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Chapter 4
Immunomodulatory Nanomaterials

Turgay Tekinay

Abstract  The immune system provides protection against infections and toxins and 
serves as a guard for all tissues against pathogens and malfunctioning cells. Modulation 
of the immune system to use immune cells as therapeutic agents has been an impor-
tant target for the treatment of many diseases that could not be cured otherwise such 
as cancer and autoimmune diseases. In addition, modulation of the immune system is 
crucial for tissue regeneration, since tissue regeneration and wound healing processes 
consist of a complicated and ordered array of events, a considerable part of which 
include the involvement of immune cells. Nanomaterials in the form of nanoparticles 
and nanofibers provide a wide array of tools for modulation of the immune system. 
Different types of nanomaterials have been developed to be used for effective target-
ing and treatment of cancer, as vaccines, and for the treatment of autoimmune disor-
ders. In this chapter, different nanomaterials with immunomodulatory effects will be 
reviewed with an emphasis on cancer, autoimmune diseases, and vaccine develop-
ment. In addition, future perspectives for developing materials with more refined 
immunomodulatory characteristics will be discussed.

4.1  �Introduction

The immune system protects against infections and toxins, and plays crucial roles in 
the regeneration of the tissues after injury, including fighting against pathogens that 
might attack the regenerating tissue; removal of debris of the wounded and scar 
tissues; and degradation of the materials that are used for regenerative purposes. It is 
composed of many different types of cells and lymphoid organs that are tightly regu-
lated and plays an invaluable role in the defense against invading microbes (Moon, 
Huang, & Irvine, 2012). Spleen, nasal-associated lymphoid tissue, Peyer’s patches in 
the gut, and lymph nodes distributed throughout the body are all parts of the immune 
system and immune cells are generated at the thymus and bone marrow.
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There are two major types of immune response which are innate and adaptive 
immunity. Innate immunity is nonspecific and acts as the initial defense against 
invading microorganisms and foreign particles. Macrophages, dendritic cells, neu-
trophils, and mast cells perform phagocytosis to destroy the foreign cells and release 
cytokines. Adaptive immunity plays a role as the second line of defense. In that 
response, antigen presenting cells (APCs) bring specific antigens to highly special-
ized T cells and B cells. Antigen is recognized and an immune response that is 
specific to the invading microorganism is elicited and the target is cleared (Hussain, 
Vanoirbeek, & Hoet, 2012; Norman, 2005).

The immune system is important in the fight against diseases; however, incor-
rect regulation of the immune response, immunosuppression and immunostimula-
tion may also lead to pathological conditions (Norman, 2005). Immunosuppression 
is the state in which the immune system functions are decreased and the response 
is weakened, which may result in invasion by the pathogens or rapid growth of 
tumor cells. Immunostimulation enhances the immune response, overactivity of 
which may lead to a strong adverse response and may result in autoimmune dis-
orders. Since immune system is a very complex mechanism and is very tightly 
regulated, any effect, inhibition or activation of a pathway may cause unexpected 
side effects to other pathways or different cells or tissues. Thus, the inflammatory 
agents are used in a controlled manner due to possible side effects (Chou 
et al., 2013).

Vaccines are great examples of protection against diseases in which the immune 
system is stimulated to protect individuals from infectious microbial organisms 
(Pulendran & Ahmed, 2011). Although there are very successful vaccines against 
various diseases, there is still a need for vaccines against many other severely infec-
tious pathogens, such as HIV, malaria, tuberculosis, and hepatitis C. Current vac-
cine development approaches are centered on rational design to have more potency 
and less immunogenicity, and the number and types of vaccine candidates are 
increasing rapidly (Mamo & Poland, 2012; Oberg, Kennedy, Li, Ovsyannikova, & 
Poland, 2011; Rappuoli, Mandl, Black, & De Gregorio, 2011).

Immune system may also provide protection from tumors by using cancer vac-
cines to stimulate the immune system to inhibit tumors (DeMaria & Bilusic, 2019; 
Hodi et  al., 2010; Kalos et  al., 2011; Lollini, Cavallo, Nanni, & Forni, 2006; 
Williams et al., 2011). Cancer immunotherapy is a popular field that aims to develop 
novel cancer therapy approaches by understanding and utilizing immune pathways 
(DeMaria & Bilusic, 2019). On the other side of the spectrum, over-stimulation of 
the immune system may cause autoimmune disorders that require suppression of 
the immune system (Feldmann & Steinman, 2005).

Immunomodulatory drugs have been highly coveted for balancing the immune 
system for autoimmune diseases or specifically enhancing certain immune cells 
for protection against or treatment of cancer or other infectious diseases and for 
aiding tissue regeneration. However, due to the complexity of the immune system, 
using a single-agent immunomodulatory drug may result in severe side effects. 
Nanomaterials are suggested to be ideal for selective delivery of immune regulating 
molecules.
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4.2  �Nanomaterials and Immune System

Nanotechnology gives the scientists ability to design nanomaterials at different 
sizes, shapes, chemical and physical properties and composition for use in the 
treatment of different diseases (Couvreur & Vauthier, 2006; Hubbell, Thomas, & 
Swartz, 2009; Mamo & Poland, 2012; Moghimi, Hunter, & Murray, 2005; 
L. Zhao et al., 2014). Nanomaterials have been the subject of research for being 
used as drug delivery vehicles or adjuvants for vaccines (Hubbell et al., 2009; 
Kasturi et al., 2011; Moon et al., 2011; Reddy et al., 2007). There is also interest 
in use of them in diagnostic systems (Cho et al., 2011; Noh, Jang, Ahn, Lim, & 
Chung, 2011). Moreover, they may be used for the treatment of cancer (Hellstrom 
et  al., 2001; Kalos et  al., 2011; Steenblock & Fahmy, 2008) and as delivery 
vehicles for immunotherapy drugs (Ali & Mooney, 2010; Peer et  al., 2007; 
Svenson, 2012). The shape, size and surface properties of the nanoparticles can 
be engineered to aid in cell specific responses (Treuel, Jiang, & Nienhaus, 2013). 
An important advantage of the nanoparticles is their ease of functionalization 
through adding or removing properties.

Nanomaterials with immunomodulatory properties are highly coveted for regen-
erative medicine applications to enable the immune cells to work in a controlled man-
ner. Depending on the material that they are made of, nanoparticles might be perceived 
as foreign materials when they enter the body, eliciting an immune response in the 
form of either suppression or stimulation (Dobrovolskaia & McNeil, 2007). 
Immunomodulatory properties of nanoparticles may be used in development of vac-
cines or anti-allergy drugs (Parween, Gupta, & Chauhan, 2011; Ryan et al., 2007).

There is ongoing research on targeted delivery of nanoparticles to specific tissues 
and cells for treatment or diagnosis. Nanoparticles should be relatively stable in the 
body and should not elicit immune response to prevent degradation, but they should 
also reach the target site and stay there. Nanoparticles may accumulate in the desired 
tissue through blood vessels or bind to specific biological structures at the target site 
(Pelaz et al., 2017). Also, nanoparticles may be tailored to prevent nonspecific binding. 
Recent advances in nanoengineering methods allowed production of nanoparticles that 
may be used to target diseased tissues, in diagnostic applications or to regulate the 
immune system to produce vaccines, inhibit tumors or prevent autoimmunity.

In the following sections, we will describe how nanomaterials can be used for 
different immunomodulatory purposes and for aiding immunotherapeutics. We will 
also summarize recent developments in the design and implementation of immuno-
modulatory particles.

4.3  �Nanomaterials for Immunotherapy of Cancer

According to World Health Organization data, cancer is the second leading cause of 
death in the world, and approximately 1 in 6 deaths is caused by cancer. The eco-
nomic burden of cancer among both developed and under-developed countries is 
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also devastating, and even though an incredible amount of effort has been spent on 
cancer research and therapy, the currently available methods are still limited, which 
causes the high lethality rate of cancer.

Main methods for treating cancer are surgery, radiation and chemotherapy. 
Immunotherapy has recently been developed and it is suggested to be a promising 
approach for the treatment of various diseases including cancer, because it regulates 
the immune system to target and destroy cancer cells and tumors (Song, Musetti, & 
Huang, 2017). Immunotherapy is the regulation of the immune system (activation 
or suppression) for treatment of diseases. Immunosuppressive approaches may be 
used to reduce allergic reactions and reduce excessive inflammation in organ trans-
plants. In contrast, in cancer patients, immune system is aimed to be more active 
and new methods are developed to activate the system against malignant cells. 
There are different approaches and materials used in cancer immunotherapy, which 
is expected to result in more durable antitumor responses and reduce metastasis and 
recurrence compared to previous treatment methods. Currently, immunotherapy is 
one of the most highly coveted treatment methods; however, it is also a very expen-
sive treatment method and is not suitable for all cancer types.

4.3.1  �Nanomaterials for Cancer Immunotherapy

Tumor microenvironment prevents the activity of the immune system, and tumor 
cells inhibit the activity of tumor-specific T-cells (Munn & Bronte, 2016; Vasievich 
& Huang, 2011). New research focuses on regulating the tumor microenvironment 
by inhibiting immunosuppressor molecules or activating soluble mediators, which 
in turn may elicit an immune response. Nanomaterials have the ability to activate or 
suppress immune system depending on their type, size, side groups, and functional-
ization and use of nanomaterials may reduce these side effects by achieving specific 
delivery to target tumors. Nanomaterials may be used to selectively distribute 
immune checkpoint regulators to the tumors to inhibit their growth. For example, 
PLGA nanoparticles that were conjugated with anti-OX40 mAb resulted in stronger 
cytokine production and increased overall antitumor cytotoxic cell response when 
injected into the tumor compared to the administration of free antibody (M. Chen, 
Ouyang, Zhou, Li, & Ye, 2014). Targeted inhibition of cytokines using various 
approaches is also important for preventing the immunosuppressive environment of 
the tumor. Park et al. developed nanoscale liposomal polymeric gels (nanolipogels, 
nLGs) for co-delivery of IL-2 and small molecule TGF-β receptor-I inhibitor 
SB505124 for this purpose (Park et al., 2012).

Targeted delivery to tumors may also allow the use of highly potent drugs with 
reduced side effects. Intratumoral injection of anticancer antibodies from function-
alized nanoporous silica inhibited tumor growth more efficiently and at a longer 
duration than systemic antibody injections (Lei et al., 2010). In another study, anti-
CD137 mAb and engineered IL-2Fc fusion protein that were anchored to PEGylated 
liposomes prevented lethal toxicity and increased systemic antitumor immunity 
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compared to free anti-CD137 antibodies. In this study, it was also determined that 
the size of the nanomaterials is important. The nanoparticles that are small enough 
to reach into the tumor but large enough to join the systemic circulation were found 
to be highly efficient (Kwong, Gai, Elkhader, Wittrup, & Irvine, 2013). Heo et al. 
found that after injection with immunomodulating oligodeoxynucleotides or siRNA 
encapsulated PLGA’s in addition to chemotherapy, dendritic cells become active and 
migrate to the tumor-draining lymph nodes. This combination therapy using immu-
nomodulatory nanomaterials inhibited tumor growth and increased the survival rate 
(Heo, Kim, Yun, & Lim, 2015).

Cell therapy is an alternative for treatment of many diseases; however, it has 
major limitations such as loss of function of the transplanted cells. A novel approach 
uses nanoparticles, created from liposomes and liposome-like synthetic nanoparti-
cles 100–300  nm in diameter with a drug-loaded core and phospholipid surface 
layer, which carry adjuvants. These nanoparticles continuously stimulate donor 
cells and were shown to increase the efficiency of tumor elimination (Stephan, 
Moon, Um, Bersthteyn, & Irvine, 2010).

4.3.2  �Cancer Vaccines

There are two types of cancer vaccines, therapeutic and prophylactic. Prophylactic 
vaccines are used to prevent cancers such as the hepatocellular carcinoma secondary 
to hepatitis B virus and squamous cell carcinoma secondary to human papillomavi-
rus (HPV) (DeMaria & Bilusic, 2019). Therapeutic vaccines, on the other hand, are 
aimed to treat cancer.

Tumor cells express a variety of antigens, some of which are specific to them, 
and are not produced by healthy cells. In earlier studies, the cancer vaccines were 
developed with whole-cells together with adjuvants to target tumor cells. However, 
because of a need to develop more potent vaccines with fewer side effects, current 
research focuses on antigens that are specific to tumors (Herlyn & Birebent, 1999). 
Some of these targets are products of mutated oncogenes (p53, ras, PSA, GP-100, 
MART-1, B-raf). For cancer to occur, the cells have to have many mutations and 
escape through many checkpoints, thus every tumor has a different composition. 
Therefore, a personalized approach may be more effective for cancer treatment, and 
new developments in genomics allow scientists to determine the specific mutations 
in the patients. Together with the developments in nanotechnology, this information 
may be used to customize a specific therapeutic approach for each patient. Initial 
clinical trials of personalized cancer vaccines have shown the feasibility, safety, and 
immunotherapeutic activity of targeting individual tumors (Sahin & Türeci, 2018).

Cancer vaccines may not only target different antigens and immune adjuvants, 
but also use different vaccine platforms, such as peptides/proteins, whole tumor 
cells, recombinant vectors, dendritic cells (DCs), gangliosides, and genes (DeMaria 
& Bilusic, 2019). Cancer cells may also be coated with nanoparticles conjugated 
with tumor antigens to elicit an immune response (Fang et  al., 2014). There are 
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already approved cancer vaccines for treatment against early-stage bladder cancer, 
mCRPC, and metastatic melanoma, such as TheraCys® and TICE®, PROVENGE, 
and IMLYGIC®, and several new vaccines are undergoing clinical trials.

Cancer vaccines are promising; however, their impact in metastatic carcinomas 
is not very high. Cancer vaccines need to work in synergy with other therapeutic 
approaches to inhibit local (tumor-site) immune response and act as an immunosup-
pressive agent while stimulating antitumor response. Nanoparticles are very impor-
tant in that respect, since they may be tailored for different functions.

There is an increased focus on vaccine development by using nanoparticles and 
nanotechnology methods. Tailored nanoparticles may have fewer side effects and 
can be more effective. Nanoparticle use in vaccines may protect antigens, allow for 
more specific targeted delivery and result in sustained slow release. The nanoparti-
cle vaccine field is developing very rapidly and promising; however, there are some 
problems that need to be addressed, an important one of which is the lack of under-
standing of the behavior of nanoparticles in the body, when they are used as a shuttle 
system or an adjuvant in vaccines (L. Zhao et al., 2014).

Nanomaterials may be used for encapsulating antigen and adjuvants, protecting 
them from degradation and to increase the efficiency of T-cell response (Irvine, 
Hanson, Rakhra, & Tokatlian, 2015; Irvine, Swartz, & Szeto, 2013; Zhu, Zhang, Ni, 
Niu, & Chen, 2017). Some carbon-based nanomaterials, such as carbon nanotubes 
and graphene, might affect immune cells by specifically activating them and initiate 
an antitumor immune response (Orecchioni et al., 2014; Pescatori et al., 2013; Xu 
et  al., 2013). In one example, PC7A nanoparticles were shown to deliver tumor 
antigens to cytosol and activating the stimulator of interferon genes (STING) path-
way (Luo et al., 2017).

4.4  �Nanomaterials for Development of Vaccines

Vaccines are microbial antigens or attenuated/killed microbes administered together 
with an adjuvant to induce antigen-specific immune responses that result in long-
lasting immune memory against specific pathogens. In autoimmune disorders, the 
vaccine should work in an opposite manner: to inhibit immune responses against 
self-cells without affecting the capability of the immune system to act against 
foreign organisms or materials or cancer cells (Clemente-Casares, Tsai, Yang, & 
Santamaria, 2011).

The size of the particle effects the time required for drainage of that particle into 
the lymph node (Manolova et al., 2008). When antigens were covalently bound to 
nano-beads, the immune response differed with respect to the size of the nano-beads 
(Fifis et al., 2004). Nanoparticle size is also important in delivery. Amorphous silica 
nanoparticles that are greater than 100 nm have more difficulty in entering into cytosol 
compared to smaller nanoparticles (between 70 and 10 nm) (Hirai et al., 2012).
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Dendritic cells ingest nanoparticles at varying efficiency. The rate of uptake dif-
fers by size, charge and hydrophobicity. Nanoparticles bigger than 500  nm are 
ingested at low rates (Foged, Brodin, Frokjaer, & Sundblad, 2005). Nanoparticles 
with positive charge are ingested more efficiently compared to neutral or nega-
tively charged particles (Wischke, Borchert, Zimmermann, Siebenbrodt, & 
Lorenzen, 2006).

An advantage of nanoparticles is that they may be functionalized through addition 
of receptors on their surface to increase efficiency of delivery. Use of Fc receptors to 
deliver antigens to human dendritic cells have been suggested to be successful, by 
using intact antibodies or engineered fragments (Cruz et al., 2011; Mi et al., 2008).

Another advantage of nanoparticle vaccines is that they enter the APC via phago-
cytosis, unlike soluble antigens which enter by micropinocytosis. Thus nanoparticle 
vaccines present antigens more efficiently, which may also result in stronger 
immune responses (H. Shen et al., 2006).

Delivery of vaccines is another important subject. Several nanocarrier systems 
have been investigated for vaccine delivery, such as liposomes. Liposomes are 
important because of their adaptability and flexibility for use in different applica-
tions (Schwendener, 2014). Liposomes may be used to encapsulate different types 
of nanoparticles. Hydrophilic particles may be carried inside the liposome, while 
hydrophobic particles may be incorporated into the lipid bilayer. Liposomes may 
also be adjusted regarding their components, size and charge.

As a delivery system, nanoparticles may activate immune system by directly 
delivering antigen to the immune system cells or perform targeted delivery (Girija 
& Balasubramanian, 2018; Mody et al., 2013). To function as immunomodulators, 
nanoparticles may be tailored to activate immune pathways which might then 
enhance or inhibit antigen processing and immunogenicity. Gold and silica 
nanoparticles have been analyzed for their potential for use as cargo delivery sys-
tem (Brito & O’Hagan, 2014; Shah, O’hagan, Amiji, & Brito, 2014). They may be 
tailored to strongly bind to antigens, co-deliver adjuvants and multi-epitope anti-
gens into lymphoid organs and into antigen-presenting cells (Zhu et al., 2017). The 
antigens can be attached to nanoparticles by encapsulation, conjugation, or adsorp-
tion (L. Zhao et al., 2014). Adsorption is not very strong, and relies on electrical 
charge or hydrophobicity, which may lead to rapid dissociation of the antigen and 
the nanoparticle in vivo. Encapsulation and chemical conjugation results in stron-
ger binding of the nanoparticle to the antigen (Pati, Shevtsov, & Sonawane, 2018). 
The antigen is released when the carrier particle is ingested and degraded by the 
cell. In chemical conjugation, antigen is coupled irreversibly to the nanoparticle 
(Andersson, Buldun, Pattinson, Draper, & Howarth, 2019). New research may 
focus on soft-matter nanoparticles that are based on emulsions which work as adju-
vants when they are given into the body independently of the antigen, that is, no 
attachment (Morel et al., 2011; O’Hagan, Ott, & Van Nest, 1997). Further studies 
are required to fully understand the effects of these molecules on each other and to 
the immune system.
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4.4.1  �Nanoparticle Interactions with Antigen Presenting Cells

For the vaccines to work efficiently, antigens must be delivered to antigen present-
ing cells, dendritic cells and macrophages, so that these cells are activated and an 
immune response is elicited (Jones, 2008; Reddy, Swartz, & Hubbell, 2006). 
Interactions of these cells with nanoparticles and mechanisms of delivery into the 
cells are important for rational design of vaccines (Kumari & Yadav, 2011). Also, 
scientists have to be aware of the possible changes to the nanoparticle behavior 
with the changing size, shape, side-group, and overall functionalization (Khong 
et al., 2018; Xiang et al., 2006). For example, PLGA particles that are 300 nm in 
diameter were transported into the cells at a higher rate compared to 1, 7 and 17 μm 
particles (Joshi, Geary, & Salem, 2013). Internalization of positively charged poly-
styrene nanoparticles to the dendritic cells was also higher, possibly due to the 
interactions with the anionic cell membranes (Foged et al., 2005; Y. Shen, Hao, Ou, 
Hu, & Chen, 2018). However, it was not shown that this increased internalization 
is correlated with more potent immune response.

In addition, nanoparticles have been increasingly used to deliver not only antigen 
of interest but also co-adjuvants, such as poly(I:C), CpG and MPL (De Temmerman 
et al., 2011; Hafner, Corthésy, & Merkle, 2013). However, more work is needed in 
nano-vaccine research to overcome challenges including synthesizing nanoparticles 
that are cheap, uniform, and consistent, that are functionalized with desired proper-
ties, ability to target the particle to desired location, with fewer side effects. Thus, 
rational design of these nanoparticles with respect to the disorder is imperative. 
New technologies such as micro- and nanofluidics are also important for more effi-
cient analyses of the effects of nanoparticles on different cell types (Hong, Lu, Liu, 
& Chen, 2019).

4.4.2  �Polymeric Nanomaterials for Vaccine Development

Synthetic polymers have different compositions and properties and some of the 
most widely used ones to prepare nanoparticles are poly(d,l-lactide-co-gly-
colide) (PLG) (Kim et  al., 1999; Köping-Höggård, Sánchez, & Alonso, 2005; 
C.  Thomas, Rawat, Hope-Weeks, & Ahsan, 2011), poly(d,l-lactic-coglycolic 
acid) (PLGA) (Demento et  al., 2012; Lü et  al., 2009; Manish, Rahi, Kaur, 
Bhatnagar, & Singh, 2013; Silva et  al., 2013), poly(g-glutamic acid) (g-PGA) 
(Akagi, Baba, & Akashi, 2012; Akagi, Kaneko, Kida, & Akashi, 2005), 
poly(ethylene glycol) (PEG) (Köping-Höggård et  al., 2005), and polystyrene 
(Kalkanidis et al., 2006; Minigo et al., 2007). PLG and PLGA nanoparticles have 
high biocompatibility and biodegradability which are needed for use in drug 
delivery (D’souza et al., 2014; Danhier et al., 2012).

Importance of polymeric nanoparticles comes from their ability to deliver antigens 
to target cells or provide sustained release of their cargo antigens. These polymeric 
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nanoparticles entrap antigens for delivery to certain cells or sustain antigen release 
by virtue of their slow biodegradation rate (Danhier et al., 2012). PLGA nanoparti-
cles were shown to shuttle antigens against Plasmodium vivax with mono-
phosphoryl lipid A as adjuvant (Moon, Suh, et al., 2012), hepatitis B virus (HBV) 
(C.  Thomas, Rawat, et  al., 2011), Bacillus anthracis (Manish et  al., 2013), and 
model antigens such as ovalbumin and tetanus toxoid (Demento et al., 2012; Diwan, 
Tafaghodi, & Samuel, 2002).

Cationic alginate-polyethylenimine (PEI) nanogels have been proposed to be 
used as a vaccine delivery system (Li et al., 2013). Compared with the empty nano-
gels, nanoparticle loaded nanogels enhanced vaccine-induced antibody production 
more efficiently, showing the potential of this approach to be used to enhance 
vaccine-elicited humoral and cellular immune responses.

4.4.3  �Metal Nanoparticles

Metal nanoparticles are widely used for different applications. They have well devel-
oped and controllable synthesis methods with precise sizes and shapes, and they can 
also be readily functionalized (Kalkanidis et al., 2006; L. Zhao et al., 2014).

Gold nanoparticles have been used in several studies for vaccine development 
(L. Zhao et al., 2014). The size of gold nanoparticles usually ranges from 2 to 150 nm, 
and they may be given spherical, rod or cubic shapes (Gregory, Titball, & Williamson, 
2013; Niikura et al., 2013). In one study, the highly conserved extracellular region of 
the matrix 2 protein of influenza A virus was conjugated to gold nanoparticles to treat 
influenza. Intranasal administration of this nanoparticle system induced matrix 2 
protein specific IgG serum antibodies (Tao, Ziemer, & Gill, 2014). Stone et al. fabri-
cated gold nanorods which were attached to the respiratory syncytial virus by cova-
lent binding of a viral protein. This gold nanorod construct contained the major 
protective antigen of the virus, the fusion protein (F), and was able to successfully 
induce immune response (Stone et al., 2013). In another study, gold nanoparticles 
were attached to a synthetic peptide resembling foot-and-mouth disease virus pro-
tein, with sizes ranging from 2 to 50 nm. These nanoparticles activated the antibody 
response at different strengths (Y. S. Chen, Hung, Lin, & Huang, 2010). Xu et al. 
conjugated the surface of the gold nanorods with cetyltrimethylammonium bromide 
(CTAB), poly(diallydimethylammonium chloride) (PDDAC), and PEI. PDDAC- or 
PEI-attached gold nanoparticles with DNA stimulated stronger immune response 
compared DNA only approach (Xu et al., 2012).

Surfaces of gold or iron oxide may also be functionalized by coating them with 
sugar molecules (glyconanoparticles). Carbohydrates and other molecules may be 
attached to metal nanoparticles, and the core may be filled with magnetic or fluores-
cence molecules (Marradi, Chiodo, García, & Penadés, 2013).

Some inorganic materials such as silica-based nanoparticles are biocompatible and 
are being investigated as nanovaccine constituents. Mesoporous silica nanoparticles 
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may be tailored for targeted release of antigens by changing properties such as the 
shape, size and surface functionalization (Manzano et al., 2008). These mesoporous 
silica nanoparticles can carry more cargo compared to solid silica nanoparticles, and 
could be regulated to release the cargo in a controlled manner by changing mesopo-
rous structures. Mesoporous silica nanoparticles are promising candidates for use in 
vaccines due to their controlled-release abilities.

4.4.4  �Carbon-Based Nanomaterials

Carbon nanoparticles have been studied for their use in vaccine delivery (Gregory 
et al., 2013; T. Wang et al., 2011). Particles which were 450 nm in size and with 
50 nm mesopores on the particle surface were produced. These pockets would be 
used to transport protein antigen, protecting the antigen and allowing oral admin-
istration (T. Wang et al., 2011). They are tolerated well inside the body and were 
given different shapes including mesoporous spheres (Bianco, Kostarelos, & 
Prato, 2005; Gupta et al., 2015). Carbon nanotubes are pure carbon molecules and 
are generally 0.8–2 nm in diameter with a length of 100–1000 nm (Parra, Abad-
Somovilla, Mercader, Taton, & Abad-Fuentes, 2013; Villa et al., 2011).

4.4.5  �Biological Materials for Vaccine Development

Proteins, peptides, carbohydrates, nucleic acids, and liposomal systems have all 
been proposed to be used for developing effective vaccines for various purposes. 
They can be used in the form of either nanoparticles and nanofibers or hydrogels. 
Recently, nanoparticles are proposed to be synthesized by self-assembling of pro-
teins that assemble to form higher level quaternary structures. By using protein 
structure information, self-assembling nanoparticles that resulted in stronger 
immune response than influenza vaccines were designed (Kanekiyo et al., 2013). In 
this study, the viral hemagglutinin was genetically fused to ferritin, which is a pro-
tein composed of 24 identical polypeptides that can self-assemble into spherical 
10 nm particles. This nanoparticle vaccine elicited hemagglutination inhibition anti-
body titers that were more than tenfold higher compared to the traditional vaccine. 
The advantages of protein nanoparticles in vaccine development include having 
highly organized structures and symmetry, biodegradability, and tailorability at 
three different interfaces and size (Neek, Kim, & Wang, 2019).

Vault nanoparticles are self-assembled to form an ellipsoid that contains an empty 
region inside (Buehler et al., 2014). Recent work which focused on the use of vault 
nanoparticles to carry antigens showed that these nanoparticles elicited potent 
immune response, that may also be useful in cancer vaccines (Kar et al., 2012). 
A new class of monodispersed, self-assembling vault nanoparticles comprises a 
protein shell exterior with a lipophilic core interior and these recombinant vaults 
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contained a small amphipathic α-helix obtained from hepatitis C virus. This design 
resulted in a small area in which lipophilic compounds would be encapsulated and 
delivered to target cells (Buehler et al., 2014).

Liposomes are spherical structures composed of phospholipid bilayers with a 
core that may be used for antigen delivery. Liposomes are biodegradable, and range 
from 20 nm to 1 μm in size. Liposomes may be used as delivery systems for vaccines 
by encapsulation, adsorption, or surface coupling of antigens (Giddam, Zaman, 
Skwarczynski, & Toth, 2012). Liposomes do not have immunostimulatory or immu-
nosuppression activity, so they are combined with adjuvants for vaccine develop-
ment. An in-depth analysis of liposomal interaction with the immune system would 
allow scientists to design more potent vaccines. Liposomes may be used to deliver 
DNA vaccines or virosomes that contain viral envelope glycoproteins (Glück, Moser, 
& Metcalfe, 2004; Khatri et al., 2008). Liposomes also allow the use of intranasal 
approach for delivery of vaccines (S. Sharma, Mukkur, Benson, & Chen, 2009).

Recombinant vaccines using proteins have very little toxicity but their potency is 
not high. In one study, an interbilayer-cross-linked multilamellar vesicle system was 
produced by cross-linking headgroups of adjacent lipid bilayers. These vesicles 
internalize antigens in the core and immunostimulatory adjuvants on the vesicle 
walls. These vesicles were shown to have potency, eliciting very strong endogenous 
T-cell and antibody responses (Moon et al., 2011).

4.5  �Nanomaterials for the Treatment of Autoimmune 
Diseases

Autoimmune disease is the name of around 80 disorders that share a common etiology: 
an immune attack on the body’s own cells. There are self-reactive B-cells and T-cells 
that recognize and attack the self-antigens. During T-cell development, self-reactive 
cells are normally deleted, and problems in removal or inhibition of these self-reactive 
cells may lead to autoimmunity (Notarangelo, Gambineri, & Badolato, 2006).

The prevalence of autoimmune diseases is increasing in industrialized countries, 
which may be due to environmental changes, such as air quality. There are no suc-
cessful cures for these diseases. The disease progresses slowly and organ and tissue 
damage occur before diagnosis. To battle against autoimmune diseases, inhibitors 
against immunostimulatory molecules may be used, such as monoclonal antibodies 
or small receptor blockers. These inhibitors downregulate or result in the degrada-
tion of immunostimulatory agents.

Scientists have tried to develop techniques to transport anti-inflammatory drugs 
to target immune cells in affected tissues and inhibit or limit their pathological 
effects. For the treatment of autoimmune diseases, it would be extremely important 
to inhibit the T-cells that attack the body’s own tissues, but not effect T-cells in other 
tissues. A wide and very strong immunosuppression would result in infections. In the 
immune system, T-cells play a very critical role in the defense against diseases 
or degradation of tumor cells. However, they may be responsible from self-tissue 
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damage in autoimmune disorders. Thus, it is imperative that T-cell activity is regu-
lated to develop successful strategies against autoimmune diseases. This may be 
done by converting T-cells into other types, redirecting their program, such as 
conversion of effector cells to regulatory T-cells (Moon, Huang, & Irvine, 2012; 
O’Shea & Paul, 2010; Rose, 2016). Nanoparticles would be very important in these 
types of altering function activities. By specifically tailoring the abilities of the 
drugs, nanoparticles may regulate these cells (Park et al., 2011). Metal nanoparti-
cles, liposomal systems, biomaterial-based nanomaterials and carbon-based 
nanoparticles have been widely studied for this purpose.

4.5.1  �Carbon-Based Nanoparticles

Carbon nanotubes are formed by carbon atoms that arrange forming a two-
dimensional hollow cylinder. Carbon nanotubes were shown to induce systemic 
immunosuppression in mice (L. A. Mitchell et al., 2007; Leah A. Mitchell, Lauer, 
Burchiel, & McDonald, 2009; Tkach et  al., 2011; X.  Wang, Podila, Shannahan, 
Rao, & Brown, 2013).

Fullerene is also formed by carbon atoms and forms a closed structure that may 
be a hollow sphere, ellipsoid, tube, or many other shapes and sizes. It has anti-
inflammatory and antioxidant effects (Magoulas et al., 2012). Fullerenes inhibit the 
allergic response against Ag-driven type I hypersensitivity by decreasing the level 
of reactive oxygen species (ROS) (Ryan et  al., 2007). Fullerene derivatives may 
defend against oxidative stress in ischemia-reperfused lungs (Y.-W. Chen, 2004). 
Fullerenes were also shown to inhibit the development of arthritis in a rat model 
(Yudoh, Karasawa, Masuko, & Kato, 2009). In another study, hydroxylated fuller-
enes inhibited neutrophil function in fathead minnows (Jovanović, Anastasova, 
Rowe, & Palić, 2011).

4.5.2  �Metal Nanoparticles

Gold nanoparticles have diverse properties and their size can be tailored to modulate 
their immune response and biodistribution. In gold nanoparticles, gold core is inert 
and nontoxic, and the nanoparticles can be manufactured with a very wide size dis-
tribution ranging from 1 to 150 nm and can be easily synthesized by various methods 
(C. P. Sharma, 2010). Twenty-one nanometer spherical gold nanoparticles caused 
no apparent organ or cell toxicity in mice, but resulted in inhibition of inflammatory 
effects (H. Chen et al., 2013). Five and 15 nm gold nanoparticles reduce pro-inflam-
matory responses induced by interleukin-1 (Sumbayev et al., 2013).

Iron oxide nanoparticles have also been used for immunomodulatory purposes. 
When the mice were exposed to ovalbumin and to varying doses of iron oxide 
submicron- or nanoparticles, allergic response was significantly inhibited. 
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Interestingly, low doses of submicron particles had no significant effect on the allergic 
response while the same dose of nanoparticles had an adjuvant effect on the response 
to ovalbumin. This study clearly showed that the particle dose and size affect the 
allergic response (Ban, Langonné, Huguet, Guichard, & Goutet, 2013). 
Administration of iron oxide nanoparticles (58.7 nm) also suppressed T-helper 1 
cell-mediated immunity in ovalbumin sensitized mice (Shen, Liang, Wang, Liao, & 
Jan, 2012). Compared to single instillation, repeated instillations resulted in a reduc-
tion of inflammatory cell numbers in both bronchoalveolar lavages and pulmonary 
parenchyma (Ban, Langonné, Huguet, & Goutet, 2012).

Cerium oxide nanoparticles have the potential to reduce reactive oxygen species 
production and may be used to battle chronic inflammation (Hirst et  al., 2009; 
Schanen et al., 2013). Also, cerium oxide nanoparticles (5–8 nm) protected the car-
diac progenitor cells from H2O2-induced cytotoxicity (Pagliari et al., 2012).

Quantum dots are artificial semiconductor particles that are a few nanometers in 
size and their distinctive conductive properties are usually determined by their size. 
Cadmium telluride quantum dot nanoparticles suppressed the immune responses of 
macrophages to Pseudomonas aeruginosa by reducing NO, TNF, KC/CXCL-1, and 
IL-8 levels (Nguyen, Seligy, & Tayabali, 2013). Immunosuppression was also 
observed in Juvenile rainbow trout. When Juvenile rainbow trout were exposed to 5, 
10, and 20 nM cadmium tellurium quantum dots, each form of dots resulted in a 
different pattern of gene expression and lowered fish immune response (Gagné 
et al., 2010). Sub-toxic levels of cadmium telluride quantum dot nanoparticles were 
also shown to suppress immune responses against bacteria in macrophages and epi-
thelial cells (Nguyen et al., 2013).

4.5.3  �Polymeric Nanoparticles

The size, shape and material of polymeric nanoparticles have also been shown to be 
important for suppression of immune responses. Twenty nanometer polystyrene 
particles decreased the efficiency of dendritic cells to degrade soluble antigens, 
without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. 
Thousand nanometer polystyrene particles did not have such effects, while 20 nm 
particles accumulated in the lysosomes. Size-dependent accumulation of particles 
in lysosomes modulates dendritic cell function through impaired antigen degrada-
tion (Seydoux et al., 2014).

When dendritic cells (DCs) were treated with model biomedical poly(vinyl 
alcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs), they 
were observed to exhibit decreased antigen processing capacity and CD4+ T-cell 
stimulation capacity (Blank et al., 2011).

Inert 50  nm polystyrene nanoparticles were also shown to inhibit allergic lung 
inflammation by modification of pulmonary dendritic cell function (Hardy et al., 2012). 
Particles composed of PLGA or PEG did not result in production of pro-inflammatory 
cytokines or inflammasome activation in macrophages. When instilled into the lungs, 
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particle composition and size may increase the number and type of innate immune cells 
in the lungs without triggering inflammatory responses (Roberts et al., 2013). In another 
study, polystyrene or biodegradable poly(lactide-co-glycolide) microparticles encapsu-
lating encephalitogenic peptides (500 nm diameter) were observed to induce long-term 
T-cell tolerance and ameliorated experimental autoimmune encephalomyelitis (Getts 
et al., 2012).

4.5.4  �Biomaterial-Based Nanoparticles

Peptide, carbohydrate, nucleic acid, and liposomal formulations have also been 
used for immunomodulation for the treatment of autoimmune diseases. Nanoparticles 
carrying disease-related peptide-major histocompatibility complexes were shown to 
reduce polyclonal autoimmunity by activating the selective expansion of memory-
like autoregulatory CD8+ T-cells (Clemente-Casares et al., 2011). These antigens 
interacted with CD8+ T-cells only in diseased but not healthy individuals, thus these 
nanoparticles coated with any relevant pMHC may be used as vaccines to inhibit 
polyclonal autoimmune responses in a disease and organ-specific manner (Tsai 
et al., 2010).

Liposomal encapsulation of glucocorticoids both enhances their efficacy in the 
treatment of encephalomyelitis and alters their target cell specificity and their mode 
of action compared to free glucocorticoids (Schweingruber et al., 2011). A study 
with folate-targeted nanoparticles showed promising results in the treatment of 
inflammatory arthritis (T. P. Thomas, Goonewardena, et al., 2011). Liposomal glu-
cocorticoids inhibited proinflammatory macrophage functions and upregulate anti-
inflammatory genes, but had little effect on T-cell apoptosis and function.

Injection of DNA plasmids encoding immunomodulatory proteins (OX40-
TRAIL), and a cationic lipid was shown to ameliorate experimental autoimmune 
encephalomyelitis (Yellayi et al., 2011). Controlled release of immunomodulating 
peptide antigens from PLGA suppressed production of inflammatory cytokines 
and helped to reduce dosing without increased frequency (H.  Zhao, Kiptoo, 
Williams, Siahaan, & Topp, 2010). A study in siRNA silencing in inflammatory 
monocytes to suppress expression of the chemokine receptor CCR2 showed that 
this approach prevented accumulation of inflammatory monocytes and their dif-
ferentiation into highly activated antigen-presenting macrophages at the sites of 
inflammation. This therapeutic approach reduced inflammation in atherosclerotic 
plaques, decreased infarct size after coronary artery occlusion, prolonged survival 
of pancreatic islet allografts after transplantation, and suppressed tumor growth 
(Leuschner et al., 2011). Polylactide-cyclosporine A nanoparticles were produced 
at sub-100 nm sizes and narrow particle size distributions, and released cyclospo-
rine A continuously for targeted immunosuppression. This study showed that poly-
lactide-cyclosporine A nanoparticles were internalized into the dendritic cells with 
a continuous release to the culture medium, suppressing proliferation of T-cells 
without any systemic release of the drug (Azzi et al., 2010).
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In another study, when leukemia inhibitory factor-loaded nanoparticles were 
directed to T-cells, vascularized heart grafts survived longer, Foxp3+ cells were 
induced and Th17 cells were expanded. These results show that engineered nanopar-
ticles regulate immune pathways to elicit wanted response, thus enabling a new 
therapeutic approach for autoimmune disorders (Park et al., 2011).

4.6  �Conclusions and Future Perspectives

Strategies to develop therapies based on inherent properties of different types of 
nanoparticles, which may be tailored for different diseases, should also employ 
methods to understand the mechanisms of the immunomodulatory action of these 
nanoparticles. There are many different types of nanoparticles with various chemi-
cal structures and sizes, and they can be functionalized with different side units. In 
addition to the size, particle composition, surface chemistry, ability to bind to 
plasma proteins, and drug excretion time and route is important for the immuno-
modulatory characteristics of the nanomaterials. These responses may be beneficial 
or harmful depending on the disease type. Research on immunomodulating nano-
materials to fight against cancer focuses on avoiding side effects and enhancing the 
tumor degrading ability of these nanoparticles. On the other hand, nanoparticles 
should have immune suppressing ability to treat autoimmune disorders.

It is extremely important that the correlation between the nanoparticle properties 
and immune response is elucidated for development of treatment and diagnosis 
methods in medicine. However, further detailed studies are required for tissue 
regeneration and diagnosis, prevention and treatment of diseases through immuno-
modulatory nanoparticles.
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