 0.9, 0.2). The row “Enumeration” is obtained by enumerating all words of length k.

Time (sec.) #Equ. queries Length 3 Length 5 Length 7

Avg. Max. Avg. Max. Avg. Max.

Learning 682.09 32 22.00 24.74 21.99 24.74 21.97 25.05

Enumeration 22.00 25 21.99 26 21.97 26

Define an initial set of alphabet Σ = [2]. Basically, a symbol i ∈ Σ indicates
the i-th hyperlink in the current web page. Whenever a web page containing k
hyperlinks with k > 2 is detected during sampling, the alphabet is extended to
[k]. A word 3 4 2 denotes the sequence of actions: click the 3rd hyperlink in the
first web page, the 4th hyperlink in the next web page, and then the 2nd link in
the last web page. We use the personal web-site of our colleague as the target
to analyze. The result is presented in Table 7.

Table 7. Performance on the “Amount of Data Transmission in a Website” problem.
The parameters (ε, δ, p) = (0.1, 0.9, 0.2). Here the numbers are in byte and the size of
alphabet of the learned MA is 16.

Time
(sec.)

#Equ.
queries

Length 3 Length 5 Length 7

Avg. Max. Avg. Max. Avg. Max.

Learning 371.58 4.00 35365.04 73398.33 53207.33 122083.67 67766.23 140557.67

Enumeration 35365.04 77757.00 - - - -

We encountered a number of difficulties working on a realistic problem like
this. For example, the web server blocks our connection when we make too many
requests within a period of time. So we can only send one request per second to
avoid being blocked. Subsequently, a membership on a word of length n requires
n requests to the website, which costs at least n seconds. Therefore, here we can
only offer the exact reference answer for the case of length 3. We could not offer
the reference answer of other lengths because it would require months of time.

9 Conclusion

Our work is the first to apply an MA learning algorithm with a PAC guarantee
to the context of quantitative analysis. The encouraging experimental results
suggest that our approach has tremendous potential. Although the MA learn-
ing algorithm terminates only when the target function is of a finite rank, our
approach can be applied even when the rank of the target function is infinite.
Observe that beside the example “missionaries and cannibals”, we do not know
if the target function is of a finite or an infinite rank. Currently, our tool can
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infer an MA model with 50 to 100 states within one hour, provided that the size
of alphabet is below 50. Our implementation is in Matlab and Perl. We believe
its performance can be improved using a more efficient programming language.
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1 Introduction

Networks of mobile robots captured the attention of the distributed computing
community, as they promise new application (rescue, exploration, surveillance) in
potentially harmful environments. Originally introduced in 1999 by Suzuki and
Yamashita [40], the model has been refined since by many authors while growing
in popularity (see [28] for a comprehensive textbook). From a theoretical point
of view, the interest lies in characterising, for each of these various refinements,
the exact conditions that enable solving a particular task.

In the model we consider, all robots are anonymous and operate using the
same embedded program through repeated Look-Compute-Move cycles. In each
cycle, a robot first “looks” at its environment and obtains a snapshot containing
some information about the locations of all robots, expressed in the robot’s
own self-centred coordinate system, whose scale and orientation might not be
consistent with the other robots’ coordinate systems (or even with the same
robot’s coordinate system from a previous cycle). Then the robot “computes” a
destination, still in its own coordinate system, based only on the snapshot it just
obtained (which means the robot is oblivious, in the sense that its behaviour is
independent of the past history of execution). Finally the robot “moves” towards
the computed destination.

Different levels of synchronisation between robots have been considered. The
weakest [28] (and most realistic) is the asynchronous model (ASYNC), where
each robot performs its Look, Compute and Move actions at its own pace,
which may not be consistent with that of other robots. The strongest [40] is
the fully synchronous model (FSYNC), where all robots perform simultaneously
and atomically all of these three steps. An intermediate level [40] is called semi-
synchronous (SSYNC), where the computation is organised in rounds and only
a subset of the robots are active at any given round; the active robots in a round
performing exactly one atomic Look-Compute-Move cycle.

The general model is agnostic to the shape of the space where the robots
operate, which can be the real line, a two dimensional Euclidean space, a discrete
space (a.k.a. a graph), or even another space with a more intricate topology. To
date, two independent lines of research focused on (i) continuous Euclidean
spaces, and (ii) graphs, studying different sets of problems and using distinct
algorithmic techniques.

1.1 Continuous vs. discrete spaces

The core problem to solve in the context of mobile robot networks that operate in
bidimensional continuous spaces is pattern formation, where robots starting from
distinct initial positions have to form a given geometric pattern. Arbitrary pat-
terns can be formed when robots have memory [13,40] or common knowledge [29],
otherwise only a subset of patterns can be achieved [30,42,45]. Forming a point
as the target pattern is known as gathering [3,16,17,37,40], where robots have
to meet at a single point in space in finite time, not known beforehand. The
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problem is generally impossible to solve [17,37,40] unless the setting is fully syn-
chronous [3] or robots are endowed with multiplicity detection [16]. Recently,
researchers considered tridimensional Euclidean spaces [41,43,44], where robots
must solve plane formation, that is, land on a common plane (not determined
beforehand) in finite time. It turns out that robots cannot form a plane from most
of the semi-regular polyhedra, while they can form a plane from every regular
polyhedron (except a regular icosahedron). In the context of robots operating on
graphs, typical problems are terminating exploration [15,21–23,26,27,35], where
robots must explore all nodes of a given graph and then stop moving forever,
exclusive perpetual exploration [5,9–11,20], where robots must explore all nodes
of a graph forever without ever colliding, exclusive searching [8,19,20], where
robots must capture an intruder in the graph without colliding, and gather-
ing [12,20,32–34], where robots must meet at a given node in finite time, not
determined beforehand.

Although some of the studied problems overlap (e.g. gathering), the algo-
rithmic techniques that enable solving problems are substantially different. On
the one hand, robots operating in continuous spaces may typically use fractional
distance moves to another robot, or non-straight moves in order to make the
algorithm progress, two options that are not possible in the discrete model. On
the other hand, in the asynchronous continuous setting, a robot may be seen
by another robot as it is moving, hence at some arbitrary position between its
source and destination point within a cycle, something that is impossible to
observe in the discrete setting. Indeed, all aforementioned works for robots on
graph consider that their moves are atomic, even in the ASYNC setting, which
may seem unrealistic to a practitioner.

1.2 Related Works

Designing and proving mobile robot protocols is notoriously difficult. Formal
methods encompass a long-lasting path of research that is meant to overcome
errors of human origin. Unsurprisingly, this mechanised approach to protocol
correctness was successively used in the context of mobile robots [1,3,4,6,7,10,
17,21,36,38,39].

In the discrete setting, model-checking proved useful to find bugs (usually in
the ASYNC setting) in existing literature [7,24,25] and formally check the cor-
rectness of published algorithms [7,21,38]. Automatic program synthesis [10,36]
can be used to obtain automatically algorithms that are “correct-by-design”. How-
ever, those approaches are limited to small instances with few robots. General-
ising to an arbitrary number of robots with similar approaches is doubtful as
Sangnier et al. [39] proved that safety and reachability problems become unde-
cidable in the parameterised case.

When robots move freely in a continuous bidimensional Euclidean space,
to the best of our knowledge the only formal framework available is the Pactole
framework.1 Pactole enabled the use of higher-order logic to certify impossibility

1 https://pactole.liris.cnrs.fr.

https://pactole.liris.cnrs.fr
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results [1,4,17] as well as certifying the correctness of algorithms [3,18], possi-
bly for an arbitrary number of robots (hence in a scalable manner). Pactole was
recently extended by Balabonski et al. [4] to handle discrete spaces as well as con-
tinuous spaces, thanks to its modular design. However, to this paper, Pactole only
allowed one to express specifications and proofs with the FSYNC and SSYNC
models.

1.3 Our Contribution

In this paper, we explore the possibility of establishing a first bridge between
the continuous movements and discrete observation vs. discrete movements and
observation in the context of autonomous mobile robots. Our position is that the
continuous model reflects well the physicality of robots operating in some envi-
ronment, while the discrete model reflects well the digital nature of autonomous
robots, whose sensors and computing capabilities are inherently finite. For this
purpose, we consider that robots make continuous, non atomic moves, but only
sense in a discrete manner the position of robots. Our approach is certified using
the Coq proof assistant and the Pactole framework.

In more details, we first extend the Pactole framework to handle the ASYNC
model, preserving its modularity by keeping the operating space and the robots
algorithm both abstract. This permits to retain the same formal framework for
both continuous and discrete spaces, and the possibility for mobile robots to
be faulty (even possibly malicious a.k.a. Byzantine). Then, as an application of
the new framework, we formally prove the equivalence between atomic moves in
a discrete space (the classical model for robots operating on graphs) and non-
atomic moves in a continuous unidimensional space when robot vision sensors
are discrete (that is, robots are only able to see another robot on a node when
they perform the Look phase, but robots can move anywhere on a straight line
between two adjacent nodes), irrespective of the problem being solved. Our effort
consolidates the integration between the model, the problem specification, and
its proof that is advocated by the Pactole framework.

Pactole and the formal developments of this work are available at https://
pactole.liris.cnrs.fr.

2 The Asynchronous Look-Compute-Move Model

The complete lack of synchronisation makes reasoning in the ASYNC model
particularly error prone. Nevertheless, being the most realistic model, it is widely
used in the literature. In this section, we describe how to include the ASYNC
model in the Pactole framework.

The formalisation of the Look-Compute-Move model in Pactole for FSYNC
and SSYNC has been described in [1,3,18]. We briefly recall what we need here,
and emphasise what characterises the ASYNC model.

https://pactole.liris.cnrs.fr
https://pactole.liris.cnrs.fr
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2.1 Configurations

Locations. The notion of location is a parameter of the Pactole framework and
is left abstract in this section, as it depends on the nature of the space in which
the robots operate. In Sect. 3, we present two different spaces based on graphs,
one in which the robots are only located on vertices of the graph, and the other
in which the robots can also be located on edges.

Configurations associate a conformation to a robot. In the original Pactole model,
robots were mapped to locations only. To reflect in ASYNC the lack of synchro-
nisation and of uniformity of robot actions, and to add generality to the model,
we enrich configurations to map a robot id to a conformation (RobotConf) con-
sisting of the current location, and information about movement: namely source
and target locations. We can also add other information relating to individual
robots such as their speeds or internal states. This allows for some robots to move
while others are looking or computing. Note that integrating more information
into the configuration does not give the robots extra power: they only “see” a
configuration through their sensors, the result being what we call a spectrum in
the sequel (see below).

Record Info : Type := { source: Location ; target: Location}.
Record RobotConf := { loc :> Location; robot_info: Info }.
Definition configuration := identifier → RobotConf.

We may now consider robots to be in two possible states summarised in Fig. 1:
an Idle state and a Moving state. An idle robot is ready to start a new cycle
with a simple Look/Compute action performing the usual Look and Compute
phases. Merging these two actions is justified by the fact that the computation is
based on the snapshot taken during the Look action only, thus its result cannot
be changed by any other event taking place after the Look action. A robot is
considered to be moving whenever its current and target locations are different,
and becomes idle again when it reaches its target location (thus an idle robot
that decides not to move stays idle).

Idle Moving

Look/Compute

Move

MoveLook/Compute

Fig. 1. States and actions of the robots
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Spectra and Robograms. We call the embedded program the robots use to define
their moves a robogram. It consists of a function pgm that simply returns a des-
tination location when given a perception (spectrum) of the environment and
the robot’s perception of its current location. Spectra inhabit an arbitrary type
that is part of the description of the model and contributes to its genericity.
Indeed, depending on the robots’ capabilities, the perception usually contains
less information that the complete configuration: anonymous robots cannot see
names, they may lack detection of multiplicity, frames of reference may not
be shared, vision can be limited, etc. In the case of ASYNC in particular, the
robots generally do not perceive the additional information describing the ongo-
ing movements of other robots. The forbidden information is pruned from the
configuration, using the function Spect.from_config which returns a spectrum,
to be given as input to the robogram’s pgm.

Depending on the space considered, the destination returned may be
restricted, e.g., to locations that are close enough to the starting location. The
pack of theses possible constraints with the declaration of the function pgm con-
stitutes what we call a robogram.

Record robogram := { pgm: Spect.t → Location.t → Location.t;
(* + constraints *) }.

2.2 ASYNC Executions

For all synchronisation models, an execution is a sequence of configurations,
each of which is deduced from the previous one, based on the robogram and on
a scheduler (called a demon) that assigns a change (or not) of conformation to
each robot and which is considered as an adversary. To mimic this behaviour,
our formal model does not introduce any extra information: execution steps are
completely characterised through a transition function by: (i) the current config-
uration, (ii) the demon’s choices for the step (a demonic action), and (iii) the
considered protocol. Executions are simply streams of consecutive configurations
for that function.

Demonic Actions. Formally, each demonic action can request a moving robot
to travel further towards its target, or an idle robot to initiate a new move. In
each of these cases the demon provides its choices through the action: either
the distance travelled along an ongoing move for a Move action, or a frame of
reference for the perception of a robot for a Look/Compute action.

Inductive action {A} :=
| Move (dist: A) (* moving distance *)
| LookCompute (Location.t → Iso.t). (* change frame of ref *)

This choice (Move or LookCompute) is performed by the function step. When
relevant, demonic actions also relocate Byzantine robots in an arbitrary way (the
regular states and actions being per se irrelevant for these robots).
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We have no control on the choices made by the demon, which is why we
call it an adversary. It must nonetheless still make meaningful choices, which we
model by the following constraint: only idle robots (that is, robots that are at
their target location) may receive an order to look and compute.

step_LookCompute : ∀ robot robot_conf ref_change,
step robot robot_conf = LookCompute ref_change
→ robot_conf.loc = robot_conf.robot_info.target

Transition Function. One obtains successive configurations by running the robo-
gram according to the current demonic action and configuration.

This is done by the function round computing new conformations
(RobotConf) in a configuration, for each robot identifier r, according to a
demonic action da:

1. If r is Byzantine, it is relocated directly by da on LookCompute actions, and
ignores Move ones.

2. Else, if r carries further its ongoing move (Move action), its current location
is updated to the location it reached during this move (the way this reached
location is computed may depend on the underlying space). In the diagram
in Fig. 1, this corresponds to:

– the Move transition from Moving to Idle when r reaches its target loca-
tion,

– the Move loop around Moving when r does not reach its target location,
– a Move loop (not shown) around Idle if r was already at its target location.

3. Else, a new target location is defined as follows:
(a) The local frame of reference provided by da is used to convert the config-

uration according to the relevant local point of view,
(b) The resulting local configuration is transformed into a spectrum using

from_config,
(c) The obtained spectrum is passed as a parameter to the robogram, which

returns the target location.
(d) The target location is converted from the local frame to the global one.
The robot’s conformation is updated with the obtained location as new target,
and with the current location as new source. In the diagram in Fig. 1, this
corresponds to:

– the Look/Compute transition from Idle to Moving when r’s current and
target locations are different,

– the Look/Compute loop around Idle when r’s current and target location
are equal.

To define a full execution, the function execute rbg d config iterates
round starting from configuration config, using robogram rbg and demon d.
Note that a step in an ASYNC execution does not always imply a change in the
multiset of inhabited locations, as some robots may undergo a change of state
only.
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3 Application: Formal Equivalence Between Discrete and
Continuous Models

In a discrete setting, the simplest possible location type is discrete graphs where
robots can only be located on vertices. A robogram takes as parameters a spec-
trum (perception) and a current location based on robots located on vertices,
and returns a vertex as destination location. Travel along an edge is unnoticed as
the target vertex is supposed to be reached instantaneously. Particularly simple,
this model is convenient for reasoning; it may however be considered as rather
artificial.

A more realistic point of view is given by continuous models, which take
into account the continuous movements of the robots. We nevertheless restrict
ourselves to discrete observations: each robot is only perceived as being close to
some reference point. As a consequence, the space can still be seen as a graph (the
graph of the chosen reference points) and the robots are always observed on the
vertices. The movement of a robot between two vertices however is now continu-
ous. The corresponding edge is parameterised by a travel ratio called threshold,
which is compared to the position of a robot along the edge to determine whether
the robot is perceived at the source or target vertex. Computed destinations are
still vertices.

We propose formalisations for these two models in our formal framework, and
prove formally their equivalence in the context of oblivious robots with discrete
observations, regardless of their actual observation capabilities.

3.1 Discrete Graphs

A formal model for graphs has been provided, and illustrated for SSYNC in [4]
to which we refer for further details. Briefly, a graph is defined as a pair (V, E)

of two sets, the vertices and the edges. Each edge has a source vertex and a
target vertex, given by functions src and tgt respectively. A change of frame
of reference is supported by a graph isomorphism (the type of which is written
Iso.t in the formalisation). We want to extend this model by combining it with
the ASYNC aspects presented above.

A graph Graph and a set Names of robots of some size N being given, we
provide a model DGF in which the ASYNC notions described above are blended.

Module DGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The locations are given by the set V of vertices of the graph.
Given a spectrum, a robogram computes as destination a location that must

be reachable from (i.e., adjacent to) the current location of the robot. It is thus
required that the target is linked through an edge to the current location. This
is simply an additional constraint pgm_range to the definition of a robogram.

A moving robot travelling instantaneously between its source and target loca-
tions, the notion of travel distance degenerates into a Boolean choice: the robot
either jumps to its destination, or stays at its current location. Hence the only
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effort in defining an ASYNC discrete graph in our formal model is to instantiate
the parameter A in the definition of the demonic action with bool.

Further note that for technical reasons we will use, in our case study, a version
of these discrete graphs enriched with a field threshold that will remain unused
in the discrete case. This way both kinds of graphs will inhabit the same datatype,
thus easing comparisons.

3.2 Continuous Graphs with Discrete Observations

As in the discrete model, a graph and a set of robots being given, we provide a
model CGF in which both ASYNC and continuous moves are embedded.

Module CGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The type of locations is richer, and distinguishes two cases: a robot is either
on a vertex of the graph (OnVertex) or at some position along an edge other
than its source or target (OnEdge). A position along an edge is given by a position
ratio p of its length such that 0 < p < 1 (thus making actual lengths unnecessary
in the model). We represent these ratios using arbitrary reals and a continuous
bijection between reals and the interval ]0, 1[.

Inductive location := OnVertex (l : Graph.V)
| OnEdge (e : Graph.E) (p : R).

Discrete observation is understood as a limitation (capability) of the robots’
sensors. As such, it is naturally included in the spectrum. For example, with
anonymous robots enjoying multiplicity detection, the spectrum of a configura-
tion is based on multisets of locations, however it does not show robots’ locations
with accuracy. Instead, each robot is seen at the “nearest” vertex: a robot located
at some position ratio p along an edge is perceived at its source if p is less than or
equal to the edge threshold, and at its target otherwise. For this, it is sufficient
to use the following projection function in the construction of a spectrum from
a configuration whenever the position of a robot is looked up.

Definition LocC2D (locC : CGF.Location.t) : DGF.Location.t :=
match locC with

| CGF.OnVertex l ⇒ l
| CGF.OnEdge e p ⇒ if Rle_dec p (Graph.threshold e)

then Graph.src e else Graph.tgt e
end.

Thus the type of spectra is exactly the same as in the discrete model. Note
that we also require the returned destination to be a vertex in the additional
constraints embedded in the definition of a robogram.

The parameter provided by the demonic action in a Move transition is more
precise than in the discrete setting: it can be any moving ratio m in the interval
[0, 1]. The transition function then interprets this moving ratio the following
way:
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– If the robot is on the source vertex of its ongoing move, m = 0 means staying
there, m = 1 means going directly to the destination vertex, and 0 < m < 1
means going at the corresponding position along the edge between the current
vertex and the destination vertex.

– If the robot is at some position p on an edge, then it goes to the position m+p
on the same edge. In case m+ p ≥ 1 the robot goes to the target vertex.

– If the robot is already on the destination vertex, then it stays there.

For this model to make sense, the configurations must satisfy the following prop-
erties:

– The source and target locations of robots are vertices, with an edge going
from the source to the target.

– If a robot is on a vertex, it is either its source or its target vertex.
– If a robot is on an edge, the latter has the same source and target vertices as

the robot.

These properties are collected in a good_conf property, which is shown to be
preserved by the transition function round.

Lemma good_conf_round: ∀
(config: CGF.Config.t) (rbg: robogram)

(da: DGF.demonic_action),
good_conf config → good_conf (round rbg da config).

Hence we restrict our initial configurations to configurations in which these prop-
erties hold, and this ensures that the configurations will remain well-formed in
any execution.

3.3 Simulation of the Discrete Model in the Continuous Model

To prove that the discrete model and the continuous model with discrete obser-
vation are equivalent for oblivious robots, we show that any given robogram
produces the same executions in both models. We firstly establish in Theo-
rem graph_equivD2C that for any “discrete” execution, there is a demon such
that this execution can take place in the continuous model with discrete obser-
vation context.

First remark that any robogram in one of the models can also be read as a
robogram of the other model, thanks to the following facts:

– the first parameter of a robogram is a spectrum, and the types of spectra are
the same in both models,

– the current position of the robot is always a vertex since the general model
assumes that the robogram is applied only for idle robots, which are located
on vertices,

– the destination returned by a robogram is a vertex.
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Technically the types are different and a translation has to be applied to see a
discrete robogram as continuous or a continuous robogram as discrete, but the
translation only casts l � CGF.OnVertex l in both directions.

We define a translation ConfigD2C from discrete to continuous configura-
tions, and show that this translation relates any execution step in the discrete
model with an execution step of the same robogram in the continuous model.
Since for any given underlying graph the locations of the discrete model are a
subset of the locations of the continuous model, the translation of the configu-
rations is straightforward: mapping each vertex l to the (continuous) location
CFG.OnVertex l. The property then reads as follows: for any robogram rbg,
demonic action da and configuration c in the discrete model, there is a demonic
action da’ in the continuous model such that the diagram in Fig. 2 is satisfied.

c next_c

c’ next_c’

DGF.round rbg da

ConfigD2CConfigC2D

CGF.round rbg da’

ConfigD2CConfigC2D

Fig. 2. Bisimulation

Theorem graph_equivD2C: ∀ (c: DGF.Config.t)(rbg: DGF.robogram)
(da: DGF.demonic_action),

∃ (da’: CGF.demonic_action),
ConfigD2C (DGF.round rbg da c)

≡CGF CGF.round (rbgD2C rbg) da’ (ConfigD2C c).

The proof of this lemma requires to provide a demonic action da’ in the contin-
uous model, which is again obtained by quite a simple translation of the discrete
action da. In particular, the boolean parameter associated to a move action is
canonically translated to either 0 or 1, and the conversion to the local frame of
reference needs not be translated (since both models have the same underlying
graph). Note that, since demonic actions are associated to constraints (namely
step_LookCompute), the definition of a new demonic action requires a proof that
these constraints are satisfied. Once this witness is provided, the proof amounts
to reasoning by cases on the various parameters of the transition function: is the
robot Byzantine or not? is the scheduled action a move or a new activation? is
the parameter of the move true or false?

From this, we deduce that any execution in the discrete model can be simu-
lated in the continuous model. The reciprocal property, which is more complex,
is detailed in the next section.
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3.4 Simulation of the Continuous Model in the Discrete Model

Configurations in the continuous model can also be translated to configurations
in the discrete model. The translation ConfigC2D uses the location projection
function LocC2D already defined in the description of spectra in the continuous
model.

This translation allows us to state a second simulation result, similar to
the previous one but relating continuous executions steps to discrete ones (that
is, reading the diagram in Fig. 2 from bottom to top).

Theorem graph_equivC2D: ∀(c’: CGF.Config.t)(rbg: CGF.robogram)
(da’: CGF.demonic_action),

CGF.good_conf c’ →
∃ da, ConfigC2D (CGF.round rbg da’ c’)

≡DGF DGF.round (rbgC2D rbg) da (ConfigC2D c’).

The definition of the witness da is subtler than in the previous lemma.
The case where an idle robot is activated and computes a new destination
(LookCompute action) is straightforward, since again we can use the same iso-
morphism. The Move case however cannot be treated using only the information
in the continuous action da’: when a continuous demonic action provides a move
ratio, we have to translate it into a boolean choice describing whether the move
will end in the region of the source vertex or in the region of the target ver-
tex. That is, we have to know whether the movement will pass the threshold
or not. This requires knowing not only the demonic action da’, but also the
configuration c’. The full definition then takes the following form:

Definition daC2D (daC: CGF.demonic_action) (confC: CGF.Config.t):
DGF.demonic_action :=

{| DGF.relocate_byz := fun b ⇒ LocC2D (daC.relocate_byz b);
DGF.step := fun robot robot_conf ⇒

(* Here we assume that {robot_conf} is the projection
of {confC robot} *)

(* Consider the action given by the continuous demon... *)
match daC.step robot (confC robot) with

(* a Look/Compute action is preserved, *)
| CGF.LookCompute ref_change ⇒ DGF.LookCompute ref_change
(* a Move action requires checking the current location

of the robot. *)
| CGF.Move m ⇒

match (confC robot).loc with
(* If the robot is on a vertex, then compare {m} to

the threshold of the edge to target vertex {e}. *)
| CGF.OnVertex _ ⇒

match (Graph.find_edge robot_conf.robot_info.source
robot_conf.robot_info.target)

with
| Some e ⇒ if Rle_dec m (Graph.threshold e)

then DGF.Move false else DGF.Move true
| None ⇒ DGF.Move false

end
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(* If the robot is on an edge do the same after adding
the current position ratio to {m}. *)

| CGF.OnEdge e p ⇒
if Rle_dec p (Graph.threshold e)
then if Rle_dec (m + p) (Graph.threshold e)

then DGF.Move false else DGF.Move true
else DGF.Move false

end
end |}.

Again, the proof is by cases on all the parameters of the transition function,
which are more numerous than in the previous case since the definition of the
demonic action da’ itself distinguishes many more cases.

These two simulation results, taken together, mean that any execution in
any of the two models (discrete or continuous) can be related to an equivalent
execution in the other model.

4 Concluding Remarks

Our work established the first formal bridge between two previously distinct
models for oblivious mobile robots. From a practical point of view, the formal
equivalence we provide between the discrete model and the continuous model
with discrete sensors sheds new light about what is actually computable in real
environments by limited capabilities robots. Furthermore, our work hints at pos-
sible new paths for future research:

– The first issue we plan to tackle is that of realistic sensing models for mobile
robots. Actual robots endowed with omnidirectional 3D visibility sensors typ-
ically use a digital camera with a set of parabolic mirrors [14], which implies
that the accuracy of the localisation of a robot varies with the distance to
its target robot. In our modeling, the threshold for a given edge e is the
same for all participating robots, while a threshold that varies according
to the distance of the observing robot to e would be more realistic. Adding
this possibility to our framework is not difficult thanks to its modularity, but
the equivalence proof is then likely to fail in the extended model.

– Another important long-term open question raised by our work is that of
model equivalence beyond oblivious mobile robots. Our approach considers
the equivalence of executions and is hence agnostic with regards to the actual
problem being solved; it also enables Byzantine robots. It would be interest-
ing to consider model equivalences with other classical distributed computing
models (e.g. Problem A in robot model m with f faulty robots is equivalent
to problem B in asynchronous shared memory model m′ with f ′ faulty pro-
cesses). A natural candidate case study would be the Consensus vs. Robot
Gathering problem [31].
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Abstract. A snapshot object simulates the behavior of an array of
single-writer/multi-reader shared registers that can be read atomically.
Delporte-Gallet et al. proposed two fault-tolerant algorithms for snap-
shot objects in asynchronous crash-prone message-passing systems. Their
first algorithm is non-blocking ; it allows snapshot operations to terminate
once all write operations had ceased. It uses O(n) messages of O(n · ν)
bits, where n is the number of nodes and ν is the number of bits it
takes to represent the object. Their second algorithm allows snapshot
operations to always terminate independently of write operations. It
incurs O(n2) messages. The fault model of Delporte-Gallet et al. consid-
ers node failures (crashes). We aim at the design of even more robust
snapshot objects. We do so through the lenses of self-stabilization—
a very strong notion of fault-tolerance. In addition to Delporte-Gallet
et al.’s fault model, a self-stabilizing algorithm can recover after the
occurrence of transient faults; these faults represent arbitrary violations
of the assumptions according to which the system was designed to oper-
ate (as long as the code stays intact). In particular, in this work, we
propose self-stabilizing variations of Delporte-Gallet et al.’s non-blocking
algorithm and always-terminating algorithm. Our algorithms have simi-
lar communication costs to the ones by Delporte-Gallet et al. and O(1)
recovery time (in terms of asynchronous cycles) from transient faults.
The main differences are that our proposal considers repeated gossiping
of O(ν) bits messages and deals with bounded space, which is a prereq-
uisite for self-stabilization.

1 Introduction

We propose self-stabilizing implementations of shared memory snapshot objects
for asynchronous bounded space networked systems whose nodes may crash.
Context and Motivation. Shared registers are fundamental objects that facili-
tate synchronization in distributed systems. In the context of networked systems,
they provide a higher abstraction level than simple end-to-end communication,
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which provides persistent and consistent distributed storage that can simplify the
design and analysis of dependable distributed systems. Snapshot objects extend
shared registers. They provide a way to further make the design and analysis of
algorithms that base their implementation on shared registers easier. Snapshot
objects allow an algorithm to construct consistent global states of the shared
storage in a way that does not disrupt the system computation. Their efficient
and fault-tolerant implementation is a fundamental problem, as there are many
examples of algorithms that are built on top of snapshot objects.
Task Description. Consider a fault-tolerant distributed system of n asyn-
chronous nodes that are prone to failures. Their interaction is based on the emu-
lation of Single-Writer/Multi-Reader (SWMR) shared registers over a message-
passing communication system. Snapshot objects can read the entire array of
system registers [1,2]. The system lets each node update its own register via
write() operations and retrieve the value of all shared registers via snapshot()
operations. Note that these snapshot operations may occur concurrently with
the write operations that individual nodes perform. We are particularly inter-
ested in the study of atomic snapshot objects that are linearizable: the operations
write() and snapshot() appear as if they have been executed instantaneously, one
after the other (i.e., they appear to preserve real-time ordering).
Fault Model. We consider an asynchronous message-passing system in which
nodes may crash and packets may be lost, duplicated and reordered. In addition
to these failures, we also aim to recover from transient faults, i.e., any tempo-
rary violation of assumptions according to which the system was designed to
behave, e.g., the corruption of control variables, such as the program counter
and operation indices, which are responsible for the correct operation of the
studied system, or operational assumptions, such as that at least half of the sys-
tem nodes never fail. Since the occurrence of these failures can be combined, we
assume that these transient faults alter the system state in unpredictable ways.
In particular, when modeling the system, we assume that these violations bring
the system to an arbitrary state from which a self-stabilizing algorithm should
recover the system. Therefore, starting from an arbitrary state, the correctness
proof of self-stabilizing systems [3] has to show the return to a “correct behavior”
within a bounded period. The complexity measure of self-stabilizing systems is
the length of the recovery period.
Related Work. We follow the design criteria of self-stabilization, which was
proposed by Dijkstra [3] and detailed in [4]. Our overview of the related work
focuses on self-stabilizing algorithms for shared-memory objects. Attiya et al. [5]
implemented SWMR atomic shared-memory in an asynchronous networked sys-
tem. Delporte-Gallet et al. [6] claim that when stacking the shared-memory
atomic snapshot algorithm of [1] on the shared-memory emulation of [5] (with
some improvements), the number of messages per snapshot operation is 8n and
it takes 4 round trips. Their proposal, instead, takes 2n message per snapshot
and just one round trip to complete. Our solution follows the non-stacking app-
roach of Delporte-Gallet and it tolerates any failure (in any communication or
operation invocation pattern) that [6] can as well as recover after the occurrence
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of transient faults that arbitrarily corrupt the system state. The literature on
self-stabilization includes a practically-self-stabilizing variation for the work of
Attiya et al. [5] by Alon et al. [7]. Their proposal guarantees wait-free recovery
from transient faults. However, there is no bound on the recovery time. Dolev
et al. [8] consider MWMR atomic storage that is wait-free in the absence of
transient faults. They guarantee a bounded time recovery from transient faults
in the presence of a fair scheduler. They demonstrate the algorithm’s ability to
recover from transient faults using unbounded counters and in the presence of
fair scheduling. Then they deal with the event of integer overflow via a consensus-
based procedure. Since integer variables can have 64-bits, their algorithm seldom
uses this non-wait-free procedure for dealing with integer overflows. In fact, they
model integer overflow events as transient faults, which implies bounded recov-
ery time from transient faults in the seldom presence of a fair scheduler (using
bounded memory). They call these systems self-stabilizing systems in the pres-
ence of seldom fairness. Our work adopts these design criteria. We are unaware
of self-stabilizing algorithms for snapshot objects that can recover from node
failures. We note that “stacking” of self-stabilizing algorithms for asynchronous
message-passing systems is not straightforward; the existing “stacking” needs
schedule fairness [4, Section 2.7].
Contributions. We propose self-stabilizing algorithms for snapshot objects in
networked systems. To the best of our knowledge, we are the first to consider
both node failures and transient faults. Specifically, we propose:
(1) A self-stabilizing variation on the non-blocking algorithm by Delporte-Gallet
et al. (Sect. 3). As by Delporte-Gallet et al., each snapshot or write operation
uses O(n) messages of O(ν ·n) bits, where n is the number of nodes and ν is the
number of bits for encoding the object. Our communication costs are slightly
higher due to O(n2) gossip messages of O(ν) bits, where ν is the number of bits
it takes to represent the object.
(2) A self-stabilizing variation on the always-terminating algorithm by Delporte-
Gallet et al. (Sect. 4). Our algorithm can: (i) recover from of transient faults,
and (ii) both write and snapshot operations always terminate (regardless of
the invocation patterns of any operation). We achieve (ii) by choosing to use
safe registers for storing the result of recent snapshot operations, rather than
a reliable broadcast mechanism, which often has higher communication costs.
Moreover, instead of dealing with one snapshot task at a time, we take care of
several at a time. We also consider an input parameter, δ. For the case of δ = 0,
our self-stabilizing algorithm guarantees an always-termination behavior (as in
the non-self-stabilizing algorithm by Delporte-Gallet et al.) that blocks all write
operation upon the invocation of any snapshot operation at the cost of O(n2)
messages. For the case of δ > 0, our solution aims at using O(n) messages per
snapshot operation while monitoring the number of concurrent write operations.
Once our algorithm notices that a snapshot operation runs concurrently with
at least δ write operations, it blocks all write operations and uses O(n2) mes-
sages for completing the snapshot operations. Thus, the proposed algorithm can
trade communication costs with an O(δ) bound on snapshot operation latency.
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Moreover, between any two consecutive periods in which snapshot operations
block the system for write operations, the algorithm guarantees that at least δ
write operations can occur.

The proposed algorithms use unbounded counters. In Sect. 5 we explain how
to bound these counters. Due to the page limit, omitted details and proofs appear
in [9], together with an explanation on how to extend our solutions to reconfig-
urable ones.

2 System Settings

We consider an asynchronous message-passing system. The system includes the
set P of n failure-prone nodes whose identifiers are unique and totally ordered
in P. Any pair of nodes have access to a bidirectional bounded capacity commu-
nication channel that has no guarantees on the communication delays.

Each node runs a program, which we model as a sequence of (atomic) steps.
Each step starts with an internal computation and finishes with a single com-
munication operation, i.e., message send or receive. The state, si, of pi ∈ P
includes all of pi’s variables and the set of all incoming communication channels.
Note that pi’s step can change si and remove a message from channelj,i (upon
message arrival) or add a message in channeli,j (when a message is sent). The
term system state refers to a tuple, c = (s1, s2, · · · , sn), where each si is pi’s
state. An execution R = c0, a0, c1, a1, . . . is an alternating sequence of system
states cx and steps ax, such that each cx+1, except, c0, is obtained from the
preceding state cx by the execution of step ax. Let R′ and R′′ be a prefix, and
resp., a suffix of R, such that R′ is a finite sequence, which starts with a system
state and ends with a step ax ∈ R′, and R′′ is an unbounded sequence, which
starts in the system state that immediately follows step ax ∈ R. The proof of
the algorithms considers the number of (asynchronous) cycles of a fair execution,
i.e., every step that is applicable infinitely often is executed infinitely often and
fair communication is kept. The first (asynchronous) cycle (with round-trips) of
a fair execution R = R′′ ◦ R′′′ is the shortest prefix R′′ of R, such that each
non-failing node executes in R′′ at least one complete iteration of its do forever
loop (and completes the round trips associated with the messages sent during
that iteration), where ◦ denotes the concatenation operator. The second cycle
in execution R is the first cycle in suffix R′′ of execution R, and so on.

Fault Model. We assume communication fairness, i.e., if pi sends a message
infinitely often to pj , node pj receives that message infinitely often. We note
that without this assumption, the communication channel between any two cor-
rect nodes eventually becomes non-functional. We consider standard terms for
characterizing node failures [10]. A crash failure considers the case in which a
node stops taking steps forever and there is no way to detect this failure. We
say that a failing node resumes when it returns to take steps without restarting
its program—the literature sometimes refer to this as an undetectable restart.
The case of a detectable restart allows the node to restart all of its variables.
We assume that each node has access to a quorum service, e.g., [8, Section 13],
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that deals with packet loss, reordering, and duplication. A failure of node pi ∈ P
implies that it stops executing any step without any warning. The number of
failing nodes is at most f and 2f < n for the sake of guaranteeing correct-
ness [11]. In the absence of transient faults, failing nodes can simply crash, as
in Delporte-Gallet et al. [6]. In the presence of transient faults, we assume that
failing nodes resume within some unknown finite time and restart their program
after initializing all of their variables (including the control variables). The latter
assumption is needed only for recovering from transient faults; in [9] we explain
how to remove this assumption. As already mentioned, we consider arbitrary
violations of the assumptions according to which the system and the communi-
cation network were designed to operate. We refer to these violations as transient
faults and assume that they can corrupt the system state arbitrarily (while keep-
ing the program code intact). The occurrence of a transient fault is rare. Thus,
we assume that transient faults occur before the system execution starts [4].
Moreover, it leaves the system to start in an arbitrary state.

Dijkstra’s Self-stabilization Criterion. The set of legal executions (LE)
refers to all the executions in which the requirements of the task T hold. We say
that a system state c is legitimate when every execution R that starts from c is
in LE. An algorithm is self-stabilizing with respect to the task of LE, when
every (unbounded) execution R of the algorithm reaches within a bounded
period a suffix Rlegal ∈ LE that is legal. That is, Dijkstra [3] requires that
∀R : ∃R′ : R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ N, where the length of R′ is
the complexity measure, which we refer to as the recovery time.

Self-stabilization in the Presence of Seldom Fairness. As a variation of
Dijkstra’s self-stabilization criterion, Dolev et al. [8] proposed design criteria in
which (i) any execution R = RrecoveryPeriod ◦ R′ : R′ ∈ LE, which starts in
an arbitrary system state and has a prefix (RrecoveryPeriod) that is fair, reaches
a legitimate system state within a bounded prefix RrecoveryPeriod. (Note that
the legal suffix R′ is not required to be fair.) Moreover, (ii) any execution R =
R′′ ◦ RglobalReset ◦ R′′′ ◦ RglobalReset ◦ . . . : R′′, R′′′, . . . ∈ LE in which the prefix
of R is legal, and not necessarily fair but includes at most O(n · zmax) write or
snapshot operations, has a suffix, RglobalReset ◦ R′′′ ◦ RglobalReset ◦ . . ., such that
RglobalReset is required to be fair and bounded in length, but it might permit the
violation of liveness requirements, i.e., a bounded number of operations might
be aborted (as long as the safety requirement holds). Furthermore, R′′′ is legal
and not necessarily fair, but includes at least zmax write or snapshot operations
before the system reaches another RglobalReset. Since we can choose zmax ∈ Z

+

to be a very large value, say 264, and the occurrence of transient faults is rare,
we refer to the proposed criteria as one for self-stabilizing systems that their
execution fairness is unrequited except for seldom periods. We note that self-
stabilizing algorithms (that follows Dijkstra’s criterion) often assume fairness
throughout R.
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3 The Non-blocking Algorithm

The non-blocking solution to snapshot object emulation by [6, Algorithm 1]
allows writes to terminate regardless of the invocation patterns of any other oper-
ation (as long as the invoking nodes do not fail during the operation). However,
snapshot operation termination is guaranteed only after the last write operation.
We discuss Delporte-Gallet et al. [6, Algorithm 1]’s solution before proposing
our self-stabilizing variation.

Fig. 1. Examples of Algorithm 1’s executions.
The upper drawing illustrates a case of a terminat-
ing snapshot operation (dashed line arrows) that
occurs between two write operations (solid line
arrows). The acknowledgments of these messages
are arrows that start with circles and squares,
respectively. The lower drawing depicts the exe-
cution of Algorithm 1’s self-stabilizing version for
the same case illustrated in the upper drawing.
Note that the gossip messages do not interfere
with other messages.

Delporte-Gallet et al.’s Non-
blocking Algorithm. Algo-
rithm 1 presents [6, Algo-
rithm 1] using our presentation
style; the boxed code lines are
irrelevant to [6, Algorithm 1].
The node state appears in
lines 2 to 4 and automatic vari-
ables (which are allocated and
deallocated automatically when
program flow enters and leaves
the variable’s scope) are defined
using the let keyword, e.g., the
variable prev (line 19). Also,
when a message arrives, we use
the parameter name xJ to refer
to the arriving value for the mes-
sage field x.

Node pi stores the array reg
(line 4), such that the k-th entry
stores the most recent informa-
tion about node pk’s object and reg[i] stores pi’s actual object. Every entry
is a pair of the form (v, ts), where the field v is an object value and ts is an
unbounded object index. The relation � can compare (v, ts) and (v′, ts′) accord-
ing to the write operation indices (line 1). Node pi also has an index for the
snapshot operations, i.e., ssn.
The write(v) Operation. Algorithm 1’s write(v) operation appears in lines 12
to 15 (client-side) and lines 17 to 23 (server-side). The client-side operation
write(v) stores the pair (v, ts) in reg[i] (line 13), where pi is the calling node
and ts is a unique operation index. Upon the arrival of a WRITE message to pi

from pj (line 26), the server-side code is ran. Node pi updates reg according to
the timestamps of the arriving values (line 27). Then, pi replies to pj with the
message WRITEack (line 31), which includes pi’s local perception of the system
shared registers. Getting back to the client-side, pi repeatedly broadcasts the
message WRITE to all nodes until it receives replies from a majority of them
(line 14). Once that happens, it uses the arriving values for keeping reg up-to-
date (line 15).
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The snapshot(v) Operation. Algorithm 1’s snapshot() operation appears in
lines 17 to 23 (client-side) and lines 29 to 31 (server-side). Delporte-Gallet et
al. [6, Algorithm 1] is non-blocking w.r.t. snapshot operations (in the absence of
writes). Thus, the client-side is written as a repeat-until loop. Node pi tries to
query the system for the most recent value of the shared registrars. As said, the
success of such attempts depends on the absence of writes. Thus, before each
such broadcast, pi copies reg’s value to prev (line 19) and exits the repeat-until
loop once the updated value of reg indicates the obscene of concurrent writes.

The Proposed Unbounded Self-stabilizing Variation. We propose Algo-
rithm 1 as an extension of Delporte-Gallet et al. [6, Algorithm 1]. The boxed
code lines mark our additions. We denote variable X’s value at node pi by Xi.
Algorithm 1 considers the case in which any of pi’s operation indices, ssni and
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tsi, is smaller than some other ssn or ts value, say, ssnm, regi[i].ts, regj [i].ts
or regm[i].ts, where Xm appears in the X field of some on transit message. For
the case of corrupted ssn values, pi’s client-side ignores arriving messages with
ssn values that do not match ssni (line 20). The do-forever loop removes any
stored snapshot reply whose ssn field is not ssni. For the case of corrupted
ts values, pi’s do-forever loop makes sure that tsi is not smaller than regi[i].ts
(line 10) before gossiping to every node pj ∈ P its local copy of the shared register
(line 11). Also, upon the arrival of such gossip messages, Algorithm 1 merges the
arriving information with the local one (line 25). Moreover, when replies from
write or snapshot messages arrive to pi, it merges the arriving ts value with
the one in tsi (line 6). Figure 1’s upper and lower drawings depict executions of
the non-self-stabilizing algorithm [6], and respectively, our self-stabilizing version
(Algorithm 1). The drawings illustrate a write operation that is followed by a
snapshot operation and then a second write. We use this example for comparing
Algorithms 1, 2 and 3 (the latter two are presented in Sect. 4). The complete
discussion for Algorithm 1 and proof details appear in [9].

Theorem 1 (Recovery). Within O(1) cycles, a fair execution of Algorithm 1
reaches a state c in which (i) tsi’s value is not smaller than any pi’s timestamp
value. Also, if node pi takes a step immediately after c that includes line 13, then
in c it holds that tsi = regi[i].ts = regj [i].ts and for every messages m that is
in transit from pi to pj or pj to pi it holds that m.reg[i].ts = tsi. Moreover, (ii)
ssni is not smaller than any pi’s snapshot sequence number.

Proof Sketch. Arguments (1) to (3) show invariant (i). (1) The values
installed in tsi, regi[i].ts, regj [i].ts, regi[i] and regj [i] are non-decreasing,
since their values are never decremented. (2) Within O(1) cycles, tsi ≥
regi[i].ts, since pi executes line 10 at least once in every cycle. (3) Within
O(1) cycles, regi[i].ts ≥ regm[i].ts and regi[i].ts ≥ regJ [i].ts whenever pj

raises SNAPSHOTack(regJ, ssn) or WRITE(regJ), where m′ is a message
on transit from pj to pk and denote regm′ as values of the reg filed in m′,
and pi, pj , pk ∈ P are non-failing nodes (and i = k possibly holds). More-
over, regj [i].ts ≥ regm′ [i].ts and regi[i].ts ≥ regJ [i].ts whenever pk raises
GOSSIP(regJ), WRITEack(regJ) or SNAPSHOTack(regJ, •). The proof fol-
lows by the nodes’ message exchange. Invariant (ii) follows by arguments similar
to (1) to (3). �

4 The Always-Terminating Algorithm

Delporte-Gallet et al. [6, Algorithm 2] guarantee termination for any invocation
pattern of write and snapshot operations, as long as the invoking nodes do
not fail during these operations. Its advantage over Delporte-Gallet et al. [6,
Algorithm 1] is that it can deal with an infinite number of concurrent write
operations. Before proposing our self-stabilizing always-terminating solution, we
bring [6, Algorithm 2] in Algorithm 2 using the presentation style of this paper.
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Delporte-Gallet et al.’s Always-Terminating Algorithm. Delporte-Gallet
et al. [6, Algorithm 2] use a job-stealing scheme for allowing rapid termination
of snapshot operations. Node pi ∈ P starts its snapshot operation by queueing
this new task at all nodes pj ∈ P. Once pj receives pi’s new task and when
that task reaches the queue front, pj starts the baseSnapshot(s, t) procedure,
which is similar to Algorithm 1’s snapshot() operation. This joint participation
in all snapshot operations makes sure that all nodes are aware of all on-going
snapshot operations. Moreover, it allows the nodes to make sure that no write()
can stand in the way of on-going snapshot operations. To that end, the nodes
wait until the oldest snapshot operation terminates before proceeding with later
operations. Specifically, they defer write operations that run concurrently with
snapshot operations. This guarantees termination of snapshot operations via the
interleaving and synchronization of snapshot and write operations.

reliableBroadcast reliableBroadcastSNAPSHOT/ SNAPSHOTack

Fig. 2. Algorithm 2’s run for the case of Fig. 1’s upper
drawing.

Algorithm 2 extends
Algorithm 1 (non-self-
stabilizing version, which
does not include the
boxed code lines) in the
sense that it uses all of
Algorithm 1’s variables
and an additional one,
array repSnap, which
snapshot() operations use.
The entry repSnap[x, y] holds the outcome of px’s y-th snapshot operation, where
no explicit bound on the number of invocations of snapshot operations is given.
Note that bounded space is a prerequisite for self-stabilization.
The write(v) Operation and the baseWrite() Function. Since write(v) operations
are preemptible, pi cannot always start immediately to write. Instead, pi stores
v in writePendi together with a unique operation index (line 43). It then runs
the operation as a background task (line 37) using baseWrite() (lines 47 to 50).
The snapshot() Operation. A call to snapshot() (line 45) causes pi to reliably
broadcast, via the primitive reliableBroadcast, a new ssn index in a SNAP to all
nodes in P. Node pi then places it as a background task (line 46).
The baseSnapshot() Function. As in Algorithm 1’s snapshot, the repeat-until
loop iterates until the retrieved reg vector equals to the one that was known
prior to the last repeat-until iteration. Then, pi stores in repSnap[s, t], via a
reliable broadcast of the END message, the snapshot result (line 58 and 65).
Synchronization Between the baseWrite() and baseSnapshot() functions. Algo-
rithm 2 interleaves the background tasks in a do forever loop (lines 37 to 41). As
long as there is an awaiting write task, node pi runs the baseWrite() function
(line 37). Also, if there is an awaiting snapshot task, node pi selects the oldest
task, (source, sn), and uses the baseSnapshot(source, sn) function. Here, Algo-
rithm 2 blocks until repSnap[source, sn] contains the result of that snapshot
task.
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Figure 2 depicts an example of Algorithm 2’s execution where a write oper-
ation is followed by a snapshot operation. Each snapshot is handled separately
and the communications of each such operation requires O(n2) messages.

An Unbounded Self-stabilizing Always-Terminating algorithm. We pro-
pose Algorithm 3 as a variation of Delporte-Gallet et al. [6, Algorithm 2]. Algo-
rithms 2 and 3 differ mainly in their ability to recover from transient faults. This
implies some constraints. E.g., Algorithm 3 must have a clear bound on the num-
ber of pending snapshot tasks. For the sake of simple presentation, Algorithm 3
assumes that the system needs, for each node, to cater for at most one pending
snapshot task. We avoid the use of a reliable broadcast, which Delporte-Gallet
et al. use, and instead, we use a simpler mechanism for safe registers.

Algorithm 3 can defer snapshot tasks until either (i) at least one node was
able to observe at least δ concurrent write operations, where δ is an input param-
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eter, or (ii) there are no concurrent write operations. The tunable parameter δ
balances between the latency (with respect to snapshot operations) and commu-
nication costs. I.e., for the case of δ being a very high (finite) value, Algorithm 3
guarantees termination in a way that resembles [6, Algorithm 1], which uses
O(n) messages per snapshot operation, and for the case of δ = 0, Algorithm 3
behaves in a way that resembles [6, Algorithm 2], which uses O(n2) messages
per snapshot.
Algorithm Details. Algorithm 3 lets every node disseminate its (at most one)
pending snapshot task and use a safe register for facilitating the delivery of the
task result to its initiator. I.e., once a node finishes a snapshot task, it broadcasts
the result to all nodes and waits for replies from a majority of nodes, which may
possibly include the initiator of the snapshot task (see safeReg(), line 70). This
way, if node pj notices that it has the result of an ongoing snapshot task, it sends
that result to the node who initiated the task.
The do forever loop. Algorithm 3’s do forever loop (lines 73 to 79), includes a
number of lines for cleaning stale information, e.g., out-of-synch SNAPSHOTack
messages (line 73), out-dated operation indices (line 74), illogical vector-clocks
(line 75) or corrupted pndTsk entries (line 76). The gossiping of operation indices
(lines 77 and 97) also helps to remove stale information (as in Algorithm 1 but
only with the addition of sns values). The synchronization between write and
snapshot operations (lines 78 and 79) starts with a write, if there is any such
pending task (line 78), before running its own snapshot task, if there is any such
pending, as well as any snapshot task (initiated by others) for which pi observed
that at least δ write operations occur concurrently with it (line 79).
The baseSnapshot() Function and the SNAPSHOT Message. Algorithm 3
maintains the state of every snapshot task in the array pndTsk. The entry
pndTski[k] = (sns, vc, fnl) includes: (i) the index sns of the most recent snap-
shot operation that pk ∈ P has initiated and pi is aware of, (ii) the vector clock
representation of regk (i.e., just the timestamps of regk, cf. line 68) and (iii) the
final result fnl of the snapshot operation (or ⊥, in case it is still running).

The baseSnapshot() function includes an outer loop part (lines 86 and 93),
an inner loop part (lines 86 to 89), and a result update part (lines 90 to 92). The
outer loop increments the snapshot index, ssn (line 86), so that it can consider
a new query attempt by the inner loop. The outer loop ends when there are no
more pending snapshot tasks that this call to baseSnapshot() needs to handle.
The inner loop broadcasts SNAPSHOT messages, which includes all the pending
snapshot tasks, (S ∩Δ), that are relevant to this call to baseSnapshot() together
with the local current value of reg and the snapshot query index ssn. The inner
loop ends when acknowledgments are received from a majority of processors and
the received values are merged (line 89). The results are updated by writing to an
emulated safe shared register (line 90) whenever prev = reg. In case the results
do not allow pi to terminate its snapshot task (line 92), Algorithm 3 uses the
query results for storing the timestamps in the field vs. This allows to balance
a trade-off between snapshot operation latency and communication costs, as we
explain next.
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The Use of the Input Parameter δ for Balancing the Trade-off Between Snapshot
Operation Latency and Communication Costs. For the case of δ = 0, since no
snapshot task is to be deferred, the set Δ (line 69) includes all the nodes for
which there is no stored result, i.e., pndTsk[k].fnl = ⊥. The case of δ > 0 uses
the fact that Algorithm 3 samples the vector clock value of regk and stores it in
pndTsk[k].vc (line 92) once it had completed at least one iteration of the repeat-
until loop (line 88 and 89). I.e., the sampling of the vector clock is an event that
occurs not before the start of pk’s snapshot (that has the index pndTsk[k].sns).
Many-jobs-stealing scheme for reduced blocking periods. Whenever pndTsk[k].fnl
�= ⊥ and sns > 0, we consider pk’s task as active. To the end of helping all
actives tasks, pi samples the set of currently pending task (Si ∩ Δi) (line 86)
before starting the inner repeat-until loop (lines 88 to 89) and broadcasting the
client-side message SNAPSHOT, which includes the most recent snapshot task
information. The server-side reception of this message (lines 102 to 103), updates
the local information (line 104) and sends the reply to the client-side (lines 105
to 106). Note that if the receiver notices that it has the result of an ongoing
snapshot task, then it sends that result to the requesting processor (line 106).
The safeReg() Function and the SAVE Message. The safeReg() function
considers a snapshot task that was initiated by node pk ∈ P. This function is
responsible for storing the results of snapshot tasks in a safe register. It does so
by broadcasting the client-side message SAVE to all nodes in the system (line 70).
Upon the arrival of the SAVE message to the server-side, the receiver stores the
arriving information, as long as the arriving information is more recent than the
local one. Then, the server-side replies with a SAVEack message to the client-side,
who is waiting for a majority of such replies (line 70).

SNAPSHOT/ SNAPSHOTack SAFE

Fig. 3. The upper drawing depicts an example of
Algorithm 3’s execution for a case that is equiva-
lent to the one depicted in the upper drawing of
Fig. 2, i.e., only one snapshot operation. The lower
drawing illustrates the case of concurrent invoca-
tions of snapshot operations by all nodes.

Figure 3 depicts two exam-
ples of Algorithm 3’s execution.
In the upper drawing, a write
operation is followed by a snap-
shot operation. Note that fewer
messages are considered when
comparing to Fig. 2’s example.
The lower drawing illustrates
the case of concurrent invoca-
tions of snapshot operations by
all nodes. Observe the poten-
tial improvement with respect
to number of messages (in the
upper drawing) and through-
put (in the lower drawing) since
Algorithm 2 uses O(n2) mes-
sages for each snapshot task and
handles only one snapshot task
at a time.
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Correctness. The complete discussion and proof details appear in [9].

Definition 1 (Consistent system states and executions). (i) Let c be a
system state in which tsi is greater than or equal to any pi’s timestamp values
in the variables and fields related to ts. We say that the ts’ timestamps are
consistent in c. (ii) Let c be a system state in which ssni is greater than or equal
to any pi’s snapshot sequence numbers in the variables and fields related to ssn.
We say that the ssn’s snapshot sequence numbers are consistent in c. (iii) Let c
be a system state in which snsi is not smaller than any pi’s snapshot index sns.
Moreover, ∀pi ∈ P : snsi = pndTski[i].sns and ∀pi, pj ∈ P : pndTskj [i].sns ≤
pndTski[i].sns. We say that the sns’s snapshot indices are consistent in c. (iv)
Let c be a system state in which ∀pi, pk ∈ P : pndTski[k].vc � VCi holds, where
VCi is the returned value from VC() (line 68). We say that the vector clock values
are consistent in c. We say that system state c is consistent if it is consistent with
respect to invariants (i) to (iv). Let R be an execution of Algorithm 3 that all of
its system states are consistent and R′ be a suffix of R. We say that execution
R′ is consistent (with respect to R) if any message arriving in R′ was indeed
sent in R and any reply arriving in R′ has a matching request in R.

Theorem 2 (Recovery). Let R be Algorithm 3’s fair execution. Within O(1)
cycles in R, the system reaches a consistent state c ∈ R (Definition 1). Within
O(1) cycles after c, the system starts a consistent execution R′.

Proof Sketch. Note that Theorem 1 implies invariants (i) and (ii) of Defini-
tion 1 also for the case of Algorithm 3, because they use the similar lines of code
for asserting these invariants. For invariant (iii), sns and pndTsk in Algorithm 3
follow the same propagation patterns as ts and reg in Algorithm 1. Moreover,
within a cycle, every pi ∈ P executes line 76. Thus, invariant (iii)’s proof fol-
lows similar arguments to the ones in Theorem 1’s proof. Invariant (iv)’s proof is
implied by the fact that within a cycle, pi ∈ P executes line 75. By the definition
of cycles (Sect. 2), within a cycle, R reaches a suffix R′, such that every received
message during R′ was sent during R. By repeating the previous argument, it
holds that within O(1) cycles, R reaches a suffix R′ in which for every received
reply has an associated request that was sent during R. �

Theorem 3 (Algorithm 3’s termination and linearization). Let R be
Algorithm 3’s consistent execution (Definition 1). Suppose that there exists pi ∈
P, such that in R’s second system state, it holds that pndTski[i] = (s, •,⊥) and
s > 0. Within O(δ) cycles, the system reaches c ∈ R : pndTski[i] = (s, •, x) :
x �= ⊥.

Proof Sketch. Lemma 1 sketches the key arguments of the termination proof.

Lemma 1 (Algorithm 3’s termination). Within O(δ) cycles, the system
reaches a state c ∈ R in which either: (i) for any non-failing node pj ∈ P it holds
that i ∈ Δj (line 69) and pndTskj [i] = (s, •,⊥), (ii) ∀M ⊆ P : |M | > |P|/2 :
∃pj∈M : pndTskj [i] = (s, •, x) : x �= ⊥ or (iii) pndTski[i] = (s, •, x) : x �= ⊥.
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Proof Sketch. We show that R has a prefix R′ that includes O(δ) cycles, such
that none of the lemma invariants hold during R′.

Claim (a). There is no step ai ∈ R′ in which pi evaluate the if-statement
condition in line 90 to be true (or one of the lemma invariants holds).

Proof of Claim. Towards a contradiction, suppose that ai ∈ R calls safeRegi().
Arguments (1) and (2) show that this happens for the case of k = i, and that
invariant (ii) holds. Argument (1): ai includes the execution of line 90. This is
because, once in O(1) cycles, pi calls baseSnapshoti(Si) (line 79), which does
not change the value of Si. Argument (2): invariant (ii) holds. The function
safeRegi({(•, r) : r �= ⊥}) (line 70) repeatedly broadcasts SAVE({(•, r) : r �= ⊥})
until pi receives SAVEack({(•, r) : r �= ⊥}) from a majority. Theorem 2 and R′s
consistency imply that every received SAVEack is associated with a SAVE that
was sent in R. Invariant (ii) holds due to the majority intersection property. ��
Claim (b). Within O(1) asynchronous cycles, the system reaches a state c′ ∈ R′ in
which for any non-faulty node pj ∈ P it holds that pndTskj [i] = (s, y, •) : y �= ⊥.

Proof of Claim. For the case of j = i, we note that claim (a) implies that (i, •) ∈
Si holds and the execution of line 92 in every call for baseSnapshot(Si). For the
j �= i case, we note that within O(1) cycles, pi executes lines 86 and 87 in which
pi broadcasts SNAPSHOT({(•,pndTski[i].vc), •}), such that pndTski[i].vc �= ⊥
holds by the case of j = i. Once pj receives this message, pndTskj [i].vc �= ⊥
holds (line 104). The above arguments for the case of j �= i can be repeated as
long as invariant (iii) does not hold. Thus, the arrival of such a SNAPSHOT
message to all pj ∈ P occurs within O(1) asynchronous cycles. ��
Claim (c). Let c′ ∈ R′ be a system state in which for any non-faulty node pj ∈ P
it holds that pndTskj [i] = (s, y, •) : y �= ⊥. Let x be the number of iterations of
the outer loop in baseSnapshot() (lines 86 and 93) that node pi takes between
c′ and c′′ ∈ R′, where c′′ is a system state after which it takes at most O(δ)
asynchronous cycles until the system reach the state c′′′ in which at least one of
the lemma invariants holds. The value of x is actually finite and x ≤ δ.

Proof of Claim. Argument (1): during the outer loop in baseSnapshot() (lines 86
and 93), pi tests the if-statement condition at line 90 and that condition does
not hold, due to Claim (a). Argument (2): suppose that there are at least x con-
secutive and complete iterations of pi’s outer loop in baseSnapshot() (lines 86
and 93) between c′ and c′′ in which the if-statement condition at line 90 does
not hold. Then, there are at least x write operations that run concurrently with
the snapshot operation that has the index of s, since the only way that the if-
statement condition in line 90 does not hold in a repeated manner is by repeated
changes of ts fields in regi during the different executions of lines 86 to 89 (due
to line 80 of write()). We define the function Si() so that whenever pi’s program
counter is outside of the function baseSnapshot(), Si() returns Δi. Otherwise,
it returns (Si ∩ Δi). Argument (3): there exists x′ ≤ δ for which (i, •) ∈ Si(),
where x′ is the number of consecutive and complete iterations of pi’s outer loop in
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baseSnapshot() between c′ and c′′ in which the if-statement condition at line 90
does not hold. This is because Argument (2) implies that the number of itera-
tions continues to grow. During every such iteration there are increments of the
summation

∑
�∈{1,...,n} VCi[�] − pndTski[i].vc[�] until it is at least δ, and thus,

(i, •) ∈ Si() holds (line 69 , for the case of k = i). Argument (4): suppose that
pi has taken at least x′ iterations of the outer loop in baseSnapshot() (lines 86
and 93) after system state c′. After this, suppose that the system has reached
a state c′′ in which i ∈ Δi, where c′′ is defined in Argument (3). Within O(1)
cycles after c′′, the system reaches c′′′ in which i ∈ Δj holds for any non-failing
pj ∈ P. Within O(1) asynchronous cycles after c′′, it holds that regj ’s ts fields
are not smaller than the ones of regi’s ts fields in c′′ (because in every iteration
of the outer loop in baseSnapshot(), pi broadcasts regi and these broadcasts
arrive within one cycle to pj , who updates regj). The rest of the proof shows
that i ∈ Δj holds (line 69, case of k = i), as in Argument (3). ��
This completes the proof of the lemma. �

The rest of the theorem’s proof considers the case in which (i) in any system
state of R, it holds that pndTski[i] = (s, •,⊥), s > 0 and any majority M ⊆
P : |M | > |P|/2 include at least one pj ∈ M , such that pndTskj [i] = (s, •, x) :
x �= ⊥, or (ii) in any system state of R, it holds that pndTski[i] = (s, •,⊥),
s > 0 and for any non-failing node pj ∈ P it holds that i ∈ Δj (line 69) and
pndTskj [i] = (s, •,⊥). The idea is to show that within O(1) cycles, the system
is in state c ∈ R in which pndTski[i] = (s, •, x) : x �= ⊥. For the case (i), the
proof shows that pi receives a SNAPSHOTack message that matches the first
condition in line 88 due to a reply to an SNAPSHOT message in line 105. The
proof of case (ii) follows by the fact that all non-failing nodes participate in a
helping scheme that solves pi’s task and then write the result to a safe register
by calling safeReg() in line 90.
Linearizability. We note that the baseWrite(wp) functions in Algorithms 2
and 3 are identical. Moreover, Algorithm 2’s lines 53 to 55 are similar to Algo-
rithm 3’s lines 86 to 89, but differ in the following manner: (i) the dissemination
of the operation tasks is done outside of Algorithm 2’s lines 53 to 55 but inside of
Algorithm 3’s lines 86, and (ii) Algorithm 2 considers one snapshot operation at
a time whereas Algorithm 3 considers many snapshot operations. The lineariz-
ability proof of Delporte-Gallet et al. [6, Lemma 7] is independent of the task
dissemination and result propagation. Moreover, it shows a way to select lin-
earization points according to some partition. The proof there explicitly allows
the same partition to include more than one snapshot result. �

5 Bounded Variations on Algorithms 1 and 3

There is a technique for transforming a self-stabilizing atomic register algo-
rithm that uses unbounded operation indices into one with bounded indices,
see [8, Section 10]: [Step-1] once pi notices an index that is at least MAXINT =
264 − 1, it disables new operations and starts gossiping of the maximal indices
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(while merging the arriving information with the local one). [Step-2] once all
nodes share the same maximal indices, the procedure uses a consensus-based
global reset procedure for replacing, per operation type, the highest opera-
tion index with its initial value, 0, while keeping the values of all shared reg-
isters unchanged. After the end of the global reset procedure, all operations are
enabled.
Self-stabilizing Global Reset Procedure. The implementation of the self-
stabilizing procedure for global reset can be based on existing mechanisms, such
as the one by Awerbuch et al. [12]. We note that the system settings of Awerbuch
et al. [12] assume execution fairness. This assumption is allowed by our system
settings (Sect. 2). This is because we assume that reaching MAXINT can only
occur due to a transient fault. Thus, execution fairness, which implies all nodes
are eventually alive, is seldom required (only for recovering from transient faults).

6 Discussion

We showed how to transform the two non-self-stabilizing algorithms of Delporte-
Gallet et al. [6] into ones that can recover after the occurrence of transient
faults. This requires some non-trivial considerations that are imperative for self-
stabilizing systems, such as the explicit use of bounded memory and the reoc-
curring clean-up of stale information. Interestingly, these considerations are not
restrictive for the case of Delporte-Gallet et al. [6]. As a future direction, we
propose to consider the techniques presented here for providing self-stabilizing
versions of more advanced algorithms, e.g., [13].
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Abstract. Shared memory emulation on distributed message-passing
systems can be used as a fault-tolerant and highly available distributed
storage solution or as a low-level synchronization primitive. Cadambe
et al. proposed the Coded Atomic Storage (CAS) algorithm, which uses
erasure coding to achieve data redundancy with much lower communi-
cation cost than previous algorithmic solutions. Recently, Dolev et al.
introduced a version of CAS where transient faults are included in the
fault model, making it self-stabilizing. But self-stabilization comes at
a cost, so in this work we examine the overhead of the algorithm by
implementing a system we call CASSS (CAS Self-Stabilizing). Our sys-
tem builds on the self-stabilizing version of CAS, along with several other
self-stabilizing building blocks. This provides us with a powerful platform
to evaluate the overhead and other aspects of the real-world applicability
of the algorithm.

In our case-study, we evaluated the system performance by running it
on the world-wide distributed platform PlanetLab. Our study shows that
CASSS scales very well in terms of the number of servers, the number
of concurrent clients, as well as the size of the replicated object. More
importantly, it shows (a) to have only a constant overhead compared to
the traditional CAS algorithm and (b) the recovery period (after the last
occurrence of a transient fault) is no more than the time it takes to per-
form a few client (read/write) operations. Our results suggest that the
self-stabilizing variation of CAS, which is CASSS, does not significantly
impact efficiency while dealing with automatic recovery from transient
faults.

1 Introduction

Sharing a data object among decentralized servers that provide distributed stor-
age has been an active research topic for decades. We consider the problem of
emulating a shared memory in a way that appears atomic (linearizable) [1]. Early
solutions [2,3] do not scale well when it comes to larger data objects due to the
c© Springer Nature Switzerland AG 2019
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use of full replication of the data to all servers in the system. Cadambe et al. [4]
proposed the Coded Atomic Storage (CAS) algorithm, which uses erasure cod-
ing in order to achieve data redundancy but with much lower communication
cost compared with algorithms that use full replication. Although CAS pro-
vides an efficient solution that tolerates node crashes, Dolev et al. [5,6] solve
the same problem while considering an even more attractive notion of fault-
tolerance since their solution can recover after the occurrence of transient faults.
Such faults model any violation of the assumption according to which the system
was designed to operate. Dolev et al. present a self-stabilizing version of CAS,
which we refer to as CASSS (CAS Self-Stabilizing). Unlike CAS, their version
guarantees recovery after the occurrence of transient faults. The authors suggests
that the variant of CAS from [5] has similar communication costs as CAS [4].
Our results validate [5]’s prediction, but more importantly, they demonstrate
the system’s ability to recover from transient faults efficiently, while tolerating
node failures.

Atomic Shared Memory Emulation. The goal of emulating a shared mem-
ory is to allow the clients to access via read and write operations a shared storage
in the network. By that, the service hides from the user low-level details, such as
message exchange between the clients and the servers. As the shared data is repli-
cated on the servers, data consistency between the replicas (data copies) must
be ensured. Atomicity (linearizability) [1] is the strongest consistency guarantee
and provides the illusion that operations on the distributed storage are invoked
sequentially, even though they can be invoked concurrently. A read (resp. write)
operation is invoked with a read (resp. write) request and it completes with a
response (e.g., an acknowledgment). There are two criteria that need to be sat-
isfied for the atomicity property: (1) Any invocation of a read operation, after a
write operation is completed, must return a value at least as recent as the value
written by that write operation. (2) A read operation that follows another read
operation will return a value at least as recent as the value returned by the first
read operation. Thus, the operations appear sequential.

Fault Model. (i) Benign Failures. We consider message passing systems in
which communication failures may occur during packet transit, such as packet
loss, duplication, and reordering. However, the studied algorithms assume com-
munication fairness, i.e., if the sender transmits a packet infinitely often, the
receiver gets this packet infinitely often. The early solutions [2,3] model node
failures as crashes and restrict the number f of failing servers (nodes) to be less
than half of the nodes in the system. We follow a similar approach but require
that in the presence of transient faults, and only then, a crashed node either
restarts (we call this a detectable restart) or is removed from the system via a
reconfiguration service [7]. Moreover, as specified in [5,6], our restriction on the
number of crashes f is similar to the one of CAS [4].
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(ii) Transient Faults. We also consider violations of the assumptions according to
which the system was designed to operate. We model their impact on the system
as arbitrary changes of the state, as long as the program code stays intact. Since
these faults are rare, our model assumes that the system starts after the last
occurrence of these transient faults. Transient faults can, for example, be soft
errors (which are sometime called, single event upset) or the event of a CRC
code failing to detect a bit error in a transmitted packet.

(iii) Self-stabilization. These design criteria, which requires recovery without
external (human) intervention, provides a strong fault-tolerance guarantee in
that the system always recovers from transient faults. By the definition given
by Dijkstra [8], the correctness proof of a self-stabilizing system needs to show
recovery within a bounded period after the last transient fault. That is, when
starting from an arbitrary system state, the system needs to exhibit legal behav-
ior within a bounded time.

Dolev et al. [7] proposed the following refinement of Dijkstra’s design crite-
ria of self-stabilization, which we believe to be convenient for dealing with the
asynchronous nature of distributed systems. In the absence of transient faults,
the environment is assumed to be asynchronous. Moreover, servers and clients
may at any time crash. In the presence of transient faults, it is assumed that (a)
all failing servers to recover eventually and (b) there is a sufficiently long period
(which allows recovery) in which the system run is fair, i.e., each node makes
progress infinitely often.

Related Work. Shared memory can support either a single-writer and
multi-reader (SWMR) context, e.g., ABD [2], or a multi-writer and multi-
reader (MWMR) context, e.g., MW-ABD [3]. A discussion on such non-self-
stabilizing solutions is given in [9].

The term reconfiguration refers to a change from one server configuration to
another and requires old configuration members to send the data to the new
members; the data is replicated to all configuration members. Shared memory
emulation has also been studied under such dynamic server participation, e.g.,
RAMBO [10]. See [11] for a survey on (non-self-stabilizing) reconfigurable solu-
tions to memory emulation. ARES [12] is a recent solution that supports recon-
figuration of a shared memory emulation service and is based on erasure coding.
The authors also present the first atomic memory service that uses erasure coding
with only two rounds of message exchanges for a client operation. While combin-
ing these two creates an efficient solution with respect to liveness, even during
configuration collapses, such a solution does not consider self-stabilization.

Nicolaou and Georgiou [13] did an experimental evaluation of four non-self-
stabilizing MWMR register emulation algorithms on PlanetLab. The algorithms
evaluated were SWF, APRX-SWF, CwFr and SIMPLE. Algorithm SIMPLE is
an MWMR version of ABD for quorum systems (quorums are intersecting sets
of servers), similar to the one we use in this work (called MW-ABD) to compare
its performance with CAS and CASSS.
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Our Contributions. We are the first to implement, and evaluate via exper-
iments, a self-stabilizing algorithm for coded atomic MWMR shared memory
emulation. We show that the overhead associated with self-stabilization does
not really affect the efficiency advantage associated with erasure coding. We
have also implemented a (graceful) counter restart mechanism, based on princi-
ples from [7]. The counter restart mechanism can perform a (synchronized) global
reset of the entire system while keeping the most recently written data object
using an agreement protocol. Additionally, we implemented a self-stabilizing
reincarnation number service [5], which provides recyclable client identifiers, and
by that helps to deal with detectable client restarts.

Our experiments on PlanetLab shows that our pilot implementations of CAS
and CASSS have comparable performances with respect to operation latency.
Furthermore, the evaluation shows that our implementation of CASSS scales
very well when increasing the number of servers and clients, respectively. More
importantly, the overhead caused by self-stabilization in our experiments is only
greater than the non-self-stabilizing CAS implementation by a constant factor.
The system evaluation shows almost no slowdown for data objects up to 512 KiB,
and is only slightly slower for data objects up to 1 MiB. Last but not least, the
evaluation reveals that the counter restart mechanism is fast – it takes about the
same amount of time as three or four normal write operations. This demonstrates
CASSS’s ability to rapidly recover from transient faults. Encouraged by these
evaluation results, we believe that our pilots and their building blocks could be
used for implementing other self-stabilizing algorithms and prototypes.

2 System and Background

The system includes a network of N nodes. Each node can host clients and/or
servers. Servers use a gossip service for communicating among themselves.
Clients interact with the shared-memory service using read and write opera-
tions. These operations include multiple communication rounds of requests and
responses. Every client performs its operations sequentially, but its operations
may be interleaved arbitrarily with operations from other clients.

Servers are arranged into pairwise intersecting sets, or quorums, that together
form a quorum system. The intersection property of quorums enables information
communicated to a quorum to be passed (via the common servers) to another
quorum. Majorities (subsets containing a majority of the servers) form a simple
quorum system (used, for example, in ABD [2]). The self-stabilizing quorum
system considered in this work follows the one proposed in [5,6]. We note that
the quorum system needs to be self-stabilizing. This is, for example, because
of the fact that client algorithms often include several phases. The clients and
the servers needs to be synchronized both with respect to the phases and the
associated object version.

Each server has access to a set of records, which are tuples of the form
(tag,data,phase). A tag has the form of (number, clientID), i.e., a pair with
a sequence number and the unique identifier of the client that is writing this
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version. The data field holds either null, or a coded element of an object that is
stored in the system. The tag is used to determine the causal relationship among
operations, e.g., when retrieving the object’s most up-to-date version. The phase
field keeps track of which phase of the protocol that the data in the record have
reached.

2.1 The CAS Algorithm

Coded Atomic Storage (CAS) is based on techniques for reducing communication
costs, such as erasure coding and an earlier algorithm [14], by avoiding full
replication, as in ABD and MW-ABD. CAS is a quorum based algorithm, where
a quorum is any subset Q of the servers, such that |Q| ≥ kthreshold = �N+k

2 �; N
is the number of servers and k is the coding parameter deciding the least amount
of needed elements to decode the object value. CAS allows for up to f server
failures. See [4] for full details.

Writer’s Procedure. There are three phases: query, pre-write and finalize.
Query: The query phase is based on MW-ABD [15]’s query, but considers only
finalized records, i.e., records that has their phase field set to ‘fin′ (rather than
‘pre′).

Pre-write: pi’s client sends a message, 〈(x + 1, i),mj , ‘pre′〉, to any server pj
and waits for a quorum of replies, where x is the maximum tag number retrieved
from the query phase and mj holds the coded element to the server at pj .

Finalize: pi sends a message 〈(x, i+1),⊥, ‘fin′〉, to all servers. After receiving
a quorum of acknowledgments, the write operation is finished. The finalize phase
hides the write operations that have not been seen by a quorum since the query
phase only looks at records with phase ‘fin’. Once the client has passed the
pre-write phase, it knows that at least a whole quorum has enough elements to
reconstruct the data and therefore it can be made visible in other operations.

Reader’s Procedure. There are two phases: query and finalize. The query
phase is identical to the writer’s query phase.

Finalize: client pi sends out a message 〈tmax, mj , ‘fin′〉 to all servers, where
tmax = (x, •) is the tag retrieved from the query phase. The client waits until a
quorum has responded; each response includes a coded element corresponding to
tmax (or a null if the server stored no record corresponding to tmax). If at least
k of the responses include a coded element, the reader decodes the object value
and returns it to the application. Otherwise, it just returns as an unsuccessful
read.

Server’s Events. The servers store different versions of the objects in records
of the form (t, w, label), where t is a tag, w is a coded element and label is either
‘pre’ or ‘fin’. The server’s procedures include the event handlers corresponding to
the client requests: query, pre-write and finalize (of both read and write). Note
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Algorithm 1: A description of CASSS, code for pi’s client and server
1 The client: For write(s): Query all servers for finalized tags. After hearing

from a quorum, get the maximum tag (z, j). Encode the elements w1, w2, . . .,
wN using input s, such pi ∈ P hosts a server. Send to all servers ((z + 1, j), wi,
‘pre′) and wait for a quorum of replies. For each server pj ∈ P , send ((z + 1, j),
‘null′, ‘fin′) and wait for a quorum of replies. The algorithm uses the ‘FIN′

phase label for making sure that at least a quorum of servers store the record
((z + 1, j), wi, ‘fin′). This way, the quorum intersection property guarantees the
record visibility w.r.t. prospective client operations. Then, send for each pj ’s
server ((z + 1, j), ‘null′, ‘FIN′) and wait for a quorum before returning. The
algorithm uses the ‘FIN′ phase label for making sure that any server that has
the record ((z + 1, j), wi, ‘FIN′) knows that there is at least a quorum of servers
with the record ((z + 1, j), wi, label) : label ∈ {‘fin′, ‘FIN′} regardless of whether
the client that invoked this operation has failed or not.;

2 For read(): Query all servers for ‘pre’ tags. After hearing from a quorum, get
the maximal tag t := (z, j). For each server, send (t, ⊥, ‘fin′) and wait for a
quorum of replies with the requested coded elements that are associated with t.
If at least kthreshold replies include coded elements so that it is possible to
decode them, return the decoded value. Otherwise, return ⊥;

3 The server: Upon query arrival from pj’s client to pi’s server. If pj ’s client is
a reader, acknowledge with (t, ⊥, ‘qry′)), where t is the maximal tag of any
finalized stored record. Else, acknowledge using t that is the maxim tag that
any stored record.

4 Upon pre-write (t, w, ‘pre′) arrival from the pj’s writer. Make sure that the
stored record include the coded element w and acknowledge using (t, ⊥, ‘pre′).

5 Upon finalize or FINALIZE (t, ⊥, d) : d ∈ {‘fin′, ‘FIN′} arrival from pj’s client
to pi’s server. If (t, w, d) is stored and pj ’s client is a reader, then acknowledge
using (t, w, d). Else, acknowledge using (t, ⊥, d).

6 Upon gossip (pre[j], fin[j], F IN [j]) arrival from pj’s server to pi’s server.
Integrate the arriving information with the stored one by making sure that
pre[j], fin[j] and FIN [j] are not greater than any of the tags of the stored
records with ‘pre′, ‘fin′, and respectively, ‘FIN′ phases. In case there is a
quorum of gossip records with the phase ‘fin′, update the phase label to ‘FIN′.
The updated phase value later allows the servers to consider this record as a
candidate for garbage collection (when it becomes not among the δ newest
records of phase ‘FIN′). Gossip to all servers (pre[i], fin[i], F IN [i]), where
pre[i], fin[i] and FIN [i] are the greatest stored tags of stored records with
‘pre′, ‘fin′, and respectively, ‘FIN′ phases.

that the algorithm clearly tolerates any writer failure (crash) whenever either
no server or a quorum receives the finalize message. To the end of establishing
the viability of a write operation that only some servers (but not a quorum)
store a finalized record, the algorithm employs a reliable gossip mechanism for
disseminating among the servers tags of finalized records. This dissemination is
invoked once for any arriving finalized message.
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2.2 Self-stabilizing CAS

The variation of CAS from [5,6] is both self-stabilizing and privacy-preserving.
Our pilot implementation, which we call CASSS (CAS Self-Stabilizing), we only
focus on the algorithms self-stabilizing ability (i.e., it’s ability to recover after the
occurrence of a transient fault). This is modelled by considering transient faults
that can corrupt arbitrarily the system state (as long as the program code stays
intact). Moreover, it is assumed that the system starts after the last occurrence
of these failures [8,16].

1. In the starting system state, the server at node pi may store tag tmax (in
a record that has its phase set to either ‘pre’ or ‘fin’), such that due to the
system asynchronous nature, it is not retrieved by any query for an arbitrarily
long period. The challenge is to bound the number of write operations in which
stale information, such as tmax’s record, may reside at the system without
having a write that hides tmax.

2. Self-stabilizing (reliable) end-to-end communications require that the under-
lying channels have bounded capacities [16, Chapter 3.2]. Thus, in the context
of self-stabilization in asynchronous systems, the quorums that send acknowl-
edgments to the clients might complete write operations at a faster rate than
the reliable gossip service delivers. Therefore, it is not clear how the writer
can avoid blocking in a self-stabilizing system where its channels are bounded
(and still deliver all messages).

3. All variables must be bounded, including, for example, the tag values. This
means that when the system state encodes the maximum tag values, wrapping
around to value zero must not disrupt the algorithm invariants, such as the
tags’ ability to order events.

Addressing Challenge (1). The servers repeatedly gossips the highest tag
value that any server has. Each server includes in these messages the maximum
tag that is part of locally stored records, such that their labels are ‘pre’ and
also the maximum tag of records with the labels ‘fin’ and ‘FIN’. Also, any write
operation queries for the highest ‘pre’ tag so that the new tag of this operation
is greater than all the (possibly corrupted) pre-write records in the system.
(The read procedure is borrowed from CAS.) The correctness proof in [5,6]
demonstrates that this modification still preserves atomicity and thus CASSS
addresses the first challenge.

Addressing Challenge (2). The proof also shows that the gossip service does
not need to guarantee the delivery of all messages and that the message’s eventual
delivery (or later messages with higher tag values) is sufficient. The server just
overwrites the last received message in the buffers when a new gossip message
arrives.

Addressing Challenge (3). To bound the storage size for each server, Dolev
et al. [5] first bound the number of records each server stores and then bound
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the tag size. (Note that the client state of CAS is easy to bound and the message
size is implied by the bound on its fields.)

Bounding the number of stored records is based in the assumptions that failing
clients do not restart and that each client invokes at most one instance of the
write procedure. This means that at any time, a client can have at most two
relevant records in any server storage (regardless of whether it is failing or not).
That is, one of these records might be the one that holds the most recent object
value (written by an already completed pi’s operation) and the other record
could be of an ongoing pj ’s write operation. So, any stored record older than the
two most recent records from client pi is irrelevant, because it is either obsolete
or stale. Thus, we can bound the number of relevant records by 2N , where N is
the number of clients. Dolev et al. [5] reduce this bound to N + δ + 3 by adding
to write procedure a fourth round, labeled by ‘FIN’, where δ is a bound on the
number of read operations that occur concurrently with a write operation.

Bounding the maximum label requires to consider the case in which the sys-
tem state includes a tag that has reached its overflow value, (MAXINT, •). Note
that by choosing MAXINT to be a very high value, say, 264−1, we can guarantee
that such an event happens only after the occurrence of a transient fault (because
counting from zero to MAXINT takes much longer time than the lifetime of all
relevant practical systems). As an extension to Algorithm 1, Dolev et al. [5]
propose to let the servers detect the presence of this overflow value and then to
stop responding to queries while keeping the gossip service running. By that, the
servers disseminate the overflow values in the system while abstaining from sup-
porting new operations from installing pre-write records. This continues until the
servers detect, via gossip, that all of them have the same maximum finalized tag
value, tmax. At that point, the algorithm in [5] invokes a self-stabilizing (grace-
ful) counter restart that allows the preservation of the object value using an
agreement protocol (Sect. 3.3). During the counter restart, all clients are forced
to perform also a local reset, which causes the abortion of all ongoing operations.
Once the agreement procedure is terminated, the servers empty their local stor-
ages while keeping only the most recent finalized record and replacing its tag
tmax with the initial tag value before resuming operation.

3 Implementation

We call our system CASSS, for CAS Self-Stabilizing. The CASSS pilot was
implemented as a library in Python, which can be used by applications in order
to provide access to the read and write operations. Calls to the functions read()
and write(x) should behave as if the service was an actual shared memory. Calls
to these functions block the calling process until the call returns. A successful
read operation returns the data object, and a successful write operation blocks
until it is done writing the object (and returns nothing). We proceed to describe
the building blocks of the system.
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3.1 Gossip and Quorum Communications

We used a self-stabilizing version of the token passing algorithm of [16, Figure 4.1]
using UDP/IP as the basis for implementing the gossip and quorum services.
CASSS requires the use of a self-stabilizing gossip protocol between servers to
periodically share the largest tags for each phase. We used UDP/IP and let the
arriving gossip messages overwrite the old ones (even if the old ones were not
delivered). Our self-stabilizing quorum system follows the one in [5]. For the
sake of improved performance, whenever it was required to transfer large data
objects, a new TCP/IP connection was established. Our pilot implementation
simply used a configuration file for retrieving the list of available storage servers
(rather than an external directory service like DNS), for the sake of simple
presentation.

3.2 Reincarnation Service

CAS assumes that clients cannot resume after failing. CASSS includes an exten-
sion that allows clients to reincarnate [5]. This is based on extending the client
identifier to uid, which consists of a unique hardware address and an incarnation
number.

The client algorithm performs a periodic task that starts with a query phase
to check if its current incarnation number is up to date. It does this by querying
all servers and awaits responses from a quorum of servers. The maximum value
of all received incarnation numbers is calculated, and if that number differs from
the current client incarnation number, a second phase is triggered. During the
second phase, the incarnation number is updated both at the client side and in
the quorum system. The client takes the maximum of the current incarnation
number and all received incarnation numbers, increments that by one and sends
it out to all servers. After receiving a quorum of acknowledgements, the client
knows that it has been assigned a new valid incarnation number and can thus
proceed to operate as usual by updating its uid accordingly.

3.3 Graceful Global Counter Restart

We use a graceful reset mechanism for restarting sequence numbers (of tags and
incarnation numbers). The algorithm facilitates a wraparound based on the abil-
ity to achieve agreement and thus we assume that all servers are alive, e.g., via
a self-stabilizing service for quorum reconfiguration [7]. We further borrow ideas
from [7, Algorithm 3.1] for performing a global counter restart while preserving
the recent object value and a mechanism for recovering from transient faults.
The algorithm can be extended to detect failures, and hence not requiring all
servers to be alive in order to restart, in partially synchronous settings using
the failure detection mechanism of [7]; including such discussion would make
the presentation of the algorithm more difficult to follow, without contributing
directly to our experimental evaluation.
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4 Evaluation Methodology

To the end of evaluating our implementation, we have experimented on a true-
to-life distributed system (rather than injecting faults or simulating the system).
The implementation code can be accessed via www.self-stabilizing-cloud.net.

4.1 Evaluation Criteria and Platform

A common evaluation criteria in the field is to measure operation latency—the
average time it takes for an operation to complete [13]. This includes both com-
munication delay and local processing time. The operation latency is measured
both in isolated settings (where no other client is making any requests), and in
settings where we have different levels of base load on the servers. For compari-
son, we have implemented both CAS and CASSS, as well as a MW-ABD, using
a self-stabilizing quorum system. We used the PlanetLab-EU platform (www.
planet-lab.eu) to have a true-to-life, large-scale distributed system to run the
evaluation on.

4.2 Experiment Scenarios

In this section, we describe the experiment settings, and how we measure per-
formance before the details of each experimental scenario.

Baseline Settings. For unifying the evaluation, we often use the same baseline
for each of the experiments (unless otherwise noted). The setting that all exper-
iments proceed from is to have 15 machines in total, ten of which run one server
process each and five of which run one client process each. When increasing the
number of clients or servers beyond the number of physical machines, multiple
instances are put on the same physical machine. In order to guarantee a fair
latency between a client and a server instance, clients processes are never placed
on the same physical machine as server processes. More clients or servers than
available nodes are distributed in a round-robin fashion. Operations of a client
are invoked sequentially with a random delay in between.

The system is initialized by a 512 KiB data object with random data being
written to the quorum system before the experiments start. Each client repeats
the operation 50 times, and the fastest and slowest operations are removed in
order to mitigate the effect of outliers (by pre-experiment evaluations we were
able to identify 50 as a reasonable number, where experiments would complete
in reasonable time, while giving consistent results). The final operation latency
result is the average of every client’s average operation latency. Taking the
average over all clients accounts for local variations, which is important since
different PlanetLab nodes have different conditions. PlanetLab servers do not
have any uptime guarantees, and we, therefore, want to allow a few servers to
fail (i.e., f > 0). But because k is bounded to be an integer value, such that
1 ≤ k ≤ N − 2f , the value of f cannot be chosen freely. It, therefore, stands

www.self-stabilizing-cloud.net
www.planet-lab.eu
www.planet-lab.eu
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clear that if f is constant, N can never be chosen such that k would be forced
to be less than one. Therefore, since we want to run an experiment with as few
as five servers, we have chosen f = 2.

Client Scalability Experiment. This scenario is made to evaluate how the
read and write latencies are affected when increasing the number of writers and
readers respectively. This tests the servers’ ability to handle an increase of con-
current operations. The number of failing nodes tolerated (f) is kept constant,
i.e., the quorum size is also constant. Both the reads and writes latency is mea-
sured. For reader scalability, we consider 5, 10, 15, 20, 30 and 40 readers, while
having 10 writers and 10 servers. Corresponding numbers are used for write
operation scalability.

Server Scalability Experiment. The server scalability experiment is con-
structed to evaluate in what way the read and write latencies are affected when
increasing the number of servers. The number of failing nodes tolerated is kept
constant, i.e., the quorum grows with the number of servers. So when the servers
increase, the number of servers that a client has to access will also increase but the
coded elements will be smaller. One interesting aspect to look at when increasing
the number of servers is whether the effect of a higher code rate trumps the effects
of having a larger quorum. Both read and write latencies are measured. We use 5,
10, 15, 20 and 30 servers while having 10 readers and 10 writers.

Data Object Scalability Experiment. For evaluating how the read and write
latencies are affected by the object size, this experiment performs operations
using increasingly large data objects. The size is increased to a maximum of 4
MiB, which was found to be enough to demonstrate the scalability. In particular,
we consider objects of size 1, 32, 128, 512, 1024, 2048 and 4096 KiB. The number
of failing nodes tolerated is kept constant (f = 2), as well as the number of servers
(10), which means that the quorum size is also constant. The experiment is run
in isolation from other client nodes, so that scalability in increasing object sizes
can be reliably measured. Both the read and write latencies are measured.

Counter Restart Experiment. This scenario measures how long it takes for
the servers to restart their local state after a transient fault. Since this part
requires the participation of all servers, we do not allow any server to be unre-
sponsive (i.e., f = 0). Because some nodes on PlanetLab were highly unstable,
it was hard to run experiments for prolonged stretches of time. Therefore, we
limited the number of repetitions for the counter restart experiment (which was
expected to take longer than the other experiments) to 20 instead of 50. For the
same reason, we restricted the object size to 0.25 KiB. Having to restart the
global system state is the worst case scenario when it comes to recovery after a
transient fault. The time measured is from a client pre-write phase (with a max-
imal tag number) until a query ends successfully. As discussed, we set f = 0, in
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order to know that every server has finished the reset phase, meaning the client
has to receive responses from all servers before returning.

Overhead Experiment. In this scenario, we compare the overhead of CASSS
with our implementation of CAS. In our case, the CAS implementation builds
on the CASSS implementation, but does not include the fourth round (‘FIN’)
nor does it perform any gossiping. In other words, this implementation uses the
same number of phases and gossip messages as in [4], but, for a fair comparison,
it is based on the same software components as the CASSS implementation. Here
we use 10 servers (with f = 2), one writer and one reader.

5 Evaluation Results

Client Scalability. Figure 1(a) shows the result of the experiment where the
number of concurrent readers was changed, and Fig. 1(b) the corresponding
experiment for number of concurrent writers. Both charts shows a rather flat
curve, which indicates that none of the experiments reached a point where the
system was overwhelmed by the number of concurrent operations.

Fig. 1. Operation latency with respect to the number of concurrent (a) readers and
(b) writers.
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Note the difference between the operations. The fact that MW-ABD read
operation is the slowest of the four is not a surprise. Not only does MW-ABD
send larger messages, due to the lack of coding, but also its read operation actu-
ally transfers data twice: once to fetch the data from the servers, and once during
the propagation phase. The MW-ABD and CASSS complete write operations in
about the same amount of time. While CASSS writes has two more communi-
cation rounds than MW-ABD writes, MW-ABD messages are larger due to the
lack of coding. It seems that, with the relatively short RTT between PlanetLab
nodes (≈50 ms avg ping time), the cost of two extra rounds seems to be about
as expensive as the cost of larger messages. We find that CASSS reads are the
fastest ones. This too was expected, since it has as few rounds as MW-ABD
writes, but uses coding which decreases the message size.

Fig. 2. Operation latency with respect to the number of servers. The vertical dashed
line denotes the point where the parameter f had to be changed.

Fig. 3. Operation latency with respect to the size of the data object.
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Fig. 4. The time it takes for the Global Reset mechanism to complete, with respect to
the number of servers.

Fig. 5. Comparison between the operation latency of CASSS versus the traditional
CAS algorithm. The dashed vertical line denotes the point where the parameter f had
to be changed.

Server Scalability. Figure 2 presents the results of the servers scalability exper-
iment. Note that with five servers, both reads and writes of CASSS and MW-
ABD writes end up at more or less the same spot. That is because, with only
five servers, CASSS effectively performs full replication and the CASSS quorum
size is equal to majority quorum. While MW-ABD reads have fewer rounds than
CASSS writes, MW-ABD reads transfer more data. This is why it the slowest
of all operations.

Looking at the interval between five and ten servers, the operation latency of
MW-ABD increases while the operation latency of CASSS decreases or stays the
same. That is because when increasing the number of servers, the quorum size
grows but so does the code rate. So while both MW-ABD and CASSS waits for
responses from more servers, CASSS gains the advantage of decreased message
size. The used coding library has a limitation that k + m ≤ 32. Thus, f could
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not be kept at 2 for quorum systems with 20 and 30 servers. For 20 servers, f
had to be at least 4, and for 30 servers it had to go all the way up to 14. The
point where f is changed is marked by the dashed vertical line.

Data Object Scalability. Figure 3 shows the results of the data object scal-
ability experiment. (Existing solutions [14] show how to transform ABD-like
algorithms to more suitable implementations for large data objects.) Up to ca
1 MiB, the operation latency is fairly minimal. MW-ABD begins to escalate at
512 KiB, but CASSS is reasonably fast all the way to 4 MiB. This is of course
a consequence of the coding, which reduces the message size.

Global Counter Restart. The global counter restart is triggered only after
the occurrence of a transient fault, i.e., it is invoked very rarely. Even so, it is
still important that the counter restart terminates within a reasonable amount
of time. Figure 4 shows that, for up to 20 servers, the time it takes for the
counter restart procedure to finish is equivalent to the time it takes to perform
two write operations, i.e., it takes only a few seconds. As the number of servers
increases, the likelihood of having to wait for slower servers increases too. If the
responsiveness for a server at a given time is normally distributed, the likelihood
of having one or more slow servers in the system increases exponentially.

Overhead. Figure 5 depicts the overhead that the extra communication round
and intensive gossiping have. The figure has a vertical dashed line, which indi-
cates at which point the variable f was changed due to the coding library require-
ment discussed previously. Note that CASSS reads and CAS reads are nearly
identical. This is exactly what one would expect since CASSS has the same num-
ber of rounds for the reads as CAS. The write operations differ slightly, and with
CASSS needing one extra communication round to complete the write operation,
we expected it to be slightly slower than CAS. The average ping time between
the PlanetLab nodes was about 50 ms, so the expected cost for one round is
consistent with what we observe in Fig. 5.

6 Conclusion

Our case-study is, to the best of our knowledge, the first work to practically
evaluate a system based on a self-stabilizing atomic MWMR coded shared mem-
ory emulation, with bounded storage size. We have implemented a system that
is based on several self-stabilizing building blocks. This includes both a restart
mechanism that performs a synchronized global reset of the entire system in
a graceful manner, and a reincarnation number service that provides the fail-
ing client another chance to participate. We show that the CASSS system scale
very well both in terms of the number of servers and number of concurrent
clients. It also scales well with respect to the size of the replicated object. We
see that CASSS system has a recovery period of only a few client operations.
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Furthermore, it only has a constant overhead compared to the traditional CAS
algorithm. This shows that the overhead introduced by self-stabilization can
be fairly small, and in many cases negligible – especially when considering the
upside of handling transient faults. We view this work as a promising first step
in developing an efficient self-stabilizing cloud storage service based on atomic
coded shared memory emulation.

A natural extension to our work would be the development of a reconfigurable
version of CASSS, similar to the proposal in [17]. We see such extensions of the
prototype proposed in this paper, as self-stabilizing building blocks for Cloud sys-
tems. We note the existence of other such prototypes, e.g., Renaissance [18,19],
as well as other algorithms that we propose as prospective candidates for proto-
typing, such as self-stabilizing Byzantine tolerant replicated state-machine [20]
and self-stabilizing (Byzantine tolerant) end-to-end communications [21,22].
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Abstract. Our work focuses on the design of a scalable permission-
less blockchain in the proof-of-stake setting. In particular, we use a dis-
tributed hash table as a building block to set up randomized shards,
and then leverage the sharded architecture to validate blocks in an effi-
cient manner. We combine verifiable Byzantine agreements run by shards
of stakeholders and a block validation protocol to guarantee that forks
occur with negligible probability. We impose induced churn to make
shards robust to eclipse attacks, and we rely on the UTXO coin model
to guarantee that any stakeholder action is securely verifiable by anyone.
Our protocol works against adaptive adversary, and makes no synchrony
assumption beyond what is required for the byzantine agreement.

Keywords: Blockchain · Proof-of-stake · Distributed Hash Table ·
Sharding

1 Introduction

Permissionless blockchains, also called distributed ledgers, initially appeared as
the technological solution for the deployment of the Bitcoin digital cryptocur-
rency and payment system [23]. Permissionless blockchains aim at achieving the
impressive result of being a persistent, distributed, consistent and continuously
growing log of transactions, publicly auditable and writable by anyone. Despite
the openness of the environment and thus the inescapable presence of malicious
behaviors, security and consistency of permissionless blockchains do not demand
the presence of a trusted third party.

This is a real achievement, which mainly results from the tight combination
of two ingredients: a randomized election of the next block of transactions to be
appended to the blockchain and a short latency broadcast primitive. While the
latter one relies on the properties of peer-to-peer networks, the former one has so
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far been commonly implemented by solving proof-of-work (PoW), a cryptographic
puzzle that is provably secure against a large proportion of participants that may
wish to disrupt the system, and allows to keep the rate at which blocks are created
parametrizable and independent of the size of the system. This second aspect is
important to guarantee that the ratio between the message transmission delay and
the block time interval remains low enough whatever the system activity, guaran-
teeing accordingly an easy management of conflicting blocks, if any.

Unfortunately, resilience of PoW-based solutions fundamentally relies on the
massive use of computational resources, which is a real issue today. Lot of inves-
tigations have been devoted to find a secure alternative to PoW, but most of
them either rely on the intensive use of a large quantity of physical resources
(e.g., proof-of-space [5], proof-of-space/time [22]) or makes compromises in their
trust assumptions (e.g. proof-of-elapsed-time [18], delegated proof-of-stake [14]).
In contrast, solutions based on proof-of-stake (PoS) seem to be a quite promising
way to build secure and permissionless blockchains. Indeed, proof-of-stake rely
on a limited but abstract resource, the crypto-currency, in such a way that the
probability for a participant to create the next block of the blockchain is gen-
erally proportional to the fraction of currency owned by this participant. It is
an elegant alternative in the sense that all the information needed to verify the
legitimacy of a stakeholder to create a block (i.e., crypto-currency possession)
is already stored in the blockchain. Finally, by being a sustainable alternative
(creating a block requires a few number of operations), scalability concerns,
exhibited by PoW-based solutions, should be a priori more tractable.

An important condition for a PoS-blockchain to be secure is randomness. The
creator of the next block must be truly random, and the source of randomness
must not be biaised by any adversarial strategy. So far, this has been achieved
by two main approaches: chain-based consensus and block-wise Byzantine agree-
ment with respectively Ourobouros [8] and Algorand [16] as main representatives.
In the former approach, a snapshot of the current users’ status is periodically
taken, from which the next sequence of leaders is computed. In the latter one,
a Byzantine agreement per block, relying on the properties of verifiable random
cryptographic schemes, is achieved. High robustness against adaptive adversarial
strategies results from the dynamic participation of thousands of users, each one
participating for a single step of the algorithm.

In this paper we present a new blockchain protocol called StakeCube which
aims at improving scalability of the block-wise Byzantine agreement approach by
combining sharding techniques, users presence and stake transfer to operate in a
PoS setting. The key idea of StakeCube is to organise users (i.e. stakeholders)
into shards—such that the number of shards increases sub-linearly with the
total number of active UTXOs—and within each shard, to randomly choose a
constant size committee in charge of executing the distributed algorithms that
contribute to the creation of blocks. Each block at height h in the blockchain is
by design unique (no fork), and once a block is accepted in the blockchain, the
next one is created by a sub-committee of shards whose selection is random with
a distribution that depends on the content of the last accepted block.
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To make such a solution correct in presence of a Byzantine adversary, we
guarantee that the adversary cannot predict the shards in which users will sit,
and that the sojourn time of users in their shard is limited. Doing so is an effective
way to protect the system against eclipse attacks [2,6]. We introduce the notion
of unpredictable and perishable users’ credentials. Then to cope with this induced
churn, shards’ views are updated, signed and installed once, and this occurs right
before the acceptation of a new block. Finally, the creation of blocks is efficiently
handled by an agreement among a verifiable sub-committee of shards. We might
expect that solely relying on stakeholders (i.e., owners of the coins of the crypto-
currency system) to the secure construction of the blockchain makes sense due
to their incentive to be fully involved in the blockchain governance, rather than
delegating it to powerful miners. However the analysis against rational players
is left as future work.

The remaining of the paper organised as follows. Section 2 presents related
work, Sect. 3 details our model and assumptions while Sect. 4 formalises the
addressed problem. Section 5 describes an high-level view of the required building
blocks of StakeCube while Sect. 6 presents the design principles of the proposed
solution. A security analysis is provided in Sect. 7 before concluding in Sect. 8.

2 Related Work

Omniledger [20] is the closest work to ours. It is a PoS-compatible, sharded, dis-
tributed ledger, resilient against a weakly dynamic adversary that corrupts up to
1
4 of participants. In contrast to our approach, Omniledger assumes a strongly
synchronous setting, and each shard maintains its own ledger and, global syn-
chronisation of transactions is achieved through an atomic commit protocol tai-
lored to their usage. Ouroboros [19], representative of the chain-based approach,
is a synchronous PoS protocol resilient against a weakly dynamic adversary that
owns 1/2− ε of stake. Moreover, Ouroboros has been recently improved to work
in the partially synchronous setting against a dynamic adversary [7,8], but keep-
ing the same design principles as the original one. In Ouroboros, a unique leader
is elected at each round to broadcast its block which contrasts with our sharded
approach where the block creation process is distributed. Snow White [13] is
a synchronous PoS protocol resilient against a weakly dynamic adversary that
owns 1/2 of the active stake. This protocol also relies on a leader election. Algo-
rand [16], is a representative of the blockwise Byzantine agreement approach.
It provides a distributed ledger against an strongly adaptive adversary with-
out assuming strong synchrony assumptions. However, by its design, agreement
for each block of the blockchain is achieved by involving a very large number
of stakeholders so that each one needs to effectively participate only for one
exchange of messages.

3 Model

We assume a large, finite set of users whose composition may change over time.
Users do not have synchronized clocks, but their individual clocks drift at the



StakeCube: Combining Sharding and Proof-of-Stake 151

same rate. Users communicate by propagating messages within the system. The
delivery of network messages is at the discretion of the adversary, but subject to
synchrony assumptions. Our construction in itself makes no synchrony assump-
tion except for what is required for the Byzantine resilient building blocks. Since
our construction uses multiple building blocks, synchrony assumptions may be
changed if they are instantiated differently than suggested. Users have access to
basic cryptographic functions, including a cryptographic hash function h, and a
CPA-secure signature scheme. Function h is modeled as a random oracle. Users
own some minimal amount of stake (i.e. money), which gives them the right to
participate to StakeCube. We adopt (a simplified version of) what is commonly
known as the Bitcoin Unspent Transaction Output (UTXO) model. An UTXO
can be roughly seen as a user’s account credited by some stake. An UTXO is
uniquely characterized by a public key pki and its associated amount of stake si.
Each public key is related to the digital signature schema Σ with the uniqueness
property, which allows stakeholders to use the public keys (or a hash thereof)
of their UTXOs as a reference to them, as demonstrated in the “Public Keys
as Identities principle” of Chaum [10]. Note that the number of users evolves
according to the UTXO set. At any time, a user can own multiple UTXOs.
UTXOs can be debited only once, and once debited, an UTXO does not exist
anymore. To simplify discussion, transactions outputs do not contain h(pki) but
directly pki.

Threat Model: A Weakly Adaptive Adversary. We assume the presence of Byzan-
tine (i.e. malicious) users which controls up to μ ≤ 1/3 − ε of the total amount
of stake currently available in the system. Here, ε quantifies the gain in the effec-
tive adversarial power, related to the security parameter. This model, named
the “Stake Threshold Adversary” by Abraham and Malkhi [1], is an alternative
to the common Threshold Adversary Model, which bounds the total number
of parties the adversary controls relative to the total population of the system,
and an extension (or modification) of the Computational Threshold Adversary
introduced by Bitcoin, which bounds the proportion of the computational power
owned by parties. Byzantine users can deviate from the protocol. They are mod-
eled by an adversary. The adversary can perfectly coordinates all malicious users.
It can learn the messages sent by honest users (i.e. non malicious users), delay
them, and then chooses messages sent by malicious ones. Further the adversary is
weakly adaptive: it can select at any time which users to corrupt in replacement
of corrupted ones (i.e. corruptions are “moving”), however a corruption becomes
effective T blocks after the adversary has selected the user to be corrupted. The
adversary is computationally bounded so that it can neither forge honest nodes’
signatures nor break the hash function and the signature scheme. Finally, we
assume that all users (honest and malicious) share an initial knowledge that we
call genesis block which contains an initial arbitrary UTXO set. We assume this
block also shares the same properties as regular blocks. How to setup the genesis
block is out of the scope of this paper.
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4 The Addressed Problem

StakeCube aims at allowing any honest user i to locally maintain a sequence
of blocks Bi

0, B
i
1, . . . , B

i
h, where h represents the index (or the height) of the

block in the sequence. This sequence of blocks represents i’s copy of the dis-
tributed ledger, and satisfies both Safety and Liveness properties. In addition,
the orchestration of the shards allows StakeCube to satisfy both Scalability
and Efficiency properties. StakeCube is parametrized with an arbitrary secu-
rity parameter κ, so that all its properties are guaranteed with probability at
least 1 − e−O(κ).

Property 1 (Safety). If honest user i accepts a block Bi
h at height h in its copy

of the ledger then, for any honest user j that accepts a block at height h in its
copy ledger, Bj

h = Bi
h.

Property 2 (Liveness). If a honest user submits transaction tx, then eventually
tx appears in a block accepted in the copy of all honest users.

In StakeCube, participation of honest users is conditional to the possession
of UTXOs. Participation is voluntary: Any honest user can join a shard (deter-
mined by the protocol), whenever she wishes, with the objective of eventually
being involved in the Byzantine resilient protocols executed in this shard. Par-
ticipation is temporary: The sojourn time of an honest user in a shard is defined
by the time it takes for StakeCube to create T blocks. Once she leaves, she
can participate again by joining another shard, and does so until she spends
her UTXO. As users may own multiple UTXOs, they can simultaneously and
verifiably sit in different shards. In the following, a user that issues a join request
with its current credential is called an active user. StakeCube satisfies Scal-
ability and Efficiency properties. This is achieved due to the properties of the
block creation process. Adding a new block takes two Byzantine fault tolerant
protocols to be run in parallel within each shard, one network wide diffusion by
each shard, one inter-shard byzantine agreement, and finally one broadcast for
the block (more details will be given in Sect. 6.3).

Property 3 (Scalability). All Byzantine fault tolerant protocols we rely on have
an (overall) O(n3) message complexity. However in StakeCube these protocols
are executed by committees whose size is small and fixed. Because the number of
shard is O(

√
N), the overall communication cost is O(NC3

1+C3
2 ), with C1 and C2

some constants depending on κ. Thus, each participant’s average communication
cost is sublinear in N .

Property 4 (Efficiency). All Byzantine fault tolerant protocols we rely on use
a constant number of rounds. Thus adding a new block also takes a constant
number of rounds. Because a transaction, once diffused, will be included in the
next block and blocks are permanently attach to the blockchain, it takes at most
two blocks to include a newly received transaction.
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5 A Set of Ingredients

To solve the addressed problem, StakeCube relies on the orchestration of the
following ingredients.

Cryptographic Primitives. Digital signature together with random hash func-
tions allow the implementation of verifiable random functions (VRF) [21]. In a
VRF, a secret key sk allows the evaluation y of hash function h on input x as
well as the computation of a non-interactive proof that shows that the secret
key sk is the only one that can compute y. Verification of the proof is done with
respect to the public key pk only. The proof must remain sound even when pk
is computed maliciously and h(sk, x) must remain pseudorandom even when an
adversary can query values of h and proofs for them for any input value x′.

Byzantine Vector Consensus. A vector consensus protocol [12] is a Byzan-
tine resilient protocol where n participants agree on a vector representing the
input value of each participant. Validity condition states that in presence of f ≤
�(n − 1)/3� Byzantine nodes, the vector contains at least f + 1 non-null values,
and for each non-null value vi �= ⊥, 1 ≤ i ≤ n, this value was initially proposed by
participant i.

Random Beacon. A Random beacon is a service that provides a public source
of randomness. It was first proposed by Rabin [24] in the context of contract sign-
ing. In our case, we need the random beacon to be emulated by a distributed
protocol without trusted third parties, that is, a protocol that satisfies the fol-
lowing security properties:

1. Guaranteed output delivery. All honest participants eventually output a value.
2. Unpredictable. Any adversary’s ability to predict any information about the

beacon prior to it being published is negligible.
3. Unbiased. For all adversarial strategies, the output is statistically close to a

uniformly random string.
4. Publicly verifiable. The protocol also produces a proof that can be verified

by third parties to be convinced that a beacon is indeed the output of the
protocol.

Suitable instantiations for the distributed setting includes SCRAPE [9] and
RandHerd [25]. In the following we denote by μcore the minimum of the fractional
resiliency of the vector consensus and random beacon protocols.

Verifiable Byzantine Agreement. We use a verifiable Byzantine agreement
in order to agree on the next signed block despite corrupted shards. Our main
requirement for this algorithm is to be optimistic, i.e. efficient in the absence
of faults. Indeed, the analysis in Sect. 7 shows that the probability for a shard
to be corrupted exponentially decreases with shards core size. Any verifiable
Byzantine algorithm satisfying our assumptions can be used. We rely on the
solution proposed by Shen et al. [11] since it is leader-based, efficient and toler-
ant to temporary partitions. The fractional resiliency of this protocol is noted
μcorrupted.
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Distributed Hash Table (DHT). Distributed hash tables (DHTs) build their
topology according to structured graphs, and for most of them, the following
principles hold: each node of the system has an assigned identifier, and the
identifier space, e.g., the set of 256-bit strings, is partitioned among all the
nodes of the system. Nodes self-organize within the graph according to a distance
function based on the identifier space.

Sharded DHT. The notion of Sharded DHT is similar to a regular DHT,
except that each vertex of the DHT is a set of nodes instead of a single node.
That is, nodes gather together into shards, and shards self-organize into a DHT
graph topology. Sharded DHTs can be made robust to adversarial strategies
as achieved in SChord [15], and PeerCube [3], and robust to high churn as
achieved in PeerCube [3] by running Byzantine tolerant algorithms within each
shard. For these reasons, we rely on PeerCube architecture, while weakening its
model by removing the assumption of a global trusted party supplying verifiable
random identifier, and by removing the assumption of a static adversary. For
self-containment reasons, we now recall the main design features of PeerCube.
Briefly, this is a DHT that conforms to an hypercube. Each vertex (i.e. shard) of
the hypercube is dynamically formed by gathering nodes that are logically close
to each other according to a distance function applied on the identifier space.
Shards are built so that the respective common prefix of their members is never
a prefix of one-another. This guarantees that each shard has a unique common
prefix, that in turn serves as a shard’s label. The shard’s label characterizes the
position of the shard in the overall hypercubic topology, as in a regular DHT.
Shards size is upper and lower bounded. Whenever the size of shard S exceeds
a given value smax, S splits into two shards such that the label of each of these
two new shards is prefixed by S label, and whenever the size of S falls under
a given value smin, S merges with another shard to give rise to a new shard
whose label is a prefix of S label. Each shard self-organizes into two sets, the
core set and the spare set. The core set is a fixed-size random subset of the
whole shard. It is responsible for running the Byzantine agreement protocols in
order to guarantee that each shard behaves as a single and correct entity (by for
example forwarding all the join and lookup requests to their destination) despite
malicious participants [4]. Members of the spare set merely keep track of shard
state. Joining the core set only happens when some existing core member leaves,
in which case the new member of the core set is randomly elected among the
spare set. By doing this, nodes joining the system weakly impact the topology
of the hypercube [3].

6 Design Principles of StakeCube

StakeCube allows the creation of a permissionless distributed ledger in a PoS
setting. The key idea of StakeCube is to organise users (i.e. stakeholders)
into shards—such that the number of shards increases sub-linearly with the
total number of active UTXOs—and within each shard, to randomly choose a
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constant size committee in charge of executing the distributed algorithms that
contribute to the creation of blocks.

The randomization of shards members gives a statistical bound the number
of malicious participants sitting at each shards, ensuring the correct execution
of the agreement primitives. More precisely, we compute bounds that may still
cause some shards to have too much malicious participants (i.e. they become
corrupted shards), but the overall number of corrupted shards is bounded. This
technique allows us to fix a small shard size while keeping the ability to make
security-efficiency trade-offs.

Each block at height h in the blockchain is unique, and is obtained by running
an inter-shard agreement procedure among a sub-committee of shards.

To be able to tolerate the presence of a Byzantine adversary, we must guar-
antee that the adversary cannot predict the shards in which users will sit, and
that the sojourn time of users in their shard is limited. To achieve this, we intro-
duce the notion of unpredictable and perishable users’ credentials in Sect. 6.1.
Then to cope with this induced churn, we show how to update, sign a install the
shards’ views in Sect. 6.2. This process occurs right before the acceptation of a
new block. Finally, as described in Sect. 6.3 the creation of blocks is efficiently
handled by an agreement among a verifiable sub-committee of shards.

6.1 Unpredictable and Perishable Users’ Credentials

As described in Sect. 5, Peercube critically relies on a (global) trusted party
supplying verifiable random identifiers to nodes. In this section, we detail how
to construct those in our decentralized setting, using the already known pub-
lic keys and some randomness present in each block. For each unspent public
key, i.e. for each UTXO, owned by a user, a sequence of unpredictable and per-
ishable credentials are tightly assigned to her. Validity of a credential spans T
blocks, with T some positive integer. The credential σ assigned to user i for its
UTXO (pki, ski) is computed as follows. Let Bh0 be the block at height h0 of the
blockchain such that pki was created in Bh0 , i.e., it exists a transaction in Bh0

such that pki appears in the output list of that transaction. For any blockchain
height h ≥ h0 + T , such that UTXO (pki, ski) still exists when Bh is accepted
in the blockchain,

σpki
(h) := h(pki||Bh′ .ρ), where h′ := h0 + �h − h0

T
�T, (1)

with Bh′ .ρ a random number whose computation is detailed in Sect. 6.3. Sup-
pose that i’s UTXO (pki, ski) is created in block Bh. Then by Relation 1, i’s first
credential for UTXO (pki, ski) is computed based on the content of block Bh+T

and perishes at block Bh+2T . Then, i’s second credential for (pki, ski) is com-
puted based on the content of block Bh+2T and perishes at block Bh+3T , and so
on until i spends (pki, ski). User i’s credential uniquely characterizes the shard
to which user i is allowed to sit, and this shard is the one whose label prefixes
i’s current credential σpki

(h). By the non-inclusion property of PeerCube [3],
there does not exist a shard whose label is the prefix of another shard, and thus,
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there is a unique shard whose label prefixes credential σpki
(h). When her current

credential expires, i leaves the shard she is in, and if she wants to continue to
participate to StakeCube, joins a new shard based on her new credential.

There are a couple of details that should be noted.
1. User i does not need to participate in StakeCube for the entire life of her

UTXO (pki, ski). She can join StakeCube (i.e. join a shard) at any time h
under credential σpki

(h), however once a user joins her shard, she must stay
online (and actively participates if she is a core member) until σpki

(h) expires.
As a result, there does not exist any explicit leave request. A leave simply
consists in not issuing a join request upon credential renewal. A consequence
of this rule is that, in case user i participates under credential σpki

(h) and
spends her UTXO (pki, ski) before σpki

(h) expires, then i continues to par-
ticipate under σpki

(h) until σpki
(h) expires. Note that because a transaction

only grants credentials after a delay, this rule does not allow a user to simul-
taneously own multiple credentials for the same stake. Note also that if i is
disconnected for a small amount of time this does not jeopardized the safety
of the shard only its liveness.

2. Recall that the adversary has a bounded fraction μ of stake in StakeCube.
To defend StakeCube against Sybil attacks (i.e., the fact that the adversary
creates a considerable number of UTXOs with the objective of overpopulating
each shard with malicious owners of those UTXOs), we require that each
UTXO cannot be credited with more than M stake, with M some predefined
constant. Consequently, by the fact that for any h > 0 one credential σ(h)
represents exactly one UTXO, there is a bound μcred > μ on the fraction
of malicious credentials in StakeCube, which is reached when all malicious
UTXOs have 1 stake and all honest ones maximize their stake, i.e., each
honest UTXO has M stake. Note that UTXOs with M ′ stake, such that
M ′ > M may be handled by granting them 	M ′/M	 credentials, although
we do not treat this case explicitly. Section 7 analyzes the distribution of
malicious credentials among shards.

Regarding the behavior of the adversary, there are a couple of remarks to
note.
1. At any time, the adversary might spend some selected UTXOs in order to create

new ones and thus new credentials with the objective of targeting some shards.
However, because of the initial T blocks delay required to obtain the first cre-
dential for an UTXO (see Relation 1), any newly created UTXO will give rise to
a credential only after all existing credentials are renewed as well. Therefore, the
adversary has no preferred strategy regarding transactions and forced renewal.

2. Each block Bh contains a random seed, denoted by Bh.ρ, which cannot, by
construction, be either biased or predictable before the block is created (how
such seeds are generated is detailed in Sect. 6.3). Thus by Relation 1, the
adversary cannot determine nor influence the value of renewed credentials.
Consequently, for any blockchain height h ≥ 0 and for any pki, σpki

(h + T )
is unpredictable while for any 0 ≤ h′ ≤ h, the sequence (σpki

(h′ + T ))0≤h′≤h

is computable and verifiable from the blockchain.
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6.2 Shard Membership

As described above, during the period of time that elapses between the creation
of an UTXO to its spending, the UTXO owner can participate to the blockchain
construction by successively joining a series of shards. In practice this may give
rise to a voluminous amount of join requests, which might be highly prejudicial to
StakeCube’s scalability and efficiency if each joining request led to the insertion
of the newcomer in the core which run the distributed operations. Rather, by
relying on PeerCube design (see Sect. 5), a newcomer joins the spare set of the
shard and not its core set. This newcomer will be a candidate for being elected
as a member of the core set whenever the core set will undergo a membership
modification. Management of the view composition, and election in the core set
is the purpose of the remaining of the section.

View of a Shard. The view of a shard S reflects the composition of both its
core and spare sets, denoted respectively by Sc and Ss. Update of the view is
strongly correlated to blockchain events: any block appended to the blockchain
is preceded, in each shard, by the update and the installation of the shard view.
In the following, the view of shard S installed right before block Bh is appended
to the blockchain is denoted by viewS(h). We have viewS(h) = (Sc(h),Ss(h)),
where Sc(h) (resp. Ss(h)) represent the composition of S’s core set (resp. spare
set) at time h.

Update of the Shard View. When a newcomer (i.e. a user under a valid
credential) issues a request to join her shard S, her request is propagated and
broadcast to the members of Sc. Core members i locally store the join request
in their buffer bi of pending requests. Note that expiration of credentials do
not need to be locally memorized, prior to being handled by the view update
algorithm, since by Relation 1, credentials can only expire when a new block is
appended to the blockchain. Let viewS(h − 1) be the current view of S when a
(honest) core member i ∈ Sc(h−1) receives some valid block Bh (Sect. 6.3 details
the creation of blocks). The following three steps are successively executed:

1. A Byzantine vector agreement protocol is run among Sc(h − 1) members to
decide on the set of newcomers: core members i propose their local buffer
bi, and the outcome of the protocol is a vector v(h) of newcomers such that
non-null values for honest core members i are equal to their buffer bi. Each
honest core member i replaces its local buffer bi with the union of the users
of the decided vector. We have bi = ∪bj∈v(h),bj �=⊥bj .

2. Each user i ∈ Sc(h−1) removes from bi the set rS(h) of users whose credential
expires with Bh. User i initializes a new spare set Ss(h) with Ss(h) = bi ∪
Ss(h − 1) \ rS(h), and orders Ss(h).

3. Each user i ∈ Sc(h − 1) initializes a new core set Sc(h) with Sc(h) = Sc(h −
1)\ rS(h). If Sc(h−1)∩ rS(h) �= ∅, some previous core members i ∈ Sc(h−1)
have credential that expire with Bh. As a consequence, an election among the
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users of Ss(h) is carried out for i’s replacement, so as to keep |Sc(h)| = smin.
The core election works as follows:
(a) A random beacon protocol is run among Sc(h − 1) members to decide on

a common random seed ρ.
(b) A pseudo-random number generator PRG(ρ) is initialized with ρ as seed.
(c) PRG(ρ) is used to draw a random number j ∈ �1, |Ss(h)|�. The j-th

member of Ss(h) is removed from Ss(h) and added to Sc(h). This process
is repeated until |Sc(h)| = smin.

Once these steps are completed, each core member j installs her new view
viewj

S(h) with the new values of Sc(h) and Ss(h), signs it, and sends it to the
spare members. Once a spare receives μcoresmin+1 signatures on the same view,
it installs it. In the meantime, each core member j resets its buffer bj = ∅. Note
that multiple join requests may lead a shard S to split into two shards, or, on
the contrary, may lead two shards S ′ and S ′′ to merge within a single one S.
The treatment of such topological changes are omitted in the above procedure
for space reasons, but can be derived from [2].

To summarize, the shard membership procedure ensures that, for any shard S
of StakeCube, all members of S install the same view viewS(h) before append-
ing block Bh to their copy of the blockchain.

Diffusing Views. Merely installing the new view for each shard is not sufficient.
We need the other shards of StakeCube to maintain this knowledge to be able
to verify any signed information exchanged during inter-shard communication
(e.g. during the block proposal procedure, see Sect. 6.3). Therefore, whenever
a new view viewS(h) is installed along with its μcoresmin + 1 signatures, it is
also broadcast to the whole network as a notification of the view update. Note
that shards only store the last view viewS′(h) of any other shard S ′ and not the
whole history of S ′ views. Moreover, a new view viewS′(h + 1), can be verified
against the last view viewS′(h), so that corrupted shards can only lie on their
core members and omit newcomers.

6.3 Construction of the Next Block of the Blockchain

We propose a Byzantine resilient cross-shard mechanism to agree on a unique
valid block, despite the presence of at most fshard corrupted shards (see Sect. 7
for fshard computation). Indeed, the presence of an adaptive adversary may
compromise the safety of some shards by succeeding in having more than a pro-
portion μcore of malicious users sitting in their core set. Although the probability
of such event can be made arbitrarily low (see the analysis in Sect. 7), we must
handle it. The presence of corrupted shards put us in the same situation as in a
consensus protocol: given the same initial chain, any shard is able to create the
next block, and the decision must be a unique block, despite malicious users lying
or not responding. As will be shortly described, agreeing on a unique valid block
is efficiently and robustly achieved by running a Verifiable Byzantine Agreement
among a subset of the shards of StakeCube randomly selected.
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Reaching Consensus on the Next Block. The process of creating a new
block Bh starts right after Bh−1 has been accepted. A committee of shards,
denoted in the sequel by C, is elected among the shards of StakeCube. The
election of each of these shards relies on the seed of block Bh−1, derived from
the random beacon protocol. Once elected, committee C executes a verifiable
Byzantine agreement to decide on the unique block Bh to be appended to the
blockchain. The main steps of this process are as follows:

1. All shards S compute the elected committee C, similarly to the core election
procedure (see Sect. 6.2), i.e.,
(a) Let L be the set of all the shards’ labels (recall from Sect. 6.2 that each

shard diffuses its new view viewS(h)). L is then ordered through a canon-
ical order.

(b) A pseudo-random number generator PRG(Bh−1.ρ) is initialized, where
Bh−1.ρ is the seed of the last block Bh−1.

(c) PRG(Bh−1.ρ) is used to draw a random number j ∈ �1, |L|�. The j-
th member of L is removed from L and added to C (initially initial-
ized to ∅). This process is repeated until C contains sC shards, with
sC = (fshard/μcorrupted) + 1. Recall that fshard is the maximal num-
ber of corrupted shards in StakeCube (whose computation is presented
in Sect. 7), and μcorrupted is the fraction of malicious nodes tolerated by
the Verifiable Byzantine Agreement protocol (see Sect. 5).

2. Members of committee C run the verifiable Byzantine Agreement protocol,
with their proposed block Bh as input (the construction of the proposed block
is described in the next paragraph). Finally the decision is a block Bh′ signed
by 2fshard + 1 shards.

3. Block bh is broadcast in StakeCube and appended to StakeCube users’
copy of the blockchain.

Security Remark: By definition of sC, committee C cannot be corrupted, inde-
pendently of the shards selected by the election. Committee C is still chosen
randomly for two reasons. First, it naturally spreads the load of creating a block
across the whole network. Second, it prevents corrupted shards from trying to
manipulate the election process to get in the committee and slow it down. Note
that at this stage a random seed is already available from the last block and
thus there is no need to run a distributed random beacon.

Efficiency Remark: We rely on a leader-based Byzantine Agreement algorithm to
benefit from its optimistic efficiency. Indeed, since fshard can be made arbitrarily
small (see Sect. 7), and the members of committee C are randomly selected, we
expect the first leader to almost always be an honest shard.

Construction of the Proposed Block. We finally describe how each shard
S of C constructs its block Bh (see the above case 2). The construction results
from an agreement on the content of block Bh among the core members of S
and on the generation of the seed of Bh. Let viewS(h) = (Sc(h),Ss(h)) be the
current view of shard S.
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1. Each core member in Sc(h) proposes (i) its list of pending transactions and
(ii) its VRF value seeded with Bh−1.ρ together with the VRF proof, to the
Byzantine Vector consensus protocol. The decision value is a vector of input
values, such that non-null values for honest core members are equal to their
list of pending transactions and their VRF value and VRF proof.

2. Construction of block Bh is then realized as follows.
– The hash of the previous block Bh−1 is inserted in Bh’s header.
– The union of transactions from the decided vector defines Bh’s body.
– The hash of the concatenation of the VRF values of the decided vector

defines the seed Bh.ρ of Bh.
– The list of VRF proofs of the decided vector is inserted in Bh’s header as

a proof of randomness for seed Bh.ρ.

The reason why the random beacon protocol is not reused is because it is sup-
posed to be run within a non corrupted shard. For the We have different require-
ments. First, we want the seed to be close to random even in the case of corrupted
shards. This does come at the cost of giving the adversary a bounded number of
choices for the seed. Second, we do not mind that a corrupted shard may decide
to abort the computation of the seed, because we cannot prevent it from not
proposing a block anyway.

7 Security Analysis

We analyze the probability that some of the shards of StakeCube are corrupted,
that is that their core set contain more than μcoresmin malicious users. In the
following we denote by ν the fraction of corrupted shards. To conduct such
an analysis, we examine a simplified scenario. We approximate the behavior of
StakeCube by taking the amortized execution over one period of T blocks.
That is, we study the corruption probability when all the shards are built and
the cores are elected over one period. This is equivalent to the scenario in which
all credentials are synchronously renewed at the same block. Note that, for a
fixed number of active users, the number of credential renewals, core election,
and topological changes is statistically the same for every period of length T .

7.1 Corruption Probability of a Core Set During a Period of T
Blocks

Let s be the size of shard S, μshard be a bound on the ratio of malicious users
within S, and μcore be the fractional resiliency of both the Vector Agreement
protocol and Random Beacon one. We assume that 0 ≤ μshard < μcore ≤ μ. We
compute an upper bound on the probability that the fraction of malicious users in
the core set is higher than μcore by the end of the period. As described in Sect. 6.2,
the core set is elected by randomly taking smin credentials from shard S, without
replacement. Let Y be the random variable equal to the number of malicious
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credentials within the core, i.e., Y follows an hypergeometric distribution whose
probability mass function is given by

∀k ∈ �0, smin�,P[Y = k] =
(�sμshard�

k

)(�s(1 − μshard)�
smin − k

)(
s

smin

)−1

. (2)

We are interested in deriving the probability that after T core renewals the
core set S is corrupted. The core set corruption refers to the situation where
the proportion of malicious credentials in the core exceeds μcore. Applying the
Hoeffding bound [17] on Relation (2) leads to the following bound

P[Y/smin ≥ μcore] ≤ e−2(μcore−μshard)
2smin .

Thus, assuming that the fraction of malicious users in a shard is below μshard, the
corruption probability over T blocks exponentially decreases when smin increases.

7.2 Distribution of Malicious Credentials Among All Shards

The above section assumes that the fraction of malicious users in all the shards
is below μshard. In this section we compute an upper bound on the probabil-
ity that this assumption does not hold. We make simplification assumptions on
how the shards are formed. First, we assume that there are K shards of size
S, giving rise to i.e. N := SK credentials in total. Second, we assume that
shards configuration in StakeCube during the concerned period results from a
random credential assignment to all the shards. Recall that μcred is the overall
ratio of malicious credentials. Let Xi be the random variable representing the
number of malicious credentials in the i-th shard, with 1 < i < K. And finally,
we note X = (X1, . . . , Xk) ∈ {0, S}K be the vector made of these K random
variables. Random variable X represents the distribution of malicious credentials
in StakeCube. It follows a multivariate hypergeometric distribution, i.e., each
of the N = SK credentials is assigned to a shard. We analyse the shard assign-
ment of a random sample of size Nμcred. Let I be the set of vectors representing
StakeCube when Nμcred credentials are malicious. We have

I = {x ∈ [0, S]K |
K∑

i=1

xi = Nμcred}

�and

∀x ∈ I,P[X = x] =
(

N

Nμcred

)−1 K∏
i=1

(
S

xi

)
.

We are interested in computing the probability that a given shard j among
the K ones contains more than m malicious credentials, that is, let Im,j be
defined as follows

Im,j = {x ∈ I | xj ≥ m}.
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We have:

P[Xj ≥ m] = P[X ∈ Im,j ]

=
∑

x∈Im,j

(
N

Nμcred

)−1 K∏
i=1

(
S

xi

)

=
S∑

k=m

(
S

k

)(
N

Nμcred

)−1 ∑
x1,...,xK−1∈[0,S]∑

1≤i≤K−1 xi=Nμcred−k

∏
1≤i≤K,i �=j

(
S

xi

)
.

Knowing that
∑

1≤i≤K−1 xi = Nμcred − k and
∑

1≤i≤K−1 S = N − S, we
can apply Vandermonde’s identity:

∀j,P[X ∈ Im,j ] =
S∑

k=m

(
N

Nμcred

)−1(
S

k

)(
N − S

Nμcred − k

)
.

We now get our result by applying first the (univariate) Hoeffding bound, and
then the union bound.

∀j,P[X ∈ ISμshard,j ] ≤ e−2(μshard−μcred)
2S .

Thus the probability that at least one shard of the system contains more than
μshardS malicious credentials is bounded by

P[X ∈ ∪K
j=1ISμshard,j ] ≤ Ke−2(μshard−μcred)

2S

= e−(2(μshard−μcred)
2S−lnK).

Term ∪K
j=1ISμshard,j is the set of shards assignations to malicious credentials,

such that at least one shard has a fraction greater than or equal to μshard of
malicious credentials. Moreover, due to the union bound, this upper bound also
holds if the shards have different sizes and S is the minimum, hence, we can
simply use S := smin. As for K, the worst case is reached when there is a
maximal number of shards, i.e. K := N/smin.

7.3 Putting it All Together

In the previous subsection we got exponentially decreasing bounds on the proba-
bility that at least one shard is corrupted, i.e., proving security when the bound
on the number of malicious shards fshard is set to 0. We let for future work the
generalization of this calculation with arbitrary values of fshard, which would
give us tighter parameters.

The adversary has a fraction μ of stake. Requiring each credential to be asso-
ciated to at most M stake gives us the following (worst case) ratio of malicious
credentials, which is reached when each malicious UTXOs has 1 stake and each
honest one maximizes its stake, i.e., has M stake. We then have:

μcred =
1

1 + M−1(μ−1 − 1)
.
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Thus M should be as small as possible to decrease the adversary effective
stake. However low values of M may require users to participate with a large
number of credentials in parallel, increasing the communication cost for individ-
ual users. Knowing μ and security parameter κ, the parameters μshard and smin

can be obtained by solving the following inequalities

μshard ≤ μcred +

√
κ − ln N

smin

2smin
and smin ≥ κ

2(μcore − μshard)2
.

8 Conclusion and Future Work

In this paper we have presented StakeCube a new blockchain protocol which
aims at improving scalability of the block-wise Byzantine agreement approach
by combining sharding techniques, users presence and stake transfer to operate
in a PoS setting. Each block at height h in the blockchain is by design unique
(no fork), and once a block is accepted in the blockchain, the next one is created
by a sub-committee of shards whose selection depends on the random seed of
the last accepted block.

The next step is to take into account the stake associated with each credential
as weights into both the core election and the election of the shard in charge of
creating the next block. This will allow us to get rid of the μcred − μ gain in
adversarial power, while keeping the remaining of the security arguments similar.
More generally, refinements of the security analysis will give us the ability to
instantiate StakeCube with better parameters while keeping the same security
level.

We also plan to implement a prototype of StakeCube to demonstrate its
efficiency and scalability properties, and to showcase some possible applications.

Acknowledgements. We are thankful to Gérard Memmi (LTCI Telecom ParisTech),
and David Leporini, Guillaume Hebert and Thomas Domingos (Atos BDS) for their
fruitful discussions. This work was carried as part of the Blockchain Advanced Research
& Technologies (BART) Initiative and the Institute for Technological Research Sys-
temX, and therefore granted with public funds within the scope of the French Program
Investissements d’Avenir.

References

1. Abraham, I., Malkhi, D.: The blockchain consensus layer and BFT. Bull. Eur.
Assoc. Theor. Comput. Sci. 3(123) (2017)

2. Anceaume, E., Sericola, B., Ludinard, R., Tronel, F.: Modeling and evaluating
targeted attacks in large scale dynamic systems. In: International Conference on
Dependable Systems and Networks (DSN) (2011)

3. Anceaume, E., Ludinard, R., Ravoaja, A., Brasileiro, F.: PeerCube: a hypercube-
based P2P overlay robust against collusion and churn. In: IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO) (2008)



164 A. Durand et al.

4. Anceaume, E., Ludinard, R., Sericola, B.: Performance evaluation of large-scale
dynamic systems. ACM SIGMETRICS Perform. Eval. Rev. 39(4), 108–117 (2012)

5. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is of
the essence. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
538–557. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_31

6. Awerbuch, B., Scheideler, C.: Towards scalable and robust overay networks. In:
International Workshop on Peer-to-Peer Systems (IPTPS) (2007)

7. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS) (2018)

8. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8_3

9. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_27

10. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–90 (1988)

11. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand agreement: Super Fast
and Partition Resilient Byzantine Agreement. Technical report (2018). https://
eprint.iacr.org/2018/377

12. Correia, M., Neves, N.F., Veríssimo, P.: From consensus to atomic broadcast: time-
free byzantine-resistant protocols without signatures. Comput. J. 49(1), 82–96
(2006)

13. Daian, P., Pass, R., Shi, E.: Snow White: Provably Secure Proofs of Stake. Cryp-
tology ePrint Archive, Report 2016/919 (2016). https://eprint.iacr.org/2016/919

14. EOS.IO: Technical white paper v2 (2019). https://github.com/EOSIO/Documen
tation/blob/master/TechnicalWhitePaper.md. Accessed 03 Oct 2019

15. Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In: Bro-
dal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer,
Heidelberg (2005). https://doi.org/10.1007/11561071_71

16. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Symposium on Operating Systems Prin-
ciples (SOSP) (2017)

17. Hoeffding, W.: Probability Inequalities for sums of bounded random variables. In:
Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding. Springer
Series in Statistics (Perspectives in Statistics). Springer, New York (1994). https://
doi.org/10.1007/978-1-4612-0865-5_26

18. Intel: Hyperledger Sawtooth description (2019). https://sawtooth.hyperledger.org/
docs/core/releases/latest/architecture/poet.html. Accessed 03 Oct 2019

19. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A Provably Secure
Proof-of-Stake Blockchain Protocol. Cryptology ePrint Archive, Report 2016/889
(2016). https://eprint.iacr.org/2016/889

20. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
Omniledger: a secure, scale-out, decentralized ledger via sharding. In: IEEE Sym-
posium on Security and Privacy (SSP) (2018)

21. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: IEEE Sym-
posium on Foundations of Computer Science (1999)

22. Moran, T., Orlov, I.: Proofs of space-time and rational proofs of storage. In: Cryp-
tology ePrint Archive, Report 2016/035 (2016)

https://doi.org/10.1007/978-3-319-10879-7_31
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-61204-1_27
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2016/919
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://doi.org/10.1007/11561071_71
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://eprint.iacr.org/2016/889


StakeCube: Combining Sharding and Proof-of-Stake 165

23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

24. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–
267 (1983)

25. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: IEEE Sympo-
sium on Security and Privacy (SSP) (2017)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


Dissecting Tendermint

Yackolley Amoussou-Guenou1,2(B), Antonella Del Pozzo1,
Maria Potop-Butucaru2, and Sara Tucci-Piergiovanni1

1 CEA LIST, PC 174, 91191 Gif-sur-Yvette, France
yackolley.amoussou-guenou@cea.fr
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Abstract. In this paper we analyze Tendermint, proposed in [12], one of
the most popular blockchains based on PBFT Consensus. Our method-
ology consists in identifying the algorithmic principles of Tendermint
necessary for a specific system model. The current paper dissects Ten-
dermint under two communication models: synchronous and eventually
synchronous ones. This methodology allowed to identify bugs in prelimi-
nary versions of the protocol and to prove its correctness under the most
adversarial conditions: an eventually synchronous communication model
under Byzantine faults. The message complexity of Tendermint is O(n3).

Keywords: BFT Consensus · Blockchain · Tendermint · Complexity

1 Introduction

A blockchain is a distributed ledger implementing an append-only list of blocks
chained to each other, it serves as an immutable and non repudiable ledger in a
system composed of untrusted processes. The append operation needs to preserve
the chain shape of the data structure, leading to the necessity to have a mecha-
nism allowing processes to agree on the next block to append. Bitcoin blockchain,
for example, employs the proof-of-work mechanism [19], that is, processes willing
to append a new block have to solve a crypto-puzzle and the winning process
will append the new block. While this mechanism does not require a real coordi-
nation between the processes participating to the Bitcoin system, it might lead
to inconsistencies. Indeed, if more than one process solves the crypto-puzzle to
extend the same last block then processes may have blockchains with different
suffix as long as the conflict is unsolved.

In blockchain systems area the recent tendency is to privilege solutions based
on distributed agreement than proof-of-work. This is motivated by the fact that
the majority of proof-of-work based solutions such as Bitcoin or Ethereum are
energetically not viable when efficiency is targeted. Moreover proof of work solu-
tions guarantee the existence of an unique chain only with high probability which
is the major drawback for using blockchains in industrial applications. That is,
forks even though they are rare do still happen with an impact on the consistency
guarantees offered by the system and consensus algorithms play an important
role to prevent inconsistencies. In [8] the authors proved that consensus [27] is
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necessary in order to avoid forks. Therefore, alternatives to proof-of-work have
been recently considered and interestingly, the research in blockchain systems
revived a branch of distributed systems research: Byzantine fault-tolerant pro-
tocols having PBFT consensus protocol as ambassador. It should be noted that
PBFT solutions cannot be used in permissionless settings if the number of par-
ticipants to the agreement is not known in advance. That is, in permissionless
settings, for each block, a subset of processes (called validators in Tendermint)
runs a Byzantine fault-tolerant consensus algorithm to propose the next block
to be appended to the blockchain. All the existing solutions for PBFT consensus
use the number of validators as hardcore information in their algorithm.

Related Work. In the blockchain realm, there exist several Byzantine Fault Tol-
erant Consensus based blockchain proposals (e.g., [3,9,16,17], and [23]).

The consensus problem, as proved in the seminal FLP paper [21], cannot
be solved in an asynchronous message-passing system (when there are no upper
bounds on the message delivery delay) in the presence of one faulty (crash) pro-
cess. Moreover, in [27], the authors prove that consensus cannot be solved in
presence of f Byzantine faulty processes if the overall number of processes n is
less than 3f + 1 in a synchronous message-passing system (where the message
delivery delay is upper bounded). In between those impossibility results, it is still
possible to solve consensus in an asynchronous setting, either adding randomness
[11] (which also proved the impossibility result for n ≤ 3f for any asynchronous
solution) or partial synchrony as in Dwork et al. [18] (DLS) where BFT Consen-
sus is solved an eventual synchronous message-passing system (there is a time
τ after which there is an upper bound on the message delivery delay). DLS
preserves safety during the asynchronous period and the termination only after
τ , when the message transfer delay becomes bounded. The message complexity
of this protocol is O(n4) per epoch and it needs O(n) epochs before deciding.
Finally, Castro and Liskov proposed PBFT [14], a leader-based protocol that
optimizes the performances of the previous solution. If the leader is correct the
complexity boils down to O(n2). Otherwise, a view change mechanism takes
place, to change the leader and resume the computation. The view-change is
used to avoid that, in case of faulty leader, if some correct process decides on a
value v, the other correct processes cannot decide on a value v′ �= v when the
new leader proposes a new value. Such mechanism implies that when a leader
is suspected to be faulty, all processes have to collect enough evidences for the
view-change. That is, the view-change message contains at least 2f + 1 signed
messages and these messages are sent from at least 2f +1 processes which yields
a message complexity of O(n2). These messages are then sent to all processes,
the view-change has then O(n3) message complexity. Since the protocol termi-
nates when there is a correct leader, which may happen for the first time in
epoch f + 1, then in the worst case scenario it has a message complexity of
O(n4). Interestingly, Tendermint as well as similar recent approaches e.g. [2] use
an alternative mechanism for leader replacement that allows to drop message
complexity to O(n3). Basically, processes instead of exchanging all the messages
they already delivered (used previously to trigger a view change), locally keep
track of potentially decided values.
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Our Contribution. In this paper we analyze Tendermint proposed in [12] as one of
the most promising but not fully analyzed blockchain protocols that implements
Byzantine fault tolerant consensus. Tendermint targets an eventual synchronous
system [18], which means that safety has to be guaranteed in the asynchronous
periods and liveness in synchronous ones, when a subset of processes can be
affected by Byzantine failures. To analyze the protocol, we dissect Tendermint
identifying the techniques used to address different challenges in the considered
system model: synchronous round-based communication model and eventual syn-
chronous communication model. For each type of model we provide the corre-
sponding algorithm (a variant of Tendermint [12]) and compute its complexity.
Interestingly, and contrary to the classical view-changed based approaches, mes-
sage complexity in the worst case scenario is O(n3). This is because processes,
instead of exchanging all the messages they already delivered, locally keep track
of potentially decided values to preserve the safety, hence reducing the message
complexity. In the same spirit, HotStuff [2] (a concurrent proposal) incurs the
same message complexity, sharing with Tendermint a linear proposer replace-
ment. Note as well that the proposed methodology allowed us to identify bugs
(see [5]) in the preliminary versions of the protocol ([12,26]).

This paper and [6] target two different consensus algorithms that are core
of two different releases of Tendermint blockchain. In [6] the authors reverse-
engineered and then formalized the Tendermint blockchain protocol implemented
initially by the Tendermint Foundation [31]. [6] allowed to identify several bugs in
the initial version of Tendermint implementation (see [5]). Moreover, we proved
that the termination property cannot be guaranteed in general, and hence an
additional assumption on the execution is needed to solve Consensus. After the
publication of our findings, Tendermint foundation proposed a new algorithm,
[12], that is currently implemented as consensus-core for the new release of Ten-
dermint. The new version of the protocol claimed to include new mechanisms
that removed the need of additional assumptions in order to guarantee the ter-
mination. The pseudo-code proposed in [12] and further implemented by Ten-
dermint foundation still had some bugs at the time when we started to analyse
it, which we reported [30].

In order to help practitioners, and in particular Tendermint foundation, to
detect easily their errors and compare with the existing state of the art, in this
paper we decided to have a bottom up approach by identifying the minimal
building blocks a PBFT-like protocol should include in order to solve consen-
sus function on the considered system and communication model (going from
synchronous to eventually synchronous) and the behavior of Byzantine nodes.
We used Tendermint as case study and identified the mechanisms needed by the
protocol in order to be correct. Our study resulted in three variants of the pro-
tocol for which we analyzed the correctness and the complexity. In this paper,
we included two of the three algorithms (we decided to left aside the trivial one
where Byzantines have a symmetrical behavior and the communication is syn-
chronous). Moreover, the complexity analysis proposed in our paper may help
both practitioners and academics to compare Tendermint to the state of the art
which was an open question so far.
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2 Model

The system is composed of an infinite set Π of sequential processes, namely
Π = {p1, . . . }; Sequential means that a process executes one step at a time.
This does not prevent it from executing several threads with an appropriate
multiplexing. As local processing time are negligible with respect to message
transfer delays, they are considered as equal to zero.

Arrival Model. We assume a finite arrival model [4], i.e. the system has
infinitely many processes Π but each run has only finitely many. The size of the
set Πρ ⊂ Π of processes that participate in each system run is not a priori-known.
We also consider a finite subset V ⊆ Πρ of validators. The set V may change
during any system run and its size n is a-priori known. A process is promoted in
V based on a so-called merit parameter, which can model for instance its stake
in proof-of-stake blockchains. Note that in the current Tendermint implementa-
tion, it is a separate module included in the Cosmos project [25] that is in charge
of implementing the selection of V .

Failure Model. There is no bound on processes that can exhibit a Byzantine
behaviour [29] in the system, but up to f validators can exhibit a Byzantine
behaviour at each point of the execution. A Byzantine process is a process that
behaves arbitrarily. A process (or validator) that exhibits a Byzantine behaviour
is called faulty. Otherwise, it is non-faulty or correct or honest. To be able to
solve the consensus problem, we assume that f < n/3 and more precisely we
consider n = 3f + 1.

Communication Model. Processes communicate by exchanging messages
through an eventually synchronous network [18]. Eventually Synchronous means
that after a finite unknown time τ > 0 there is a bound δ on the message transfer
delay. When τ = 0 the network is synchronous.

In the following we assume the presence of a broadcast primitive. A process
pi by invoking the primitive broadcast(〈TAG,m〉) broadcasts a message, where
TAG is the type of the message, and m its content. To simplify the presentation,
it is assumed that a process can send messages to itself. The primitive broadcast()
is a best effort broadcast, which means that when a correct process broadcasts
a value, eventually all the correct processes deliver it. A process pi receives
a message by executing the primitive delivery(). Messages are created with a
digital signature, and we assume that digital signatures cannot be forged. When
a process pi delivers a message, it knows the process pj that created the message.

Let us note that the assumed broadcast primitive in an open dynamic network
can be implemented through gossiping, i.e. each process sends the message to
current neighbors in the underlying dynamic network graph. In these settings
the finite arrival model is a necessary condition for the system to show eventual
synchrony. Intuitively, a finite arrival implies that message losses due to topology
changes are bounded, so that the propagation delay of a message between two
processes not directly connected can be bounded [10,28].
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Round-Based Execution Model. We assume that each correct process
evolves in rounds. A round consists of three phases, in order: (i) a Send phase,
where the process broadcasts messages computed during the last round, or a
default messages for the first round; (ii) a Delivery phase where the process col-
lects messages sent during the current and previous rounds; and (iii) a Compute
phase where the process uses the messages delivered to change its state. At the
end of a round a process exits from the current round and starts the next round.
Each round has a finite duration, we consider the Send and the Compute phase
as being atomic, they are executed instantaneously, but not the Delivery phase.
In a synchronous network, we assume the duration of the Delivery phase, and so
of the round is δ. We assume that processes have no access to a global clock but
have access to local clocks, these clocks might not be synchronized with each
other but are allowed to have bounded clock skew.

Problem Definition. In this paper we analyze the correctness of Tendermint
protocol with respect to the consensus specification: Termination, every correct
process eventually decides some value; Integrity, no correct process decides
twice; Agreement, if there is a correct process that decides a value v, then
eventually all the correct processes decide v; Validity [13,15], a decided value
is valid, it satisfies the predefined predicate denoted valid().

3 Tendermint Algorithms

Tendermint BFT Consensus protocol [12,26,31] is a variant of PBFT consensus,
at the core layer of the Tendermint blockchain.

The algorithm follows the rotating coordinator paradigm i.e., for each new
block to be appended there is a proposer, chosen among the validators, that pro-
poses the block. If the block is not decided then a new proposer is selected and
so on, until a block is decided by all the correct validators and consensus termi-
nates. In the following we present variants of [12] in synchronous and eventual
synchronous communication models.

Basic Principles of the Protocol. Each block in the blockchain is characterized
by its height h, which is the distance in terms of blocks from the genesis block,
which is at height 0. For each new height, the two protocols (Algorithm 2 for the
synchronous case and Algorithm 4 for the eventual synchronous case) share a
common algorithmic structure, they proceed in epochs, and each epoch e consists
in three rounds: the PRE-PROPOSE round; the PROPOSE round; and the
VOTE round. During the PRE-PROPOSE round, the proposer pre-proposes a
value v to all the other validators. During the PROPOSE round, if a validator
accepts v then it proposes such value. If a validator receives enough proposals
for the same value v then it votes for v during the VOTE round. Finally, if a
validator receives enough votes for v, it decides on v. In this case, enough means
at least 2f +1 occurrences of the same value from 2f +1 different validators and
from each validator only the first value delivered for each round is considered,
(cf. Algorithm 1).
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If the proposer is correct then it pre-proposes the same value to all the
2f +1 correct validators. All the 2f +1 correct validators propose such value, it
follows that all the 2f + 1 correct validators vote for such value and decide for
it. If the proposer is Byzantine it can pre-propose different values to different
correct validators, creating a partition in the proposal value set collected by
validators. Depending on what the remaining Byzantine validators do, some
correct validators may decide on a value v and some other may not1, then a
new epoch starts. In order to not violate the agreement property, validators that
have not decided yet in the previous epoch must only decide for v, for this reason
validators, before vote for some value v, lock on that value, i.e., they will refuse
to propose a further pre-proposed value different than v.

Information from One Epoch to the Next. lockedV alue and validV alue vari-
ables2 carry the potentially decided value from one epoch to the next one. The
lockedV alue idea is the following. If one correct validator decides on v, it means
that it collected 2f + 1 votes for v during the VOTE phase, since there are at
most f Byzantine validators thus there are at least f + 1 correct validators that
voted for v and those validators must not vote for any other different value than
v. For this reason if a validator delivers 2f + 1 proposals for v during the PRO-
POSE round it sets its lockedV alue to v. Since each new pre-proposed value
v′ is proposed if v′ is equal to lockedV alue or validV alue (not true for at lest
f + 1 correct validators that set lockedV alue to v), then there can be at most
2f possible proposals for v′ that are not enough to lock and vote for v′, i.e.,
it is not possible to decide for any value different than v. On the other side, if
no correct validator decided yet, Byzantine faulty validators may force different
correct validators to lock on different values. Let us consider a scenario where
the proposer is Byzantine and proposes v to f + 1 correct validators and then f
Byzantine validators make x ≤ f of them lock on v and a similar scenario can
happen with another value v′ so that we can have different correct validators,
let us say y ≤ f locked on a different value. If any new pre-proposal is checked
only against the lockedV alue then a correct validator locked on a value v refuses
(does not propose) all values different from v, it means that when some correct
validator is locked, the proposer needs to propose some of the value on which the
correct validators are locked on, but such value, in order to be accepted cannot
be checked only against the lockedV alue because we may never have enough
correct validators proposing such value. For this reason validators keep track of
the validV alue and by construction of the algorithm all correct validators have
the same validV alue at the end of the epoch (in the synchronous period). Such
value is then used to set the value to pre-propose and it is further used along
with lockedV alue to accept or not a pre-proposed value.

1 Since there are 3f + 1 validators, there cannot be two different values that collect
2f + 1 distinct votes in the same epoch.

2 validV alue was not present in the previous version of Tendermint [26], that was
suffering from the Live Lock bug [1].
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Algorithm 1. Messages management for validator pi

1: upon 〈TYPE, h, e, message〉 from validator pj do
2: if �c : (〈TYPE, h, e, c〉, pj) ∈ messagesSet then
3: messagesSeti ← messagesSeti ∪ (〈TYPE, h, e, message〉, pj)

Messages Syntax. When the validator pi broadcasts a message 〈TAG, h, e,m〉,
where m contains a value v, we say that pi pre-proposes, proposes or votes v if
TAG=PRE-PROPOSE, TAG=PROPOSE, TAG=VOTE, respectively.

Variables and Data Structures. h is an integer representing the consensus
instance the validator is currently executing. ei is an integer representing the
epoch where the validator pi is, we note that for each height, a validator may
have multiple epochs. decisioni is the decision of validator pi for the consensus
instance h. proposali is the value the validator pi proposes. votei is the value
the validator pi votes. lockedV aluei stores a value which is potentially decided
by some other validator. If validator pi delivers more than 2f + 1 proposes
for the same value v during its PROPOSE round, it sets lockedV aluei to v.
validV aluei stores a value which is potentially decided by some other validator.
If the validator pi delivers at least 2f + 1 proposes for the same value v (from
different validators) whether during its PROPOSE round or its VOTE round,
it sets validV aluei to v. validV alidi is the last value that a validator delivered
at least 2f + 1 times, and can be different than lockedV aluei. The latter two
variables are used as follows: if pi is the next proposer then pi pre-proposes
validV alidi if different from nil. Otherwise, if pi is a validator, it checks the new
pre-proposal against lockedV aluei and validV alidi if those are different from
nil.

Functions. We denote as V alue the set containing all blocks, as MemPool
the set containing all the transactions, and as Messages the set containing all
messages.

– proposer : Height × Epoch → V ⊆ Πρ is a deterministic function which gives
the proposer out of the validators set for a given epoch at a given height in a
round robin fashion.

– valid : V alue → Bool is an application dependent predicate that is satisfied
if the given value is valid w.r.t. the blockchain. If there is a value v such that
valid(v) = true, we say that v is valid. Note that we set valid(nil) = false.

– getValue() return a valid value.
– sendByProposer : Height × Epoch × V alue → Bool is an predicate that gives
true if the given value has been pre-proposed by the proposer of the given
height during the given epoch.

– 2f + 1 : P(Messages) → Bool: checks if there are at least 2f + 1 proposals
(resp. votes) in the given set of messages.

Everything defined above is common to the two algorithms. In each section
we specify the data structures relative to a specific version of the algorithm.
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Algorithm 2. Simplified Algorithm part 1 for height h executed at validator pi

1: Initialization:
2: ei := 0 /* This current epoch number */
3: decisioni := nil /* This variable stocks the decision of the validator pi */
4: lockedV aluei := nil; validV aluei := nil
5: proposali := getV alue() /* This variable stocks the value the validator will (pre-)propose */
6: vi := nil /* Local variable stocking the pre-preposal if delivered */
7: votei := nil

8: Round PRE-PROPOSE(ei) :
9: Send phase:
10: if decisioni 	= nil then
11: ∀v, pj : (〈VOTE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈VOTE, h, ei, v〉
12: return
13: if proposer(h, ei) = pi then
14: broadcast 〈PRE − PROPOSE, h, ei, proposali〉 to all validators
15: Delivery phase:
16: while (timerPrePropose not expired) do
17: if ∃v : sendByProposer(h, ei, v) then
18: vi ← v /* v is the value sent by the proposer */
19: Compute phase:
20: if !valid(vi) then
21: proposali ← nil /* Note that valid(nil) is set to false */
22: else
23: if validV aluei = nil ∨ vi ∈ {lockedV aluei, validV aluei} then
24: proposali ← vi

25: else
26: proposali ← nil

3.1 Byzantine Synchronous System

In Algorithms 1, 2 and 3 we describe the algorithm to solve consensus in a
synchronous system in presence of Byzantine failures. The algorithm proceeds
in 3 rounds for any given epoch at height h:

– Round PRE-PROPOSE (lines 8–26, Algorithm 2): If the validator pi is the
proposer of the epoch, it pre-proposes its proposal value, otherwise, it waits
for the proposal from the proposer. The proposal value of the proposer is its
validV aluei if validV aluei �= nil. If a validator pj delivers the pre-proposal
from the proposer of the epoch, pj checks the validity of the pre-proposal and
if to accept it with respect to the values in validV aluei and lockedV aluei. If
the pre-proposal is accepted and valid, pj sets its proposal proposalj to the
pre-proposal, otherwise it sets it to nil.

– Round PROPOSE (lines 1–13, Algorithm 3): During the PROPOSE round,
each validator broadcasts its proposal, and collects the proposals sent by the
other validators. After the Delivery phase, validator pi has a set of proposals,
and checks if v, pre-proposed by the proposer, was proposed by at least 2f +
1 different validators, if it is the case, and the value is valid, then pi sets
votei, validV aluei and lockedV aluei to v, otherwise it sets votei to nil.

– Round VOTE (lines 14–32, Algorithm 3): In the round VOTE, a correct
validator pi votes votei and broadcasts all the proposals it delivered during
the current epoch. Then pi collects all the messages that were broadcast.
First pi checks if it has delivered at least 2f + 1 of proposal for a value v′

pre-proposed by the proposer of the epoch, in that case, it sets validV aluei
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Algorithm 3. Simplified Algorithm part 2 for height h executed at validator pi

1: Round PROPOSE(ei) :
2: Send phase:
3: if proposali 	= nil then
4: broadcast 〈PROPOSE, h, ei, proposali〉 to all validators
5: Delivery phase:
6: while (timerPropose not expires) do{} /* Collect messages */
7: Compute phase:
8: if ∃v : 2f + 1〈PROPOSE, h, ei, v〉 ∧ valid(v) ∧ sendByProposer(h, ei, v) then
9: lockedV aluei ← v
10: validV aluei ← v
11: votei ← v
12: else
13: votei ← nil

14: Round VOTE(ei) :
15: Send phase:
16: ∀v, pj : (〈PROPOSE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈PROPOSE, h, ei, v〉
17: if votei 	= nil then
18: broadcast 〈VOTE, h, ei, votei〉
19: Delivery phase:
20: while (timerVote not expires) do{} /* Collect messages */
21: Compute phase:
22: if ∃v′ : 2f + 1〈PROPOSE, h, ei, v′〉 ∧ valid(v′) ∧ sendByProposer(h, ei, v′) then
23: validV aluei ← v′

24: if ∃vd, ed : 2f + 1〈VOTE, h, ed, vd〉 ∧ valid(vd) ∧ decisioni = nil then
25: decisioni ← vd

26: else
27: ei ← ei + 1
28: vi ← nil
29: if validV aluei 	= nil then
30: proposali ← validV aluei

31: else
32: proposali ← getV alue()

to that value then it checks if a value v′ pre-proposed by the proposer of the
current epoch is valid and has at least 2f + 1 votes, if it is the case, then
pi decides v′ and goes to the next height; otherwise it increases the epoch
number and updates the value of proposali with respect to validV aluei.

3.2 Byzantine Eventual Synchronous System

This section presents the Algorithm 1, and Algorithms 4, 5 that solve Consensus
in an eventually synchronous model in presence of Byzantine faulty validators.
This algorithm has been reported in an early version of [12] with the bugs fixed
in [30]. To achieve the consensus in this setting two additional variables need to
be used, (i) lockedEpochi is an integer representing the last epoch where valida-
tor pi updated lockedV aluei, and (ii) validEpochi is an integer which represents
the last epoch where pi updates validV aluei. These two new variables are used
to not violate the agreement property during the asynchronous period. During
such period different epochs may overlap at different validators, then it is needed
to keep track of the relative epoch when a validator locks in order to not accept
“outdated” information generated during a previous epoch. Moreover, a round
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Algorithm 4. Tendermint Consensus part 1 for height h executed by pi

1: Initialization:
2: ei := 0 /* Current epoch number */
3: decisioni := nil /* This variable stocks the decision of the validator pi */
4: lockedV aluei := nil; validV aluei := nil
5: lockedEpochi := −1; validEpochi := −1
6: proposali := getV alue() /* This variable stocks the value the validator will (pre-)propose */
7: vi := nil /* Local variable stocking the pre-preposal if delivered */
8: validEpochj := nil /* Local variable stocking the proposer’s validEpoch */
9: votei := nil /* This variable stock the value the validator will vote for */
10: timeoutPrePropose := ΔPre-propose; timeoutPropose := ΔPropose; timeoutVote := ΔVote

11: Round PRE-PROPOSE :
12: Send phase:
13: if decisioni 	= nil then
14: ∀v, pj : (〈VOTE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈VOTE, h, ei, v〉
15: return
16: if proposer(h, ei) = pi then
17: broadcast 〈PRE − PROPOSE, h, ei, proposali, validEpochi〉
18: Delivery phase:
19: set timerPrePropose to timeoutPrePropose
20: while (timerPrePropose not expired) ∧ ¬(∃vj , ej : sendByProposer(h, ei, vj , ej)) do
21: if ∃vj , ej : sendByProposer(h, ei, vj , ej) then
22: vi ← vj /* vj is the value sent by the proposer */
23: validEpochj ← ej /* ej is the validEpoch sent by the proposer */
24: if ¬(∃v, epochProp : sendByProposer(h, ei, v, epochProp)) then
25: timeoutPrePropose ← timeoutPrePropose + 1
26: Compute phase:
27: if 2f + 1 〈PROPOSE, h, validEpochj , vi〉 ∧ validEpochj ≥ lockedEpochi ∧ validEpochj <

ei ∧ valid(vi) then
28: proposali ← vi

29: else
30: if !valid(vi) ∨ (lockedEpochi > validEpochj ∧ lockedV aluei 	= vi) then
31: proposali ← nil /* Note that valid(nil) is set to false */
32: if valid(vi) ∧ (lockedEpochi = −1 ∨ lockedV aluei = vi) then
33: proposali ← vi

duration management mechanism needs to be introduced, i.e. increasing time-
outs. In the previous algorithm, rounds were lasting δ, the known message delay.
In an eventually synchronous system such approach is not feasible, since dur-
ing the asynchronous period messages may take unbounded delay before being
delivered. It follows that, since there are at most f Byzantine faulty validators,
when a validator delivers messages from n − f different validators it can termi-
nate the delivery phase, but such phase may last an unbounded time. On the
contrary, in the PRE-PROPOSE round only the proposer is sending a message,
and generally messages may take a lot of time before being delivered, for such
reasons timeouts need to be used in order to manage the rounds duration and
adapted to message delays, such that once the system enters in the synchronous
period, rounds last enough for messages send during the round to be delivered
before the end of it.

The algorithm proceeds in 3 rounds for any given epoch e at height h. The
description is mainly the same as in Sect. 3.1, thus in the following we underline
just the differences:

– Round PRE-PROPOSE (lines 11–33, Algorithm 4): The description of this
round is mainly the same as before. We highlight the fact that a correct
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Algorithm 5. Tendermint Consensus part 2 for height h executed by pi

1: Round PROPOSE :
2: Send phase:
3: if proposali 	= nil then
4: broadcast 〈PROPOSE, h, ei, proposali〉
5: broadcast 〈HeartBeat,PROPOSE, h, ei〉
6: Delivery phase:
7: set timerPropose to timeoutPropose
8: while (timerPropose not expires) ∧ ¬(2f + 1〈HeartBeat,PROPOSE, h, ei〉) do{} /* Note

that the HeartBeat messages should be from different validators */
9: if ¬(2f + 1〈HeartBeat,PROPOSE, h, ei〉) then
10: timeoutPropose ← timeoutPropose + 1
11: Compute phase:
12: if ∃v′ : 2f + 1〈PROPOSE, h, ei, v′〉 ∧ valid(v′) ∧ sendByProposer(h, ei, v′) then
13: lockedV aluei ← v′

14: lockedEpochi ← ei

15: validV aluei ← v′

16: validEpochi ← ei

17: votei ← v′

18: else
19: votei ← nil

20: Round VOTE :
21: Send phase:
22: ∀v, pj : (〈PROPOSE, h, ei, v〉, pj) ∈ messagesSeti,broadcast〈PROPOSE, h, ei, v〉
23: if votei 	= nil then
24: broadcast 〈VOTE, h, ei, votei〉
25: broadcast 〈HeartBeat,VOTE, h, ei〉
26: Delivery phase:
27: set timerVote to timeoutVote
28: while (timerVote not expires) ∧ ¬(2f + 1〈HeartBeat,VOTE, h, ei〉) do{}
29: if ¬(2f + 1〈HeartBeat,VOTE, h, ei〉) then
30: timeoutVote ← timeoutVote + 1
31: Compute phase:
32: if ∃v′′ : 2f + 1〈PROPOSE, h, ei, v′′〉 ∧ valid(v′′) ∧ sendByProposer(h, ei, v′′) then
33: validV aluei ← v′′

34: validEpochi ← ei

35: if ∃vd, ed : 2f + 1〈VOTE, h, ed, vd〉 ∧ valid(vd) ∧ decisioni = nil then
36: decisioni ← vd

37: else
38: ei ← ei + 1
39: vi ← nil
40: if validV aluei 	= nil then
41: proposali ← validV aluei

42: else
43: proposali ← getV alue()

validator pi takes into account also lockedEpochi in order to accept a pre-
proposed value.

– Round PROPOSE (lines 1–19, Algorithm 5): When a correct validator pi

updates lockedV aluei (resp. validV aluei), it also update lockedEpochi (resp.
validEpochi) to the current epoch.

– Round VOTE (lines 20–43, Algorithm 5): If a correct validator pi delivered
at least f + 1 same type of messages from an epoch higher than the current
one, pi moves directly to the PRE-PROPOSE round of that epoch and when
a correct validator pi updates validV aluei, it also update validEpochi to the
current epoch.
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We recall that each validator has a time-out for each round. If during a round
validator pi does not deliver at least 2f + 1 messages sent during that round (or
the pre-proposal for the PRE-PROPOSE round), the corresponding time-out is
increased. Those messages can be values or heartbeats, in the case in which a
correct validator has not a value to propose or vote.

3.3 Correctness Proof of Tendermint Algorithm in a Byzantine
Eventual Synchronous Setting

In this section, we prove the correctness of Algorithms 4 and 5 (Tendermint) in
an eventual synchronous system. Due to the lack of space, the missing proofs
can be found in the technical report [7].

Lemma 1 (Validity). In an eventual synchronous system, Tendermint verifies
the following property: A decided value satisfies the predefined predicate denoted
as valid().

Lemma 2 (Integrity). In an eventual synchronous system, Tendermint ver-
ifies the following property: No correct validator decides twice.

Lemma 3. Let v be a value, e an epoch, and the set Lv,e = {pj : pj correct ∧
lockedV aluej = v ∧ lockedEpochj = e at the end of epoch e}. In an eventual
synchronous system, Tendermint verifies the following property: If |Lv,e| ≥ f +1
then no correct validator pi will have lockedV aluei �= v ∧ lockedEpochi ≥ e, at
the end of each epoch e′ > e, moreover a validator in Lv,e only proposes v or nil
for each epoch e′ > e.

Lemma 4 (Agreement). In an eventual synchronous system, Tendermint ver-
ifies the following property: If there is a correct validator that decides a value v,
then eventually all the correct validators decide v.

Lemma 5 (Termination). In an eventual synchronous system,Tendermint ver-
ifies the following property: Every correct validator eventually decides some value.

Proof. By construction, if a correct validator does not deliver more than 2f +1
messages (or 1 from the proposer in the PRE-PROPOSE round) from different
validators during the corresponding round, it increases the duration of its round,
so eventually during the synchronous period of the system all the correct val-
idators will deliver the pre-proposal, proposals and votes from correct validators
respectively during the PRE-PROPOSE, PROPOSE and the VOTE round. Let
e be the first epoch after that time.

If a correct validator decides before e, by Lemma 4 all correct validators
decide which ends the proof. Otherwise at the beginning of epoch e, no correct
validator decides yet. Let pi be the proposer of e. We assume that pi is correct
and pre-propose v; v is valid since getV alue() always return a valid value (lines
6, Algorithm 4 & line 43, Algorithm 5), and validV aluei is always valid (lines
12 & 32, Algorithm 5). We have 2 cases:
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– Case 1: At the beginning of epoch e, |{pj : pj correct ∧ (lockedEpochj ≤
validEpochi ∨ lockedV aluej = v)}| ≥ 2f + 1.
Let pj be a correct validator where the condition lockedEpochj ≤
validEpochi∨ lockedV aluej = v holds. After the delivery of the pre-proposal
v from i, pj will update proposalj to v (lines 27–33, Algorithm 4). During the
PROPOSE round, pj proposes v (line 4, Algorithm 5), and since there are at
least 2f + 1 similar correct validators they will all propose v, and all correct
validators will deliver at least 2f + 1 proposals for v (line 7, Algorithm 5).
Correct validators will set their vote to v (lines 12–4, Algorithm 5), will vote
v, and will deliver these votes, so at least 2f + 1 of votes (lines 24 & 26,
Algorithm 5). Since we assume that no correct validators decided yet, and
since they deliver at least 2f + 1 votes for v, they will decide v (lines 35–36,
Algorithm 5).

– Case 2: At the beginning of epoch e, |{pj : pj correct ∧ (lockedEpochj ≤
validEpochi ∨ lockedV aluej = v)}| < 2f + 1.
Let pj be a correct validator where the condition lockedEpochj >
validEpochi ∧ lockedV aluej �= v holds. When pi will make the pre-proposal,
pj will set proposalj to nil (line 31, Algorithm 4) and will propose nil (line 4,
Algorithm 5).
By counting only the propose value of the correct validators, no value will
have at least 2f + 1 proposals for v. There are two cases:

• No correct validator delivers at least 2f + 1 proposals for v during the
PROPOSE round, so they will all set their vote to nil, vote nil and go to
the next epoch without changing their state (lines 19 & 24–26 & 37–43,
Algorithm 5).

• If there are some correct validators that delivers at least 2f +1 proposals
for v during the PROPOSE round, which means that some Byzantine
validators send proposals for v to those validators.
As in the previous case, they will vote for v, and since there are 2f +1 of
them, all correct validators will decide v. Otherwise, there are less than
2f +1 correct validators that deliver at least 2f +1 proposals for v. Only
them will vote for v (line 24, Algorithm 5). Without Byzantine validators,
there will be less than 2f + 1 vote for v, no correct validator will decide
(lines 35–36, Algorithm 5) and they will go to the next epoch, if Byzan-
tine validators send votes for v to a correct validator such as it delivers
at least 2f + 1 votes for v during VOTE round, then it will decide (lines
35–36, Algorithm 5), and by Lemma 4 all correct validators will eventu-
ally decide.
Let pk be one of the correct validators that delivers at least 2f + 1 pro-
posals for v during PROPOSE round, it means that lockedV aluek = v
and lockedEpochk = e. It follows that at the end of epoch e, all correct
validators will have validV alue = v and validEpoch = e.

If there is no decision, either no correct validator changes its state, otherwise
all correct validators change their state and have the same validV alue and
validEpoch, eventually a proposer of an epoch will satisfy the case 1, and
that ends the proof.



Dissecting Tendermint 179

If pi, the proposer of epoch e, is Byzantine and more than 2f+1 correct validators
delivered the same message during PRE-PROPOSE round, and the pre-proposal
is valid, the situation is like pi was correct. Otherwise, there are not enough
correct validators that delivered the pre-proposal, or if the pre-proposal is not
valid, then there will be less than 2f +1 correct validators that will propose that
value, which is similar to the case 2.

Since the proposer is selected in a round robin fashion, a correct validator
will eventually be the proposer, and correct validators will decide. �Lemma 5

Theorem 1. In an eventual synchronous system, Tendermint implements the
consensus specification.

3.4 Complexity of Tendermint Algorithm in a Byzantine Eventual
Synchronous Setting

Let us consider the following scenario after the asynchronous period (i.e., after
τ), in which in the first f epochs, ei+1, . . . , ei+f , there are f Byzantine proposers
that make lock only one correct validator at each epoch on f different values
with different lockedEpoch, ei+1, . . . , ei+f . Let pj be the last correct validator
that locked, and let v such value (lockedV aluej = v) with lockedEpochj = ei+f .
Then all the other correct validators have validV alue set to v and validEpoch
set to ei+f . This happens thanks to the fact that when a correct validator
locks on a value then at the end of the epoch every correct validator sets its
validV alue to that value. The algorithm terminates when a pre-proposal is pro-
posed and voted by more than 2f correct validators, i.e, when the pre-proposed
value has validEpoch greater equal than the validator lockedEpoch. Thus, dur-
ing the period of synchrony, the first correct proposer that proposes leads the
algorithm to terminate in f +1 rounds. Let us consider the case in which there f
correct validators locked on f different values with different lockedEpoch before
τ . Let us assume that pj is the last correct validator that locked on a value
v, thus it has the highest lockedEpoch but not all the correct validators have
their validV alue set to v (due to the asynchronous communication). Let us now
consider that after τ the first f proposers are Byzantines and stay silent. The fol-
lowing proposers are correct but their pre-propose value might not be accepted
by enough correct validators as long as pj , with the highest validEpoch and
lockedEpoch proposes. Which eventually happens due to the round robin selec-
tion function. Thus, the protocol terminates in a number of epochs proportional
to the number of validators O(n), while the lower bound to solve BFT Consen-
sus in the worst case scenario is f + 1 [20]. As for message complexity, since at
each epoch, all validators broadcast messages, it follows that during one epoch
the protocol uses O(n2) messages, thus in the worst case scenario the message
complexity is O(n3).
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In the following we address the bit complexity of Tendermint. In Tendermint,
each message is composed as follow:

– PRE-PROPOSE: The marker that the message is from the round PRE-PROPOSE;
two integers one for the current height, and the second for the current epoch;
the proposed value; and an integer representing the epoch on which the pro-
poser last updated its validV alue.

– PROPOSE: The marker that the message is from the round PROPOSE; two inte-
gers representing the current height and the current epoch; and a value which
is the proposed block.

– VOTE: The marker that the message is from the round VOTE; two integers
representing the current height and the current epoch; and a value which is
the voted block.

– HeartBeat: The marker that the HeartBeat is from the round VOTE or PROPOSE;
two integers representing the current height and the current epoch.

A correct validator keeps in memory, for each epoch for a given height, one
message for each type (PROPOSE, VOTE) and at most 2 messages of type HeartBeat
from each validator, and only one PRE-PROPOSE. A correct validator may have at
most 1 message from PRE-PROPOSE, n messages from PROPOSE, n messages from
VOTE, and 2n messages of type HeartBeat. Hence, for each epoch at any given
height, a validator stores at most 4n+1 messages of size O(log n). In the worst
case, for the whole execution, a validator may store O(n2) messages. Therefore,
the bit complexity in the worst case is O(n2 log n).

Note that [24] proposes a bit complexity of O(n3 log n) for an optimal round
complexity using a variant of the tree structure of the Exponential Information
Gathering protocol introduced in [22]. Clearly, there is a tradeoff between the
bit complexity and the round complexity of the Byzantine agreement.

4 Conclusion

The contribution of this work is twofold. First, it analyzes Tendermint consensus
protocol and provides detailed proof of its correctness and complexity. Second,
it dissects such protocol in order to link the algorithmic techniques to the con-
sidered system model. We believe that this methodology can contribute in mak-
ing Byzantine-tolerant consensus algorithms more understandable for developers
and practitioners.
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Abstract. We present CUDA-DTM, the first ever Distributed Trans-
actional Memory framework written in CUDA for large scale GPU clus-
ters. Transactional Memory has become an attractive auto-coherence
scheme for GPU applications with irregular memory access patterns due
to its ability to avoid serializing threads while still maintaining pro-
grammability. We extend GPU Software Transactional Memory to allow
threads across many GPUs to access a coherent distributed shared mem-
ory space and propose a scheme for GPU-to-GPU communication using
CUDA-Aware MPI. The performance of CUDA-DTM is evaluated using
a suite of seven irregular memory access benchmarks with varying degrees
of compute intensity, contention, and node-to-node communication fre-
quency. Using a cluster of 256 devices, our experiments show that GPU
clusters using CUDA-DTM can be up to 115x faster than CPU clusters.

Keywords: Distributed Transactional Memory · GPU cluster · CUDA

1 Introduction

Because today’s CPU clock speeds are increasing slowly, if at all, some compu-
tationally intensive applications are turning to specialized hardware accelerators
such as graphics processing units. Originally developed for graphics applications,
GPUs have become more versatile, and are now widely used for increasingly
complex scientific and machine learning applications. Though traditional GPU
applications required little or no coordination among concurrent threads, GPUs
are now routinely used for irregular applications that often require complex
synchronization schemes to ensure the integrity of data shared by concurrent
threads.

Conventional synchronization approaches typically rely on locking: a coher-
ence strategy in which a thread must acquire an exclusive lock before accessing
shared data. Though conceptually simple, locking schemes for irregular mem-
ory access applications are notoriously difficult to develop and debug on tra-
ditional systems due to well-known pitfalls: Priority Inversion occurs when a
lower-priority thread holding a lock is preempted by a higher-priority thread;
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M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 183–199, 2019.
https://doi.org/10.1007/978-3-030-31277-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_12


184 S. Irving et al.

Convoying occurs when a thread holding a lock is delayed, causing a queue of
waiting threads to form; and most importantly, a deadlock, in which overall
progress halts indefinitely, can occur if multiple threads attempt to acquire a
set of locks in different orders. These pitfalls are especially difficult to avoid
in GPU and cluster computing applications, where the degree of parallelism is
orders-of-magnitude higher than traditional applications.

Transactional Memory (TM) [8] is an increasingly popular alternative syn-
chronization model in which programmers simply mark the beginning and end of
critical sections so the system can treat those regions as “Transactions”, which
appear to execute atomically with respect to other transactions. At runtime,
a complex conflict-detection system, invisible to the programmer, guarantees
forward progress and that deadlocks cannot arise. The allure of Transactional
Memory is that it commonly achieves performance comparable to that of custom
lock-based solutions despite requiring only minimal effort. The programmabil-
ity advantages of Transactional Memory are magnified in situations where high
degrees of parallelism make lock-based solutions difficult to design and debug.

This paper investigates the performance of the first scalable Distributed
Transactional Memory (DTM) [9] system for large-scale clusters of GPUs. Indi-
vidual GPU threads are granted access to a coherent distributed shared memory
space and can perform fine-granularity remote memory operations without halt-
ing the kernel or halting other threads within the same warp. Inter-node commu-
nication is achieved using active support from the host CPU, which sends and
receives messages on behalf of the GPU. Coherence is automatically ensured
using Transactional Memory, which guarantees lock-freedom, serializability, and
forward progress while requiring minimal effort from programmers.

2 Related Work

There exists much prior work on the use of STM for single-device irregular
memory access applications on the GPU. Cederman et al. [2] first proposed the
use of STM on GPUs and evaluate two STM protocols. Xu et al. [17] proposed
GPUSTM with encounter-time lock sorting to avoid deadlocks. Holey et al. [10]
propose and evaluate multiple single-device GPU STM protocols. Shen et al. [15]
propose a priority-rule based STM system for GPUs in which ownership of data
objects can be stolen from other threads. Villegas et al. [16] propose APUTM,
an STM design in which transactions are simultaneously executed on the GPU
and host CPU. STM has been also used to maintain NVRAM persistence for
GPUs [5].

There also exists much prior work in the hardware acceleration of TM on
GPUs. Kilo TM [6] is a hardware-based GPU transactional memory system that
supports weakly-isolated transactions in GPU kernel code; this work has been
extended many times including by Chen et al. who recently described how to
relax read-write conflicts with multi-version memory and Snapshot Isolation [4]
and two early conflict resolution schemes [3].

There is much ongoing research in DTM for CPU clusters where it is most
commonly implemented using a data-flow model, in which transactions are



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 185

immobile and shared memory objects are dynamically moved between nodes [9].
DTM has been implemented in many software languages, most notably C++
[12]. There is ongoing research on how best to scale DTM to very large numbers
of threads [14].

3 Design

CUDA-DTM provides an API that allows GPU programmers to treat all GPUs
as a single unified compute resource and all storage resource as a single unified
memory space. Individual GPU threads across all devices are assigned unique
global thread IDs and allowed to access shared virtual memory space using
unique global virtual memory addresses. CUDA-DTM is designed for clusters
with heterogeneous nodes, each containing one or more GPU accelerators that
can access the network vicariously through the host processor.

Fig. 1. Cluster-level overview of CUDA-DTM.

A lightweight STM coherence protocol allows programmers to ensure
deadlock-free coherence automatically. CUDA-DTM uses custom GPU-to-GPU
communication on top of CUDA-Aware MPI. A cluster level overview of CUDA-
DTM is shown in Fig. 1.

CUDA-DTM is designed for heterogeneous clusters in which nodes are
equipped with GPU accelerators, which are the only devices executing transac-
tions, and host CPUs, which facilitate communication between GPUs. As shown
in Fig. 1, the current CUDA-DTM design assumes only the CPU has direct
access to the Network Interface Card (NIC) and thus must be responsible for all
network communication. Node-to-Node communication is achieved using MPI.
The stages for communication between devices and the network via the host in a
CUDA-DTM cluster are shown in Fig. 2. Only local threads are allowed to access
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Fig. 2. Node-level overview of CUDA-DTM showing the control-flow cycle.

the local virtual memory slice directly. A system of message passing, shared data
structures, and active support from host threads enable transactions to move to
the node containing the requisite data.

Slices of the shared memory space are stored in each GPUs memory. GPU
worker threads perform local data operations directly on the slice of virtual mem-
ory. CUDA-DTM uses a control-flow model, in which objects are immobile and
remote procedure calls are used to move work between nodes. When a transaction
accesses a virtual memory address that does not resolve locally, a remote proce-
dure call is used to create a new sub-transaction on the remote node, termed a
Remote Nested Transaction [13], by passing transaction inputs and an abbrevi-
ated execution history; this process is repeated each time transaction execution
accesses data outside the local memory slice, resulting in a hierarchy structure
in which top-level transactions may be comprised of many nested transactions,
each detecting its own conflicts and capable of being aborted and restarted inde-
pendently described in [13]. The entire hierarchy of nested transactions must be
committed simultaneously.

This control-flow Remote Nested Transaction strategy only requires remote
communication when transaction execution leaves the local memory slice,
thereby avoiding the frequent broadcasts required by some data-flow models
[9] and eliminating the need for a global clock, which can also have a significant
communication overhead.

In the current design, shared memory is evenly distributed between nodes,
and thus the owner of any virtual address can be found using the most-significant
8 bits of the 32-bit virtual address. Remote Nested Transaction creations and
forwarded inputs, for which the critical section has not yet started, are sent to
remote nodes by support threads on the host CPU. Outgoing messages are first
accumulated on device before a “ready to send” message is passed into pinned
host memory. A host support thread then uses CUDA-Aware MPI to send a
batch of messages to the correct destination.



CUDA-DTM: Distributed Transactional Memory for GPU Clusters 187

Fig. 3. Device-level overview of CUDA-DTM showing the two core data structures
facilitating transaction control-flow.

Support threads on the host processor ensure that incoming messages accu-
mulate in an “inbox” in GPU global memory. GPU worker threads pull work
assignments out of the inbox and perform work depending on the contents of
the message; types of messages in the system and the two data structures that
function as an inbox are shown in Fig. 3. The inbox consists of (1) an Input
Queue, which accumulates the parameters for un-started transactions, and (2)
the Transaction State Cache which is used to store the current state and access
history of transactions that have entered the critical section on the current node.
Host support threads are capable of accessing these structures during kernel exe-
cution using asynchronous CUDA memcpys.

Communication between GPUs is facilitated by two structures stored in
global memory: the Input Queue and the Transaction State Cache, as shown
in Fig. 3. The input queue receives blocks of inputs, each containing the parame-
ters for an un-started transaction; the size and usage of each input is application
specific. The Transaction State Cache is used to store undo-logs for Transactions
that are waiting for the result of a Remote Nested Transactions. Each working
thread on the GPU has a Transaction State Cache Set that it is responsible for
which is regularly polled when no other work is available.

During the execution of a transaction, a transaction state is created and
maintained in local memory; the active transaction state is modified when per-
forming atomic operations to the shadow entries stored locally using the conflict
detection rules described in Sect. 3.1. When execution of a transaction accesses
a virtual memory address outside of the current node and must create a Remote
Nested Transaction, an entry is created in the Transaction State Cache; the entry
contains the unique transaction ID, created using the unique thread ID shifted
and then added to a private counter, the largest address accessed so far, the
undo-log, and state variable indicating the transaction has not yet been aborted
nor committed. Remote Nested Transactions are created directly in the remote
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Transaction State Cache of the node containing the desired data; Transaction
State entries are stored such that they can be copied directly from memory using
CUDA-Aware MPI. Similarly, the results of a transaction can be sent directly
into the Transaction State cache – overwriting the state variable so working
threads can see that a transaction has been committed or aborted. Serialization
and deserialization are handled entirely by CUDA when communicating between
device and host and entirely by MPI when communicating between nodes.

3.1 Transactional Memory Model

CUDA-DTM detects and resolves conflicts using a modified version of the Pes-
simistic Software Transactional Memory (PSTM) protocol described in [10] built
on top of the virtual memory system described above. The use of a distributed
memory space is invisible to the transactional memory protocol as a new remote
nested transaction is created each time execution moves between nodes.

Ownership is tracked via 32-bit Shadow Entries that store the unique virtual
transaction id number for the transaction that is accessing the corresponding
object; shadow entries are all initialized to be 0. This design uses a single-copy
model in which there is only one write-able copy of each object in the system;
while this forces the serialization of accesses to individual objects, it also min-
imizes the storage and compute overheads of the system, allowing the working
data set size to be very large.

Threads in the same warp are allowed to execute simultaneous transactions
using a private state variable, which masks off threads that have been aborted
or are waiting for work. Live-locks are prevented using exponential back-off,
in which transactions that are aborted multiple times are forced to wait an
exponentially increasing length of time before restarting.

PSTM was chosen for our design due to its simplicity, low overheads, and its
eager conflict detection – which aborts transactions early and can help reduce
the number of remote messages.

When a transaction begins execution or is restarted: its local state is set
to ACTIVE and its local undo log is cleared, as shown in Algorithm 1. Each
transaction maintains a private undo log in local memory which can be used to
reverse changes to local shadow entries and shared memory in the event of an
abortion. A single transaction may create several Remote Nested Transactions,
each with its own private undo log on its respective node.
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At validation, any transaction whose state is still ACTIVE is ready to be
committed, as shown in Algorithm 2. A thread’s state is only set to ABORTED
after failing to acquire exclusive control over a specific shared memory address.
Setting the state to ABORTED effectively masks off threads when other threads
in the same warp are still ACTIVE.

If still ACTIVE at validation time, all changes performed by the transaction
must be made permanent by simply releasing all locks acquired during execution,
as shown in Algorithm 3. If this transaction is a Remote Nested Transaction that
was created by a parent transaction on another node, then a result message must
be sent to the parent node.

In the event of an abort, a thread must iterate through the undo log, restore
the original object values, and reset ownership of the corresponding shadow
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entries as shown in Algorithm 4. If this transaction is a Remote Nested Trans-
action, then a result message must be sent to the parent node indicating that all
transactions must be restarted; otherwise, the transaction will resume execution
when the thread warp re-executes TX begin.

For simplicity, we combine TX read and TX write into TX access, as shown
in Algorithm 5, because PSTM does not distinguish between read and write
operations when detecting conflicts. PSTM pessimistically assumes that any
address touched by a transaction will eventually be modified, and thus a trans-
action should immediately be aborted if it fails to acquire exclusive control over
a specific shared memory address.

Although transactions can perform speculative writes to shared memory,
other threads cannot read these values until the transaction commits and the
corresponding shadow entry is released.

When TX access is called using a virtual address that is mapped to a differ-
ent node, execution of the current transaction must be suspended and a Remote
Nested Transaction created. Execution of the parent transaction is suspended
by first storing the undo-log into the local Transaction State Cache and, if the
transaction originated on the current node, assigning it a unique ID. The work-
ing thread indicates the target node when creating a Remote Nested Transaction
Start message, along with variables required to begin execution on the remote
node, and includes the largest address accessed so far. This message is inserted
into the appropriate remote GPU Transaction State Cache where a new trans-
action state is created including a new local-only undo-log and a reference to the
originating node that will ultimately receive a message indicating the result of
the transaction. The process of creating a Remote Nested Transaction, suspend-
ing, and resuming transactions is handled entirely by the CUDA-DTM system
and is invisible to the programmer.

To gain ownership of an object, a thread will perform an Atomic Compare-
and-Swap operation (CAS) on the object’s corresponding shadow entry, as shown
in Algorithm 6. This CAS operation attempts to atomically exchange the current
shadow entry value with the thread’s unique, non-zero id. This exchange is only
performed if the expected value of “0” is found; otherwise, the function returns
the value discovered before the exchange. If the function returns a non-zero value,
then the current transaction has failed to gain ownership and may abort. If the
exchange is successful, the transaction is allowed to proceed.

Our modified PSTM allows transactions to use blocking atomic operations
when accessing addresses in increasing order; this is tracked by storing the max-
address-locked-so-far (termed “maxAddr” in Algorithm 5). This strategy reduces
the total number of abortions, as a transaction is only aborted when trying and
failing to acquire a lock out of order. Transactions can proceed as normal if
an out of order lock is successfully acquired on the first try. After successfully
accessing a shared memory object, its address and current value are inserted
into the undo log so that speculative changes can be reversed in the event of an
abortion (referred to as (addr, objects[addr]) in Algorithm 5).
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3.2 Communication

GPU worker threads provide virtual memory addresses to the CUDA-DTM API,
which performs the necessary communication operations under-the-hood. Oper-
ations using virtual addresses that are mapped to local physical addresses resolve
quickly because the object and shadow entry are stored in local global memory.
However, when a virtual address is mapped to a remote physical address, the API
automatically creates a Remote Nested Transaction that continues execution on
the remote device that contains the requisite data.

Fig. 4. Timing of the communication protocol stages showing the execution of a
Remote Nested Transaction (Color figure online).

The CUDA-DTM communication protocol uses three asynchronous messages
passes, as shown in Fig. 4: (1) the originating thread writes a message to an
outbox in global memory (orange dashed arrow) and then sets a “ready” Boolean
in host memory to “true”; (2) a support thread on the host detects that the
“ready” Boolean is true for a outbox and sends the message to the correct node
using an asynchronous MPI write to remote host memory (thick blue arrow);
(3) support threads in the remote node’s host receive the incoming message and
place it in the correct thread’s inbox using an asynchronous cudaMemCpy (green
line with circle on the end).

Depending on how aggressively messages are batched, all threads may have
a designated inbox in global device memory and a designated outbox in pinned
host memory.

After creating a Remote Nested Transaction, worker threads are allowed to
begin execution of a new transaction; worker threads cycle between responsibil-
ities when blocked waiting for remote communication by polling the transaction
state cache and input queue (purple double-sided arrow).

Figure 4 shows the timing of GPU-to-GPU communication for transactions
that have already begun the critical section of a transaction that increments
multiple addresses. (1) Warp 0 is initially un-diverged and all threads begin
virtual memory increments using different virtual memory addresses. Of the
threads shown, only thread 31’s virtual memory address is mapped to a physical
address on a remote node. Threads 0 and 1 are forced to wait while Thread 31
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enters its transaction state into the transaction state cache, builds a Remote
Nested Transaction creation message and notifies the host that a message is
waiting to send. Finally, the rest of the warp quickly make copies of the desired
objects from global memory. (2) In this example, the transaction state cache and
input queue have no available work for Thread 31 to begin, so Threads 0 and 1
continue to perform virtual memory operations while Thread 31 is masked off.
When other threads in the warp use the CUDA-DTM API, thread 31 polls the
input queue and checks the state of its suspended transaction waiting for work.
(3) After five memory operations, the warp finally re-converges when thread 31
receives the Nested Transaction Result.

(4) In this example, ten host threads are responsible for supporting the local
GPU worker threads. Responsibility for checking outboxes for readiness is evenly
divided among host threads, and thus support thread 1 sees outbox 31 is ready,
uses the message’s address to calculate its destination, and sends the message to
node 2 using an asynchronous MPI write operation. (5) On node 2, host support
thread 1 checks thread 31’s inbox, discovers a new message, and copies the
message into device memory using an asynchronous CUDA copy. (6) Thread 31
on Node 2, having been polling its inbox for incoming work, receives the result of
the Nested Transaction from Node 1-Thread 31, begins execution of the Nested
Transaction on the new node using a fresh-undo log. Here, the desired virtual
memory address resolves locally and the increment is completed successfully.
Having reached the end of the Nested Transaction, Node 2’s thread 31 commits
the transaction by releasing ownership of local shadow entries and destroying
the corresponding entry in the transaction state cache. Thread 31 creates a
new Nested Transaction Result message indicating the transaction is complete
and sends it to the originating Node 0. (7) Support thread 1 on host 2 detects
an outgoing message is ready and sends the message back to host 1 where (8)
support thread 1 on host 1 copies the final transaction result into the inbox of
the originating worker thread using CUDA asynchronous copy to device.

CUDA-Aware MPI is used in cases where outgoing messages can be batched
together in global memory, all bound for the same destination. In these cases,
only the owner of the final message added to the batch is forced to notify the
host that the batch is ready to send. The protocol is achieved using single-writer,
single-reader arrays when possible, avoiding the need for atomic operations that
increase overheads.

4 Experimental Analysis

For this experiment, we use a set of seven irregular memory access benchmarks
commonly used for studying TM; the benchmarks differ in length, composition,
contention, and shared data size. A 128-node cluster featuring two CPUs and
two GPUs per node is used for this experiment using a 56 GB/s Infiniband
oversubscribed mesh; each CPU is a 2.8 GHz E5-2689v2 Xeon processor with
64 GB RAM; each GPU is a NVIDIA Tesla K20x connected via an Intel 82801
PCIe bridge. CUDA-DTM is compiled using CUDA v9.2.148 and MVAPICH2
version 2.2.
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Coherence protocols are detailed in Table 1. Transactions are only executed
by GPU threads in the GPU and CUDA-DTM configurations.

For this work we use seven benchmarks commonly used to profile TM perfor-
mance: Histogram (HIST) [1], in which the results of a random number generator
are stored in a shared array; two variants of the Hash Table benchmark [7]: one
in which each transaction inserts a single element (HASH-S), and one where
each transaction inserts four elements simultaneously (HASH-M), as described
in [10]; Linked-List (LL) [7], in which elements are inserted into a sorted List;
KMeans [11]; and two graph algorithms: Single-Source Shortest Path (SSSP) [1]
and Graph-Cut (GCut), which finds the minimum cut of a graph using Karger’s
algorithm [4].

Table 1. Coherence protocols

Cluster Protocol Devices Max threads per device

CPU Single-CPU STM using std::threads 1 10

GPU Single-GPU STM 1 4096 × 1024

CPU DTM Hybrid-MPI DTM using std::threads 256 10

CUDA DTM DTM for GPUs, supported by Hybrid MPI 256 4096 × 1024 + 10 on Host

Using 128 nodes, CUDA-DTM achieves a harmonic mean speedup of 1,748x
over the single-node, multi-threaded CPU baseline across the 10 benchmarks
used in this study, as shown in Fig. 5. Similarly, CUDA-DTM achieves a harmonic
mean speedup of 6.9x over a CPU cluster of the same size due to the performance
advantages of the GPU architecture. CPU DTM achieves slightly less than a
256x speedup over a single CPU due to the high parallelizability of all seven
benchmarks and long run times hiding network latencies. The near-ideal speedup
of CPU DTM suggests that the 56 Gb/s bandwidth of the network is never
saturated with messages.

Fig. 5. The performances of CUDA-DTM and CPU DTM on a 128 node cluster nor-
malized by single-node CPU performance.

The speedups achieved by CUDA-DTM are best explained by the execution
time breakdown shown in Fig. 6. Using Figs. 5 and 6, we see that CUDA-DTM
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Fig. 6. (Left) CUDA-DTM execution time breakdown and (Right) CUDA-DTM
Speedup over CPU DTM vs. remote communication intensity.

achieves a speedup of 25 to 115x over the CPU for compute intensive bench-
marks, in which execution time is dominated by arithmetic operations, consis-
tent with the ∼70x higher theoretical peak throughput of the GPU. Similarly, we
see CUDA-DTM achieves a speedup of 2.5 to 4.2x for memory intensive bench-
marks, in which execution time is mostly spent chasing pointers through shared
memory, similar to the ∼4.2x higher theoretical bandwidth of the GPU (250
GB/s vs 59.7 GB/s). Finally, we see the smallest speedup for benchmarks with
high contention, as the advantages of the massive number of GPU threads is
limited by blocking atomic operations during the critical section. Remote com-
munication is only a very small percentage of the execution time despite varying
degrees of remote-communication intensity.

CUDA-DTM’s sensitivity to the remote-communication intensity of the
workload is visualized in Fig. 6. Here we see benchmarks with the most infre-
quent remote communications generally show the largest speedup over the CPU,
though the magnitude of the speedup is heavily impacted by the type of opera-
tions used between remote communication. Benchmarks with the highest com-
munication intensity are also memory-intensive, limiting the potential speedup
to the ∼4.2x higher memory bandwidth of the GPU. The best performing bench-
mark, KMeans, is very FLOP intensive, benefiting from both the high volume
of operations between remote messages and the ∼70x higher computational
throughput of the GPU. CUDA-DTM’s speedup will converge on 1x as the
remote intensity increases, because the GPU has no communication advantages
over the CPU.

Figure 7 shows the average number of messages generated per committed
transaction for each benchmark. GCut generates the fewest messages per trans-
action while showing the smallest speedup over the CPU while HIST, HASH-S,
and HASH-M all show largest speedups despite delivering at least one message
per transaction. LL generates over 100 messages per transaction while searching
the shared List for the proper data insertion point; we use this graph to suggest
that the bottleneck of each benchmark is not the inter-node bandwidth, as the
GPU has no inter-node bandwidth advantages over the CPU. KMeans generates
very few messages, as centroids are only globally averaged after long spans of
intra-node averaging. Similarly, GCut runs isolated instances of Karger’s algo-
rithm on each node, only generating messages when a new lowest-min-cut-so-far
is discovered.
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Fig. 7. (Left) Avg number of remote messages generated per transaction showing vary-
ing degrees of network intensity. (Right) Breakdown of remote message types.

The types of remote messages generated by each transaction are profiled in
Fig. 7. HIST, HASH-S, and LL almost never have critical sections that span
multiple nodes; nearly all messages are Forwards. HASH-M is similar to its -S
counterpart, except the critical section almost always spans multiple nodes; in
HASH-M threads will likely perform many non-atomic operations after locking
shadow entries but since the critical section has started the transaction must
always created Remote Nested Transactions. The remaining benchmarks gen-
erate Remote Nested Transaction Start- and Result- messages in nearly equal
number, due to low abortion rates and only using the network during the critical
section.

Compute intensive workloads have the potential for the largest speedup on
GPU clusters due to the ∼70x higher theoretical computational throughput.
Figure 8 shows that KMeans, HIST, and both HASH benchmarks have a much
higher compute intensity than the remaining benchmarks.

Fig. 8. Average number of arithmetic operations per committed transaction.

The KMeans benchmark exhibits nearly ideal behavior for the GPU and thus
show the best performance improvements over the CPU in our experiments, as
shown in Fig. 8. In these benchmarks, each transaction performs a long series
of distance calculations before acquiring a single lock for a brief critical section.
The computation intensity, and thus the magnitude of the GPU advantage, of
the benchmark is proportional to the number of dimensions for each data point.
Remote communication is minimal, as each node effectively runs in isolation
before using a binary-tree style reduction and time between these synchroniza-
tions is long. KMeans achieves more than the expected ∼70x speedup, and closer
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to the ideal ∼140x higher FLOPS reported in the K20x specifications due to the
very infrequent usage of remote communication and shared memory and com-
paratively higher FLOP density.

The Histogram, HASH-S, and HASH-M benchmarks show large improve-
ments over the CPU in our experiments, though not as large as KMeans, as
shown in Figure 8. These benchmarks perform a long series of shift and XOR
operations on integers to produce random keys to be inserted into a shared data
structure using an Xorshift random number generating algorithm. Performance
is again compute-bound, this time dominated by shift and XOR operations, and
thus the GPU has a large advantage. The large volume of integer operations is
again sufficient to hide the time spent searching for the linked-list insertion points
in both HASH benchmarks and the remote memory access resulting from each
transaction. Similarly, the increased contention of the HASH-M benchmark has
little impact on performance due to the compute intensity of the random key cal-
culations. Histogram outperforms HASH-S and HASH-M because it requires no
memory operations outside of the critical section; HASH-S and HASH-M require
long searches through linked lists, though HASH-M benefits from requiring 4x
as many integer operations as HASH-S.

We profile the number of non-atomic virtual memory operations per com-
mitted transaction and show the results in Fig. 9. Memory intensive applications
can benefit from the ∼4.2x higher bandwidth of GPU global memory and the
increased parallelism of cluster computing. We observe the LL benchmark has
the largest volume of memory accesses and recall from Fig. 6 that execution time
is overwhelmingly spent performing memory accesses.

Fig. 9. Average number of local memory accesses per transaction.

Figure 9 shows benchmarks that still benefit from the GPU’s higher global
memory bandwidth, despite the remote communication overheads. CUDA-DTM
shows a 4.2x speedup over the CPU DTM baseline, though performance is limited
by irregular memory access patterns, the overheads of transaction record keeping,
and warp divergence. Execution time is dominated by long searches through
memory, which hides the large average number of messages sent per transaction.
The expected speedup for memory-intensive applications is calculated using the
CPUs reported 59.7 GB/s max memory bandwidth and the GPUs reported
250 GB/s global memory bandwidth, as the much faster GPU shared memory
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cannot be used for atomic operations nor is it sufficiently large to store the
virtual memory slice.

We measure the contention of each benchmark using the average number of
shadow entries modified per transaction and the average time required to gain
data ownership. KMeans and HIST require a single lock, as their critical sections
make changes to one shared object.

Benchmarks that require changes to dynamic data structures require two
locks per insertion: one for allocating a new object and one for updating the
pointer on an existing object; as such, HASH-S and LL require exactly two locks
for each transaction and HASH-M, which inserts four objects simultaneously,
requires exactly eight. Contention in these benchmarks is low because changes
are diluted in a very large number of shared objects.

GCut requires exactly two locks to merge two lists together by updating a
pointer, though contention increases during execution as vertices are merged and
the number of shared objects decreases; as result, the amount of time required to
acquire each lock increases as shown in Fig. 10. SSSP is the only benchmarks in
this study which require a variable number of locks, though the average in each is
low. The average and maximum transaction length, 32 in each case, is determined
by the topology of the graph. The minimum, only one in each benchmark, is used
when the propagation rules do not require visiting any neighbors.

Fig. 10. Normalized wait time per lock.

Figure 10 shows the average amount of time required to successfully complete
a CAS operation on a single shadow entry. Times are normalized by that of
the HASH-S benchmark, in which contention is the lowest due to the large
number of shared objects and short amount of time spent in the critical section.
GCut has the longest wait time by far, due to the decreasing shared data size
and thus the increasing contention. Despite KMeans high performance, the time
spent acquiring locks is second highest due to very small shared memory size
and the large number of threads; KMeans performance is still dominated by
FLOPs and the impact of the high contention is hidden. However, SSSP and
GCut are unable to hide lock-acquisition latency using global memory accesses
or arithmetic operations, and their performance suffers as shown in Fig. 10, in
which they achieve only a fraction of the theoretical ∼4.2x speedup from higher
bandwidth.
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SSSP and Min-Cut are both graph based benchmarks where a subset of the
graph must be locked and modified by each transaction; performance is limited
by longer transactions (2 to 32 shadow entries each) resulting in high contention
(35x higher than the average of all benchmarks), which limits the advantages of
the GPUs high parallelism.

5 Conclusion

We propose CUDA-DTM, the first implementation of a coherent distributed
shared memory system for GPU clusters using Distributed Transactional Mem-
ory. This paper demonstrates that a GPU cluster can outperform a CPU cluster
in non-network intensive workloads despite irregular memory accesses and the
overheads of accessing virtual memory. We also demonstrate that the strengths
of the GPU, namely the high arithmetic operation throughput and higher mem-
ory bandwidth, offer large performance advantages over the CPU despite the
large number of moving pieces required to support irregular distributed mem-
ory access. Our design allows programmers to use coherent remote memory
operations without worrying about deadlocks from thread-divergence or lock
competition.
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Abstract. We consider the problem of synthesizing distributed algo-
rithms working on a specific execution context. We show it is possible to
use the linear time temporal logic in order to both specify the correctness
of algorithms and their execution contexts. We then provide a method
allowing to reduce the synthesis problem of finite state algorithms to
some model-checking problems. We finally apply our technique to auto-
matically generate algorithms for consensus and epsilon-agreement in the
case of two processes using the SMT solver Z3.

1 Introduction

On the Difficulty to Design Correct Distributed Algorithms. When designing
distributed algorithms, researchers have to deal with two main problems. First,
it is not always possible to find an algorithm which solves a specific task. For
instance, it is known that there is no algorithm for distributed consensus in the
full general case where processes are subject to failure and communication is
asynchronous [6]. Second, they have to prove that their algorithms are correct,
which can sometimes be very tedious due to the number of possible executions
to consider. Moreover distributed algorithms are often designed by assuming a
certain number of hypothesis which are sometimes difficult to properly formalize.

Even though most distributed algorithms for problems like leader election,
consensus, set agreement, or renaming, are not very long, their behavior is diffi-
cult to understand due to the numerous possible interleavings and their correct-
ness proofs are extremely intricate. Furthermore these proofs strongly depend
on the specific assumptions made on the execution context which specifies the
way the different processes are scheduled and when it is required for a process to
terminate. In the case of distributed algorithms with shared registers, interesting
execution contexts are for instance the wait-free model which requires that each
process terminates after a finite number of its own steps, no matter what the
other processes are doing [8] or the obstruction-free model where every process
that eventually executes in isolation has to terminate [9]. It is not an easy task
to describe formally such execution context and the difference between contexts
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can be crucial when searching for a corresponding distributed algorithm. As a
matter of fact, there is no wait-free distributed algorithm to solve consensus [10],
even with only two processes, but there exist algorithms in the obstruction-free
case.

Proving Correctness vs Synthesis. When one has designed a distributed algo-
rithm for a specific execution context, it remains to prove that it behaves
correctly. The most common way consists in providing a ‘manual’ proof hop-
ing that it covers all the possible cases. The drawback of this method is that
manual proofs are subject to bugs and they are sometimes long and difficult
to check. It is often the case that the algorithms and their specification are
described at a high-level point of view which may introduce some ambiguities in
the expected behaviors. Another approach consists in using automatic or partly
automatic techniques based on formal methods. For instance, the tool TLA+
[3] provides a language to write proofs of correctness which can be checked
automatically thanks to a proof system. This approach is much safer, how-
ever finding the correct proof arguments so that the proof system terminates
might be hard. For finite state distributed algorithms, another way is to rely on
model-checking [2,14]. Here, a model for the algorithm together with a formula
specifying its correctness, expressed for example in temporal logics like LTL or
CTL [5], are given, and checking whether the model satisfies the specification is
then automatic. This is the approach of the tool SPIN [11] which has allowed
to verify many algorithms.

These methods are useful when they succeed in showing that a distributed
algorithm is correct, but when it appears that the algorithm does not respect
its specification, then a new algorithm has to be conceived and the tedious work
begins again. One way to solve this issue is to design distributed algorithms which
are correct by construction. In other words, one provides a specification and then
an automatic tool synthesizes an algorithm for this specification. Synthesis has
been successfully applied to various kinds of systems, in particular to design
reactive systems which have to take decisions according to their environment:
in such cases, the synthesis problem consists in finding a winning strategy in a
two player games (see for instance [7]). In a context of distributed algorithms,
some recent works have developed some synthesis techniques in order to obtain
automatically some thresholds bounds for fault-tolerant distributed algorithms
[12]. The advantage of such methods is that the synthesis algorithm can be used
to produce many distributed algorithms and there is no need to prove that they
are correct, the correctness being ensured (automatically) by construction.

Our Contributions. In this work, we first define a simple model to describe
distributed algorithms for a finite number of processes communicating thanks to
shared registers. We then show that the correctness of these algorithms can be
specified by a formula of the linear time temporal logic LTL [13,15] and more
interestingly we show that classical execution contexts can also be specified in
LTL. We then provide a way to synthesize automatically distributed algorithms
from a specification. Following SAT-based model-checking approach [1], we have
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furthermore implemented our method in a prototype which relies on the SMT-
solver Z3 [4] and for some specific cases synthesizes non-trivial algorithms. Of
course the complexity is high and we can at present only generate algorithms for
two processes but they are interesting by themselves and meet their specification
w.r.t. several execution contexts.

2 Distributed Algorithms and Specification Language

2.1 Distributed Algorithms with Shared Memory

We begin by defining a model to represent distributed algorithms using shared
memory. In our model, each process is equipped with an atomic register that it
is the only one to write but that can be read by all the others processes (single
writer-multiple readers registers).

The processes manipulate a data set D including a set of input values DI ⊆ D,
a set of output values DO ⊆ D and a special value ⊥ ∈ D \ (DI ∪ DO) used to
characterize a register that has not yet been written. The actions performed by
the processes are of three types, they can either write a data in their register,
read the register of another process or decide a value. For a finite number of
processes n, we denote by Act(D, n) = {wr(d), re(k),dec(o) | d ∈ D \ {⊥}, k ∈
[1, n], o ∈ DO} where wr(d) stands for “write the value d to the register”, re(k)
for “read the register of process k”, and dec(o) for “output (or decide) the
value o”.

The action performed by a process at a specific instant depends on the val-
ues it has read in the registers of the other processes, we hence suppose that
each process stores a local copy of the shared registers that it modifies when it
performs a read or a write. Furthermore, in some cases, a process might perform
different actions with the same local copy of the registers, because for instance it
has stored some information on what has happened previously. This is the reason
why we equip each process with a local memory as well. A process looking at
its copy of the registers and at its memory value decides to perform an unique
action on its local view and to update its memory. According to this, we define
the code executed by a process in a distributed algorithm as follows.

Definition 1 (Process algorithm). A process algorithm P for an environ-
ment of n processes over the data set D is a tuple (M, δ) where:

1. M is a finite set corresponding to the local memory values of the process;
2. δ : DI ∪ (Dn ×M) �→ Act(D, n)×M is the action function which determines

the next action to be performed and the update of the local memory, such that
if δ(s) = (dec(o),m′) then s = (V,m) ∈ Dn × M and m = m′.

A pair (a,m) ∈ Act(D, n) × M is called a move. The last condition ensures
that a process first move cannot be to decide a value (this is only to ease some
definitions) and when a process has decided then it cannot do anything else and
its decision remains the same. Note that the first move to be performed by the
process from an input value i in DI is given by δ(i).
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A process state s for a process algorithm P is either an initial value in DI
or a pair (V,m) ∈ Dn × M where the first component corresponds to the local
view of the processes and m is the memory value. Let SP ⊆ DI ∪ (Dn × M)
the states associated to P . An initial state belongs to DI . We now define the
behavior of a process when it has access to a shared memory R ∈ Dn and its
identifier in the system is i ∈ [1, n]. For this we define a transition relation
i−→⊆ (SP ×Dn)× (Act(D, n)×M)× (SP ×Dn) such that (s,R)

i,(a,m′)−−−−−→ (s′,R′)
iff for all j ∈ [1, n] if i �= j then R[j] = R′[j], and we are in one of the the
following cases:

1. if a = wr(d) then R′[i] = d and s′ = (V′,m′) such that V′[i] = d and, for all
j ∈ [1, n] \ {i}, if s = (V,m) (i.e. s �∈ DI) then V′[j] = V[j] and otherwise
V′[j] = ⊥ i.e. the write action updates the corresponding shared register as
well as the local view.

2. if a = re(k) then R′ = R, and s′ = (V′,m′) (i.e. s �∈ DI) with V′[k] = R[k]
and, for all j ∈ [1, n] \ {k}, if s = (V,m) then V′[j] = V[j] and otherwise
V′[j] = ⊥, i.e. the read action copies the value of the shared register of process
k in the local view.

3. if a = dec(o) then R′ = R and s′ = s, i.e. the decide action does not change
the local state of any process, neither the shared registers.

The transition relation i−→P ⊆ (SP ×Dn)×(SP ×Dn) associated to the process

algorithm P is defined by: (s,R) i−→P (s′,R′) iff (s,R)
i,δ(s)−−−→ (s′,R′). Different

process algorithms can then be combined to form a distributed algorithm.

Definition 2 (Distributed algorithm). A n processes distributed algorithm
A over the data set D is given by P1⊗P2⊗. . .⊗Pn where Pi is a process algorithm
for an environment of n processes over the data set D for all i ∈ [1, n].

We now define the behavior of such a n processes distributed algorithm P1 ⊗
P2⊗. . .⊗Pn. We call a configuration of A a pair of vectors C = (S,R) where S is
a n dimensional vector such that S[i] ∈ SPi

represents the state for process i and
R ∈ Dn represents the values of the shared registers. We use CA to represent the
set of configurations of A. The initial configuration for the vector of input values
In ∈ Dn

I is then simply (In,R) with R[i] = ⊥ for all i ∈ [1, n]. Given a process
identifier i ∈ [1, n] and a pair (a,m) where a ∈ Act(D, n) and m is a memory

value for process i, we define the transition relations
i,(a,m)
====⇒ over configurations

as (S,R)
i,(a,m)
====⇒ (S′,R′) iff we have (S[i],R)

i,(a,m)−−−−→ (S′[i],R′) and for every
j �= i: S′[j] = S[j]. The execution step i=⇒A of process i for the distributed
algorithm A is defined by (S,R) i=⇒A (S′,R′) iff (S[i],R) i−→Pi

(S′[i],R′), note

that in that case we have (S,R)
i,δi(S[i])
=====⇒ (S′,R′) if δi is the action function

of Pi.
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2.2 Example

Algorithm 1 provides a classical representation of a tentative distributed algo-
rithm to solve consensus with two processes. Each process starts with an input
value V and the consensus goal is that both processes eventually decide the same
value which must be one of the initial values. It is well known that there is no
wait-free algorithm to solve consensus [6,8] hence this algorithm will not work
for any set of executions, in particular one could check that if the two processes
start with a different input value and if they are executed in a round-robin man-
ner (i.e. process 1 does one step and then process 2 does one and so on) then
none of the process will ever decide and they will exchange their value for ever.
We shall see however later that under some restrictions on the set of considered
executions this algorithm solves consensus.

Algorithm 1. Consensus algorithm for process i with i ∈ {1, 2}
Require: V: the input value of process i
1: while true do
2: r[i]:=V
3: tmp:=r[3-i]
4: if tmp=V or tmp = ⊥ then
5: Decide(V)
6: Exit()
7: else
8: V:=tmp
9: end if

10: end while

◦

◦ ⊥ , A

(wr(◦), A)

◦ • , B

(re(2), B)

◦ ◦ , B(dec(◦), B)

◦ ⊥ , B(dec(◦), B)

◦ ◦ , A

(re(2), B)

•

• ⊥ , A

(wr(•), A)

• ◦ , B

(re(2), B)

(wr(◦), A)

• • , B (dec(•), B)

•⊥ , B (dec(•), B)

• • , A

(re(2), B)

(wr(•), A)

Fig. 1. View of a process algorithm P for a process with identifier 1

Figure 1 gives a visual description of the process algorithm corresponding
to the Algorithm 1 supposing that the corresponding process has identifier 1.
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In this graph, each nodes represents a process state, the memory is the set {A,B}
and the data belongs to {◦, •}. From each node, we have some edges labeled with
the action to perform according to the process state. The first action consists
in writing the input data in the register, which leads to a state where the local
view contains the data in the first register and ⊥ in the local copy of the second
register and the local memory cell is A. Afterwards, the process reads the second
register and on Fig. 1, we represent all the possible data that could be in this
register (i.e either ◦, • or ⊥) in the local view and the memory cell evolves to B.
Hence, the elements A and B of the memory set are used to represent the local
state of the algorithm: when the local memory is A it means that the last action
performed by the process was the write action corresponding to the Line 2 of
Algorithm 1 and when its value is B, it means that the Algorithm has performed
the read action corresponding to the Line 3. We only need these two values for
the memory, because in our setting after having read the memory, the read value
is stored in the local copy of the register and according to it, the algorithm either
decides or goes back to Line 2. Note that when we leave one of the state at the
bottom of the figure by reading the second register, we take into account that ⊥
cannot be present in this register, since at this stage this register has necessarily
been written.

3 Using LTL to Reason on Distributed Algorithms

3.1 Kripke Structures and LTL

We specify distributed algorithms with the Linear time Temporal Logic (LTL).
We recall here some basic definitions concerning this logic and how its formulae
are evaluated over Kripke structures labeled with atomic propositions from a
set AP.

Definition 3 (Kripke structure). A Kripke structure K is a 4-tuple
(Q,E, �, qinit) where Q is a countable set of states, qinit ∈ Q is the initial state,
E ⊆ Q2 is a total1 relation and � : Q → 2AP is a labelling function.

A path (or an execution) in K from a state q is an infinite sequence q0q1q2 · · ·
such that q0 = q and (qi, qi+1) ∈ E for any i. We use PathK(q) to denote the set
of paths from q. Given a path ρ and i ∈ N, we write ρi for the path qiqi+1qi+2 . . .
(the i-th suffix of ρ) and ρ(i) for the i-th state qi.

In order to specify properties over the execution of a Kripke structure, we use
the Linear time Temporal Logic (LTL) whose syntax is given by the following
grammar φ, ψ ::= p | ¬φ | φ∨ ψ | Xφ | φUψ where p ranges over AP. We use
standard abbreviations: 
, ⊥, ∨, ⇒. . . as well as the classical temporal modalities
Fφ

def= 
Uφ and Gφ
def= ¬F¬ φ. Given a path ρ of a Kripke structure K =

(Q,E, �, qinit), the satisfaction relation |= for LTL is defined inductively by:

1 I.e., for all q ∈ Q, there exists q′ ∈ Q s.t. (q, q′) ∈ E.
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ρ |= p iff p ∈ �(ρ(0))
ρ |= ¬ φ iff ρ �|= φ

ρ |= φ∨ ψ iff ρ |= φ or ρ |= ψ

ρ |= Xφ iff ρ1 |= φ

ρ |= φUψ iff ∃i ≥ 0. ρi |= ψ and ∀0 ≤ j < i. ρj |= φ

We then write K |= φ iff ρ |= φ for any ρ ∈ PathK(qinit). Since we quantify
over all the paths, we speak of universal model-checking.

3.2 Specifying Distributed Algorithms

We will now see how to use LTL formulae for specifying the correctness of dis-
tributed algorithms under specific execution contexts. We consider distributed
algorithms for n processes working over a data set D. The set of atomic proposi-
tions that we will use in this context will then be : APn

D = {activei,Di}1≤i≤n ∪
{Ind

i }1≤i≤n,d∈DI ∪ {Outdi }1≤i≤n,d∈DO where activei represents the fact that pro-
cess i has been the last one to execute an action, Di that process i has decided,
Ind

i that the initial value of process i is d and Outdi that the output value of
process i is d. Note that we always have: Di ⇔ ∨

d Out
d
i .

We shall now see how we associate a Kripke structure labeled with these
propositions with a distributed algorithm. Let A = P1 ⊗ P2 ⊗ . . . ⊗ Pn be a
n process distributed algorithm over the data set D. The states of the Kripke
structures contain configurations of A together with information on which was
the last process to perform an action as well as the output value for each process
(set to ⊥ if the process did not output any value yet). Formally, we define
KA = (QA, EA, �A, qA

init) with:

– QA = {qA
init} ∪ (CA×[0, n]×(DO ∪ {⊥})n), the first component is a configura-

tion of A, the second is the identifier of the last process which has performed
an action (it is set to 0 at the beginning), the third contains the output value;

– EA is such that:
• (

qA
init, ((In,⊥), 0,⊥)

) ∈ E for all initial configurations (In,⊥) of A (here
⊥ stands for the unique vector in {⊥}n), i.e. the initial configurations are
the one accessible from the initial state qinit after one step,

• (
((S,R), i,O), ((S′,R′), j,O′)

) ∈ EA iff (S,R)
j
=⇒A (S′,R′) and if the

action performed by process j (from S[j] to S′[j]) is dec(o) then O′[j] = o
and O′[k] = O[k] for all k ∈ [1, n] \ {j}, otherwise O = O′.

– the labelling function �A is such that:
• �A(qA

init) = ∅,
• activei ∈ �A((S,R), i,O) and activej �∈ �((S,R), i,O) if j �= i, i.e the last

process which has performed an action is i,
• Ind

j ∈ �A((S,R), i,O) iff S[j] ∈ DI and d = S[j], i.e. process j is still in
its initial configuration with its initial value d,

• Dj ∈ �A((S,R), i,O) iff O[j] �= ⊥, i.e. process j has output its final value;
• Outdj iff O[j] = d, i.e. the value output by process j is d.
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For a LTL formula φ over APn
D, we say that the distributed algorithm A

satisfies φ, denoted by A |= φ, iff KA |= φ.
The LTL formulae over {Ind

i }1≤i≤n,d∈DI ∪ {Outdi }1≤i≤n,d∈DO will be typi-
cally used to state some correctness properties about the link between input and
output values. The strength of our specification language is that it allows to spec-
ify execution contexts thanks to the atomic propositions in {activei,Di}1≤i≤n.

Even if this is not the main goal of this research work, we know that given a
n processes distributed algorithm A over a finite data set D and a LTL formula
Φ over APn

D, one can automatically verify whether A |= Φ and this can be done
in polynomial space. Indeed model-checking an LTL formula Φ over a Kripke
structure can be achieved in polynomial space [15]: the classical way consists in
using a Büchi automaton corresponding to the negation of the formula Φ (which
can be of exponential size in the size of the formula) and then checking for
intersection emptiness on the fly (the automaton is not built but traveled). The
same technique can be applied here to verify A |= Φ without building explicitly
KA. Therefore we have the following result which is a direct consequence of [15]:

Proposition 1. Given a n processes distributed algorithm A over a finite data
set D and a LTL formula Φ over APn

D, verifying whether A |= Φ is in Pspace.

3.3 Examples

Specification for Consensus Algorithms. We recall that the consensus
problem for n processes can be stated as follows: each process is equipped with
an initial value and then all the processes that decide must decide the same value
(agreement) and this value must be one of the initial one (validity). We do not
introduce for the moment any constraints on which process has to propose an
output, this will come later. We assume that the consensus algorithms work over
a data set D with DI = DO, i.e. the set of input values and of output values are
equal. The agreement can be specified by the following formula:

Φc
agree

def= G
∧

1≤i�=j≤n

(
(Di ∧Dj) ⇒ (

∧

d∈DO

Outdi ⇔ Outdj )
)

We state here that if two processes have decided a value, then this value is the
same. For what concerns the validity, it can be expressed by:

Φc
valid

def= X
∧

1≤i≤n

∧

d∈DI

((
F Outdi

)
⇒

( ∨

1≤j≤n

Ind
j

))

In this case, the formula simply states that if eventually a value is output, then
this value was the initial value of one the processes. Note that this formula begins
with the temporal operator X because in the considered Kripke structure the
initial configurations are reachable after one step from qinit.

We are now ready to provide specifications for the execution context, i.e. the
formulae which tell when processes have to decide. First we consider a wait-free
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execution context, each process produces an output value after a finite number
of its own steps, independently of the steps of the other processes [8]. This can
be described by the LTL formula:

Φwf
def=

∧

1≤i≤n

(
(GF activei) ⇒ (F Di)

)

This formula states that for each process, if it is regularly (infinitely often) active,
then at some point (i.e. after a finite number of steps) it must decide. Conse-
quently if a distributed algorithm A is such that A |= Φc

agree ∧Φc
valid ∧Φwf, then

A is a wait-free distributed algorithm for consensus. However we know that even
for two processes such an algorithm does not exist [6,8]. But, when considering
other execution contexts, it possible to have an algorithm for consensus.

An another interesting execution context is the obstruction-free context.
Here, every process that eventually executes in isolation has to produce an out-
put value [9]. This can be ensured by the following LTL formula which exactly
matches the informal definition.

Φof
def=

∧

1≤i≤n

((FG activei) ⇒ (F Di))

The distributed algorithm Ac
of = P1 ⊗ P2, where P1 is the process algorithm

described by Fig. 1 and P2 is the symmetric of P1 obtained by replacing the
action re(2) actions by re(1), is such that Ac

of |= Φc
agree ∧ Φc

valid ∧ Φof.
Finally, another interesting context is the one corresponding to a round-robin

scheduling policy. This context is given by the LTL formula, which basically
states that if the n processes behave in a round-robin fashion, i.e. there are
active one after another, then they all have to decide.

Φrr
def=

[

G
( ∧

1≤i≤n

(activei ⇒ X active(1+i%n))
)]

⇒
[ ∧

1≤i≤n

(
F Di

)]

For the previously mentioned algorithm, we have Ac
of �|= Φrr, in fact as said

in Sect. 2.2, if the processes are scheduled in a round-robin fashion and if their
input values are different, then they will exchange their value forever and never
decide. Note that we could easily define some Φk

rr formula to specify a round-
robin policy where every process performs exactly k successive moves (instead
of 1).

Specification for ε-Agreement Algorithms. We assume that the data set
D is such that DI and DO are finite subset of Q. We now present a variant of
the ε-agreement. As for consensus, each process receives an initial value and the
output values must respect the following criteria: (1) they should be between the
smallest input value and the greatest one (validity) and (2) the outputs values all
stand in an interval whose width is less or equal to ε (agreemeent). For instance,
if we take DI = {0, 1} and DO = {0, 1

2 , 1}, then if the two processes have
input 0 and 1 respectively, the sets of accepted output values for 1

2 -agreement is
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{{0}, {1}, { 1
2}, {0, 1

2}, { 1
2 , 1}}. In this case, we can rewrite the formula for validity

and agreement as follows:

Φε
valid

def= X
[ ∨

dm≤dM ∈DI

[

(
∨

1≤i≤n

Indm
i )∧(

∨

1≤i≤n

IndM
i )∧

G
[( ∧

d<dm∈DO

∧

1≤i≤n

¬Outdi

)
∧

( ∧

d>dM ∈DO

∧

1≤i≤n

¬Outdi

)]]]

And:

Φε
agree

def= G
∧

1≤i�=j≤n

(
(Di ∧Dj) ⇒ (

∨

d,d′∈DOs.t.|d′−d|≤ε

Outdi ∧Outd
′

j )
)

For what concerns the specification of the execution context, we can take the
same formulae Φwf, Φof and Φrr introduced previously for the consensus.

4 Synthesis

4.1 Problem

We wish to provide a methodology to synthesize automatically a distributed
algorithm satisfying a specification given by a LTL formula. In this matter, we
fix the number of processes n, the considered data set (which contains input and
output values) D and the set of memory values M for each process. A process
algorithm P is said to use memory M iff P = (M, δ). A distributed algorithm
A = P1 ⊗ ... ⊗ Pn uses memory M if for i ∈ [1, n], the process Pi uses memory
M . The synthesis problem can then be stated as follows:

Inputs: A number n of processes, a data set D, a set of memory values M and
a LTL formula Φ over APn

D
Output: Is there a n processes distributed algorithm A over D which uses mem-

ory M and such that A |= Φ?

We propose a method to solve this decidability problem and in case of positive
answer we are able to generate as well the corresponding distributed algorithm.

4.2 A Set of Universal Kripke Structures for the Synthesis Problem

We show here how the synthesis problem boils down to find a specific Kripke
structure which satisfies a specific LTL formula. In the sequel, we fix the param-
eters of our synthesis problem: a number n of processes, a data set D, a set
of memory values M and a LTL formula Φspec over APn

D. We build a Kripke
structure Kn,D,M similar to the Kripke structure KA associated to a distributed
algorithm A but where the transition relation allows all the possible behaviors
(all the possible move for every process in any configuration).
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First, note that each process algorithm P for an environment of n processes
over the data set D which uses memory M has the same set of process states SP .
We denote S = DI ∪ (Dn × M) this set. Similarly each n processes distributed
algorithm A over D which uses memory M has the same set of configurations
CA that we will denote simply C. We recall that these configurations are of the
form (S,R) with S ∈ Sn is a vector of n processes states and R ∈ Dn.

The Kripke structure Kn,D,M uses the set of atomic propositions APn
D ∪

APC,O where APC,O = {PC,O | C ∈ C,O ∈ (DO ∪ {⊥})n} contains one atomic
proposition for every pair made by a configuration C and vector of output values
O. Its states will be the same as KA but for every possible actions there will be
an outgoing edge. Formally, we have Kn,D,M = (Q,E, �, qinit) with:

– Q = {qinit} ∪ (C × [0, n] × (DO ∪ {⊥})n) (as for KA)
– E is such that:

• (
qinit, ((In,⊥), 0,⊥)

) ∈ E for all initial configurations (In,⊥) in Dn
I ×

{⊥}n), (as for KA),

• (
((S,R), i,O), ((S′,R′), j,O′)

) ∈ E iff (S,R)
j,(a,m)
====⇒ (S′,R′) for some

(a,m) ∈ Act(D, n) × M . And:
∗ if a = dec(o) then S[j] = (V,m) for V ∈ Dn and O′[j] = o and

O′[k] = O[k] for all k ∈ [1, n] \ {j}, otherwise O = O′ (the memory
cells does not change once the decision is fixed),

∗ if O[j] �= ⊥, then a = dec(O[j]) (the decision cannot change, no other
action can be performed).

– the labelling function � is defined the same way as in KA for the atomic
propositions in APn

D and PC,O ∈ �((S,R), i,O) iff C = (S,R) and O = O.

Hence the relation E simulates all the possible moves from any configuration
(S,R) and the Kripke structure Kn,D,M contains all possible executions of any
n processes algorithms over D using memory M .

Defining an algorithm consists in selecting exactly one action for each process
in every configuration. Here we do this by adding to the structure extra atomic
propositions Pi

(a,m) with 1 ≤ i ≤ n and (a,m) ∈ Act(D, n) × M which specifies
for each configuration what should be the next move of process i. We denote by
APn

Act,M this set of new atomic propositions. An algorithm labelling for Kn,D,M

is then simply a function �′ : Q �→ 2AP
n
Act,M . We denote by K�′

n,D,M the Kripke
structure obtained by adding to Kn,D,M the extra labelling provided by �′. When
defining such an algorithm labelling, we need to be careful that it corresponds
effectively to a distributed algorithm: our processes are deterministic (only one
action is allowed for Pi in some configuration) and a process has to choose the
same action when its local view is identical. Such an algorithm labelling �′ is
said to be consistent iff the following conditions are respected:

1. �′(qinit) = ∅,
2. for all ((S,R), i,O) ∈ Q, for all j ∈ [1, n] there exists a unique Pj

(a,m) ∈
�′((S,R), i,O), each process has exactly one move in each configuration,
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3. for all ((S,R), i,O), ((S′,R′), j,O′) ∈ Q, if S[k] = S′[k] and if Pk
(a,m) ∈

�′((S,R), i,O) then Pk
(a,m) ∈ �′((S′,R)′, j,O′), i.e. in all configuration with

the same state of process k, the moves of process k must be the same.

A consistent algorithm labelling �′ induces then a distributed algorithm A�′
=

P1 ⊗ . . . ⊗ Pn where for all j ∈ [1, n], we have Pi = (M, δi) and δi(s) = (a,m)
iff for all configurations ((S,R), j,O) ∈ Q such that S[i] = s, we have Pi

(a,m) ∈
�′(((S,R), j,O)). Conditions 1. to 3. ensure that this definition is well-founded.

To check by the analysis of the Kripke structure K�′
n,D,M whether the algo-

rithm A�′
induced by a consistent algorithm labelling satisfies the specification

Φspec, we have to find a way to extract from K�′
n,D,M the execution corresponding

to A�′
. This can be achieved by the following LTL formula:

Φout
def= XG

[ ∨

C∈C

∨

O∈O

∨

i,a,m

(
Pi
(a,m) ∧PC,O ∧X(activei ⇒PNext(C,O,i,a,m))

)]

where Next(C,O, i, a,m) is the (unique) extended configuration (C ′,O′) such

that C
i,(a,m)
====⇒ C ′ and O[j] = O′[j] for all j �= i and O′[i] = o if a = dec(o)

otherwise O′[i] = ⊥. We can then combine Φout with the correctness specification
Φspec to check in K�′

n,D,M whether the executions of A�′
(which are the executions

of KA�′ ) satisfy Φspec.

Proposition 2. Given a consistent algorithm labelling �′ and its induced dis-
tributed algorithm A�′

,

A�′ |= Φspec iff K�′
n,D,M |= Φout ⇒ Φspec

Sketch of Proof. To prove this it is enough to see that the control states of
KA�′ and of K�′

n,D,M are the same and that any infinite sequence of such states ρ

beginning in qinit is an execution in KA�′ iff it is an execution in K�′
n,D,M verifying

Φout. ��
Consequently, to solve the synthesis problem it is enough to find a consistent

algorithm labelling �′ such that K�′
n,D,M |= Φout ⇒ Φspec. Note that as explained

before this produces exactly the correct algorithm A�′
. We have hence a decision

procedure for the synthesis problem: it reduces to some instances of model-
checking problem for LTL formulae.

5 Experiments

We have implemented a prototype to automatically synthesize algorithms for
consensus and ε-agreement problems. For this we use the SMT solver Z3 [4]: it
is now classical to use SAT solver for model-checking [1] and it was natural to
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consider this approach especially because we need to add an existential quantifi-
cation over the atomic propositions encoding the moves of the processes2. Our
prototype is however a bit different from the theoretical framework explained in
Sect. 4 and we explain here the main ideas behind its implementation.

First, the implementation does not consider general (quantified) LTL for-
mulas but encodes directly the considered problem (consensus or ε-agreement)
for a set of parameters provided by the user into a Z3-program, and the result
provided by the SMT solver Z3 is then automatically analysed in order to get
algorithms for processes.

We now sketch the main aspects of the reduction to Z3. The code starts by
existentially quantifying over the action functions for each process: an action
function δp for a process p is encoded as an integer value δp

s for every process
state s which gives the next action to performed. In Z3, such a δp

s is a bitvector
(whose size is log2(|Act(D, n) × M | + 1)). It remains to encode the different
properties we want to ensure (depending on the considered problem). Here are
several examples:

– To deal with the formula Φc
agree for the consensus, we use a set of Boolean

constants (one for every global configuration C). Their truth value can be
easily defined as true when all processes in C have terminated and decided
the same value, or as false when at least two processes have decided different
values in C. For the other cases, we add constraints stating that the value
associated with C equals true when for every successor (here a successor is
any configuration reachable after an action (a,m) of some process p such that
this action (a,m) corresponds to the value δp

s where s is the state of p in C).
It remains to add a last constraint: for every initial configuration C0, the
constant associated with Φc

agree has to be true. Note that this definition is
based on the fact that the property is an invariant: we want to ensure that
no reachable configuration violates a local property.

– Encoding the formula Φc
valid follows the same approach: we use a boolean

value for every configuration C and for every input data d, and define their
truth value in such a way that it is true iff the value d cannot be decided
in the next configurations. If some process has already decided d in C, the
constant equals to false. If all processes have decided and no one choose d, it
is true. Otherwise a positive value requires that for every successor C ′, the
constants are also true. Finally we add constraints specifying for every initial
configuration C0 the values d that cannot be chosen by requiring that their
corresponding values are true.

– The obstruction free context Φof is encoded as follows: we need two sets of
constants for every process p. The first set contains one integer value (encoded
as a bitvector in Z3) for every configuration and it is defined in order to
be the number of moves that process p has to perform (alone) to decide
(and terminate). This distance is bounded by the number of states nbstate

of process p (and we use the value nbstate to represent the non-termination
2 We do not describe here the reduction: it uses standard techniques for encoding LTL

formulae to SAT instance.
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of the process). In addition, we consider a set of boolean values (one for
every configuration) which are defined in order to equal to true iff for every
reachable configuration from C, the computed distance is strictly less than
nbloc.

– Encoding the wait-free context uses the same idea. We have to verify that
from every reachable configuration, every process will terminate (for this we
use the fact that when a process decides a value, it does not perform action
anymore, and then other processes progress). Note that in this case, the bound
on the distance is the number of global configurations.

In addition to this encoding, we can also use standard techniques of bounded
model-checking by fixing a smaller bound for the computation of the distances
described above. When this is done, the program may provide an algorithm, or
answer that an algorithm with this bound does not exist (it remains to try
with a greater bound). This heuristic is crucial to synthesize algorithms in many
cases (the computation of distances is quite expensive since it is connected to
the number of states or configurations).

The parameters of our prototype are then: (1) the number of processes: n,
(2) the range of initial values and the range of possible values in registers, (3)
the size of the processess memory, (4) the types of scheduling policy (wait free,
obstruction free, round-robin, or a combination of them), and (5) the value of ε
for the ε-agreement problem. Finally one can ask for symmetric programs (each
process has the same action function) and in the following we only consider
symmetric solutions.

State Explosion Problem. As explained in previous sections, we are faced with a
huge complexity. For example, with 2 processes, two possible initial values and
a memory size equals to 2, there are more than 450 configurations for the dis-
tributed algorithms. If we consider 3 processes, 2 initial values et a memory size
equals to 3, we get more than 240 thousands configurations! This gap explains
why our prototype only provides algorithms for 2 processes. Note that even for
the case n = 2, the complete encoding of the problem may use several thousands
of variables in the Z3 code, and the SMT solver succeeds in providing a result.
Of course, the implementation of our prototype in its current form is quite naive
and some efficiency improvements are possible.

Moreover note that our prototype is often more efficient for finding algo-
rithms when they exist than for proving that no algorithm within the resource
fixed by the parameters3 exists. First it is often easier to find a valuation than
verifying that no valuation exists, and secondly we can use heuristics to accel-
erate the procedure (for example by bounding the length of computations: in
this case, if a valuation is found, we can stop, otherwise we have to try again
with different settings). This fact can be seen as a variant of a well-known

3 Note that we cannot prove that no algorithm exists, but only that no algorithm with
this memory bound exists if the corresponding SAT instance has no solution.



214 C. Delporte-Gallet et al.

phenomenon in sat-based model-checking: it is usually very efficient to find a
bug (that is an execution satisfying or not a formula), but it is not the case to
prove full verification.

Consensus. For 2 components, 2 initial and final values, a memory of size 2 and
the obstruction free policy, we get the algorithm of Sect. 2.2 (Fig. 1) except that
the processes use their register to write the value they do not plan to decide (it
is clearly symmetric to the previous algorithm). Note that the size of memory
is important: there is no algorithm with memory of size 1: indeed we need to
distinguish the configuration (0, 0) (the proper register equals to 0 and the last
read value of the register of other process is 0) when it is reached after a Read
(both process agree on the value to decide) and when it is reached after a Write(0)
performed by the process to update its register in order to agree with the other
process. This absence of algorithm with a memory of size 1 corresponds to an
UNSAT result for the program: the formula Φsynth with these parameters is not
satisfiable. When we tried to look for algorithms for wait-free case, we found no
solution with our program: indeed we know that there is no such algorithms!

More interestingly we can ask for a program correct w.r.t. several execution
contexts. For example, we can ask for program correct w.r.t. obstruction free,
round-robin for one step and also round-robin for two steps. The program gen-
erates4 the algorithm depicted in Fig. 2 (we follow the same presentation as in
Sect. 2 for the algorithm and since we have only two processes, we use (re,−)
instead of (re(1),−): a read operation always deals with the other process).

◦

◦ ⊥ , B

(wr(◦), B)

◦ ◦ , A

(re, A)

◦ ⊥ , A

(dec(◦), A) ◦ • , A

◦ ◦ , B

(re, A)

(dec(◦), B)
• ◦ , A

(wr(◦), A) ◦ • , B

(re, A)

• • , B

(wr(•), B)

(re, A)

•

• ⊥ , A

(wr(•), A)

• ⊥ , B

(dec(•), B)

• ◦ , B

(re, B)

• • , A
(re, B)

(dec(•), A)

Fig. 2. View of a process algorithm P for consensus, w.r.t. to obstruction free and
round-robin 1 and 2.

4 It takes few seconds to produce the algorithm on a standard laptop.
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0

1 ⊥ , A

(wr(1), A)

1 1 , B

(dec( 0
5
), A)

1 ⊥ , B

(re, B)

(dec( 0
5
), B)

1 0 , B

0 0 , B

(wr(0), B)

0 1 , A

(re, A)

(dec( 2
5
), A)

0 0 , A

(re, A)

(dec( 4
5
), A)

1

0 ⊥ , A

(wr(0), A)

0 0 , C

(dec( 5
5
), C)

0 ⊥ , C

(re, C)

(dec( 5
5
), C)

0 1 , C

1 1 , C

(wr(0), C)

0 1 , A

(re, A)

(dec( 1
5
), A)

1 0 , A

(re, A)

(dec( 3
5
), A)

Fig. 3. View of a process algorithm P for 1
5
-agreement, w.r.t. wait free scheduling.

ε-agreement. For this problem, we have to fix ε. In Fig. 3, we present an algorithm
for 1

5 -agreement for 2 processes, with initial values {0, 1} and memory 3. The set
of possible decision values is {0, 1

5 , 2
5 , 3

5 , 4
5 , 1}. Note that this algorithm works for

the wait-free execution context, and therefore also for round-robin (for any step)
and for obstruction free. Here the memory size equals to 3: this is illustrated by
the fact that the configuration (0, 0) (the register’s value is 0 and the last read
value from the other process is 0) appears in three nodes.

6 Conclusion

We have shown here that in theory it is possible to solve the synthesis problem
for distributed algorithm as soon as we fix the set of data that can be written in
the registers and the memory needed by each process in the algorithm. However
even if this problem is decidable, our method has to face two different problems:
first, it does not scale and second, when the answer to the synthesis problem
is negative, we cannot conclude that there is no algorithm at all. In the future,
we will study more intensively whether for some specific cases we can decide
the existence of a distributed algorithm satisfying a given specification without
fixing any restrictions on the exchanged data or on the size of the algorithms.
We believe that for some specific distributed problems, this is in fact feasible.
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with Abortability
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Abstract. In light of recent advances in non-volatile main memory tech-
nology, there has been a flurry of research in designing algorithms that are
resilient to process crashes. As a result of main memory non-volatility, a
process is allowed to crash any time during the execution, without affect-
ing the state of the data stored in the main memory. With the assumption
that a process eventually restarts after a crash, prior works have focused
on designing mutual exclusion algorithms that use the non-volatile main
memory to recover from such crashes. Such mutual exclusion algorithms
that provide multiple processes with a mutually exclusive access to a
shared resource in the presence of process crashes are called Recoverable
Mutual Exclusion (RME) algorithms. We present the first RME algo-
rithm where a process has the ability to abort executing the algorithm,
if it decides to give up its request for a shared resource before being
granted access to that resource. With n being the maximum number of
processes for which the algorithm is designed, in the absence of a crash
our algorithm guarantees a worst-case remote memory references (RMR)
complexity of O(log n) per passage on the Distributed Shared Memory
(DSM) machines, and a complexity of O(log n) or O(n) on Cache Coher-
ent (CC) machines, depending on how caches are managed.

Keywords: Concurrent algorithm · Synchronization ·
Mutual exclusion · Recoverable algorithm · Fault tolerance ·
Non-volatile main memory · Shared memory · Multi-core algorithms

1 Introduction

Recent advances in non-volatile main memory (NVMM) technology [1–3] have
given rise to designing algorithms that are resilient to process crashes. These
memory technologies allow interfacing the processor directly with the non-
volatile main memory. Therefore, in the event of a process crash, the system
restarts the crashed process and the process then recovers from the crash by
consulting the contents of the NVMM.

The first author is grateful to the Frank family and Dartmouth College for their support
through James Frank Family Professorship of Computer Science.
The second author is grateful for the support from Dartmouth College.

c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 217–232, 2019.
https://doi.org/10.1007/978-3-030-31277-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31277-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-31277-0_14


218 P. Jayanti and A. Joshi

To leverage this advantage given by the NVMM, there has been a keen inter-
est recently in designing algorithms for such systems. A starting point is to
design a variant of the classical mutual exclusion problem [4] in which the objec-
tive is to protect access to a shared resource in a manner that atmost one process
has access to the resource at any point in time. Thus, it began with Golab and
Ramaraju [5] reformulating the classical mutual exclusion problem into the novel
Recoverable Mutual Exclusion (RME) problem in 2016. After which there has
been a flurry of research in designing algorithms for the RME problem [6–10].
The main interest in these works has been in designing algorithms with vari-
ous desirable properties while maintaining the remote memory reference (RMR)
complexity for Cache-Coherent (CC) multiprocessors and Distributed Shared
Memory (DSM) multiprocessors to a minimum.

A straightforward approach to recover from process crashes would be to shut
down the entire system and restart it. However, a motive behind designing RME
algorithms is to make the crashes less disruptive to other processes which do not
crash. Therefore, repairing the damage due to a crash by using the NVMM is far
less demanding to a process that did not crash since it does not suffer from such
a full-system restart. However, prior works on RME fall short in a crucial aspect
when compared to solutions to the classical mutual exclusion problem. Imagine a
real-time system with multiple threads that uses one of these RME algorithms to
secure access to a critical shared resource. In the event of a crash the waiting time of
a non-crashing thread would still be increased by the time it takes for the crashing
process to recover from its crash. This issue is further amplified when the crashes
are frequent and the system is operating under tight deadlines. Hence, it makes
sense for a waiting thread to be able to abort its attempt to acquire access to the
shared resource, and not miss any of its other deadlines. Although classical mutual
exclusion algorithms are amenable to support the ability to abort, unfortunately,
none of the prior works on the RME problem support such an ability to abort.

In this paper, we present the first RME algorithm that provides the abort
functionality. Our algorithm has a bounded RMR on the CC and DSM machines
besides possessing some additional desirable properties.

RelatedResearch. All of the prior work on RME has focused on designing algo-
rithms that do not provide abortability as a capability.Golab andRamaraju [5] for-
malized the RME problem and designed several algorithms by adapting traditional
mutual exclusion algorithms. Ramaraju [11], Jayanti and Joshi [7], and Jayanti et
al. [9] designed RME algorithms that support the First-Come-First-Served prop-
erty [12]. Golab and Hendler [6] presented an algorithm that has sub-logarithmic
RMR complexity on CC machines. In another work, Golab and Hendler [8] pre-
sented an algorithm that has the ideal O(1) passage complexity, but this result
assumes that all processes in the system crash simultaneously. Recently, Jayanti
et al. [10] presented a unified algorithm that has a sub-logarithmic RMR complex-
ity on both CC and DSM machines. For works not on RME but on the theme of
crash-restart systems using non-volatile main-memory, Attiya et al. [13] present
linearizable implementations of recoverable objects.
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When it comes to abortability for classical mutual exclusion problem, Scott
[14] and Scott and Scherer [15] designed abortable algorithms that build on
the queue-based algorithms [16,17]. Jayanti [18] designed an algorithm based
on read, write, and comparison primitives having O(log n) RMR complexity
which is also optimal [19]. Lee [20] designed an algorithm for CC machines that
uses the Fetch-and-Add and Fetch-and-Store primitives. Alon and Morrison [21]
designed an algorithm for CC machines that has a sub-logarithmic RMR com-
plexity and uses the read, write, Fetch-And-Store, and comparison primitives.
Recently, Jayanti and Jayanti [22] designed an algorithm for the CC and DSM
machines that has a constant amortized RMR complexity and uses the read,
write, and Fetch-And-Store primitives. While the works mentioned so far have
been deterministic algorithms, randomized versions of classical mutual exclu-
sion with abortability exist. Pareek and Woelfel [23] give a sublogarithmic RMR
complexity randomized algorithm and Giakkoupis and Woelfel [24] give an O(1)
expected amortized RMR complexity randomized algorithm.

Our Contribution. We show that, as with classical mutual exclusion, the
recoverable mutual exclusion problem is amenable to abortability with a reason-
able RMR complexity. We present the first abortable RME algorithm for the CC
and DSM machines using only read, write, and comparison primitives. We design
our algorithm by developing on ideas from a prior RME algorithm by Jayanti
and Joshi [7]. Our algorithm has an RMR complexity of O(f +log n) when used
on DSM machines and certain type of CC machines, but it has O(f + n) RMR
complexity on another type of CC machines (see Sect. 3.4 for full details), where
n is the number of processes for which the algorithm is designed and f is the
number of times a process crashes between the time it invokes and exits the
algorithm. Attiya et al. [19] proved a lower bound that the RMR complexity
is Ω(log n) for even classical mutual exclusion algorithms that use read, write,
and comparison primitives. Therefore, our algorithm adds only O(1) RMR per
crash on the DSM machines. In addition to the above, our algorithm satisfies the
First-Come-First-Served [12] property. It would be interesting if it is possible to
bring down the RMR complexity to O(f + log n) for all CC machines.

2 Model and Problem Specification

Our system consists of n asynchronous processes named 1, 2, . . . , n and
atomic persistent variables (which include shared variables and variables used
by a single process). The persistent variables support the operations read,
write, and compare&swap (CAS). The CAS operation has the signature:
CAS(X, old, new), where X is a variable name, and old and new are some val-
ues. A CAS(X, old, new) operation atomically changes X’s value to new, if X
contained the value old, and returns true; otherwise, it returns false and leaves
X unchanged. The persistent variables are assumed to reside in the non-volatile
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main memory (NVMM) [1–3], which allows them to retain their values in the
event of a process crash. Note, our algorithm also uses process local variables,
which are assumed to be stored in the process registers (we clarify in the descrip-
tion of the algorithm the nature of variables used). A configuration of the system
is specified by the values of all shared variables and the states of the n processes,
where the state of a process p is in turn specified by the value of PCp, p’s pro-
gram counter, and the values of p’s local variables. The configuration changes
when a process takes a step. Any process can execute either a normal step or a
crash step at any time. In a normal step of p, p executes the instruction pointed
by its program counter PCp. A crash step models the crash of a process and can
occur regardless of what portion of code the process is executing.

The Abortable RME Problem. In the RME problem, each process repeat-
edly cycles through four sections of code—Remainder, Try, Critical, and Exit
sections. An algorithm for RME specifies the code for the Try and Exit sections
of each process. If a process p executes a normal step when in Remainder, p
moves to Try; and if p executes a normal step when in CS, p moves to Exit
(therefore, we encapsulate the CS of p with one normal step). A crash step of p
sets PCp to point to its Remainder section and sets all other registers of p to ⊥.
In addition, in the Abortable RME problem, p can receive an external signal to
abort continuing to the CS while inside Try, in which case p may execute Exit
without executing CS to go back to the Remainder1. A run of an algorithm is an
infinite sequence of steps. We assume every run satisfies the following conditions:
(i) if a process is in Try, Critical, or Exit sections, it later executes a (normal
or crash) step, and (ii) if a process enters Remainder because of a crash step, it
later executes a normal step.

RMR Complexity and Passages. In a CC machine each process has a cache.
A read operation by a process p on a shared variable X fetches a copy of X
from shared memory to p’s cache, if a copy is not already present. Any non-
read operation on X by any process invalidates copies of X at all caches. An
operation on X by p counts as a remote memory reference (RMR) if either the
operation is not a read or X’s copy is not in p’s cache. When a process crashes,
we assume that its cache contents are lost. In a DSM machine, instead of caches,
shared memory is partitioned, with one partition residing at each process, and
each shared variable resides in exactly one partition. Any operation (read or
non-read) by a process on a shared variable X is counted as an RMR if X is not
in p’s partition.

A passage of a process p in a run starts when p enters Try (from Remainder)
and ends at the earliest later time when p returns to Remainder (either because
p crashes or because p completes Exit and moves back to Remainder). A super-
passage of a process p in a run starts when p either enters Try for the first

1 p might have already set itself up to enter the CS, or could be executing the CS, in
which case it executes Exit after completing the CS.
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time in the run or when p enters Try for the first time after the previous super-
passage has ended, and it ends when p returns to Remainder not by a crash step
but by completing the Exit section. Note that p’s super-passage can contain an
unbounded number of p’s passages because of its repeated crashes during the
super-passage. The passage RMR complexity (respectively, super-passage RMR
complexity) of an RME algorithm is the worst-case number of RMRs that a
process incurs in a passage (respectively, in a super-passage). We express this
RMR complexity in terms of n and f , where n is the number of processes for
which the algorithm is designed and f is the number of times the process crashes
during the super-passage.

Problem Statement. The goal is to design an algorithm (i.e., code for Try and
Exit sections) for the Abortable RME problem, such that, all of the following
conditions are met in every run of the algorithm. Conditions P1, P4, P5 are
from Golab and Ramaraju [5], and P2, P6, P7, P8 are from Jayanti and Joshi
[7]. The additional property P3 and the modifications needed for other properties
to accomodate abortability are emphasized in italics.

P1. Mutual Exclusion: At most one process is in the CS at any point.
P2. Bounded Exit: There is a bound b such that, if a process p is in the Exit

section and it executes steps without crashing, it enters the Remainder
section in atmost b of its own steps.

P3. Bounded Abort: There is a bound b such that, if a process p receives the
abort signal and p executes steps without crashing, then p enters the CS or
the Remainder section in b of its own steps.
This property captures the intuition that a process frees itself from all wait-
ing once it receives the abort signal.

P4. Starvation Freedom: If the total number of crashes in the run is finite and a
process p has infinite number of steps, then p enters the CS in each super-
passage in which it does not receive an abort signal.

P5. Critical Section Reentry (CSR) [5]: If a process p crashes while in the CS,
then no other process enters the CS during the interval from p’s crash to
the point in the run when p next enters the CS.

P6. Wait-Free Critical Section Reentry (Wait-Free CSR) [7]: There is a bound
b such that, if a process p crashes while in the CS, then p reenters the CS
before completing b consecutive normal steps.

P7. First-Come-First-Served (FCFS) [7]: There is a bound b such that, if a pro-
cess p performs b contiguous normal steps in its super-passage s before
another process p′ initiates its super-passage s′ and p does not receive an
abort signal in s, then p′ does not enter the CS in super-passage s′ before p
first enters the CS in super-passage s′.

P8. Well-formedness: Let s be a normal step by p in which p completes the
Try section, and s′ be the latest step by p before s in which p starts a
super-passage or p crashes outside of the Try section in CS, or Exit. Well-
formedness stipulates where the control moves to after step s, as follows:
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– If s′ is a step when the super-passage starts, then s moves control to CS,
Exit section or Remainder section.

– If s′ is a crash step while p is in Try section, then s moves control to CS,
Exit section or Remainder section.

– If s′ is a crash step while p is in CS, then s moves control to CS.
– If s′ is a crash step while p is in Exit, then s moves control to CS, Exit

section, or Remainder section.

3 The Algorithm

We present our abortable RME algorithm in Fig. 1. The algorithm is designed for
n processes, with each process getting a distinct name from the set {1, 2, . . . , n}.
All the persistent variables used by our algorithm are stored in the non-volatile
main memory. Variables with names in small letters and a subscript of p to
their name are variables local to the process p, and are stored in p’s registers.
We assume that the CS is an idempotent block of code, which allows a process
to re-execute it from start even if the process crashes in the middle of the CS.
We assume that the external signal to an arbitrary process p asking it to abort
is made available at AbortSignal[p] as a boolean value, with a value of true
indicating that the signal is active and a value of false indicating otherwise. Our
algorithm is obtained by expanding on ideas of Jayanti and Joshi’s [7] algorithm.
Therefore, like their algorithm, our algorithm relies on a special object called
min-array. For more details about the min-array, please read the description of
Registry in Sect. 3.1.

3.1 Shared Variables and Their Purpose

We describe below the role played by each shared variable used in the algorithm.

Go[p]: This is a flag that process p waits on before entering the CS and supports
the read, write, and CAS operations. To achieve the local-spin property, Go[p]
is allocated to p’s memory module on DSM machines. This variable is set to
a non-zero integer value by p inside the Try Section. A process q makes p the
owner of the CS first, and then q releases p from its wait loop by assigning 0 to
Go[p]. In our algorithm it is also possible that a process r �= q notices that p is
the owner of the CS and hence may try to set Go[p] to 0 by attempting a CAS
operation on this variable. Hence, in such cases a different process r, instead of
q who captured CS for p, releases p from its wait.

Token: Token is an integer variable supporting read and CAS operations.
Token is used to implement a counter so that its values can be used to assign
token numbers to processes requesting the CS: in the Try section, a process reads
Token to get its token number and then increments Token. The token thus
obtained by a process is used for the entirety of its super-passage.
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Fig. 1. Abortable RME Algorithm. Code for process p.

Registry: Registry is a min-array that has the same purpose as the one
in Jayanti and Joshi’s [7] work, which we reiterate here for clarity. The min-
array, henceforth referred only as Registry, is an array and has n loca-
tions, one per process. It supports two operations: write() and findmin().
Registry.write(p, v), when executed by p, sets Registry[p] to v. The opera-
tion Registry.findmin() returns the minimum value in the array. Like in [7],
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Registry acts like a queue by holding the names of processes waiting to enter
the CS, and orders them according to their token numbers. p inserts in Registry
an element (p, tokp) (Line 7), where tokp holds p’s token number (we call this step
by p as “registering” its super-passage). When exiting or aborting, p deletes this
element (Line 13) by writing (p,∞) (we call this step by p as “unregistering” its
super-passage). The elements in Registry are ordered according to their token
numbers: (p, t) < (q, t′) if t < t′ or t = t′ ∧ p < q. Thus, the findmin() opera-
tion returns (p, t), where p is the process in Registry with the smallest token. If
Registry is empty (i.e., every location in the array is empty), findmin() returns
a value (q,∞), with some process name q. We require that the two operations
satisfy wait-freedom and idempotence, which allows the algorithm to repeatedly
execute these operations in presence of a crash. As mentioned in Sect. 4 of [7],
the implementation given in Appendix A of [7] does satisfy these properties. We
therefore use that implementation in our algorithm. Their implementation of
Registry uses read, write, and CAS and is adapted from f -arrays [25].

CSStatus: This variable is a record with three fields: (bit, peer, peertok). The
first field, bit, is a single bit field denoting whether the CS is occupied or not.
A value of 0 in the bit indicates the CS is free and in that case peer denotes
the process that last wrote to CSStatus while using peertok as the token for
its super-passage. If the value of the bit is 1, it indicates the CS is occupied
and in that case, peer denotes the name of the process that currently owns the
CS and peertok is the token used by the process with name peer for its current
super-passage. The operations supported by CSStatus are read and CAS.

Exiting[p]: This is a boolean variable that supports the read and write opera-
tions. p might crash while executing the Exit section, so we use the Exiting[p]
variable to remind p that it was executing the Exit section. Hence, Exiting[p] =
true indicates that p should be executing the Exit section after restarting from
a crash; Exiting[p] = false indicates p is yet to execute the Exit section in the
current super-passage.

A Remark on Wrap-Around of Token Numbers. In our algorithm the
bit size of the token numbers generated using Token is constrained by the
peertok field of CSStatus. Assuming a word length of 64-bits, a reasonable
assumption on modern multiprocessor systems, we argue as follows that wrap-
around of token numbers is not a practical concern. Assume that the system
consists of 16, 384 processes, it would therefore need 14 bits to represent each
process. Accounting for the bit field from CSStatus, we are left with 49 bits
to represent a token number. For the token number to wrap around, there must
be 249 passages. If there are 220 (a million) passages per second, it would take
17 years for the token number to wrap around. Therefore, wrap-around is not a
practical concern.
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3.2 Informal Description

In this section we informally describe the working of our algorithm presented
in Fig. 1. We first describe how a process p would execute the Try and Exit
section in absence of a crash or an abort signal, and then proceed to explain the
algorithm if a crash is encountered anywhere or an abort signal is activated.

Crash-Free and Abort-Free Super-Passage. When p wants to enter the
CS from the Remainder section, it starts executing the Try section. Lines 1–3
perform a check if the preceding passage by p ended in a crash. Our algorithm
maintains the invariant that whenever p is starting a super-passage, the following
holds about the shared variables: CSStatus �= (1, p, ∗) (i.e., CSStatus says that
p is not the owner of CS), Exiting[p] = false, and Go[p] = 0. Therefore, after
reading the above shared variables, none of the if conditions from Lines 1–3 are
met, hence, p proceeds execution from Line 4. At Line 4 p obtains a token for
itself and then increments the global counter (Line 5). It then saves the obtained
token into Go[p] (Line 6) for its own use so that in the event of a crash it does
not obtain a different token. Then, at Line 7, it inserts its name, tagged with
its token, into the Registry (i.e., p “registers” its super-passage). If p executes
normal steps upto Line 7 in super-passage s before another process q initiates its
super-passage s′ and p does not receive an abort signal in s, then q does not enter
the CS in s′ before p first enters the CS in s (this is useful for the FCFS property).
After executing Line 7, p executes the promote() procedure (Line 8) whose job
is to capture the CS for the longest waiting process q registered in Registry
and inform q that it no longer needs to wait (we describe the procedure in detail
shortly). Following this, p waits until it is informed that it no longer needs to
wait (Line 9) all the while simultaneously checking if it received an abort signal
(Line 10). If p reads that AbortSignal[p] = true at Line 10, it has received the
external signal to abort continuing to the CS, hence, it starts executing the Exit
section at Line 12. Upon being informed about its turn to enter the CS (i.e.,
Go[p] = 0), p enters the CS. Note, we assume that starting when p enters the
CS and so long as it is executing the CS PCp remains 11, except after crashes
where for a brief while p executes some code from Try to get back to CS and
PCp changes back to 11. When p leaves the CS, it first sets a checkpoint at
Line 12 signifying that it has started executing the Exit section by writing true
into Exiting[p], so that in the event of a crash it comes back to Exit section.
At Line 13, it removes its own name from the Registry (i.e., it “unregisters”
its own super-passage). Following that it executes Lines 14–15 whose job is to
check if p entered Exit section upon receiving an abort signal. Since at present
we are considering a super-passage in absence of a crash or an abort signal, p
entered the CS on noticing Go[p] = 0. Hence, at Line 14 p takes note of the
current value of Go[p] and at Line 15 it checks if that value is 0. By the above,
the if condition at Line 15 is not met, hence, p resumes execution from Line 19.
At Line 19 p reads the current content of CSStatus. Our algorithm maintains
the invariant that so long as p has ownership of the CS, CSStatus has the
value (1, p, tokp), where tokp is the value of p’s token for current super-passage.
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Therefore, the if condition at Line 20 is met, hence p marks the CS as available
by performing the CAS at Line 20. Following this, p tries to capture the CS for
the longest waiting process by executing promote() (Line 21). Whether p lets
another process into the CS or not, it completes its own super-passage by setting
Exiting[p] to false (Line 22) to indicate that it has completed executing the
Exit Section.

Executing promote(). We describe the promote() procedure as follows. This
procedure identifies a process that has been waiting the longest to enter the CS,
and lets that process into the CS, if the CS is free. To this purpose, at Line 23,
p reads the contents of CSStatus. If the first bit of CSStatus is 0, it means
the CS is free, therefore, p performs this check at Line 24. If p finds that the bit
is 0, at Line 25 p retrieves the information of the longest waiting process q from
Registry (i.e., the name of that process and its token). It then checks if q has a
valid token at Line 26 (if an invalid token number denoted by ∞ is received, it
means the Registry is empty). If so, then p tries to install q as the new owner of
the CS. p does this by performing a CAS at Line 26 that attempts to write into
CSStatus the information of q. A successful CAS will indicate that q is the one
who is going to occupy the CS now. Note, while p is executing Lines 24–26 in
the manner described above, another process might be executing the same lines
and could execute Line 26 before p. This would result in p’s CAS at Line 26
to fail. It is also possible that p succeeded in doing the CAS at Line 26, but
crashed immediately. Our algorithm ensures that if p crashes while performing
the promote() procedure, it will come back to re-execute the procedure from
start. And in that re-execution of promote(), p will notice that the if condition
at Line 24 does not meet (although, it had captured the CS for q prior to the
crash). In either of the two cases described above, in Lines 27–28 p takes the
responsibility to “wake” any process that is currently occupying the CS. Hence,
at Line 27, p again reads CSStatus to identify the process r whose name was
last written into CSStatus. If p finds that the first bit of CSStatus is 1, it does
a CAS on Go[r] to write a 0 (Line 28). If r was not woken up already, this CAS
ensures that it is woken up now. Otherwise, p’s CAS is bound to fail because
either Go[r] = 0 already or r started a new super-passage with a different token
in Go[r] (which was written at Line 6).

Servicing an Abort Signal. Next we describe how p services an abort when it
notices that an abort signal has been activated after reading AbortSignal[p].
p notices the abort signal when it reads AbortSignal[p] at Line 10 and as a
result it starts executing the Exit section at Line 12. At Line 12 p first sets a
checkpoint to signify that it has started executing the Exit section by writing
true into Exiting[p], so that in the event of a crash it comes back to Exit
section. At Line 13, it unregisters its own super-passage by removing its name
from the Registry. Following that it executes Lines 14–15 whose job is to check
if p entered Exit section upon receiving an abort signal from the Remainder.
Suppose it finds that tokp = 0 (i.e., Go[p] = 0), which is possible because some
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other process captured the CS for p while p left the Try section for aborting.
In that case, it executes the remaining Exit section as described above. This
is because the case is as if p entered the CS and then is completing its super-
passage by executing Exit section. Assume otherwise that it finds tokp �= 0 (i.e.,
Go[p] �= 0). It then reads the contents of CSStatus at Line 16 and checks if
the CS is free by checking the first bit of CSStatus (Line 17). If it finds that
the CS is free, p attempts to update the content of CSStatus by writing its
own name and token into it by performing a CAS at Line 17. This updating of
the content of CSStatus in spite of CS being free might not be intuitive, but
it is one of the subtle features of our algorithm which we will explain shortly. p
then clears its own token from its Go[p] variable to prepare itself for the next
super-passage (Line 18). Note, when aborting Go[p] might hold a token value
p obtained for its current super-passage. If Go[p] is not explicitly wiped, on
its next super-passage p might re-use its old token due to Lines 2–3. This will
lead to a violation of FCFS property, hence, clearing its own token from Go[p]
at Line 18 is important. From Line 19 onwards p executes the Exit section as
described above. However, it is important to note that having to do Lines 19–20
is another subtle feature of our algorithm, whose discussion we defer for later.

Recovery from a Crash. When p begins a passage after the preceding pas-
sage ended in a crash, p starts by reading Exiting[p] at Line 1. If it finds that
Exiting[p] = true, then p crashed while executing the Exit section in the pre-
vious passage. p could be executing the Exit section in the previous passage as
a result of an abort or due to p coming out of CS prior to crash. In any case, p
executes the Exit section from Line 12. Our Exit section is designed to be idem-
potent, i.e., if p crashes in the middle of Exit section and re-executes it from the
start multiple times, then it would appear to take effect once. Hence, it allows
us to execute the Exit section from Line 12 after a crash in the Exit section. If
Exiting[p] = false, then p reads the contents of Go[p] and CSStatus (Lines 2–
3). If p finds that CSStatus == (1, p, ∗) (i.e., p has ownership of the CS with
a certain token) and Go[p] = 0, then p has exclusive access to the CS. Hence,
p moves to the CS at Line 11. Otherwise, p checks if tokp �= 0 at Line 3, which
implies that it has obtained a token prior to the crash, stored it in Go[p], but
does not have the ownership of CS yet. In that case p goes on to continue with
the super-passage from Line 7, where it starts with registering the super-passage
and continuing as described above. If p finds that tokp = 0, it means p is yet to
even get a token for itself. In that case p starts from Line 4 as if it started a new
super-passage (see description above).

3.3 Subtle Features of the Algorithm

In the description of the algorithm given above, we deferred the discussion
of a few subtle features of the algorithm. We discuss those subtle features in
this section, namely, (A) Maintaining Go[p] as an integer variable instead of a
boolean, (B) why does a process p perform a blind CAS on Go[peerp] at Line 28,
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(C) updating the content of CSStatus at Line 17 in spite of CS being free, and
(D) performing Lines 19–20 even when servicing an abort. We demonstrate
below the reason behind performing these operations as follows.

TheNeed forFeatureA. In local-spinmutual exclusion algorithms (e.g., [7,16])
it is generally the case that the spin variable is a boolean flag. However, in our algo-
rithmaprocess spins on an integer for a specific reasonwhichwedescribe as follows.
Suppose a boolean flag was used instead of an integer, the following scenario shows
that it would result in violating mutual exclusion property. Suppose process p is in
the CS in a configuration where every other process is in the Remainder section. A
process q from the Remainder section needs access to the CS and hence executes
the Try section and eventually makes a call to the promote() procedure at Line 8
in the Try. q executes the promote() procedure upto but not including Line 27,
where it is supposed to wake up the current owner of the CS. At this point p comes
out of the CS and starts executing the Exit section so that it eventually calls the
promote() procedure. p executes Lines23–27 to make q the new owner of CS, reads
the content ofCSStatus into bitp (= 1) and peerp (= q) at Line 27, and at Line 28
p stops (i.e., just before letting q into the CS). At this point q resumes execution
from Line 27, notes that it itself is now the owner of the CS and hence sets its own
Go flag to true at Line 28. Therefore, q enters the CS, completes executing it, and
then eventually finishes its super-passage. Now assume that another process r exe-
cutes the Try section, finds the CS to be free and hence puts itself into the CS. After
this q again decides to enter the CS, hence it starts a new super-passage. It executes
the Try section to find the CS to be occupied by r, hence it waits for its turn by
looping at Lines 9–10. At this moment, p which had stopped at Line 28 resumes
its execution and since it read the first bit of CSStatus to be 1 with peerp = q,
p lets q into the CS by writing true into Go[q]. q reads the Go[q] flag and enters
the CS. Since in the next configuration q and r are in the CS, mutual exclusion is
violated. To avoid this issue we use theGo flag as an integer variable so thatGo[q]
either stores 0 or the token q uses for its current super-passage. This way when p
resumes later as described in the scenario above, it tries to CAS into Go[q] with a
token that q used in its earlier super-passage. Such a CAS is bound to fail in the
scenario above since Go[q] would use a new token in the next super-passage.

The Need for Feature B. Our algorithm is based on a previous RME algo-
rithm by Jayanti and Joshi [7] in which the delegation of ownership of the CS
to a process and writing to the spin variable of that process is done by a single
process. However, in our algorithm from this paper a process p performs a blind
CAS on Go[peerp] at Line 28, if it finds that a process peerp occupies the CS,
although p might not have made peerp the owner of the CS. The reason behind
designing the algorithm this way is as follows. Suppose a process p is executing
the promote() procedure such that it executes Lines 23–27, where it is makes
a process q the owner of the CS. However, p crashes just before writing 0 to
Go[q] at Line 28. When p restarts, it cannot tell by reading any of the shared
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variables if it was the one who made q the owner of the CS (unlike in [7], where
reading the CSOwner variable would give this information). Hence, regardless
of whether p made q the owner of CS or not, p assumes the responsibility of
waking q from its wait loop and performs the CAS at Line 28.

The Need for Feature C. When p is aborting from its super-passage by
executing the Exit section, at Line 17 it performs a CAS on CSStatus to declare
that the CS is free in spite of noticing that the CS is free and the first bit of
CSStatus is 0 already. As we describe below, if this step is not performed, p
could be made the owner of CS even though p has aborted its super-passage and
is in the Remainder section. Assume that the CAS at Line 17 is not performed
and the if block at Lines 15–18 contains only one step to write the value 0 to
Go[p]. Assume there is a process q in the CS and all other processes including
p are in the Remainder section. p decides to acquire access to CS, therefore,
it executes the Try section and waits for its turn by looping at Lines 9–10.
q then comes out of the CS and starts executing the Exit section. q executes
the Exit section all the way calling the promote() procedure and right upto
Line 25 and stops at Line 26. Therefore, the value of CSStatus = (0, q, tokq)
and q has read p’s entry from Registry such that q is enabled to perform the
CAS at Line 26 and would succeed in doing so. At this moment p decides to
abort its super-passage and hence it starts executing the Exit section. p first
removes its entry from Registry at Line 13 (therefore, Registry becomes
empty now). Since p was not woken up by q to go into the CS, Go[p] = tokp,
hence p writes 0 to Go[p] at Line 18. The if condition at Line 20 is not met (since
CSStatus = (0, q, tokq)), therefore, p calls the promote() procedure at Line 21.
Inside the call to promote(), p finds that the Registry is empty at Line 25, and
the if condition at Line 28 is not met because CSStatus = (0, q, tokq). Hence,
p completes promote() without modifying any shared variable, goes back to Exit
where it writes false to Exiting[p] and then goes back to Remainder. At this
point q resumes execution and performs the CAS at Line 26. Since CSStatus
is unchanged in the meantime, q succeeds in doing the CAS thus making p the
owner of the CS. This situation is undesirable because p is in the Remainder
section and is made the owner of the CS. If instead the CAS at Line 18 is
performed by p, then q’s CAS at Line 26 would not succeed and hence the
undesirable situation is avoided.

The Need for Feature D. When p aborts from its super-passage, it is possible
that p is made the owner of the CS even though it is aborting. In such a scenario
it is necessary that p relinquishes its ownership of the CS and continues with the
abort. We demonstrate below (with an argument similar to the above) that not
performing Lines 19–20 when p is aborting leads to an undesirable scenario. Like
above, assume there is a process q in the CS and all other processes including
p are in the Remainder section. p decides to acquire access to CS, therefore,
it executes the Try section and waits for its turn by looping at Lines 9–10. q
then comes out of the CS and starts executing the Exit section. q executes the
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Exit section all the way calling the promote() procedure and right upto Line 27
and stops at Line 28. Therefore, the value of CSStatus = (1, p, tokp) and q is
enabled to perform the CAS at Line 28. At this moment p decides to abort its
super-passage and hence it starts executing the Exit section. p first removes its
entry from Registry at Line 13 (therefore, Registry becomes empty now).
Since p was not woken up by q to go into the CS, Go[p] = tokp, hence p writes
0 to Go[p] (the if condition at Line 17 fails due to the value of CSStatus).
By our assumption p does not perform Lines 19–20 but executes promote()
procedure at Line 21 where it sets its own Go[p] variable to 0 at Line 28 (because
CSStatus = (1, p, tokp)). It then goes back to the Remainder after updating
Exiting[p]. At this moment q starts taking steps and is unsuccessful at the CAS
at Line 28. q then goes back to the Remainder after updating Exiting[q]. It
follows that CSStatus = (1, p, tokp), where tokp is the token p used in previous
super-passage, although p is in Remainder. Had p performed Lines 19–20, it
would have updated CSStatus to (0, p, tokp) denoting that the CS should be
kept free.

3.4 RMR Complexity

We discuss the RMR complexity a process incurs per passage as follows. As
described in Lemma 2 of Jayanti and Joshi’s work [7], the Registry.write()
operation incurs O(log n) RMRs and the Registry.findmin() operation incurs
O(1) RMRs on both CC and DSM machines. On DSM machines, where we host
the variables Go[p] and Exiting[p] in p’s memory partition, p’s operations on
these variables incur zero RMRs. Therefore, on DSM machines our algorithm
incurs O(log n) RMR per passage.

On CC machines, similarly, it would be tempting to believe that all these
other operations incur constant RMRs, however, it depends on the way the cache
is managed in the machine. Therefore, for this discussion we divide CC machines
into two categories: (1) strict CC machines and (2) relaxed CC machines, which
we describe below and discuss how the RMR is calculated in each category. On
strict CC machines, a process will incur an RMR when a failed CAS is performed
on a variable it is about to read even though the process had a cached copy of
the variable prior to the CAS. On relaxed CC machines a process will not incur
an RMR if a CAS operation fails on a variable it is about to read. Note, this
behavior of incurring RMRs on CC machines is in addition to our discussion
from Sect. 2. Therefore, the RMR complexity remains O(log n) on the relaxed
CC machines (similar to DSM machines), but shoots up to O(n) on strict CC
machines for the following reason. Assume a process p is waiting to enter the
CS at Line 9, n/2 − 1 processes are in the Remainder section and there are n/2
processes that are about to execute Line 28 to perform a CAS on Go[p]. Out of
these processes only one performs the CAS, goes back to the Remainder while
letting p into the CS due to the CAS, and the rest n/2− 1 process have still not
executed Line 28. Now there are n/2 processes in the Remainder section, p in
the CS, and n/2 − 1 processes that are about to execute Line 28 to perform a
CAS on Go[p]. Assume p completes the CS, executes the Exit section, and goes
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back to Remainder section. Meanwhile the n/2 processes from Remainder come
out of the Remainder for a new passage and queue up. p then queues up behind
these processes with a new token and starts waiting at Line 9 to enter the CS.
At this moment those n/2 − 1 processes that had stopped at Line 28 execute a
step causing a failed CAS. This causes p to incur an RMR for every failed CAS
incurring O(n) RMRs. Therefore, on strict CC machines our algorithm incurs
O(n) RMRs per passage. To summarize, the algorithm incurs O(log n) RMRs
per passage on DSM and relaxed CC machines, and O(n) RMRs per passage on
strict CC machines. Likewise, it incurs O(f + log n) RMRs per super-passage
on DSM and relaxed CC machines, and O(f + n) RMRs per super-passage on
strict CC machines.

3.5 Main Theorem

The theorem below summarizes the result of our paper.

Theorem 1. The algorithm in Fig. 1 is an abortable recoverable mutual exclu-
sion algorithm for n processes and satisfies properties P1-P8 described in Sect. 2.
The algorithm incurs O(log n) RMRs per passage on DSM and relaxed CC
machines and O(n) RMRs per passage on strict CC machines.

References

1. Raoux, S., et al.: Phase-change random access memory: a scalable technology. IBM
J. Res. Dev. 52(4/5), 465 (2008)

2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453(7191), 80 (2008)

3. Tehrani, S., et al.: Magnetoresistive random access memory using magnetic tunnel
junctions. Proce. IEEE 91(5), 703–714 (2003)

4. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

5. Golab, W., Ramaraju, A.: Recoverable mutual exclusion: [extended abstract]. In:
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, pp. 65–74. ACM, New York (2016)

6. Golab, W., Hendler, D.: Recoverable mutual exclusion in sub-logarithmic time.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 2017, pp. 211–220. ACM, New York (2017)

7. Jayanti, P., Joshi, A.: Recoverable FCFS mutual exclusion with wait-free recovery.
In: 31st International Symposium on Distributed Computing, DISC 2017, pp. 30:1–
30:15 (2017)

8. Golab, W., Hendler, D.: Recoverable mutual exclusion under system-wide failures.
In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Com-
puting, PODC 2018, pp. 17–26. ACM, New York (2018)

9. Jayanti, P., Jayanti, S., Joshi, A.: Optimal recoverable mutual exclusion using only
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Abstract. Nowadays, Cloud Computing (CC) is one of the fastest emerging
core technologies in the current information era. It is leading a new revolution
on the ways of data storage and calculation. CC remains gaining traction among
organizations thanks to its appealing features like pay-per-use model for billing
customers, elasticity, ubiquity, scalability and availability of resources for
businesses. Hence, many organizations are moving their workloads or processes
to cloud due to its inherent advantages. Nevertheless, several security issues
arise with the transition to this computing paradigm including intrusion detec-
tion. Attackers and intruders developed new sophisticated tools defeating tra-
ditional Intrusion Detection Systems (IDS) by huge amount of network traffic
data and dynamic behaviors. The existing Cloud IDSs suffer from low detection
accuracy and high false positive rate. To overcome this issue, we propose a
smart approach using a self-adaptive heuristic search algorithm called
“Improved Self-Adaptive Genetic Algorithm” (ISAGA) to build automatically a
Deep Neural Network (DNN) based Anomaly Network Intrusion Detection
System (ANIDS). ISAGA is a variant of standard Genetic Algorithm (GA),
which is developed based on GA improved through an Adaptive Mutation
Algorithm (AMA) and optimization strategies. The optimization strategies
carried out are Parallel Processing and Fitness Value Hashing that reduce exe-
cution time, convergence time and save processing power. Our approach con-
sists of using ISAGA with the goal of searching the optimal or near optimal
combination of most relevant values of the parameters included in construction
of DNN based IDS or impacting its performance, like feature selection, data
normalization, architecture of DNN, activation function, learning rate and
Momentum term, which ensure high detection rate, high accuracy and low false
alarm rate. CloudSim 4.0 simulator platform and CICIDS2017 dataset were used
for simulation and validation of the proposed system. The implementation
results obtained have demonstrated the ability of our ANIDS to detect intrusions
with high detection accuracy and low false alarm rate, and have indicated its
superiority in comparison with state-of-the-art methods.
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1 Introduction

In the recent decade, adoption of Cloud Computing is increasing at an unprecedented
pace. There is a steady rise in the number of companies adopting and moving their
workloads to cloud. On demand elasticity, and other benefits including diversity of
resources, reliability and cost flexibility have led enterprises to pursue the development
and operations of their applications in a ‘‘cloud-first” fashion [1]. Cloud computing
(CC) can be defined in many manners. There is no universal definition for it. NIST’s
(National Institute of Standards and Technology) definition of CC is considered as the
de facto definition. According to NIST, “Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal management effort and or service
provider interaction” [2]. The key characteristics of cloud computing are; On-demand
self-service, Broad network access, Resource pooling, Rapid elasticity and Measured
service. Moreover, CC provides mainly three delivery models, namely Infrastructure as
a Service (IaaS), Platform-as a Service (PaaS), Software as a Service (SaaS), which can
be used by various organizations to solve their data storage and processing needs.
Nowadays, everyone is using cloud computing in our day to day life in one form or
another without realizing it, like Microsoft Office 365, Gmail and Dropbox etc. There
are many advantages of using cloud computing such as anytime-anywhere accessi-
bility, better geographic coverage with the fastest time, less investment on infrastruc-
ture, etc., but there are also challenges using cloud computing like data security, lack of
resources and expertise etc. Among the challenges, data security stands very tall [3]. In
fact, based on the survey conducted by a leading SaaS provider, RightScale, one of the
major challenge in the adoption of CC is security as shown in Fig. 1.

In any business or Cloud Computing data are exceptionally prominent, data leaking
or corruption can shatter the confidence of the people and can lead to the collapse of
that business. Currently cloud computing is used directly or indirectly in many busi-
nesses and if any data breaching has happened in cloud computing, that will affect the
cloud computing as well as the company’s business. This is one of the principal reasons
for cloud customers and cloud services provides give more attention to data security
[3]. Mostly, the leakage and damage of important information has occurred frequently
in some cloud services because of network intrusion [4]. Intrusion and attack tools have
become more sophisticated challenging existing network Cloud IDSs by large volumes
of network traffic data, dynamic and complex behaviors and new types of attacks. It is
obvious that a network Cloud IDS should analyze large volumes of network traffic data,
detect efficiently the new attack behaviors and reach high accuracy with low false.
However, preprocessing, analyzing and detecting intrusions in Cloud environments
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using traditional techniques have become very costly in terms of computation, time and
budget. Therefore, efficient intrusions detection in Cloud environments requires
adoption of new intelligent techniques such as Machine Learning techniques [5].

In this work, we propose an intelligent approach using a self-adaptive heuristic
search algorithm called “Improved Self-Adaptive Genetic Algorithm (ISAGA)” to
build automatically a Deep Neural Network (DNN) based anomaly Network IDS
(NIDS). DNN has been widely studied in machine learning research field and amply
used for practical applications in image processing computer vision and speech
recognition, etc. Hence, DNN is adopted in this study as it shows prominent classifi-
cation performance [6]. ISAGA is a variant of standard Genetic Algorithm (GA), which
is developed based on GA, improved through an Adaptive Mutation Algorithm
(AMA) [7] and optimization strategies. AMA allows to automatically adjust the
mutation rate should be applied for any given individual from the population of
ISAGA, in order to augment the chance of preserving individuals that are performing
well versus the optimization problem in hand and reduce the chance of preserving
individuals that don’t perform well. That tuning or adjustment of mutation rate takes
place while ISAGA is running, hopefully resulting in the best parameters being used at
any specific time during execution. It is this continuous adaptive adjustment of ISAGA
parameters that will often result in its performance improvement. Further, ISAGA is
optimized through optimization strategies, like Parallel Processing and Fitness Value
Hashing, which reduce execution time, convergence time and save processing power.
As the fitness function is typically the most computationally expensive component, and
it is often going to be the bottleneck of GA, this makes it an ideal candidate for multi-
core optimization (Parallel Processing). By using multiple cores, it is possible to
compute the fitness of numerous individuals simultaneously. Besides, Fitness Value

Fig. 1. Cloud challenges in 2018
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Hashing is another strategy that can reduce the amount of time spent computing fitness
values by storing previously calculated fitness values in a hash table. Thereby, when a
previously visited solution (chromosome) is revisited, its fitness value can be retrieved
from the hash table, avoiding the need to recalculate it.

Our approach consists of using ISAGA with the goal of searching the optimal or
near-optimal combination of most relevant values of the parameters included in con-
struction of DNN based IDS or impacting its performance, like feature selection, data
normalization, architecture of DNN, activation function, learning rate and momentum
term, which ensure high detection rate, high accuracy and low false alarm rate. In
addition, the proposed IDS is designed to be deployed in both front-end and back-end
of the cloud. Consequently, that helps to detect attacks from external network of the
cloud and also internal attacks either in internal physical network or virtual network
within hypervisors.

The rest of this paper is organized as follows: Sect. 2 introduces previous research
works. Section 3 presents positions of the proposed system in a Cloud Network.
Section 4 provides the necessary background to understand operation of AMA and the
role of the optimization strategies incorporated to ISAGA. Next, Sect. 5 explains our
proposed approach. Experimental results and analysis are given in Sect. 6. Finally,
Sect. 7 ends with conclusions.

2 Literature Review

Mehmood et al. [8] have proposed a Distributed Intrusion Detection System using
Mobile Agents in Cloud Computing (DIDMACC) to detect distributed attacks in
Cloud. They have used mobile agents to carry intrusion alerts collected from different
VMs where Suricata NIDS is deployed to the management server. In this server, the
correlation module (Open Source Security Information Management (OSSIM) corre-
lation engine) correlates intrusion alerts to generate high level alerts that correspond to
a distributed attack. Then, the management server sends the signature of a detected
attack to all virtual machines monitored, to update the signature database of local
Suricata IDS to avoid such intrusions in future. The results show that the use of mobile
agents to carry intrusion-related data and code reduces network load, and correlation of
intrusive events collected by those mobile agents by means of a correlation engine
helps in detection of distributed intrusions. However, the proposed system can’t detect
zero-day attacks or unknown attacks.

Mehibs and Hachim [9] have proposed Back Propagation Artificial Neural Network
to build network intrusion detection system with the goal to detect intruders and
suspicious activities in and around the cloud environment. The proposed module
consists of two stages, the learning stage and the test stage. In the first stage, this model
is trained with back propagation algorithm using KDD 99 dataset to classify normal
behavior and the other four types of attack (DOS, Probe, U2R, and R2L). In the second
stage, the trained module is evaluated with three datasets to predict the class label of
test samples. The topology adopted for neural network of proposed IDS consists of
three layers (input layer, hidden layer, output layer); the number of neurons in input
layer is equal to 41 which is the number of feature in KDD99 dataset. The number of

238 Z. Chiba et al.



neurons in hidden layer is equal to 20, which is determined after trial and error. In the
output layer, the number of neuron is equal to 5 which correspond to the normal
behavior and the four types of attack. The experimental result demonstrates effec-
tiveness of the proposed NIDS characterized by high detection rate and low false alarm.

Saljoughi et al. [10] have presented a network intrusion detection system (NIDS)
for Cloud environment using Multilayer Perceptron Neural Network (MLP) and Par-
ticle Swarm Optimization Algorithm (PSO) to detect intrusions and attacks. The PSO
algorithm was utilized to find the best weights and biases of the neural network (MLP),
which is then trained by trained data and the obtained optimal weights. In order to have
the most efficiency and security, the proposed NIDS is placed in the network, and it is
connected directly to the router of the Cloud, and the others similar NIDS are installed
on the processing servers. All NIDS send attack incidents to a central server with a
large storage space; and if necessary, this data will be used by the proposed system.
The results obtained from optimization of the neural network using the Particle Swarm
algorithm showed a substantial improvement in the function of the NIDS based on
MLP, in terms of the precision of detecting attacks faced by the networks and reduction
of time complexities.

Navimipour and Hajimirzaei [11] have developed new intrusion detection system
(IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial
bee colony (ABC) and Fuzzy C-means (FCM) clustering algorithm. An ANN can
operate alone in an IDS, but the combination of ANN, ABC, and fuzzy clustering
makes an IDS more powerful and efficient. The proposed method involves three
phases, which are training, validation, and testing. The homogeneous subsets of
training data are prepared with fuzzy clustering. Consequently, the training speed rate
is enhanced by separating the dataset into uniform subsets. During training phase, after
performing the clustering, MLP network with backpropagation (BP) algorithm is used
to build and train the IDS model. The steepest descent method is adapted to the BP
learning rule. The weight and threshold value of the network are adjusted by BP to
reach a low-error sum of squares. With BP, the gradient descent method is used to
balance the weight values of all layers. Generally, the initial weights of the network are
generated in random way within a certain interval; the training starts with this starting
point and proceeds step by step to a minimum error. The ABC helps the MLP to
determine ideal/optimal values for linkage weights and biases more rapidly. The per-
formance of the system is precisely assessed in the validation phase. Finally, in the
testing phase, intrusion detection is processed by passing the test data through the
previously-trained model. The CloudSim simulator and NSL-KDD dataset are used to
verify the proposed model. Various evaluation criteria, such Mean absolute error
(MAE), root mean square error (RMSE), and the kappa statistic are used to compare
similar IDSs with the proposed method. The obtained results have demonstrated the
superiority of the proposed method in comparison with other state-of-the-art methods.

Ghosh et al. [12] have designed a network intrusion detection system to detect
attacks and malicious activities in Cloud environment. The proposed IDS includes two
stages. The first stage consists of creation of a feature subset by using a novel algorithm
called BCS-GA which combines the advantages of Binary Cuckoo search algorithm
(BCS) and Genetic Algorithm (GA). The proposed BCS-GA algorithm was applied on
NSL-KDD training dataset to remove several irrelevant features, in order to reduce the
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training time and memory storage space required for such high dimensional dataset.
Thus, initial NSL-KDD dataset contains 41 features, but after applying BCS-GA
algorithm, it successfully reduced to 16 features. In the second stage, Neural Network
classifier was trained by the reduced training dataset using 16 features. Thereafter,
classification accuracy of that classifier was tested by means of a separate reduced
testing dataset. Experimental results indicate that the proposed IDS produces 78.229%
of accuracy.

3 Positioning of the Proposed System in a Cloud Network

The aim of our proposed IDS is to detect intruders and suspicious activities in and
around the Cloud Computing environment by monitoring network traffic, while
maintaining confidentiality, availability, integrity and performance of cloud resources
and offered services. It allows detecting and stopping attacks in real time impairing the
security of the Cloud Datacenter.

As shown in Fig. 2, we propose to place our NIDS on two strategic positions:

1. Front-End of Cloud: Placing NIDS on front end of Cloud helps to detect network
intrusions or attacks coming from external network of Cloud, launched from zombie
hosts or by hackers connected to the Internet who attempt to bypass the firewall in
order to access the internal cloud, which can be a private one. Therefore, NIDS
plays the role of the second line of defense behind the firewall to overcome its
limitations and acts as an additional preventive layer of security.

2. Back-End of Cloud: Positioning NIDS sensors on processing servers located at
back end of the Cloud helps to detect intrusions occurring on its internal network. In
a virtual environment, we have many virtual machines on the same physical server,
and they can inter-communicate through the virtual switch without leaving the
physical server. Thus, network security devices on the LAN can’t monitor this
network traffic; if the traffic does not need to pass through security appliances
primarily a firewall, therefore, a loophole for all kinds of security attacks will be
opened. Hence, the starting point of an attacker/hacker is compromising only one
VM, and using it as a springboard to take control of the other VMs within the same
hypervisor. This is generally done without being monitored or detected, giving the
attacker a huge hack domain. Moreover, the virtual environment is exposed to
various threats and risks, centered mostly on the hypervisor; Hyper jacking, VM
escape, VM migration, VM theft and Inter-VM traffic.

Our NIDS is designed to monitor that virtual traffic, and also the flow of traffic from
or to the processing server on the physical network. We haven’t chosen to install the
NIDS on each virtual machine because it will be an additional burden; it will weigh
down the work of the VM. Further, such configuration requires multiple instances of
NIDS, which makes complex management of NIDS, whereas VMs are dynamically
migrated, provisioned or de-provisioned.
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4 Related Background

As mentioned previously, ISAGA used in this work is a variant of standard Genetic
Algorithm (GA), which is developed based on GA, improved through an Adaptive
Mutation Algorithm (AMA) and optimization strategies. Hence, this section provides
the necessary background to understand operation of AMA and the role of those
optimization strategies. First subsection briefly presents Adaptive Genetic Algorithms,
especially Adaptive Mutation Algorithm (AMA). While, the second subsection intro-
duces and explains the role of the optimization strategies applied to GA, namely
Parallel Processing and Fitness Value Hashing.

4.1 Adaptive Genetic Algorithms: Adaptive Mutation Algorithm

Adaptive Genetic Algorithms (AGA) [7] are a popular subset of genetic algorithms,
which can provide significant performance improvements over standard implementa-
tions when utilized in the suitable circumstances. A key factor that determines how well
a genetic algorithm (GA) will perform is the manner in which its parameters are
configured. Thus, finding the right values for the mutation rate and crossover rate plays
in substantial role when building an efficient and effective GA. Typically, configuring
the parameters will require some trial and error, together with some intuition, before
eventually attaining a satisfactory configuration. AGA are useful because they can help
in the tuning of these parameters automatically by adjusting them based on the state of

Fig. 2. Positions of proposed ANIDS-DNNISAGA in a cloud network
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the algorithm. These parameter adjustments take place while GA is running, hopefully
resulting in the best parameters being used at any specific time during execution. It is
this continuous adaptive adjustment of GA parameters that will often result in its
performance improvement. AGA used in this work uses information such as the
average population fitness and the population’s current best fitness to calculate and
update its parameters in a way that best suits its present state. For example, by com-
paring any specific individual to the current fittest individual in the population, it’s
possible to gauge how well that individual is performing in relation to the current best.
Typically, we want to augment the chance of preserving individuals that are performing
well and reduce the chance of preserving individuals that don’t perform well. One way
we can do this is by allowing the algorithm to adaptively update the mutation rate. We
can determine if the algorithm has started to converge by calculating the difference
between the current best fitness and the average population fitness. When the average
population fitness is close to the current best fitness, we know the population has
started to converge around a small area of the search space. When calculating what the
mutation rate should be for any given individual, two of the most important
factors/characteristics to consider are how well the current individual is performing and
how well the entire population is performing as a whole. The algorithm we had used in
this work to assess these two characteristics and update the mutation rate is called
Adaptive Mutation Algorithm, and it is defined by Eqs. (1) and (2).

fi: Is the fitness value (score) of the current individual identified by the index i.
fmax: Is the best fitness from the population.
favg: Is the average population fitness.
m: Is the mutation rate that was set during initialization of GA.
pm: Is the new mutation rate that should be applied for the current individual.

pm ¼ fmax � fið Þ= fmax � favg
� �� m; fi [ favg ð1Þ

pm ¼ m; fi � favg ð2Þ

As shown by the Eq. 1, when the individual’s fitness (fi) is higher than the pop-
ulation’s average fitness (favg), firstly, we calculate the difference between fmax and fi.
Afterwards, we compute the difference between fmax and favg and perform the division
of the two resulted values. At last, we use the quotient of previous division to scale the
mutation rate (m) that was set during initialization. Otherwise, as indicated by Eq. 2, if
the individual’s fitness is the same or less than the population’s average fitness, we
simply use the mutation rate as set during initialization. Adaptive genetic algorithm can
be employed to adjust more than just the mutation rate however. Similar technique can
be applied to adjust other parameters of the genetic algorithm like the crossover rate to
get further improvements as needed.

4.2 Optimization Strategies for Genetic Algorithm

With the fitness function, typically being the most processing demanding component of
genetic algorithm (GA), it makes sense to focus on improvement of the fitness function
to see the best return in performance. In this section, we will explore two optimization
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strategies that are used in this work to improve performance of GA by optimizing the
fitness function, namely Parallel Processing and Fitness Value Hashing.

Parallel Processing
One of the easiest approaches to achieve a performance enhancement of GA is by
optimizing the fitness function. The fitness function is typically the most computa-
tionally expensive component; and it is often going to be the bottleneck of GA. This
makes it an ideal candidate for multi-core optimization. By using multiple cores, it is
possible to compute the fitness of numerous individuals simultaneously, which makes a
tremendous difference when there are often hundreds of individuals to evaluate per
population. Java 8 provides some very useful libraries that make supporting parallel
processing in our GA much easier. Using Java’s IntStream, we can implement parallel
processing in our fitness function without worrying about the fine details of parallel
processing (such as the number of cores we need to support); it will instead create an
optimal number of threads depending on the number of cores available in our multi-
core system. Hence, by using parallel processing, fitness function will be able to run
across multiple cores of the computer. Consequently, it is possible to considerably
reduce the amount of time the GA spends evaluating individuals and, so reduce the
overall time of execution of GA, and accelerate convergence process [7].

Fitness Value Hashing
Fitness Value Hashing is another strategy that can reduce the amount of time spent
computing fitness values by storing previously calculated fitness values in a hash table
[7]. During running of GA, solutions found previously will occasionally be revisited
due to the random mutations and recombinations of individuals. This occasional
revisiting of solutions becomes more common as GA converges and begins to find
solutions in an increasingly smaller area of the search space. Each time a solution is
revisited its fitness value needs to be recalculated, wasting processing power on
recurrent, duplicate computations. Luckily, this can be easily fixed by storing fitness
values in a hash table after they have been computed. When a previously visited
solution is revisited, its fitness value can be retrieved from the hash table, avoiding the
need to recalculate it.

5 The Proposed System

Our approach consists of using a self-adaptive heuristic search algorithm called
“Improved Self-Adaptive Genetic Algorithm (ISAGA)” to build automatically a Deep
Neural Network (DNN) based anomaly Network IDS (NIDS). ISAGA is a variant of
standard Genetic Algorithm (GA), which is developed based on GA, improved through
an Adaptive Mutation Algorithm (AMA) (Subsect. 4.1) and optimization strategies
(Subsect. 4.2). Our DNN is a Back Propagation Neural network (BPNN) with one input
layer, two hidden layers and one output layer. The number of nodes in the input layer
corresponds to the number of attributes/features in the vector of connection instance
from IDS datasets received by DNN, while the number of nodes in each hidden layer
will be generated by ISAGA. Whereas, the output layer comprises one node, which
gives a value of 1 in case of classification of input pattern by DNN as normal traffic,
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otherwise, it provides a value of 0 to indicate an intrusion. Our approach includes
mainly four stages. In two first stages, we have studied deeply several works related to
intrusion detection systems based on BPNN or DNN.

The first stage was focused on the determination of the most relevant parameters
employed to construct that type of classifier or that affect its performance. As shown by
Table 1, at the end of our study, we have concluded that the most important parameters
are [13]: The number of selected features/attributes, that corresponds to the number of
nodes in the input layer, Normalization of data, Architecture of Neural Network,
specifically the number of nodes in the hidden layer(s), Activation function or transfer
function, Learning rate and Momentum term.

The second stage consists of comparison of studied works in order to select for
each parameter cited above, between two and four relevant and pertinent values, which
have given the best results in terms of intrusion detection.

In our work, ISAGA will generate randomly the number of nodes of both hidden
layers of DNN and the values of Learning rate and Momentum term. Through genetic
operations such selection, elitism, crossover and mutation, ISAGA algorithm is able to
found the ideal values of those parameters. The most of the existing network traffic
datasets that are publicly available are either outdated, unlabelled or unreliable. Some
of these suffer from lack of traffic diversity and volume, some do not cover the variety
of known attacks, while others are missing or hiding features that are present in the
most common network protocols. However, the CICIDS2017 dataset [15] generated in
2017 by the Canadian Institute of Cybersecurity overcomes those issues. It represents a
dataset that satisfy the eleven indispensable characteristics of a valid IDS dataset,
namely Anonymity, Attack Diversity, Complete Capture, Complete Interaction,
Complete Network Configuration, Available Protocols, Complete Traffic, Feature Set,
Metadata, Heterogeneity and Labelling [18]. Thus, for the purpose of training and
evaluating our proposed system, the CICIDS2017 dataset was primarily used. Thereby,
the number of inputs in our DNN is fixed at 70 inputs, which corresponds to the
number of features selected in [15] from CICIDS2017 dataset.

Table 1. List of parameters influencing the performance of a BPNN or a DNN based IDS and
their different values

Parameters Different values

Number of attributes 10 attributes CIDDS-001 [14]
70 attributes CICIDS2017 [15]
14 attributes Kyoto 2006+ [16]
12 attributes NSL-KDD [13, 17]

Normalization Min-max normalization [13]
Statistical normalization [13]

Activation function Hyperbolic tangent [13]
Sigmoid [13]
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The third stage: For successful use of ISAGA, two key elements must be well
defined; the representation/encoding of chromosomes and the Fitness Function.

• Chromosome encoding/representation: In our study, we have chosen the binary
representation for chromosomes. Each chromosome is a possible combination of
values of the pertinent parameters mentioned previously, that will be used to
construct an instance of IDS based DNN. Each parameter constitutes a gene in the
chromosome, as indicated by Table 2. Hence, each chromosome takes the form of a
binary string of 58 bits. Binary substrings corresponding to learning rate and
Momentum term genes of a chromosome are converted into decimal values, then
normalized using the Min-Max normalization technique to get values between 0 and
1, which will be serve as Learning rate and Momentum term of the IDS generated
based on that chromosome.

• Fitness Function or Evaluation Function: We have chosen the AUC metric [13]
as a score (fitness function) of individuals of ISAGA to assess their adaptability to
the optimization problem. The AUC is a performance metric of IDSs, that repre-
sents the ability to avoid misclassifications of network packets. From our point of
view, it is a good trade-off between DR (Detection Rate) metric and FPR (False
Positive Rate) metric. In effect, this is due to the fact that AUC is the arithmetic
mean of DR and TNR (1-FPR) as shown by Eq. 3 of the AUC. As it is known, a
good IDS is one that achieves a high detection rate (DR) and low false positive rate
(FPR). As demonstrated by Eq. 3, as the value of DR increases and that of FPR
decreases, consequently, the value of AUC increases. Therefore, from our point of
view, AUC is the best metric for evaluating an IDS. That is the reason of choice of
AUC as fitness function.

AUC ¼ ðDRþ TNRÞ=2 ¼ ðDRþ ð1� FPRÞÞ=2 ð3Þ

The fourth stage: As shown by Fig. 3, ISAGA process begins with a randomly
generated population of 1000 individuals (potential solutions) represented by their
chromosomes; each chromosome takes the form of a binary string of 58 bits. Then, this
population evolves through several generations by means of genetic operations such
elitism, selection, recombination (crossover) and mutation until stopping or optimiza-
tion criterion of ISAGA is met. At each generation, for each chromosome, the Fitness
Hash Table (FHT) is checked to verify if this chromosome is already visited, in this
case, its fitness value is pulled from FHT. Otherwise, this chromosome is used to create
an instance of an IDS based on DNN. Afterwards, this IDS firstly goes through the
learning phase, then passes to the test/evaluation phase and returns the values of
performance metrics calculated at the end of last phase. Among those performance
metrics, we select the pertinent of them, namely AUC metric to serve as “Fitness
Function” for evaluation of goodness of chromosomes, then AUC (fitness value) value
is stored in FHT. From one generation to the next, ISAGA converges towards the
global optimum through genetic operations cited previously. Finally, the best indi-
vidual (chromosome) is picked out as the final result once the optimization criterion
is met. In our work, termination condition adopted for ISAGA is production of
200 generations. Hence, the best chromosome resulted corresponds to the optimal or
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near-optimal values of parameters used to build an ideal IDS based DNN, which yields
high detection rate and low false alarm rate.

Fig. 3. Workflow of proposed system ANIDS DNN-IGASA

Table 2. Chromosome used by Improved ISAGA

Genes Number of bits to
encode the gene

Possible/Number of values

Normalization 01 0 (Min-Max normalization) or 1
(Statistical normalization)

Activation function 01 0 (Hyperbolic tangent) or 1 (Sigmoid)
Nb of nodes in
hidden layer 01

08 256

Nb of nodes in
hidden layer 02

08 256

Learning rate 20 220 values
Momentum term 20 220 values
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6 Experimental Results and Analysis

The experiments were carried out on a Windows 10–64 bits PC with 32 GB RAM and
CPU Intel(R) Core-i7 2700 K CPU. For simulation, we have used CloudSim simulator
4.0 and CICIDS2017 dataset. From CICIDS2017, we have extracted two independents
subsets, namely training dataset and testing dataset, following the approach adopted by
Ahmin et al. in [15]. Thus, among the 80 features of CICIDS2017, 71 relevant features
are selected (70 features as input features for DNN plus 01 feature represents Label
feature). Whereas, for data preprocessing, numericalization or categorical encoding is
used for qualitative feature, namely feature Label, while Min-Max normalization or
Statistical normalization (Z-score) are applied to other 70 quantitative features. Table 3
summarizes the distribution and size of these subsets.

The experiments conducted on our proposed system show that at the end of ISAGA
process that is to say after 200 generations, the best individual (chromosome) is found.
That fittest chromosome allows building the best ANIDS-DNNISAGA. Table 4 shows
parameters of the best ANIDS-DNNISAGA obtained and its performances. As indi-
cated by Table 5, our proposed IDS yields best results that other state-of-art methods.
Further, optimization strategies incorporated to ISAGA, namely Parallel Processing
and Fitness Value Hashing have brought several benefits; 88% reduction of execution
time compared to a standard GA, acceleration of the ISAGA convergence process and
save of processing power.

Table 3. Distribution and size of training and testing datasets

Dataset Attack records Normal records Total

Training dataset 20000 20000 40000
Testing dataset 20000 20000 40000

Table 4. Parameters and performance of best IDS based DNN obtained using ISAGA

Parameters Value Performance metric Value

Number of nodes in input layer 70 Accuracy 99.88%

Number of nodes in hidden layer 01 45 Precision 99.99%

Number of nodes in hidden layer 02 21 Detection Rate (DR) 99.88%

Number of nodes in output layer 1 False Negative Rate (FNR) 0.12%

Activation function Sigmoid function False Positive Rate (FPR) 0.11%

Data normalization Min-Max normalization True Negative Rate (TNR) 99.89%

Learning rate 8.754557301698653E-7 F-score 0.99

Momentum rate 1.294012698456624E-4 AUC 99.89%
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7 Conclusions and Future Work

In order to develop a powerful ANIDS for detection and prevention of both inside and
outside assaults in cloud environments with high detection precision and low false
warnings, we have adopted a smart approach to build automatically such IDS based on
Deep Neural network (DNN). Our method consists of using Improved Self-Adaptive
Genetic Algorithm (ISAGA), with the purpose of searching the optimal values of the
parameters included in construction of IDS based DNN (IDSDNN). As result, at the
end ISAGA process, the optimal or near-optimal values of parameters used to build an
ideal IDSDNN are found, which allows constructing a powerful Anomaly IDS called
“ANIDS-DNNISAGA” reaching high detection rate and low false positive rate.
Experimental results conducted using CloudSim 4.0 and CICIDS2017 dataset
demonstrate that our ANIDS-DNNISAGA outperforms several recent works. More-
over, performance improvement strategies integrated in ISAGA have reduced execu-
tion time, convergence time and saved processing power. Moreover, we have chosen to
place our proposed IDS on Front-End and Back-End of the Cloud, to detect and stop
attacks in real time impairing the security of the Cloud Datacenter.

We plan to use other meta-heuristic algorithms such particle swarm optimization,
artificial bee colony (ABC) algorithm, ant colony optimization (ACO), crow search
algorithm or whale optimization algorithm to compare them with the Optimized Self-
Adaptive Heuristic Search Algorithm employed in this paper.
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Abstract. Logs record the events and actions performed within an orga-
nization’s systems and networks. Usually, log data should conform with
the security policy in use. However, access logs may show the occur-
rence of unauthorized accesses which may be due to security breaches,
such as intrusions or conflicting rules in security policies. Due to the
huge amount of log data generated every day and presumed to grow over
time, analyzing access logs becomes a hard task that requires enormous
computational resources. In this paper, we suggest a method that anal-
yses an access log, and uses the obtained results to determine whether
an Attribute-Based Access Control (ABAC) security policy contains con-
flicting rules. This access log-based approach allows to obtain an efficient
conflict detection method, since conflicts are searched among suspicious
rules, instead of all the rules of the policy. Those suspicious rules are iden-
tified by analyzing the access log. To improve efficiency even more, the
access log is decomposed into clusters which are analyzed separately. Fur-
thermore, cluster representatives make the proposed approach scalable
for continuous access log case. The scalability is confirmed by experiment
results, and our approach effectively identifies conflicts with an average
recall of 95.65%.

Keywords: ABAC policies · Access log clustering and analysis ·
Cluster representative · Suspicious rule · Conflict detection

1 Introduction

Logs contain useful information regarding actions performed within an orga-
nization’s systems and networks. For instance, when a service fails, logs are
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examined to gain insights into the failure and potential problems (i.e. identify
the problem source). Among the various categories of logs, we consider more
particularly access logs, that keep track of access requests to existing resources
and corresponding decisions to accept or reject these requests.

Traditionally, to identify a failure, a simple keyword search within logs (e.g.
“warning”, “error”) is performed. However, such an approach is often time con-
suming. Due to the huge amount of access log data generated every day and
presumed to grow over time, analyzing access logs becomes a hard task that
requires enormous computational resources, and sophisticated procedures. Thus,
it is interesting to offer adequate and efficient techniques for access logs analy-
sis. Usually, access logs should conform with the security policy in use. However,
access logs may show the occurrence of unauthorized accesses, which may be due
to security breaches, such as intrusions or conflicting rules in security policies.
In this paper, we suggest a method that decomposes an access log into clus-
ters which are analyzed separately, and uses the obtained results to determine
whether an Attribute-Based Access Control (ABAC) [24] security policy con-
tains conflicting rules. The latter are searched among suspicious rules, instead
of all the rules of the policy. Those suspicious rules are obtained by analyzing
the access log.

The remainder of this paper is structured as follows: We begin in Sect. 2
by presenting the motivation and methodology of using access logs analysis for
detecting security conflicts. Section 3 presents our method to analyze an access
log. In Sect. 4, we present how we detect conflicting rules of a security policy,
based on the access log analysis results. Section 5 reports and discusses exper-
imental results. Related work are given in Sect. 6. Finally, the conclusion and
expected future work are presented in Sect. 7.

2 Motivation and Methodology

A (security) policy is specified by a set of rules that describe authorized accesses
as well as unauthorized ones. Detecting conflicts in a policy can be naturally
be done by analyzing all the rules of the policy. Let us consider the case of
an evolutive policy, i.e. a policy to which rules are added from time to time.
Since adding a new rule may generate conflicts with other rules of the policy
[5], evolutive policies should therefore be analyzed regularly. The question that
arises is then:

– Since just a few rules are added between two analyses, is it possible to analyze
the policy by considering only some of its rules, instead of all its rules?

To answer the above question which is motivated by the desire of efficiency,
we suggest to use an access log, with the idea that conflicting rules in the policy
should cause contradictory access records in the access log. Consider a policy P
and an access log L. Our approach is then to detect contradictory access records
in L, from which we deduce suspicious rules in P that could have caused the
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contradictions. Then, conflicts are searched only among suspicious rules, instead
of all rules.

Let us illustrate our idea with a policy P where rules are added like in a
stack, i.e. the last added rule in P is the first rule of P . Also, we assume that P
uses First-Applicable strategy, i.e. when an access request rq occurs, P applies
the first rule that matches rq (i.e. the first rule whose conditions are satisfied by
rq). Let the following r1 be the current first rule of P :

– r1: Permit{read} (IpAdressSRC= 10.1.1.122, DepartmentSRC = Production,
IpAdressDST= 10.1.1.120, DepartmentDST = Production)

Intuitively, this rule indicates that the machine belonging to the production
department with IP address “10.1.1.122” has the right to read in the service
having IP address “10.1.1.120”. Consider an access request rq, where a ser-
vice with IP address “10.1.1.122” requests to read the resource with IP address
“10.1.1.120” that belongs to the production department. Since r1 authorizes the
access requested by rq, the following access record is written in the access log:

– ρ1: Access allowed to 10.1.1.122 to read in 10.1.1.120.

Consider that the following new rule r2 is then added to P :

– r2: Deny{read} (IpAdressSRC= 10.1.1.122, DepartmentSRC = Production,
IpAdressDST= 10.1.1.120, DepartmentDST = Production)

Note that now r2 and r1 are the first and second rules of P , respectively. If
the same access request rq arrives a second time, rq is refused by P , because it
is refused by r2 (which is the first rule of P ). Hence, the following access record
is written in the access log:

– ρ2: Access prohibited to 10.1.1.122 to read in 10.1.1.120.

Therefore, the access log contains two contradictory access records (ρ1 and ρ2),
which report that two identical access requests have been accepted and refused,
respectively.

Then, the objective is to search in P the rules that match the two contradic-
tory ρ1 and ρ2 (i.e. the rules whose conditions are satisfied by the values of ρ1 or
ρ2). The result is that r1 and r2 match ρ1 and ρ2, and hence are considered as
suspicious. Then, conflict detection in P should be applied considering uniquely
suspicious rules (i.e. r1 and r2) instead of all rules of P .

As we have explained, our approach is motivated by an improvement in effi-
ciency, since a security policy is analyzed considering only some of its rules (qual-
ified as suspicious), instead of all its rules. However, the approach necessitates
to analyze an access log. So the question that arises is:

– Is it worth analyzing only a small part of a policy instead of all the policy, if
on the other hand we have to add the analysis of an access log?
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Our answer is Yes, from the fact that on average a rule of a security policy
contains significantly more attributes than an access record. Hence, analyzing a
rule takes significantly more time than analyzing an access record. Our answer
is confirmed by experiment results in Sect. 5 (Fig. 3).

Since access records are generated every day and presumed to grow over
time (i.e. continuous access logs, where access records are added periodically),
analyzing the access log arises the following question:

– Is it possible making the proposed approach scalable for a large amount of
log data, and for continuous access logs?

To answer the above question which is motivated by the desire to make the
proposed approach scalable, while considering continuous access logs, we suggest
decomposing the access log into clusters which are analyzed separately, and then
select a representative for each cluster. The idea is that instead of analyzing all
access records (which are previously analyzed), cluster representatives would
allow for a more efficient approach, where one compares the newly added access
records with cluster representatives. Then, the analysis procedure is applied
only within the cluster(s) where the new access records were inserted, instead of
analyzing the new access records with the whole access log. This motivation is
confirmed by experiment results in Sect. 5 (Table 2).

3 Access Log Analysis

A complex computing system is usually composed of several modules that com-
municate with each other. To be able to identify a posteriori access problems of
such system, it is common that each of its modules generates a local access log,
i.e. a log that keeps track of access requests to the module and corresponding
decisions to accept or reject these requests. Before presenting access log analysis,
we first give some formal definitions that we consider throughout the paper.

Definition 1. (Access Record)
An access record ρi is formally specified by an action (e.g. read, write), a

decision X (Permit or Deny), and one or more expressions “attk = vk”, where
attk is an attribute name and vk is a value of attk. Such access record ρi is
expressed as follows, where mi is the number of attributes in ρi:

ρi : Xa(att1 = v1, · · · , attmi
= vmi

) (1)

Intuitively, Xa(att1 = v1, · · · , attmi
= vmi

) records the occurrence of a
request to execute the access action a and for which the decision X (Permit
or Deny) has been taken. This access record also indicates the respective values
v1, · · · , vmi

of the attributes att1, · · · , attmi
during the access request.

Example 1. Denyread(IpAdressSRC= 10.1.1.122, DepartmentSRC = Produc-
tion, IpAdressDST= 10.1.1.120, HostTypeDST = service). This access record
indicates that the machine belonging to the production department with IP
address “10.1.1.122” tried to read the service with IP address “10.1.1.120”, but
the access was denied to it.
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We define an access log as a finite set of access records: L = {ρ1, ρ2, · · · , ρl},
where ρi is an access record, and l is the number of access records.

3.1 Access Log Preprocessing

Due to the diversity of access log sources, we have configured a Syslog Server1

that aims to receive and collect log data from all relevant nodes in the system
over the syslog protocol, and group them into a single global access log. The
latter is then parsed in order to recognize, extract and reformulate each of its
access records using the above formulation (1).

Example 2. Consider the following access record written in Syslog format [11]:
ρ: Oct 02 20:08:41 gateway %ASA-6-302016: Teardown UDP connection

14 denied to read for 10.1.1.122-90-service-UDP-Production to 10.1.1.120-96-
service-UDP-Production duration 0:02:05 bytes 156.

After recognition, extraction and reformulation of the above access record,
we obtain the following equivalent access record:

– Denyread (IpAdressSRC = 10.1.1.122, SRCAdminID = 90, HostTypeSRC =
service, ProtocolSRC = UDP, DepartmentSRC = Production, IpAdressDST
= 10.1.1.120, DSTAdminID = 96, HostTypeDST = service, ProtocolDST =
UDP, DepartmentDST = Production).

3.2 Access Log Clustering

To deal with the huge amount of generated access logs, we suggest to apply a
clustering method to group similar access records in the same cluster, based on
computed similarity measures. The similarity measure is a function Slog that
assigns a similarity score Slog(ρi, ρj) to any given pair of access records ρi and
ρj . Such a score reflects the degree of similarity between ρi and ρj , with respect
to their attributes values. The similarity score is a value between 0 and 1. In
particular, a score 1 means that ρi and ρj could be distinguished uniquely by
their decisions and actions, while they are indistinguishable by their attributes.
The similarity score function Slog is formally defined as follows:

Definition 2. (Access Record Similarity)
Consider two access records ρi : Xa(att1 = u1, · · · , attmi

= umi
) and ρj :

Yb(att′1 = v1, · · · , att′mj
= vmj

). Let mi,j be the number of attributes that are
common to ρi and ρj (hence mi,j ≤ mi, mi,j ≤ mj). Let μi,j be the number of
common attributes that have the same value in ρi and ρj (hence μi,j ≤ mi,j).
The similarity between ρi and ρj is noted Slog(ρi, ρj) and defined as follows:

Slog(ρi, ρj) =
μi,j

mi + mj − mi,j
(2)

Note that for i = j, we obtain mi = mi,i = μi,i, and hence Slog(ρi, ρi) = 1.
1 https://www.linuxjournal.com/content/creating-centralized-syslog-server.

https://www.linuxjournal.com/content/creating-centralized-syslog-server
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Example 3. Consider the following access records ρ1 and ρ2:

– ρ1 : Denyread (IpAdressSRC = 10.1.1.122, SRCAdminID = 90, HostTypeSRC
= service, ProtocolSRC = UDP, DepartmentSRC = Production, IpAdress-
DST = 10.1.1.120, DSTAdminID = 96, HostTypeDST = service, Proto-
colDST = UDP, DepartmentDST = Production)

– ρ2 : Permitread (IpAdressSRC = 10.1.1.120, SRCAdminID = 91, Host-
TypeSRC = service, ProtocolSRC = UDP, DepartmentSRC = Production,
IpAdressDST = 10.1.1.120, DSTAdminID = 96, HostTypeDST = service,
ProtocolDST = UDP, DepartmentDST = Production)

ρ1 and ρ2 have the same ten attributes: IpAdressSRC, SRCAdminID, Host-
TypeSRC, ProtocolSRC, DepartmentSRC, IpAdressDST, DSTAdminID, Host-
TypeDST, ProtocolDST and DepartmentDST. Eight of these attributes have the
same value in both ρ1 and ρ2. Therefore, m1 = m2 = m1,2 = 10, and μ1,2 = 8.
By using Eq. (2), we get the similarity score: 8

(10+10−10) = 8
10 = 0.8.

The results obtained in the similarity measures are used to group access
records into clusters. Given an access log L = {ρ1, ρ2, · · · , ρl}, clustering L
consists in partitioning L into several subsets (or clusters): C1, C2, · · · , where
each Ci contains access records that are similar. Two access records ρi and ρj

are considered similar if their similarity score Slog(ρi, ρj) is greater than a given
threshold. The value of the threshold is set to 0.8, based on [7]. Note that the
clusters satisfy the following two properties:

– each cluster contains at least one access record;
– each access record belongs to exactly one cluster.

It is worth noting that some existing clustering techniques need that the
number of clusters be given as an input parameter. For example, k-Means and
its variants need the number of clusters as a parameter to run [3]. Density-based
clustering and its extensions require the neighborhood size to be passed as a
variable [13]. Which is not the case in this paper.

Selecting Cluster Representative: Clusters of access records are created in
the first access log analysis (i.e. the first time we analyze an access log). For
each created cluster, we select a representative, which is the access record that
has the greatest average similarity with the other access records in the same
cluster. Such representative is the access record that minimizes the following
score, where m is the cluster size (i.e. its number of access records):

Score(ρi) =
1
m

m∑

j=1

(1 − Slog(ρi, ρj)) (3)

The cluster representatives are used to determine in which cluster every
access record should be inserted. More precisely, if ρ1, ρ2, · · · are cluster rep-
resentatives of clusters C1, C2, · · · , an access record ρ is inserted in Ci whose
representative ρi is the most similar to ρ, i.e. in Ci that maximizes Slog(ρi, ρ),
for i = 1, 2, · · · .
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3.3 Access Log Contradiction Detection

Once a cluster is constructed from scratch and when it is modified (by the
addition of new access records), we need to verify if the new version of the
cluster contains contradictory access records (or more simply: contradictions).
We say that two access records are contradictory, if they have recorded the same
attribute values but different decisions on the same action, e.g. an access record
permits to read a resource, while the other one denies it. Formally, an access
record contradiction is defined as follows:

Definition 3. (Access Record Contradiction)
Consider two access records ρi : Xa(att1 = u1, · · · , attmi

= umi
) and ρj :

Yb(att′1 = v1, · · · , att′mj
= vmj

). ρi and ρj are contradictory iff:
1 - X �= Y
2 - a = b, and
3 - Slog(ρi, ρj) = 1

Points 1 and 2 mean that ρ1 and ρ2 take different decisions (X �= Y ) on
the same action (a = b). Point 3 means that ρ1 and ρ2 use exactly the same
attributes, and that each attribute has the same value in both ρ1 and ρ2. In
other words, ρi and ρj are distinguished uniquely by their actions and decisions.

Example 4. Consider the following access records ρ1 and ρ2:

– ρ1 : Denyread (IpAdressSRC = 10.1.1.122, ProtocolSRC = UDP, Depart-
mentSRC = Production, IpAdressDST = 10.1.1.120, ProtocolDST = UDP,
DepartmentDST = Production)

– ρ2 : Permitread (IpAdressSRC = 10.1.1.122, ProtocolSRC = UDP, Depart-
mentSRC = Production, IpAdressDST = 10.1.1.120, ProtocolDST = UDP,
DepartmentDST = Production)

ρ1 and ρ2 are contradictory, because Slog(ρ1, ρ2) = 1 (ρ1 and ρ2 are similar),
while the action read is denied in ρ1 and permitted in ρ2.

Contradiction access records will be used in the next step (Sect. 4) to identify
suspicious rules among which we will search conflicting rules.

4 Security Policy Verification

Errors in the policy rules specification may compromise the system security
by leading to unauthorized access or denying authorized ones. Therefore, it is
important to detect conflicts within a security policy. In this direction, for each
detected contradiction within an access log, we search conflicting rules in the
policy if any, that could have caused the contradiction. Intrusions can be another
possible cause of contradictions in an access log. However, in this paper, we only
consider the case of conflicting rules, while intrusion detection is beyond the
scope of this paper. We first give some definitions related to security policy and
security conflict.
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4.1 Security Policy Structure

A policy P is a non-empty set of rules P = {r1, r2, ..., rn}. Each rule ri ∈ P
is specified by a condition and an action decision. The condition of a rule is
defined as a conjunction of one or more “att ∈ Vatt”, where att is an attribute
name and Vatt is a set of possible values of att. The action decision of a rule is
noted Xact, where X is the decision Permit or Deny, and act is a set of actions.
Permitread and Denywrite are two examples of action decisions. A rule ri ∈ P
will be written as follows:

ri : Xact(att1 ∈ Vatt1 , · · · , attpi
∈ Vattpi

) (4)

Example 5. Permit{read,write} (IpAdressSRC ∈ { 10.1.1.122} , DepartmentSRC
∈ {Production} , IpAdressDST ∈ {10.1.1.120} , HostTypeDST ∈ {service}).

Intuitively, this rule indicates that the machine belongs to the production
department with IP address “10.1.1.122” has the right to read and write in the
service having IP address “10.1.1.120”.

The formulations of the access records and the rules (i.e. formulation (1) and
(4)) might look similar, whereas the main difference is : in a rule, we define a set
of actions and each attribute name may have a set of attribute values, while in
an access record, we have only one action and for each attribute name we only
have one value. In order to define a security conflict, we reformulate equivalently
a rule in access domain. The definition of access domain is given below:

Definition 4. (Access Domain)
Given a rule ri defined as : Xact(att1 ∈ Vatt1 , att2 ∈ Vatt2 , ..., attpi

∈
Vattpi

), we reformulate equivalently ri in the following form: ri : Xact((att1,
att2, ..., attpi

) ∈ Vatt1 × Vatt2 × ... × Vattpi
).That is, instead of specifying sep-

arately a set of values for each attribute attk, we specify a unique set of val-
ues for the pi-tuple (att1, att2, ..., attpi

) of all attributes. Such a set is called
access domain of ri and noted ADri

. So the rule ri can be expressed in the form
ri = Xact((att1, att2, ..., attn) ∈ ADri

). For simplicity, we note ri = Xact(ADri
).

4.2 Security Policy Conflicts

A security conflict occurs when an access request matches more than two rules
in a policy, leading to contradictory decisions. We say that an access request R
matches a rule ri, if every attribute value of R satisfies the attribute values of ri.
Suppose that a rule r1 states that a subject s is permitted to read the resource
r and another rule r2 states that the same subject s is denied to read the same
resource with the same attribute values. Therefore, we say that r1 and r2 are
conflicting. The formal definition of security conflict is given below:
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Definition 5. Security Conflict
Consider two rules ri=Xa(ADri

) and rj=Yb(ADrj
), ri and rj present a con-

flict (or are conflicting) iff:
1. ADri

∩ ADrj
�= ∅

2. X �= Y , and
3. a ∩ b �= ∅.

Example 6. Consider the following rules r1 and r2:

– r1 : Denyread (IpAdressSRC, ProtocolSRC, DepartmentSRC, IpAdressDST,
ProtocolDST, DepartmentDST) ∈ { 10.1.1.121, 10.1.1.122} × {UDP} ×
{Production} × {10.1.1.119, 10.1.1.120} × {UDP} × {Production}

– r2 : Permit{read,write} (IpAdressSRC, ProtocolSRC, DepartmentSRC,
IpAdressDST, ProtocolDST, DepartmentDST) ∈ { 10.1.1.122} × {UDP} ×
{Production} × {10.1.1.120} × {UDP} × {Production}

Since ADri
∩ADrj

= ADr2 �= ∅, and r1 and r2 have the common action read
and different decisions Deny and Permit, we deduce that they are conflicting.
Intuitively, r1 forbids that the machine with IP address “10.1.1.122” read the
resource given in the service with IP address “10.1.1.120”, while r2 permits it.

4.3 Security Conflict Detection

In this section, we show how to use access record contradictions to detect sus-
picious rules, and check if they are conflicting. Before continuing, we need the
following definition:

Definition 6. (Rule matching an access record)
Consider a rule r = Xact(att1 ∈ Vatt1 , · · · , attp ∈ Vattp

) and an access record
ρ = Yb(att′1 = v1, · · · , att′m = vm). We say that r matches ρ (and also ρ matches
r), iff

1 - Every attribute att′i of ρ is an attribute of r noted attpi
,

2 - vatt′
i
∈ Vattpi

, for i = 1 · · · m,
3 - X = Y , and
4 - b ∈ act.

The suggested method to detect conflicting rules from contradictory access
records is depicted in Algorithm 1. The input is a list of contradictory access
records CL, as well as the security policy SP , and the output is a list of conflict-
ing rules. The idea is that, for each pair of contradictory access records (ρi, ρj)
in CL, we search the sets Rρi

and Rρj
of suspicious rules that match ρi and

ρj respectively (Function Search lines 13–22 of Algorithm 1). Then, we verify
in the list of retrieved rules (i.e., Rρi

× Rρj
), if there exist pairs of conflicting

rules (i.e., pair of rules (r1, r2) ∈ Rρi
× Rρj

that satisfy points 1, 2 and 3 of
Definition 5).
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Algorithm 1. Verifying the Existence of Conflictsin a Security Policy
Input: Set CL of pairs of contradictory access records.

SP : security policy
Output: Set CR of pairs of conflicting rules of SP , which is initialized to empty.
1: procedure CONFLICTVERIFICATION(CL, SP )
2: for every pair of contradictory access records (ρi, ρj) of CL do
3: Rρi

× Rρj
= SEARCH((ρi, ρj), SP ) � Function SEARCH is defined in lines 12-21

4: for every pair of rules (r, r′) ∈ Rρi
× Rρj

do

5: if r and r′ are conflicting (i.e. points 1, 2, 3 of Def. 5 are satisfied) then
6: Insert (r, r′) in CR
7: end if
8: end for
9: end for

10: return CR
11: end procedure
12: function Search((ρi, ρj), SP ) � Search the sets Rρi

and Rρj
of rules of SP that match ρi

and ρj respectively.
13: for every rule rk ∈ SP do
14: if rk matches ρi (i.e. points 1, 2, 3 and 4 of Def. 6 are satisfied) then
15: Insert rk in Rρi

16: else if rk matches ρj then
17: Insert rk in Rρj

18: end if
19: end for
20: return Rρi

× Rρj

21: end function

The time complexity for verifying the existence of conflicts in a security policy
is in O(2|CL| × n2 × p × q), where |CL| is the size of the set CL, n is the policy
size, p is the maximum number of attributes in the log records, and q is the
maximum number of attributes in the rules of the policy. |CL| and n2 are due
to the fact that for each contradiction in CL, we must check n×(n−1)

2 pairs of
rules. p × q is for searching r that matches ρ (line 17 and 18 in Algorithm 1). If
we assume that |CL| is proportional to l (which seems realistic to us), we can
approximate the time complexity by O(l × n2 × p × q).

5 Experimental Results

To evaluate the proposed approach, we have implemented our method with Java
and the experiments were made using a laptop with a 2.7 GHz Intel Core i5 CPU,
8 GB RAM. For testing purposes, we have applied our method to access logs
generated by monitoring a system traffic from the architecture depicted in Fig. 1.
An ASA2 firewall was configured to control the network traffic with respect to
the Access Control Lists (ACLs) in the matrix flow shown in Table 1. ACLs
consists of a list of rules, each rule defines the action to take when a packet
arrives at the firewall. For example, when the firewall receives a packet from
INTERNET to destination INTRANET, the firewall denies it. Therefore, a rule
can be interpreted in the form (Condition,X), where Condition is predicates

2 https://www.cisco.com/c/en ca/products/security/asa-5500-series-next-
generation-firewalls/index.html.

https://www.cisco.com/c/en_ca/products/security/asa-5500-series-next-generation-firewalls/index.html
https://www.cisco.com/c/en_ca/products/security/asa-5500-series-next-generation-firewalls/index.html
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Fig. 1. Architecture design

Table 1. Firewall matrix flow

� INTERNET INTRANET DMZ 1 DMZ 2

INTERNET Permit Deny Permit Deny

INTRANET Permit Permit Permit Permit

DMZ 1 Permit Deny Permit Deny

DMZ 2 Permit Deny Deny Permit

describing what packets are matched by this rule and X is the decision performed
on the matched packets (e.g., Permit, Deny). Since we consider ABAC model to
specify the security policy, the ACLs are transformed into ABAC rules, which
are specified by a condition and an action decision. Therefore, an ABAC policy
can be trivially constructed by creating a separate rule corresponding to each
ACL rule, simply using Condition and X to identify the relevant condition and
an action decision. Of course, such an ABAC policy is a verbose version of the
original ACL policy. The verbosity can be for example by adding some actions
(e.g., read, write) to the decision X and some attributes describing the system
(e.g., Host name, department...). More details about mining ABAC policies is
given in [21].

In order to collect different access logs from various components of the system
into a single global access log, we used a Syslog Server. We have chosen Syslog
protocol, because it is supported by a wide range of devices and can be used to
log different types of events. Furthermore, Syslog provides a very high flexibility
for log generators, which can place whatever information they deem important
within the content field [11]. To analyze our results, we have considered the
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Fig. 2. Running time vs. threshold

overall execution time (i.e. of both Access Log Analysis and Security Policy Ver-
ification). More precisely, we have analyzed how the running time is influenced
by the threshold used in the clustering step (0.8 by default, see Sect. 3.2). This
parameter influences the result of clustering (i.e. the number of clusters) which
in turn influences the execution times of both access log analysis and security
policy verification. We also consider the size of the analyzed access log, as well
as the size of the newly added access log (for continuous access logs).

Figure 2 shows the running time of our method as a function of the access
log size for different thresholds and for a policy with 1088 rules. The curves
explicitly show that the running time increases with the number of access records
in a quadratic way. The obtained curves in Fig. 2, demonstrate the impact of the
threshold values (i.e., 0, 0.5, 0.6, 0.7, 0.8 and 0.9) on the performance (running
time). The obtained results can be explained by the fact that when the threshold
decreases, the sizes of the obtained clusters increase, and hence the running time
also increases. In the extreme case where threshold = 0 (i.e., similar to applying
our method without clustering), we obtain the worst running time. These results
demonstrate the time gained from the clustering step. On the average, the best
running time is obtained from the threshold 0.8. Thus, the default value of the
selected threshold for our experiments is set to 0.8.

As already explained, the use of access logs is justified by the fact that con-
flicts are searched among suspicious rules (which are deduced from contradictory
access records) instead of all rules. We have compared the efficiency (in execution
time) of our approach with an approach without access log (i.e. that searches
conflicts among all rules of P , instead of only suspicious rules). Figure 3 presents
the running time for the two approaches for different samples size Si(n, l), where
n is the policy size and l is the access log size. The figure shows that the exe-
cution time of our approach is lower than the execution time of the approach
without access log analysis, which confirms our motivation.
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Let us recall that the use of clustering is motivated by the desire to improve
the scalability of the proposed approach in the case of continuous access log (i.e.
where access records are added periodically). Table 2 presents the running time
of two approaches to analyzing an access log after the addition of new access
records. Approach 1 : analysis based on the whole access log. Approach 2 : analysis
based on cluster representatives. The execution time of Approach 2 is very lower
than the execution time of Approach 1 (since the newly added access records are
compared to a few access records instead of all access records), which furthermore
confirms the relevance of using clustering, and cluster representatives.

Fig. 3. Our approach vs. an approach without access log analysis

Table 2. Running time of two approaches to analyzing an access log after the addition
of new access records

Running time (msec)

Access
log size

Analysis based on the
whole access log

Analysis based on
cluster representatives

101 3199 1

304 3696 4

631 4471 7

6960 45070 77

In order to evaluate the proposed method performance, we use recall mea-
surement. This later measures the percentage of conflict in the data set being
detected. To compute this value, we need to compute the true positives (TP),
which reflect the correctly detected conflicts using access log analysis, and false
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negatives (FN) are conflicts that we failed to correctly detected. Using these
values, recall is calculated using Recall = TP

TP+FN . To have an effective model, a
high value of recall is required, where lower recall means the approach could more
likely miss conflicts. Experimental results show that the proposed method effec-
tively identifies policy conflicts with an average recall of 95.65% on all datasets.

6 Related Work

6.1 Related Work on Log Analysis

In the past decade, Log analysis is widely used for system management tasks and
problem diagnosis, such as anomaly detection [4,20,22], security failure analysis
[6,9] and performance monitoring [16,23], etc. State of the art concerning log
data analysis can be widely summarized into three categories. The first category
addresses the problem of log format normalization that fits existing common
log formats [17]. The second category considers the importance of finding an
efficient log parsing [8]. The last category is about the use of data mining and
machine learning in log analysis [15,22]. To the best of our knowledge, this paper
presents the first attempt that aims to detect conflicts in ABAC policies using
logs analysis, which none of the existing solutions addresses.

Within big data environments, analyzing log files becomes complex and hard
to manage. Therefore, several works propose using data mining and machine
learning techniques to analyze the logs for different objectives. For example,
in [15], Lou et al. mine invariants from unstructured console logs. An anomaly
occurs during the system execution if a new log breaks certain invariants. The
authors in [4] present DeepLog, a network for modeling system logs using Long
Short-Term Memory (LSTM). By training on normal logs, it learns log patterns
and detects anomalies in new logs if they deviate from the learned patterns.
Breier et al. [2] propose a method for anomaly detection using data mining
algorithms. Anomaly profiles are made from rules extracted by testing data
sets. Lin et al. [14] propose LogCluster that makes use of agglomerative hierar-
chical clustering on vectors extracted from log messages. For each cluster, they
extract a representative log sequence which they compare to previously extracted
sequences to see if the sequence is new and a possible anomaly. However, both
[2] and [14] depend on training data (Data Discover knowledge) to decide if the
log message is an anomaly. The work presented in [20] focuses on access control
violation. The authors transform raw log into a graph and then cluster the graph
using an improved MajorClust technique. Then, they conduct anomaly calcula-
tion on the clustering results based on a score considering several properties that
characterize each cluster. To decide whether or not a cluster is an anomaly, they
estimate a threshold to provide a recommendation for the forensic investigator.
Although, this intervention of forensic investigators when suspicious behavior is
detected makes the solution has limited usability regarding full automation.

In addition to the above work that has focused on logs analysis for problem
diagnosis, there exist work conducted to understand the meaning of log messages.
For example, Zhu et al. [25] proposed a “learning to log” framework, which aims
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to provide informative guidance on logging. In order to facilitate the understand-
ing of log messages, Shang et al. [18] proposed an approach which associates the
development knowledge (e.g., source code, commits, issue reports) present in
various software repositories with the log lines in order to assist users in log
understanding.

6.2 Related Work on Policy Analysis

Access control protects the system’s resources against unauthorized access via a
set of policies. When it comes to distributed systems, multiple policies may over-
lap, which results to conflicting and redundant rules. These kinds of anomalies
may lead to both safety problems (allowing unauthorized accesses) and availabil-
ity problems (denying an access in emergencies). Khoumsi et al. [12] categorize
the anomalies into conflicting anomalies and non-conflicting ones. The first cat-
egory occurs when a request matches several rules that have different actions
(conflicts), whereas the second occurs when the same request matches several
rules that have the same action (redundancies). The authors of [12] model a
security policy by a finite state automaton, which is then used to analyze the
policy, for example to verify if it is complete and if it contains conflicting rules.
Several other conflicts detection strategies have been presented in the litera-
ture including decision trees, automaton and graph [1,10,19]. For example, Hu
et al. [10] consider representing policies as decision trees to detect conflicts. In
[1], Ayache et al. propose the verification of access control policies based on
Finite State Machines (FSM) to detect anomalies.

Compared to related work on policy analysis, we analyze more efficiently
a security policy, by detecting conflicts among suspicious rules of the policy,
instead of all its rules. Suspicious rules are deduced from an access log analysis.
To make our approach even more efficient, the access log is decomposed into
clusters which are analyzed separately. Such a clustering is very relevant in the
presence of very large access logs (big data context), as well as for continuous
access logs, where new access records are added periodically.

7 Conclusion

We have presented an approach to detect efficiently conflicting rules in a secu-
rity policy. Our contribution is three-fold: firstly, the method is made efficient by
searching conflicts among suspicious rules of the policy, instead of all its rules.
Those suspicious rules are determined by analyzing an access log. The second
contribution is that the scalability of the method for very large access logs is
ensured by decomposing the access log into several clusters which are analyzed
separately. Finally, after every modification of an access log, it is analyzed using
only a single access record (called representative) per cluster, instead of con-
sidering all access records. Efficiency of our method is confirmed by experiment
results. As future work, a work in progress is to realize a parallel implementa-
tion of the method based on MapReduce to support distributed data processing.
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We also aim to integrate the conflict resolution towards building a complete envi-
ronment for verifying and correcting security policies.
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Abstract. The spread of computer active worms is usually modeled by
epidemic diffusion processes and widely applied to peer-to-peer comput-
ing and social networks. Many protective interventions are recommended
to restrain the electronic epidemic, such as immunization strategies or
the installation of anti-virus software. In real-world networks, a natu-
ral framework for game theory is created where each player (internet
user) decides on his own strategy: to secure his host by paying the cost
of antivirus software or to remain unsecured, and then takes the risk
of being infected later. We introduce this issue by presenting an agent-
based model for simulating a vaccination game. In this work, we study
the neighbor’s impact including the imitation behavior effects on vacci-
nation behavior, which may help to relieve the severity of active worms
in peer to peer networks. The simulation results show that imitation
behavior works well only when the network initially have more than 20%
of vaccinated peers. Moreover, the higher the cost of vaccination, the
more players tend to imitate the strategy of neighbors.

Keywords: Epidemic · Game theory · Peer-to-peer

1 Introduction

The widespread use of peer-to-peer networks puts almost all Internet users at a
security risk. Because of the architecture of these types of networks, the commu-
nication between peer to peer users does not require a central server to manage it.
This computer architecture by its very nature is vulnerable to security breaches.
A lot of researches have been done over the past 20 years, confirming that there
is a mean disadvantage of using peer-to-peer networks and it is the problem of
user/data security. And presenting too many solutions to resolve it. For exam-
ple, applying the game theory to solve this kind of issues was very recommended
[1–3].

Active worms become one of the main problem since the early days of the
Internet [4,5]. A worm is a program that replicates itself and spreads through
network connections to infect other machines, eating up bandwidth and storage
c© Springer Nature Switzerland AG 2019
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space, which makes infected computers down. Today and with the growth of the
Internet, there are more potential targets to infect. This encourages growth in
the number of active worms, as well as their ways of spreading. This can still be
attributed to the rapid growth of the Internet; realize that more systems on the
Internet lead to higher connectivity resulting in higher propagation speeds.

In recent years, although various models and algorithms have been realized
to identify the mechanism of propagation of active worms, as well as to try to
catch and stop the propagation of active worms [6–10]. In order to prevent the
spread of active worms and mitigate its negative impact on the Internet and
especially on peer-to-peer networks, we need to have a detailed understanding
of how an active worm propagates.

To define the characteristic of security issues, we applied a vaccination game
theory at a peer to peer network. In this paper, we developed a vaccination
game in order to evaluate its performance versus the active propagation on
unstructured peer to peer network. First, we present our proposed vaccination
game model in the Sect. 2. Next, in Sect. 3 we examine the effect that varying a
number of model parameters has on the steady state behaviour of the network.
Finally, in Sect. 4 we conclude our work and summarizes the paper with some
future works.

2 Model

This section presents our model for simulating propagation of active worm in a
peer to peer network. Before the active worm spread in the network, peers make
a decision whether to get vaccinated or not based on their vaccination strategy.
A vaccinated peer in our context means that peer has installed a new version
of antivirus or has updated its antivirus software. The decision is affected by
the payoff of others (imitation strategy) or the social impact, which is controlled
by the probability α. Then, propagation of active worm takes place based on
the standard susceptible–infectious–recovered (SIR) model as in the Fig. 1. To
summarise our model, we consider two stages: the decision-making stage and
active worm propagation stage. The detail of each dynamic is the following.

2.1 Decision-Making Stage

At this point, each peer makes the decision to get vaccinated or not. We assume
that the vaccination process confers a perfect immunization against active worm
propagation to vaccinated peers in the network. If a peer decides to change its
strategy to get vaccinated - e.g: take preventive measures, such as installing new
antivirus software or updating an older version of its antivirus-. The peer payoff
will be −C as the vaccination cost (0 ≤ C ≤ 1). So the peer must pay the cost
of the vaccination from its calculated payoff.

There are only two situations, when a peer chooses not to change its strategy
to be vaccinated:

– If the peer is infected, then its payoff is −1.
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Fig. 1. Decentralised unstructured P2P Network. Vaccinated peers, Malicious and
infected peers and other normal peers

– If the peer is not infected, the payoff is 0.

We also calculate the payoffs of the neighbors of peer i in the same way. The
probability P (si ← sj) that the peer i with the strategy si imitates the peer j′s
strategy sj is given by a pairwise comparison according to the Fermi function
[11,12].

P (si ← sj) =
1

1 + exp[πi−πj

K ]
(1)

With probability 1−α, the focal peer i compares its payoff with one randomly
selected neighbor, j′s payoff, and then makes the decision to get vaccinated or not
based on Eq. 1 (payoff-based decision strategy). Then again, with probability α,
the focal peer i ignores his payoff and neighbors payoffs and counts the number of
its neighbors strategies, and then imitate j′s strategy based on Eq. 2 (popularity-
based imitation strategy).

P (si ← sj) =

⎧
⎨

⎩

1

1+exp[
Nnon(i)−Nvac(i)

K ]
(Nnon(i) ≥ Nvac(i))

1

1+exp[
Nvac(i)−Nnon(i)

K ]
(otherwise)

(2)

Where K is a measure of noise and controls the strength of selection (0 <
K < ∞). In our model, we fixed the value of K to be K = 0.1 to be the same as
the typical studies [13–15]. α controls the intensity between the payoff factor and
the network factor (0 ≤ α ≤ 1). Nvac(i)(Nnon(i)) is the number of the vaccinated
(non-vaccinated) neighbors of i.

On the other hand, we calculate peer i payoff πi as follows:

πi =

{
Nnon(i)L + τi − Nnon(i)C λ < T

Nnon(i)Le + τi − Nnon(i)C λ ≥ T
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Where Nnon(i) is the number of neighbors of peer i that choose to not get
vaccinated, τi is the number of neighbors of peer i and μ is a parameter of our
model. As described in reference [16], T = γ/β is a threshold and λ denote the
first eigenvalue of the graph G[τi − Sn

i ]. Le > μ and L < μ represent the payoffs
in the former and latter cases, respectively.

2.2 Active Worm Propagation Stage

In this stage the active worm spreading takes place. Of course after the peers
have been or not have not been vaccinated by the above decision-process, The
dynamics are described by the standard SIR model in which the network is
divided into three types: Susceptible (S), Infectious (I) and Recovered (R) peers
as described in the Fig. 2.

Fig. 2. State transition diagram of active worm propagation.

First, we randomly select I0 malicious peers are already infected by the active
worm. After the active worm propagation spreads out, each non-vaccinated peer
i gets infected with the probability λe = 1 − (1 − β)τinf(i) , where τinf(i) is the
number of infected neighbors and β is the transmission rate per step t. There
is no risk of infection for the vaccinated peers because the vaccination provides
perfect immunity. In our model, all vaccinated peers remain in the recovery
state R during the active worm propagation stage. Once each peer is infected,
it recovers from the infection and changes its state to susceptible state with
rate γ per step t. Since it is difficult to mathematically describe the dynamics
of structured populations, we numerically simulate the epidemic dynamics by
building a custom-built simulator and using the Gillespie algorithm [6,17].
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3 Simulation Results and Discussion

Fig. 3. Impact of α on the vaccination behavior.

Each simulation experiment is performed over a generated Barabasi-Albert
graph [18] that represents the P2P overlaying network, where m0 = 9 and m = 6.
The network size is then determined by the number of users Nusers = 1000. In
order to help readers to reproduce our experiments, we present how to set the
parameter settings of our model in detail.

We suppose that initially 10% randomly selected peers are malicious. Simu-
lations were initially carried out with I0 = 10 randomly selected peers that are
in the infected state and V0 = 10 randomly selected peers are initially get vac-
cinated, while the others peers are all in the susceptible state. In this paper, we
aimed to evaluate the neighbor’s impact including the imitation behavior effects
on vaccination behavior (the effect of α and μ) and the vaccination cost C. Other
parameters that stay constant throughout our experiments, were β = γ = 0.1,
μ = 0.9, Le = 2 and L = 0.

We consistently varied values of α to know the effect on the vaccination
coverage. Figure 3, shows vaccination coverage as the functions of the vaccination
cost C and the value of α. First, we focus on α = 0, which means that a peer
i compares its payoff only with one randomly selected neighbor j and ignore
the popularity of its neighbors. The peer i will get vaccinated, if its payoff is
greater then μ (πi > μ). In this case, the peer i calculates its payoff based on the
vaccination cost and the neighbor’s impact, then it makes its own decision to get
immunity its self or not. The results show that payoff-based decision strategy
with the neighbor’s impact outperforms popularity-based imitation strategy. On
the other hand, we can notice that the fraction of vaccinated peers decreases
with the decreasing of α. It means that when peers choose to imitate neighbors
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strategies, only a small fraction of peers choose to get vaccinated (α = 0.95).
This is mainly due to the small initially fraction of vaccinated peers V0 = 1%.
Popularity-based imitation strategy can only yield better results if the majority
of peers are initially get vaccinated. Of course, the both strategies can not provide
good results if the vaccination cost C is high.

Fig. 4. Impact of μ on the vaccination behavior.

Now, we focus on how vaccination cost C and our model parameter μ affects
vaccination behavior. We fixed α = 0.0 in order to evaluate the performance of
payoff-based decision strategy with the neighbor’s impact. In Fig. 4, we show the
fraction of vaccinated peers in terms C and we varied μ. As we can see, if the
vaccination cost is low (C < 0.5), the payoff-based decision strategy with the
neighbor’s impact positively facilitates making the decision to get the vaccination
because the payoffs of peers are also low (π < 0.1). Conversely, the payoff-based
decision strategy with the neighbor’s impact has the reverse effect when the
vaccination cost is high (C ≥ 0.5) and the peers payoffs’ are low (π < 0.1).
Thus, we can conclude that the neighbor’s impact has a positive and negative
effect on the vaccination process, when the vaccination cost is low (C < 5), it is
better to ignore the neighbor’s impact. In contrast, when the vaccination is high
(0.5 ≥ C ≥ 0.9), we must take the neighbor’s impact into consideration.

4 Conclusion

In this paper, we proposed a vaccination game to evaluate its performances on
active worm propagation in the peer to peer unstructured networks. Here, we
present two strategies for peers to calculate payoff:

– Popularity-based imitation strategy.
– Payoff-based decision strategy.
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Our simulations results show that we must not only reliance on popularity-
based imitation strategy. Especially, when the number of initially vaccinated
peers is low compared to the size of the peer to peer network. On the other
hand, we found that when peers calculate its payoffs with neighbor’s impact,
and then take the decision to get vaccinated or remain unsafe has both positive
and negative effects depending on the vaccination cost and the peer payoff’s.

To conclude, this model we have presented has been developed for unstruc-
tured P2P networks and we hope that this model can work as well for intercon-
nected structured P2P networks such as Chord and Pastry.
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Abstract. The Tangle is a data structure mainly used to store transac-
tions in the IOTA cryptocurrency. It has similarities with the blockchain
structure of Bitcoin but in the Tangle, a block contains only one trans-
action and has not one, but two parents. The security and the stability
of this distributed data structure is highly dependent on the algorithm
used to select the parents of a new block.

Previous work showed that the current parents selection algorithms
are insecure, not stable or have low performances. And we propose a new
algorithm that combines all these properties.

Keywords: Blockchain · Distributed ledger · Security ·
Performances evaluation

1 Introduction and Model

A Distributed Ledger Technology (DLT) is (i) an append-only data structure
and (ii) a protocol that defines how the agents in a network agree to append
new data. The Bitcoin is the most famous example. It uses the blockchain to
store the transactions and the Proof of Work (PoW) to elect a node in the
network responsible for writing a new block. In this paper, we are interested
in the data structure called Tangle, used to store transactions in the IOTA
cryptocurrency, and especially in the algorithm used to append new data. We
present a new algorithm and show it offers better performances compared to
existing algorithms.

The Tangle. We consider a set of connected agents generating transactions.
The transactions are stored in a Directed Acyclic Graph (DAG) called Tangle.
Each agent has a local copy of the Tangle. A vertex of the Tangle, called site,
represents a transaction and has two parents (potentially the same one) in the
Tangle. A site is said to directly confirm its parents and indirectly confirm its
other ancestors in the Tangle. A tip of the Tangle is a site which has no child, i.e
which isn’t confirmed by any site. The genesis is the only site with no parents.

In order to include a transaction in the Tangle, an agent must perform a
proof of work, i.e, solving a cryptographic puzzle requiring a certain amount of
computational power. The weight of a site represents this work and we assume
c© Springer Nature Switzerland AG 2019
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each site has a weight of 1. Then, the cumulative weight of a site is defined [Pop16]
as the sum of its own weight with the weight of its descendants (the sites which
confirm it). See Fig. 1 for an illustration.
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Fig. 1. An example of a Tangle. In each site is written its cumulative weight and in
bracket its real cumulative weight (see Sect. 2).

Tips Selection Algorithm (TSA). When a site is added to the Tangle, its parents
are selected by a Tip Selection Algorithm (TSA). The TSA must select two
tips (unconfirmed sites) that are not conflicting. The TSA is a fundamental
component of the protocol because it implicitly indicates what is the current
view of the agent generating the new site. Indeed, if two tips are conflicting,
the TSA indicates which one is considered correct (and should be extended by
appending a new site to it) or orphaned (by ignoring it).

Each site in the Tangle has two parents but a site can have multiple children,
because of the local versions of the Tangle can be different for two agents in the
network, due to the latency. The TSA could chose a site which is a tip in the
local version on the Tangle, but that is already confirmed in another one.

The whitepaper [Pop16] presents two TSA1:

– Uniform TSA: Each parent is chosen uniformly at random among all the tips.
– Markov Chain Monte Carlo (MCMC): the selection of each parent is done

by using a random walk. A walker starts from a given site (eg, the genesis),
moves from site to child site, and stops when it reaches a tip. At each site, it
uses a transition function depending of the site’s cumulative weight denoted
by w. In a site v, the probability of going to a child u ∈ C(v) is:

pv,u = exp(−α(w(v) − w(u)))/
∑

c∈C(v)

exp (−α(w(v) − w(c)))

where α > 0 is a parameter of the algorithm. This TSA is currently used in
production in the IOTA cryptocurrency with the parameter α = 0.001. We
denote this TSA MCMC(α = 0.001) in the remainder. One may notice that
as we send two random walks, we must enforce that the two tips are not in
conflict.

1 A third one is briefly presented but is actually just a variation of the MCMC that
we present here.
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The Double Spending Problem. The double spending attack in a DLT consists
in generating two transactions using the same funding source but with two dis-
tinct recipients. The aim for the attacker is to persuade each recipient that the
transaction it receives is valid and that the other one is not.

In order to simplify, one recipient can be a car seller and the second one the
attacker himself. The attacker broadcasts the first transaction and then waits
for the car seller to be convinced of the validity of its transaction and to give the
car’s keys. Then, the attacker broadcasts the second transaction, and generates
multiple other transactions to make the first one invalid. When all the network’s
agents consider the first transaction as invalid, the seller will have given its car
without having got the money.

To prevent a double spend attack in the Tangle, it is necessary that compu-
tational power used by the honest agents to generate their sites2 is greater than
the computational power of the adversary [Bra18].

Contributions. In this article, we presents a new way to compute the cumulative
weight and a new TSA using this new weight. Then, we analyse theoretically and
with simulations our new TSA and show that it improves the MCMC currently
used in production by IOTA on some points, while being as good on other
points: (i) it gets executed much more quickly, which is a real advantage for the
network’s nodes generating a great number of transactions, (ii) it doesn’t leave
unconfirmed transactions, even in high load and (iii) it is secure.

2 A New Way to Compute the Cumulative Weight

The main issue of the cumulative weight as defined previously is that for a
given site, its children’s cumulative weight does not give any indications on
the real weight of the subtangles 4confirming them. Let us consider a site with
two children, each having a cumulative weight of 10. Then, there is no way to
differentiate between the case (a) where 9 sites are confirming both children
and the case (b) where 9 sites are confirming the first child and 9 other sites
are confirming the second child. In the first case, the corresponding cumulative
weight should be lower since it is easier to generate the 11 sites in the first case
compared to the 20 sites in the second one. When the cumulative weight is used
in a random walk, the probability to move toward a subtangle should not depend
on the number of children connected to this subtangle.

We define the real cumulative weight R(u) of a site u as one plus half the
sum of its children’s real cumulative weights:

R(u) = 1 +
∑

c∈C(u)

R(c)/2 (1)

2 Observe here that the computational power used by the honest agents is not the
same as the computational power of the honest agent. Indeed, the former could be
much lower than the latter.
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pv,u = R(u)/
∑

c∈C(v)

R(c) (2)

This makes sense because half of each site’s weight contributes to each of
its parent3. Also, one can notice that the sum of real cumulative weights of any
subset of children correspond exactly to the amount of power used to confirm
those children. We also decided to change the formula used to compute proba-
bilities in the random walk. Thus, a walker located at a site v has a probability
pv,u, given by (2), to move toward a child u. An algorithm that computes all the
real weights consists in iterating over all the sites, from the tips to the genesis,
applying the Eq. (1). We will denote this TSA MCMC-new in the remaining of
the paper.

3 Analyse

Complexity. The TSA is executed each time a transaction is issued by an agent,
thus it should be efficient.

During its execution, the MCMC(α = 0.001) algorithm must first compute
the cumulative weight of each site and then perform two random walks from the
genesis to a tip. The complexity of a random walk is in O(n) where n is the
amount of sites in the Tangle, assuming the average number of child per site
is constant. Computing the cumulative weight, however, is far from efficient, as
existing algorithms are in Θ(n2) [Gal18] with a space complexity also in Θ(n2)
(Fig. 2).

Computing the real cumulative weight only requires O(n) operations. Indeed,
a depth-first iteration of the Tangle is sufficient. For each site u we compute
R(u) in function of the value R(c) of its children: R(u) = 1 +

∑
c∈C(u) R(c)/2.

Figure 2 shows the evolution of the executing time of the MCMC(α = 0.001)
and MCMC-new in function of the size of the Tangle.

Fig. 2. Execution time in second of the
TSA in function of size of the Tangle

Fig. 3. Number of tips in function of the
size of the Tangle

3 This can easily be generalized to the case where each site has k parents, by dividing
by k instead of 2 in Eq. (1).
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Fig. 4. Security factor in function
of the number of sites confirming
the target.

Fig. 5. Generation of a feather parasite Tangle.
The rectangle is the target site, white sites are
honest and black sites are parasite ones.

Stability of the Number of Tips. We define the stability of a TSA as a property to
maintain a constant amount of tips in average. Formally, with a perfectly stable
TSA, the average number of tips is a Markov chain with a non-null stationary
distribution [Bra18]. We know [Pop16] that the uniform TSA is stable and the
average number of tips is 2λ in average with λ being the average numbers of sites
generated per time unit. By simulations, we can observe that MCMC (α = 0.001)
and MCMC-new are also stable with an average amount of tips around 2λ,
similarly to the uniform TSA.

Security. In order to analyse the security of a TSA, we measure the amount of
sites required to create a parasite Tangle. For a certain Tangle T and a target
site t, a parasite Tangle is a set of sites P connected to T such as (i) each site of
P does not confirm the target site t and (ii) the probability for the TSA to chose
a tip in P is greater than 1/2. The security factor is then the ratio between the
number of sites confirming the target site and the number of sites in the parasite
Tangle. Intuitively, the parasite tangle represents the sites an attacker has to
generate to perform a double spend on the target, and the security factor is the
proportion of the computational power an attack should own to do so.

Figure 4 shows the security factor of MCMC(α = 0.001) and MCMC-new
in function of the number of sites confirming the target site. These results are
obtained by generating Tangles of variable sizes. In order to generate our parasite
Tangle, we use a feather attack (shown in Fig. 5), which consists in generating
sites such as each one confirms the previous one and a site confirmed by the
target site. In the MCMC(α = 0.001) case, the attack is slightly different as
each parasite site confirms the previous parasite site and a site among a set of
sites confirmed by the target site (and not only a single site).

We observe that the security factor of MCMC-new is near 1 and is much lower
for the MCMC(α = 0.001). However, we conjecture that the security factor of
MCMC(α = 0.001) tends to 1 as the number n of sites that confirm the target
tends to infinity. Indeed, for really big values of n, the random walk depends
almost only on the subtangle’s weight. One can show that in the best cast (for
the adversary), the parasite Tangle is a feather and gets attached to the Tangle
on a site s which has only one child in the Tangle t. When the parasite Tangle
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is sufficiently big, every random walk must step by s and the probability for a
random walk in s to chose to go to the parasite Tangle is greater then 1/2 if:

exp(−α(ws − wt)) <
k∑

i=1

exp(−α(ws + i))

Where k is the size of the parasite Tangle and ws, resp. wt, is the site cumulative
weight of s, resp. of the target site. The sum on the right part of the inequation
is the contribution from each site of the parasite tangle, because in a feather
parasite Tangle, each site is a child of s. We are interested by finding the smallest
k verifying this inequation, i.e.such as n/k is the security factor. By calculus,
we find that for n tending to infinity, this n/k tends to 1.

We showed that our algorithm performs better than the one currently used in
production in the IOTA cryptocurrency, considering computational complexity
and security and is equivalent in terms of stability.
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Abstract. In a future quantum world with a large quantum computer,
the security of the digital signatures used for Bitcoin transactions will
be broken by Shor’s algorithm. Bitcoin has to switch to post-quantum
cryptography. In this paper, we show that the post quantum signatures
based on LWE and ring LWE are the most promising to use in the
presence of large quantum computers running Shor’s algorithm.

Keywords: Bitcoin · Elliptic curve · Lattice · Learning with error

1 Introduction

The influence of new technologies on the economy and individuals has given
birth to a new interpretation of money that makes life more easier. This new
interpretation aims to emigrate from cash to an electronic money recorded in
electronic devices. The use of electronic money is encouraged in several countries.
It also has a lot of benefits, so transactions have become easy, cheap, more reli-
able and can be done anywhere and at anytime. The increase of frauds and the
different attacks launched by the hackers, gave birth to the privacy and authen-
tication problem for this kind of electronic system with this kind of danger. In
this context cryptography offers multiple solutions to overcome these sensitive
data protection issues in e-commerce.

An important application of cryptography is to secure Bitcoin. Bitcoin is
a peer-to-peer network without any central authority such as banks or gov-
ernments. It was presented in 2008 by Satoshi Nakomoto [17]. To authorize
payments or transfers, Bitcoin uses the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) [12] with the hash function SHA-256 [13], and the Koblitz curve
secp256k1 with the equation:

secp256k1 : y2 = x3 +7 (mod p1), p1 = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

The curve secp256k1 was proposed in 2000 by the Standards for Efficient Cryp-
tography Group of Certicom in the standards for efficient cryptography SEC2
c© Springer Nature Switzerland AG 2019
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and is used in Bitcoin since 2009. The Koblitz curve has many advantages when
used in industrial applications, especially efficiency, security and shortness of the
key, but the main problem is its weakness in front of quantum attacks.

In this paper, we study the possibility of using the digital signature
TESLA# [8] (pronounced “Tesla Sharp”) for Bitcoin system. TESLA# has many
advantages.

• TESLA# is based on the Ring Learning with Errors (R-LWE) assumption
which makes it a prominent candidate for a post-quantum digital signature.

• TESLA# improves all its predecessors such as Ring-Tesla [3] and Tesla.
• TESLA# has a fast key generation, signing and verification.
• TESLA# has highly secure parameters at the level of both pre-quantum and

post-quantum cryptography.
• TESLA# has a secure implementation against timing and cache attacks.

We show that TESLA# is an efficient signature scheme in the context of Bitcoin
which avoids quantum attacks. We recommend to use it in the future: it is better
to use Momentum proof of work which is better than the standard proof of
work [2] used todays on Bitcoin Blockchain transaction.

The rest of this paper is organized as follows. In Sect. 2, we recall some facts
on Bitcoin and secp256k1. In Sect. 3, we introduce lattices and describe the
digital signature scheme TESLA#. In Sect. 4 we study its security. In Sect. 5 we
describe the use of TESLA# in Bitcoin. We conclude the paper in Sect. 6.

2 Description of the Cryptography Used in Bitcoin

Bitcoin is a peer-to-peer decentralized digital currency based on asymmetric
cryptography. It was first proposed by Satoshi Nakamoto [17] in 2008 and
exploited since 2009. It is a proof of work based on cryptocurrency which makes
miners able to mining on Bitcoin, and users to transfer directly without the use
of an intermediary such as a bank or a government, using just their addresses.
Bitcoin is implemented using the Elliptic Curve Digital Signature Algorithm
(ECDSA) to verify ownership transactions on the network, with the Koblitz
curve Secp256k1. This curve Secp256k1 is define over a finite field Fp as follows:

• The prime number is p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.
• The equation curve is y2 ≡ x3 + 7 (mod p).
• The maximum length of the keys is �log2(p)� = 256.

The hard problem upon which the security is based is the Elliptic Curve Loga-
rithm Problem ECDLP. Unfortunately, the problem can be solved by a quantum
computer running Shor’s algorithm [19]. For 256 bits, Shor’s algorithm needs
only 3848 seconds to solve ECDLP.

3 The Digital Signature Scheme TESLA#

In this section, we show how to avoid quantum attacks on Bitcoin with ECDSA
by using the lattice-based signature TESLA# [8].
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3.1 Lattice

The arithmetic used in TESLA# is based on lattices.

Definition 1. Let B = {b1, . . . , bn}, bi ∈ R
m be a set of n linearly independent

vectors of m coordinates with n ≤ m. The lattice L associated to B is the discrete
additive subgroup of Rm containing all integer linear combinations of the vectors
of B:

L(B) =

{
n∑

i=1

xibi | xi ∈ Z

}
.

The integer n is the dimension of the lattice and m is the rank. When m =
n, the lattice is called full-rank. The basis B can be represented as a matrix
B = [b1, . . . , bn]. The determinant of the lattice is defined by det(L) =

√
BT · B

where B is considered here as the matrix of the vectors b1, . . . , bn. In the theory
of lattices, several problems are considered hard and are resistant to quantum
computers. Lattice-based cryptography is based on the hardness of some lattice
problems such as SVP, CVP, and LWE. We list below the main hard problems.

1. The Shortest Vector Problem (SVP): Given a lattice basis B, find the
shortest nonzero vector in L(B).

2. The Closest Vector Problem (CVP): Given a lattice basis B and a target
vector v0 not in the lattice L(B), find v ∈ L(B), the closest vector to v0.

3. Learning With Errors Problem (LWE): Let A be a n × n matrix which
is uniformly distributed in Z/qZ. Let s and e be two unknown vectors. The
LWE problem is to find s and e using A and As+e with the shortest non-zero
vector for the Euclidean norm.

4. Ring-Learning With Errors Problem (Ring-LWE): Ring-LWE prob-
lem is similar than the LWE problem where the unknown parameters s and
e are vectors from a the ring of polynomials Rq = Zq[x]/(xn + 1).

3.2 The Digital Signature Scheme TESLA#

Tesla# [8] is a candidate for post-quantum digital signatures. It is provably
secure with a security reduction to the Ring Learning With Errors (Ring-LWE)
problem. The digital signature scheme TESLA# is composed by three algo-
rithms: the key generation algorithm, the signing algorithm, and the verification
algorithm.

4 The Security of TESLA#

The Ring-LWE problem is a hard assumption, that was introduced in [16]
together with a (quantum) worst case to average-case reduction to certain prob-
lems over ideal lattices.

The security of TESLA# stems from the hardness of the Ring Learning
with Errors (Ring-LWE) problem. The Ring-LWE problem can be seen as an
instantiation of the LWE problem. In this section we present the main attacks
against Tesla# signature and countermeasures to avoid these attacks.
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4.1 The Decoding Attack

An LWE instance (A,As + e) is seen as an instance of the bounded distance
decoding problem (BDDP). The most basic way of solving a BDD instance is
using Babai’s Nearest Plane algorithm [6]. This method can be described as
follows: First Suppose that there is multiple samples (A,As + e) of an LWE
instance parameterized by n, α and q. Second, perform lattice reduction basis
on the lattice L(AT ) to obtain a new basis B, where AT is the transpose of
A. Babai’s Nearest Plane algorithm works by recursively computing the closest
vector on the sublattice spanned by subsets of the the reduced basis. This attack
is based on reducing the lattice by lattice reduction techniques such as LLL [15].

The probability to recover the vector s by Babai’s Nearest Plane algorithm
is approximated by

m∏
i=1

erf

(‖b∗
i ‖

√
π

2αq

)
,

where {b∗
1, ..., b

∗
m} is the Gram-Schmidt orthogonal basis. To ovoid the attack by

Baba’s technique, the probability must be small, that is
∏m

i=1 erf

(‖b∗
i ‖

√
π

2αq

)
<

ε for a small parameter ε .
On the other hand, the complexity of the LLL algorithm is O

(
en3C log M

)
where C > (2/

√
3)1/6 and M is maximum length of the basis vectors {b1, ..., bn},

that is M = maxn
i=1 ‖bi‖. As a consequence, to ovoid the LLL algorithm attack,

the dimension n of the lattice should be large.

4.2 Lattice Reduction

Lattice reduction is to find short vectors in the scaled dual lattice. We construct
this lattice from a given A ∈ Z

m×n
q by computing a basis for the nullspace of

AT over Zq, lift to Z and extend by qI ∈ Z
m×m
q to make it q-ary and compute a

basis for L, we obtain at the end the scaled dual lattice L = {x ∈ Z
m
q |xA ≡ 0

mod q}. Lattice reduction will return the shortest non-zero vector b0 which by
definition is a short vector in L, so that b0A ≡ 0 mod q which is exactly solving
the Short Integer Solutions problem.

So 〈b0, As + e〉 = 〈b0, e〉, which follows a Gaussian distribution and it often
returns small samples for both b0 and e.

Given an LWE instance characterised by n, α, q and a vector b0 of length
‖b0‖ in the scaled dual lattice LT = {x ∈ Z

m
q |xA ≡ 0 mod q}, the advantage of

distinguishing 〈b0, e〉 from random is close to e−π(‖b0‖α)2 . So if ‖b0‖ is too large
then the (Gaussian) distribution of 〈b0, e〉 will be too flat to distinguish from
random. To avoid this attacks ‖b0‖α must be large enough.

4.3 Non-lattice Attacks

There are two non-lattice approaches to solve LWE, namely the attack based on
the algorithm by Blum, Kalai, and Wassermann (BKW) [7] and the algorithm
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by Arora and Ge [5]. Both algorithms require a large number of LWE samples
to be applied efficiently.

BKW solves LWE via the SIS strategy, given m samples (A, c) following Dn
σ ,

we require short vectors ui in the scaled dual lattice of the lattice generated by
the rows of A. BKW creates these vectors by adding elements from a tables with
qb entries each, where each table is used to find collisions on b components of a
(a row of A). The BKW algorithm shows that subexponential algorithms exist
for learning parity functions in the presence of noise: the BKW algorithm solves
the Learning Parity with Noise problem in time 2O(n/logn) [1].

An alternative approach, proposed by Arora and Ge, is used to solve LWE
by setting up a system of noise-free non-linear polynomials of which the secret
s is a root [5]. Polynomials are constructed from the observation that the error,
when falling in the range [−t, t] (for some t ∈ Z such that 2t + 1 < q), is always
a root of the polynomial P (x) = x

∏t
i=1(x + i)(x − i). Then, we know that the

secret s is a root of P (a · x − c) constructed from LWE samples. Arora and Ge,
offer an algorithm for solving LWE in time 2O(n2ξ) where ξ is a constant such
that αq = nξ.

Both algorithms require a (very) large number of LWE samples to be applied
efficiently. TESLA# inherits the property from Ring-TESLA that Gaussian sam-
pling is only needed for key pair generation. Instances for [3] are given far less
LWE samples, so TESLA# also will give less LWE samples. TESLA# is resistant
to such attacks.

4.4 Timing Attacks

Tesla# uses an isochronous (Constant time) Gaussian sampler [8] that improve
the Gaussian sampler proposed first by Ducas et al. [10]. This improved Gaussian
sampler is used to speed up the computation of TESLA#’s key generation and to
protect against timing attacks by taking the “same time” of execution regardless
of the private data. The design of new algorithm consists to sample according
to the Bernoulli distribution Be−t/2σ2 with t is an l-bit integer.

4.5 Parameters Recommendation

For hardness guarantees [9], the ring Rq must be instantiated so that q ≡ 1
mod 2n, and the Gaussian parameter σ

√
2π must be greater than or equal to

two. The parameters presented in [8] provide 128-bit post-quantum security and
256-bit classical security for TESLA#.

5 Using TESLA# for Bitcoin

In this section, we show how to provide more security for Bitcoin systems in the
presence of quantum computers.



286 M. C. Semmouni et al.

5.1 Hash Function

In the Bitcoin, the Koblitz curve secp256k1 is combined with the hash function
SHA-256 in the ECDSA signature process while TESLA# uses BLAKE2 [4] and
the more recent and more secure hash function SHA-3 [11].

5.2 Authentication Process

An efficient quantum algorithm to solve ECDLP problem was given by Shor.
Since Bitcoin signature scheme is ECDSA based on ECDLP problem, these
attack will impact Bitcoin authentication system security. The bitcoin signature
used for authentication is generated by signing the hash of the transaction and
the public key belongs to the payer. Both the signature and public key prove the
transaction is created by the owner of the bitcoin address.

In Bitcoin system, authentication with cryptographic digital signature is used
to secure and authorize payments or transfers. In this paper we demonstrate
that TESLA# is a secure signature against the quantum attacks and gives a
fast signing and verifying signing, also private key will not be revelated from the
public key so the address and transactions will become secure. TESLA# is an
efficient signature in the context of Bitcoin to avoid quantum attacks, it could
be used to replace the ECDSA digital signature based on Elliptic curve Discret
Logarithm Problem which is breakable by a Shor’s algorithm.

5.3 Bitcoin Mining

The security of Bitcoin is based on mining with Proof Of Work, in this phase
the most important parameter is the hash function. For the present architecture
of Bitcoin, the hash function is SHA-256.

Thanks to Grover’s quantum search algorithm [14], it is now possible to
perform the Bitcoin proof of work using a quadratical fewer hashes needed in
standard proof of work using SHA-256, so the use of another type of hash fuction
is recommended. To enhance the secuity of mining, it is better to use Momentum
proof of work which is better than the standard proof of work [2] which is used
for Bitcoin transaction.

6 Conclusion

We have studied and compared the digital signature ECDSA based on the
Koblitz elliptic curve secp256k1 and the digital signature TESLA# based on
lattices and the Learning with error problem for use in Bitcoin. Our analysis
shows that the signature TESLA# is more secure than ECDSA, especially for
Shor’s quantum attack on the elliptic discrete lograrithm problem. We conclude
that TESLA# is more suitable and secure for use in the Bitcoin, especially for
long term applications.
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Abstract. Software Transactional Memory systems (STMs) have gar-
nered significant interest as an elegant alternative for addressing syn-
chronization and concurrency issues with multi-threaded programming
in multi-core systems. Client programs use STMs by issuing transactions.
STM ensures that transaction either commits or aborts. A transaction
aborted due to conflicts is typically re-issued with the expectation that
it will complete successfully in a subsequent incarnation. However, many
existing STMs fail to provide starvation freedom, i.e., in these systems,
it is possible that concurrency conflicts may prevent an incarnated trans-
action from committing. To overcome this limitation, we systematically
derive a novel starvation free algorithm for multi-version STM. Our algo-
rithm can be used either with the case where the number of versions is
unbounded and garbage collection is used or where only the latest K ver-
sions are maintained, KSFTM . We have demonstrated that our proposed
algorithm performs better than existing state-of-the-art STMs.

Keywords: Software Transactional Memory System ·
Concurrency control · Starvation-freedom · Opacity · Local opacity ·
Multi-version

1 Introduction

STMs [1,2] are a convenient programming interface for a programmer to access
shared memory without worrying about consistency issues. STMs often use an
optimistic approach for concurrent execution of transactions (a piece of code
invoked by a thread). In optimistic execution, each transaction reads from the
shared memory, but all write updates are performed on local memory. On com-
pletion, the STM system validates the reads and writes of the transaction. If any
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inconsistency is found, the transaction is aborted, and its local writes are dis-
carded. Otherwise, the transaction is committed, and its local writes are trans-
ferred to the shared memory. A transaction that has begun but has not yet
committed/aborted is referred to as live.

A typical STM is a library which exports the following methods: stm-begin
which begins a transaction, stm-read which reads a transactional object or t-
object, stm-write which writes to a t-object, stm-tryC which tries to commit the
transaction. Typical code for using STMs is as shown in Algorithm 1 which shows
how an insert of a concurrent linked-list library is implemented using STMs.

Correctness: Several correctness-criteria have been proposed for STMs such
as opacity [3], local opacity [4,5]. All these correctness-criteria require that all
the transactions including the aborted ones appear to execute sequentially in
an order that agrees with the order of non-overlapping transactions. Unlike
the correctness-criteria for traditional databases, such as serializability, strict-
serializability [6], the correctness-criteria for STMs ensure that even aborted
transactions read correct values. This ensures that programmers do not see any
undesirable side-effects due to the reads by transaction that get aborted later
such as divide-by-zero, infinite-loops, crashes etc. in the application due to con-
current executions. This additional requirement on aborted transactions is a
fundamental requirement of STMs which differentiates STMs from databases as
observed by Guerraoui & Kapalka [3]. Thus in this paper, we focus on optimistic
executions with the correctness-criterion being local opacity [5].

Algorithm 1. Insert(LL, e): Invoked by a thread to insert an element e into a
linked-list LL. This method is implemented using transactions.

1: retry = 0;
2: while (true) do
3: id = stm-begin (retry);
4: ...
5: v = stm-read(id, x); /* reads value of x as v */
6: ...
7: stm-write(id, x, v′); /* writes a value v′ to x */

8: ...
9: ret = stm-tryC(id); /* stm-tryC can return

commit or abort */
10: if (ret == commit) then break;
11: else retry++;
12: end if
13: end while

Starvation Freedom: In the execution shown in Algorithm 1, there is a pos-
sibility that the transaction which a thread tries to execute gets aborted again
and again. Every time, it executes the transaction, say Ti, Ti conflicts with some
other transaction and hence gets aborted. In other words, the thread is effectively
starved because it is not able to commit Ti successfully.

A well known blocking progress condition associated with concurrent pro-
gramming is starvation-freedom [7, chap. 2], [8]. In the context of STMs,
starvation-freedom ensures that every aborted transaction that is retried
infinitely often eventually commits. It can be defined as: an STM system is said
to be starvation-free if a thread invoking a transaction Ti gets the opportunity
to retry Ti on every abort (due to the presence of a fair underlying scheduler
with bounded termination) and Ti is not parasitic, i.e., Ti will try to commit
given a chance then Ti will eventually commit. Parasitic transactions [9] will not
commit even when given a chance to commit possibly because they are caught
in an infinite loop or some other error.
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Wait-freedom is another interesting progress condition for STMs in which
every transaction commits regardless of the nature of concurrent transactions
and the underlying scheduler [8]. But it was shown by Guerraoui and Kapalka
[9] that it is not possible to achieve wait-freedom in dynamic STMs in which
data sets of transactions are not known in advance. So in this paper, we explore
the weaker progress condition of starvation-freedom for transactional memories
while assuming that the data sets of the transactions are not known in advance.

Related Work on the Starvation-Free STMs: Starvation-freedom in STMs
has been explored by a few researchers in literature such as Gramoli et al. [10],
Waliullah and Stenstrom [11], Spear et al. [12]. Most of these systems work by
assigning priorities to transactions. In case of a conflict between two transactions,
the transaction with lower priority is aborted. They ensure that every aborted
transaction, on being retried a sufficient number of times, will eventually have
the highest priority and hence will commit. We denote such an algorithm as
single-version starvation-free STM or SV-SFTM .

Although SV-SFTM guarantees starvation-freedom, it can still abort many
transactions spuriously. Consider the case where a transaction Ti has the highest
priority. Hence, as per SV-SFTM , Ti cannot be aborted. But if it is slow (for
some reason), then it can cause several other conflicting transactions to abort
and hence, bring down the efficiency and progress of the entire system.

Figure 1 illustrates this problem. Consider the execution: r1(x, 0)r1(y, 0)
w2(x, 10)w2(z, 10)w3(y, 15)w1(z, 7). It has three transactions T1, T2 and T3. Let
T1 have the highest priority. After reading y, suppose T1 becomes slow. Next T2

and T3 want to write to x, z and y respectively and commit. But T2 and T3’s
write operations are in conflict with T1’s read operations. Since T1 has higher
priority and has not committed yet, T2 and T3 have to abort. If these transac-
tions are retried and again conflict with T1 (while it is still live), they will have
to abort again. Thus, any transaction with priority lower than T1 and conflicts
with it has to abort. It is as if T1 has locked the t-objects x, y and does not allow
any other transaction, write to these t-objects and to commit.

Fig. 1. Limitation of single-version starvation free algorithm

Multi-version Starvation-Free STM: A key limitation of single-version
STMs is limited concurrency. As shown above, it is possible that one long trans-
action conflicts with several transactions causing them to abort. This limitation
can be overcome by using multi-version STMs where we store multiple versions
of the data item (either unbounded versions with garbage collection, or bounded
versions where the oldest version is replaced when the number of versions exceeds
the bound).
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Several multi-version STMs have been proposed in the literature [13–16] that
provide increased concurrency. But none of them provide starvation-freedom.
Suppose the execution shown in Fig. 1 uses multiple versions for each t-object.
Then both T2 and T3 create a new version corresponding to each t-object x,
z and y and return commit while not causing T1 to abort as well. T1 reads
the initial value of z, and returns commit. So, by maintaining multiple versions
all the transactions T1, T2, and T3 can commit with equivalent serial history
as T1T2T3 or T1T3T2. Thus multiple versions can help with starvation-freedom
without sacrificing on concurrency. This motivated us to develop a multi-version
starvation-free STM system.

Although multi-version STMs provide greater concurrency, they suffer from
the cost of garbage collection. One way to avoid this is to use bounded-multi-
version STMs, where the number of versions is bounded to be at most K.
Thus, when (K + 1)th version is created, the oldest version is removed. Fur-
thermore, achieving starvation-freedom while using only bounded versions is
especially challenging given that a transaction may rely on the oldest version
that is removed. In that case, it would be necessary to abort that transaction,
making it harder to achieve starvation-freedom.

This paper addresses this gap by developing a starvation-free algorithm for
bounded MVSTMs. Our approach is different from the approach used in SV-
SFTM to provide starvation-freedom in single version STMs (the policy of
aborting lower priority transactions in case of conflict) as it does not work for
MVSTMs. As part of the derivation of our final starvation-free algorithm, we
consider an algorithm PKTO (Priority-based K-version Timestamp Order) that
considers this approach and show that it is insufficient to provide starvation free-
dom.

Contributions of the Paper:

– We propose a multi-version starvation-free STM system as K-version
starvation-free STM or KSFTM for a given parameter K. Here K is the
number of versions of each t-object and can range from 1 to ∞. To the best of
our knowledge, this is the first starvation-free MVSTM. We develop KSFTM
algorithm in a step-wise manner starting from MVTO [13] (Multi-Version
Timestamp Order) as follows:

• First, in Subsect. 3.3, we use the standard idea to provide higher priority
to older transactions. Specifically, we propose priority-based K-version
STM algorithm Priority-based K-version MVTO or PKTO . algorithm
guarantees the safety properties of strict-serializability and local opacity.
However, it is not starvation-free.

• We analyze PKTO to identify the characteristics that will help us to
achieve preventing a transaction from getting aborted forever. This analy-
sis leads us to the development of starvation-free K-version TO or SFKTO
(Subsect. 3.4), a multi-version starvation-free STM obtained by revising
PKTO . But SFKTO does not satisfy correctness, i.e., strict-serializability,
and local opacity.
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• Finally, we extend SFKTO to develop KSFTM (Subsect. 3.5) that pre-
serves the starvation-freedom, strict-serializability, and local opacity. Our
algorithm works on the assumption that any transaction that is not dead-
locked, terminates (commits or aborts) in a bounded time.

– Our experiments (Sect. 4) show that KSFTM gives an average speedup on
the worst-case time to commit of a transaction by a factor of 1.22, 1.89, 23.26
and 13.12 times over PKTO , SV-SFTM , NOrec STM [17] and ESTM [18]
respectively for counter application. KSFTM performs 1.5 and 1.44 times
better than PKTO and SV-SFTM but 1.09 times worse than NOrec for
low contention KMEANS application of STAMP [19] benchmark whereas
KSFTM performs 1.14, 1.4 and 2.63 times better than PKTO , SV-SFTM
and NOrec for LABYRINTH application of STAMP benchmark which has
high contention with long-running transactions.

2 System Model and Preliminaries

Following [5,20], we assume a system of n processes/threads, p1, . . . , pn that
access a collection of transactional objects (or t-objects) via atomic transactions.
Each transaction has a unique identifier. Within a transaction, processes can
perform transactional operations or methods: stm-begin() that begins a transac-
tion, stm-write(x, v) operation that updates a t-object x with value v in its local
memory, the stm-read(x) operation tries to read x, stm-tryC () that tries to com-
mit the transaction and returns commit C if it succeeds. Otherwise, stm-tryA()
that aborts the transaction and returns abort A . For the sake of presentation
simplicity, we assume that the values taken as arguments by stm-write() are
unique.

Operations stm-read() and stm-tryC () may return A , in which case we say
that the operations forcefully abort. Otherwise, we say that the operations have
successfully executed. Each operation is equipped with a unique transaction
identifier. A transaction Ti starts with the first operation and completes when
any of its operations return A or C . We denote any operation that returns A
or C as terminal operations. Hence, operations stm-tryC() and stm-tryA() are
terminal operations. A transaction does not invoke any further operations after
terminal operations.

For a transaction Tk, we denote all the t-objects accessed by its read opera-
tions as rsetk and t-objects accessed by its write operations as wsetk. We denote
all the operations of a transaction Tk as Tk.evts or evtsk.

History: A history is a sequence of events, i.e., a sequence of invocations and
responses of transactional operations. The collection of events is denoted as
H.evts. For simplicity, we only consider sequential histories here: the invocation
of each transactional operation is immediately followed by a matching response.
Therefore, we treat each transactional operation as one atomic event, and let
<H denote the total order on the transactional operations incurred by H. With
this assumption, the only relevant events of a transaction Tk is of the types:
rk(x, v), rk(x,A ), wk(x, v), stm-tryCk(C ) (or ck for short), stm-tryCk(A ),
stm-tryAk(A ) (or ak for short). We identify a history H as tuple 〈H.evts,<H〉.
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Let H|T denote the history consisting of events of T in H, and H|pi denote
the history consisting of events of pi in H. We only consider well-formed histories
here, i.e., no transaction of a process begins before the previous transaction
invocation has completed (either commits or aborts). We also assume that every
history has an initial committed transaction T0 that initializes all the t-objects
with value 0.

The set of transactions that appear in H is denoted by H.txns. The set
of committed (resp., aborted) transactions in H is denoted by H.committed
(resp., H.aborted). The set of incomplete or live transactions in H is denoted by
H.incomp = H.live = (H.txns − H.committed − H.aborted).

For a history H, we construct the completion of H, denoted as H, by inserting
stm-tryAk(A ) immediately after the last event of every transaction Tk ∈ H.live.
But for stm-tryCi of transaction Ti, if it released the lock on first t-object
successfully that means updates made by Ti is consistent so, Ti will immediately
return commit.

Due to lack of space, we define other useful notions used in this paper such
as opacity [3], local opacity [4,5], strict-serializability [6] formally in technical
report [21].

3 The Working of KSFTM Algorithm

In this section, we propose K-version starvation-free STM or KSFTM for a given
parameter K. Here K is the number of versions of each t-object and can range
from 1 to ∞. When K is 1, it boils down to single-version starvation-free STM.
If K is ∞, then KSFTM uses unbounded versions and needs a separate garbage
collection mechanism to delete old versions like other MVSTMs proposed in the
literature [13,14]. We denote KSFTM using unbounded versions as UVSFTM
and the version with garbage collection as UVSFTM-GC .

To explain the intuition behind the KSFTM algorithm, we start with the mod-
ification of MVTO [13,22] algorithm and then make a sequence of modifications to
it to arrive at KSFTM algorithm. The rest of the section is organized as follows.
In Subsect. 3.1, we define starvation freedom and identify assumptions made in
the paper. Subsection 3.2 discusses data structures for all the algorithms devel-
oped in this section. Subsection 3.3 develops PKTO that adds the approach of
providing priority to older transactions in MVTO algorithm. We show why this is
insufficient to provide starvation freedom in multi-version setting. Subsection 3.4
identifies a key idea that can help in providing starvation freedom. Unfortunately,
using this idea alone is insufficient as it can violate strict-serializability and conse-
quently local opacity. Subsection 3.5 describes KSFTM algorithm that simultane-
ously maintains correctness, strict-serializability and local opacity while providing
starvation-freedom.
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Fig. 2. Data structures for maintaining versions

3.1 Starvation-Freedom Explanation

This section starts with the definition of starvation-freedom. Then we describe
the assumption that we make about the scheduler for our algorithm to satisfy
starvation-freedom.

Definition 1. Starvation-Freedom: A STM system is said to be starvation-
free if a thread invoking a non-parasitic transaction Ti gets the opportunity to
retry Ti on every abort, due to the presence of a fair scheduler, then Ti will
eventually commit.

As explained by Herlihy & Shavit [8], a fair scheduler implies that no thread
is forever delayed or crashed. Hence with a fair scheduler, we get that if a thread
acquires locks then it will eventually release the locks. Thus a thread cannot
block out other threads from progressing.

Assumption About Scheduler: In order for starvation-free algorithm
KSFTM (described in Subsect. 3.5) to work correctly, we make the following
assumption about the fair scheduler:

Assumption 1. Bounded-Termination: For any transaction Ti, invoked by
a thread Thx, the fair system scheduler ensures, in the absence of deadlocks, Thx

is given sufficient time on a CPU (and memory etc.) such that Ti terminates
(either commits or aborts) in bounded time.

While the bound for each transaction may be different, we use L to denote the
maximum bound. In other words, in time L, every transaction will either abort
or commit due to the absence of deadlocks.

There are different ways to satisfy the scheduler requirement. For example, a
round-robin scheduler which provides each thread equal amount of time in any
window satisfies this requirement as long as the number of threads is bounded.
In a system with two threads, even if a scheduler provides one thread 1% of CPU
and another thread 99% of the CPU, it satisfies the above requirement. On the
other hand, a scheduler that schedules the threads as ‘T1, T2, T1, T2, T2, T1, T2,
T2, T2, T2, T1, T2, T2, T2, T2, T2, T2, T2, T2, T1, T2(16 times)’ does not satisfy the
above requirement. This is due to the fact that over time, thread 1 gets infinites-
imally smaller portion of the CPU and, hence, the time required for it to complete
(commit or abort) will continue to increase over time.
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In our algorithm, we will ensure that it is deadlock free using standard tech-
niques from the literature. In other words, each thread is in a position to make
progress. We assume that the scheduler provides sufficient CPU time to complete
(either commit or abort) within a bounded time.

3.2 Algorithm Preliminaries

In this sub-section, we describe the invocation of transactions by the application.
Next, we describe the data structures used by the algorithms.

Transaction Invocation: Transactions are invoked by the threads. Suppose a
thread Thx invokes a transaction Ti. If this transaction Ti gets aborted, Thx will
reissue it, as a new incarnation of Ti, say Tj . The thread Thx will continue to
invoke new incarnations of Ti until an incarnation commits.

When the thread Thx invokes a transaction, say Ti, for the first time then the
STM system assigns Ti a unique timestamp called current timestamp or CTS. If
it aborts and retries again as Tj , then its CTS will be different. However, in this
case, the thread Thx will also pass the CTS value of the first incarnation (Ti) to
the STM system. By this, Thx informs the STM that, Tj is not a new invocation
but is an incarnation of Ti. The CTS values are obtained by incrementing a global
atomic counter G tCntr.

We denote the CTS of Ti (first incarnation) as Initial Timestamp or ITS
for all the incarnations of Ti. Thus, the invoking thread Thx passes ctsi to all
the incarnations of Ti (including Tj). Thus for Tj , itsj = ctsi. The transaction
Tj is associated with the timestamps: 〈itsj , ctsj〉. For Ti, which is the initial
incarnation, its ITS and CTS are the same, i.e., itsi = ctsi. For simplicity, we
use the notation that for transaction Tj , j is its CTS, i.e., ctsj = j.

We now state our assumptions about transactions in the system.

Assumption 2. We assume that in the absence of other concurrent conflicting
transactions, every transaction will commit. In other words, (a) if a transac-
tion Ti is executing in a system where other concurrent conflicting transactions
are not present then Ti will not self-abort. (b) Transactions are not parasitic
(explained in Sect. 1).

If transactions self-abort or behave in parasitic manner then providing
starvation-freedom is impossible.

Common Data Structures and STM Methods: Here we describe the com-
mon data structures used by all the algorithms proposed in this section.

In all our algorithms, for each t-object, the algorithms maintain multiple
versions in form of version-list (or vlist). Similar to MVTO [13], each version of
a t-object is a tuple denoted as vTuple and consists of three fields: (1) timestamp
characterizing the transaction that created the version, (2) value, and (3) a
list, read-list (or rl) consisting of transaction ids (or CTSs) that read from this
version.
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Figure 2 illustrates this structure. For a t-object x, we use the notation x[t]
to access the version with timestamp t. Depending on the algorithm considered,
the fields of this structure change.

We assume that the STM system exports the following methods for a trans-
action Ti: (1) stm-begin(t) where t is provided by the invoking thread, Thx.
From our earlier assumption, it is the CTS of the first incarnation or null if
Thx is invoking this transaction for the first time. This method returns a unique
timestamp to Thx which is the CTS/id of the transaction. (2) stm-readi(x) tries
to read t-object x. It returns either value v or A . (3) stm-writei(x, v) operation
that updates a t-object x with value v locally. It returns ok. (4) stm-tryCi() tries
to commit the transaction and returns C if it succeeds. Otherwise, it returns A .

Correctness Criteria: For ease of exposition, we initially consider strict-
serializability as correctness-criterion to illustrate the correctness of the algo-
rithms. Subsequently, we consider a stronger property, local opacity that is more
suitable for STMs.

3.3 Priority-Based MVTO Algorithm

In this subsection, we describe a modification to the multi-version timestamp
ordering (MVTO) algorithm [13,22] to ensure that it provides preference to
transactions that have low ITS, i.e., transactions that have been in the system
for a longer time. We denote the basic algorithm which maintains unbounded
versions as Priority-based MVTO or PMVTO (akin to the original MVTO). We
denote the variant of PMVTO that maintains K versions as PKTO and the
unbounded versions variant with garbage collection as PMVTO-GC .

While providing higher priority to older transactions suffices to provide
starvation-freedom in SV-SFTM , we note that PKTO is not starvation free. The
reason that demonstrates why PKTO is not starvation free forms our basis of
designing SFMVTO that provides starvation-freedom (described in Subsect. 3.4).

We now describe PKTO . This description can be trivially extended to
PMVTO and PMVTO-GC as well.

stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i from
our assumption). The timestamp ts is generated by atomically incrementing the
global counter G tCntr. If the input t is null, then ctsi = itsi = ts as this is
the first incarnation of this transaction. Otherwise, the non-null value of t is
assigned as itsi.

stm-read(x): Transaction Ti reads from a version of x in the shared memory (if
x does not exist in Ti’s local buffer) with timestamp j such that j is the largest
timestamp less than i (among the versions of x), i.e., there exists no version of
x with timestamp k such that j < k < i. After reading this version of x, Ti is
stored in x[j]’s read-list. If no such version exists then Ti is aborted.

stm-write(x, v): Ti stores this write to value x locally in its wseti. If Ti ever
reads x again, this value will be returned.
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stm-tryC : This operation consists of three steps. In Step 1, it checks whether
Ti can be committed. In Step 2, it performs the necessary tasks to mark Ti as a
committed transaction and in Step 3, Ti return commits.

1. Before Ti can commit, it needs to verify that any version it creates does not
violate consistency. Suppose Ti creates a new version of x with timestamp i.
Let j be the largest timestamp smaller than i for which version of x exists.
Let this version be x[j]. Now, Ti needs to make sure that any transaction that
has read x[j] is not affected by the new version created by Ti. There are two
possibilities of concern:
(a) Let Tk be some transaction that has read x[j] and k > i (k = CTS

of Tk). In this scenario, the value read by Tk would be incorrect (w.r.t
strict-serializability) if Ti is allowed to create a new version. In this case,
we say that the transactions Ti and Tk are in conflict. So, we do the
following: (i) if Tk has already committed then Ti is aborted ; (ii) Suppose
Tk is live and itsk is less than itsi. Then again Ti is aborted ; (iii) If Tk is
still live with itsi less than itsk then Tk is aborted.

(b) The previous version x[j] does not exist. This happens when the previous
version x[j] has been overwritten. In this case, Ti is aborted since PKTO
does not know if Ti conflicts with any other transaction Tk that has read
the previous version.

2. After Step 1, we have verified that it is ok for Ti to commit. Now, we have
to create a version of each t-object x in the wset of Ti. This is achieved as
follows:
(a) Ti creates a vTuple 〈i, wseti.x.v, null〉. In this tuple, i (CTS of Ti) is the

timestamp of the new version; wseti.x.v is the value of x is in Ti’s wset,
and the read-list of the vTuple is null.

(b) Suppose the total number of versions of x is K. Then among all the
versions of x, Ti replaces the version with the smallest timestamp with
vTuple 〈i, wseti.x.v, null〉. Otherwise, the vTuple is added to x’s vlist.

3. Transaction Ti is then committed.

The algorithm described here is only the main idea. The actual implemen-
tation will use locks to ensure that each of these methods are linearizable [23].
It can be seen that PKTO gives preference to the transaction having lower ITS
in Step 1a. Transactions having lower ITS have been in the system for a longer
time. Hence, PKTO gives preference to them. The detailed pseudocode along
with the description can be found in the technical report [21]. We have the
following property on the correctness of PKTO .

Property 1. Any history generated by the PKTO is strict-serializable.

Consider a history H generated by PKTO . Let the committed sub-history of H
be CSH = H.subhist(H.committed). It can be shown that CSH is opaque with
the equivalent serialized history SH ′ is one in which all the transactions of CSH
are ordered by their CTSs. Hence, H is strict-serializable.

While PKTO (and PMVTO) satisfies strict-serializability, it fails to prevent
starvation. The key reason is that if transaction Tj conflicts with Tk and Tk has
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already committed, then Tj must be aborted. This is true even if Tj is the oldest
transaction in the system. Furthermore, next incarnation of Tj may have to be
aborted by another transaction T ′

k. This cannot be prevented as conflict between
Tj and T ′

k may not be detected before T ′
k has committed. A detailed illustration

of starvation in PKTO is shown in the technical report [21].

3.4 Modifying PKTO to Obtain SFKTO: Trading Correctness
for Starvation-Freedom

Our goal is to revise PKTO algorithm to ensure that starvation-freedom is sat-
isfied. Specifically, we want the transaction with the lowest ITS to eventually
commit. Once this happens, the next non-committed transaction with the low-
est ITS will commit. Thus, from induction, we can see that every transaction
will eventually commit.

Key Insights for Eliminating Starvation in PKTO: To identify the neces-
sary revision, we first focus on the effect of this algorithm on two transactions,
say T50 and T60 with their CTS values being 50 and 60 respectively. Furthermore,
for the sake of discussion, assume that these transactions only read and write
t-object x. Also, assume that the latest version for x is with ts 40. Each transac-
tion first reads x and then writes x (as part of the stm-tryC operation). We use
r50 and r60 to denote their read operations while w50 and w60 to denote their
stm-tryC operations. Here, a read operation will not fail as there is a previous
version present.

Now, there are six possible permutations of these statements. We identify
these permutations and the action that should be taken for that permutation
in Table 1. In all these permutations, the read operations of a transaction come
before the write operations as the writes to the shared memory occurs only in the
stm-tryC operation (due to optimistic execution) which is the final operation of
a transaction.

From this table, it can be seen that when a conflict is detected, in some cases,
algorithm PKTO must abort T50. In case both the transactions are live, PKTO
has the option of aborting either transaction depending on their ITS. If T60 has

Table 1. Permutations of operations

S. No. Sequence Possible actions by PKTO

1 r50, w50, r60, w60 T60 reads the version written by T50. No conflict
2 r50, r60, w50, w60 Conflict detected at w50. Either abort T50 or T60

3 r50, r60, w60, w50 Conflict detected at w50. Hence, abort T50

4 r60, r50, w60, w50 Conflict detected at w50. Hence, abort T50

5 r60, r50, w50, w60 Conflict detected at w50. Either abort T50 or T60

6 r60, w60, r50, w50 Conflict detected at w50. Hence, abort T50
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lower ITS then in no case, PKTO is required to abort T60. In other words, it is
possible to ensure that the transaction with the lowest ITS and the highest CTS
is never aborted. Although in this example, we considered only one t-object, this
logic can be extended to cases having multiple operations and t-objects.

Next, consider Step 1b of stm-tryC in PKTO algorithm. Suppose a transac-
tion Ti wants to read a t-object but does not find a version with a timestamp
smaller than i. In this case, Ti has to abort. But if Ti has the highest CTS, then
it will certainly find a version to read from. This is because the timestamp of
a version corresponds to the timestamp of the transaction that created it. If Ti

has the highest CTS value then it implies that all versions of all the t-objects
have a timestamp smaller than CTS of Ti. This reinforces the above observation
that a transaction with the lowest ITS and highest CTS is not aborted.

To summarize the discussion, algorithm PKTO has an in-built mechanism
to protect transactions with lowest ITS and highest CTS value. However, this is
different from what we need. Specifically, we want to protect a transaction Ti,
with lowest ITS value. One way to ensure this: if transaction Ti with lowest ITS
keeps getting aborted, eventually it should achieve the highest CTS. Once this
happens, PKTO ensures that Ti cannot be further aborted. In this way, we can
ensure the liveness of all transactions.

The Working of Starvation-Free Algorithm: To realize this idea and
achieve starvation-freedom, we consider another variation of MVTO, Starvation-
Free MVTO or SFMVTO. We specifically consider SFMVTO with K versions,
denoted as SFKTO.

A transaction Ti instead of using the current time as ctsi, uses a potentially
higher timestamp, Working Timestamp - WTS or wtsi. Specifically, it adds
C ∗ (ctsi − itsi) to ctsi, i.e.,

wtsi = ctsi + C ∗ (ctsi − itsi); (1)

where, C is any constant greater than 0. In other words, when the transaction Ti

is issued for the first time, wtsi is same as ctsi(= itsi). However, as transaction
keeps getting aborted, the drift between ctsi and wtsi increases. The value of
wtsi increases with each retry.

Furthermore, in SFKTO algorithm, CTS is replaced with WTS for stm-read,
stm-write and stm-tryC operations of PKTO . In SFKTO, a transaction Ti uses
wtsi to read a version in stm-read. Similarly, Ti uses wtsi in stm-tryC to find
the appropriate previous version (in Step 1b) and to verify if Ti has to be aborted
(in Step 1a). Along the same lines, once Ti decides to commit and create new
versions of x, the timestamp of x will be same as its wtsi (in Step 3). Thus
the timestamp of all the versions in vlist will be WTS of the transactions that
created them.

SFKTO algorithms ensures starvation-freedom in presence of a fair sched-
uler that satisfies Assumption 1 (bounded-termination). While the proof of this
property is somewhat involved, the key idea is that the transaction with lowest
ITS value, say Tlow, will eventually have highest WTS value than all the other
transactions in the system. Then it cannot be aborted. But SFKTO and its
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variant SFMVTO do not satisfy strict-serializability which is illustrated in the
technical report [21].

3.5 Design of KSFTM : Regaining Correctness While Preserving
Starvation-Freedom

In this section, we discuss how principles of PKTO and SFKTO can be combined
to obtain KSFTM that provides both correctness (strict-serializability and local
opacity) as well as starvation-freedom. To achieve this, we first understand why
the initial algorithm, PKTO satisfies strict-serializability. This is because CTS
was used to create the ordering among committed transactions. CTS is based on
real-time ordering. In contrast, SFKTO uses WTS which may not correspond to
the real-time, as WTS may be significantly larger than CTS as shown by history
H1 in Fig. 3.

One straightforward way to modify SFKTO is to delay a committing trans-
action, say Ti with WTS value wtsi until the real-time (G tCntr) catches up to
wtsi. This will ensure that the value of WTS will also become the same as the
real-time thereby guaranteeing strict-serializability. However, this is unaccept-
able, as in practice, it would require transaction Ti locking all the variables it
plans to update and wait. This will adversely affect the performance of the STM
system.

We can allow the transaction Ti to commit before its wtsi has caught up
with the actual time if it does not violate the real-time ordering. Thus, to ensure
that the notion of real-time order is respected by transactions in the course of
their execution in SFKTO, we add extra time constraints. We use the idea of
timestamp ranges. This notion of timestamp ranges was first used by Riegel
et al. [24] in the context of multi-version STMs. Several other researchers have
used this idea since then such as Guerraoui et al. [25], Crain et al. [26] etc.

Thus, in addition to ITS, CTS and WTS, each transaction Ti maintains a
timestamp range: Transaction Lower Timestamp Limit or tltli, and Transaction
Upper Timestamp Limit or tutli. When a transaction Ti begins, tltli is assigned
ctsi and tutli is assigned the largest possible value which we denote as infinity.
When Ti executes a method m in which it reads a version of a t-object x or
creates a new version of x in stm-tryC, tltli is incremented while tutli gets
decremented1.

We require that all the transactions are serialized based on their WTS while
maintaining their real-time order. On executing a method m, Ti is ordered w.r.t
to other transactions that have created a version of x based on increasing order
of WTS. For all transactions Tj which also have created a version of x and
whose wtsj is less than wtsi, tltli is incremented such that tutlj is less than tltli.
Note that all such Tj are serialized before Ti. Similarly, for any transaction Tk

which has created a version of x and whose wtsk is greater than wtsi, tutli is

1 Technically ∞, which is assigned to tutli, cannot be decremented. But here as men-
tioned earlier, we use ∞ to denote the largest possible value that can be represented
in a system.
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decremented such that it becomes less than tltlk. Again, note that all such Tk

are serialized after Ti.
If Ti reads a version x created by Tj then Ti is serialized after Tj and before

any other Tk that also created a version of x such that wtsj < wtsk. The algo-
rithm ensures that wtsj < wtsi < wtsk. For correctness, we again increment tltli
and decrement tutli as above. After the increments of tltli and the decrements
of tutli, if tltli turns out to be greater than tutli then Ti is aborted. Intuitively,
this implies that Ti’s WTS and real-time orders are out of synchrony and cannot
be reconciled.

Finally, when a transaction Ti commits: Ti records its commit time (or
comTimei) by getting the current value of G tCntr and incrementing it by
incrV al which is any value greater than or equal to 1. Then tutli is set to
comTimei if it is not already less than it. Now suppose Ti occurs in real-time
before some other transaction, Tk but does not have any conflict with it. This
step ensures that tutli remains less than tltlk (which is initialized with ctsk).

Fig. 3. Correctness of KSFTM algorithm

We illustrate this technique with the history H1 shown in Fig. 3. When T1

starts its cts1 = 50, tltl1 = 50, tutl1 = ∞. Now when T1 commits, suppose
G tCntr is 70. Hence, tutl1 reduces to 70. Next, when T2 commits, suppose tutl2
reduces to 75 (the current value of G tCntr). As T1, T2 have accessed a common
t-object x in a conflicting manner, tltl2 is incremented to a value greater than
tutl1, say 71. Next, when T3 begins, tltl3 is assigned cts3 which is 80 and tutl3 is
initialized to ∞. When T3 reads 10 from T1, which is r3(x, 10), tutl3 is reduced
to a value less than tltl2(= 71), say 70. But tltl3 is already at 80. Hence, the
limits of T3 have crossed and thus causing T3 to abort. The resulting history
consisting of only committed transactions T1T2 is strict-serializable.

Based on this idea, we next develop a variation of SFKTO, K-version
Starvation-Free STM System or KSFTM . To explain this algorithm, we first
describe the structure of the version of a t-object used. It is a slight variation of
the t-object used in PKTO algorithm. It consists of: (1) timestamp, ts which is
the WTS of the transaction that created this version (and not CTS like PKTO);
(2) the value of the version; (3) a list, called read-list, consisting of transactions ids
(could be CTS as well) that read from this version; (4) version real-time timestamp
or vrt which is the tutl of the transaction that created this version. Thus a version
has information of WTS and tutl of the transaction that created it.
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Now, we describe the main idea behind stm-begin, stm-read, stm-write and
stm-tryC operations of a transaction Ti which is an extension of PKTO . Note
that as per our notation i represents the CTS of Ti.

stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i
from our assumption) which is generated by atomically incrementing the global
counter G tCntr. If the input t is null then ctsi = itsi = ts as this is the first
incarnation of this transaction. Otherwise, the non-null value of t is assigned to
itsi. Then, WTS is computed by Eq. 1. Finally, tltl and tutl are initialized as:
tltli = ctsi, tutli = ∞.

stm-read(x): Transaction Ti reads from a version of x with timestamp j such
that j is the largest timestamp less than wtsi (among the versions x), i.e. there
exists no version k such that j < k < wtsi is true. If no such j exists then Ti is
aborted. Otherwise, after reading this version of x, Ti is stored in j’s rl. Then
we modify tltl, tutl as follows:

1. The version x[j] is created by a transaction with wtsj which is less than wtsi.
Hence, tltli = max(tltli, x[j].vrt + 1).

2. Let p be the timestamp of smallest version larger than i. Then tutli =
min(tutli, x[p].vrt − 1).

3. After these steps, abort Ti if tltl and tutl have crossed, i.e., tltli > tutli.

stm-write(x, v): Ti stores this write to value x locally in its wseti.

stm-tryC : This operation consists of multiple steps:

1. Before Ti can commit, we need to verify that any version it creates is updated
consistently. Ti creates a new version with timestamp wtsi. Hence, we must
ensure that any transaction that read a previous version is unaffected by this
new version. Additionally, creating this version would require an update of
tltl and tutl of Ti and other transactions whose read-write set overlaps with
that of Ti. Thus, Ti first validates each t-object x in its wset as follows:
(a) Ti finds a version of x with timestamp j such that j is the largest times-

tamp less than wtsi (like in stm-read). If there exists no version of x with
a timestamp less than wtsi then Ti is aborted. This is similar to Step 1b
of the stm-tryC of PKTO algorithm.

(b) Among all the transactions that have previously read from j suppose
there is a transaction Tk such that j < wtsi < wtsk. Then (i) if Tk has
already committed then Ti is aborted; (ii) Suppose Tk is live, and itsk is
less than itsi. Then again Ti is aborted; (iii) If Tk is still live with itsi
less than itsk then Tk is aborted.
This step is similar to Step 1a of the stm-tryC of PKTO algorithm.

(c) Next, we must ensure that Ti’s tltl and tutl are updated correctly w.r.t to
other concurrently executing transactions. To achieve this, we adjust tltl,
tutl as follows: (i) Let j be the ts of the largest version smaller than wtsi.
Then tltli = max(tltli, x[j].vrt + 1). Next, for each reading transaction,
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Tr in x[j].read-list, we again set, tltli = max(tltli, tutlr + 1). (ii) Simi-
larly, let p be the ts of the smallest version larger than wtsi. Then, tutli =
min(tutli, x[p].vrt− 1). (Note that we don’t have to check for the trans-
actions in the read-list of x[p] as those transactions will have tltl higher
than x[p].vrt due to stm-read.) (iii) Finally, we get the commit time of
this transaction from G tCntr: comTimei = G tCntr.add&Get(incrV al)
where incrV al is any constant ≥ 1. Then, tutli = min(tutli, comTimei).
After performing these updates, abort Ti if tltl and tutl have crossed, i.e.,
tltli > tutli.

2. After performing the tests of Step 1 over each t-objects x in Ti’s wset, if Ti

has not yet been aborted, we proceed as follows: for each x in wseti create
a vTuple 〈wtsi, wseti.x.v, null, tutli〉. In this tuple, wtsi is the timestamp of
the new version; wseti.x.v is the value of x is in Ti’s wset; the read-list of the
vTuple is null; vrt is tutli (actually it can be any value between tltli and
tutli). Update the vlist of each t-object x similar to Step 2 of stm-tryC of
PKTO .

3. Transaction Ti is then committed.

Step 1c.(iii) of stm-tryC ensures that real-time order between transactions that
are not in conflict. It can be seen that locks have to be used to ensure that
all these methods to execute in a linearizable manner (i.e., atomically). The
detailed pseudo code along with the description can be found in accompanying
technical report [21]. We get the following nice properties on KSFTM with the
complete details in [21]. For simplicity, we assumed C and incrV al to be 0.1 and
1 respectively in our analysis. But the proof and the analysis holds for any value
greater than 0.

Theorem 1. Any history generated by KSFTM is strict-serializable and
locally-opaque.

Theorem 2. KSFTM algorithm ensures starvation-freedom.

4 Experimental Evaluation

For performance evaluation of KSFTM with the state-of-the-art STMs, we
implemented the the algorithms PKTO , SV-SFTM [10–12] along with KSFTM
in C++2 We used the available implementations of NOrec STM [17], and
ESTM [18] developed in C++. Although, only KSFTM and SV-SFTM provide
starvation-freedom, we compared with other STMs as well, to see its performance
in practice.

Experimental System: The experimental system is a 2-socket Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60 GHz with 14 cores per socket and 2 hyper-
threads (HTs) per core, for a total of 56 threads. Each core has a private 32KB
L1 cache and 256 KB L2 cache. The machine has 32 GB of RAM and runs Ubuntu
2 Code is available here: https://github.com/PDCRL/KSFTM.

https://github.com/PDCRL/KSFTM
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16.04.2 LTS. In our implementation, all threads have the same base priority and
we use the default Linux scheduling algorithm. This satisfies the Assumption 1
(bounded-termination) about the scheduler. We ensured that there no parasitic
transactions [27] in our experiments.

Methodology: Here we have considered two different applications: (1) Counter
application - In this, each thread invokes a single transaction which performs 10
reads/writes operations on randomly chosen t-objects. A thread continues to
invoke a transaction until it successfully commits. To obtain high contention,
we have taken large number of threads ranging from 50–250 where each thread
performs its read/write operation over a set of 5 t-objects. We have performed
our tests on three workloads stated as: (W1) Li - Lookup intensive: 90% read,
10% write, (W2) Mi - Mid intensive: 50% read, 50% write and (W3) Ui - Update
intensive: 10% read, 90% write. This application is undoubtedly very flexible as
it allows us to examine performance by tweaking different parameters (refer to
the technical report [21] for details). (2) Two benchmarks from STAMP suite
[19] - (a) We considered KMEANS which has low contention with short running
transactions. The number of data points as 2048 with 16 dimensions and total
clusters as 5. (b) We then considered LABYRINTH which has high contention
with long running transactions. We considered the grid size as 64x64x3 and paths
to route as 48.

To study starvation in the various algorithms, we considered max-time, which
is the maximum time taken by a transaction among all the transactions in a given
experiment to commit from its first invocation. This includes time taken by all
the aborted incarnations of the transaction to execute as well. To reduce the
effect of outliers, we took the average of max-time in ten runs as the final result
for each application.

Results Analysis: Fig. 4 illustrates max-time analysis of KSFTM over the
above mentioned STMs for the counters application under the workloads W1,
W2 and W3 while varying the number of threads from 50 to 250. For KSFTM
and PKTO , we chose the value of K as 5 and C as 0.1 as the best results were
obtained with these parameters (refer to the technical report [21] for details).
We can see that KSFTM performs the best for all the three workloads. KSFTM
gives an average speedup on max-time by a factor of 1.22, 1.89, 23.26 and 13.12
over PKTO , SV-SFTM , NOrec STM and ESTM respectively.

Figure 5(a) shows analysis of max-time for KMEANS while Fig. 5(b) shows
for LABYRINTH. In this analysis we have not considered ESTM as the inte-
grated STAMP code for ESTM is not publicly available. For KMEANS, KSFTM
performs 1.5 and 1.44 times better than PKTO and SV-SFTM . But, NOrec is
performing 1.09 times better than KSFTM . This is because KMEANS has short
running transactions have low contention. As a result, the commit time of the
transactions is also low.

On the other hand for LABYRINTH, KSFTM again performs the best. It
performs 1.14, 1.4 and 2.63 times better than PKTO , SV-SFTM and NOrec
respectively. This is because LABYRINTH has high contention with long run-
ning transactions. This result in longer commit times for transactions.
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Figure 5(c) shows the stability of KSFTM algorithm over time for the counter
application. Here we fixed the number of threads to 32, K as 5, C as 0.1, t-
objects as 1000, along with 5 s warm-up period on W1 workload. Each thread
invokes transactions until its time-bound of 60 s expires. We performed the
experiments on number of transactions committed over time in the increments
5 s. The experiment shows that over time KSFTM is stable which helps to hold
the claim that KSFTM ’s performance will continue in same manner if time is
increased to higher orders.

We have executed several experiments to study various parameters such as
average case analysis, number of aborts, effect of garbage-collection, best value
of K and optimal value of C. These are explained in detail in the technical
report [21].
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5 Conclusion

In this paper, we proposed KSFTM which ensures starvation-freedom while
maintaining K versions for each t-objects. It uses two insights to ensure
starvation-freedom in the context of MVSTMs: (1) using ITS to ensure that
older transactions are given a higher priority, and (2) using WTS to ensure
that conflicting transactions do not commit too quickly before the older trans-
action could commit. We show KSFTM satisfies strict-serializability [6] and
local opacity [4,5]. Our experiments show that KSFTM performs better than
starvation-free state-of-the-arts STMs as well as non-starvation free STMs under
long running transactions with high contention workloads.
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ing the paper and providing us valuable suggestions.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2) (1993)

2. Shavit, N., Touitou, D.: Software transactional memory. In: PODC (1995)
3. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:

PPoPP (2008)
4. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional

memory. In: ICDCN (2014) 197–211
5. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional

memory. Theor. Comput. Sci. 688, 103–116 (2017)
6. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM

26(4) (1979)
7. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint,

1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)
8. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A., Lipari,
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Abstract. Anonymous shared memory is a memory in which processes
use different names for the same shared read/write register. As an exam-
ple, a shared register named A by a process p and a shared register named
B by another process q can correspond to the very same register X, and
similarly for the names B at p and A at q which can correspond to the
same register Y �= X. Hence, there is a permanent disagreement on the
register names among the processes. This new notion of anonymity was
recently introduced by G. Taubenfeld (PODC 2017), who presented sev-
eral memory-anonymous algorithms and impossibility results.

This paper introduces a new problem, that consists in “de-
anonymizing” an anonymous shared memory. To this end, it presents an
algorithm that, starting with a shared memory made up of m anonymous
read/write atomic registers (i.e., there is no a priori agreement on their
names), allows each process to compute a local addressing mapping, such
that all the processes agree on the names of each register. The proposed
construction is based on an underlying deadlock-free mutex algorithm for
n ≥ 2 processes (recently proposed in a paper co-authored by some of the
authors of this paper), and consequently inherits its necessary and suffi-
cient condition on the size m of the anonymous memory, namely m must
belong to the set M(n) = {m : such that ∀ � : 1 < � ≤ n : gcd(�, m) =
1} \ {1}. This algorithm, which is also symmetric in the sense process
identities can only be compared by equality, requires the participation
of all the processes; hence it can be part of the system initialization.
Last but not least, the proposed algorithm has a noteworthy first-class
property, namely, its simplicity.

Keywords: Anonymity · Anonymous shared memory ·
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Concurrent algorithm · Deadlock-freedom · Local memory ·
Mapping function · Mutual exclusion · Simplicity · Synchronization
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1 Introduction

Read/Write Registers. Read/write registers are the basic objects of sequential
computing. From a theoretical point of view, they constitute the cells of a Turing
machine tape, and from a programming point of view, they are the memory
locations on top of which are built high-level objects such as stacks, queues, and
trees (to cite a few of the most common).

In a concurrent programming context, a read/write register can be shared
(accessed) by several processes to coordinate their actions or progress to a com-
mon goal. The most popular consistency condition for registers is atomicity,
which states that all its read and write operations appear as if they have been
executed sequentially, this sequence S being such that, if an operation op1 ter-
minates before operation op2 starts, op1 appears before op2 in S, and a read
operation returns the value written by the closest preceding write in S [13].

A register is said to be single-reader (SR) or multi-reader (MR) according to
the number of processes that are allowed to read it. Similarly, a register can be
single-writer (SW) or multi-writer (MW). A lot of algorithms have been proposed
(e.g., see the textbooks [19,22]), which build MWMR registers from SWSR or
SWMR registers in the presence of asynchrony and process crashes. In the other
direction, an adaptive construction of SWMR registers from MWMR registers
is described in [7].

Anonymous Memory. While the notion of process anonymity has been studied
for a long time from an algorithmic and computability point of view, both in
message-passing systems (e.g., [2,5,24]) and shared memory systems (e.g., [4,6,
11]), the notion of memory anonymity has been introduced only very recently
in [23]. (See [21] for an introductory survey on process and memory anonymity).

Let us consider a shared memory SM made up of m atomic read/write regis-
ters. Such a memory can be seen as an array with m entries, namely SM [1..m].
In a non-anonymous memory system, for any index x, 1 ≤ x ≤ m, if two or
more processes invoke the address SM [x] they access the very same register. As
stated in [23], in the classical system model, there is an a priori agreement on the
names of the shared registers. This a priori agreement facilitates the implemen-
tation of the coordination rules the processes have to follow to progress without
violating the safety (consistency) properties associated with the application they
solve [19,22].

This a priori agreement does no longer exist in a memory-anonymous system.
In such a system the very same address identifier SM [x] invoked by a process
pi and invoked by a different process pj does not necessarily refer to the same
atomic read/write register. More precisely, a memory-anonymous system is such
that:

– for each process pi an adversary defined, over the set {1, 2, · · · ,m}, a per-
mutation fi() such that when pi uses the address SM [x], it actually accesses
SM [fi(x)], and

– no process knows the permutations.
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Let us notice that the read/write registers of a memory-anonymous system are
necessarily MWMR.

Results on Anonymous Memory. In [23], mutual exclusion, consensus, and
renaming, problems are addressed, and memory-anonymous algorithms and
impossibility results are presented. Concerning deadlock-free mutual exclusion in
failure-free asynchronous read/write systems, the following results are presented:

– A symmetric deadlock-free algorithm for two processes (“symmetric” means
process identifiers are not ordered and can only be compared for equality, see
Sect. 2.2).

– A theorem stating there is no deadlock-free algorithm if the number of pro-
cesses n is not known.

– A condition on the size m of the anonymous memory which is necessary for
any symmetric deadlock-free algorithm. More precisely, given an n-process
system where n ≥ 2, there is no deadlock-free mutual exclusion algorithm if
the size m does not belong to the set M(n) = { m such that ∀ � : 1 < � ≤ n:
gcd(�,m) = 1} \ {1}.

Let us observe that the previous condition implies that it is not possible to
design a symmetric deadlock-free mutex algorithm when the size of the anony-
mous memory m is an even integer greater than 2. As symmetric deadlock-free
mutex algorithms suited to a non-anonymous memory do not require a parity-
related property on the number of registers they use, it follows that, when the size
of the memory m is an even integer greater than 2, non-anonymous read/write
registers are computationally stronger than anonymous registers.

In the conclusion of [23], a few open problems are presented, one of them
being “the existence of a symmetric starvation-free mutual exclusion algorithm
for two processes”, another one being “the existence of a symmetric deadlock-
free mutual exclusion algorithm for more than two processes”. This second prob-
lem was recently solved in [3] where an algorithm is presented, which assumes
m ∈ M(n). It follows that the very existence of this algorithm shows that the
condition m ∈ M(n) is also a sufficient condition for symmetric deadlock-free
mutual exclusion in read/write anonymous memory systems.

Content of the Paper. As shown in [3,23], the design of memory-anonymous
algorithms is not a trivial task. We started this work with an attempt to design a
starvation-free memory-anonymous mutual exclusion algorithm. This drove us to
the observation that the fact “there is currently a competition among processes”
must be memorized in one way or another to prevent a process from always
defeating other processes, and thereby ensure starvation-freedom.

Finally, considering an n-process system, after many attempts, this work
ended with a relatively simple symmetric de-anonymization algorithm, namely,
an algorithm that transforms an anonymous read/write memory into a non-
anonymous read/write memory. This algorithm requires the participation of
all the processes, and assumes that processes do not fail. Once memory de-
anonymization is obtained (e.g., at system initialization), it becomes possible
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to use algorithms based on a non-anonymous memory on top of anonymous
memory.

The proposed construction relies on an underlying memory-anonymous sym-
metric deadlock-free mutual exclusion algorithm (the one introduced in [3]).
Hence, it inherits its requirement on m, namely, m ∈ M(n). It follows that, when
m satisfies this condition, m anonymous registers and m non-anonymous reg-
isters have the same computability power from an anonymous/non-anonymous
mutual exclusion point of view. Let us also notice that, if a non-anonymous mem-
ory algorithm executed on top of the proposed construction requires m′ registers
where m′ does not belong to the set M(n) defined above, it is sufficient to select
the first integer greater than m′ belonging to M(n) as the value of m, and, at
the non-anonymous memory upper layer, (m − m′) registers are ignored. Let us
notice that the proposed construction is universal in the sense any concurrent
non-anonymous memory algorithm can be executed on top of it.

On the Difficulty of the Problem. In a non-anonymous memory system,
there is no ambiguity on the read/write registers used by the processes. As
already said, its identifiers are unambiguously shared by all processes, and no
other algorithm is concurrently using these registers. Differently, as, in an anony-
mous memory system, SM [x] can denote different registers for distinct processes,
a process must (in one way or another) write “enough” registers to transmit infor-
mation to other processes. This is a direct consequence of the fact that there is
no a priori agreement on the identities of the shared atomic read/write registers
and the fact that – due to its very nature – no anonymous register can be a
single-writer register.

Hence, the difficulty in the construction of a memory de-anonymization algo-
rithm comes from the fact that, due to memory anonymity, it concurrently uses
the same registers like the ones used by the underlying mutex algorithm it uses
as a subroutine. As we will see, to circumvent this issue, the proposed memory
de-anonymization algorithm will use (in a very simple way) the local memory of
each process to store the value of an increasing counter, which simulates a shared
non-anonymous register on which the processes agree and can consequently use
to coordinate their local progress.

The de-anonymization problem addressed in this paper may seem of the-
oretical interest only (as many other problems appeared first). As long as its
practical interest is concerned, we do not have to forget that, as nicely expressed
by the physicist Niels Bohr “prediction is very difficult, especially when it about
the future!”. Nevertheless, the results presented in this paper shows that, from
a computability point of view, there are cases where – in a failure-free context–
anonymous read/write registers are as strong as non-anonymous registers.

Let us also notice that a similar problem (but much simpler, even trivial)
appears in message-passing systems, where any two nodes (processes) are con-
nected by a communication channel, locally known as internal ports by each
process, porti[x] being the local name of the channel connecting process pi to
some process pj . In this context, it is possible that for any two processes pi

and pk, the local names porti[x] and portk[x] denote channels connecting them
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to two different processes, while porti[x] and portk[y], x �= y, connect them to
the same process. Differently, from process identities, values stored in ports are
purely local and have no global meaning. Moreover, it is straightforward for a
process to learn the name of the process it is connected to when it uses a given
local port.

Simplicity is a First Class Property. The simplicity of the proposed algo-
rithm does not mean it was simple to obtain. This was not a trivial task as sim-
plicity is rarely obtained for free. As said by A.J. Perlis (the first Turing Award
recipient) “Simplicity does not precede complexity, but follows it” [16]. Let us
also remember the following sentence written by the mathematician/philosopher
Blaise Pascal at the end of a letter to a friend: “I apologize for having written
such a long letter, I had not enough time to write a shorter one”. The impli-
cation “simple ⇒ easy” is rarely true for non-trivial problems [1]. Simplicity
requires effort, but is very rewarding. It is a first class scientific property which
participates in the beauty of science [9].

Roadmap. The paper is composed of 7 sections. Section 2 introduces the com-
puting model, the notion of a symmetric algorithm, and mutual exclusion.
Section 3 defines the de-anonymization problem. A first de-anonymization algo-
rithm is presented in Sect. 4 and proved in Sect. 5. This algorithm requires each
register of the de-anonymized memory to forever contain 1 + log2m bits of con-
trol information. Then, the previous algorithm is enriched in Sect. 6 to obtain an
algorithm which associates a single bit of permanent control information with
each register of the de-anonymized memory. Section 7 concludes the paper.

Remark. On a practical side, it appears that the concept of an anonymous
memory allows us to model epigenetic cell modifications [18]. Hence, it could be
useful in biologically inspired distributed systems [14,15].

2 System Model, Symmetric Algorithm, and Mutex
Algorithm

2.1 Process and Communication Model

Processes. The system is composed of a finite set of n ≥ 2 asynchronous pro-
cesses denoted p1, .., pn. The subscript i in pi is only a notational convenience,
which is not known by the processes. Asynchronous means that each process pro-
ceeds to its own speed, which can vary with time and remains always unknown to
the other processes. Each process pi knows its identity idi and the total number
of processes n. No two processes have the same identity.

Anonymous Shared Memory. The shared memory is made up of m atomic
anonymous read/write registers denoted SM [1...m]. Hence, all registers are
anonymous. As indicated in the Introduction, when pi uses the address SM [x],
it actually uses SM [fi(x)], where fi() is a permutation defined by an external
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adversary. We will use the notation SM i[x] to denote SM [fi(x)], to stress the
fact that no process knows the permutations.

It is assumed that all the registers are initialized to the same value. Otherwise,
thanks to their different initial values, it would be possible to distinguish different
registers, which consequently will no longer be fully anonymous.

To Summarize: Which Adversaries? The adversaries considered in the
paper are consequently asynchrony and memory anonymity. There are no process
failures (this assumption is motivated by the fact that the proposed construction
is based on a mutual exclusion algorithm, and mutual exclusion algorithms are
impossible to build from read/write registers in the presence of process failures).
Furthermore, unlike the mutual exclusion model where a process may never leave
its remainder region, we assume that all the processes must participate in the
algorithm.

2.2 Symmetric Algorithm

The notion of a symmetric algorithm dates back to the eighties [10,12]. Here,
as in [23], a symmetric algorithm is an “algorithm in which the processes are
executing exactly the same code and the only way for distinguishing processes
is by comparing identifiers. Identifiers can be written, read, and compared, but
there is no way of looking inside an identifier. Thus it is not possible to know
whether an identifier is odd or even”.

Moreover, symmetry can be restricted by considering that the only compar-
ison that can be applied to identifiers is equality. In this case, there is no order
structuring the identifier name space. In the following, we consider the more
restricting definition, namely, “symmetric” means “symmetric with comparison
limited to equality”.

Let us notice that, as all the processes have the same code and all the registers
are initialized to the same value, process identities become a key element when
one has to design an algorithm in such a constrained context.

2.3 One-Shot Mutual Exclusion

One-Shot Mutual Exclusion. Mutual exclusion is the oldest and certainly the
most important of the synchronization problems. Formalized by E.W. Dijkstra in
the mid-sixties [8], it consists in building what is called a lock (or mutex) object,
defined by two operations, denoted acquire() and release(). (Recent textbooks
including mutual exclusion and variants of it are [19,22].)

The invocation of these operations by a process pi always follows the following
pattern: “acquire(); critical section; release()”, where “critical section” is any
sequence of code. Moreover, “one-shot” means that a process invokes at most
once the operations acquire() and release(). The mutex object satisfying the
deadlock-freedom progress condition is defined by the following two properties.

– Mutual exclusion. No two processes are simultaneously in their critical
section.
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– Deadlock-freedom progress condition. If there is a process pi that has a pend-
ing operation acquire(), there is a process pj (maybe pj �= pi) that eventually
executes its critical section.

As already mentioned, a memory-anonymous symmetric deadlock-free mutual
exclusion algorithm is presented in [3]. This algorithm assumes that size m of
the anonymous memory belongs to the set M(n) = { m such that ∀� : 1 <
� ≤ n: gcd(�,m) = 1} \ {1}. Hence, the mutex-based read/write memory de-
anonymization algorithm presented in Sect. 4 is optimal with respect to the val-
ues of m for which deadlock-free mutual exclusion can be built despite memory
anonymity.

3 The De-anonymization Problem

Definition. Given an n-process asynchronous system, in which the processes
communicate via a set of m anonymous read/write registers SM [1..m], the aim
is for each process pi to compute an addressing function mapi(), which is a
permutation over the set of the memory indexes {1, · · · ,m}, such that the two
following properties are satisfied. It is assumed that all processes participate in
the de-anonymization.

– Safety. For any y ∈ {1, · · · ,m} and any process pi, we have SM i[mapi(y)] =
SM [y].

– Liveness. There is a finite time after which all the processes have computed
their addressing function mapi().

The safety property states that, once a process pi has computed mapi(), its local
anonymous memory address SM i[x], where x = mapi(y), denotes the shared
register SM [y].

Accessing the De-anonymized Memory. Once de-anonymized, the way the
memory is accessed by the processes is illustrated in Fig. 1. For any index y,
1 ≤ y ≤ m, the processes access the same register as follow: SM i[mapi[y]] used
by pi and SM j [mapj [y]] used by pj denote the same register.

4 A Symmetric De-anonymization Algorithm

4.1 Memory De-anonymization in an n-Process Read/Write System

Underlying Principle. The principle that underlies the design of the
read/write memory de-anonymization algorithm (Algorithm 1) is based on an
competition/elimination process, at the end of which a single winner process
imposes its adversary-defined index permutation to all the processes, which
becomes the shared names of the anonymous read/write registers, on which
all processes agree.
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Fig. 1. Accessing the memory after de-anonymization

The competition/elimination process uses an underlying mutual exclusion
algorithm. Each process invokes acquire() and is eliminated when it leaves the
critical section. The last process to enter the critical section is the winner.

Challenges. In order to detect which process is the last, the processes needs to
collaborate to increase a counter whose value will reach n when the last process
will enter the critical section. We stress that because the memory is anonymous
there is no straightforward way to leverage a critical section. Since there is
no agreement on the resources (here the anonymous registers themselves), we
underline that being in critical section does not grant any restricted access to the
memory. In the following, properties of the underlying algorithm are described,
which are used to build the required shared resource, namely a shared counter.

Properties of the Underlying Mutex Algorithm that Are Used. In
addition to the fact it solves mutual exclusion, the underlying mutex algo-
rithm has behavioral properties that are implicitly used in the design of the
de-anonymization algorithm and explicitly used in its proof.

– Property Mutex-1. A process writes only its identity or ⊥ in an anonymous
register.

– Property Mutex-2. When a process invokes acquire(), it reads all anonymous
registers.

– Property Mutex-3. When a process is allowed to enter the critical section, all
registers contain its identity.

– Property Mutex-4. After a process is allowed to enter the critical section and
before it invokes release(), any other competing process can issue at most
one write operation. It follows that, when a process pi is inside the critical
section, and x processes are inside their invocations of acquire(), at least
(m−x) anonymous registers contain its identity idi. Moreover, when a process
releases the critical section (operation release()), it writes ⊥, in all the registers
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which contain its identity. Hence, at least (m − x) such registers are reset to
their initial value ⊥.

Enriching the Underlying Mutex Algorithm to Share a Counter. As
can be seen from the previous properties, even when a process is alone in the
critical section, it could happen that some of its writes are overwritten by another
process. Property Mutex-4 states that a process, which is not in the critical
section, may erase what was written by the process in critical section only once.
That is no more than (n − 1) registers can be erased. As m − (n − 1) > 0,
by copying the value in all the anonymous registers, the process currently in
the critical section ensures that at least one copy will not be overwritten. From
property Mutex-2, the next process to enter the critical section will learn the
correct value of the counter.

Sharing the counter in such a way is more easily done by integrating these
operations within each read and write operation on the anonymous registers,
issued by the underlying mutual exclusion algorithm. These basic operations are
consequently enriched as described in Algorithm 2. These modifications are safe
for the mutual exclusion algorithm since they do not interfere with operations
and variables of this algorithm.

Let us remark that a similar technique, based on appropriate broadcast
abstraction and quorums, is used in message-passing systems to update the local
copies of a shared register [20]. Here the read and write operations issued by the
underlying mutex algorithm are enriched to play the role of a broadcast abstrac-
tion.

Local Variables. Each process s pi manages three local variables.

– cti is a local counter initialized to 0, which will increase inside the integer
interval [0..n]. The set of the n local variables cti implement a shared counter
CT which increases by step 1 from its initial value 0 to n (line 2). (Actu-
ally, the set of the final values of the n local variables cti will be the set
{1, 2, . . . , n}.)

– smi[1..m] is used to store a local copy of the anonymous memory SMi[1..m].
A process pi reads the anonymous memory by invoking SM i.scan(), which is
an asynchronous (non-atomic) reading of all the anonymous registers.

– last1i is a Boolean, initialized to false, which will be set to true only by the
last process that will access the critical section.

Each Register Contains a Tag and a Value. In order not to confuse the
values written in anonymous registers by processes executing statements of Algo-
rithm 1 (not including the operations acquire() and release()), and the values
written by other processes executing the underlying mutex algorithm, all the
values written in the anonymous memory are prefixed by a tag. More explicitly,
the tag mutex is used by the mutex algorithm, while the tag desa is used by
the de-anonymization algorithm.

Each anonymous read/write register is initialized to mutex〈0,⊥〉. The first
value (0) is the initial value of the global counter CT , while the second value
(⊥) is the initial value used by the mutex algorithm.
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Behavior of a Process pi: First Invoke the Mutex Algorithm. All the
processes invoke the operation de − anonymize(idi). When a process pi invokes
it, it first acquires the critical section (line 1). The code inside the critical section
is a simple increase of the shared counter CT globally implemented by the local
variables cti (line 2). Hence, if pi is the �th process to access the critical section,
cti is updated from � − 1 to �, and pi will inform the other processes of this
increase when it will invoke release() (line 4). Let us notice that, at line 3, pi sets
to true its local Boolean variable last1i only if it is the last process to execute
the critical section. Then, the behavior of pi depends on the fact it is or not the
last process to enter the critical section (see below).

Behavior of a Process pi: The Read and Write Operations Used by the
Mutex Algorithm. As already indicated, to ensure correct dissemination of the
last increase of CT (update of the local variable ctj at a process pj), the read
and write operations that allow the mutex algorithm to access the anonymous
registers are modified as described in Algorithm 2.

As the operation release() of the mutex algorithm writes ⊥ (i.e., the
mutex〈CT ,⊥〉) in at least (m− (n−1)) anonymous registers (Property Mutex-
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4), it follows that if a process pi accesses later the critical section, it updated its
local counter cti when it executed acquire(), which reads all anonymous registers
(Property Mutex-1).

Behavior of a Process pi: The Winner Imposes its Addressing Permu-
tation to All. The de-anonymization is done at lines 5–9. The (n−1) processes
that won the first (n−1) critical sections execute line 7, in which they loop until
they see all the registers tagged desa.

Let p� be the last process that entered the critical section (hence, ct� = n and
last1� is the only Boolean equal to true). This process imposes its adversary-
defined addressing permutation as the common addressing, which realizes a non-
anonymous memory. To this end, for any x ∈ {1, · · · ,m}, p� writes desa(x) in
SM�[x] (line 6). Hence, for any x we have map�(x) = x.

Let pi be any other process that is looping at line 7 until it sees all the
registers tagged desa. When this occurs, it computes mapi(), which is such that
for any x ∈ {1, · · · ,m}, if smi[x] =desa(y) then mapi(x) = y (line 7).

4.2 Using the De-anonymized Memory

It follows from the de-anonymization algorithm that when a process has written
the tag desa in all registers, thanks to their local mapping function mapi(), all
the processes share the same indexes for the same registers.

When this occurs, process pk could start executing its local algorithm defined
by the upper layer application, but if it writes an application-related value in
some of these registers, this value can overwrite a value desa() stored in a register
not yet read by other processes. To prevent this problem from occurring, all the
values written by a process at the application level are prefixed by the tag appl,
and include a field containing the common index y associated with this register.
In this way, any process pi will be able to compute its local mapping function
mapi(), and can start its upper layer application part, as soon as it has computed
mapi().

Let us notice that one bit is needed to distinguish the tag desa and the tag
appl. Hence, each of a value desa(x) and a value appl(x,−) requires (1+log2 m)
control bits.

5 Proof of the Algorithm

Lemma 1. Each process exits acquire() and, denoting ik the index of the kth

process that enters the critical section, when pik invokes release(), it writes the
value mutex〈k,⊥〉 in at least (m − (n − 1)) anonymous registers.

Proof. Let us first observe that, as (i) the underlying mutex algorithm is inde-
pendent of the values of the local variables cti, (ii) is deadlock-free, and (iii) each
process invokes acquire() only once, it is actually starvation-free.

Let pi1 be the first process that enters the critical section. As cti1 = 0, it
follows that after line 2 we have cti1 = 1. Then, when pi1 invokes release(), it
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writes mutex〈1,⊥〉 in at least (m − (n − 1)) anonymous registers (Property
Mutex-4 and line 4 of Algorithm 2). It follows then (i) from Property Mutex-2
and lines 1–2 of Algorithm 2), and (ii) Property Mutex-1, Property Mutex-3, and
line 4 of Algorithm 2, that when another process pi2 enters the critical section,
pi2 has previously read and written all registers, from which we conclude from
lines 1–5 of Algorithm 2 that cti2 = 1. It follows that pi2 increases cti2 from 1
to 2 at line 2 of Algorithm 1.

The previous reasoning being repeated n times, we eventually have: cti(x) =
x at each process pi(x), 1 ≤ x ≤ n − 1, and ctin = n at process pin .
It follows that no process blocks forever when it executes the lines 1–4 of
Algorithm 1. �Lemma 1

Lemma 2. The local mapping function mapi() computed by each process pi is
a permutation over the set of register indexes {1, · · · ,m}. Moreover, for any
index y ∈ {1, · · · ,m} and any pair of processes pi and pj, SM i[mapi(y)] and
SM j [mapj(y)] address the very same register.

Proof. Let us assume that a process pi executes line 6. From Lemma 1 there
is a single such process pi. Let pj be any other process that executes lines 7–8.
Due to the “repeat” loop of line 7, pj executes line 8 only after all registers
contain the tag desa. Only pi writes the registers with this tag, and (at line 6)
wrote desa(y) inside SM i[y], for each y ∈ {1, ...,m}. Hence, when pj reads
desa(y) from SM j [x], it learns that this register is known by pi as SM i[y].
At line 8, pj consequently considers x as the value of mapj(y). It follows that
SM j [mapj(y)] (i.e., SM j [x]) and SM i[mapi(y)] (which is SM i[y]) denote the
very same read/write register. As this is true for any process pj �= pi, the lemma
follows. �Lemma 2

Lemma 3. Any process pi terminates the operation de-anonymize().

Proof. The proof follows from Lemma 1, which states that all processes enter
and leave the critical section. Moreover, as pin executes line 6 of Algorithm 1, it
follows that no other process can block forever at line 7 of this algorithm, which
concludes the proof of the lemma. �Lemma 3

Theorem 1. Algorithm 1 is a symmetric algorithm that solves the de-
anonymization problem in a system made up of n asynchronous processes
communicating by reading and writing m anonymous read/write atomic reg-
isters, where m belongs to the set M(n) = {m such that ∀� : 1 < � ≤ n:
gcd(�,m) = 1} \ {1}.
Proof. A simple examination of the code shows that process identities are com-
pared only by equality, from which follows the “symmetry” property. The rest
of the proof follows from Lemma 2 and Lemma 3. �Theorem 1

6 Reducing the Size of Control Information

Algorithm 1 requires that, once de-anonymized, each register must contain for-
ever 1+ log2m bits of control information. This section shows that this informa-
tion can be reduced to a single bit.
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Revisiting the Shared Memory. Each read/write register SM [x] is now
assumed to be composed of two parts SM [x].BIT and SM [x].RM , more pre-
cisely, we have SM [x] = 〈SM [x].BIT , SM [x].RM〉. SM [x].BIT is for example
the leftmost bit of SM [x], and SM [x].RM the other bits. The meaning and the
use of SM [x].RM are exactly the same as SM [x] in Algorithm 1 and Algorithm 2.
For each x, SM [x].BIT is initialized to 0, while (as in Algorithm 1) SM [x].RM
is initialized to mutex〈0,⊥〉.

To simplify both the writing and the reading of the improved algorithm, we
write

– “SM i[x] ← desa(x)” when the first bit of SM i[x] is not modified by the write
(line 6),

– “SM i.scan() when we are interested in the SM i.RM” part of the registers
only (line 7),

– “BIT i[x] ← 1” when the remaining part of SM i[x] is not modified by the
write (line 15),

– “BIT i.scan()” when we are interested in the bits SM i.BIT only (line 16).

Behavior of a Process pi. Algorithm 3 is the improved algorithm. It is Algo-
rithm 1 (lines 1–9), followed by a second global synchronization phase (lines 10–
17), which is similar to the one at lines 1–9.

After the processes have executed line 9 (end of the first global synchroniza-
tion phase), each of them knows its mapping function mapi(), but no process
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knows that all the other processes know their own mapping function. This moti-
vates the second use of the mutual exclusion algorithm, which, as the left bit of
any register SM [x].BIT still contains its initial value 0, ensures that when the
last process (say pk) that entered the second critical section exits it, it knows
that all the processes have computed their mapping function, and no process
that executes the “repeat” loop of line 16 can exit it.

To identify the last process that entered the (second) critical section, when
a process pi is inside the critical section it increases the abstract register CT
(line 11), and sets last2i to true only if it discovers it is the last process that
accessed the critical section (line 12), More precisely, we have the following.

– If pi is not the last process to increase CT (locally represented by cti), last2i

is equal to false, and consequently pi waits until it sees at least one register
whose bit SM i[x].BIT is equal to 1 (line 16). When this occurs pi learns that
the second phase is terminated (hence it knows that all the processes have
computed their mapping function), and it can proceed to execute an upper
layer non-anonymous register algorithm.

– Differently, if pi is the last process to increase CT , it changes to 1 the left bit
of all the registers (line 15), which unblocks all the other processes. As the
bits SM i[x].BIT are never reset to 0, eventually all the processes know that
each of them knows its mapping function.

As they follow the same synchronization pattern, the proof of the second part of
Algorithm 3 (lines 10–17) is the same as the one of its first global synchronization
phase (lines 1–9), which is the same as the one of Algorithm 1.

7 Conclusion

In addition to introducing the memory de-anonymization problem, this paper
has shown that, in an n-process system where n ≥ 2 and process identities
can only be compared with equality, a shared memory made up of m anony-
mous read/write registers and a shared memory made up of m non-anonymous
read/write registers have the same computability power for the values of m sat-
isfying the necessary condition for deadlock-free anonymous mutex algorithms
from [23], namely m must belong to the set M(n) = { m | such that ∀� : 1 < � ≤
n: gcd(�,m) = 1}\{1}. Let us observe that, as it includes an infinite sequence of
prime numbers, M(n) is infinite. It follows that, once de-anonymization (in which
all processes participate) is obtained, it becomes possible to use a symmetric
starvation-free mutex algorithm, thereby obtaining a symmetric starvation-free
mutex algorithm working on top of an anonymous memory1.

We emphasize that the above construction (of running a starvation-free
mutex algorithm on top of a de-anonymization layer), does not solve the original

1 Peterson’s mutual exclusion algorithm is such a symmetric algorithm [17]. As it
requires 2n − 1 non-anonymous atomic registers, we need to have both m ∈ M(n)
and m ≥ 2n − 1.
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open problem from [20], regarding the existence of a memory-anonymous two-
process starvation-free mutex algorithm. In the definition of the mutex problem
participation is not required (a process may never leave its remainder code),
while our implementation of the de-anonymization layer, assumes that partici-
pation is required, or, equivalently, that the number of participants is known by
all processes.

As stated in [23], the memory-anonymous communication model “enables us
to understand better the intrinsic limits for coordinating the actions of asyn-
chronous processes”. It consequently enriches our knowledge of what can be (or
cannot be) done when an adversary replaced a common addressing function, by
individual and independent addressing functions, one per process.

Among problems that remain open, there are the design of de-anonymization
algorithms (symmetric with equality only, or symmetric with equality, greater
than, and lower than) not based on an underlying memory anonymous mutex
algorithm, and the statement of a necessary and sufficient condition on the value
of m (size of the anonymous memory) for which de-anonymization is possible
(for each type of symmetry).
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Abstract. In this paper, we have developed two non-blocking algo-
rithms for maintaining acyclicity in a concurrent directed graph. The
first algorithm is based on a wait-free reachability query and the second
one on partial snapshot-based obstruction-free reachability query. Inter-
estingly, we are able to achieve the acyclic property in a dynamic setting
without (1) making use of helping descriptors by other threads, or (2)
clean double collect mechanism. We present a proof to show that the
graph remains acyclic at all times in the concurrent setting. We also
prove that the acyclic graph data-structure operations are linearizable.
We implement both the algorithms in C++ and test through several
micro-benchmarks. Our experimental results illustrate an average of 7x
improvement over the sequential and global-lock implementation.

Keywords: Acyclic graph · Concurrent data structure ·
Linearizability · Lock-freedom

1 Introduction

A graph is a common data-structure that can model many real-world objects and
pairwise relationships among them. Graphs have a huge number of applications
in various fields like social networking, VLSI design, road networks, graphics,
blockchains and many more. Usually, these graphs are dynamic in nature, that
is, they undergo dynamic changes like addition and removal of vertices and/or
edges [9]. These applications also need data-structure which supports dynamic
changes and can expand at run-time depending on the availability of memory in
the machine.

Nowadays, multi-core systems have become ubiquitous. To fully harness the
computational power of these systems, it has become necessary to design efficient
data-structures which can be executed by multiple threads concurrently. In the
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past decade, there have been several efforts to port sequential data-structures
to a concurrent setting, like stacks [12], queues [2,16], sets [10,11,17,23], trees
[5,19].

Most of these data-structure use locks to handle mutual exclusion while doing
any concurrent modifications. However, in an asynchronous shared-memory sys-
tem, where an arbitrary delay or a crash failure of a thread is possible, a lock-
based implementation is vulnerable to arbitrary delays or deadlock. For instance,
a thread could acquire a lock and then sleep (or get swapped out) for a long
time, or the thread could get involved in a deadlock with the other threads
while obtaining locks, or even crash after obtaining a lock.

On the other hand, in a lock-free data-structure, threads do not acquire locks.
Instead, they use atomic hardware instructions such as compare-and-swap, test-
and-set etc. These instructions ensure that at least one non-faulty thread is
guaranteed to finish its operation in a finite number of steps. Therefore, lock-
free data-structures are highly scalable and naturally fault-tolerant.

Although several concurrent data-structures have been developed, concurrent
graph data-structures and the related operations are still largely unexplored. In
several graph applications, one of the crucial requirements is preserving acyclic-
ity. Acyclic graphs are often applied to problems related to databases, data
processing, scheduling, finding the best route during navigation, data compres-
sion, blockchains etc. Applications relying on graphs mostly use a sequential
implementation and the accesses to the shared data-structures are synchronized
through the global-locks, which causes serious performance bottlenecks.

A relevant application is Serialization Graph Testing (SGT) in Databases
[24, Chap 4] and Transactional Memory (TM) [22]. SGT requires maintaining
an acyclic graph on all concurrently executing (database or TM) transactions
with edges between the nodes representing conflicts among them. In a concur-
rent scenario, where multiple threads perform different operations, maintaining
acyclicity without using locks is not a trivial task. Indeed, it requires every
shared memory access to be checked for the violation of the acyclic property,
which necessitates that all the operations be efficient.

Apart from SGT, several popular blockchains maintain acyclic graphs such as
tree structure (Bitcoin [3,18], Ethereum [4] etc.) or general DAGs (Tangle [21]).

1.1 Contributions

In this paper, we present an efficient non-blocking concurrent acyclic directed
graph data-structure. Its operations are similar to the concurrent graph proposed
by Chatterjee et al. [6] with some non-trivial modifications. The contributions
of our work are summarized below:

1. We describe an Abstract Data Type (ADT) that maintains an acyclic directed
graph G = (V,E). It comprises of the following methods on the sets V and
E: (1) Add Vertex: AcyAddV (2) Remove Vertex: AcyRemV, (3) Contains
Vertex: AcyConV (4) Add Edge: AcyAddE (5) Remove Edge: AcyRemE
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and (6) Contains Edge: AcyConE. The ADT remains acyclic after comple-
tion of any of the above operations in G. The acyclic graph is represented as
an adjacency list.

2. We present an efficient concurrent non-blocking implementation of the ADT
(Sect. 3). We present two approaches for maintaining acyclicity: the first one
is based on a wait-free reachability query(SCR: Single Collect Reachable) and
the second one is based on obstruction-free reachability query (DCR: Double
Collect Reachable) similar to the GetPath method of Chatterjee et al. [6]
(Sect. 4).

3. We prove the correctness by showing the operations of the concurrent acyclic
graph data-structure are linearizable [14]. We also prove the non-blocking
progress guarantee, specifically we prove: (a) The operations AcyConV and
AcyConE are wait-free, only if the vertex keys are finite; (b) Among the
two algorithms for maintaining acyclicity, we show that the first algorithm
based on searchability is wait-free, whereas the second algorithm based on
reachability queries is obstruction-free and (c) The operations AcyAddV,
AcyRemV, AcyConV, AcyAddE, AcyRemE, and AcyConE are lock-
free Sect. 5.

4. We implemented the non-blocking algorithms in C++ and evaluated over a
number of micro-benchmarks. Our experimental results depict on an aver-
age of 7x improvement over the sequential and global lock implementation
(Sect. 6).

1.2 Related Work

Kallimanis and Kanellou [15] presented a concurrent graph that supports wait-
free edge updates and traversals. They use an adjacency matrix representation
for the graph, with a bounded number of vertices. As a result, their data-
structure does not allow any insertion or deletion of vertices after initialization
of the graph. This may not be adequate for many real-world applications which
need dynamic modifications of vertices as well as unbounded graph size.

A recent work by Chatterjee et al. [6] proposed a non-blocking concurrent
graph data-structure which allows multiple threads to perform dynamic inser-
tion and deletion of vertices & edges. Our paper extends this data-structure to
maintain acyclicity of a directed graph.

1.3 Overview of the Algorithm Design

Before getting into the technical details (in Sect. 3) of the algorithm, we first pro-
vide an overview of the design. We implement an acyclic concurrent unbounded
directed graph as a concurrent list of linked lists [11] also used by Chatterjee et al.
[6]. The vertex-nodes are placed in a sorted linked-list and the neighboring ver-
tices of each vertex-node are placed in a rooted sorted linked-list of edge-nodes.
To achieve efficient graph traversal, we maintain a pointer from each edge-node
to its corresponding vertex-node. Each vertex-node’s edge-list and vertex-list are
lock-free with respect to concurrent update and lookup operations.
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As we know that lock-freedom is not composable [8] and our algorithm is
a composition of lock-free operations, we prove the liveness of our algorithm
independent of the lock-free list arguments. In addition to that, we also propose
some refined optimizations for the concurrent acyclic graph operations that not
only enhance the performance but also simplify the design.

Our main requirement is preserving acyclicity and one can see that a cycle is
created only after inserting an edge to the graph. So, after the insertion of a new
edge to the graph, we verify if the resulting graph is acyclic or not. If it creates a
cycle, we simply delete the inserted edge from the graph. However, the challenge
is that these intermediate steps must be oblivious to the user and the graph must
always appear to be acyclic. We ensure this by adding a transit field to the edges
that are temporarily added. To verify the acyclic property of the graph, we pro-
pose two efficient algorithms: first one based on a wait-free reachability query and
the second one based on obstruction-free reachability query similar to the Get-
Path operation of [6]. Both the reachability algorithms perform breadth-first
search (BFS) traversal. For the sake of efficiency, we implement BFS traversal
in a non-recursive manner. However, in order to achieve overall performance, we
do not make use of helping descriptors for the reachability queries.

2 System Model and Preliminaries

The Memory Model. We consider an asynchronous shared-memory model
with a finite set of p processors accessed by a finite set of n threads. The non-
faulty threads communicate with each other by invoking methods on the shared
objects. We run our acyclic graph data-structure on a shared-memory multi-
core system with multi-threading enabled which supports atomic read, write,
fetch-and-add (FAA) and compare-and-swap (CAS) instructions.

Correctness. We consider linearizability proposed by Herlihy and Wing [14] as
the correctness criterion for the graph operations. We assume that the execution
generated by a data-structure is a collection of method invocation and response
events. Each invocation of a method call has a subsequent response. An execution
is linearizable if it is possible to assign an atomic event as a linearization point
(LP) inside the execution interval of each method such that the result of each
of these methods is the same as it would be in a sequential execution in which
the methods are ordered by their LPs [14].

Progress. The progress properties specify when a thread invoking operations
on the shared memory objects completes in the presence of other concurrent
threads. In this context, we present an acyclic graph implementation with
operations that satisfies lock-freedom, based on the definitions in Herlihy and
Shavit [13].
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3 The Data Structure

3.1 Abstract Data Type

An acyclic graph is defined as a directed graph G = (V,E), where V is the set of
vertices and E is the set of directed edges. Each edge in E is an ordered pair of
vertices belonging to V . Every vertex has an immutable unique key. The vertex
represented by the key k is denoted k. A directed edge from the vertex k to l is
denoted as e(k, l) ∈ E.

For a concurrent acyclic graph, we define following ADT operations:

1. AcyAddV(k) adds a vertex k to V , only if k /∈ V and then returns true,
otherwise it returns false.

2. AcyRemV(k) deletes a vertex k from V , only if k ∈ V and then returns
true, otherwise it returns false. Once a vertex k is deleted successfully, all
its outgoing and incoming edges are also removed.

3. AcyConV(k) returns true only if k ∈ V , otherwise it returns false.
4. AcyAddE(k, l) operation is slightly involved and works as follows.

(a) It adds an edge e(k, l) to E, if (i) k ∈ V and l ∈ V (ii) e(k, l) /∈ E
and adding it does not create a cycle in the graph. If either of the
conditions (i) or (ii) are not satisfied, the edge is not added to E and
it returns false along with an indicative strings VERTEX NOT PRESENT,
EDGE ALREADY PRESENT or CYCLE DETECTED depending on execution.

(b) If both (i) and (ii) conditions mentioned above are true and there is no
concurrent edge addition, then this method adds the edge e(k, l) to E and
returns true along with an indicative string EDGE ADDED.

(c) If both (i) and (ii) conditions, mentioned in Step 4a, are true and there is
a concurrent edge addition (such as e(u, v)) then the edge e(k, l) may or
may not get added to E. In case, e(k, l) gets added to E, then the method
returns true along with an indicative string EDGE ADDED. Otherwise, it
returns false along with CYCLE DETECTED.

There is an inherent non-determinism in this edge addition procedure. It can
be seen from Step 4c that this method may return false in presence of other
concurrent edge additions. But if the primary requirement is to ensure that
the graph remains acyclic such as in SGT or blockchains, then this behaviour
is acceptable.

5. AcyRemE(k, l) deletes the edge e(k, l) from E, only if e(k, l) ∈ E and k ∈ V
and l ∈ V then it returns true along with an indicative string EDGE REMOVED.
If k /∈ V or l /∈ V , it returns false along with a string VERTEX NOT PRESENT.
If e(k, l) /∈ E, it returns false along with a string EDGE NOT PRESENT.

6. AcyConE(k, l) if e(k, l) ∈ E and k ∈ V and l ∈ V then it returns true along
with a string EDGE PRESENT, otherwise it returns false along with a string
VERTEX OR EDGE NOT PRESENT.

3.2 The Data-Structures

The algorithm uses three kinds of nodes structures: VNode, ENode and BFSNode.
These structures and the adjacency list representation of an acyclic graph are
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shown in Fig. 1. The VNode structure has five fields, two pointers vnext and
enext, an immutable key k, an atomic counter ecount, and a VisitedArray
array. The use of ecount and VisitedArray are described in the later section.
The pointer vnext is an atomic pointer pointing to the next VNode in the vertex-
list, whereas, an enext pointer points to the edge head of the edge-list of a VNode.
Similarly, an ENode structure has three fields, two pointers enext and pointv
and an immutable key l. The enext is an atomic pointer pointing to the next
ENode in the edge-list and pointv points to the corresponding VNode, which
helps direct access to its VNode while performing any traversal like BFS, DFS,
etc. We assume that all the VNodes have a unique identification key k and all
the adjacency ENodes of a VNode have also a unique key l.

Fig. 1. Node structures used in the acyclic graph data-structure: ENode, VNode and
BFSNode. (a) An acyclic graph (b) The concurrent acyclic graph representation of data-
structure for (a).

A BFSNode has three pointers n, next and p, and a counter lecount. The
pointer n holds the corresponding VNode’s address, next points to the next
BFSNode in the BFS-list and p points to the corresponding parent. The local
counter lecount stores n’s ecount value which is used in the CompareTree
and ComparePath methods.

We initialize the vertex-list with dummy head(vh) and tail(vt) (called sen-
tinels) with values -∞ and ∞ respectively. Similarly, each edge-lists is also ini-
tialized with dummy head (eh) and tail (et) (refer Fig. 1).

Our acyclic graph data-structure maintains some invariants: (a) the vertex-
list is sorted based on the VNode’s key value k and each unmarked VNode is
reachable from vh, (b) also each of the edge-lists are sorted based on the ENode’s
key value l and unmarked ENodes are reachable from eh of the corresponding
VNode and (c) the concurrent graph always stays acyclic.

4 Working of the Non-blocking Algorithm

In this section, we describe the technical details of all the acyclic graph opera-
tions.
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Pseudo-code Convention: The acyclic graph algorithm is depicted in Figs. 2,
3, 4, 6. We use p.x to access the member field x of a class object pointer p.To
return multiple variables from an operation, we use 〈x1, x2, . . . , xn〉. To avoid the
overhead of another field in the node structure, we use bit-manipulation: we use
last two significant bits of a pointer p. We define six methods that manipulate
these bits: (a) isMarked(p) and isTransit(p), return true if the last two signif-
icant bits of pointer p are set to 01 and 10, respectively, else, both return false,
(b) MarkedRef(p), UnMarkedRef(p), AddedRef(p) and TransitRef(p)
sets the last two significant bits of the pointer p to 01, 00, 11 and 10, respectively.
An invocation of AcyCVnode(k) creates a new VNode with key k. Similarly,
an invocation of AcyCEnode(k) creates a new ENode with key k in TRANSIT
state (explained below). Whereas, an invocation of AcyCBnode(k) creates a
new BFSNode with vertex k. For a newly created VNode, the pointer fields are
NULL. Similarly, a newly created ENode initialises its pointer fields to NULL as
well. In case of a new BFSNode, the pointer field n, next and p are initialized
with k, NULL and parent node, respectively. Each slot of a VisitedArray in each
VNode is initialized to 0 and the counter ecount is also initialized to 0.

To ensure acyclicity, we use a operation descriptor with a pointer in a single
memory-word with bit-masking. In case of an x86-64 bit architecture, memory
has a 64-bit boundary and the last three least significant bits are unused. So, our
operator descriptor uses the last two significant bit of the pointer. If the last two
bits are set to: (a) 01 then the pointer is MARKED, (b) 10 indicates the pointer is
in TRANSIT, (c) 11 value of the pointer indicates ADDED and (d) 00 indicates the
pointer is unused and unmarked.

We next describe the vertex and edge operations. We use the term method
and operation interchangeably in the rest of this document.

4.1 Acyclic Vertex Operations

The acyclic vertex operations AcyAddV, AcyRemV and AcyConV are
depicted in Fig. 2. The AcyConV method does not help other threads in the
process of traversal from the vertex head vh to the destination vertex. If the keys
in the vertex set are finite, then the AcyConV operation is wait-free.

An AcyAddV(key) operation is invoked by passing the key to be inserted,
in Lines 1 to 14. It first traverses the vertex-list in a lock-free manner starting
from vh using LocV procedure (Line 3) until it finds a vertex with its key
greater than or equal to key. In the process of traversal, it physically deletes
all logically deleted VNodes using CAS operation for helping previously pending
AcyRemV operations. Once it reaches the appropriate location, say currv and
has identified its predecessor, say predv, it checks if the key is already present. If
the key is not present, it attempts to add the new VNode, say newv in between
the predv and currv (Line 9) using CAS operation. If the CAS is unsuccessful,
then these steps are retried. On the other hand, if key is already present then
the method returns false.

Like an AcyAddV, an AcyRemV(key) operation is invoked by passing the
key to be deleted, in Lines 15 to 31. It traverses the vertex-list in a lock-free
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manner starting from vh using LocV procedure (Line 17) until it finds a vertex
with its key greater than or equal to key. Similar to the AcyAddV, during the
traversal it physically deletes all logically removed VNodes using CAS operations
for helping other pending AcyRemV operations. Once it reaches the appropriate
location, say currv and its predecessor, say predv, it checks to see if key is already
present. If present, it attempts to remove currv in two steps (like [11]), (a)
atomically marking the vnext of currv using a CAS (Line 23), and (b) atomically
updating the vnext of the predv to point to the vnext of currv using a CAS
(Line 24). On any unsuccessful CAS, these steps are reattempted. If the key is
not present then, this method returns false.

Fig. 2. Pseudo-codes of AcyAddV, AcyRemV, AcyConV and AcyConE

When a vertex is deleted from a graph, all its incoming and outgoing edges
should also get removed. Once a CAS at Line 23 is successful, the vertex is logically
deleted from the vertex-list and its outgoing edges are deleted atomically. Notice
that, all the incoming edges are logically deleted from the corresponding ENodes
of any edge-lists. This is because each ENode has a direct pointer pointv to its
vertex node and calls isMarked to validate the deleted VNode. Finally, these
ENodes are physically deleted using CAS operation by any other helping edge
operation (which is described later).
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An AcyConV(key) operation, first traverses the vertex-list in a wait-free
manner skipping all the logically marked VNodes until it finds a vertex with
its key greater than or equal to key (in Lines 32 to 42). Once it reaches the
appropriate VNode, it checks if its key value is equal to the key and if it is
unmarked, then it returns true otherwise returns false. AcyConV method
does not help other threads during the traversal.

4.2 Acyclic Edge Operations

The acyclic edge operations AcyAddE and AcyRemE are depicted in Fig. 3
and AcyConE is depicted in Fig. 2.

Fig. 3. Pseudo-codes of AcyAddE and AcyRemE.

An AcyAddE(k, l) operation, begins in Lines 58 to 86 by validating the
presence of the k and l in the vertex-list by invoking AcyConVPlus (Line 59)
and validating that both the vertices are unmarked (Line 64). If the validations
fail, it returns false along with an indicative string VERTEX NOT PRESENT. Once
the validation succeeds, LocE is invoked(Line 67) to find the location to insert
e(k, l) in the edge-list of the k. The operation LocE works similar to the help-
ing method LocV; except that in the traversal phase, it physically deletes two
kinds of logically deleted ENodes (to help a pending incompleted AcyAddE
or AcyRemE operations): (a) ENodes whose VNode has already been logically
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deleted using a CAS, and (b) the logically deleted ENodes using a CAS. The opera-
tion LocE traverses the edge-list until it finds an ENode with its key greater than
or equal to l. Once it reaches the appropriate location, say curre and its prede-
cessor, say prede, it checks if the key l is already present. If the key is already
present, it simply returns false along with an indicative string EDGE ALREADY
PRESENT. Otherwise, it attempts a CAS to add a new e(k, l) with TRANSIT state
in between prede and curre (Line 75). On an unsuccessful CAS, the operation is
re-tried.

Once the edge e(k, l) is inserted in a transit state, it invokes the reachability
method to test whether this edge has created a cycle. As explained earlier, this
method returns false if adding this edge creates a cycle. Further, the reachability
method can return false even if this edge does not create a cycle in presence of
other concurrent AcyAddEmethods.

As mentioned earlier, we have proposed two algorithms to maintain the
acyclicity property. First one is the wait-free reachable algorithm SCR, and the
second one is the obstruction-free reachable algorithm DCR. The detailed work-
ing of these algorithms is given in the subsequent subsections. If the edge e(k, l)
creates a cycle, we delete it by setting its state from TRANSIT to MARKED (Line 81)
and return false along with an indicative string CYCLE DETECTED. Otherwise,
we set the state from TRANSIT to ADDED (Line 77) and return true along with
an indicative string EDGE ADDED. Like AcyAddE, an AcyRemE(k,l) operation
(Lines 87 to 111), first validates the presence of the corresponding VNodes and
check if they are unmarked. If the validations fail, it returns false along with
an indicative string VERTEX NOT PRESENT. Once the validation succeeds, it finds
the location to delete the e(k, l) in the edge-list of the k. Similar to AcyAddE,
in the traversal phase, it also physically deletes two kinds of logically deleted
ENodes: (a) ENodes whose VNode has been logically deleted, and (b) the logi-
cally deleted ENodes. It traverses the edge-list until it finds an ENode with its
key greater than or equal to l. Once it reaches the appropriate location, say
curre and its predecessor, say prede, it checks if the key l is already present. If
the key is not present, it returns false along with a string EDGE NOT PRESENT;
otherwise it attempts to remove curre in two steps: (a) atomically marking the
enext of curre using a CAS (Line 102), and then (b) atomically updating the
enext of prede to point to the enext of curre using a CAS (Line 104). On any
unsuccessful CAS, it reattempts this process. After a successful CAS, it returns
true along with a string EDGE REMOVED.

Similarly, an AcyConE(k,l) operation, in Lines 43 to 57, validates the pres-
ence of the corresponding VNodes. Then it traverses the edge-list of k in a wait-
free manner skipping all logically marked ENodes until it finds an edge with its
key greater than or equal to l. Once it reaches the appropriate ENode, checks
its key value equal to l and it is unmarked and not in TRANSIT state and also
k and l are unmarked, then it returns true along with a string EDGE PRESENT
otherwise it returns false along with a sting VERTEX OR EDGE NOT PRESENT.
Like AcyConV, we also do not allow AcyConE for any helping thread in the
process of traversal.
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4.3 Wait-Free Single Collect Reachable Algorithm

In this subsection, we describe one of our algorithms to detect the cycle of a
concurrent graph in a wait-free manner. As mentioned earlier, a cycle can be
only be formed on adding an edge to the graph. The SCR (k,l) operation,
in Lines 112 to 137, performs non-recursive BFS traversal starting from the
vertex k. Reader can refer [7] to know the working of the BFS traversals in
graphs. In the process of BFS traversal, it explores VNodes which are reachable
from k and unmarked. If it reaches l, then it terminates by returning true
to the AcyAddE operation. Then AcyAddE deletes e(k, l) by setting enext
pointer from the TRANSIT state to MARKED state and returns false along with an
indicative string CYCLE DETECTED. If it is unable to reach l from k after exploring
all reachable VNodes through TRANSIT or ADDED or unmarked ENodes, then it
terminates by returning false to the AcyAddE operation. Now AcyAddE
adds e(l) by setting enext pointer from the TRANSIT state to ADDED state and
then it returns true along with an indicative string EDGE ADDED, which preserves
the acyclic property after AcyAddE (Figs. 4 and 5).

In the process of BFS traversal, we have used a VisitedArray (with size
as that of the number of threads) to put all the visited VNodes locally. This is
because multiple threads repeatedly invoke reachable operation concurrently, a
boolean variable or a boolean array would not suffice like in case of sequential
execution. We have used a thread local variable cnt as a counter for the number

Fig. 4. Pseudo-codes of SCR and BFSTreeCollect.
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Fig. 5. An example working of the methods while preserving acyclicity. (a) The initial
graph, T1, T2 and T3 are concurrently performing operations. The corresponding data-
structure is shown in (b). In (c), T3 is traversing the vertex list, while T1 and T2 have
added their corresponding edges in TRANSIT, T state and performing cycle detection. (d)
T1 has succeeded; and changed the status to ADDED, A. However, T2 failed; it changes
the status to MARKED, M . Meanwhile, T3 finds the respective edge. (e) One possible
linearization of this concurrent execution.

of repeated traversals by a thread. So, a VisitedArray slot maintains cnt value
(see Line 116).

However, an ENode in TRANSIT state cannot be removed by any other con-
current thread other than the thread that added it, only if it creates a cycle. The
threads which are performing cycle detection can see all the ENodes in TRANSIT
or ADDED state. Further, a concurrent AcyConE operation will ignore all the
ENodes with TRANSIT state. This ensures that when an ENode is in the ADDED
state, an AcyAddE operation will return true along with a string EDGE ADDED.

However, it is to be noted that with this algorithm, it is possible that an edge
may not get added to the graph even though it does not create a cycle. This can
happen in the following scenario; two threads T1 and T2 are adding edges lying
in the path of a single cycle. In this case, both the threads detect that the newly
added ENode (in TRANSIT state) has led to the formation of a cycle and both may
delete their respective edges. However, in a sequential execution, only one of the
edges would be removed. But, this implementation is correct w.r.t our sequential
specification (thereby preserving our correctness criteria, linearizability) as the
graph at the end of each operation remains acyclic. The proof of the acyclicity
is given in the technical report [20].

Although the wait-free SCR algorithm does not add an edge at times even
when it does not create a cycle, it can be seen its working is non-trivial. A
trivial algorithm can always return false for AddEdge while not violating
the specification and hence satisfying linearizability. SCR algorithm is much
stronger and allows insertion of edges even in the presence of concurrent updates,
as explained in the working.

4.4 Obstruction-Free Double Collect Reachable Algorithm

In this subsection, we present an obstruction-free reachability, DCR algorithm,
which is designed based on the atomic snapshot algorithm by Afek et al. [1] and
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reachable algorithm by Chatterjee et al. [6]. There is no non-determinism in the
DCR algorithm. It never fails to add an edge if the edge does not create a cycle.
However, unlike wait-free SCR, DCR is obstruction-free. It returns only in the
absence of any other concurrent updates.

The DCR (k,l) algorithm, in Lines 167 to 175, performs a Scan starting
from k. It checks whether l is reachable from k. This reachable information is
returned to the AcyAddE operation and then AcyAddE decides whether to
add e(k, l) (is in the TRANSIT state) to the edge-list of k.

The Scan method, in Lines 176 to 191, first creates two BFS-trees, otree
and ntree to hold the VNodes in two consecutive BFS traversal. It performs
repeated BFS-tree collection by invoking BFSTreeCollect until two consec-
utive collects are the same. The BFSTreeCollect procedure, in Lines 138 to
166, performs a non-recursive BFS traversal starting from the vertex k. In the
process of BFS traversal, it explores all the reachable and unmarked VNodes
through adjacent ENodes which are in the TRANSIT or ADDED or unmarked state.
However, it keeps adding all these VNodes in the bTree(see Line 142, 152, 158).
If it reaches l, then it terminates by returning bTree and a reachable status true
(Line 153) to the Scan method. If it is unable to reach l from k after exploring
all reachable VNodes, then it terminates by returning bTree and a reachable
status false (Line 165) to the Scan method.

Fig. 6. Pseudo-codes of DCR, Scan, CompareTree and ComparePath.
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If two consecutive BFSTreeCollect method return the same boolean sta-
tus value true, then we invoke ComparePath to compare if the two BFS-trees
are same. If both the trees are same, then the Scan method returns true to
DCR operation, which means that l is reachable from k. Then DCR returns
true to the AcyAddE operation and subsequently AcyAddE deletes e(k, l)
by setting enext pointer from the TRANSIT state to the MARKED state and
returns false (this is because e(k, l) created a cycle). However, if two con-
secutive BFSTreeCollect methods return the same status value false, then
we invoke CompareTree to compare if the two BFS-trees are same. If they
are, the Scan method returns false to the DCR operation which implies that
l is not reachable from k. Then DCR returns false to the AcyAddE operation
and then AcyAddE adds e(l) by setting the enext pointer from the TRANSIT
state to ADDED state and then it returns true, which confirms the acyclic prop-
erty after AcyAddE. If two consecutive BFSTreeCollect methods return
the same boolean status value true or false but do not match in the Com-
parePath or CompareTree, then we discard the older BFS-tree and restart
the BFSTreeCollect.

The ComparePath method, in Lines 206 to 219, compares two BFS-tree
based on the path along with the lecount values. It starts from the last BFSNode
and follows the parent pointer p until it reaches to the starting BFSNode or
any mismatch that occurred at a BFSNode. It returns false for any mismatch
occurred, otherwise returns true. Similarly, the CompareTree method, in
Lines 192 to 205, compares two BFS-tree based on all explored VNodes in the
process of BFS traversal and along with the lecount values. It starts from the
starting BFSNode and follows with the next pointer next until it reaches the last
BFSNode or any mismatch that occurred at a BFSNode. It returns false for any
mismatch occurred and otherwise returns true.

To capture the modifications along the path of BFS-traversal, we have an
atomic counter ecount associated with each vertex. During any edge update
operation, before e(k, l) gets physically deleted, the counter ecount of the source
vertex k is certainly incremented at Line 78 or 103 either by the operation that
logically deleted the e(k, l) or any edge helping operations. To verify the double
collect, we compare the BFS-tree along with the counter.

It is to be noted that even though the DCR algorithm is better than SCR as
the specification of AcyAddE operation does not exhibit any non-determinism,
it does not exploit as much concurrency as the SCR algorithm. As explained,
the SCR algorithm is wait-free without using helping descriptors, whereas DCR
is obstruction-free. In Sect. 6, we compared the performance of both these algo-
rithms and as expected observed that SCR performs better.

5 Correctness and Progress Guarantee

In this section, we prove the correctness of our concurrent acyclic graph data-
structure based on LP [14] events inside the execution interval of each of the
operations.
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Theorem 1. The non-blocking concurrent acyclic graph operations are
linearizable.

Theorem 2. For the presented concurrent acyclic graph algorithm, (1). The
operations AcyConV, AcyConE and SCR are wait-free, if the vertex keys
are finite, (2). The operation DCR is obstruction-free and, (3). The operations
AcyAddV, AcyRemV, AcyConV, AcyAddE, AcyRemE, and AcyConE
are lock-free.

The proof of Theorems 1 and 2 can be referred to from the technical report [20].
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Fig. 7. Acyclic graph data-structure.

6 Experimental Evaluation

We performed our tests on 56 cores machine with Intel Xeon (R) CPU E5-2630
v4 running at 2.20 GHz frequency. Each core supports 2 logical threads. Every
core’s L1 cache has 64k, L2 has 256k cache memory private to that core; L3
cache (25 MB) is shared across all cores of a processor. The tests were performed
in a controlled environment, where we were the sole users of the system. The
implementationa has been done in C++ (without any garbage collection) and
threading is achieved by using Posix threads. All the programs were optimized
at -O3 level.

We start our experiments by creating an initial directed graph with 1000 ver-
tices and nearly

(
1000
2

)
/4 ≈ 125000 edges added randomly. Then we create a fixed

number of threads with each thread randomly performing a set of operations cho-
sen by a particular workload distribution. We evaluate the number of operations
finished their execution in unit time and then calculate the throughput. We run
each experiment for 20 seconds and the final data point values are collected
after taking an average of 7 iterations. We present the results for the following
workload distributions for acyclic directed graph over the ordered set of opera-
tions {AcyAddV,AcyRemV,AcyConV,AcyAddE,AcyRemE,AcyConE}
a The source code is available on https://github.com/PDCRL/ConcurrentGraphDS.

https://github.com/PDCRL/ConcurrentGraphDS
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as: (1) High Lookup: (2.5%, 2.5%, 45%, 2.5%, 2.5%, 45%), see the Fig. 7a. (2)
Equal Lookup and Update: (12.5%, 12.5%, 25%, 12.5%, 12.5%, 25%), see the
Fig. 7b. (3) High Update: (22.5%, 22.5%, 5%, 22.5%, 22.5%, 5%), Fig. 7c.

From Fig. 7, we notice that both SCR and DCR algorithms perform well
with the number of threads in comparison with sequential and coarse-lock based
version. The wait-free single collect reachable algorithm performs better than
the obstruction-free double collect reachable algorithm. However, we notice that
the performance of the coarse lock-based algorithm decreases with the number
of threads. Moreover also, it performs worse than even the sequential implemen-
tation. On average, both the non-blocking algorithms are able to achieve nearly
7× times higher throughput over the sequential implementation.

7 Conclusion

In this paper, we presented two efficient non-blocking concurrent algorithms for
maintaining acyclicity in a directed graph where vertices & edges are dynamically
inserted and/or deleted. The first algorithm is based on a wait-free reachability
query, SCR, and the second one is based on partial snapshot-based obstruction-
free reachability query, DCR. Both these algorithms maintain the acyclic prop-
erty of the graph throughout the concurrent execution. We prove that the acyclic
graph data-structure operations are linearizable. We also present a proof to show
that the graph remains acyclic at all times in the concurrent setting. We evalu-
ated both the algorithms in C++ implementation and tested through a number
of micro-benchmarks. Our experimental results show that our proposed algo-
rithms obtain an average of 7x improvement over the sequential implementation
and the coarse lock based ones.

In spite of the performance of the SCR, it suffers from the non-determinism
during concurrent addition of edges. It can be seen that DCR gets rid of the
non-determinism and makes sure that an edge surely gets added if it does not
create a cycle. In the future, we plan to measure the number of false positives
incurred by the SCR algorithm on varying workloads and suggest ways to reduce
them.
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Abstract. While spreading fake news is an old phenomenon, today
social media enables misinformation to instantaneously reach millions of
people. Content-based approaches to detect fake news, typically based
on automatic text checking, are limited. It is indeed difficult to come up
with general checking criteria. Moreover, once the criteria are known to
an adversary, the checking can be easily bypassed. On the other hand, it
is practically impossible for humans to check every news item, let alone
preventing them from becoming viral.

We present Credulix, the first content-agnostic system to prevent
fake news from going viral. Credulix is implemented as a plugin on top
of a social media platform and acts as a vaccine. Human fact-checkers
review a small number of popular news items, which helps us estimate the
inclination of each user to share fake news. Using the resulting informa-
tion, we automatically estimate the probability that an unchecked news
item is fake. We use a Bayesian approach that resembles Condorcet’s
Theorem to compute this probability. We show how this computation
can be performed in an incremental, and hence fast manner.

1 Introduction

The expression “fake news” has become very popular after the 2016 presidential
election in the United States. Both political sides accused each other of spreading
false information on social media, in order to influence public opinion. Fake
news have also been involved in Brexit and seem to have played a crucial role
in the French election. The phenomenon is considered by many as a threat to
democracy, since the proportion of people getting their news from social media
is significantly increasing.

We present Credulix, the first content-agnostic system to prevent fake news
from getting viral. From a software perspective, Credulix is a plugin to a social
media platform. From a more abstract perspective, it can also be viewed as a
c© Springer Nature Switzerland AG 2019
M. F. Atig and A. A. Schwarzmann (Eds.): NETYS 2019, LNCS 11704, pp. 347–364, 2019.
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vaccine for the social network. Assuming the system has been exposed to some
(small) amount of fake news in the past, Credulix enables it to prevent future
fake news from becoming viral. It is important to note that our approach does
not exclude other (e.g. content-based) approaches, but complements them.

Credulix retains the idea of using a team of certified human fact-checkers.
However, we acknowledge that they cannot review all news items. Such an over-
whelming task would possibly require even more fact-checkers than users. Here,
the fact-checkers only check a few viral news items, i.e., ideally news items that
have been shared and seen the most on the social network1. Many such fact-
checking initiatives already exist all around the world (e.g., [2,3]). Such checks
enable us to build user credulity records: records of which fact-checked items a
user has seen and shared.

We use a Naive Bayes approach2 to estimate the credibility of news items
based on which users shared them and how these users treated fake news in the
past. News items considered fake with a sufficiently high probability can then be
prevented from further dissemination, i.e., from becoming viral. Our result is in
the spirit of Condorcet’s jury Theorem [15], which states that a very high level of
reliability can be achieved by a large number of weakly reliable individuals. To
determine the probability of falsehood of a news item X, we look at the behavior
of users towards X. This particular behavior had a certain a priori probability to
happen. We compute this probability based on the previously constructed user
credulity records. Then, after determining the average fraction of fake news on
the social network, we apply Laplace’s Rule of Succession [35] and then Bayes’
Theorem [25] to obtain the desired probability.

When this probability goes beyond a threshold (say 99.9999%), the social
network can react accordingly. E.g., it may stop showing the news item in other
users’ news feeds. It is important to note that our approach does not require
any users to share a large amount of fake news. It suffices that some users share
more fake news than others.

Also note that Credulix does not completely eliminate the spreading of all
fake news—unpopular items only seen by very few users might pass undetected,
since it is the user interactions with an item that contribute to its detection.
However, Credulix does prevent fake items from going viral—once a sufficient
(but still low) number of users were exposed to a fake item, Credulix takes the

1 Some news items are indeed seen by millions, and are easy to check a posteriori. For
instance, according to CNN [1], the following fake news items were read by millions:
“Thousands of fraudulent ballots for Clinton uncovered”; “Elizabeth Warren endorsed
Bernie Sanders”; “The NBA cancels 2017 All-Star Game in North Carolina”.

2 Naive Bayes approaches [32,36] assume that the random variables are independent,
even if they are not totally independent in practice. This enables to simplify a prob-
lem that, otherwise, would be far too complex to tackle. Naive Bayes approaches work
surprisingly well in many complex real-world situations, and are also very robust [32]
([36] explains some possible theoretical reasons for this). Here, the imprecision of the
probability we compute is compensated by the fact that we choose a threshold which is
extremely close to 1 (i.e., 1−10−6, or 99.9999%). Thus, even with an error of×100, the
actual probability would be 1−10−4, with does not change much from our perspective.
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appropriate action. Thus, fake news items that would otherwise become popular
(arguably the most harmful ones) are always detected by Credulix.

Our approach is generic in the sense that it does not depend on any specific
criteria. Here, for instance, we look at what users share to determine if a news
item is fake. However, the approach is independent of the precise meanings of
“share” and “fake”: they could respectively be replaced by (“like” or “report”)
and (“funny”, “offensive”, “politically liberal” or “politically conservative”).

In some sense, Credulix shares similarities with recommender systems, since
the news items are being classified into categories based on users’ reactions.
However, the purpose of Credulix is fundamentally different from that of rec-
ommender systems. While recommenders aim to provide personalized content
based on users’ preferences, Credulix’ classification of news items being true
or fake is independent of the requesting user. The aim is to prevent the spread
of fake news, not to provide users with a personalized selection of news articles.

Turning the theory behind Credulix into a system deployable in practice is a
non-trivial task. In this paper we address these challenges as well. In particular,
we present a practical approach to computing news item credibility in a fast,
incremental manner.

We implement Credulix as a standalone Java plugin and connect it to
Twissandra [14] (an open source Twitter clone), which serves as a baseline system.
Credulix interferes very little with the critical path of users’ operations and thus
has a minimal impact on user request latency. We evaluate Credulix in terms of
its capacity to detect fake news as well as its performance overhead when applied to
a real social network of over 41M users [27]. After fact-checking the 1024 most pop-
ular news items (out of a total of over 35M items), over 99% of unchecked fake news
items are correctly detected by Credulix. We also show that Credulix does not
incur significant overhead in terms of throughput and latency of user operations
(sharing items and viewing the news feed): average latency increases by at most
5%, while average throughput decreases by at most 8%.

2 Theoretical Foundations

In this section we give an intuition of the theoretical result underlying Credulix,
followed by its formalization as a theorem. We finally show how to restate the
problem in a way that allows efficient, fast computation of news item credibility.

2.1 Intuition

Fig. 1. News item falsehood probability com-
putation.

The context is a social network
where users can post news items,
such as links to newspapers or blog
articles. Users exposed to these
news items can in turn share them
with other users (Twitter followers,
Facebook friends etc.). The social
network has a fact-checking team
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whose role is to determine whether certain news items are fake (according to
some definition of fake)3. The news items that the fact-checking team needs to
check is very low compared to the total number of items in the social network.

The Main Steps. Our approach goes through the following three main steps:

1. The fact-checking team reviews few news items (ideally those that have been
the most viral ones in the past). This is considered the ground truth in our
context.

2. Credulix creates a probabilistic model of each user’s sharing behavior based
on their reactions (share/not share) to the fact-checked items in Step (1). This
captures the likelihood of a user to share true (resp. fake) items in the future.

3. For a new, unchecked news item X, we use the behavior models generated in
Step (2) to determine the probability that X is fake, based on who viewed
and shared X.

A high-level view of our technique is depicted in Fig. 1. We use a Bayesian
approach. For example, if an item is mostly shared by users with high estimated
probabilities of sharing fake items, while users with high estimated probabilities
of sharing true items rarely share it, we consider the item likely to be fake (see
Fig. 2).

Fig. 2. Users reacting to new item X.

The above-mentioned main
steps happen continuously
and in parallel, as the sys-
tem is running. Over time,
fresh news items are created,
new users join the system
and users interact with news
items. Step (1) happens peri-
odically, as the fact-checking team reviews more articles and increases the num-
ber of news articles that are part of the ground truth. Step (2) and (3) happen
continuously, as users are interacting with news items. Updates in users’ sharing
behavior (Step (2)) trigger updates in the likelihood of an unchecked news item
being classified as true or fake (Step (3)).

In order to initialize Credulix, the fact-checking team needs to review a low
number of news items. The required number of reviewed items depends on their
relative popularity, but not on the overall number of items in the system. In
our evaluation, reviewing 1024 most popular news items is sufficient for fast and
accurate fake news detection. To work with real-world item popularity, we use a
corpus of 35M real tweets to select our items. Regardless of the overall number
of items, we would still only need to review 1024 of them. We consider that this
number of items is still easy to fact-check through non-automated techniques,
e.g. by making use of existing fact-checking initiatives [2–6].

3 Our truth and falsehood criteria here are as good as the fact-checking team.
Credulix trusts the fact-checking team to correctly identify true and false news
items.
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Preventing the Spread of Fake News. Once we estimate the probability of
a news item X being fake, preventing its spread becomes easy. Let p0 be any
cutoff probability threshold. Each time a user views or shares X, we compute p,
the probability of X being fake, which we detail below. If p ≥ p0 (i.e., X has a
probability at least p0 to be fake), Credulix stops showing X in the news feed
of users, preventing X from spreading and becoming viral.

2.2 Basic Fake News Detection

User Behavior. We model the behavior of a user u using the two following
probabilities:

– PT (u): probability that u shares a news item if the item is true.
– PF (u): probability that u shares a news item if the item is fake.

The probabilities PT (u) and PF (u) are assumed to be independent between
users. In practice, this is the case if the decision to share a news item X is mainly
determined by X itself (Fig. 3).

vT (u) Number of fact-checked true items viewed by u

sT (u) Number of fact-checked true items shared by u

vF (u) Number of fact-checked false items viewed by u

sF (u) Number of fact-checked false items shared by u

Fig. 3. User Credulity Record (UCR).

We obtain estimates
of PT (u) and PF (u) for
each user based on the
user’s behavior (share/not
share) with respect to fact-
checked items. For any
given user u, let vT (u)
(resp. sT (u)) denote the
number of fact-checked true news items viewed (resp. shared) by u, and vF (u)
(resp. sF (u)) the number of fact-checked fake news items viewed (resp. shared)
by u. We call the tuple (vT (u), sT (u), vF (u), sF (u)) the User Credulity Record
(UCR) of u.

Probability of a News Item Being Fake. Let X be a news item (not fact-
checked). Let V and S be any two sets of users that have viewed and shared
X, respectively. In the following, we define a function p(V, S). We then show
(Theorem 1) that p(V, S) is the probability that X is fake.

Let g be the estimated global fraction of fake news items in the social network,
with g ∈ (0, 1). The fraction g can be estimated by fact-checking a set of news
items picked uniformly at random from the whole social network.

We now define the 6 following functions (based on the UCR). Note that
these functions do not correspond to anything in particular. We only use them
as intermediary steps to simplify notation when defining define p(V, S), and to
make the following proofs simpler.
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– β1(u) = (sT (u) + 1)/(vT (u) + 2)
– β2(u) = (sF (u) + 1)/(vF (u) + 2)
– β3(u) = (vT (u) − sT (u) + 1)/(vT (u) + 2)
– β4(u) = (vF (u) − sF (u) + 1)/(vF (u) + 2)
– πT (V, S) =

∏
u∈S β1(u)

∏
u∈V −S β3(u)

– πF (V, S) =
∏

u∈S β2(u)
∏

u∈V −S β4(u)

We now define p(V, S) as follows (at this point, this is just an arbitrary
definition; in Theorem 1, we show that p(V, S) actually is the probability that
X is fake):

p(V, S) =
gπF (V, S)

gπF (V, S) + (1 − g)πT (V, S)
(1)

Let g∗ be the real fraction of fake news items in the social network (of which
g is an estimate). We first show that, if g = g∗, then the probability that X
is fake is p(V, S) (Theorem 1). Then, we consider the case where we can only
assume that g ≤ g∗ (i.e. we only have a lower bound of g∗). We then show that
the probability that X is fake is at least p(V, S), which gives us a conservative
estimate (Theorem 2).

Theorem 1. Let g = g∗. A news item viewed by a set of users V and shared
by a set of users S is fake with probability p(V, S).

Proof. According to Laplace’s Rule of Succession [35], we have PT (u) = β1(u)
and PF (u) = β2(u). Consider a news item X that has not been fact-checked.
Consider the following events: (1) E: X viewed by a set of users V and shared
by a set of users S; (2) F : X is fake; (3) T : X is true. Our goal is to evaluate
P (F |E): the probability that X is fake knowing E.
– If X is true, P (E|T ) =

∏
u∈S PT (u)

∏
u∈V −S(1 − PT (u)) = πT (V, S).

– If X is fake, P (E|F ) =
∏

u∈S PF (u)
∏

u∈V −S(1 − PF (u)) = πF (V, S).

The probability that X is fake (independently of E) is P (F ) = g∗, and the
probability that X is true (independently of E) is P (T ) = 1 − g∗. Thus, we can
determine the probability that E is true: P (E) = P (E|T )P (T ) + P (E|F )P (F ) =
(1 − g∗)πT (V, S) + g∗πF (V, S). P (F |E) = P (E|F )P (F )/P (E) according to
Bayes’ Theorem [25]. Then, P (F |E) = g∗πF (V, S)/(g∗πF (V, S) + (1 −
g∗)πT (V, S)) = p(V, S). Thus, the result.

If g∗ is unknown, we assume that g is a lower bound of g∗. We get in this
case the following theorem.

Theorem 2. For g ≤ g∗, a news item viewed by a set of users V and shared
by a set of users S is fake with probability at least p(V, S).

Proof. First, note that πT (V, S) and πF (V, S) are strictly positive by definition.
Thus, the ratio πT (V, S)/πF (V, S) is always strictly positive. ∀x ∈ (0, 1), let
g(x) = xπF (V, S)/(xπF (V, S) + (1 − x)πT (V, S)). Then, p(V, S) = h(g), and
according to Theorem 1, the news item is fake with probability h(g∗). Written
differently, g(x) = 1/(1 + k(x)), with k(x) = (1/x − 1)πT (V, S)/πF (V, S). As
g ≤ g∗, 1/g ≥ 1/g∗, 1 + k(g) ≥ 1 + k(g∗) and h(g) ≤ h(g∗). Thus, the result.
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2.3 Fast Fake News Detection

Credulix’ measure of credibility of a news item X is the probability p(V, S) that
X is fake. An obvious way to compute this probability is to recalculate p(V, S)
using Eq. (1) each time X is viewed or shared by a user. Doing so, however,
would be very expensive in terms of computation. Below, we show an efficient
method for computing news item credibility. We first describe the computation
of UCRs, and then present our fast, incremental approach for computing news
item credibility using item ratings and UCR scores. This is crucial for efficiently
running Credulix in practice.

Computing User Credulity Records (UCRs). Recall that the four values
(vT (u), sT (u), vF (u), sF (u)) constituting a UCR only concern fact-checked news
items. We thus update the UCR of user u (increment one of these four values)
in the following two scenarios.

1. When u views or shares a news item that has been fact-checked (i.e., is known
to be true or fake).

2. Upon fact-checking a news item that u had been exposed to.

In general, the more fact-checked news items a user u has seen and shared, the
more meaningful u’s UCR. Users who have not been exposed to any fact-checked
items cannot contribute to Credulix.

Item Rating. In addition to p(V, S), we introduce another measure of how
confident Credulix is about X being fake: the item rating α(V, S), whose role
is equivalent to that of p(V, S). We define it as α(V, S) = πT (V, S)/πF (V, S), V
and S being the sets of users that viewed and shared X, respectively. If we also
define α0 = (1/p0 − 1)/(1/g − 1) as the rating threshold corresponding to the
probability threshold p0, then, p(V, S) ≥ p0 is equivalent to α(V, S) ≤ α0.

We have p(V, S) = gπF (V, S)/(gπF (V, S) + (1 − g)πT (V, S)) = g/(g + (1 −
g)(πT (V, S)/πF (V, S))) = g/(g + (1 − g)α(V, S)). We have p(V, S) ≥ p0 if and
only if g/p(V, S) ≤ g/p0, that is: g + (1 − g)α(V, S) ≤ g/p0, which is equivalent
to α(V, S) ≤ (1/p0 − 1)/(1/g − 1), that is: α(V, S) ≤ α0.

When the item X with α(V, S) ≤ α0 is about to be displayed in a user’s
news feed, Credulix suppresses X. Note that α0 can be a fixed constant used
throughout the system, but may also be part of the account settings of each
user, giving users the ability to control how “confident” the system needs to be
about the falsehood of an item before suppressing it.
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According to the definition of πT (V, S) and πF (V, S), each time X is viewed
(resp. shared) by a new user u, we can update X’s rating α(V, S) by multiplying
it by γv(u) = β1(u)/β2(u) (resp. γs(u) = β3(u)/β4(u)). We call γv(u) and γs(u)
respectively the view score and share score of u’s UCR, as their value only
depends on u’s UCR. Consequently, when a user views or shares X, we only
need to access a single UCR in order to update the rating of X. This is what
allows Credulix to update news item credibility fast, without recomputing Eq.
(1) each time the item is seen by a user.

In what follows, we refer to γv(u) and γs(u) as u’s UCR score. The more a
UCR score differs from 1, the stronger its influence on an item rating (which is
computed as a product of UCR scores). We consider a UCR score to be useful
if it is different from 1 (as item ratings are products of UCR scores).

3 Credulix as a Social Media Plugin

Credulix can be seen as a plugin to an existing social network, like, for instance,
Facebook’s translation feature. The translator observes the content displayed to
users, translating it from one language to another. Similarly, Credulix observes
news items about to be displayed to users and tags or suppresses those considered
fake.

Despite the fast computation described in Sect. 2.3, there are still notable
challenges posed by turning an algorithm into a practical system. In order for
the Credulix plugin to be usable in practice, it must not impair user experi-
ence. In particular, its impact on the latency and throughput of user operations
(retrieving news feeds or tweeting/sharing articles) must be small. Our design is
motivated by minimizing Credulix’ system resource overhead.

Selective Item Tracking. Every second, approximately 6000 new tweets
appear on Twitter and 50000 new posts are created on Facebook [7]. Moni-
toring the credibility of all these items would pose significant resource overhead.
With Credulix, each view/share event requires an additional update to the
news item’s metadata. However, we do not need to keep track of all the items
in the system, but just the ones that show a potential of becoming viral.

Credulix requires each item’s metadata to contain an additional bit indi-
cating whether that item is tracked. The rating of item X is only computed and
kept up to date by Credulix if X is tracked.

We set the tracked bit for item X when X is shared by an influential user.
We define influential users as users who have a high number of followers. The
intuition behind this approach is that a news item is more likely to become
viral if it is disseminated by a well-connected user [23]. The follower threshold
necessary for a user to be considered influential is a system parameter.
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Fig. 4. Sharing a news item

Interaction with the Social
Media Platform. We consider
two basic operations a user u can
perform:

– Sharing a news item and
– Viewing her own news feed.

Sharing is the operation of dis-
seminating a news item to all of u’s
followers (e.g., tweeting, sharing,
updating Facebook status etc.).
Viewing is the action of request-
ing the news feed, to see new posts
shared by users that u follows.

Baseline Sharing. A schema of
the Share operation is shown in
Fig. 4. The regular flow of the
operation is shown in blue and
Credulix is shown in orange. User
u shares an item X (1). First, the
social graph is queried to retrieve
u’s followers (2). The system then appends the ID of X to the news feeds of
u’s followers (3). Finally, if X is a new item, the body of X is stored in a data
store (4).

Sharing with Credulix. If u is not an influential user, the flow of the share
operation described above stays the same. If u is influential, we mark X as
tracked and associate an item rating with X, because we expect X to potentially
become viral. If X is tracked, Credulix updates the rating of X using u’s UCR
share score. Thus, for tracked items, Credulix may require one additional write
to the data store compared to the Baseline version, in order to store the updated
item rating. This is done off the critical path of the user request, hence not
affecting request latency.

Fig. 5. Viewing news feed

Baseline News Feed Viewing.
A schema of the View operation
is shown in Fig. 5. User u requests
her news feed (1). For each item ID
in u’s news feed (stored in mem-
ory), the system retrieves the cor-
responding item body from the
data store (2) and sends all of
them back to the user (3).

Viewing News Feed with
Credulix. Credulix augments
the View operation in two ways.
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First, after the news feed articles are retrieved from the data store, Credulix
checks the ratings of the items, filtering out the items with a high probability of
being fake. Second, if u’s news feed contains tracked items, Credulix updates
the rating of those items using u’s UCR view score. Hence, a supplementary write
to the data store is necessary, compared to the Baseline version, for storing the
items’ updated ratings. Again, we do this in the background, not impacting user
request latency.

4 Evaluation

In this section, we evaluate our implementation of Credulix as a stand-alone
Java plugin. We implement a Twitter clone where the share and view operation
executions are depicted in Figs. 4 and 5. We refer to the Twitter clone as Baseline
and we compare it to the variant with Credulix plugged in, which we call
Credulix. For the data store of the Baseline we use Twissandra’s data store
[14], running Cassandra version 2.2.9 [11]. The main results of our evaluation
are the following.

1. Credulix efficiently stops the majority of fake news from becoming viral,
with no false positives. Credulix reduces the number of times a viral fake
news item is viewed from hundreds of millions to hundreds of thousands (in
Sect. 4.2).

2. Credulix’ impact on system performance is negligible for both throughput
and latency (in Sect. 4.3).

4.1 Experimental Setup and Methodology

We perform our evaluation using a real Twitter graph of over 41M users [27]. We
consider users to be influential if they are among the 5% most followed users.

We use a set of tweets obtained by crawling Twitter to get a distribution of
item popularity. Out of over 35M tweets we crawled, the 1024 (0.003%) most
popular tweets are retweeted almost 90 million times, which corresponds to over
16% of all the retweets. Two key values influence Credulix’ behavior:

– r: The number of fact-checked news items during UCR creation (i.e., the
number of news items constituting the ground truth). We use r = 1024,
which causes one third of the user population to have useful UCR scores.

– msp: The max share probability models users’ intrinsic sharing behavior: how
likely users are to share news items they are exposed to. This models how
users react to news items. It is not a system parameter of Credulix. We
expect msp to be different for different news items, as some items become
viral (high msp) and some do not (low msp). Since we do not know the real-
world value of msp, we do use it as a parameter of our experiments (not a
parameter of Credulix itself), in order to explore the behavior of our system
in all situations. As our evaluation shows, regardless of what the real value
of msp is, Credulix effectively prevents fake items from going viral.
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While the network and the tweets come from real data sets, we generate the
user behavior (i.e., probability to share fake and true news items), as we explain
below. We proceed in two steps:

1. UCR creation: determining the UCR (i.e., vT , sT , vF , sF ) for each user based
on propagation of fact-checked news items.

2. Fake item detection: using the UCRs obtained in the previous step, we use
Credulix to detect fake news items and stop them from spreading.

This separation is only conceptual, for clarity of the presentation. As
Credulix is running in a social network, both UCR creation (or UCR updates)
and fake item detection happen continuously and in parallel.

UCR Creation. For each user u, we set PT (u) and PF (u) (see Sect. 2) to values
chosen uniformly at random between 0 and msp. The likelihood of a user to share
true or fake news is the main user characteristic used by Credulix.

We take a subset of r popular tweets from our tweet dataset and consider
this subset the ground truth, randomly assigning truth values to items. This
phase of our experiments simulates the human fact-checking process.

In practice, the true news items on real social media still greatly outnumber
the fake news items. Thus, it might look intuitive to make the ratio between
fake and true items generated this way correspond to the (rather small) fraction
of fake items present in real social networks. However, contrary to the intuition,
this is not necessary. Credulix works best if the ratio between true and fake
items that constitute the ground truth is balanced, i.e., the fraction of fake news
items is one half.4 To achieve balance in the ground truth, it suffices to bias
the fact-checking process towards items that are likely to be fake. Indeed, even
many of the already existing fact-checking initiatives [2–6] tend to focus on fake
items and their output is balanced, if not biased towards fake items. In order to
stay conservative in our evaluation, we set this ratio to 1/4, meaning that each
item in our generated ground truth is fake with probability 1/4 and true with
probability 3/4.

To create the UCRs, we propagate these r ground-truth items through the
social graph. We assign each of the r items a target share count, which corre-
sponds to its number of retweets in our dataset. The propagation proceeds by
exposing a random user u to the propagated item X and having u decide (based
on PT (u) and PF (u)) whether to share X or not. If u shares X, we show X to all
u’s followers that have not yet seen it. During item propagation, we keep track
of how many true/fake items each user has seen/shared and update the UCRs
accordingly.

We repeat this process until one of the following conditions is fulfilled: (1)
The target number of shares is reached, or (2) At least 80% of users have been
exposed to X, at which point we consider the network saturated.

4 One half as the optimal fraction of fake items in the ground truth is confirmed by
our experiments.
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At the end of the UCR creation step, each user has an updated UCR, tracking
how many true/false items that user has seen/shared. These UCRs are used in
the next phase for detecting which (not fact-checked) news items are fake.

Fake Item Detection. After creating the UCRs, we measure how effectively
these can be leveraged to detect fake news. To this end, in the second step of the
evaluation, we propagate news items through the social graph. We consider these
items not fact-checked. One such experiment consists of injecting an item in the
system, by making a random user u share it. The propagation happens as in
the previous phase, with two important differences. First, we do not update u’s
UCR. Instead, whenever u is exposed to an item, we update that item’s rating
using u’s UCR score. We use the share score if u shares the item, otherwise
we use the view score (see Sect. 2). Second, we only propagate the item once,
continuing until the propagation stops naturally, or until the probability of an
item being fake reaches p0 = 0.999999.

In the evaluation, we are interested in whether (and how fast) Credulix
reacts to fake items, and whether the propagation of true items stays unaffected.
To this end, we repeat this experiment 500 times with a fake news item and 500
times with a true news item to obtain the results presented later in this section.

We conduct the experiments on a 48-core machine, with four 12-core Intel
Xeon E7-4830 v3 processors operating at 2.1 GHz, 512 GB of RAM, running
Ubuntu 16.04.

4.2 Stopping Fake News from Becoming Viral

This experiment presents the end-to-end impact of Credulix on the number
of times users are exposed to fake news. To this end, we measure the number of
times a user is exposed to a fake news item in the baseline case and compare it
to a case with Credulix in place.

Figure 6 conveys results for items with varying rates of virality, modeled by
our msp parameter. It shows how many times a user has been exposed to a fake
item, cumulatively over the total number of fake items that we disseminate.

Fig. 6. Fake news spreading as a function of
msp (lower is better). For low msp, news items
do not become viral. For high msp, Credulix
blocks the majority of fake news items.

We can see that regardless of
how viral the items would natu-
rally become, Credulix is able to
timely detect the fake items before
they spread to too many users.
Credulix restricts the number of
views from hundreds of millions to
tens or hundreds of thousands.

None of our experiments encoun-
tered false positives (i.e., true items
being incorrectly labeled as fake).
Considering the increasing respon-
sibility being attributed to social
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network providers as mediators of
information, it is crucial that true
news items are not accidentally
marked as fake.

Fig. 7. Fake news spreading with Credulix,
as a function of msp, for different social graph
sizes (lower is better).

In Fig. 7 we plot the percent-
age of fake items displayed with
Credulix for two graph sizes. On
a smaller graph of 1M users gener-
ated with the SNAP generator [28],
Credulix achieves a lower fake
item detection rate. This is because
the impact of fact-checked items is smaller on a small graph, leading to fewer
users with relevant UCR scores. This result suggests that on a real social graph
that is larger than the one we use, Credulix would be more efficient than in
our experiments.

Table 1. Workload characteristics. The
only parameter we vary is msp, from which
the view/share ratio follows.

msp value % views, % shares

1/8 94% views, 6% shares

1/16 97% views, 3% shares

1/32 99% views, 1% shares

1/64 99.9% views, 0.1% Shares

Figure 7 also shows how the detec-
tion rate depends on the tendency of
users to share news items. The more
viral the items get (the higher the msp
value), the more effective Credulix
becomes at fake item detection. Intu-
itively, the more items users share, the
more precisely we are able to estimate
their sharing behavior. The lower detec-
tion rate for small msp values does not
pose a problem in practice, as a low msp
also means that items naturally do not become viral (Table 1).

While not visible in the plot, it is worth noting that not only the relative
amount of viewed fake items decreases, but also the absolute one. For example,
while for msp = 1/32 a fake news item has been displayed almost 3k times (out
of over 84k for Baseline), for msp = 1/16 a fake item has only been displayed
1.2k times (out of over 128k Baseline) in the 1M graph.

Interestingly, with increasing tendency of items to go viral (i.e. increasing
msp), even the absolute number of displayed fake items decreases. The relative
decrease effect is not due to an absolute increase for Baseline. Instead, it is
due to a higher msp value ensuring more spreading of (both true and fake) news
items in our UCR creation phase. This in turn produces better UCRs, increasing
Credulix’ effectiveness.

4.3 Credulix Overhead

We evaluate Credulix’ impact on user operations’ (viewing and sharing)
throughput and latency. We present our results for four workloads, each cor-
responding to a value of msp used above (Fig. 6). Note that the msp values (1/8,
1/16, 1/32, and 1/64) also determine the ratio of view operations (respectively
ca. 94%, 97%, 99%, and 99.9%). We present results for two social graph sizes:
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41M users, and 1M users, with 16 worker threads serving user operations, show-
ing that the Credulix’ overhead in terms of throughput and latency is low.

Fig. 8. Credulix’ throughput overhead

Figure 8 shows the through-
put comparison between
Credulix and Baseline, for
the four workloads. The
throughput penalty caused
by Credulix is at most
8%. The impact on through-
put is predominantly caused
by Credulix’ background
tasks, as detailed in Sect. 3.
Moreover, Credulix does
not add significant overhead
relative to the Baseline as
the graph size increases. The throughput differences between the two graph
sizes are not larger than 10%. This is due to our design which relies on selective
item tracking.

Fig. 9. Credulix’ latency overhead: 99.9% views

Figure 9 shows view and
share latencies for the 99.9%
views workload. The latency
values for the other work-
loads are similar and we
omit them for brevity. For
the 41M User Twitter graph,
the average and 90th per-
centile latencies are roughly
the same for Credulix and
for Baseline. We notice, how-
ever, heavier fluctuations for
the 1M User graph. Overall,
latency increases by at most 17%, at the 90th percentile, while the median latency
is the same for both operations, for both systems (4 ms per operation). The low
overhead in latency is due to Credulix keeping its computation outside the
critical path. Standard deviation of latencies is high both for the Baseline and
for Credulix, for both share and view operations.

The high variation in latency is caused by the intrinsic differences between
the users; share operations of a user with more followers need to propagate to
more users than posts of users with few or no followers. The high 99th per-
centile latency for both systems results from Twissandra (our Baseline) being
implemented in Java, a language (in)famous for its garbage collection breaks.
Operations running concurrently with the GC thus experience high latencies.
The impact of garbage collection is stronger with Credulix than with Base-
line, as Credulix creates more short-lived objects in memory to orchestrate its
background tasks. In addition to the intrinsic differences between users discussed
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above, garbage collection also significantly contributes to the high standard devi-
ation observed in all latencies.

5 Discussion and Limitations

We believe that Credulix is a good step towards addressing the fake news
problem, but we do not claim it to be the ultimate solution. Credulix is one
of many possible layers of protection against fake news and can be used inde-
pendently of other mechanisms. It is the combination of several approaches that
can create a strong defense. This section discusses the limitations of Credulix.

News Propagation. Credulix does not prevent users from actively pulling
any (including fake) news stories directly from their sources. Credulix identifies
fake news on a social media platform and, if used as we suggest, prevents users
from being notified about other users sharing fake news items. Credulix could
easily be used to even remove items from users’ timelines once identified as fake.
As this may raise questions about freedom of speech and censorship, Credulix
does not focus on completely removing items.

Manual Fact-Checking. Credulix relies on manual fact-checking and thus
can only be as good as the fact-checkers. Only users who have been exposed
to manually fact-checked items can be leveraged by Credulix. However, fact-
checking a small number of popular news items is sufficient to obtain enough
users with usable UCRs. Fact-checking a small number of news items is feasible,
especially given the recent upsurge of fact-checking initiatives [2–6].

User Behavior. Credulix’ algorithm is based on the assumption that among
those users exposed to fact-checked news items, some share more fake items
than others. Analogous assumptions are commonly used in other contexts such
as recommender systems. For example, a user-based recommender system would
not be useful if all users behaved the same way, i.e. everybody giving the same
ratings to the same items.

Our approach shines when the inclination of most users to share fake news
does not change too quickly over time. Many systems that are being successfully
applied in practice (e.g. reputation systems, or systems based on collaborative
filtering) fundamentally rely on this same assumption.

Malicious Attacks. The assumption that users do not change their behav-
ior too quickly could, however, potentially be exploited by a malicious adver-
sary. Such an adversary controlling many machine-operated user accounts could
deceive the system by breaking this assumption. For example, all accounts con-
trolled by the adversary could be sharing only true reviewed news items for
an extended period of time and then suddenly share an un-reviewed fake one
(or do the opposite, if the goal is to prevent a truthful news item from being
disseminated). Even then, a successful attack would only enable the spread of
the news item, without guaranteeing its virality. Moreover, the adversary runs
a risk that the fake item will later be fact-checked and thus will appear in their
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UCRs, reducing the chances of repeating this attack with another fake item. In
fact, the more popular such an item becomes (which is the likely goal of the
adversary), the higher the chance of it being fact-checked. The trade-off between
false positives and false negatives is expressed by the p0 parameter (see Sect. 2),
i.e. the certainty required to flag an item as fake. A high value of p0 might make
it easier for the adversary to “smuggle” fake items in the system, but makes it
more difficult to prevent true news items from spreading.

Updating of the Ground Truth. Like any vaccine, Credulix relies on a
fraction of fake news to exist in the social network in order to be efficient. If
Credulix stops the fake news from becoming viral, then the system might
lack the ground truth to make future predictions. Hence, there might be periods
when fake news can appear again. To avoid such fluctuations, Credulix’ ground
truth should be continuously updated with some of the most current fake news
items. Credulix’ evolution in time, including changes in user behavior as well as
updating of the ground truth related to system dynamics, are research directions
we are considering for future work.

Filtering News. One could argue that removing some news items from users’
news feeds might be seen as a limitation, even as a form of censorship. But
social media already take that liberty as they display to users only about 10%
of the news that they could show. Rather than censorship, Credulix should be
viewed as an effort to ensure the highest possible quality of the items displayed,
considering the credibility of an item to be one of the quality criteria.

6 Related Work

Credulix shares similarities with reputation systems [30], in creating profiles
for users (UCRs in Credulix) and in assuming that the future behavior of users
will be similar to their past behavior. In our approach, however, users are not
rated directly by other users. Instead, we compute users’ UCRs based on their
reaction to what we consider ground truth (fact-checked items).

Credulix also resembles recommender systems [31] in the sense that it pre-
selects items for users to see. Unlike in recommender systems, however, the
pre-selection is independent of the requesting user. Our goal is not to provide a
personalized selection.

Another approach to detect fake news is to automatically check content [17].
Content analysis can also help detect machine-generated fake blogs [26] or social
spam using many popular tags for irrelevant content [29]. Another line of research
has been motivated by the role of social networks for fake news dissemination in
the case of catastrophic events such as hurricanes and earthquakes [21,22].

News item credibility can also be inferred by applying machine learning tech-
niques [18], by using a set of reliable content as a training set [33], or by analyzing
a set of predetermined features [20]. Other parameters of interest are linguistic
quantifiers [34], swear words, pronouns or emoticons [19]. Yet, a malicious agent
knowing these specific features could use them to spread fake news.
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Facebook received much media attention concerning their politics about fake
news. Their first approach was to assess news sources’ reliability in a centralized
way [8]. Recently, Facebook launched community-based assessment experiment
[9] asking the users to evaluate the reliability of various news sources. The idea
is to give more exposure to news sources that are “broadly trusted”. Our app-
roach is finer-grained and goes to the level of news items. Facebook also used
third-party fact checkers to look at articles flagged by users. Very recent work
[10] suggests that Facebook started implementing a technique for stopping mis-
information which assigns trustworthiness ratings to its users.

Fact-checking tools help to annotate documents and to create knowledge
bases [12,13]. Curb [24] focuses on the problem of which items to fact-check and
when, relying on users to manually flag items. These tools facilitate the fact-
checking process that Credulix relies on. Like Credulix, it leverages the crowd
to detect and reduce the spread of fake news and misinformation and assumes
a very similar user behavior model. Curb, however, focuses on the problem of
which items to fact-check and when, relying on users to manually flag items. Curb
only prevents the spreading of items that have been fact-checked. In addition,
it assumes fact-checking to happen instantaneously, without taking into account
the considerable fact-checking delay.

7 Conclusions

We presented Credulix, the first content-agnostic system to detect and limit
the spread of fake news on social networks with a very small performance over-
head. For a more detailed version of the work, including more experiments,
explanations and references, see [16].
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Abstract. We consider the problem of aggregating data in a dynamic
graph, that is, aggregating the data that originates from all nodes in
the graph to a specific node, the sink. We are interested in giving lower
bounds for this problem, under different kinds of adversaries.

In our model, nodes are endowed with unlimited memory and unlim-
ited computational power. Yet, we assume that communications between
nodes are carried out with pairwise interactions, where nodes can
exchange control information before deciding whether they transmit their
data or not, given that each node is allowed to transmit its data at most
once. When a node receives a data from a neighbor, the node may aggre-
gate it with its own data.

We consider three possible adversaries: the online adaptive adversary,
the oblivious adversary, and the randomized adversary that chooses the
pairwise interactions uniformly at random. For the online adaptive and
the oblivious adversaries, we give impossibility results when nodes have
no knowledge about the graph and are not aware of the future. Also, we
give several tight bounds depending on the knowledge (be it topology
related or time related) of the nodes. For the randomized adversary, we
show that the Gathering algorithm, which always commands a node to
transmit, is optimal if nodes have no knowledge at all. Also, we pro-
pose an algorithm called Waiting Greedy, where a node either waits or
transmits depending on some parameter, that is optimal when each node
knows its future pairwise interactions with the sink.

1 Introduction

Dynamic graphs, that is, graphs that evolve over time, can conveniently model
dynamic networks, which recently received a lot of interest from the academic
community (e.g. mobile sensor networks, vehicular networks, disruption tolerant
networks, interaction flows, etc.). Depending on the problem considered, various
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models were used: among others, static graphs can be used to represent a snap-
shot in time of a dynamic graph, functions can be used to define continuously
when an edge appears over time, and sequences of tuples can represent atomic
interactions between nodes over time.

The problem we consider in this paper assumes an arbitrary dynamic net-
work, such as sensors deployed on a human body, cars evolving in a city that
communicate with each other in an ad hoc manner, etc. We suppose that ini-
tially, each node in the network originates some data (e.g. that originates from a
sensor, or from computation), and that these data must be aggregated at some
designated node, the sink. To this goal, a node may send its data to a communi-
cation neighbor at a given time (the duration of this communication is supposed
to be one time unit). We assume that there exists an aggregation function that
takes two data as input and gives one data as output (the function is aggregating
in the sense that the size of the output is supposed to be the same as a single
input, such functions include min, max, etc.).

The main constraint for communications between nodes is that a node is
allowed to send its data (be it its original data, or aggregated data) exactly once
(e.g. to keep energy consumption low). A direct consequence of this constraint
is that a node must aggregate data anytime it receives some, provided it did not
send its data previously. It also implies that a node cannot participate in the
data aggregation protocol once it has transmitted its data. A nice property of any
algorithm implementing this constraint is that the number of communications
is minimum. The problem of aggregating all data at the sink with minimum
duration is called the minimum data aggregation time problem [6]. The essence
of such a data aggregation algorithm is to decide whether or not to send a
node’s data when encountering a given communication neighbor: by waiting, a
node may be able to aggregate more data, while by sending a node disseminates
data but excludes itself for the rest of the computation.

In this paper, we consider that nodes may base their decision on their initial
knowledge and past experience (past interactions with other nodes) only. Then,
an algorithm accommodating those constraints is called an online distributed
data aggregation algorithm. The existence of such an algorithm is conditioned
by the (dynamic) topology, initial knowledge of the nodes (e.g. about their future
communication neighbors), etc.

For simplicity, we assume that interactions between the nodes are carried
out through pairwise operations. Anytime two nodes a and b are communication
neighbors (or, for short, are interacting), either no data transfer happens, or
one of them sends its data to the other, that executes the aggregation function
on both its previously stored data and the received data, the output is then
stored in the (new) stored data of the receiver. In the sequel, we use the term
interaction to refer to a pairwise interaction.

We assume that an adversary controls the dynamics of the network, that is,
the adversary decides which are the interactions. As we consider atomic interac-
tions, the adversary decides what sequence of interactions is to occur in a given
execution. Then, the sequence of static graphs to form the evolving graph can
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be seen as a sequence of single edge graphs, where the edge denotes the inter-
action that is chosen by the scheduler at this particular moment. Hence, the
time when an interaction occurs is exactly its index in the sequence. Our model
of dynamic graphs as a sequence of interactions differs from existing models on
several points. First, general models like Time-varying-graph [8] make use of con-
tinuous time, which adds a lot of complexity. Also, discrete time general models
such as evolving graph [8] capture the network evolution as a sequence of static
graphs. Our model is a simplification of the evolving graph model where each
static graph has a single edge. Population protocols [2] also consider pairwise
interactions, but focus on finite state anonymous nodes with limited computa-
tional power and unlimited communication power (a given node can transmit
its information many times), while we consider powerful nodes (that can record
their past interactions) that are communication limited (they can send their data
only once). Finally, Dynamic edge-relabeling [7] is similar to population proto-
cols, but the sequence of pairwise interactions occurs inside an evolving graph.
This model shares the same differences as population protocols with our model.

Related Work. The problem of data aggregation has been widely studied in
the context of wireless sensor networks. The literature on this problem can be
divided in two groups depending on the assumption made about the collisions
being handled by an underlying MAC layer.

In the case when collisions are not handled by the MAC layer, the goal is
to find a collision-free schedule that aggregates the data in minimum duration.
The problem was first studied by Annamalai et al. [3], and formally defined
by Chen et al. [9], which proved that the problem is NP-complete. Then, sev-
eral papers [12–14,16] proposed centralized and distributed approximation algo-
rithms for this problem. The best known algorithm is due to Nguyen et al. [12].
More recently, Bramas et al. [6] considered the generalization of the problem to
dynamic wireless sensor networks (modeled by evolving graphs). Bramas et al.
[6] show that the problem remains NP-complete even when restricted to dynamic
WSNs of degree at most 2 (compared to 3 in the static case).

When collisions are handled by the MAC layer, various problems related to
data aggregation have been investigated. The general term in-network aggre-
gation includes several problems such as gathering and routing information in
WSNs, mostly in a practical way. For instance, a survey [11] relates aggrega-
tion functions, routing protocols, and MAC layers with the objective of reducing
resource consumption. Continuous aggregation [1] assumes that data have to be
aggregated, and that the result of the aggregation is then disseminated to all
participating nodes. The main metric is then the delay before aggregated data
is delivered to all nodes, as no particular node plays the role of a sink. Most
related to our concern is the work by Cornejo et al. [10]. In their work, each
node starts with a token, the time is finite and no particular node plays the role
of a sink node. Then, the topology evolves with time, and at each time instant,
a node has at most one neighbor with whom it can interact and send or not its
token. The goal is to minimize the number of nodes that own at least one token.
Assuming an algorithm does not know the future, Cornejo et al. [10] prove that
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its competitive ratio is Ω(n) with high probability (w.r.t. the optimal offline
algorithm) against an oblivious adversary.

Our Contributions. In this paper we define the problem of distributed online
data aggregation in dynamic graphs, and study its complexity. It turns out that
the problem difficulty strongly depends on the power of the adversary (that
chooses which interactions occur in a given execution).

For the oblivious and the online adaptive adversaries, we give several impos-
sibility results when nodes have no knowledge about the future evolution of
the dynamic graph, nor about the topology. Also, when nodes are aware of the
underlying graph (where an edge between two nodes exists if those nodes inter-
act at least once in the execution), the data aggregation is impossible in general.
To examine the possibility cases, we define a cost function whose purpose is
to compare the performance of a distributed online algorithm to the optimal
offline algorithm for the same sequence of interactions. Our results show that if
all interactions in the sequence occur infinitely often, there exists a distributed
online data aggregation algorithm whose cost is finite. Moreover, if the underly-
ing graph is a tree, we present an optimal algorithm.

For the randomized adversary, we first present tight bounds when nodes have
full knowledge about the future interactions in the whole graph. In this case, the
best possible algorithm terminates in Θ(n log(n)) interactions, in expectation
and with high probability. Then, we consider nodes with restricted knowledge,
and we present two optimal distributed online data aggregation algorithms that
differ in the knowledge that is available to nodes. The first algorithm, called
Gathering, assumes nodes have no knowledge whatsoever, and terminates in
O(n2) interactions on average, which we prove is optimal with no knowledge. The
second one, called Waiting Greedy, terminates in O

(
n3/2

√
log(n)

)
interactions

with high probability, which we show is optimal when each node only knows the
time of its next interaction with the sink (the knowledge assumed by Waiting
Greedy).

We believe our research paves the way for stimulating future researches, as
our proof arguments present techniques and analysis that can be of independent
interest for studying dynamic networks.

2 Model

A dynamic graph is modeled as a couple (V, I), where V is a set of nodes and
I = (It)t∈N

is a sequence of pairwise interactions (or simply interactions). An
interaction occurs when two nodes in the network can exchange information.
A special node in V is the sink node, and is denoted by s in the sequel. In the
sequence (It)t∈N

, the index t of an interaction also refers to its time of occurrence.
In the sequel V always denotes the set of nodes, n ≥ 3 its size, and s ∈ V the
sink node.

In general, we consider that nodes in V have unique identifiers, unlimited
memory and unlimited computational power. However, we sometimes consider
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nodes with no persistent memory between interactions; those nodes are called
oblivious.

Initially, each node in V receives a data. Nodes have different data and a node
can transmit its data at most once. Formally, during an interaction It = {u, v},
if both nodes have not yet transmitted their data, then one of the node has
the possibility to transmit its data to the other node. The receiver aggregates
the received data with its own data. The transmission and the aggregation take
exactly one time unit. If a node decides to transmit its data, then it does not
own any data, and is not able to receive other’s data anymore.

Problem Statement. The data aggregation problem consists in choosing at each
interaction whether a node transmits (and which one) or not so that after a
finite number of interactions, the sink is the only node that owns data. In this
paper we study distributed and online algorithms that solve this problem. Such
algorithms are called distributed online data aggregation (DODA) algorithms.

A DODA is an algorithm that takes as input an interaction It = {u, v}, and
its time of occurrence t ∈ N, and outputs either u, v or ⊥. If a DODA outputs
a node, this node is the receiver of the other node’s data. In more details, if u is
the output, this means that before the interaction both u and v own data, and
the algorithm orders v to transmit its data to u. The algorithm is able to change
the memory of the interacting nodes, for instance to store information that can
be used in future interactions. In the sequel, DODA denotes the set of all DODA
algorithms. And D∅

ODA denotes the set of DODA algorithms that only require
oblivious nodes. Executing a DODA algorithm A on a sequence of interactions
I correspond to executing A on each interaction It ∈ I, and the duration of the
execution is the first time of occurrence of the interaction when the sink becomes
the only node that owns data.

A DODA can require some knowledge to work. A knowledge is a function
(or just an attribute) given to every node that gives some information about the
future, the topology or anything else. By default, a node u ∈ V has two pieces
of information: its identifier u.ID and a boolean u.isSink that is true if u is
the sink, and false otherwise. A DODA algorithm may use additional functions
associated with different knowledge. DODA(i1, i2, . . .) denotes the set of DODA
algorithms that use the functions i1, i2, . . ., representing the knowledge of the
nodes. The first function we define for a node u ∈ V in a dynamic graph (V, I),
is the function u.meetT ime that maps a time t ∈ N with the smallest time t′ > t
such that It′ = {u, s} i.e., the time of the next interaction with the sink (for
u = s, we define s.meetT ime as the identity, t �→ t). Then DODA(meetT ime)
refers to the set of DODA algorithms that use the information meetT ime.

Adversary Models. In this paper we consider three models of adversaries:

– The oblivious adversary. This adversary knows the algorithm’s code, and must
construct the sequence of interactions before the execution starts.

– The adaptive online adversary. This adversary knows the algorithm’s code
and can use the past execution of the algorithm to construct the next interac-
tion. However, it must make its own decision as it does not know in advance
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the decision of the algorithm. In the case of deterministic algorithms, this
adversary is equivalent to the oblivious adversary.

– The randomized adversary. This adversary constructs the sequence of inter-
actions by picking pairwise interactions uniformly at random.

Section 3 presents our results with the oblivious and the adaptive online
adversaries. The results with the randomized adversary are given in Sect. 4.

Definition of Cost. To study and compare different DODA algorithms, we use
a tool slightly different from the competitive analysis that is generally used
to study online algorithms. The competitive ratio of an algorithm is the ratio
between its performance and the optimal offline algorithm’s performance. How-
ever, one can hardly define objectively the performance of an algorithm. For
instance, if we just consider the number of interactions before termination, then
an oblivious adversary can construct a sequence of interactions starting with the
same interaction repeated an arbitrary number of time. In this case, even the
optimal algorithm has infinite duration. Moreover, the adversary can choose the
same interaction repeatedly after that the optimal offline algorithm terminates.
This can prevent any non optimal algorithm from terminating and make it have
an infinite competitive-ratio.

To prevent this we define the cost of an algorithm. Our cost is a way to define
the performance of an algorithm, depending on the performance of the optimal
offline algorithm. We believe our definition of cost is well-suited for a lots of prob-
lems where the adversary has a strong power, especially in dynamic networks.
One of its main advantages is that it is invariant by trivial transformation of the
sequence of interactions, like inserting or deleting duplicate interactions.

For the sake of simplicity, the execution of an offline optimal data aggrega-
tion algorithm, having minimum duration, is called a convergecast. Consider a
sequence of interactions I. Let opt(t) be the ending time of a convergecast on
I, starting at time t ∈ N. If the ending time is infinite (if the optimal offline
algorithm does not terminate) we write opt(t) = ∞. Let T : N≥1 �→ N∪ {∞} be
the function defined as follows:

T (1) = opt(0), ∀i ≥ 1 T (i + 1) = opt(T (i) + 1)

T (i) is the duration of i successive convergecasts (two convergecasts are consec-
utive if the second one starts just after the first one completes).

Let duration(A, I) be the termination time of algorithm A executed on the
sequence of interactions I. Now, we define the cost costA(I) of an algorithm A
on the sequence I, as the smallest integer i such that duration(A, I) ≤ T (i):

costA(I) = min{i | duration(A, I) ≤ T (i)}
This means that costA(I) is an upper bound on the number of successive con-
vergecasts we can perform during the execution of A, on the sequence I. It follows
from the definition that an algorithm performs an optimal data aggregation if
and only if costA(I) = 1.
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Also, if duration(A, I) = ∞, then it is possible that costA(I) < ∞. Indeed,
if imax = mini{i |T (i) = ∞} is well-defined, then costA(I) = imax, otherwise
costA(I) = ∞.

3 Oblivious and Online Adaptive Adversaries

In this section we give several impossibility results when nodes have no knowl-
edge, and then show several results depending on the amount of knowledge. We
choose to limit our study to some specific knowledge, but one can be interested
in studying the possible solutions for different kind of knowledge.

3.1 Impossibility Results when Nodes Have No Knowledge

Theorem 1. For every algorithm A ∈ DODA, there exists an adaptive online
adversary generating a sequence of interactions I such that costA(I) = ∞.

Proof. Let I be the sequence of interactions among 3 nodes a, b, and the sink
s, defined as follows. I0 = {a, b}. If a transmits, then ∀i > 0, I2i+1 = {a, s} and
I2i+2 = {a, b} so that b is never able to transmit. Symmetrically if b transmits
the same thing happens. If no node transmits, then I1 = {b, s}. If b transmits,
then ∀i > 0, I2i+2 = {a, b} and I2i+3 = {b, s} so that a is never able to transmit.
Otherwise I2 = {a, b} and we continue as in the first time. A never terminates,
and a convergecast is always possible for the offline optimal algorithm, so that
costA(I) = ∞. ��

In the case of deterministic algorithms, the previous theorem is true even
with an oblivious adversary. However, for a randomized algorithm, the problem
is more complex. The following theorem states that the impossibility results for
oblivious randomized algorithm, leaving the case of general randomized algo-
rithms against oblivious adversary as an open question.

Theorem 2. For every randomized algorithm A ∈ D∅
ODA, there exists an obliv-

ious adversary generating a sequence of interactions I such that costA(I) = ∞
with high probability1.

Proof. Let V = {s, u0, . . . , un−2}. In the sequel, indexes are modulo n − 1 i.e.,
∀i, j ≥ 0, ui = uj with i ≡ j mod (n − 1). Let I∞ defined by, for all i ∈
N, I∞

i = {ui, s}. Let I l be the finite sequence, prefix of length l > 0 of I∞.
For every l > 0, the adversary can compute the probability Pl that no node
transmits its data when executing A on I l. (Pl)l>0 is a non-increasing sequence,
it converges to a limit P ≥ 0. For a given l, if Pl ≥ 1/n, there is at least
two nodes whose probability not to transmit when executing A on I l is at least
n− 1

n−2 = 1−O
(

1√
n

)
. To prove this, we can see the probability Pl as the product

of n − 1 probabilities p0, p1, . . ., pn−2 where pi is the probability that node ui

1 An event A occurs with high probability if P (A) > 1 −O (1/ log(n)).
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does not transmit during I l. Those events are independent since the algorithm
is oblivious. Let pd ≥ pd′ be the two greatest probabilities in {pi}0≤i≤n−2, we
have:

(
n−2∏
i=0

pi ≥ 1
n

)
⇒

(
n−2∑
i=0

log(pi) ≥ log
(

1
n

))

⇒
(

(n − 2) log(pd′) ≥ log
(

1
n

))
⇒

(
pd′ ≥ n− 1

n−2

)

This implies that, if P ≥ 1/n, then A does not terminate on the sequence
I∞ with high probability.

Otherwise, let l0 be the smallest index such that Pl0 < 1/n. So that with
high probability, at least one node transmits when executing A on I l0 . Also,
Pl0−1 ≥ 1/n so that the previous argument implies that there is at least two
nodes ud and ud′ whose probability to still have a data (after executing A on
I l0−1) is at least n− 1

n−2 . If l0 = 0 we can choose {ud, ud′} = {u1, u2}. We have
ud �= ul0 or ud′ �= ul0 . Without loss of generality, we can suppose ud �= ul0 , so
that the probability that ud transmits is the same in I l0−1 and in I l0 .

Now, ud is a node whose probability not to transmit when executing A on I l0

is at least n− 1
n−2 = 1 − O

(
1√
n

)
. Let I ′ be the sequence of interactions defined

as follows:

∀i ∈ [0, n − 2] \ {d − 1}, I ′
i = {ui, ui+1}, I ′

d−1 = {ud−1, s}

I ′ is constructed such that ud (the node that has data with high probability)
must send its data along a path that contains all the other nodes in order to
reach the sink. But this path contains a node that does not have a data.

Let I be the sequence of interaction starting with I l0 and followed by I ′

infinitely often. We have shown that with high probability, after l0 interactions,
at least one node transmits its data and the node ud still has a data. The node
that does not have data prevents the data owned by ud from reaching s. So that
A does not terminate, and since a convergecast is always possible for the offline
optimal algorithm, then costA(I) = ∞. ��

3.2 When Nodes Know the Underlying Graph

Let Ḡ be the underlying graph i.e., Ḡ = (V,E) with E = {(u, v) | ∃t ∈ N,
It = {u, v}}. The following results assume that the underlying graph is given
initially to every node.

Theorem 3. If n ≥ 4, then, for every algorithm A ∈ DODA(Ḡ), there exists
an online adaptive adversary generating a sequence of interactions I such that
costA(I) = ∞.
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Proof. V = {s, u1, u2, u3}. We create a sequence of interactions with the underly-
ing graph Ḡ = (V, {(s, u1), (u1, u2), (u2, u3), (u3, s)}). We start with the following
interactions:

({u1, s}, {u3, s}, {u2, u1}, {u2, u3}) . (1)

If u2 transmits to u1 in I2, then we repeat infinitely often the three following
interactions:

({u1, u2}, {u2, u3}, {u3, s}, ...) .

Else, if u2 transmits to u3 in I3, then we repeat infinitely often the three following
interactions:

({u3, u2}, {u2, u1}, {u1, s}, ...) .

Otherwise, we repeat the four interactions (1), and apply the previous reason-
ing. Then, A never terminates, and a convergecast is always possible, so that
costA(I) = ∞. ��
Theorem 4. If the interactions occurring at least once, occur infinity often,
then there exists A ∈ D∅

ODA(Ḡ) such that costA(I) < ∞ for every sequence of
interactions I. However, costA(I) is unbounded.

Theorem 5. If Ḡ is a tree, there exists A ∈ D∅
ODA(Ḡ) that is optimal.

3.3 If Nodes Know Their Own Future

For a node u ∈ V , u.future denotes the future of u i.e., the sequence of interac-
tions involving u, with their times of occurrences. In this case, according to the
model, two interacting nodes exchange their future and non-oblivious nodes can
store it. This may seem contradictory with the motivation of the problem (that
aims to reduce the number of transmissions). However, it is possible that the
data must be sent only once for reasons not related to energy (such as data that
cannot be duplicated, tokens, etc.). So, even if, in general, oblivious algorithms
should be favored, we still investigated this case for the sake of completeness.

Theorem 6. There exists A ∈ DODA(future) such that costA(I) ≤ n for every
sequence of interactions I.

Proof. One can show that the duration of n − 1 successive convergecasts is suf-
ficient to perform a broadcast from any source. So every node broadcast its
future to the other nodes. After that, all the nodes are aware of the future of
every nodes and can compute an optimal data aggregation schedule. So that it
takes only one convergecast to aggregate the data of the whole network. In total,
n successive convergecasts are sufficient. ��
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4 Randomized Adversary

The randomized adversary constructs the sequence of interactions by picking
a couple of nodes among all possible couples, uniformly at random. Thus, the
underlying graph is a complete graph of n nodes (including the sink) and every
interaction occurs with the same probability p = 2

n(n−1) .
In this section, the complexity is computed on expectation (because the

adversary is randomized) and no more “in the worst case” as previously. In
this case, considering the number of interactions is sufficient to represent the
complexity of an algorithm. We see in Theorem 8 that an offline algorithm ter-
minates in Θ(n log(n)) interactions w.h.p. This bound gives a way to convert the
complexity in term of number of interaction to a cost. Indeed, if an algorithm
A terminates in O(n2) interactions, then it performance is O(n/ log(n)) times
worse than the offline algorithm and costA(I) = O(n/ log(n)) for a randomly
generated sequence of interactions I. For the sake of simplicity, in the remaining
of the section, we give the complexity in terms of number of interactions.

Since an interaction does not depend on previous interactions, the algorithms
we propose here are oblivious i.e., they do not modify the memory of the nodes.
In more details, the output of our algorithms depends only on the current inter-
action and on the information available in the node.

First, we introduce three oblivious DODA algorithms. For the sake of sim-
plicity, we assume that the output is ignored if the interacting nodes do not both
have a data. Also, to break symmetry, we suppose the nodes that interact are
given as input ordered by their identifiers.

– Waiting (W ∈ D∅
ODA): A node transmits only when it is connected to the sink

s: W(u1, u2, t) equals ui if ui = s, and ⊥ otherwise.
– Gathering (GA ∈ D∅

ODA): A node transmits its data when it is connected
to the sink s or to a node having data: GA(u1, u2, t) equals u2 if u2 = s,
otherwise it equals u1

– Waiting Greedy with parameter τ ∈ N (WGτ ∈ D∅
ODA(meetT ime)): The node

with the greatest meet time transmits, if its meet time is greater than τ :

WGτ : (u1, u2, t)=

⎧
⎨
⎩

u1 if m1 ≤ m2 ∧ τ < m2

u2 if m1 > m2 ∧ τ < m1

⊥ otherwise
with

m1 = u1.meetT ime(t)
m2 = u2.meetT ime(t)

One can observe that after time τ , the algorithm acts as the Gathering algorithm.

4.1 Lower Bounds

We show a lower bound Ω(n2) on the number of interactions required for DODA
against the randomized adversary. The lower bound holds for all algorithms
(including randomized ones) that do not have knowledge about future of the
evolving network. The lower bound matches the upper bound of the Gathering
algorithm given in the next subsection. This implies that this bound is tight.
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Theorem 7. The expected number of interactions required for DODA is Ω(n2).

Proof. We show that the last data transmission requires Ω(n2) interactions in
expectation.

We consider any (randomized) algorithm A and its execution for DODA.
Before the last transmission (from some node, say v, to the sink s), only v has
data except for s.

The probability that v and s interacts in the next interaction is 2
n(n−1) . Thus,

the expected number EI of interactions required for v to transmit to s is:

EI =
n(n − 1)

2

So that the whole aggregation requires at least EI = Ω(n2). ��
We also give a tight bound for algorithms that know the full sequence of

interactions.

Theorem 8. The best algorithm in D∅
ODA(full knowledge) terminates in

Θ(n log(n)) interactions, in expectation and with high probability.

Proof. First, we show that the expected number of interactions of a broadcast
algorithm is Θ(n log n). The first data transmission occurs when the source node
(say v0) interacts with another node. The probability of occurrence of the first
data transmission is 2(n−1)

n(n−1) . After the (i − 1)-th data transmission, i nodes (say
Vi−1 = {v0, v1, . . . , vi−1}) have the data and the i-th data transmission occurs
when a node in Vi−1 interacts with a node not in Vi−1. This happens with
probability 2i(n−i)

n(n−1) .
Thus, if X is the number of interactions required to perform a broadcast,

then we have:

E(X) =
n−1∑
i=1

n(n − 1)
2i(n − i)

=
n(n − 1)

2

n−1∑
i=1

1
i(n − i)

=
n(n − 1)

2n

n−1∑
i=1

(
1
i

+
1

n − i
)

= (n − 1)
n−1∑
i=1

1
i

∈ Θ(n log n).

And the variance is

V ar(X) =

n−1∑

i=1

(
1 − 2i(n− i)

n(n− 1)

)
/

(
2i(n− i)

n(n− 1)

)2

= n(n− 1)

n−1∑

i=1

n(n− 1) − 2i(n− i)

(2i(n− i))2

= O

⎛

⎝n4

�n/2�−1∑

i=1

(
1

i(n− i)

)2
⎞

⎠

The last sum is obtained from the previous one by observing that it is symmetric
with respect to the index i = n/2, and the removed elements (i = �n/2� and
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possibly i = �n/2�) are negligible. We define f : x �→ 1
x2(n−x)2 . Since f is

increasing between 1 and n/2, we have


n/2�−1∑
i=1

f(i) ≤
∫ n/2

1

f(x)dx =
(n−2)n

n−1 + 2 log(n − 1)
n3

= O

(
1
n2

)

So that the variance is in O(n2). Using the Chebyshev’s inequality, we have

P (|X − E(X)| > n log(n)) = O

(
1

log2(n)

)

Therefore, a sequence of Θ(n log(n)) interactions is sufficient to perform a broad-
cast with high probability. By reversing the order of the interactions in the
sequence of interactions, this implies that a sequence of Θ(n log(n)) interac-
tions is also sufficient to perform a convergecast with the same probability.
Aggregating data along the convergecast tree gives a valid data aggregation
schedule. ��
Corollary 1. The best algorithm in DODA(future) terminates in Θ(n log(n))
interactions, in expectation and with high probability.

Proof. If each node starts with its own future, O(n log(n)) interactions are suf-
ficient to retrieve with high probability the future of the whole network. Then
O(n log(n)) interactions are sufficient to aggregate all the data with the full
knowledge. ��

4.2 Algorithm Performance Without Knowledge

Without any knowledge, we show that the Gathering algorithm is optimal.

Theorem 9. The expected number of interactions the Waiting requires to termi-
nate is O(n2 log(n)). The expected number of interactions the Gathering requires
to terminate is O(n2).

4.3 Algorithm Performance with meetT ime

In this subsection we study the performance of our algorithm Waiting Greedy,
find the optimal value of the parameter τ and prove that this is the best possible
algorithm with only the meetT ime information (even if nodes have unbounded
memory). We begin by a lemma to find how many interactions are needed to
have a given number of nodes interacting with the sink.

Lemma 1. If f is a function such that f(n) = o(n) and f(n) = ω(log(n)) then,
in nf(n) interactions, Θ(f(n)) nodes interact with the sink w.h.p.
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Now we can state our theorem about the performance of Waiting Greedy
depending on the parameter τ . To prove this Theorem, we partition the set of
nodes in two important subsets, L that contains the nodes that interact with
the sink between time τ/2 and τ and Lc its complementary. We show that the
duration of our algorithm comes from two phases, one before time τ/2 when the
nodes in Lc have a high probability to meet another node in L, and one after
τ/2 when the nodes in L meet the sink directly.

Theorem 10. Let f be a function such that f(n) = o(n) and f(n) = ω(log(n)).
The algorithm Waiting Greedy with τ = Θ

(
max

(
nf(n), n2 log(n)/f(n)

))
termi-

nates in τ interactions w.h.p.

Proof. To have an upper bound on the number of interactions needed by Waiting
Greedy to terminate, we decompose the execution in two phases, one between
time 0 and a time t1 and the other between time t1 and a time t2 = τ (for
simplicity, one can take t1 = τ/2). In the last phase, a set of nodes L ⊂ V
interacts at least once directly with the sink. Nodes in L do not transmit to
anyone in the first phase by definition of the algorithm (they have a meetTime
smaller than τ). Nodes in L help the other nodes (in Lc = V \L) to transmit
their data in the first phase. Maybe nodes in Lc can transmit to L in the second
phase, but we do not take this into account, that is why it is an upper bound.

If a node u in Lc interacts with a node in L in the first phase, either it
transmits its data, otherwise (by definition of the algorithm) it has a meetTime
smaller than τ (and smaller than t1 because it is not in L). In every case, a node
in Lc that meets a node in L in the first phase, transmits its data. To prove
the theorem i.e., in order for the algorithm to terminates before τ with high
probability, we prove two claims: (a) the number of nodes in L is f(n) with high
probability if t2 − t1 = nf(n) and (b) all nodes in Lc interact with a node in
L before t1 with high probability if t1 = Θ(n2 log(n)/f(n)). The first claim is
implied by Lemma 1. Now we prove the second claim.

Let X be the number of interactions required for the nodes in Lc to meet a
node in L. The probability of the i-th interaction between a node in Lc (with
a data) and a node in L, after i − 1 such interactions already occurred, is
2f(n)(n − f(n) − i)/n(n − 1). Then we have:

E(X) =
n−f(n)−1∑

i=1

n(n − 1)
2f(n)(n − f(n) − i)

=
n(n − 1)
2f(n)

n−f(n)−1∑
i=1

1
n − f(n) − i

∼+∞
n2

2f(n)
log(n − f(n)) =

n2

2f(n)
log(n(1 − f(n)/n)) ∼+∞

n2 log(n)
2f(n)

V ar(X) =
n−f(n)−1∑

i=1

(
1 − 2f(n)(n−f(n)−i)

n(n−1)

)

(
2f(n)(n−f(n)−i)

n(n−1)

)2 ∼
n−f(n)−1∑

i=1

n4

4f(n)2n2
∼ n3

4f(n)2

Like previously, using the Chebyshev’s inequality, this implies that X =
O

(
n2 log(n)

f(n)

)
w.h.p. ��
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Corollary 2. The algorithm Waiting Greedy, with τ = Θ(n3/2
√

log(n)) termi-
nates in τ interactions with high probability.

Proof. In the last theorem, the bound O
(
max

(
nf(n), n2 log(n)/f(n)

))
is mini-

mized by the function f : n �→ √
n log(n). ��

From the previous corollary, we maximize the performance of our algorithm
by chosing τ = Θ(n3/2

√
log(n)). To prove that no other algorithm has better

performance, we show that, if an algorithm terminates before Θ(n3/2
√

log(n))
interactions, then the number of nodes that do no meet the sink is so big that
they cannot aggregate their data quickly enough. Indeed, when two nodes do
not meet the sink before Θ(n3/2

√
log(n)), then their meetT ime information is

useless for deciding which one should transmit, so we can analyze the aggregation
speed of a large subset of the node.

Theorem 11. Waiting Greedy with τ = Θ(n3/2
√

log(n)) is optimal in
DODA(meetT ime).

Proof. For the sake of contradiction, we suppose the existence of an algorithm
A ∈ DODA(meetT ime) that terminates in T (n) interactions with high probabil-
ity, with T (n) = o

(
n3/2

√
log(n)

)
. Without loss of generality we can suppose

that A does nothing after T (n) interactions. Indeed, the algorithm A′ that exe-
cutes A up to T (n) and does nothing afterward has the same upper bound (since
the bound holds with high probability).

Let L be the set of nodes that interact directly with the sink during the first
T (n) interactions. Let Lc be its complementary in V \{s}. We know from Lemma
1 that #L = O(T (n)/n) = o

(√
n log(n)

)
w.h.p.

We can show that T (n) interactions are not sufficient for all the nodes in
Lc to interact with nodes in L. If nodes in Lc want to send their data to the
sink, some data must be aggregated among nodes in Lc, then the remaining
nodes in Lc that still own data must interact with a node in L before T (n)
interactions (this is not even sufficient to perform the DODA, but is enough to
reach a contradiction).

When two nodes in Lc interact, their meetTime (that are greater than T (n))
and the previous interactions are independent with the future interactions occur-
ring before T (n). This implies that when two nodes in Lc interact, using those
information to decide which node transmits is the same as choosing the sender
randomly. From Theorem 9, this implies that the optimal algorithm to aggregate
data in Lc is the Gathering algorithm.

Now, we show that, even after the nodes in Lc use the Gathering algorithm,
there is with high probability at least one node in Lc that still owns data and
that does not interact with any node in L. This node prevents the termina-
tion of the algorithm before T (n) interactions with high probability, which is a
contradiction.

Formally, we have the following lemmas. Due to space constraints, the proofs
can be found in a technical report [5].
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Lemma 2. Let g(n) be the number of nodes in Lc. After using the Gathering
algorithm during T (n) interactions, the number of nodes in Lc that still own
data is in ω(

√
n/ log(n)) w.h.p.

Lemma 3. Let H ⊂ Lc be the nodes in Lc that still own data after the gathering.
Then, T (n) interactions are not sufficient for all the nodes in H to interact with
nodes in L, w.h.p.

End of the Proof of Theorem 11. We have shown that T (n) interactions are
not sufficient for the nodes in Lc to transmit their data (directly or indirectly)
to the nodes in L. Indeed, we have shown that the nodes in Lc can apply the
gathering algorithm so that ω(

√
n log(n)) nodes in Lc still own data with high

probability. But, with high probability, one of the ω(
√

n log(n)) remaining nodes
does not interact with a node in L in T (n) interactions. This implies that, with
high probability, at least one node cannot send its data to the sink in T (n)
interactions and an algorithm A with such a bound T does not exist. ��

5 Concluding Remarks

We defined and investigated the complexity of the distributed online data aggre-
gation problem in dynamic graphs where interactions are controlled by an adver-
sary. We obtained various tight complexity results for different adversaries and
node knowledge, that open several scientific challenges:

1. What knowledge has a real impact on the lower bounds or algorithm effi-
ciency?

2. What results can be generalized to a model where nodes can transmit a
constant number of times instead of only once?

3. Can randomized adversaries that use a non-uniform probabilistic distribution
alter significantly the bounds presented here in the same way as in the work
by Yamauchi et al. [15]?
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Abstract. The terms Data Lake and Data Warehouse are very commonly used
to talk about Big Data storage. The two concepts are providing opportunities for
businesses to better strengthen data management and achieve competitive
advantages. Evaluating and selecting the most suitable approach is however
challenging. These two types of data storage are often confused, whereas they
have many more differences than similarities. In fact, the only real similarity
between them is their ability to store data. To effectively deal with this issue, this
paper analyses these emerging Big Data technologies and presents a comparison
of the selected data storage concepts. The main aim is then to propose and
demonstrate the use of an AHP model for the Big Data storage selection, which
may be used by businesses, public sector institutions as well as citizens to solve
multiple criteria decision-making problems. This multi-criteria classification
approach has been applied to define which of the two models is better suited for
data management.

Keywords: Data Lake � Data Warehouse � Big Data � AHP model �
Data storage platforms � Decision-making

1 Introduction

In today’s highly competitive business environment, companies are increasingly rushed
to use Big Data for processing and analyzing data of all kinds in order to make better
decisions in a short delay [1]. This objective is still complicated due to the huge
quantity of data to treat to reach this objective [2]. As a result, endorsing and imple-
menting the appropriate Big Data storage approach, which is able to (a) quickly find
and analyze data, and (b) display information in a timely and relevant manner for
efficient decision making becomes crucial.

The data storage and analysis technology is improving rapidly due to technological
evolution [3]. Nevertheless; challenges differ for different applications as they have
various requirements of consistency, usability or compatibility [4]. Thus, to perform
any type of analysis on such large and complex data, the expansion of hardware
platforms is imminent and the choice of the appropriate platform becomes a decisive
decision [5]. The primary purpose of this paper is to provide an Analytic Hierarchy
Process (AHP) model for the big data storage selection. Some of the various Big Data
storage platforms are discussed in detail and their application are represented.
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2 Literature Review

2.1 Data Storage Solution and Selection Problem

Various studies have been conducted on determining the relevant criteria for evaluating
and selecting Big Data storage approaches. This evaluation requires a series of deci-
sions based on a wide range of factors and then each of these decisions have consid-
erable impact on the evaluation of performance, usability and maintainability for
overall success of the most suitable data storage selection [10].

The evaluation has a great impact on the quality of attributes. Valacich, George,
and Hoffer proposed several the most common criteria to choose the right platform.
These are: cost, functionality, efficiency, vendor support, viability of vendor, response
time, flexibility, documentation and ease of installation [9]. Lake and Drake emphasize
the importance of the computational complexity factor and the increased efficiency of
algorithms in the big data era [3]. Marakas and O’Brien propose a lot of evaluation
factors like performance, cost, reliability, availability, compatibility, modularity,
technology, ergonomics, scalability, and support characteristics [11].

2.2 Multiple Criteria Decision-Making Approach

Real-world decision-making problems are complex and no structures are to be con-
sidered through the examination of a single criterion, our point of view that will lead to
the optimum and informed decision [8, 12]. MCDM offers a lot of methods that can
help in problem structuring and tackling the problem complexity because of the multi-
dimensionality of the sustainability goal and the complexity of socio-economic,
environment and government systems [10, 13].

The AHP is a MCDM tool that has been used in almost all the applications related
with decision making [8]. The AHP is a powerful, flexible and widely used method for
complex problems, which consider the numeric scale for the measurement of quanti-
tative and qualitative performances in a hierarchical structure [6]. This is an Eigenvalue
approach to the pairwise comparisons.

3 Criteria Description

Based on this literature review, these criteria are selected and favored to choose the
most appropriate platform responding to the requirements of various big data storage
challenges. They are classified into three categories:

1. technical (hardware and resources configuration requirements) perspective:
1:1 availability and fault tolerance – this criterion has the values of: Poor (1)/Fair

(2)/Good (3)/Very Good (4)/Excellent (5), these values will be used for others
criteria thereafter.

1:2 scalability and flexibility – 1, 2, 3, 4, 5,
1:3 data type and metadata – 1, 2, 3, 4, 5,
1:4 data security – 1, 2, 3, 4, 5,
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1:5 performance (latency) – 1, 2, 3, 4, 5,
1:6 distributed storage capacity –centralized storage system (1)/distributed storage

(2),
1:7 data processing modes –Transaction processing (1)/Real-time processing (2)/

Batch processing (3),
2. Social (people skills and knowledge) perspective:
2:1 ease of installation and maintenance – 1, 2, 3, 4, 5,
2:2 Heterogeneous tooling – 1, 2, 3, 4, 5,
2:3 deployment experience – 1, 2, 3, 4, 5,

3. Cost and policy perspective,
3:1 sustainability –Low (1)/Medium (2)/High (3),
3:2 policy and regulation–1, 2, 3, 4, 5,
3:3 Data governance–1, 2, 3, 4, 5,
3:4 cost–Open source (1)/Trial version (2)/Commercial release (3),

Based on the literature review of the possible Strengths and Weaknesses of various
big data storages platforms, two approaches were selected as alternatives to be com-
pared [15]. these alternatives are Data Lake and Data Warehouse. A decision table with
the values for the selected alternatives can be seen in the Table 1. The data used are
from 2018. The AHP model’s structure is a hierarchy of four levels constituting goal,
criteria, sub-criteria and alternatives.

To analyze business challenges and to meet users need, three use cases were
designed for a logical application. These use cases are focused only on the storage
approaches, which offer data analysis tools. However, these approaches can be inte-
grated with several data transfer and search platforms to support the whole Big Data
life cycle and related phases.

Use case 1 – scientist or advanced user
Integrating and exploring data from various sources and building blocks for cre-

ating a solution to a data science problem is required. Batch processing platform is
more important than real-time processing. Data security is not required, because data
are used overall for testing purposes. User has a very good knowledge and program-
ming skills. The selected approach has to be open source with no data security, no
policy and regulation.

Table 1. Decision table for the Big Data storage selection, Source: Author.

Alternatives Criteria and their type
1.1
Max

1.2
Max

1.3
Max

1.4
Max

1.5
Max

1.6
Max

1.7
Max

2.1
Max

2.2
Max

2.3
Max

3.1
Max

3.2
Max

3.3
Max

3.4
Max

Data Lake 5 5 5 2 5 2 3 2 4 2 1 2 2 1
Data Warehouse 3 2 2 5 3 1 1 5 2 5 3 4 4 3
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Use case 2 – medium-sized business
The business needs scalable, flexible, available, and fault tolerance approach with a

good computational complexity for the purpose of storing a big amount of data. a real-
time processing platform is most suitable for this use case without overlooking data
security aspect and data governance to ensure security and accuracy. The Platform has
to be an easy software deployment with a wide technical support.

Use case 3 – public sector institution
For this use case, a flexible, available and fault tolerance approach which is able to

offer a high variety and flexibility of computational complexity extensions is needed.
Batch processing and open source platform with an ease of use is preferred. This
platform should be easy to be deployed. Security tools must be available. good doc-
umentation and reference manual are required for maintenance needs.

4 Results and Discussion

In all the cases, the technical perspective is the most important item. For a second stage,
Use case 1 and 3 prefer the social perspective. For the use case 2 (medium-sized
business), the cost and policy perspective is the second most important perspective
(Fig. 1).

Based on the needs of the user defined in the use case 1, Data Lake is the most
suitable big data storage approach (58%). For the use case 2, the choice is Data
Warehouse (62%). For the use case 3, the choice is Data Lake (29%) and Data
Warehouse (20%). Decision-makers precisions may provide a paired comparison
which is restricted by their experience and knowledge, as well as by the complexity of
the big data storage selection problem in terms of setting up these concepts. To deal
with this problem, the decision-makers must understand the details, strengths, and
limitations of the AHP method as well as the related platforms [14].

Fig. 1. Weights of the alternatives for each use case. Source: Author.
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5 Conclusion

Big data storage tools offer organizations new ways to improve their ability to grasp
information hiding in their data. The evaluation and selection of the most suitable big
data storage tool is however challenging due to multidimensional nature of the decision
making problem, and the subjectiveness and imprecision of the decision making
process.

To effectively deal with these issues, this paper has presented a multi-criteria group
decision making method for evaluating the performance of big data storage tool
alternatives, and has studied The impact of the AHP method in Big Data storage
selection. The proposal model was made based on the literature review in order to
provide an overview of the Big Data storage approach, which offers a simple but
efficient evaluation method that can help scientists, businesses and public sector
institutions in selecting the most suitable storage platform. The aim from a such ana-
lytics study to Big Data storage, valuable information will be extracted and exploited
with a better way.

This paper is a first step of a study to deal with all kind of data with a better analysis
way. A new architecture will be rolled in our future work which merged Data Lake and
Data Warehouse to deal with all these use cases described in this paper for a better data
management.
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