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Abstract. Behavioral metrics play a fundamental role in the analy-
sis of probabilistic systems. They allow for a robust comparison of the
behavior of processes and provide a formal tool to study their perfor-
mance, privacy and security properties. Gebler, Larsen and Tini showed
that the bisimilarity metric is also suitable for compositional reason-
ing, expressed in terms of continuity properties of the metric. Moreover,
Gebler and Tini provided semantic formats guaranteeing, respectively,
the non-extensiveness, non-expansiveness and Lipschitz continuity of this
metric. In this paper, starting from their work, we define three specifica-
tion formats for the bisimilarity metric, one for each continuity property,
namely sets of syntactic constraints over the SOS rules defining process
operators that guarantee the desired continuity property of the metric.

1 Introduction

With the ever-increasing interest in probabilistic processes, robust notions and
formal tools are needed to analyze their behavior. It has been argued many
times by now that behavioral metrics [2,6,7,13,14,20,23,34] are preferable to
behavioral relations in this setting in that they overcome the high sensitivity
of equivalences and preorders with respect to tiny variations in the values of
probabilities. Instead of stating whether the behavior of two processes is exactly
the same or not, behavioral metrics measure the disparities in their behavior.

A fundamental aspect for process specification and verification is composi-
tional reasoning, namely to prove the compatibility of the language operators
with the chosen behavioral semantics. In [16] the authors proposed to express
the compositional properties of the bisimilarity metric [6,13,14], i.e., the quanti-
tative analogue to bisimulation equivalence, in terms of its continuity properties.
In detail, a notion of uniform continuity was proposed subsuming the properties
of non-extensiveness [4], non-expansiveness [14] and Lipschitz continuity of the
metric. Informally, an operator is non-extensive wrt. a metric if the distance of
two systems defined via that operator is not greater than the maximum of the
pairwise distances of their components. The notion of non-expansiveness relaxes
that of non-extensiveness by allowing the distance of the two systems to be
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bounded by the sum of the pairwise distances of their components. Lipschitz
continuity extends non-expansiveness by considering as bound a multiplicative
factor of the sum of pairwise distances of the components of the two systems.

Since [33], a specification format is a set of syntactic constraints on the form
of the SOS inference rules [29,30] used to define the operational semantics of pro-
cesses, ensuring by construction a given compositionality property (see [1,28] for
surveys). A first step in the definition of specification formats for uniform conti-
nuity properties of bisimilarity metric can be found in [19]. However, the formats
in [19] are not fully syntactic since they do not simply require an inspection of
the pattern of the rules, but they require to compute how many copies of a pro-
cess argument can be spawned by each operator. Such computation is necessarily
recursive since the SOS rules define operators in terms of operators.

Our Contribution. In this paper we provide a classic syntactic format for
uniform continuity properties for the bisimilarity metric. In detail, we propose
three formats: the non-extensiveness, the non-expansiveness, and the Lipschitz
continuity format. These formats build on the PGSOS format [11,12] and on
syntactic constraints regulating the form of the targets of rules. We recall that
the PGSOS format guarantees that probabilistic bisimilarity, i.e., the kernel
of the bisimilarity metric, is a congruence [12]. Hence, to obtain the desired
continuity properties it is fundamental to start from the PGSOS format, since
it ensures that by composing processes which are at distance 0, i.e., bisimilar,
we obtain processes which are at distance 0. We will see that less demanding
continuity properties require less demanding rule constraints.

2 Background

In the process algebra setting, processes are constructed inductively as closed
terms over a suitable signature, namely a countable set Σ of operators. We let
f range over Σ and n range over the rank of f ∈ Σ. Operators with rank 0 are
called constants. We let Σ0 denote the subset of constants in the signature Σ.

Assume a set of (state, or process) variables Vs disjoint from Σ and ranged
over by x, y, . . .. The set T(Σ,V ) of terms over Σ and a set of variables V ⊆ Vs

is the least set satisfying: (i) V ⊆ T(Σ,V ), and (ii) f(t1, . . . , tn) ∈ T(Σ,V )
whenever f ∈ Σ and t1, . . . , tn ∈ T(Σ,V ). By T(Σ) we denote the set of the
closed terms T(Σ, ∅), or processes. By T(Σ) we denote the set of all open terms
T(Σ,Vs). By var(t) we denote the set of the variables occurring in the term t.

To equip processes with a semantics we rely on nondeterministic probabilistic
labeled transition systems (PTSs) [31], which allow for modeling reactive behav-
ior, nondeterminism and probability. The state space in a PTS is the set of
processes T(Σ). Transitions take processes to discrete probability distributions
over processes, i.e., mappings π : T(Σ) → [0, 1] with

∑
t∈T(Σ) π(t) = 1. The

support of a distribution π is supp(π) = {t ∈ T(Σ) | π(t) > 0}. By Δ(T(Σ)) we
denote the set of all finitely supported distributions over T(Σ).
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Definition 1 (PTS, [31]). A PTS is a triple (T(Σ),A,−→), where Σ is a sig-
nature, A a countable set of action labels, and −→⊆ T(Σ) × A × Δ(T(Σ)) a
transition relation.

As usual, a transition (t, α, π) ∈−→ is denoted t
α−→ π. Then, t

α−→� denotes
that there is no distribution π with t

α−→ π and is called a negative transition.

Distributions and Distribution Terms. For a process t ∈ T(Σ), δt is
the Dirac distribution with δt(t) = 1 and δt(s) = 0 for all s �= t. For
f ∈ Σ and πi ∈ Δ(T(Σ)), f(π1, . . . , πn) is the distribution defined by
f(π1, . . . πn)(f(t1, . . . tn)) =

∏n
i=1 πi(ti) and f(π1, . . . , πn)(t) = 0 for all t not

in the form f(t1, . . . , tn). The convex combination
∑

i∈I piπi of a family of dis-
tributions {πi}i∈I ⊆ Δ(T(Σ)) with pi ∈ (0, 1] and

∑
i∈I pi = 1 is defined by

(
∑

i∈I piπi)(t) =
∑

i∈I(piπi(t)) for all t ∈ T(Σ).
Then, we need the notion of distributions term. Assume a countable set of

distribution variables Vd disjoint from Σ and Vs and ranged over by μ, ν, . . ..
Intuitively, any μ ∈ Vd may instantiate to a distribution in Δ(T(Σ)). The set
of distribution terms over Σ and the sets of variables Vs ⊆ Vs and Vd ⊆ Vd,
notation DT(Σ,Vs, Vd), is the least set satisfying: (i) {δt | t ∈ T(Σ,Vs)} ⊆
DT(Σ,Vs, Vd), (ii) Vd ⊆ DT(Σ,Vs, Vd), (iii) f(Θ1, . . . , Θn) ∈ DT(Σ,Vs, Vd)
whenever f ∈ Σ and Θi ∈ DT(Σ,Vs, Vd), (iv)

∑
j∈J pjΘj ∈ DT(Σ,Vs, Vd) when-

ever Θj ∈ DT(Σ,Vs, Vd) and pj ∈ (0, 1] with
∑

j∈J pj = 1. We write DT(Σ)
for DT(Σ,Vs,Vd), i.e. the set of all open distribution terms, and DT(Σ) for
DT(Σ, ∅, ∅), i.e. the set of the closed distribution terms. Notice that closed dis-
tribution terms denote distributions. We denote by var(Θ) the set of the variables
occurring in distribution term Θ. We let δVs

denote the set {δx | x ∈ Vs}.
A distribution term is in normal form if the Dirac operator is applied only

to single variables δx and not to non-variable terms δt with t �∈ Vs and, then,
either there is no convex combination or there is only one convex combination
as outermost operation.

Definition 2 (Normal form, [19]). A distribution term Θ ∈ DT(Σ) is in
normal form iff: either (i) Θ = μ ∈ Vd, or (ii) Θ = δx for x ∈ Vs, or (iii) Θ =
f(Θ1, . . . , Θn) where all the Θi are in normal form and no convex combination
occurs in any of the Θi, or (iv) Θ =

∑
j∈J pjΘj where all the Θj are in normal

form and no convex combination occurs in any of the Θj.

A substitution is a mapping σ : Vs ∪ Vd → T(Σ) ∪ DT(Σ) with σ(x) ∈ T(Σ)
for all x ∈ Vs and σ(μ) ∈ DT(Σ) for all μ ∈ Vd. A substitution σ is closed if it
maps terms to closed terms in T(Σ) ∪ DT(Σ).

We say that two distribution terms Θ1, Θ2 are equivalent, written Θ1 ≡ Θ2 if
under all closed substitutions σ, the closed distribution terms σ(Θ1) and σ(Θ2)
express the same probability distribution. Each distribution term is equivalent
to a normal form.

Proposition 1 ([19]). For each distribution term Θ ∈ DT(Σ) there is a dis-
tribution term Θ′ ∈ DT(Σ) in normal form such that Θ ≡ Θ′.
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PGSOS Specifications. PTSs are defined by means of SOS rules [30], which
are syntax-driven inference rules allowing us to infer the behavior of processes
inductively with respect to their structure. They are based on expressions of
the form t

α−→ Θ and t
α−→� , called, resp., positive and negative literals with t

a term and Θ a distribution term, which will instantiate to transitions through
substitutions. The literals t

α−→ Θ and t
α−→� with the same term t in the left

hand side and the same label α, are said to deny each other.
We assume SOS rules in the probabilistic GSOS (PGSOS) format [12], which

allows for specifying most of probabilistic process algebras operators [16]. As
examples, all SOS rules in Tables 1, 2 and 3 are PGSOS rules according to the
following definition.

Definition 3 (PGSOS rules, [12]). A PGSOS rule r has the form:

{xh
αh,m−−−−→ μh,m | h ∈ H,m ∈ Mh} {xh

αh,n−−−→� | h ∈ H,n ∈ Nh}
f(x1, . . . , xn)

α−→ Θ
(1)

where f ∈ Σ is an operator, H ⊆ {1, . . . , n}, Mh and Nh are finite sets
of indexes, αh,m, αh,n, α ∈ A are action labels, xh ∈ Vs are state variables,
μh,m ∈ Vd are distribution variables and Θ ∈ DT(Σ) is a distribution term.
Furthermore: (i) all distribution variables μh,m with h ∈ H and m ∈ Mh are
distinct, (ii) all variables x1, . . . xn are distinct, (iii) var(Θ) ⊆ {μh,m | h ∈
H,m ∈ Mh} ∪ {x1, . . . , xn}.

Constraints (i)–(iii) are inherited by the classical GSOS rules in [5] and are
necessary to ensure that probabilistic bisimulation is a congruence [8,9,12]. For
a PGSOS rule r, the positive (resp. negative) literals above the line are called
the positive (resp. negative) premises, notation pprem(r) (resp. nprem(r)). We
denote by der(x, r) = {μ | x

a−→ μ ∈ pprem(r)} the set of derivatives of x in
r. The literal f(x1, . . . , xn)

α−→ Θ is called the conclusion, notation conc(r), the
term f(x1, . . . , xn) is called the source, notation src(r), and the distribution term
Θ is called the target, notation trg(r).

Definition 4 (PTSS, [12]). A PGSOS-transition system specification (PTSS)
is a tuple P = (Σ,A, R), with Σ a signature, A a set of actions and R a set of
PGSOS rules.

We conclude with the notion of disjoint extension for a PTSS which allows
us to introduce new operators without affecting the behavior of those already
specified.

Definition 5 (Disjoint extension). A PTSS P ′ = (Σ′,A, R′) is a disjoint
extension of a PTSS P = (Σ,A, R), written P 	 P ′, if Σ ⊆ Σ′, R ⊆ R′ and R′

introduces no new rule for any operator in R.



Fully Syntactic Uniform Continuity Formats for Bisimulation Metrics 297

3 Behavioral Metrics and Their Compositional Properties

Behavioral equivalences, such as probabilistic bisimulation [27,32], answer the
question of whether two processes behave precisely the same way or not with
respect to the observations we can make on them. Behavioral metrics [2,6,13,14,
34] answer the more general question of measuring the differences in processes
behavior. They are usually defined as 1-bounded pseudometrics expressing the
behavioral distance on processes, namely they quantify the disparities in the
observations that we can make on them.

A 1-bounded pseudometric on a set X is a function d : X × X → [0, 1] such
that: (i) d(x, x) = 0, (ii) d(x, y) = d(y, x), and (iii) d(x, y) ≤ d(x, z) + d(z, y),
for all x, y, z ∈ X. The kernel of a pseudometric d on X consists in the set of
the pairs of elements in X that are at distance 0, namely ker(d) = {(x, y) ∈
X × X | d(x, y) = 0}. For simplicity, we denote by D(X) the set of 1-bounded
pseudometrics on the set X.

As elsewhere in the literature, we will sometimes use the term metric in
place of pseudometric. Below we recall the notion of bisimilarity metric, which
is one of the most studied behavioral metrics in the literature, and we discuss
its compositionality.

The notion of bisimulation metric [6,13,14] bases on the quantitative anal-
ogous to the bisimulation game: two processes can be at some given distance
ε < 1 only if they can mimic each other’s transitions and evolve to distributions
that are, in turn, at a distance ≤ ε. To formalize this intuition, we need to lift
pseudometrics on processes to pseudometrics on distributions. To this purpose,
we rely on the notions of matching (also known as coupling or weight function)
and Kantorovich lifting.

Definition 6 (Matching). Assume two sets X and Y . A matching for dis-
tributions π ∈ Δ(X) and π′ ∈ Δ(Y ) is a distribution over the product
space w ∈ Δ(X × Y ) with π and π′ as left and right marginal, namely: (i)∑

y∈Y w(x, y) = π(x), for all x ∈ X, and (ii)
∑

x∈X w(x, y) = π′(y), for all
y ∈ Y . We let W(π, π′) denote the set of all matchings for π and π′.

Definition 7 (Kantorovich metric, [21]). Given d ∈ D(X), the Kantorovich
lifting of d is the pseudometric K(d) : Δ(X) × Δ(X) → [0, 1] defined for all
π, π′ ∈ Δ(X) by

K(d)(π, π′) = min
w∈W(π,π′)

∑

x,y∈X

w(x, y) · d(x, y).

Bisimulation metrics are normally parametric with respect to a discount fac-
tor allowing us to specify how much the distance of future transitions is mitigated
[3,14]. Informally, any difference that can be observed only after a long sequence
of computation steps does not have the same impact of the differences that can
be witnessed at the beginning of the computation. In our context, the discount
factor is a value λ ∈ (0, 1] such that the distance arising at step n is mitigated
by λn (λ = 1 means no discount).
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Definition 8 (Bisimulation metric, [13]). Let λ ∈ (0, 1]. We say that d ∈
D(T(Σ)) is a bisimulation metric if for all s, t ∈ T(Σ) with d(s, t) < 1, we have
that:

∀s
a−→ πs ∃t

a−→ πt such that λ · K(d)(πs, πt) ≤ d(s, t).

Notice that any bisimulation metric is a pseudometric by definition. In [13] it
was proved that the smallest bisimulation metric exists and it is called bisimilar-
ity metric, denoted by bλ. Moreover, its kernel induces an equivalence relation
that coincides with probabilistic bisimilarity, namely bλ(s, t) = 0 if and only if
s and t are bisimilar [6,13].

3.1 Compositionality

In order to specify and verify systems in a compositional manner, it is nec-
essary that the behavioral semantics be compatible with all operators of the
language that describe these systems. In the behavioral metric approach, we
must guarantee that the distance between two composed systems f(s1, . . . , sn)
and f(t1, . . . , tn) depends on the distance between all pairs of arguments si, ti, so
that the closer all pairs si and ti the closer the composed systems f(s1, . . . , sn)
and f(t1, . . . , tn).

Following [18,19], we define compositionality properties for bisimulation met-
ric relying on the notion of modulus of continuity for an operator with respect
to a distance.

Definition 9 (Modulus of continuity). Let P = (Σ,A, R) be a PTSS, f ∈
Σ some n-ary operator and d ∈ D(T(Σ)). Then, a mapping m : [0, 1]n → [0, 1]
is a modulus of continuity for f with respect to d iff:

– for all processes si, ti ∈ T(Σ) we have:

d(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ m(d(s1, t1), . . . , d(sn, tn)),

– m is continuous at (0, . . . , 0), i.e. lim(ε1...εn)→(0...0) m(ε1, . . . , εn) =
m(0, . . . , 0),

– m(0, . . . , 0) = 0.

In [16,18,19] an operator is called uniformly continuous if this operator
admits any modulus of continuity with respect to bλ. Intuitively, a uniformly
continuous n-ary operator f ensures that for any non-zero bisimulation distance
ε (understood as the admissible tolerance from the operational behavior of the
composed processes f(s1, . . . , sn) and f(t1, . . . , tn)) there are non-zero bisim-
ulation distances εi such that the distance between the composed processes
f(s1, . . . , sn) and f(t1, . . . , tn) is at most ε whenever the component ti is in
distance of at most εi from si.

Definition 10 (Uniformly continuous operator). Let P = (Σ,A, R) be a
PTSS. We say that an n-ary operator f ∈ Σ is
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– non extensive if m(ε1, . . . , εn) = maxn
i=1 εi is a modulus of continuity for f ;

– non expansive if m(ε1, . . . , εn) =
∑n

i=1 εi is a modulus of continuity for f ;
– Lipschitz continuous if m(ε1, . . . , εn) = L · ∑n

i=1 εi is a modulus of continuity
for f for some L > 1.

Non-extensiveness and non-expansiveness are the most studied notion of com-
positionality (see, e.g., [4,10,13–15,17,22,34,35]). However, they do not allow
for reasoning on recursive processes [16,19,24]. Essentially, recursive operators
are Lipschitz continuous but not non-expansive [16].

We conclude this section by showing that the PGSOS format is necessary to
obtain uniform continuity properties of operators. In the following Example we
show an operator f defined by a rule which does not respect the PGSOS format,
and for which no modulus of continuity among those in Definition 10 can be
established wrt. bλ.

Example 1 (Counterexample for PGSOS format). For simplicity of notation,
in all the Examples we will let a.t stand for a.δt. Assume the prefix operator
a.

⊕
i∈I [pi] in Table 1 and a PTSS containing the following rules

x ‖A x
a−→ μ

f(x) a−→ f(μ) η
√

−−→ δnil

x
a−→ μ y

a−→ ν a �= √

x ‖A y
a−→ μ ‖A ν

x
a−→ √

y
a−→ √

x ‖A y
√

−−→ δnil

in which ‖A denotes the fully synchronous parallel composition operator, η
denotes the skip process, nil is the processes that cannot perform any action
and

√
is a special action in A denoting successful termination. Clearly, the rule

for f falls out of the PGSOS format since an arbitrary term different from a
single process variable occurs as left hand side of the premise. Given any process
u ∈ T(Σ) s.t. bλ(u, η) = 1, consider processes s1 = a.u and t1 = a.([1−ε]u⊕[ε]η)
and for all k > 1 define sk = a.sk−1 and tk = a.tk−1. Clearly, for all k ≥ 1 we
have bλ(sk, tk) = ε ·λk. We now aim at evaluating bλ(f(sk), f(tk)), for all k ≥ 1.
Since the target of the rule for f is of the form f(μ), where μ is derived from
the synchronous parallel composition of the source variable with itself, we can
infer that f(sk) via a sequence of k a-labeled transitions reaches a distribution
that assigns probability 1 to the parallel composition of 2k copies of process
u. Similarly, after k a-labeled transitions f(tk) reaches a distribution assigning
probability (1 − ε)2

k

to the process corresponding to the parallel composition of
2k copies of u; probability ε2

k

to the parallel composition of 2k copies of η, and
the remaining probability 1−(1−ε)2

k −ε2
k

to processes that cannot execute any
action (being the parallel composition of copies of u and η). Therefore we get
bλ(f(sk), f(tk)) = λk(1 − (1 − ε)2

k

). This implies that for any k with 2k > L,
bλ(f(s), f(t))/bλ(s, t) = (1 − (1 − ε)2

k

)/ε > L holds for s = sk, t = tk and
ε ∈ (0, (2k − L)/(2k−1(2k − 1))). We infer that no Lipschitz constant can be
found for f and thus none of the continuity properties in Definition 10 can be
established for f .
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4 The Non-extensiveness Format

In this section we provide a specification format ensuring that all operators
in PTSSs respecting the syntactic constraints imposed by the format are non-
extensive. Briefly, the non-extensiveness format admits only convex combina-
tions of variables and constants as targets of the rules. In the following, we rely
on Proposition 1 and without loss of generality we always assume that the targets
of all PGSOS-rules are in normal form.

Definition 11 (Specification format for non-extensiveness). A PTSS
P = (Σ,A, R) is in non-extensiveness format if all rules r ∈ R are PGSOS rules
as in Definition 3 and Θ = trg(r) is of the form Θ =

∑
j∈J pjΘj, with Θj ∈

Vd ∪ δVs
∪ Σ0 for all j ∈ J .

Then, all operators in Σ are called P -non-extensive.

Essentially, in each element Θj we have at most one occurrence of one process
argument xh or of one of its derivatives μh,m, thus implying that Θj contributes
to the distance bλ(f(s1, . . . , sn), f(t1, . . . , tn)) by bλ(sh, th). As a consequence,
we have that bλ(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ ∑

j∈J pj maxn
i=1 b

λ(si, ti) =
maxn

i=1 b
λ(si, ti).

We notice that all rules in Table 1 respect Definition 11. Conversely, for each
operator defined in Tables 2 and 3 there is at least one rule violating the con-
straints in Definition 11. For instance, the target of the first rule for operator
of sequentialization x; y contains both the derivative μ of the process argument
x and the process argument y. If we consider the first rule for the operator of
parallel composition x ‖B y, we note that the target contains one derivative for
each of the two process arguments.

To obtain the non-extensiveness property of bisimilarity metric from our
format, we need to apply a quantitative analogous to the standard technique
used to prove the congruence property of behavioural equivalences. Informally,
we introduce the notion of non-extensive closure of a pseudometric, seen as the
quantitative analogous to the congruence closure of behavioral relations. Briefly,
the non-extensive closure allows us to lift a pseudometric to a pseudometric that
satisfies the non-extensiveness property.

Definition 12 (Non-extensive closure). Assume a PTSS (Σ,A, R). The
non-extensive closure Ext: D(T(Σ)) → D(T(Σ)) is defined for d ∈ D(T(Σ))
and s, t ∈ T(Σ) by

Ext(d)(s, t) =

⎧
⎪⎪⎨

⎪⎪⎩

min{d(s, t), max
i=1...,n

Ext(d)(si, ti)} if s = f(s1, . . . , sn),

t = f(t1, . . . , tn) and f ∈ Σ

d(s, t) otherwise.

In particular we denote by Extλ the non-extensive closure of bλ.
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Clearly, focusing on the non-extensive closure of bisimilarity metric Extλ, we
observe that Extλ(s, t) ≤ bλ(s, t) for all s, t ∈ T(Σ). Moreover, notice that each
operator f admits its modulus of continuity for non-extensiveness wrt. Extλ.
Therefore, the proof of the non-extensiveness theorem (Theorem 1 below), that
states the correctness of the non-extensiveness format (Definition 11), consists
in proving that under the constraints of our format the metric Extλ is itself a
bisimulation metric. As a consequence, from Extλ(s, t) ≤ bλ(s, t) and bλ being
the least bisimulation metric, we can infer that Extλ = bλ and thus that bλ is
non-extensive wrt. all the operators satisfying our non-extensiveness format.

Theorem 1 (Non-extensiveness). Let λ ∈ (0, 1] and P = (Σ,A, R) be a
PTSS in non-extensiveness format. Then the operators in Σ are non-extensive
wrt. bλ.

Proof sketch. We present only a sketch of the proof. The proofs of Theorems 2
and 3 follow the same reasoning schema.

As Extλ ≤ bλ by definition and bλ is the least bisimulation metric, the thesis
is equivalent to prove that Extλ is a bisimulation metric. We need to show that

whenever Extλ(σ(t), σ′(t)) < 1 and P � σ(t) a−→ π

then P � σ′(t) a−→ π′ and λ · K(Extλ)(π, π′) ≤ Extλ(σ(t), σ′(t)).
(2)

This is proved by induction over the structure of t.
For the non-trivial inductive step with t = f(t1, . . . , tn) and

Extλ(σ(t), σ′(t)) = maxi=1,...,n Extλ(σ(ti), σ′(ti)) the proof can be sketched as
follows. Assume that P � σ(t) a−→ π, so that there are a non-extensive rule

r =
{xh

αh,m−−−−→ μh,m | h ∈ H,m ∈ Mh} {xh
αh,n−−−→� | h ∈ H,n ∈ Nh}

f(x1, . . . , xn)
α−→

∑

j∈J

pjΘj

and a closed substitution σ1, such that σ1(xi) = σ(xi) for all i = 1, . . . , n and
σ1(

∑
j∈J pjΘj) = π, from which we can derive such a transition.

For each h ∈ H,m ∈ Mh, the inductive hypothesis gives that σ′(th)
ah,m−−−→

πh,m and λ · K(Extλ)(σ1(μh,m), πh,m) ≤ Extλ(σ(th), σ′(th)). For the closed
substitution σ2 with σ2(xi) = σ′(ti) for all i = 1, . . . , n and σ2(μh,m) = πh,m for
all h ∈ H,m ∈ Mh, we get that {σ2(xh)

ah,m−−−→ σ2(μh,m) | h ∈ H,m ∈ Mh} is
provable from P . For each h ∈ H,n ∈ Nh, by the inductive hypothesis we can
infer that σ′(th)

ah,n−−−→� for all h ∈ H,n ∈ Nh. For σ2 defined as above, we get
that the set of negative premises {σ2(xh)

ah,n−−−→� | h ∈ H,n ∈ Nh} is provable
from P . Hence, all the premises of the closed instance of r with respect to σ2 are
provable from P , thus implying that σ′(t) a−→ σ′(

∑
j∈J pjΘj) is provable from

P .
Then, λ · K(Extλ)(

∑
j∈J pjσ1(Θj),

∑
j∈J pjσ2(Θj)) ≤ Extλ(σ(t), σ′(t)) fol-

lows by: 1. the convexity properties of the Kantorovich metric, 2. the form of
the Θj in the target of a non-extensive rule, and 3. the inductive hypothesis. ��
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Table 1. Non-extensive process algebra operators. μ ⊕p ν stays for p · μ + (1 − p) · ν.

By applying Theorem 1, we get the non-extensiveness of all operators in
Table 1.

Corollary 1. The operators defined by the PGSOS rules in Table 1 are non-
extensive.

Since we already know from [16] that none of the operators in Tables 2 and
3 is non-extensive, we can conclude that our format is not too restrictive, mean-
ing that no non-extensive operator among those used in standard probabilistic
processes algebras is out of the format. Moreover, we can also infer that the
constraints of the format cannot be relaxed in any immediate way.

5 The Non-expansiveness Format

In this section we focus on the non-expansiveness property. We show that by
relaxing the constraints of the non-extensiveness format, we obtain a specifica-
tion format for non-expansiveness. In detail, we allow the target of each rule to
be a convex combination of distribution terms in which also non-constant oper-
ators can appear and can be applied to source variables and to their derivatives,
provided that for each source variables at most one occurrence of that variable
or of its derivatives occurs.

Definition 13 (Specification format for non-expansiveness). Assume a
PTSS P1 = (Σ1,A, R1) in non-extensiveness format. A PTSS P2 = (Σ2,A, R2)
with P1 	 P2 is in non-expansiveness format if all rules r ∈ R2 \ R1 are of the
form

{xh
αh,m−−−−→ μh,m | h ∈ H,m ∈ Mh} {xh

αh,n−−−→� | h ∈ H,n ∈ Nh}
f(x1, . . . , xn)

α−→ Θ

where:

1. the target Θ is of the form Θ =
∑

j∈J pjΘj,
2. for all j ∈ J and h ∈ H, at most one among the variables in ({xh} ∪ {μh,m |

m ∈ Mh}) occurs in Θj and there must be at most one such occurrence, and
3. for all j ∈ J and i ∈ {1, . . . , n} \ H, the variable xi can occur at most once

in Θj.
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Moreover, all operators defined by rules in R2 \ R1 are called P2-non-expansive.

Since in each Θj we can have at most one occurrence of a source variable
xh or of one of its derivatives {μh,m | m ∈ Mh}, we can infer that Θj con-
tributes to bλ(f(s1, . . . , sn), f(t1, . . . , tn)) by, at most,

∑n
i=1 b

λ(si, ti). Conse-
quently, we obtain bλ(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ ∑

j∈J pj

∑n
i=1 b

λ(si, ti) =
∑n

i=1 b
λ(si, ti).

Notice that all non-extensive operators are also non-expansive. Further, all
operators defined by rules in Table 2, as well as those in Table 1, respect the non-
expansiveness format. Conversely, the operators in Table 3, which are known to
be expansive [16], have at least one rule falling out of the format. For instance,
the rule for the bang operator !x, which stands for the parallel composition of
infinitely many copies of the process argument, violates Definition 13 since both
the source variable x and its derivative μ occur in the same distribution term in
the target.

As in the case of non-extensiveness, the formal proof of the correctness of the
non-expansiveness format bases on a proper notion of closure of a pseudometric.
We define the non-expansiveness closure of a pseudometric as its lifting to a
pseudometric which is non-extensive on operators satisfying Definition 11, and
non-expansive on the others.

Definition 14 (Non-expansive closure). Assume the PTSSs P1 =
(Σ1,A, R1) in non-extensiveness format and P2 = (Σ2,A, R2) with P1 	 P2. The
non-expansive closure Exp: D(T(Σ2)) → D(T(Σ2)) is defined for d ∈ D(T(Σ2))
and s, t ∈ T(Σ2) by

Exp(d)(s, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{d(s, t), max
i=1...,n

Exp(d)(si, ti)} if s = f(s1, . . . , sn),

t = f(t1, . . . , tn), f ∈ Σ1

min{d(s, t),
n∑

i=1

Exp(d)(si, ti)} if s = f(s1, . . . , sn),

t =f(t1, . . . tn), f ∈Σ2\Σ1

d(s, t) otherwise.

In particular we denote by Expλ the non-expansive closure of bλ.

We can then show that under the constraints of Definition 13, the non-
expansive closure Expλ of bλ is indeed a bisimulation metric. Since by defi-
nition Expλ(s, t) ≤ bλ(s, t) for all s, t ∈ T(Σ) and bλ is the least bisimula-
tion metric, we can conclude that Expλ = bλ and the operators in a PTSS
in non-expansiveness format are non-expansive with respect to bλ, as stated in
Theorem 2 below.

Theorem 2 (Non-expansiveness). Let λ ∈ (0, 1] and (Σ,A, R) be a PTSS
in non-expansiveness format. Then the operators is Σ are non-expansive with
respect to bλ.
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By applying Theorem 2 we get the non-expansiveness of all operators in
Table 2.

Corollary 2. The operators defined by the PGSOS rules in Tables 1 and 2 are
non-expansive with respect to bλ.

Since we already know from [16] that none of the operators in Table 3 is non-
expansive, we can conclude that our format is not too restrictive, meaning that
no non-expansive operator among those used in standard probabilistic processes
algebras is out of the format. Moreover, the following examples show that the
constraints in Definition 13 cannot be relaxed in any trivial way.

Example 2 (Counterexample for Definition 13.2, I). Consider (i) s1 =
a.([1/2]u1 ⊕ [1/2]u2); (ii) t1 = a.([1/3]u1 ⊕ [1/3]u2 ⊕ [1/3]u3); (iii) u1 = b.η; (iv)
u2 = c.η; (v) u3 = u1 + u2. Clearly we have bλ(s1, t1) = 1/3 · λ, due to u3. Let ‖
denote ‖∅. Consider the operator f defined by the following PGSOS rule

x
a−→ μ

f(x) a−→ δx ‖ μ

which violates the non-expansiveness format of Definition 13 since both x and
μ occur in the target. Let us evaluate bλ(f(s1), f(t1)). Let πs1 = 1/2δ(s1 ‖ u1)+
1/2δ(s1 ‖ u2) and πt1 = 1/3δ(t1 ‖ u1) + 1/3δ(t1 ‖ u2) + 1/3δ(t1 ‖ u3). We have
f(s1)

a−→ πs1 , f(t1)
a−→ πt1 and bλ(f(s1), f(t1)) ≥ λ · K(bλ)(πs1 , πt1). Then

bλ(s1 ‖ u1, t1 ‖ u3) = 1 = bλ(s1 ‖ u2, t1 ‖ u3), whereas bλ(s1 ‖ u1, t1 ‖ u1) =
bλ(s1 ‖ u2, t1 ‖ u2) = bλ(s1, t1). Hence, bλ(f(s1), f(t1)) = 1/3 · λ + 2/9 · λ2 >
bλ(s1, t1).

Example 3 (Counterexample for Definition 13.2, II). Consider process u1 from
Example 2 and processes s2 = a.([1/2]u1 ⊕ [1/2]η) and t2 = a.u1. Clearly,
bλ(s2, t2) = 1/2 · λ. Consider the following PGSOS rule defining the behavior
of operator g

x
a−→ μ

g(x) a−→ μ ‖A μ

which violates the non-expansiveness format as variable μ occurs in the right
hand side of premise and twice in the target. Let us evaluate bλ(g(s2), g(t2)).
We have that g(s2)

a−→ 1/4δ(u1 ‖A u1)+1/4δ(η‖A η)+1/4δ(u1 ‖A η)+1/4δ(η‖A u1).
Conversely, g(t2)

a−→ δ(u1 ‖A u1). Therefore, since ‖A corresponds to the fully
synchronous parallel composition, we can directly infer that bλ(g(s2), g(t2)) ≥
3/4 · λ > bλ(s2, t2).

Example 4 (Counterexample for Definition 13.3). Consider process u1 from
Example 2 and processes s2, t2 from Example 3. Consider the following PGSOS
rule defining the behavior of operator h

x
b−→ μ

h(x, y) b−→ δy ‖A δy
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Table 2. Non-expansive process algebra operators. The symmetric version of the first
rule for ‖B and the one for |||p have been omitted.

which violates the non-expansiveness format in Definition 13 as variable y occurs
twice in the target. From similar calculations to those applied in Example 3, we
can infer that bλ(h(u1, s2), h(u1, t2)) ≥ 3/4 · λ2, which is greater than bλ(s2, t2)
for λ > 2/3.

6 The Lipschitz Continuity Format

We dedicate this section to the definition of a specification format for Lipschitz
continuity. This is obtained by relaxing the constraints of the non-expansiveness
format in Definition 13 as follows: firstly, for each operator f we fix nf ,mf ∈ N.
Then, we allow the targets of the rules for f to be convex combinations of
distribution terms in which (i) the number of occurrences of source variables
and their derivatives is bounded by nf ; (ii) the number of nested operators in
which a source variable can occur is bounded by mf ; (iii) derivatives can only
occur in the scope of non-expansive operators.

Definition 15 (Specification format for Lipschitz continuity). Assume a
PTSS P1 = (Σ1,A, R1) in non-expansiveness format. A PTSS P2 = (Σ2,A, R2)
with P1 	 P2 is in Lipschitz continuity format if for all operators f ∈ Σ2 \ Σ1

there are naturals nf ,mf and all rules r ∈ R2 \ R1 are of the form

{xh
αh,m−−−−→ μh,m | h ∈ H,m ∈ Mh} {xh

αh,n−−−→� | h ∈ H,n ∈ Nh}
f(x1, . . . , xn)

α−→ Θ

where:

1. the target Θ is of the form Θ =
∑

j∈J pjΘj,
2. for all j ∈ J and i ∈ {1, . . . , n}, xi occurs at most nf times in Θj and such

occurrences appear in the scope of at most mf operators, and
3. for all j ∈ J and h ∈ H, there are at most nf occurrences of variables in

{μh,m | m ∈ Mh} in Θj, which appear only in the scope of non-expansive
operators in Σ1.
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Moreover, all operators defined by rules in R2 \ R1 are called P2-Lipschitz.

Informally, for each h ∈ H, bounding to nf the number of occurrences of
derivatives {μh,m | m ∈ Mh} that may occur in Θj and requiring them in the
scope of non-expansive operators, guarantees that process argument xh and Θj

contribute to bλ(f(s1, . . . , sn), f(t1, . . . , tn)) by, at most, nf · bλ(sh, th). Con-
sidering instead source variables, constraint 2 of Definition 15 guarantees that
for each i = 1, . . . , n there is a constant Li ≥ 1 such that process argument
xi and Θj contribute to distance bλ(f(s1, . . . , sn), f(t1, . . . , tn)) by, at most,
λ · nf · Lmf

i ·bλ(si, ti), where Li is the maximal Lipschitz constant among those
of operators applied on top of xi, and factor λ arises since xi is delayed by one
computation step. Therefore, we can infer that for each j ∈ J there is a con-
stant Lj ≥ nf such that Θj contributes to bλ(f(s1, . . . , sn), f(t1, . . . , tn)) by,
at most, Lj

∑n
i=1 b

λ(si, ti). Finally, we obtain bλ(f(s1, . . . , sn), f(t1, . . . , tn)) ≤∑
j∈J pjLj · ∑n

i=1 b
λ(si, ti) = L · ∑n

i=1 b
λ(si, ti) for some constant L ≥ 1.

Notice that the rules in Table 3, as those in Tables 1 and 2, respect the con-
straints in Definition 15. We observe that Table 3 contains the specification of
standard recursive operators xω, !x and x∗y which were ruled out by Defini-
tions 11 and 13.

Next, we formalize the definition of a Lipschitz factor for an operator f ,
namely the constant Lf wrt. which f is Lipschitz continuous, and its construc-
tion over the rules for f and their targets. Since this construction is recursive
for recursive operators, in order to have well-defined Lipschitz factors for these
operators we need a discount factor strictly less than one.

Definition 16 (Lipschitz factor). Assume λ ∈ (0, 1), a PTSS P1 =
(Σ1,A, R1) in non-extensiveness format and a PTSS P2 = (Σ2,A, R2) with
P1 	 P2. For each operator f ∈ Σ2 \ Σ1 let Rf ⊆ R2 denote the set of rules
defining the behavior. Then, the set of Lipschitz factors of operators in Σ2\Σ1 is
defined as the set of minimum reals Lf ≥ 1 satisfying the system of inequalities
of the form

Lf ≥ max
r∈Rf

max
x∈src(r)

{
trg(r)(x) +

∑

μ∈der(x,r)

trg(r)(μ)
}

for each f ∈ Σ2 \ Σ1 where, for any distribution term Θ ∈ DT(Σ) in normal
form, the factor Θ is defined inductively as follows

Θ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x �∈ var(Θ)
λ if Θ = δx

maxi=1,...,n Θi
(x) if Θ = f(Θ1, . . . , Θn) and f ∈ Σ1

Lf

∑n
i=1 Θi

(x) if Θ = f(Θ1, . . . , Θn) and f ∈ Σ2 \ Σ1
∑

j∈J pjΘj
(x) if Θ =

∑
j∈J pjΘj
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Θ(μ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if μ �∈ var(Θ)
1 if Θ = μ

maxi=1,...,n Θi
(μ) if Θ = f(Θ1, . . . , Θn) and f ∈ Σ1

Lf

∑n
i=1 Θi

(μ) if Θ = f(Θ1, . . . , Θn) and f ∈ Σ2 \ Σ1
∑

j∈J pjΘj
(μ) if Θ =

∑
j∈J pjΘj

The following proposition states that Lipschitz factors are well-defined if the
PTSS is in Lipschitz format and λ ∈ (0, 1). Moreover, Lf = 1 if f is non-
expansive.

Proposition 2. Let λ ∈ (0, 1). Assume a PTSS P1 = (Σ1,A, R1) in non-
extensiveness format and an extension P1 	 P2 = (Σ2,A, R2) in Lipschitz
format. Then:

– for each operator f ∈ Σ2, the Lipschitz factor Lf < +∞ is well-defined.
– moreover, if f ∈ Σ2 is non-expansive then Lf = 1.

The following two examples show that if P2 falls out of the Lipschitz conti-
nuity format, then Proposition 2 does not hold.

Example 5. Consider operators f and g specified by the following rules for all
k ∈ N:

x
ak−−→ μ

f(x) ak−−→ μ ‖A . . . ‖A μ
︸ ︷︷ ︸

k−times

g(x) ak−−→ δ(h(. . . h(
︸ ︷︷ ︸
k−times

x)))

x
ak−−→ μ

h(x) ak−−→ μ ‖A μ

Notice that rules for both f and g are out of the Lipschitz format since we
cannot define any nf and mg accordingly to Definition 15. Then, the inductive
definition of Lipschitz factors in Definition 16 gives that L‖A = 1, Lh = 2 and,
then, Lf ≥ k and Lg ≥ λ · 2k for all k ∈ N, thus implying that Lf = Lg = +∞.

Example 6. Consider the copy operator [5] defined by the PGSOS rules below

x
a−→ μ a �∈ {l, r}
cp(x) a−→ μ

x
l−→ μ x

r−→ ν

cp(x) s−→ cp(μ) ‖A cp(ν)
.

Firstly, notice that the second rule violates the non-expansiveness format since
we have two occurrences of derivatives of x in the same distribution term (Def-
inition 13.2). Consequently, it also violates the Lipschitz continuity format in
that μ and ν occur in the scope of an expansive operator (Definition 15.3). By
Definition 16 we would have Lcp ≥ L‖A · Lcp + L‖A · Lcp = 2 · Lcp which is
satisfied only by Lcp = +∞.

Then, the following example shows that, due to the presence of recursive
operators, we must require λ to be strictly lesser than one to guarantee the
validity of Proposition 2.
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Example 7. Consider the rule for the bang operator ! in Table 3. By Defini-
tion 16 we obtain that L! ≥ λ · L! + 1, thus giving L! ≥ 1

1−λ , which does not
hold for λ = 1.

We remark that by restricting to non-recursive operators, such as xn and !n

in Table 3, Proposition 2 would hold also for λ = 1.
As one can expect, the proof of the correctness of our Lipschitz continuity

format bases on the notion of Lipschitz closure of a pseudometric that lifts it to a
pseudometric which is non-extensive on non-extensive operators, non-expansive
on non-expansive operators and Lipschitz continuous on Lipschitz operators.

Definition 17 (Lipschitz closure). Let λ ∈ (0, 1). Assume a PTSS P1 =
(Σ1,A, R1) in non-extensiveness format and a PTSS P2 = (Σ2,A, R2) with
P1 	 P2. Then, the Lipschitz closure Lip: D(T(Σ2)) → D(T(Σ2)) is defined for
all d ∈ D(T(Σ2)) and s, t ∈ T(Σ2) by

Lip(d)(s, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{d(s, t), max
i=1...,n

Lip(d)(si, ti)} if s = f(s1, . . . , sn),

t = f(t1, . . . , tn), f ∈ Σ1

min{d(s, t), Lf ·
n∑

i=1

Lip(d)(si, ti)} if s = f(s1, . . . , sn),

t =f(t1, . . . tn), f ∈Σ2\Σ1

d(s, t) otherwise.

In particular we denote by Lipλ the Lipschitz closure of bλ.

We can show that on a PTSS respecting Definition 15 the Lipschitz closure
Lipλ of bλ is a bisimulation metric and thus the operators in the PTSS are
Lipschitz continuous wrt. bλ. In particular, the constraints of the Lipschitz con-
tinuity format combined with the definition of the Lipschitz factor Lf of operator
f (Definition 16) guarantee that f is Lf -Lipschitz wrt. bλ.

Theorem 3 (Lipschitz continuity). Let (Σ,A, R) be a PTSS in Lipschitz
continuity format and let λ ∈ (0, 1). Then the operators is Σ are Lipschitz con-
tinuous wrt. bλ. In particular, for a Lipschitz operator f , we have that f is
Lf -Lipschitz wrt. bλ.

As an application of Theorem 3, we obtain that bλ is compositional wrt. all
the operators defined in Table 3 in the sense of Lipschitz continuity.

Corollary 3. Let λ ∈ (0, 1). The operators defined by the PGSOS rules in
Tables 1, 2 and 3 are Lipschitz continuous with respect to bλ.

Again, we remark that in Corollary 3 the condition λ strictly lesser than one
is required by the operators xω, !x and x∗y.

Since all operators that have been proved in [16] to be Lipschitz continuous
are in Table 3, we can infer that our format is not too restrictive as it does not
exclude any know Lipschitz continuous operator. Moreover, the following two
examples show that the constraint of Definition 15 cannot be trivially relaxed.
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Table 3. Lipschitz continuous process algebra operators. We recall that ‖ denotes ‖∅.

Example 8 (Counterexample for bounded number of occurrences). Assume A =
{ak | k ∈ N}. Consider the operators f and g as in Example 5, where we
already noticed that the rules defining them violate Definition 15. Let ε ∈ (0, 1).
Following [19], consider processes uk = ak.ak.nil and vk = ak.([1−ε]ak.nil⊕[ε]nil)
with k ∈ N. Clearly, bλ(uk, vk) = λε for all k ∈ N.

Consider first operator f . We have f(uk) ak−−→ πu,k and f(vk) ak−−→ πv,k, with
πu,k(ak.nil ‖A . . . ‖A ak.nil) = 1, πv,k(ak.nil ‖A . . . ‖A ak.nil) = (1 − ε)k and πv,k

giving the remaining probability 1 − (1 − ε)k to processes that cannot move.
We get bλ(f(uk), f(vk)) = λ(1 − (1 − ε)k). Hence, supk∈N bλ(f(uk), f(vk)) =
supk∈N λ(1 − (1 − ε)k) = λ, thus giving that the distance between f -composed
processes is bounded by m(ε) = λ if ε > 0 and m(0) = 0, which is not a modulus
of continuity since it is not continuous at 0. Hence, f is not uniformly continuous
accordingly to Definition 10.

Consider now operator g. We have g(uk) ak−−→ δ(h(. . . h(uk) . . .)) (with
k nested occurrences of h) and g(vk) ak−−→ δ(h(. . . h(vk) . . .)). Then,
h(. . . h(uk) . . .) ak−−→ π′

u,k and h(. . . h(vk) . . .) ak−−→ π′
v,k, with π′

u,k(ak.nil ‖A
. . . ‖A ak.nil) = 1 (parallel composition of 2k copies of ak.nil), π′

v,k(ak.nil ‖A
. . . ‖A ak.nil) = (1 − ε)2

k

and π′
v,k giving probability 1 − (1 − ε)2

k

to pro-

cesses that cannot move. We get bλ(g(uk), g(vk)) = λ2(1 − (1 − ε)2
k

) and, then,
supk∈N bλ(g(uk), g(vk)) = supk∈N λ2(1 − (1 − ε)2

k

) = λ2. As for operator f , we
conclude that g is not uniformly continuous.

Example 9 Counterexample for occurrences in non-expansive operators). In
Example 6 we noticed that the rules for the copy operator cp violate Def-
inition 15. Let ε ∈ (0, 1). Following [19], consider processes s1 = l.([1 −
ε]a.nil ⊕ [ε]nil) + r.([1 − ε]a.nil ⊕ [ε]nil) and t1 = l.a.nil + r.a.nil for some
a �= l, r. Then, for k > 1, let sk = l.sk−1 + r.sk−1 and tk = l.tk−1 + r.tk−1.
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Clearly, bλ(sk, tk) = λk · ε. Similar calculations to those in Example 1 give
bλ(cp(sk), cp(tk)) = λk(1 − (1 − ε)2

k

). Thus, for any k with 2k > L,
bλ(cp(s), cp(t))/bλ(s, t) = (1 − (1 − ε)2

k

)/ε > L holds for s = sk, t = tk
and ε ∈ (0, (2k − L)/(2k−1(2k − 1))). We can conclude that cp is not Lipschitz
continuous.

7 Conclusions

We have provided three specification formats for the bisimilarity metric. These
formats guarantee, respectively, the non-extensiveness, non-expansiveness and
Lipschitz continuity of the operators satisfying the related format wrt. the bisim-
ilarity metric.

To the best of our knowledge, the only other formats for the bisimilarity
metric proposed in the literature are those in [19]. As outlined in the Introduc-
tion, the difference between the two proposals is in that our formats are purely
syntactic, whereas the ones in [19] are semantic, in the sense that they require a
recursive computation of how many copies of a process argument can be spawned
by each operator. However, we remark that we have applied the same technique
of [19] to the evaluation of Lipschitz factors of operators. This is due to the fact
that from the syntactic constraints on PGSOS rules for an operator f we can
only guarantee that f is Lipschitz continuous for some Lf and that Lf ≥ nf , but
no further information can be inferred. This is reasonable since the validity of
the Lipschitz continuity property does not depend on the value of the Lipschitz
constant, but only on its existence. The actual value of Lf can be established,
in general, only from the semantics of f .

As future work, we plan to provide specification formats for weak bisimulation
metrics [15], whose applicability has been demonstrated in [24–26]. Intuitively,
we need to consider TSSs in a format guaranteeing that the kernel of the chosen
metric is a congruence and enrich our three formats with constraints allowing
us to deal with silent moves.
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