
Checking the Expressivity of Firewall
Languages

Lorenzo Ceragioli1(B) , Pierpaolo Degano1 , and Letterio Galletta2

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
lorenzo.ceragioli@phd.unipi.it, degano@di.unipi.it

2 IMT School for Advanced Studies, Lucca, Italy
letterio.galletta@imtlucca.it

Abstract. Designing and maintaining firewall configurations is hard,
also for expert system administrators. Indeed, policies are made of a
large number of rules and are written in low-level configuration languages
that are specific to the firewall system in use. As part of a larger group,
we have addressed these issues and have proposed a semantic-based
transcompilation pipeline. It is supported by FWS, a tool that analy-
ses a real configuration and ports it from a firewall system to another.
To our surprise, we discovered that some configurations expressed in a
real firewall system cannot be ported to another system, preserving the
semantics. Here we outline the main reasons for the detected differences
between the firewall languages, and describe F2F, a tool that checks if
a given configuration in a system can be ported to another system, and
reports its user on which parts cause problems and why.

1 Introduction

Firewalls are the basic mechanisms for the protection of computer networks.
Their effectiveness heavily depends on the correctness of configurations, since
even a small flaw may break up completely the security or the functionality of
an entire network.

Policies are typically written in low-level configuration languages that are
specific to the firewall system in use and support non-trivial control flow con-
structs, such as call and goto. A configuration usually consists of a large number
of rules interacting with each other, often in some obscure manner. Indeed, the
way rules are used depends on the firewall system in hand, and also on contex-
tual information, e.g. the order in which rules appear in the configuration. Also,
the way in which these systems work has to be inferred from manuals and by
experiencing with them, since almost always they have no formal semantics. It is
therefore hard to understand the firewall behaviour, also because of the different
ways in which packets are processed by the network stack of the operating system

The first two authors have been partially supported by project PRA 2018 66 DECL-
ware: Declarative methodologies for designing and deploying applications of the Uni-
versità di Pisa; the third author by IMT project PAI VeriOSS.

c© Springer Nature Switzerland AG 2019
M. S. Alvim et al. (Eds.): Palamidessi Festschrift, LNCS 11760, pp. 86–100, 2019.
https://doi.org/10.1007/978-3-030-31175-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31175-9_6&domain=pdf
http://orcid.org/0000-0002-1288-9623
http://orcid.org/0000-0002-8070-4838
http://orcid.org/0000-0003-0351-9169
https://doi.org/10.1007/978-3-030-31175-9_6

Checking the Expressivity of Firewall Languages 87

running on the firewall. An additional source of mess is Network Address Trans-
lation (NAT) that translates IP addresses and performs port redirection while
packets traverse the firewall. In cooperation with a larger group of researchers,
we have proposed a semantic-based transcompilation pipeline [3,4] to support
system administrators. The pipeline is implemented by the tool FWS, described
in [4]. It is available online1 and it provides several utilities. Its first stages sup-
port a system administrator in analysing the current firewall configuration, by
first extracting a formal description of the firewall behaviour. Then, the user can
port a configuration from a system to another, preserving its meaning. Crucial
to all the pipeline is the use of the Intermediate Firewall Configuration Language
(IFCL) that has a formal semantics. This intermediate language has been used
in [3,4] as a common framework to encode firewalls written in iptables [12],
ipfw [13] and pf [11], which are the most used languages in Unix and Linux.

To our surprise, while implementing the pipeline, we discovered that some
configurations could not be compiled to a language different from the source
one. To investigate on these corner cases, we used the new denotational seman-
tics of IFCL and the new algorithm for porting configurations given in [6]. The
expressivity of real firewall systems is then formally compared, and we proved
that their languages originate a partial order [5]. In particular there exists a
firewall expressible in iptables, but neither in ipfw nor in pf; also, iptables
is incomparable and ipfw dominates pf.

Here, we describe F2F, a tool that given a configuration c for a source system
L and a target system L′, checks if there exists a configuration c′ in L′ such that
the behaviour is the same. If instead there is none, it reports to the user on which
packets cause problems and why. The information provided by F2F can guide
the system administrator in the choice of another target system, but could also
be used to make an informed decision on how to change the configuration in order
to make it expressible by the target system. We also present a simple yet realistic
use case for F2F, that is available online2 and takes a few seconds to perform
such a check on medium size configurations, although it is in a preliminary
version.

Our purpose here is to complement the papers [3–6] that have the full details
about the theoretical basis of the tool; in particular, we refer the interested
reader to [5,6] for the new denotational semantics of IFCL and for an analysis
on the expressive power of various firewall languages.

Related Work. To the best of our knowledge the expressive power of firewall
systems is formally investigate only in [5], which provides us with firm guidelines
for the development of F2F.

In the literature there are many proposals for modeling and analyzing firewall
configurations. Some of them, e.g. see [7,9,10], do not rely on a formal semantics
and typically either compile from a high level to a low level language or check if
configurations comply with given specifications.

1 https://github.com/secgroup/fws.
2 https://github.com/lceragioli/F2F.

https://github.com/secgroup/fws
https://github.com/lceragioli/F2F

88 L. Ceragioli et al.

The following instead provide firewall systems with a formal semantics. Diek-
mann et al. [8] consider a subset of iptables without packet transformations,
and mechanize it using Isabelle/HOL. Furthermore, they define and prove correct
a simplification procedure that aims to make configurations easier to be analyzed
by automatic tools. Adão et al. [1] introduce Mignis, a high level firewall language
for specifying abstract filtering policies, and a compiler from it into iptables,
which is formally proved correct. The paper formalizes the semantics of Mignis
and gives an operational semantics of iptables, including packet filtering and
translations. Successively, Adão et al. [2] propose a denotational semantics for
Mignis that maps a configuration into a packet transformer, representing all the
accepted packets with the corresponding translations, similarly to the one in [5],
which is the basis of our tool.

Plan of the Paper. Section 2 surveys the firewall system we consider in this
paper, the IFCL semantics and the transcompilation pipeline of [4].

Section 3 presents an iptables configuration, implementing a policy to be
applied in a simple yet realistic scenario, and shows how our tool detects that
neither ipfw nor pf can express this configuration. The internals of the tool
F2F are described in Sect. 4 with the help of some examples that illustrate the
main reasons for the differences between the expressive power of the considered
firewall languages. In Sect. 5 we conclude and discuss some future work.

2 Background

In the following we survey the most used firewall languages, the intermediate
language IFCL and the way it is used to encode them. Finally, we briefly present
the stages of the transcompilation pipeline.

2.1 iptables

It is the default tool for packet filtering in Linux and it operates on top of
Netfilter, the framework for packets processing of the Linux kernel [12].

An iptables configuration is built on tables and chains. Intuitively, each
table has a specific purpose and is made of a collection of chains. The most
commonly used tables are: Filter for packet filtering; Nat for network address
translation; Mangle for packet alteration. Chains are actually rulesets, and are
ordered lists of policy rules that are inspected to find the first one matching
the packet under evaluation. There are five predefined chains, and the user can
extend them defining its own. Chains are inspected by the Linux kernel at specific
moments of the packet life cycle [14]: PreRouting, when a packet reaches the
host; Forward, when a packet is routed through the host; PostRouting, when
a packet is about to leave the host; Input, when a packet is routed to the host;
Output, when a packet is generated by the host.

Each rule specifies a condition and an action to apply to the matching packet,
called target. The most commonly used targets are: ACCEPT, to accept the packet;

Checking the Expressivity of Firewall Languages 89

DROP, to discard the packet; DNAT, to perform destination NAT, i.e., a translation
of the destination address; SNAT, to perform source NAT, i.e., a translation of
the source address. There are also targets that allow implementing mechanisms
similar to jumps and procedure calls, but since they can be macro-expanded
(see below), we ignore them and refer the reader to the technical documenta-
tion [12]. Built-in chains have a user-configurable default policy (ACCEPT or DROP)
to be applied when the evaluation reaches the end of a built-in chain.

2.2 ipfw

It is the standard firewall for FreeBSD [13]. A configuration consists of a single
list of rules (called ruleset) that is inspected twice, when the packet enters the
firewall and when it exits. It is possible to specify when a certain rule has only
to be applied in either case by using the keywords in and out. Similarly to
iptables, rules are inspected sequentially until the first match occurs and the
corresponding action is taken. The packet is dropped if there is no matching
rule. The sequential order of inspection is altered by special targets that jump
to a rule that follows the current one.

2.3 pf

This is the standard firewall of OpenBSD [11] and MacOS since version 10.7. A
pf configuration consists of a single ruleset, inspected when the packet enters and
exits the host. Similarly to the other systems, each rule consists of a condition
and a target that specifies how to process the packets matching the condition.
The most common targets are: pass and block to accept and reject packets,
respectively; rdr and nat to perform destination and source NAT, respectively.
The rule to apply is the last matched rule (unless otherwise specified). Moreover,
when a packet enters the host, DNAT rules are examined first and filtering is
performed after the address translation. Similarly, when a packet leaves the host,
its source address is translated by the relevant SNAT rules, and then the resulting
packet is filtered.

2.4 The Intermediate Language IFCL

We use the Intermediate Firewall Configuration Language (IFCL) [3,4] as a com-
mon setting in which we encode the firewall systems above. It has been originally
equipped with an operational semantics [3].

A firewall configuration in IFCL consists of a set of rulesets and a control
diagram. As usual, a ruleset is a list of rules that are inspected sequentially
to find the first rule matching a packet. A control diagram is a graph C that
deterministically describes the order in which rulesets are applied by the network
stack of the operating system. Every node q represents thus a processing phase
and it is associated with the ruleset to apply when the control reaches q. Arcs
are labeled with predicates that encode routing decisions taken by the firewall,

90 L. Ceragioli et al.

e.g., depending on whether a packet comes from the external world. Intuitively,
a packet p is accepted if there exists a path π from the initial to the final node of
C such that p passes the checks of (and is possibly transformed by) the rulesets
associated with the nodes of π.

A firewall rule consists of a predicate φ over packets and an action t, called
target, defining how packets matching φ are processed. For our purposes, it suf-
fices to consider the following subset of targets considered in [4] (note that we
can safely neglect targets altering the control, like call, goto and return, because
they can suitably be macro-expanded)

ACCEPT the packet is accepted
DROP the packet is discarded
NAT(nd, ns) apply NAT

In the NAT action, nd and ns specify how to translate the destination and source
addresses/ports of a packet and, as done before, we use − to denote the identity
translation. For instance, nd = n : − means that the destination address of a
packet is translated according to n, while the port is kept unchanged.

Formally, an IFCL firewall is defined as follows:

Definition 1 (Firewall). An IFCL firewall is a pair (C,Σ) where C is a control
diagram and Σ is a configuration, defined below.

Let P ⊆ P be a set of predicates over packets p. A deterministic control
diagram C is a tuple (Q,A, qi, qf), where

– Q is the set of nodes;
– A ⊆ Q × P × Q is the set of arcs, such that whenever

(q, ψ, q′), (q, ψ′, q′′) ∈ A and q′ �= q′′ then ¬(ψ ∧ ψ′);
– qi, qf ∈ Q are special nodes denoting the start of elaboration of an incoming

packet p and the end if p is accepted.

A configuration is a pair Σ = (ρ, c), where

– ρ a set of rulesets;
– c : Q → ρ is a function assigning a ruleset to each node q ∈ Q.

2.5 Modeling iptables, ipfw and pf in IFCL

We now survey the encoding of the firewall systems mentioned above into IFCL.
The full definitions are in [3,4], and we only report here the relevant information
for our treatment. We remark that the behaviour of those firewall systems is only
informally defined by manuals, except for iptables for which [1] introduced a
formal semantics. However they all inherit the formal semantics of IFCL, via the
encodings below (for iptables the inherited semantics and that of [1] coincide).

Hereafter let S be the set of the addresses of the firewall interfaces; let p ∈ P

be a packet; let d(p) and s(p) denote the destination address and source address

Checking the Expressivity of Firewall Languages 91

Fig. 1. Control diagrams of iptables, ipfw and pf.

of p, respectively; and let d(p) ∈ S (s(p) ∈ S, respectively) specify that p is for
(comes from, respectively) the firewall. In the control diagrams of Fig. 1 we label
arcs with predicates expressing constraints on the header of packets according
to S; arcs with no label implicitly carry “true”.

iptables. Figure 1a shows the control diagram Ciptables of iptables (recall
that its tables contain predefined chains). The encoding into IFCL associates
these predefined chains with the nodes of the control diagram. For example,
the table Nat contains the PostRouting chain that is associated with q11. It is
important to note that in iptables a DNAT is only performed in nodes q1, q8,
whereas SNAT only in nodes q5, q11. Similarly, DROP can only be applied when the
control is in either nodes q3, q6, q9. As we will see later on, these capabilities are
represented by the labels in the boxes.

ipfw. The control diagram of ipfw is in Fig. 1b. The encoding of [4] splits the
single ipfw ruleset in two rulesets containing each the rules annotated with the
keyword in and out, respectively (if not annotated, the rule goes in both). Both
rulesets can filter packets and transform them. The node q0 is associated with
the ruleset applied when an IP packet reaches the host from the net, whereas, q1
is for when the packet leaves the host. Note that the loop between the nodes q0
and q1 causes no problem, because firewalls detects cycles and drop the packet
causing it.

pf. Figure 1c displays the control diagram of pf, where the nodes q2 and q3 are
associated with the rulesets applied to packets that reach the firewall, while q0
and q1 are for when they leave the firewall. Also in this case, the single ruleset
of pf is split in different rulesets. A source NAT can only be applied to packets
leaving the firewall, and destination NAT only those reaching it. Importantly
NAT rules (in nodes q0 and q2) are evaluated before filtering (in nodes q1 and
q3). To represent the last matching-rule policy of pf, it suffices to reverse the
order of rules inside rulesets.

92 L. Ceragioli et al.

NTP server
193.204.114.232

. . .

HTTP server
10.0.0.8

LAN: 10.0.0.0/8

LAN: 192.168.0.0/16

. . .

151.15.185.18310.0.0.1

192.168.0.1

Fig. 2. A simple scenario.

2.6 Transcompilation Pipeline

The transcompilation pipeline of [3,4] supports system administrators in (i)
decompiling real configurations into abstract specifications representing the set
of the permitted connections; (ii) performing policy refactoring by supporting
configuration updates and elimination of redundant rules, thus obtaining mini-
mal and clean configurations; (iii) automatically porting a configuration written
for a system into the language of another system.

The proposed transcompiling pipeline is made of the following stages:

1. decompile a policy from the source language to IFCL;
2. extract the meaning of the policy as a table describing how the accepted

packets are translated;
3. compile the semantic table into the target language.

All the steps above are supported by the tool FWS, described in [4] and
available online.3 Experiments have been made on te languages mentioned above.

3 An Example Illustrating the Expressivity Problem

We present below a specific network with a firewall, and a specific configuration,
expressed in iptables. Then, using F2F we illustrate the reasons why this con-
figuration can neither be ported in ipfw nor in pf, without resorting to ad hoc
extensions of these languages.

Consider the firewall connected to the Internet using the IP 151.15.185.183, in
the network in Fig. 2. It protects two LANs with addresses ranging in 10.0.0.0/8
and 192.168.0.0/16,4 respectively, because all the connections from and to the
Internet pass through the firewall. The first LAN hosts various servers, and the

3 https://github.com/secgroup/fws.
4 We use the standard CIDR notation to denote the range of IP addresses.

https://github.com/secgroup/fws

Checking the Expressivity of Firewall Languages 93

1 *nat
2 :PREROUTING ACCEPT [0:0]
3 :INPUT ACCEPT [0:0]
4 :OUTPUT ACCEPT [0:0]
5 :POSTROUTING ACCEPT [0:0]
6

7 -A PREROUTING -p udp --dport 123 -j DNAT --to 193.204.114.232
8 -A OUTPUT -p udp --dport 123 -j DNAT --to 193.204.114.232
9 -A PREROUTING -p tcp -d 151.15.185.183 --dport 80 -j DNAT --to 10.0.0.8

10 -A OUTPUT -p tcp -d 151.15.185.183 --dport 80 -j DNAT --to 10.0.0.8
11

12 -A POSTROUTING -d 192.168.0.0/16 -j ACCEPT
13 -A INPUT -d 192.168.0.0/16 -j ACCEPT
14 -A POSTROUTING -d 10.0.0.0/8 -j ACCEPT
15 -A INPUT -d 10.0.0.0/8 -j ACCEPT
16 -A POSTROUTING -j SNAT --to 151.15.185.183
17 -A INPUT -j SNAT --to 151.15.185.183
18

19 COMMIT
20

21 *filter
22 :INPUT DROP [0:0]
23 :FORWARD DROP [0:0]
24 :OUTPUT DROP [0:0]
25

26 -A INPUT -m state --state ESTABLISHED -j ACCEPT
27 -A INPUT -p tcp -d 10.0.0.8 --dport 80 -j ACCEPT
28 -A INPUT -s 10.0.0.0/8 -d 10.0.0.0/8 -j ACCEPT
29 -A INPUT -s 192.168.0.0/16 ! -d 10.0.0.0/8 -j ACCEPT
30 -A INPUT -p udp -d 193.204.114.232 --dport 123 -j ACCEPT
31

32 -A FORWARD -m state --state ESTABLISHED -j ACCEPT
33 -A FORWARD -p tcp -d 10.0.0.8 --dport 80 -j ACCEPT
34 -A FORWARD -s 10.0.0.0/8 -d 10.0.0.0/8 -j ACCEPT
35 -A FORWARD -s 192.168.0.0/16 ! -d 10.0.0.0/8 -j ACCEPT
36 -A FORWARD -p udp -d 193.204.114.232 --dport 123 -j ACCEPT
37

38 -A OUTPUT -m state --state ESTABLISHED -j ACCEPT
39 -A OUTPUT -p tcp -d 10.0.0.8 --dport 80 -j ACCEPT
40 -A OUTPUT -s 10.0.0.0/8 -d 10.0.0.0/8 -j ACCEPT
41 -A OUTPUT -s 192.168.0.0/16 ! -d 10.0.0.0/8 -j ACCEPT
42 -A OUTPUT -p udp -d 193.204.114.232 --dport 123 -j ACCEPT
43

44 COMMIT

Fig. 3. A simple configuration in iptables.

second one common users. The firewall interacts with the LANs through the
interfaces with the addresses 10.0.0.1 and 192.168.0.1, respectively.

We assume that hosts in the LANs have private addresses that cannot be
routed on the Internet, hence the source address of outgoing packets and the
destination address of incoming packets are translated using NAT. Also these
hosts are not allowed to directly communicate with each other, and thus their
messages always pass through the firewall.

The configuration in Fig. 3 enforces the following behaviour. The hosts in the
LANs can freely communicate each other, but servers cannot start a connection
towards a common user. When the protocol is NTP (Network Time Protocol) on
port 123, the connection is redirected to the remote host 193.204.114.232, via a
destination NAT (DNAT). The connections from the Internet towards the hosts in

94 L. Ceragioli et al.

(venv) user@here:~/$ fwp iptables ~/interfaces ~/iptables.conf ipfw

Solving: [##] (36/ 36) 100.00%

PROBLEM FOUND!

In ipfw the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | Self || SNAT (Self) : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 192.168.0.1 | * | 127.0.0.1 | 123 | udp || 151.15.185.183 : - | 193.204.114.232 : - ||

|||||||381.581.51.151||||

|||||||1.0.0.01||||

|| | | 192.168.0.1 | | || | ||

===

PROBLEM FOUND!

In ipfw the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | ~Self || SNAT (Self) : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

==

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

==

|| 192.168.0.1 | * | 0.0.0.0 - 10.0.0.0 | 123 | udp || 151.15.185.183 : - | 193.204.114.232 : - ||

|| | | 10.0.0.2 - 127.0.0.0 | | || | ||

|| | | 127.0.0.2 - 151.15.185.182 | | || | ||

|| | | 151.15.185.184 - 192.168.0.0 | | || | ||

|| | | 192.168.0.2 - 255.255.255.255 | | || | ||

==

Fig. 4. Checking the portability of the configuration in ipfw.

the LANs are blocked, except than those to the external address 151.15.185.183
on port 80 (written 151.15.185.183 : 80), that are redirected to the HTTP server
at 10.0.0.8, also via DNAT. Every host can connect to 193.204.114.232, while only
common users can connect to other Internet addresses. The source address of
these outgoing packets get their source address translated to the external address
of the firewall, via a SNAT.

Assume we want to port this configuration into ipfw, and for that we
invoke F2F to check if this is possible. Intuitively, the configuration is inter-
nally represented as a table whose rows represent the accepted packets and
how they are translated. For example, consider a UDP packet with destina-
tion 151.15.185.184 : 123 and source 192.168.0.1 : ∗ (∗ stands for any port). It
is accepted when its destination is translated to 193.204.114.232 : 123 and its
source to 151.15.185.183 : − (− stands for “the port remains the same”), because
its destination is first translated by rule 10, then it passes through the OUTPUT
chain in the filter table and is forwarded by rule 42, finally it is subject to SNAT

in rule 16 that is the first matching rule of the POSTROUTING chain in nat table.
Roughly, the relevant portion of the corresponding row will look as follows:

sIp sPort dIp dPort prot +tr scr+ +tr dst+

192.168.0.1 ∗ 151.15.185.184 123 udp 151.15.185.183 : − 193.204.114.232:123

Checking the Expressivity of Firewall Languages 95

(venv) user@here:~/$ fwp iptables ~/interfaces ~/iptables.conf pf

PROBLEM FOUND!

In pf the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | Self || id : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 127.0.0.1 | * | 151.15.185.183 | 80 | tcp || - : - | 10.0.0.8 : - ||

|| 151.15.185.183 | | | | || | ||

|| 10.0.0.1 | | | | || | ||

|| 192.168.0.1 | | | | || | ||

===

PROBLEM FOUND!

In pf the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | Self || SNAT (Self) : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 192.168.0.1 | * | 127.0.0.1 | 123 | udp || 151.15.185.183 : - | 193.204.114.232 : - ||

|| | | 151.15.185.183 | | || | ||

|| | | 10.0.0.1 | | || | ||

|| | | 192.168.0.1 | | || | ||

===

PROBLEM FOUND!

In pf the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | ~Self || SNAT (Self) : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

==

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

==

|| 192.168.0.1 | * | 0.0.0.0 - 10.0.0.0 | 123 | udp || 151.15.185.183 : - | 193.204.114.232 : - ||

|| | | 10.0.0.2 - 127.0.0.0 | | || | ||

|| | | 127.0.0.2 - 151.15.185.182 | | || | ||

|| | | 151.15.185.184 - 192.168.0.0 | | || | ||

|| | | 192.168.0.2 - 255.255.255.255 | | || | ||

==

Fig. 5. Checking the portability of the configuration in pf.

where sIp and dIp stand for source and destination IP address, sPort and dPort
for their ports, prot for the protocol, tr scr, tr dst for the transformations
applied (for brevity the IP address and the port are separated by a “:”).

Starting from this tabular representation, F2F checks if the same transfor-
mations can be obtained by a configuration of the target system. Roughly, to do
that, it visits the target control diagram and verifies if it is possible to apply the
relevant transformations in the nodes of the paths followed by a packet. If this
is not possible, then the counterexamples are reported in tabular form.

Back to our example, Figs. 4 and 5 display the output of F2F on the con-
figuration in Fig. 3 when the targets are ipfw and pf, respectively. The param-
eters of the tool are the source firewall system (here iptables); a file with
the firewall interfaces and their addresses (interfaces); the input configuration
(iptables.conf); and the target system. Some problems are detected because

96 L. Ceragioli et al.

of a different expressivity power of iptables and ipfw, and thus porting this
configuration cannot preserve the semantics. For each of them the tool displays
the reason why, and the rules of the source configuration that cannot be ported,
in tabular form.

The first problem with ipfw arises when (i) a packet has source and des-
tination addresses of the firewall; (ii) the source is transformed by SNAT to an
address of the firewall itself (Self); (iii) the destination is transformed DNAT to an
address not of the firewall (~Self).The reason is that ipfw cannot apply both
transformations in this case.The second table lists those packets that cannot
be correctly handled. For example, the packet with source IP 192.168.0.1 and
any source port, with destination IP 10.0.0.1 and port 123, and protocol UDP
cannot be translated to a packet with source 151.15.185.183 and destination
193.204.114.232, with no changes to the ports.

Also the second problem with ipfw arises because of a pair SNAT and DNAT

on a packet generated by the firewall but this time with another host as des-
tination. E.g., the UDP packet with source 192.168.0.1 : ∗ and destination
151.15.185.184 : 123 shown in Fig. 3 cannot be transformed in the packet with
source 151.15.185.183 : ∗ and destination 193.204.114.232 : 123.

Figure 5 shows that the configuration in Fig. 3 cannot be ported to pf, as
well. Besides the same problems already discussed for ipfw, the tool reports in
the first subtable that a packet generated by the firewall and directed to one
of its interfaces cannot be redirected to another external host, e.g., the remote
NTP, by applying a DNAT. Note that this case implicitly shows that there is a
packet expressible in ipfw, but not in pf.

4 Why and How It Works

This section describes the internals of our tool that works in two steps. The first
extracts the meaning of a configuration in a given language L as a function from
packets to transformations, which has been intuitively represented as a table
in Sect. 3. The second step uses the semantics just obtained and checks if the
configuration can be expressed in a target language L′.

4.1 The Denotational Semantics of Configurations in a Nutshell

Given a configuration in L, FWS decompiles it into a set of rules in IFCL,
associated with the relevant control diagram of L [4].

This intermediate representation of the configuration is then associated with
a function F that maps packets into (the sets of) transformations they are subject
to while the kernel of the operating system processes them. (Recall that packets
belonging to established connections are not treated here, since they are accepted
by default and usually never translated5). A transformation can be the discard

5 Actually, some translations may occur, typically SNAT, but these are performed by
other components of the operating system at run-time.

Checking the Expressivity of Firewall Languages 97

of a packet (represented by λ⊥) or a specification of what happens to each of
its fields: either it is left unchanged (id) or it is transformed by NAT to a specific
value a (λa). The semantics of a single ruleset and then of an entire IFCL firewall
are defined in [5] as the composition of those functions, collected while packets
traverse the paths of the control diagram. In Sect. 2 the meaning of a firewall
configuration is expressed as a table, which is a succinct representation of its
denotational semantics, where each row corresponds to an equivalence class of
packets associated to the same transformation.

For simplifying the treatment of the expressivity of firewall languages it is
convenient to annotate each node in a control diagram with the kind of trans-
formations that are allowed in that node. This is because in the translation to
IFCL some types of rules cannot be associated with all the nodes. For example,
in pf rules containing the DROP target can only be associated with nodes q1 and
q3. Graphically, in Fig. 1, we include these annotations, or capability labels, in
boxes, and when the only allowed transformation is the identity ID, we omit the
box. We dispense the actual reasons of the exact association of nodes with labels
in the three control diagrams,6 because not necessary for the present treatment;
the interest reader can find the complete presentation of them in [5].

4.2 Checking Portability of Configurations

By exploiting the semantic function F and the control diagram of the target
language L′, we check if a configuration having the same semantics is expressible
in L′. The underlying idea of the checking algorithm follows. Given a packet p,
we follow the path in the control diagram of L′ from the initial node to the final
one, if p is accepted, or to the node that drops p. Along the path, we collect the
list of the capabilities Tj associated with each node qj , i.e. the transformations
that can be applied when the control reaches q and graphically included in boxes.
Now, let F(p) be the sequence of transformations t1, · · · , tn that transform p to
p̃. If for all the packets and for all j it is tj ∈ Tj , then the configuration can be
ported from L to L′ (recall that tj can be the identity).

Consider again the UDP packet p with source IP 192.168.0.1 : ∗ and destina-
tion IP 10.0.0.1 : 123. As discussed in Sect. 3, it is accepted by the configuration
in Fig. 3, traversing the following path in the control diagram of iptables:

qi → q7 → q8 → q9 → q10 → q11 → qf

where node q8 transforms 10.0.0.1:123 to 193.204.114.232: 123 by a DNAT, and the
node q11 transforms 192.168.0.1 : ∗ to 151.15.185.183 : ∗, the interface towards
the Internet. Indeed, DNAT is a capability of q8 and SNAT of q11.

Instead, p can only follow the two following paths in the control diagram of
ipfw, attempting to obtain the same behavior of iptables:
6 As a matter of fact, it is not ipfw that actually translates address, but it demands

this task to other lower level components, possibly to the operating system kernel
itself. For the sake of generality, we have only modelled such calls, because the actual
translations heavily depend on the specific setting of the system hosting the firewall.

98 L. Ceragioli et al.

Fig. 6. How F2F checks the portability of an ipfw configuration (file.conf in the
figure) into pf.

qi → q1 → qf qi → q1 → q0 → qf

We have the following two cases

1. in the leftmost path a DNAT occurs in q1 and p is accepted with no source
address transformation applied, violating the intended semantics;

2. in the rightmost path an SNAT applies, then in q0 we do not apply the DNAT

because otherwise the predicate of the arc leading to qf would be falsified. If
instead we apply DNAT in q0, the control moves back to q1 and a loop will be
detected and the packet will be dropped.

Consider now p′ with with source IP 192.168.0.1 : ∗ and destination IP
151.15.185.182 : 123 that is transformed to one with source 151.15.185.183 : ∗
and destination 193.204.114.232 : 123 (of the NTP server) along the following
accepting path in iptables (the same just seen above):

qi → q7 → q8 → q9 → q10 → q11 → qf

In the control diagram of pf there only is one path that p′ can follow:

qi → q0 → q1 → qf

Note that while the source address can be transformed by node q0, it is not
possible to perform DNAT because the only node with capability DNAT is q2, which
is not reachable since the predicate of the arc requires the packet destination to
be an interface of the firewall. Hence when the packet is accepted by the final
node its fields do not contain the expected values.

Given a control diagram with its capability labels, the algorithm of [5] returns
a table in which each row represents both the expressible and the inexpressible
transformations for a given class of packets. The procedure for building these

Checking the Expressivity of Firewall Languages 99

table is similar to the one sketched above for checking a single packet p. Rather
than on single packets, our algorithm actually works on (a representative of the)
equivalence classes of packets that cover every possible behaviour of the firewall
in hand. The tool F2F matches this expressivity table with the one representing
F and computed by FWS, looking for clashes. In Fig. 6 we recapitulate the steps
needed for evaluating the portability of a configuration: (i) first translate the
source policy into IFCL; use the control diagram of the source language (with
its capability labels) and perform a syntactic translation; and then compute the
semantic function F in a tabular form (top of the figure); (ii) similarly, take
the control diagram of the target language with its capability labels, and derive
the table representing its expressive power (bottom of the figure); (iii) finally
compare the two tables to produce the final result (right part of the figure).

5 Conclusions

We have briefly introduced the pipeline of [3,4] that supports system adminis-
trators in better understanding, in analysing and maintaining a firewall configu-
ration, and in porting it from one firewall configuration language to another. It
is folklore that firewall configuration languages only differ in pragmatic aspects
and in syntactic sugar. To our surprise, we discovered that this is not the case,
and we proved in [5] that the most used ones, iptables, ipfw and pf, form a
hierarchy of expressivity.

We have described F2F, a tool available online7 that checks if a configuration
is expressible in a given language. We have also discussed some revealing cases
in which this is not possible, by inspecting the outputs of F2F. This results have
the form of a table showing the shape of the packets that can be filtered and re-
directed in one language, but not in another. Here, we have mainly concentrated
on the form of the source and destination addresses before and after possible
translations. Although in a preliminary version, our tool can be used efficiently,
because it is a matter of seconds checking the expressivity of a medium size
configuration.

Network administrators can use F2F to choose the firewall system more
appropriate to the current situation, or at least to evaluate if their preferred
one, as well as which of the available tools are the more suited for implement-
ing the needed configuration. Also, a system administrator can overcome the
detected limitation of the firewall systems in use and patch the configuration in
hand in the very troubling points, by resorting to calls to procedures in some
programming language.

Future work will consider different firewall systems, like Cisco-IOS, which is
particularly challenging because the control diagram is also affected by routing
choices. We plan to involve systems administrators in experimenting F2F on real
configurations, and get feedback from them. This of course requires to improve
the interface of F2F.

7 https://github.com/lceragioli/F2F.

https://github.com/lceragioli/F2F

100 L. Ceragioli et al.

References

1. Adão, P., Bozzato, C., Rossi, G.D., Focardi, R., Luccio, F.L.: Mignis: a semantic
based tool for firewall configuration. In: IEEE 27th Computer Security Foundations
Symposium, CSF 2014, pp. 351–365 (2014)

2. Adão, P., Focardi, R., Guttman, J.D., Luccio, F.L.: Localizing firewall security
policies. In: Proceedings of the 29th IEEE CSF, Lisbon, Portugal, 27 June–1 July
2016, pp. 194–209 (2016)

3. Bodei, C., Degano, P., Focardi, R., Galletta, L., Tempesta, M.: Transcompiling
firewalls. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 303–
324. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 13

4. Bodei, C., Degano, P., Focardi, R., Galletta, L., Tempesta, M., Veronese, L.:
Language-independent synthesis of firewall policies. In: Proceedings of the 3rd
IEEE European Symposium on Security and Privacy (2018)

5. Ceragioli, L., Degano, P., Galletta, L.: Are All Firewall Systems Equally Powerful?
Submitted for publication. https://sysma.imtlucca.it/wp-content/uploads/2019/
03/firewall-expressivity.pdf

6. Ceragioli, L., Galletta, L., Tempesta, M.: From firewalls to functions and back. In:
Italian Conference on Cybersecurity ITASEC 2019. CEUR Proceedings, vol. 2315
(2019). http://ceur-ws.org/Vol-2315/paper04.pdf

7. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to
specify and deploy a network security policy. In: Dimitrakos, T., Martinelli, F.
(eds.) Formal Aspects in Security and Trust. IIFIP, vol. 173, pp. 203–218. Springer,
Boston, MA (2005). https://doi.org/10.1007/0-387-24098-5 15

8. Diekmann, C., Hupel, L., Michaelis, J., Haslbeck, M.P.L., Carle, G.: Verified ipta-
bles firewall analysis and verification. J. Autom. Reason. 61(1–4), 191–242 (2018)

9. Foley, S.N., Neville, U.: A firewall algebra for openstack. In: 2015 IEEE Conference
on Communications and Network Security, CNS 2015, pp. 541–549 (2015)

10. Mart́ınez, S., Cabot, J., Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N.: A
model-driven approach for the extraction of network access-control policies. In:
Proceedings of the MDSec 2012, pp. 5:1–5:6. ACM (2012)

11. Packet Filter (PF). https://www.openbsd.org/faq/pf/
12. Russell, R.: Linux 2.4 packet filtering HOWTO (2002). http://www.netfilter.org/

documentation/HOWTO/packet-filtering-HOWTO.html
13. The IPFW Firewall. https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
14. The Netfilter Project. https://www.netfilter.org/

https://doi.org/10.1007/978-3-319-89722-6_13
https://sysma.imtlucca.it/wp-content/uploads/2019/03/firewall-expressivity.pdf
https://sysma.imtlucca.it/wp-content/uploads/2019/03/firewall-expressivity.pdf
http://ceur-ws.org/Vol-2315/paper04.pdf
https://doi.org/10.1007/0-387-24098-5_15
https://www.openbsd.org/faq/pf/
http://www.netfilter.org/ documentation/HOWTO/packet- filtering-HOWTO.html
http://www.netfilter.org/ documentation/HOWTO/packet- filtering-HOWTO.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.netfilter.org/

	Checking the Expressivity of Firewall Languages
	1 Introduction
	2 Background
	2.1 iptables
	2.2 ipfw
	2.3 pf
	2.4 The Intermediate Language IFCL
	2.5 Modeling iptables, ipfw and pf in IFCL
	2.6 Transcompilation Pipeline

	3 An Example Illustrating the Expressivity Problem
	4 Why and How It Works
	4.1 The Denotational Semantics of Configurations in a Nutshell
	4.2 Checking Portability of Configurations

	5 Conclusions
	References

