
Approximate Model Counting, Sparse
XOR Constraints and Minimum Distance

Michele Boreale1(B) and Daniele Gorla2

1 Dip. Statistica, Informatica, Applicazioni (DiSIA), Università di Firenze,
Florence, Italy

michele.boreale@unifi.it
2 Department of Computer Science, Università di Roma “La Sapienza”, Rome, Italy

Abstract. The problem of counting the number of models of a given
Boolean formula has numerous applications, including computing the
leakage of deterministic programs in Quantitative Information Flow.
Model counting is a hard, #P-complete problem. For this reason, many
approximate counters have been developed in the last decade, offering
formal guarantees of confidence and accuracy. A popular approach is
based on the idea of using random XOR constraints to, roughly, succes-
sively halving the solution set until no model is left: this is checked by
invocations to a SAT solver. The effectiveness of this procedure hinges
on the ability of the SAT solver to deal with XOR constraints, which
in turn crucially depends on the length of such constraints. We study
to what extent one can employ sparse, hence short, constraints, keeping
guarantees of correctness. We show that the resulting bounds are closely
related to the geometry of the set of models, in particular to the min-
imum Hamming distance between models. We evaluate our theoretical
results on a few concrete formulae. Based on our findings, we finally dis-
cuss possible directions for improvements of the current state of the art
in approximate model counting.

Keywords: Model counting · Approximate counting · XOR sampling

1 Introduction

#SAT (aka model-counting) is the problem of counting the number of satis-
fying assignments of a given Boolean formula and is a #P-complete problem.
Indeed, every NP Turing machine can be encoded as a formula whose satisfy-
ing assignments correspond to the accepting paths of the machine [24]. Thus,
model-counting is harder than satisfiability: #SAT is indeed intractable in cases
for which SAT is tractable (e.g., sets of Horn clauses or sets of 2-literal clauses)
[25]. Still, there are cases in which model-counting is tractable (e.g., OBDDs and
d-DNNFs). For a very good overview of the problem and of some approaches to
it see [14].

Our interest in model counting originates from its applications in the field
of Quantitative Information Flow (qif) [8,20]. Indeed, a basic result in qif is
c© Springer Nature Switzerland AG 2019
M. S. Alvim et al. (Eds.): Palamidessi Festschrift, LNCS 11760, pp. 363–378, 2019.
https://doi.org/10.1007/978-3-030-31175-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31175-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-31175-9_21

364 M. Boreale and D. Gorla

that the maximum min-entropy leakage of a deterministic program is log2 k,
with k the number of distinct outputs the program can return [20], varying
the input. If the program is modeled as a Boolean formula, then computing its
leakage reduces to #SAT, specifically to computing the number of models of the
formula obtained by existentially projecting out the non-output variables; see
[3,17].

Over the years, several exact counting algorithms have been put forward and
implemented, such as, among others, [12,17,19,23], with applications to qif [16].
The problem with exact counters is that, although performing reasonably well
when certain parameters of the formula – size, number of variables, number of
clauses – are relatively small, they rapidly go out of memory as these parameters
grow.

For this reason, approximate counters have more and more been considered.
Indeed, in many applications, the exact count of models is not required: it may
suffice to provide an estimate, as long as the method is quick and it is equipped
with a formal guarantee of correctness. This is typically the case in qif, where
knowing the exact count within a factor of η is sufficient to estimate leakage
within log2 η bits. For probabilistic counters, correctness is usually expressed in
terms of two parameters: accuracy – the desired maximum difference between the
reported and the true count; and confidence – the probability that the reported
result is actually within the specified accuracy.

We set ourselves in the line of research pioneered by [25] and followed, e.g.,
by [1,6,13,17]. The basic idea of a probabilistic model counting algorithm is
the following (Sect. 2): given a formula φ in the Boolean variables y1, . . . , ym,
one chooses at random 〈a0, . . . , am〉 ∈ {0, 1}m+1. The resulting XOR constraint
a0 = a1y1 ⊕ · · · ⊕ amym splits evenly the set of models of φ into two parts:
those satisfying the constraint and those not satisfying it. If one independently
generates s such constraints c1, . . . , cs, the formula φ′ �

= φ ∧ c1 ∧ · · · ∧ cs has an
expected N

2s models, where N is the number of models of φ (i.e., the number we
aim at estimating). If φ′ is still satisfiable, then with high probability N ≥ 2s,
otherwise N < 2s. By repeating this process, one can arrive at a good estimate
of N . This procedure can be implemented by relying on any SAT-solver capable
of dealing with XOR constraints, e.g CryptoMiniSat [22]; or even converting
the XOR constraints into CNF before feeding φ′ to the SAT solver. In any
case, the branching factor associated with searching for models of φ′ quickly
explodes as the length (number of variables) of the XOR constraints grows. The
random generation outlined above will lead to an expected length of m

2 for each
constraint, making the procedure not easily scalable as m grows.

In the present paper, we study under what conditions one can employ sparse,
hence shorter, constraints, keeping the same guarantees of correctness. We gen-
eralize the results of [9] to arrive at an improved understanding of how sparsity
is related to minimum distance between models, and how this affects the count-
ing procedure. Based on these results, we also suggest a possible direction for
a new counting methodology based on the use of Low Density Parity Check

Approximate Model Counting, Sparse XOR Constraints 365

(LDPC) codes [11,18]; however, we leave a through experimentation with this
new methodology for future work.

The main point is to generate the coefficients a1, . . . , am according to a proba-
bility value λ ∈ (0, 1

2

]
, rather than uniformly. This way, the constraints will have

an average length of λm ≤ m
2 each. Basically, the correctness guarantees of the

algorithm depend, via the Chebyshev inequality, on keeping the variance of the
number of models of φ′, the formula obtained by joining the constraints, below
a certain threshold. A value of the density λ that achieves this is said to be
feasible for the formula. In our main result (Sect. 3), we provide a bound on
the variance that also depends on the minimum Hamming distance d between
the formula’s models: a larger d yields a smaller variance, hence smaller feasible
λ’s. Our bound essentially coincides with that of [9] for d = 1. Therefore, in
principle, a lower bound on the minimum distance can be used to obtain tighter
bounds on λ, making the XOR constraints shorter and the counting procedure
pragmatically more efficient.

We will show this phenomenon at work (Sect. 4) on some formulae where the
value of d is known by construction, comparing our results with the state of the
art model counter ApproxMC3 [21]. These considerations also suggest that, if
no information on d is available, one can encode the formula’s models using an
error correcting code with a known minimum distance. We will briefly discuss
the use of LDPC codes to this purpose, although at the moment we have no
experimental results available in this respect. A comparison with recent related
work concludes the paper (Sect. 5). For reasons of space, all proofs have been
sketched and are fully available in [4].

2 A General Counting Algorithm

In what follows, we let φ(y), or just φ, denote a generic boolean formula with
boolean variables y = (y1, ..., ym) and m ≥ 1.

2.1 A General Scheme

According to a well-known general scheme [13], the building block of a statistical
counting procedure is a probabilistic decision algorithm: with high probability,
this algorithm correctly decides whether the cardinality of the set is, or is not,
below a given threshold 2s, within some tolerance factors, given by the slack
parameters α and β below.

Definition 1 (#SAT decision algorithm). Let 0 ≤ δ < frac12 (error prob-
ability), α > 1 and β > 1 (two slack parameters) be three reals. An (α, β, δ)-
decision algorithm (for #SAT) is a probabilistic algorithm A(·, ·), taking a pair
of an integer s and a boolean formula φ, and returning either 1 (meaning
‘#φ ≥ 2s−α’) or 0 (meaning ‘#φ ≤ 2s+β’) and such that for each integer s ≥ 0
and formula φ:

366 M. Boreale and D. Gorla

1. #φ > 2s+β implies Pr (A(s, φ) = 0) ≤ δ;
2. #φ < 2s−α implies Pr (A(s, φ) = 1) ≤ δ.

The use of two different slack parameters in the definition above is justified
by the need of stating formal guarantees about the outcome of the algorithm,
while keeping the precision of the algorithm as high as possible.

As usual, we can boost the confidence in the reported answer, and get an arbi-
trarily small error probability, by running A(s, φ) several times independently.
In particular, consider the algorithm RAt(s, φ) obtained by running A(s, φ) an
odd t ≥ 1 number times independently, and then reporting the majority answer.
Call Err the event that RAt reports a wrong answer; then,

Pr(Err) = Pr(at least
⌈

t

2

⌉
runs of A(s, φ) report the wrong answer)

=
t∑

k=	 t
2

Pr(exactly k runs of A(s, φ) report the wrong answer)

=
t∑

k=	 t
2

(
t

k

)
pk(1 − p)t−k (1)

where

p
�
= Pr(A(s, φ) reports the wrong answer)

=
{

Pr(A(s, φ) = 0) if #φ > 2s+β

Pr(A(s, φ) = 1) if #φ < 2s−α

≤ δ (2)

Now, replacing (2) in (1), we obtain

Pr(Err) ≤
t∑

k=	 t
2

(
t

k

)
δk(1 − δ)t−k (3)

Let us call Δ(t, δ) the right hand side of (3); then, RAt is an (α, β,Δ(t, δ))-
decision algorithm whenever A is an (α, β, δ)-decision algorithm.

We now show that any (α, β, δ)-decision algorithm A for #SAT can be used
as a building block for a counting algorithm, CA(φ), that determines an interval
[, u] such that �2�� ≤ #φ ≤ 	2u
 with high probability. Informally, starting with
an initial interval [−1,m], the algorithm CA performs a binary search, using A
to decide which half of the current interval log2(#φ) lies in. The search stops
when the current interval cannot be further narrowed, taking into account the
slack parameters α and β, or when a certain predefined number of iterations is
reached. Formally, let I0

�
= [−1,m]. Assume k > 0 and Ik = [lk, uk], then:

(a) if uk − lk ≤ 2max(α, β) + 1 or k = 	log2(m)
, then return Ik;

Approximate Model Counting, Sparse XOR Constraints 367

(b) otherwise, let s = round
(

uk+lk
2

)
; if A(s, φ) = 0 then Ik+1

�
= [lk, s + β]

otherwise Ik+1
�
= [s − α, uk].

Theorem 1. Let A be a (α, β, δ)-decision algorithm. Then:

1. CA(φ) terminates in k ≤ 	log2 m
 iterations returning an interval Ik = [l, u]
such that u − l ≤ 2max(α, β) + 2;

2. The probability that #φ /∈ [�2l�, 	2u
] is at most 	log2 m
δ.
Proof (Sketch). If the algorithm terminates because uk − lk ≤ 2max(α, β) + 1,
the first claim is trivial. Otherwise, by construction of the algorithm, we have
that |I0| = m + 1. Furthermore, by passing from Ik−1 to Ik, we have that
sk = round

(
uk−1+lk−1

2

)
and

|Ik| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uk−1−lk−1
2 + α + 1

2 if A(sk,m) = 1 and sk =
⌊

uk−1−lk−1
2

⌋

uk−1−lk−1
2 + β if A(sk,m) = 0 and sk =

⌊
uk−1−lk−1

2

⌋

uk−1−lk−1
2 + α if A(sk,m) = 1 and sk =

⌈
uk−1−lk−1

2

⌉

uk−1−lk−1
2 + β + 1

2 if A(sk,m) = 0 and sk =
⌈

uk−1−lk−1
2

⌉

Thus, by letting M = max(α, β)+ 1
2 , we have that |Ik| ≤ |Ik−1|

2 +M ; this suffices
to obtain |I�log2 m�| ≤ 2max(α, β) + 2.

The error probability is the probability that either #φ < �2l� or #φ > 2u;
this is the probability that one of the 	log2 m
 calls to A has returned a wrong
answer.
�

In all the experiments we have run, the algorithm has always returned an
interval of width at most 2max(α, β) + 1, sometimes in less than 	log2(m)

iterations: this consideration pragmatically justifies the exit condition we used
in the algorithm. We leave for future work a more elaborated analysis of the
algorithm to formally establish the 2max(α, β) + 1 bound.

2.2 XOR-based Decision Algorithms

Recall that a XOR constraint c on the variables y1, ..., ym is an equality of the
form

a0 = a1y1 ⊕ · · · ⊕ amym

where ai ∈ F2 for i = 0, ...,m (here F2 = {0, 1} is the two elements field.) Hence
c can be identified with a (m + 1)-tuple in F

m+1
2 . Assume that a probability

distribution on F
m+1
2 is fixed. A simple proposal for a decision algorithm A(s, φ)

is as follows:

1. generate s XOR constraints c1, . . . , cs independently, according to the fixed
probability distribution;

368 M. Boreale and D. Gorla

2. if φ ∧ c1 ∧ · · · ∧ cs is unsatisfiable then return 0, else return 1.

Indeed [13], every XOR constraint splits the set of boolean assignments in two
parts, according to whether the assignment satisfies the constraint or not. Thus,
if φ has less than 2s models (and so less than 2s+β), the formula φ ∧ c1 ∧ · · · ∧ cs

is likely to be unsatisfiable.
In step 2 above, any off-the-shelf SAT solver can be employed: one appeal-

ing possibility is using CryptoMiniSat [22], which offers support for specifying
XOR constraints (see e.g. [3,6,17]). Similarly to [13], it can be proved that this
algorithm yields indeed an (α, β, δ)-decision algorithm, for a suitable δ < 1

2 , if
the constraints ci at step 1 are chosen uniformly at random. This however will
generate ‘long’ constraints, with an average of m

2 variables each, which a SAT
solver will not be able to manage as m grows.

3 Counting with Sparse XORs

We want to explore alternative ways of generating constraints, which will make
it possible to work with short (‘sparse’) XOR constraints, while keeping the same
guarantees of correctness. In what follows, we assume a probability distribution
over the constraints, where each coefficient ai, for i > 0, is chosen independently
with probability λ, while a0 is chosen uniformly (and independently from all
the other ai’s). In other words, we assume that the probability distribution over
F

m+1
2 is of the following form, for λ ∈ (0, 1

2

]
:

Pr(a0, a1, ..., am)
�
= p(a0)p′(a1) · · · p′(am)

where: p(1) = p(0) =
1
2

p′(1) = λ p′(0) = 1 − λ (4)

The expected number of variables appearing in a constraint chosen according to
this distribution will therefore be mλ. Let us still call A the algorithm presented
in Sect. 2.2, with this strategy in choosing the constraints. We want to establish
conditions on λ under which A can be proved to be a decision algorithm.

Throughout this section, we fix a boolean formula φ(y1, ..., ym) and s ≥ 1
XOR constraints. Let

χs
�
= φ ∧ c1 ∧ · · · ∧ cs

where the ci are chosen independently according to (4). For any assignment
(model) σ from variables y1, ..., ym to F2, let us denote by Yσ the Bernoulli r.v.
which is 1 iff σ satisfies χs.

We now list the steps needed for proving that A is a decision algorithm. This
latter result is obtained by Proposition 1(2) (that derives from Lemma 1(1)) and
by combining Proposition 1(1), Lemma 2(3) (that derives from Lemma 1(2)) and

Lemma 3 in Theorem 2 later on. In what follows, we shall let ρ
�
= 1 − 2λ.

Approximate Model Counting, Sparse XOR Constraints 369

Lemma 1.

1. Pr(Yσ = 1) = E[Yσ] = 2−s.
2. Let σ, σ′ be any two assignments and d be their Hamming distance in F

m
2

(i.e., the size of their symmetric difference seen as subsets of {1, ...,m}).
Then Pr(Yσ = 1, Yσ′ = 1) = E[Yσ · Yσ′] =

(
1+ρd

4

)s

(where we let ρd �
= 1

whenever ρ = d = 0.)

Proof (Sketch). The first claim holds by construction. For the second claim,
the crucial thing to prove is that, by fixing just one constraint c1 (so, s = 1),
we have that Pr(Yσ = 1, Yσ′ = 1) = 1+ρd

4 . To this aim, call A and B the
sets of variables that are assigned value 1 in σ and σ′, respectively; then, we
let U = A \ B, V = B \ A and I = A ∩ B. Let C be the set of variables
appearing in the constraint c1; then, Ue and Uo abbreviate Pr(|C ∩ U | is even)
and Pr(|C ∩ U | is odd), respectively; similarly for Ie, Io and Ve, Vo. Then,

Pr(Yσ = 1, Yσ′ = 1|a0 = 0) = UeIeVe + UoIoVo

Pr(Yσ = 1, Yσ′ = 1|a0 = 1) = UoVo + UeVe − UoIoVo − UeIeVe

By elementary probability theory, Pr(Yσ = 1, Yσ′ = 1) = 1
2 (1−Ve −Ue +2UeVe);

the result is obtained by noting that Ue = 1
2 (1 + ρ|U |), Ve = 1

2 (1 + ρ|V |) and
d = |U ∪ V | = |U | + |V |.
�

Now let Ts be the random variable that counts the number of models of χs,
when the constraints c1, ..., cs are chosen independently according to distribu-
tion (4):

Ts
�
= #χs .

The event that χs is unsatisfiable can be expressed as Ts = 0. A first step toward
establishing conditions under which A yields a decision algorithm is the following
result. It makes it clear that a possible strategy is to keep under control the
variance of Ts, which depends in turn on λ. Let us denote by μs the expectation
of Ts and by var(Ts) its variance. Note that var(Ts) > 0 if #φ > 0.

Proposition 1.

1. #φ > 2s+β implies Pr (A(s, φ) = 0) ≤ 1

1+
µ2
s

var(Ts)

;

2. #φ < 2s−α implies Pr (A(s, φ) = 1) < 2−α.

Proof (Sketch). The first claim relies on a version of the Cantelli-Chebyshev
inequality for integer nonnegative random variables (a.k.a. Alon-Spencer’s
inequality); the second claim relies on Lemma 1(1) and Markov’s inequality.
�

By the previous proposition, assuming α > 1, we obtain a decision algorithm
(Definition 1) provided that var(Ts) < μ2

s. This will depend on the value of λ
that is chosen, which leads to the following definition.

370 M. Boreale and D. Gorla

Definition 2 (feasibility). Let φ, s and β be given. A value λ ∈ (0, 1
2

]
is said

to be (φ, s, β)-feasible if #φ > 2s+β implies var(Ts) < μ2
s, where the constraints

in χs are chosen according to (4).

Our goal is now to give a method to minimize λ while preserving feasibility.
Recall that Ts

�
= #χs. Denote by σ1, ..., σN the distinct models of φ (hence, Ts ≤

N). Note that Ts =
∑N

i=1 Yσi
. Given any two models σi and σj , 1 ≤ i, j ≤ N , let

dij denote their Hamming distance. The following lemma gives exact formulae
for the expected value and variance of Ts.

Lemma 2. Let ρ = 1 − 2λ.

1. μs = E[Ts] = N2−s;
2. var(Ts) = μs + 4−s

∑N
i=1

∑
j �=i(1 + ρdij)s − μ2

s;

3. If N �= 0, then var(Ts)
μ2 = μ−1

s + N−2
∑N

i=1

∑
j �=i(1 + ρdij)s − 1

Proof (Sketch). The first two items are a direct consequence of Lemma 1 and
linearity of expectation; the third item derives from the previous ones.
�

Looking at the third item above, we clearly see that the upper bound on
the error probability we are after depends much on ‘how sparse’ the set of φ’s
models is in the Hamming space F

m
2 : the sparser, the greater the distance, the

lower the value of the double summation, the better. Let us denote by S the
double summation in the third item of the above lemma:

S
�
=

N∑

i=1

∑

j �=i

(1 + ρdij)s

In what follows, we will give an upper bound on S which is easy to compute and
depends on the minimum Hamming distance d among any two models of φ. We
need some notation about models of a formula. Below, we let j = d, ...,m.

lj
�
=
{

j − ⌈d
2

⌉
+ 1 if j ≤ m

2

max{0,m − j − ⌈d
2

⌉
+ 1} if j > m

2

w∗ �
= min

⎧
⎨

⎩
w : d ≤ w ≤ m and

w∑

j=d

(
m

lj

)
≥ N − 1

⎫
⎬

⎭
(5)

N∗ �
=

w∗−1∑

j=d

(
m

lj

)
(6)

where we stipulate that min ∅ = 0. Note that the definitions of w∗ and N∗

depend solely on N,m and d.
With the above definitions and results, we have the following upper bound

on S.

Approximate Model Counting, Sparse XOR Constraints 371

Lemma 3. Let the minimal distance between any two models of φ be at least d.
Then

S ≤ N

⎛

⎝
w∗−1∑

j=d

(
m

lj

)
(1 + ρj)s + (N − 1 − N∗)(1 + ρw∗

)s

⎞

⎠

Proof (Sketch). Fix one of the models of φ (say σi), and consider the sub-

summation originated by it, Si
�
=
∑

j �=i

(
1+ρdij

4

)s

. Let us group the remaining
N − 1 models into disjoint families, Fd,Fd+1, . . ., of models that are at distance
d, d + 1, ..., respectively, from σi. Note that each of the N − 1 models gives
rise to exactly one term in the summation Si. Hence, Si =

∑m
j=d |Fj |

(
1+ρj

4

)s

.

By the Ray-Chaudhuri-Wilson Lemma [2, Th.4.2], |Fj | ≤ (
m
lj

)
. Hence, upper-

bounding Si consists, e.g., in choosing a tuple of integers xd, . . . , xm such that
∑m

j=d xj

(
1+ρj

4

)s

≥ ∑m
j=d |Fj |

(
1+ρj

4

)s

, under the constraints 0 ≤ xj ≤ (
m
lj

)
, for

j = d, . . . , m, and
∑m

j=d xj = N − 1. An optimal solution is

xj =

⎧
⎨

⎩

(
m
lj

)
for j = d, . . . , w∗ − 1

N − 1 − N∗ for j = w∗

0 for j > w∗

The thesis is obtained by summing over all models σi.
�
Definition 3. Given s ≥ 1, β > 0, d ≥ 1 and λ ∈ (0, 1

2

]
, let us define

B(s,m, β, d, λ)
�
= 2−β+2−s−β

(∑w∗−1
j=d

(
m
lj

)
(1 + ρj)s+(N−1−N∗)(1 + ρw∗

)s
)
−1,

where ρ
�
= 1 − 2λ and N = 	2s+β
 also in the definition of w∗ and N∗.

Using the facts collected so far, the following theorem follows, giving an upper
bound on var(Ts)

μ2
s

.

Theorem 2 (upper bound). Let the minimal distance between models of φ

be at least d and #φ > 2s+β. Then, var(Ts)
μ2
s

≤ B(s,m, β, d, λ).

Proof. First note that we can assume without loss of generality that #φ =
N = 	2s+β
. If this was not the case, we can consider in what follows any
formula φ′ whose models are models of φ but are exactly 	2s+β
 (φ′ can be
obtained by adding some conjuncts to φ that exclude #φ − 	2s+β
 models).
Then, Pr (A(s, φ) = 0) ≤ Pr (A(s, φ′) = 0) and this would suffice, for the purpose
of upper-bounding Pr (A(s, φ) = 0). The result follows from Proposition 1(1),
Lemma 2(3), Lemma 3 and by the fact that N = 	2s+β
 ≥ 2s+β .
�

The following notation will be useful in the rest of the paper. For 0 ≤ γ ≤ 1,
define

λ∗
γ(s,m, β, d)

�
= inf

{
λ ∈

(
0,

1
2

]
: B(s,m, β, d, λ) ≤ γ

}
(7)

where we stipulate inf ∅ = +∞.

372 M. Boreale and D. Gorla

Fig. 1. Plots of λ∗
1 as a function of s, for m = 32 and m = 64, β = 1.5, and different

values of d. For any value of s and d, any value of λ above the curve is feasible.

Corollary 1 (Feasibility). Assume the minimal distance between any two
models of φ is at least d. Then every λ ∈ (λ∗

1(s,m, β, d), 1
2

]
is (φ, s, β)-feasible.

4 Evaluation

4.1 Theoretical Bounds on Expected Constraint Length

To assess the improvements that our theory introduces on XOR-based approx-
imate counting, we start by considering the impact of minimum Hamming dis-
tance on the expected length of the XOR constraints. First, in Fig. 1 we plot λ∗

1

as a function of s, for fixed values of m = 32 and 64, β = 1.5, and four different
values of d. Note that the difference between different values of d tends to vanish
as s gets large – i.e. close to m.

Next, we compare our theoretical bounds with those in [9], where a goal
similar to ours is pursued. Interestingly, their bounds coincide with ours when
setting d = 1 – no assumption on the minimum Hamming distance – showing that
our approach generalizes theirs. We report a numerical comparison in Table 1,
where several hypothetical values of m (no. of variables) and s (no. of constraints)
are considered. Following a similar evaluation conducted in [9, Tab. 1], here we
fix the error probability to δ = 4

9 and the upper slack parameter to β = 2, and
report the values of λ × m for the minimal value of λ that would guarantee a
confidence of at least 1−δ in case an upper bound is found, computed with their
approach and ours. Specifically, in their case λ is obtained via the formulae in
[9, Cor.1,Th.3], while in our case λ = λ∗

γ for γ = 0.8, which entails the wanted
confidence according to Proposition 1(2). We see that, under the assumption that
lower bounds on d as illustrated are known, in some cases a dramatic reduction
of the expected length of the XOR constraints is obtained.

4.2 Execution Times

Although the focus of the present paper is mostly theoretical, it is instructive
to look at the results of some simple experiments for a first concrete assessment

Approximate Model Counting, Sparse XOR Constraints 373

Table 1. Comparison with the provable bounds from [9, Tab. 1].

N. Vars (m) N. Constraints (s) λ × m λ × m present paper

from [9] d = 1 d = 5 d = 20

50 13 16.85 16.85 11.76 3.88

50 16 15.38 15.38 11.36 4.1

50 20 13.26 13.26 10.26 4.37

50 30 9.57 9.57 8.02 4.75

50 39 7.08 7.08 6.2 4.45

100 11 39.05 39.05 23.65 7.4

100 15 35.44 35.44 25.26 8.07

100 25 27.09 27.09 21.33 9.14

119 7 50.19 50.18 25.07 7.6

136 9 55.63 55.63 30.66 9.46

149 11 60.6 60.6 35.24 11.02

352 10 147.99 147.99 81.42 25.31

of the proposed methodology. To this aim, we have implemented in Python the
algorithm CA with A as described in Sect. 3, relying on CryptoMiniSAT [22] as
a SAT solver, and conducted a few experiments1.

The crucial issue to use Theorem 2 is the knowledge of (a lower bound on)
the minimal distance d among the models of the formula we are inputting to
our algorithm. In general, this information is unknown and we shall discuss a
possible approach to face this problem in the next section. For the moment, we
use a few formulae describing the set of codewords of certain error correcting
codes, for which the number of models and the minimum distance is known
by construction. Each of such formulae derives from a specific BCH code [5,15]
(these are very well-known error-correcting codes whose minimal distance among
the codewords is lower-bounded by construction). In particular, Fxx-yy-zz.cnf
is a formula in CNF describing membership to the BCH code for 2xx messages
(the number of models), codified via codewords of yy bits and with a distance
that is at least zz.

For these formulae, we run 3 kinds of experiments. First, we run the tool for
every formula without using the improvements of the bounds given by knowing
the minimum distance (i.e., we used Theorem 2 by setting d = 1). Second, we
run the tool for every formula by using the known minimum distance. Third, we
run the state-of-the-art tool for approximate model counting, called ApproxMC3
[21] (an improved version of ApproxMC2 [7]). The results obtained are reported
in Table 2.

1 Run on a MacBook Air, with a 1,7 GHz Intel Core i7 processor, 8 GB of memory
(1600 MHz DDR3) and OS X 10.9.5.

374 M. Boreale and D. Gorla

Table 2. Results for our tool with α = β = 1.5, d = 1 and d = dmin, compared to
ApproxMC3 with a tolerance ε = 3. In all trials, the error probability δ is 0.1.

Formula Our tool with
d= 1

Our tool with
d= dmin

ApproxMC3

F21-31-5.cnf res: [219.5, 223.5]
time: 8.05 s

res: [219.5, 223.5]
time: 6.73 s

res: ?? time:
> 3 h

F16-31-7.cnf res: [214.5, 218.5]
time: 11.75 s

res: [214.5, 218.5]
time: 9.5 s

res: [213.86, 217.85]
time: 22 min 43 s

F11-31-9.cnf res: [29.5, 213.5]
time: 6.75 s

res: [29.5, 213.5]
time: 4.32 s

res: [29.09, 213.09]
time: 15.24 s

F6-31-11.cnf res: [24.5, 28.5]
time: 3.01 s

res: [24.5, 28.5]
time: 2.62 s

res: [24, 28] time:
1.9 s

F16-63-23.cnf res: [214.5, 218.5]
time: 31 min 15 s

res: [214.5, 218.5]
time: 2 min 36 s

res: [213.9, 217.9]
time: 54 min 57 s

To compare our results with theirs, we have to consider that, if our tool
returns [l, u], then the number of models lies in [�2l�, 	2u
] with error probability
δ (set to 0.1. in all experiments). By contrast, if ApproxMC3 returns a value M ,
then the number of models lies in

[
M
1+ε ,M(1 + ε)

]
with error probability δ (again,

set to 0.1 in all experiments). So, we have to choose for ApproxMC3 a tolerance ε
that produces an interval of possible solutions comparable to what we obtain with
our tool. The ratio between the sup and the inf of our intervals is 22max(α,β)+1

(indeed, A always returned an interval such that u − l ≤ 2max(α, β) + 1); when
α = β = 1.5, the value is 16. By contrast, the ratio between the sup and the inf
of ApproxMC3’s intervals is (1 + ε)2; this value is 16 for ε = 3.

In all formulae that have “sufficiently many” models – empirically, at least 211

– our approach outperforms ApproxMC3. Moreover, making use of the minimum
distance information implies a gain in performance. Of course, the larger the
distance, the greater the gain – again, provided that the formula has sufficiently
many models: compare, e.g., the first and the last formula.

4.3 Towards a Practical Methodology

To be used in practice, our technique requires a lower bound on the minimum
Hamming distance between any two models of φ. We discuss below how error-
correcting codes might be used, in principle, to obtain such a bound. Generally,
speaking an error-correcting code adds redundancy to a string of bits and inflates
the minimum distance between the resulting codewords. The idea here is to
transform the given formula φ into a new formula φ′ that describes an encoding
of the original formula’s models: as a result #φ′ = #φ, but the models of φ′

live in a higher dimensional space, where a minimum distance between models
is ensured.

Approximate Model Counting, Sparse XOR Constraints 375

Assume that φ(y) is already in Conjunctive Normal Form. Fix a binary linear
[n,m, d] block code C (i.e. a code with 2m codewords of n bits and minimum dis-
tance d), and let G be its generator matrix, i.e. a m×n binary matrix such that
the codeword associated to u ∈ F

m
2 is uG (where we use the vector-matrix multi-

plication in the field F2). The fact that a c ∈ F
n
2 is a codeword can be expressed

by finding some u that satisfies the conjunction of the n XOR constraints:

ci =
m⊕

j=1

uj · Gij for i = 1, . . . , n .

Again, the important condition here is that G be sparse (on its columns), so
that the above formula effectively corresponds to a conjunction of sparse XOR
constraints. That is, we should confine ourselves to low-density parity check
(LDPC) codes [11,18]. Now, we consider the formula

φ′(z)
�
= ∃y(φ(y) ∧ z = yG) .

It can be easily proved that φ and φ′ have the same number of models. If we now
assume a minimum distance of d when applying Theorem2, we have a decrease
in the feasibility threshold λ∗, as prescribed by (7). This gain must of course
be balanced against the increased number of boolean variables in the formula
(viz. n). We will have an actual advantage using C over not using it (and simply
assuming d = 1) if and only if, by using C, the expected length of the resulting

XOR constraints is actually smaller. By letting λ∗,d �
= λ∗

1(s, n, β, d), the latter
fact holds if and only if

nλ∗,d ≤ mλ∗,1 (8)

or equivalently λ∗,d ≤ Rλ∗,1, where R
�
= m

n is the rate of C. This points to
codes with high rate and big minimum distance. Despite these two parameters
pull one against the other, (8) can be fulfilled, and good expected length bounds
obtained, by choosing C appropriately.

For example, [10] presents a [155, 64, 20]-LDPC code, that is a code with
block length of 155, with 264 codewords and with minimum distance between
codewords of 20. In Fig. 2 we compare the expected length of the resulting XOR
constraints in the two cases – m × λ∗(s,m, β, 1) (without the code, for m = 32
and m = 64) and 155 × λ∗

1(s, 155, β, 20) (with the code) – as functions of s, for
fixed β = 1.5. As seen from the plots, the use of the code offers a significant
advantage in terms of expected length up to s = 10 and s = 26, respectively.

We have performed a few tests for a preliminary practical assessment of this
idea. Unfortunately, in all but a few cases, the use of the said [155, 64, 20]-LDPC
code does not offer a significant advantage in terms of execution time. Indeed,
embedding a formula in this code implies adding 155 new XOR constraints:
the presence of so many constraints, however short, apparently outweights the
benefit of a minimum distance d = 20. We hope that alternative codes, with a
more advantageous block length versus minimum distance tradeoff, would fare

376 M. Boreale and D. Gorla

Fig. 2. Plots of the expected length of XOR constraints as a function of s, with and
without code, and the relative percentual gain. Here, m = 32 (left) and 64 (right),
β = 1.5 and the code is a [155, 64, 20]-LDPC.

better. Indeed, as we showed in Table 1, relatively small distances (e.g. d = 5)
can already give interesting gains, if the number of extra constraints is small.
We leave that as subject for future research.

5 Conclusion

We have studied the relation between sparse XOR constraints and minimum
Hamming distance in model counting. Our findings suggest that minimum dis-
tance plays an important role in making the feasibility threshold for λ (density)
lower, thus potentially improving the effectiveness of XOR based model count-
ing procedures. These results also prompt a natural direction for future research:
embedding the set of models into a higher dimensional Hamming space, so as to
enforce a given minimum distance.

Beside the already mentioned [9], our work also relates to the recent [1].
There, constraints are represented as systems Ay = b, for A a random LDPC
matrix enjoying certain properties, b a random vector, and y the variable vector.
Their results are quite different from ours, but also they take the geometry of the
set of models into account, including minimum distance. In particular, they make
their bounds depend also on a “boost” parameter which appears quite difficult
to compute. This leads to a methodology that is only empirically validated –
that is, the model count results are offered with no guarantee.

Acknowledgements. We thank Marco Baldi, Massimo Battaglioni and Franco Chiar-
aluce for providing us with the generator and parity check matrices of the LDPC code
in Subsect. 4.3.

References

1. Achlioptas, D., Theodoropoulos, P.: Probabilistic model counting with short XORs.
In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 3–19. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 1

https://doi.org/10.1007/978-3-319-66263-3_1

Approximate Model Counting, Sparse XOR Constraints 377

2. Babai, L., Frankl, P.: Linear Algebra Methods in Combinatorics. The University
of Chicago, Chicago (1992)

3. Biondi, F., Enescu, M.A., Heuser, A., Legay, A., Meel, K.S., Quilbeuf, J.: Scalable
approximation of quantitative information flow in programs. Verification, Model
Checking, and Abstract Interpretation. LNCS, vol. 10747, pp. 71–93. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 4

4. Boreale, M., Gorla, D.: Approximate model counting, sparse XOR constraints and
minimum distance. https://arxiv.org/abs/1907.05121 (2019)

5. Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group
codes. Inf. Control 3(1), 68–79 (1960)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 18

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Proceedings of International Joint Conference on Artificial Intelligence (2016)

8. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. Inf. Comput. 206(2–4), 378–401 (2008)

9. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Low-density parity constraints
for hashing-based discrete integration. In: Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014,
pp. 271–279 (2014)

10. Fuja, T.E., Sridhara, D., Tanner, R.M.: A class of group-structured LDPC codes.
In: International Symposium on Communication Theory and Applications (2001)

11. Gallager, R.G.: Low Density Parity Check Codes. MIT Press, Cambridge (1963)
12. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven

answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72200-7 23

13. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-
ing good bounds. In: Proceedings of AAAI, pp. 54–61 (2006)

14. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satis-
fiability, pp. 633–654. IOS Press (2009)

15. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffres 2, 147–156 (1959)
16. Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification of

information flow in programs. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 177–192. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40196-1 16

17. Klebanov, V., Weigl, A., Weibarth, J.: Sound probabilistic #SAT with projection.
In: Proceedings of QAPL (2016)

18. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE
Trans. Inf. Theory 45(3), 399–432 (1999)

19. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compi-
lation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI),
vol. 7310, pp. 356–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30353-1 36

20. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

https://doi.org/10.1007/978-3-319-73721-8_4
https://arxiv.org/abs/1907.05121
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-00596-1_21

378 M. Boreale and D. Gorla

21. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. In: Proceedings of AAAI Conference
on Artificial Intelligence (AAAI) (2019)

22. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–
257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24.
http://www.msoos.org/cryptominisat2/

23. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 38

24. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

25. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor.
Comput. Sci. 47(3), 85–93 (1986)

https://doi.org/10.1007/978-3-642-02777-2_24
http://www.msoos.org/cryptominisat2/
https://doi.org/10.1007/11814948_38

	Approximate Model Counting, Sparse XOR Constraints and Minimum Distance
	1 Introduction
	2 A General Counting Algorithm
	2.1 A General Scheme
	2.2 XOR-based Decision Algorithms

	3 Counting with Sparse XORs
	4 Evaluation
	4.1 Theoretical Bounds on Expected Constraint Length
	4.2 Execution Times
	4.3 Towards a Practical Methodology

	5 Conclusion
	References

