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Abstract. In a well-known and influential paper [17] Palamidessi has
shown that the expressive power of the Asynchronous w-calculus is
strictly less than that of the full (synchronous) m-calculus. This gap
in expressiveness has a correspondence, however, in sharper semantic
properties for the former calculus, notably concerning algebraic laws.
This paper substantiates this, taking, as a case study, the encoding of
call-by-need A-calculus into the m-calculus. We actually adopt the Local
Asynchronous m-calculus, that has even sharper semantic properties. We
exploit such properties to prove some instances of validity of G-reduction
(meaning that the source and target terms of a B-reduction are mapped
onto behaviourally equivalent processes). Nearly all results would fail in
the ordinary synchronous w-calculus. We show that however the full (-
reduction is not valid. We also consider a refined encoding in which some
further instances of (-validity hold. We conclude with a few questions
for future work.

1 Introduction

Since the introduction of the m-calculus, a lot of effort has been devoted to
its comparison with the A-calculus, beginning with Milner’s seminar work on
functions as processes [14]. The attention has gone mostly to call-by-name and
call-by-value A-calculi [19], and the main results concern operational correspon-
dence, validity of 8-reduction, characterisation of the equivalence induced on \-
terms by the m-calculus encoding [6,14,21,22,27]. In particular, the call-by-name
encoding, for its simplicity, is often presented as the m-calculus representation of
functions.

In a call-by-name reduction, the redex contracted is the leftmost one; the
reduction occurs regardless of whether the argument of the function is a value
(as in call-by-value). As a consequence, if the argument is not a value and will
be used several times, its evaluation will be repeated the same number of times.
In implementation of programming languages following call-by-name, this rep-
etition of evaluation is avoided: evaluation occurs only once, the first time the
term is used, and the value so obtained is recorded for future uses. This imple-
mentation technique is referred to as call-by-need evaluation (or strategy) [28].
Thus call-by-need uses explicit environments and [-reduction does not require
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substituting a term for a variable, as in call-by-name (or call-by-value)—just
substituting a reference to a term for a variable. In this sense call-by-need is
closer to the m-calculus than call-by-name, as substitutions in the w-calculus
only involve names. Again, the modifications that take us from call-by-name to
call-by-need can be easily represented in a m-calculus encoding [24].

The w-calculus, having a rich and well-developed theory, as well as a remark-
able expressiveness, has been advocated as a foundational model for reasoning
about higher-order languages, including equivalence between programs and cor-
rectness of compilers and compiler optimisations [25,26]. Indeed, the m-calculus
and related languages have been used, via appropriate encodings, as a target
language of compilers, for a number of experimental programming languages,
beginning with Pict [18] and Join [7].

The above raises the question about how, and at which extent, the m-calculus
and its current theory can be used to prove the correctness of call-by-need
as an optimised implementation strategy for call-by-name. The only work on
the correctness of the w-calculus representation of call-by-need is by Brock and
Ostheimer [5]. The paper considers operational correspondence, between reduc-
tion in a call-by-need system and in the encoding m-calculus terms. However
there are foundametal semantic issues that remain unexplored. A major one is
the validity of (-reduction, namely the property that the processes encoding
(B-convertible A-terms are behaviourally iundistinguishable. The property holds
in call-by-name (and it is at the heart of its theory), as well as in the m-calculus
encoding of call-by-name. One would therefore hope to find analoguos results
for call-by-need. The correctness of the process representation of call-by-need is
the topic of the present paper, focusing on the validity of S-reduction.

In a well-known and influential paper [17] Palamidessi has shown that the
expressive power of the asynchronous 7w-calculus is strictly less than that of the
full (synchronous) m-calculus. This gap in expressiveness has a correspondence,
however, in sharper semantic properties for the former calculus, notably con-
cerning algebraic laws. This paper may be seen as a demonstration of this, since
most the proofs are carried out using algebraic laws that are only valid in the
asynchronous m-calculus—precisely in the Asynchronous Local w-calculus, AL,
[12], where only the output capability of names may be exported.

In Sect. 2 we present ALw and some of its laws. In Sect. 3 we briefly recall the
call-by-name and call-by-need A-calculus. In Sect.4 we consider two encodings
of call-by-need. We show that limited forms of validity (-reduction hold, and
that the general property fails. The questions that follow from this, discussed
in Sect. 5, may contribute to open some interesting directions for future work,
which may also shed further light on the theory of the m-calculus and similar
name-passing calculi.
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2 The Asynchronous Local m-calculus

2.1 Syntax

Small letters a, b, ..., z,y, ... range over the infinite set of names, and P, Q, R, .
over the set of all processes. A tilde represents a tuple. The i-th elements of a
tuple E is referred to as E;. Our notations are extended to tuples componentwise.
The Asynchronous Local m-calculus (AL7) [12] is built from the operators of
inaction, input prefix, output, parallel composition, restriction, and replication:

P:=0|a®).P | a®) | P | P | vaP | la(b).P.

with the syntactic constraint that in processes a(b).P and la(b).P names b may
not occur free in P in input position.

When the tilde is empty, the surrounding brackets () and () will be omitted.
0 is the inactive process. An input-prefixed process a(g) P, where b has pairwise
distinct components, waits for a tuple of names ¢ to be sent along a and then
behaves like P{h}, where {Gb} is the simultaneous substitution of names b with
names ¢. An output particle a<b> emits names b at a. Parallel composition is
to run two processes in parallel. The restriction va P makes name a local, or
private, to P. A replication !P stands for a countable infinite number of copies
of P in parallel. We assign parallel composition the lowest precedence among
the operators.

2.2 Terminologies and Notations

We write @(b).b(¢).QQ as an abbreviation for vb (ab | b(¢).Q), and similarly for
@(b).1b().Q. The prefix ‘a(b)’ is called a bound output. In prefixes a(b) and @(b),
we call a the subject and b the object. We use a to range over prefixes. We
often abbreviate .0 as «, and vawvb P as (va,b) P. An input prefix a(b).P and
a restriction vb P are binders for names b and b, respectively, and give rise in
the expected way to the definition of free names (fn), bound names (bn) and
names (n) of a term or a prefix, and alpha conversion. We identify processes or
actions that only differ on the choice of the bound names. The symbol = will

mean “syntactic identity modulo alpha conversion”. Sometimes, we use 4 as
abbreviation mechanism, to assign a name to an expression to which we want
to refer later. In a statement, a name declared fresh is supposed to be different
from any other name appearing in the objects of the statement, like processes or

substitutions. Substitutions are of the form {0/}, and are finite assignments of
names to names. A context is a process expression with a hole [] in it. We use
C' to range over contexts; then C[P] is the process obtained from C by filling its
hole with P.
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2.3 Sorting

Following Milner [13], we only admit well-sorted agents, that is agents obeying
a predefined sorting discipline in their manipulation of names. The sorting
prevents arity mismatching in communications, like in @(b, ¢} | a(z).Q. A sorting
is an assignment of sorts to names, which specifies the arity of each name and,
recursively, of the names carried by that name. We do not present the formal
system of sorting because it is not essential in the exposition of the topics in the
present paper.

We will however allow sorting to identify linear names, that is, names that
are supposed to be used only once. Linearity will be used a few times to replace
input-replicated prefixes with ordinary input prefixes. Again, we omit the details
of linearity in type systems (sorting is a form of type system), as they are by
now standard [9,24].

a(b)

INP: a(b). P =25 P ouT: a(b) AN
PP P PP
REP: |+ PAR: 7— if bn(u) Nfn(Q) =0
P — P’ PlQ—P|Q
a(c) / (vd)a(d) ’
COM: P P — Q~ @ ifdnfn(P)=10
P|Q = vd (PYE}H Q)
e wdad) . o
RES: PT>—P a ¢n(u) OPEN: P ceb—d, a#c.
va P — va P’ ve P (veda pr

Fig. 1. The transition system for AL

2.4 Relations

A process has three possible forms of action. A silent action P —— P’ repre-
sents an interaction, i.e. an internal activity in P. Input and output actions are,

respectively, of the form P —= a(d) P and P 2270, propy both cases, the
action occurs at a—the subject of the action. In the output action, b is the tuple
of names which are emitted, and d C b are private names which are carried out
from their current scope. We use u to represent the label of a generic action
(not to be confused with c, which represents prefixes). In an input action a(d)
and in an output action (v d)a@(b), names d are bound, the remaining ones free.
Bound and free names of an action u, respectively written bn(u) and fn(u), are
defined accordingly. The names of u, briefly n(u), are bn(u) Ufn(p). The transi-
tion system of the calculus is presented in Fig. 1. We have omitted the symmetric
versions of rules PAR and COM. Alpha convertible processes have deemed to have
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the same transitions. We often abbreviate P — Q with P — Q. The ‘weak’
arrow — is the reflexive and transitive closure of —.

We use the symbol = to denote structural congruence, a relation used to
rearrange the structure of processes [13]. We shall also use it to represent garbage-
collection of restrictions and of inert terms.

Definition 1 (Structural congruence). Structural congruence, =, is the
smallest congruence relation satisfying the axioms below:

~Pl0=P, P|Q=Q|P, P|(Q|R)=(P|Q)|R

- la(z).P = a(z).P | la(z).P;

-va0=0, vavbP=vbrvaP, va(P|Q)=P |vaQ ifa¢ n(P);
~va (P |1a().Q) =P and va (P | a(b).Q) = P, if a & fn(P).

(A derivable law is va P = P, for a not free in P.) A standard behavioural
equivalence for the m-calculus is barbed congruence. Barbed congruence can be
defined in any calculus possessing: (i) an interaction relation (the 7-steps in
the m-calculus), modelling the evolution of the system; and (ii) an observabil-
ity predicate |, for each name a, which detects the possibility of a process of
accepting a communication with the environment at a. More precisely, we write
P |, if P can make an output action whose subject is a, that is, if there are
P’ and an output action p with subject a such that P-P’. We write P |, if
P = P’ and P’ |,. Unlike synchronous m-calculus, in asynchronous calculi it
is natural to restrict the observation to output actions [1]. The reason is that in
asynchronous calculi the observer has no direct way of knowing when a message
emitted is received.

Definition 2 (Barbed congruence). A symmetric relation S on m-calculus
processes is a barbed bisimulation if P S @ implies:

1. If P55 P! then there exists Q' such that Q = Q' and P' S Q.
2. If P |, then Q ..

Two m-calculus processes P and () are barbed bisimilar if P S Q for some barbed
bisimulation S. We say that P and @) are barbed congruent, written P =~ Q, if
for each m-calculus context C, processes C[P]| and C[Q)] are barbed bisimilar.

Strong barbed congruence, written ~, is defined analogously but replacing the
weak arrows = and |}, with the strong arrows — and |,. As expected, we
have = C ~ C ~; each containment is strict.

2.5 Further Algebraic Laws

Most of the proofs in the paper are carried out using algebraic reasoning. We
report here some important laws. First some simple laws that are valid in the
full (synchronous) m-calculus (Lemma 1). Then laws that are specific to ALx.

Lemma 1. 1. va (@(b).P | a(y).Q) =~ (va,b) (P|Q{W%}) and va (a(b).
P [la(y).Q) = (va,b) (P | Q{%} | la(y).Q):



38 D. Sangiorgi

2. va (a.Q | a(z).P) ~ awa (Q | la(Z).P), if bn(a) Nfn(a(z).P) =0 and a &
n(a) (a similar law holds without the replication);
3. a(z).(P | la(Z).P) ~la(Z).P.

Important laws of ALz are the following ones. Their validity hinges on the
asynchronous and output-capability properties of ALw. For simplicity we present
them on monadic prefixes.

Lemma 2. We have ab ~ vc (ac | le(x).bx). Moreover, if b is linear, then the
replication can be removed thus: @b =~ vc (ac | c(x).bz).

Next, we report some distributivity laws for private replications, i.e., for
systems of the form

vy (P ['y(9).Q)

in which y may occur free in P and @ only in output position. One should think
of ) as a private resource of P, for P is the only process who can access Q;
indeed P can activate as many copies of () as needed. One such law has already
been given as Lemma 1(2). (The laws can be generalised to the full m-calculus,
but need stronger assumptions.)

Lemma 3. Suppose a occurs free in P, R, Q only in output position. Then:

1. va(P| R |1a(b).Q) ~va (P |a(b).Q) | va (R | a(b).Q);
2. va ((!P) | a().Q) ~va (P | la(b).Q); N
3. V(@ ()a.P | la(0).Q) ~ a.wa (P | la(b).Q), if bn(a) N fn(a(b).Q) = 0 and a &

4. va ((ve P) | 1a(b).Q) ~veva (P | 1a(b).Q) if ¢ & fn(a(b).Q).

ALm has also sharper properties concerning labelled characterisation of bisimi-
larity and associated congruence properties [3,12].

3 The \-calculus

We use M, N to range over the set A of A-terms, and z,y,z to range over
variables. The set A of A-terms is given by the grammar:

M:i=z | xe.M | MN

A redex is a term of the form (Az.M)N, and then its contractum is M{N/z}. In
call-by-name evaluation [19], the redex is always at the extreme left of a term.
We omit the standard evaluation rules.

Call-by-need [2,28] optimises call-by-name as follows, so to guarantee that in
the contractum M{N/z} the evaluation of N is not performed more than once.
Roughly, N is placed in an environment, and the evaluation continues on M.
When z is needed (i.e., z reaches the leftmost position), then N is evaluated and,
if a value (i.e., an abstraction) is obtained, say V', then V replaces x (value V' can
replace all occurrences of x or, more commonly, only the leftmost occurrence,
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and then other occurrences of x when they reach the outermost position). Call-
by-need is best presented in a graph; or in a system with a let construct to
represent sharing. We refer to Ariola et al. [2] for details, as they are not essential
for understanding the remainder of the paper; see also the references in Sect. 5.

We sometimes omit A in nested abstractions, thus for example, A\xizo.M
stands for Azi.Azs.M. We assume the standard concepts of free and bound
variables and substitutions, and identify a-convertible terms. Thus, throughout
the paper ‘=’ is syntactic equality modulo a-conversion.

Following the call-by-value terminology, the set of abstractions and variables
are the values. (Indeed, call-by-need may also be thought of as a modified form
of call-by-value, in which the evaluation of the argument of a function Az.M is
made only when x is used for the first time, rather than before performing the
reduction.)

4 The Encoding and Its Properties

4.1 Background Material

Figure 2 presents the call-by-name and call-by-need encodings [16,24]. The call-
by-name one is a variant of the original encoding by Milner [14], with the advan-
tage that it can be written in AL7 and can be easily modified to follow call-by-
need.

We explain the encodings. The important part is the treatment of application.
Both in call-by-name and in call-by-need, a function located at ¢ (its ‘location’)
is a process that signals to be a function on ¢, and then receives a pointer = to
the argument N together with the location p for the next interaction. Now the
evaluation of M continues. The difference between call-by-name and call-by-need
arises when the argument N is needed. This is signaled by an output at x that
also provides the location for the evaluation of a copy of N. In call-by-name,
every output at x triggers the evaluation of a new copy of N. In call-by-need, in
contrast, the evaluation is made only the first time. Precisely, in call-by-need N
is evaluated at the first request and, when it becomes a value, a pointer to this
value is returned (instantiating w, in the table). This pointer is returned to the
process that requested N. When further requests for N are made, the pointer
is returned immediately. Thus, for instance, in the call-by-name encoding of
(Azx)(IT) term IT is evaluated twice, whereas in the call-by-need encoding only
once. In all encodings, the location names (in the table, the names ranged over
by p,q,r) are linear.

Correcteness of call-by-name has been studied in depth. In particular, it has
been shown that B-reduction is validated by the encoding, that the encoding
gives rise to a term model for the A-calculus, and that the equivalence on A-
terms induced by the encoding corresponds to the best tree-structures of the
A-calculus—which are also at the heart of its denotational semantics—namely
Bohm Trees and Lévy-Longo Trees [14,23] Correctness of the call-by-need encod-
ing has been studied only by Brock and Ostheimer [5], and only for operational
correspondence with respect to Ariola et al.’s system [2]. (The encoding in Fig. 2
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call-by-name encoding
def _
Mz M]p = p(v). lo(z, q). M[M]q

Mlalp © zp

MIMNIp ' (vq) (M [M]q | qv). v ola, ). o(r). M[[Nﬂr)

call-by-need encoding
def _
N M]p = p(v). (=, q). N[M]q

Nz]p % zp

NIMN]p &
(vq) (N[[Mﬂq | q(v). vxv(z,p). z(r).vq (N[N]qd |

q' (w). (Fw | !z(r').?w)))

Fig. 2. The encoding of call-by-name and call-by-need

is actually a minor improvement over that in [5]—avoiding one reduction step
during a (-reducition—and maintains the results of operational correspondence
in [5] recalled below.) Following Ariola et al.’s system [2] we write M | if the
call-by-need computation of M terminates, and M {} it the computation does
not terminate.

Theorem 1 (Brock and Ostheimer [5]). We have, for M closed:

2. M4 iff N[M]p 1.

The proof in [5] considers an extended version of the call-by-need system in
[2], one that yields a closer (nearly one-to-one) correspondence between reduc-
tions in the call-by-need system and reductions on the encoding 7-calculus pro-
cesses.

Note that, since M is closed, the only free name of N[M]p is p; and since p
is used in NM]p in output, the first visible action of N[M]p (if there is one)
is an output at p.

However, operational correspondence alone is not fully satisfactory as a cri-
terium for correctness. It does not ensure foundamental semantic properties of
the source language terms. In the following sections we focus on the validity of
(-reduction.

4.2 [-validity

We consider in this section a few cases of validity of g-reduction; that is, the
property that a B-redex (Ax.M)N and its contractum M{N/z} are barbed con-
gruent when represented as AL7 processes.
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A form of B-reduction that is straightforward to handle is one in which the
argument is never used.

Theorem 2. If z ¢ fv(M) then N[(A\z.M)N]p ~ N[M{N/x}]p.

A more interesting form deals with S-reduction between closed values.
Theorem 3. N[(Az.M)(\y.N)]p ~ N[M{ y-N/x}]p.
Proof. Using algebraic reasoning, we first derive:

N(Az.M)(Ay.N)]p
= (vq) (N M]q |
q(v).vz v{x,p).x(r).vq (N[ \y.N]q |
¢ (w).(Fw | !x(r')ﬁw)))
= () (a(v) (e, ) N MY |
q(v).vzv{x,p).x(r).ve (N[ y.N]q |
¢'(w).(Fw | ta(r).7w)) )
~ (ux)(]\f M]p |
(r)vg (N[Ay.Nlq' |

8

= (va) (NIM]p |
z(r).vq (¢'(v)lo(y, ¢") NN]q" |
((w).(Fw | Yo (r').77w)) )

~ (ux)(]\f Mp |
(r)-vv (o(y, ¢") NN]q" |

(Fo |t (') 70)) )

8

where the two occurrences of ~ represent applications of law (1) of Lemma 1,
and the two occurrences of ~ are due to laws (2) and (3) of the same lemma,
respectively.

Now we proceed by induction on the structure of M. If M is variable different
from x then the two replications at v and = can be garbage-collected and we are
done. If M = x, then
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(v, v )NTM]plto(y, ") N [N]q"['z(r').r"v
(v, v)(@plo(y, ") NINTQ (1) w70

(v, v )(polv(y, ¢") NINIq" [\ (r').r'v
(vv)(pvllv(y, ¢") N[N]q"

N[A\y.N]p

where & is obtained from law (1) of Lemma 1, and = from the garbage-collection
laws of Definition 1.

When M is an abstraction or an application, we proceed by induction and
exploit the distributivity properties of private replications in Lemma 3.

Finally we consider the case when the argument of the function is divergent—
a form of S-reduction that is not valid in call-by-value.

Theorem 4. Suppose (Az.M)N is closed. If N { then we have
N(Az.M)N]p = N[M{N/z}]p.

Proof. Using Theorem 1 we have N[N]q 1, for any ¢, hence N[N]q ~ 0. As a
consequence, using algebraic reasoning similar to that in the proof of Theorem 3,
we obtain

N[(Az.M)N]p ~ vz (N[M]p | z(r).0)

Now, since z occurs in N[M]p only in output subject position, each output at
x, say Tr, can be removed, or replaced by N[N]r (because in the relation ~
with 0), up-to ~. This yields N[M{N/z}]p.

4.3 Failure of General 3-validity

However, in call-by-name and call-by-need (-reduction is not confined to val-
ues. We show that, in the call-by-need encoding, the general S-reduction fails.
Notably (-reduction fails when the argument of the function is a variable. For

this we show that
Nlyylp # N[(Nz.z2)y]p (1)

While for simplicity this counterexample is shown for open terms, a similar one
can be given for closed terms, by closing the two terms with an abstraction, i.e.,

Ny-(yy)lp # Ny ((Az.22)y)]p

The remainder of the section is devoted to the proof of (1). We first unroll
the initial traces of the two processes (the only traces that they can perform)
We have:

Nlyylp
= wg) (70 | ¢ (w)ve wla',p)a’ (1)va” (Tg
¢ (W) (ru | () 7u')) )

I/|

y(¢') ¢ (w) wva'w(z',p) a'(r)

vq" (yq" | -~
q"(w").(Fw | 12’ (r").r'w"))

7)o" _ —
= s Tw' | (). w
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Since the above is the only possible trace of the term, we have
Nlyylp ~ 5(q)-q(v).vz o(z, p).a(r)y(d).q' (w).(Fw | lz(r')r'w) — (2)

We now consider the analogous trace for N(Az.zz)y[p. Below, the uses of =
are due to some garbage-collection of restrictions and private inputs (possibly

replicated), and some rearrangements of the scopes of some restrictions; the use
of ~ is due to (2).

NT(Az.22)ylp

= (Vq)(./\f[[)\z.zz]]q |
q(v)-vz v(z, p).x(r).vq (Nyld |
¢ (w).(rw | ta(r).7"w)) )
= (wa) (a(v)-lo(z @) N=2]d' |
q(v).ve oz, p).a(r).ve (yq' |
¢'(w).(rw | Lo(r')7w)))
AN (./\/[[xx]]p |
z(r).vq (7' |
¢ (w).(Fw | !x(r’).ﬁw)))

2
R

#(9)-q(v)wa’ T(a',p).a () F(q).q (w).(Fw | 12/ ()7 w) |
z(r).vq (yq' |
¢ (w).(Tw | !x(r')ﬁw)))

T

—= (vz,q,q)
(q(v).uw’ v(x’, p).a' (r).Z(¢).¢' (w).(Fw | 12’ (r").r"w) |
7q |
¢ (w).(qu | !w(r’).ﬁw))
7(¢) ¢ (w)

vz wiz’,p)

S D=rw | 2 (7). w

Again, the above is the only possible trace for the term. Up-to some renaming,
the final derivative is the same as the final derivative of the trace emanating
from N[yy]p examined earlier. However, the two traces are different—the first
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is longer. As a consequence, the two terms can be distinguished, for instance in

the context
def

C = vy ([]1y(@)qv)v(@p)vr (@ | y(qd).n)
The observable output at h becomes visible only when the context is filled with
the first term, N [yy]p (the one that produces the longer trace).

In contrast, in the call-by-name encoding the validity of the full S-reduction
holds [23]. Therefore the above counterexample not only shows that the call-by-
need encoding is observably different from the call-by-name one; it also tells us
that the properties that the two encoding satisfy are quite different.

4.4 A Refined Encoding

In this section we experiment with a refinement R of the encoding so to improve
on the problems described in Sect. 4.3.

Such encoding is shown in Fig. 3. In the definition of application for call-by-
need, the argument of a function is interrogated only once, the first time the
argument is used. Future uses of the argument will directly use the answer so
received, without repeating the interrogation—this is indeed the essence of the
call-by-need optimisation over call-by-name. To mirror this policy we modify
the encoding of an abstraction Az.M, so that the body M will interrogate the
parameter = only once. As a consequence, in this refined encoding when the
head ‘Az’ of the function is consumed a local entry is left that takes care of
the dialogue with x; in particular the local entry makes sure that z is consulted
only once. The refined encoding, while it exhibits more interactions than the
original one, in a distributed setting may be thought of as an optimisation of the
latter, as the interactions with the new local entry replace interactions with the
possibly remote actual parameter for z. We write LE(z,y) for a local entry in
which the internal resource is x and the external one is y; it will be convenient
to break its definition into two parts, using the auxiliary local entry LE'(s, 7, z);
see Fig. 3.

The local entry is unnecessary if the internal resource is used only once.

Lemma 4. Suppose 2z’ appears only once in M. Then
vz (R[M]p | LE(2', 2)) ~ R[M{%/'}]p

Proof. By induction on the structure of M. The most interesting case is when
M = 7', in which case we exploit the (linear) law of ALz in Lemma 2. When M
is an application we exploit the hypothesis (2’ occurring only once), and simple
algebraic manipulation, so to be able to carry out the induction.

The next lemma shows that local entries compose.
Lemma 5. vz (LE(z,z) | LE(z,y)) ~ LE(z,y).

Proof. We use laws (2) and (1) of Lemma 1, and the garbage-collection laws of
structural congruence.
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def

R z. M]p = p(v).Ww(z', q). ve ( R[M]q

| LE(z,2"))
Rlalp < zp
R[[MN]] def

(va) (R[{M]}q | q(v). va 5z, p). 2(r). vq’ (RINT{' |
LE'(¢',7,2))

where

LE(z,y) % 2(r). 5(s). LE (s, 7, )

€

LE (s,r,z) = s(v). (Fv | lz(r").7'v)

o
h

Fig. 3. The refined call-by-need encoding

We revisite the counterexample of Sect.4.3, that involves terms yy and
(Az.z2)y, under the refined encoding R. All free variables should be protected
under a local entry, except for the variables that occur only once (by Lemma 4).
We begin by examining vy’ (R[y'y']q | LE(y',y)). We have:

vy (Rly'v'le | LE(Y,y))

/

~ vy (7 (q).q(v) vz (e, p).a(r). ¥ (¢).q (w).(w | (). 7w)
|y (r)() o (0)-(Fo |y (r)F0)
~ (vy', ) (q()va 5z, p).2(r) Y () (w)-Fw | (). 7w)
o | 50 (). (@ | 1y (q)qv))
O, 7O (wy ) (q(v).va B{w, p)a () (q)¢ (w).(Fw | () w)
| v | Yy (a)qv
T wy) e sz, p)alr) v (¢)-d (w).(Fw | l2().7w)
| 1Y (q).qv)
2T, 20,y (57 (¢')-q (w).(Fw | (). 7w)
| 1/ (q).qv)
=D v | la(r').r'v

where the occurrence of ~ is justified by (2) (the two encodings coincide on terms
that do not contain abstractions) and definition of LE(y’, y), and the occurrence
of ~ comes from law (1) of Lemma 1.

We now consider the second term, (Az.zz)y, under the refined encoding.
First we note that, if the argument of a function L is a variable, then the refined
encoding can be simplified thus:
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R[Lylp = (Vq)(R[[L]]q |
q(v).vzv(x,p).x(r).vqd Nylqd |
LE'(¢,r, :L')))

= (vg)(RIL]q |

q(v).vz v{x, p).LE(z, y))

Using this property, we have:

R[(Az.z2)y]lp = (Vq)(R[[/\z.zz}]q |
q(v).vzv(z,p).LE(z, ))
= (vq)@v).lv(z',q). VZ( [2z]q | LE(z, 2"))
| ¢(v).vz v(z,p).LE(z,y))
N (R[zz]p | LE(2,x) | LE(z,y))
~ vz (R[zz]p | LE(2,¥))

where ~ is obtained by composition of local entries (Lemma 5).
The above reasoning shows that the behaviour of the initial and refined
encodings are the same on the term (A\z.z2)y:

RI(\z.22)ylp = N[(Az.22)y]p

And it is also the same as that of the refined encoding on the g-contractum yy,
when the free variables y are protected under the appropriate local entry, i.e.,

Rl(Azz)ylp = vy (R[y'y'Ip | LE(Y', v))

The result also holds by closing up the terms:

RNy-(yy)Ip = R[Ay.(Az.22)y)]p

In the refined encoding R, the local entry (necessary for confining the behaviour
of yy) is produced by the encoding of the abstraction.

More generally, proceeding as above one can show that, on the encoding R,
(B-reduction is valid when the argument of a function is a variable. Moreover,
[-reduction is also valid when the argument is itself a function, reasoning as
in Theorem 3. We may therefore conclude that S-reduction is valid when the
argument is a value (as it is the case for the encoding of the call-by-value strategy
[24]).

We write LE(Z,y) for LE(z1,%1) | ... | LE(%n, yn) where n is the length of
the tuples & and y. We use V' to range over values.

Theorem 5. Suppose fv((A\z.MV)) C x. Then, for any y and fresh y§, we have

VE (RI(A=M)V]p | LE(E, ) ~ v& (RIM{V/:}]p | LEG, §))
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Similarly to what done earlier, a local entry LE(x;, y;) may be removed when
the variable x; appears at most once.

However, even in the encoding R, the full S-reduction is unvalid. As a coun-
terexample we can use the terms (zz)(zz) and (\y.yy)(xz). Indeed we have:

vrz (R[(zz)(z2)]p | LE(z,2") | LE(z, 2") % R[(\y.yy)(xz)]p

We omit the calculations, which are rather involved. Intuitively, the difference
appears because the full trace of the process computing the application zz is
visible twice in the first process, whereas, in the second process, the second
time, part of the trace is concealed.

5 Conclusions

Call-by-need was proposed by Wadsworth [28] as an implementation technique.
Formalizations of call-by-need on a A-calculus with a let construct or with
environments include Ariola et al. [2], Launchbury [11], Purushothaman and
Seaman [20], and Yoshida [29]. The uniform encoding in Sect. 4 is from [16]. A
study of the correctness of the call-by-need encoding in Fig. 2 is in [5]. Encodings
of graph reductions, related to call-by-need, into m-calculus were given in [4,8§]
but their correctness was not studied. Niehren [15] used encodings of call-by-
name, call-by-value and call-by-need A-calculi into mw-calculus to compare the
time complexity of the strategies.

In the paper we have used the theory of the Asynchronous Local m-calculus
(ALm) [12] to reason about the encoding of the call-by-need A-calculus strategy
as processes. We have mainly focused on the validity of §-reduction. We have
showed that various instances of the property on closed terms hold, though the
general property fails. We have also considered a refined encoding in which (-
reduction on arbitrary values (though not on arbitrary terms) holds. All this
leaves us with some challenging questions, that we leave for future work:

1. In the refined encoding, we use special processes called local entries to protect
the formal parameter of the function, thus improving the results about -
validity. Is it possible to further protect variables (or terms) so to recover the
full G-validity?

2. Is there a different form of behavioural equivalence under which the full 3-
validity holds, in the initial or in the refined encoding?

3. What is an appropriate process preorder under which call-by-need can indeed
be proved to be an optimisation of call-by-name?

4. What is the equivalence on A-terms induced by the call-by-need encod-
ing? Following the results for call-by-name and call-by-value, one expects
to recover some kind of tree structure (Bohm Trees and Lévy-Longo Tree
for call-by-name, Lassen’s trees [10] for call-by-value). We are not aware of
similar tree structures for call-by-need. Hence investigating this question may
also shed light on what should the appropriate forms of trees for call-by-need
be.
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In questions (2) and (3), ‘easy’ answers may be obtained by confining the
testing contexts to be encodings of A-calculus contexts. The challenge is to find
more general and useful answers, with applications outside the realm of pure
A-calculi. One may consider forms of behavioural types.

In questions (1) and (2), perhaps requiring the validity of the full S-reduction,
in the same way as for call-by-name, is too demanding. Indeed in this way
probably the tree structure referred to in question (4) is likely to be the same as
that for call-by-name. One may find it acceptable to limit -validity to reductions
between closed terms.

Acknowledgments. Thanks to the reviewers for their careful reading of the paper
and their suggestions. Research partly supported by the H2020-MSCA-RISE project
ID 778233 “Behavioural Application Program Interfaces (BEHAPI)”.
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