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Abstract
Molecular and functional imaging aims to 
assess oncologic therapy response by integrat-
ing molecular and functional tumor biology in 
order to assess therapeutic efficacy and 
improve patient outcome. Most oncologic 
processes reflect heterogeneous disease both 
functionally and morphologically. Further, 
clonal proliferations of cells may evolve with 
time becoming resistant to specific therapies. 
It is important to identify those cancer patients 
who derive benefit from therapy, such that 
expensive, toxic, or futile treatment is avoided 
in those who will not respond. The ultimate 
goal is to offer the right treatment to the right 
patient over time. Molecular and functional 
imaging either using positron emission tomog-
raphy (PET) or gamma cameras often through 
hybrid scanners that also include computed 
tomography (CT) and/or magnetic resonance 
imaging (MRI) are sensitive techniques with a 
major role in the precision medicine algorithm 
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of oncology patients. These modalities 
provide insight prior to, during, and following 
therapy. Further, they often serve as a bio-
marker of tumoral heterogeneity helping to 
direct the selection of appropriate treatment, 
and detect early response to therapy. Also, 
molecular and functional imaging is a power-
ful prognostic biomarker in oncology that can 
suggest patient outcome based on treatment 
response.

1  Introduction

Cancer is a spectrum of disease that is morpho-
logically and functionally heterogeneous. 
Further, the genetic profile of the disease can 
evolve with time leading to the development of 
resistance, and this evolution is not uniform 
throughout the body. Although localized dis-
ease may be cured following resection, meta-
static disease is a leading cause of cancer-related 
death. Over the past few years, several new 
therapies have become available for oncology 
patients. Today, there is a suite of therapies 
available including surgery, radiation, chemo-
therapy, immunotherapy, and radionuclide ther-
apy, among others. Further, technological 
advances have led to the creation of hybrid 
scanners such as positron emission tomography 
(PET)/ computed tomography (CT), single 
photon computed tomography(SPECT)/CT, 
and PET/magnetic resonance imaging (MRI). 
These scanners noninvasively assess morpho-
logical and functional tumor heterogeneity 
throughout the body, evaluate disease extent 
and biologic behavior before and after therapy, 
and identify sites of disease that are developing 
resistance. Multi-modality imaging is helpful, 
not only for staging but also to suggest the most 
appropriate ongoing therapy at a metabolic- 
molecular level. Understanding the genetic 
underpinnings and imaging signature of cancer 
is key if we wish to develop treatment algo-
rithms that use the most effective therapy tai-
lored to individual patients while limiting 
futile, toxic treatment.

2  A Bird’s Eye View 
of Radiopharmaceuticals

There are many radionuclides, such as 99mTc, 
111In, 123I, 131I, 18F, 11C, 68Ga, 64Cu, and 89Zr, among 
others, that can be used to label pharmaceuticals 
and create radiopharmaceuticals. Once all 
legal requirements and regulatory issues have 
been met (Schwarz et  al. 2019), these 
radiopharmaceuticals can be administered to 
patients and the patients can be imaged to deter-
mine functional and molecular information. 
Radiopharmaceuticals labeled with positron-
emitting radionuclides are imaged with PET, 
while those labeled with single photon-emitting 
radionuclides are typically imaged using gamma 
cameras with SPECT capability. Malignant cells 
often demonstrate increased glucose metabolism 
compared with normal tissue (Warburg et  al. 
1927; Warburg 1956), and 18F-labeled 2-fluoro- 2-
deoxy-d-glucose (18F-FDG), a radioactive glu-
cose analogue that decays by positron emission, 
is the most ubiquitous PET radiopharmaceutical 
used in oncology today. Since glucose metabo-
lism changes faster than tumor size, 18F-FDG 
PET often shows therapy response much earlier 
than anatomic imaging with CT or MRI.  Of 
course, it is important to recall that the intensity 
of 18F-FDG uptake is affected by several factors 
including cellular histology, density, aggressive-
ness, and technical parameters, among others. 
Thus, imaging should be performed with stan-
dardized techniques, and evaluated in the correct 
clinical context. There are many radiopharma-
ceuticals used in oncology, often designed to 
 target a cellular process, metabolism, receptor, or 
cell trafficking. For example: 3′-deoxy-3′-[18F] 
fluorothymidine (FLT) is used to study prolifera-
tion by imaging the DNA salvage pathway, [18F]
fluoromisonidazole(1-(2-nitroimidazolyl)-2- 
hydroxy- 3-fluoropropane (FMISO) and [18F]flu-
oroazomycin arabinofuranoside (FAZA) are used 
to assess tumor hypoxia, and O-[18F]fluoromethyl- 
L- tyrosine (FMT) is used to study amino acid 
transport. The idea is that through the use of dif-
ferent PET radiopharmaceuticals, imaging signa-
tures will detail disease phenotype, genotype, 
and heterogeneity (Gerbaudo and Garcia 2016). 
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What is becoming evident is that more than one 
biomarker may be needed to determine the effec-
tiveness of therapy and for the assessment of 
treatment response.

3  Functional and Molecular 
Imaging for Therapy 
Assessment in Oncology

Functional and molecular imaging has been used 
in therapy assessment for many years. Two 
examples are: (1) 99mTc-labeled methylene 
diphosphonate (99mTc-MDP) bone scans to 
assess response across a spectrum of oncologic 
disease and therapies (Fig. 1) (Scher et al. 2016) 
and (2) Iodine (123I or 131I) labeled metaiodoben-
zylguanidine (MIBG) in neuroblastoma (Fig. 2) 
(Ady et  al. 1995). Depending on the radionu-
clide chosen and the amount of activity adminis-
tered, radiolabeled MIBG can serve as an 
imaging agent and/or a therapeutic agent. For 
imaging, 123I is preferred because of the shorter 
half-life, ideal gamma photon energy (159 keV), 
lack of beta emission, and lower radiation dose 
to the patient; however, access may be limited 
and expense is higher. For therapy, 131I is 

required. In general, planar imaging is standard 
of care. The addition of SPECT increases the 
contrast of the planar scintigraphic images, thus 
providing improved functional information. The 
CT portion of the SPECT/CT, if performed, pro-
vides improved anatomical information by pin-
pointing the location of the abnormal activity 
seen on the SPECT images. Therefore, the addi-
tion of SPECT/CT usually provides a more 
accurate diagnosis than planar imaging alone. 
However, due to the increased time of acquisi-
tion and image interpretation as well as the radi-
ation exposure from the CT component of the 
study, SPECT/CT is often done as needed on an 
ad hoc basis.

When interpreting functional and molecular 
imaging, it is important to recall the underlying 
mechanism that leads to the imaging obtained. 
On 99mTc-MDP bone scans, radiopharmaceutical 
uptake correlates with increased osteoblastic 
activity and findings suggestive of osseous 
 disease reflect bone reaction to malignant cells, 
not the presence of the malignant cells them-
selves. Osteoblastic activity from healing fol-
lowing therapy is difficult to distinguish from 
progressive metastatic disease, confounding 
image interpretation. The flare phenomenon is 

a b

Fig. 1 Whole body planar 99mTc-MDP bone scan images 
in a man with symptomatic castration resistant prostate 
cancer bone metastases obtained prior to (a) and following 

(b) therapy with 223RaCl2 show decrease in intensity of 
osseous disease in the right proximal humerus, lumbar 
spine, and left iliac bone following therapy
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defined as apparent “disease progression” occur-
ring until approximately 3  months of therapy 
due to increased lesion intensity or number in 
the context of improved clinical findings and sta-
bility or improvement of bone scan findings on 
repeat bone scan after 6 months of therapy (Cook 
et  al. 2011; Pollen et  al. 1984; Coleman et  al. 
1988). Also, it is challenging to accurately quan-
tify the burden of osseous metastatic disease on 
99mTc-MDP bone scans. Larson et  al. proposed 
the Bone Scan Index (BSI) as a method to mea-
sure total skeletal disease by summing the prod-
uct of the weight and fractional involvement of 
each of 158 individual bones, where each bone is 
expressed as a percentage of the entire skeleton 
(Dennis et al. 2012). However, this is time con-
suming and rarely used in clinical practice. 
Quantitative analysis is easier with PET, and 
18F-labeled sodium fluoride (18F-NaF) is a high- 
affinity bone-seeking agent with higher affinity 
for osteoblastic activity and superior imaging 
characteristics than 99mTc-MDP (Grant et  al. 
2008). Even-Sapir et  al. compared MDP bone 
scans and 18F-NaF PET/CT in patients with 
localized high-risk or metastatic prostate cancer 
and found the sensitivity and specificity of 99mTc- 

MDP planar bone scans was 70% and 57%, 
respectively, whereas for 18F-NaF PET/CT it was 
100% and 100%, respectively (Even-Sapir et al. 
2006). Similar to 99mTc-MDP bone scans, 18F- 
NaF PET/CT detects bone turnover, not malig-
nant cells themselves, and thus generate an 
indirect marker of osseous malignancy. 18F-FDG 
is used to image glucose metabolism and has 
been compared with 18F-NaF in the evaluation of 
therapy response, for example, in men with pros-
tate cancer. 18F-FDG is taken up at sites of dis-
ease, while 18F-NaF is taken up at sites of 
osteoblastic reaction to the disease (Fig.  3). 
However, 18F-FDG uptake is variable and 
may be low at sites of specific cancer 
histology. Recently, there has been growing 
interest in radiopharmaceuticals targeting the 
prostate-specific membrane antigen (PSMA), a 
cell surface transmembrane glycoprotein that is 
overexpressed on prostate cancer cells 
(Bouchelouche et  al. 2010; Evans et  al. 2011; 
Barrett et al. 2013). This has potential for detec-
tion of disease, therapy planning as well as for 
the assessment of therapy response (Rowe et al. 
2016; Koerber et al. 2018; Emmett et al. 2018). 
Early results suggest response assessment may 

a b c

Fig. 2 Whole body planar 131I-MIBG images in a child 
with metastatic neuroblastoma prior to (a), during (b) and 
following (c) therapy show multifocal disease that is 

decreasing in intensity and extent with therapy consistent 
with response
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be confounded by flare (Zacho and Petersen 
2018; Zukotynski et al. 2018) and mixed interval 
change following therapy. Also, not all sites of 
disease show uptake of PSMA targeting 
radiopharmaceuticals, and the most helpful 
radiopharmaceutical to assess therapy response 
may be case specific (Figs. 4 and 5).

There are numerous cell-surface receptors 
involved in cell-signaling pathways and radio-
pharmaceuticals targeting cell receptors have 
become powerful imaging and therapy tools. 
The somatostatin receptor (SSTR)-binding 

radiopharmaceutical [68Ga-DOTA0,Tyr3]
octreotate (68Ga-DOTATATE) and peptide 
receptor radionuclide therapy (PRRT) with 
SSTR-binding peptide [177Lu-DOTA0,Tyr3]
octreotate (177Lu-DOTATATE) have been used to 
image and treat neuroendocrine disease, respec-
tively (Figs. 6 and 7). Since radiopharmaceutical 
uptake is affected by tumor heterogeneity, 
volumes of interest obtained from imaging done 
prior to therapy can be used to compute the frac-
tion of administered radiopharmaceutical seques-
tered in normal parenchyma as well as at sites of 

a b

Fig. 3 Mechanism of radiopharmaceutical uptake. Axial 
PET, CT, and fused PET/CT images from an 18F-NaF 
PET/CT shows radiotracer uptake at the periphery of a 
site of prostate cancer due to osteoblastic turnover (a), 

while axial PET, CT, and fused PET/CT images from an 
18F-FDG PET/CT show subtle radiotracer uptake within 
the tumor, likely involving the bone marrow (b)
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a b c

Fig. 4 More than one radiopharmaceutical may be help-
ful to assess therapy response in oncology. Change in 
radiopharmaceutical uptake is more pronounced on the 
18F-FDG PET/CT than on 18F-DCFPyL PET/CT at a site 

of lytic metastatic prostate cancer. Axial CT at baseline, 
3  months and 10  months of therapy (a), axial fused 
18F-DCFPyL PET/CT (b) and 18F-FDG PET/CT (c) at 
baseline and 3 months of therapy

a b c

Fig. 5 More than one radiopharmaceutical may be help-
ful to assess therapy response in oncology. Change in 
radiopharmaceutical uptake is more pronounced on 
18F-DCFPyL PET/CT than on 18F-FDG PET/CT at a site 

of lytic metastatic prostate cancer. Axial CT images at 
baseline and 3  months of therapy (a), axial fused 
18F-DCFPyL PET/CT (b) and 18F-FDG PET/CT (c) 
images at baseline and 3 months of therapy
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Fig. 6 Coronal fused 
and PET images from a 
68Ga-DOTATATE PET/
CT show multifocal 
osseous and soft tissue 
disease prior to 
177Lu-DOTATATE 
therapy

a b

Fig. 7 Whole body planar images of the subject from 
Fig.  6 show multifocal osseous and soft tissue disease 
immediately following cycle 1 (a) and cycle 2 (b) of 

177Lu-DOTATATE therapy with interval decrease in 
intensity and extent of radiopharmaceutical uptake at sites 
of disease following therapy

Molecular and Functional Imaging in Oncology Therapy Response
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disease (Beauregard et al. 2012). This can then be 
used to adjust the amount of administered thera-
peutic radiopharmaceutical to minimize toxicity 
while maximizing patient benefit.

4  Prognostic Value of Functional 
and Molecular Imaging 
Oncologic Imaging Response

Molecular and functional imaging response 
assessment has been studied across the spectrum 
of oncologic disease. Since metabolic and patho-
physiological changes often precede alterations 
in morphology, PET is helpful to assess response 
to cytotoxic and cytostatic therapy and often pre-
dicts response before morphologic imaging (i.e., 
CT and MRI). In general, the earlier the response, 
the better the progression-free survival (PFS) and 
overall survival (OS) of the oncology patient. 
Thus, there is a concept of prognostic value of the 
reduction in FDG uptake related to treatment. For 
example, Weber et al. showed that in stage IIIB 
and IV non-small cell lung cancer (NSCLC), a 
reduction in tumor FDG uptake of more than 
20% after one cycle of platinum-based chemo-
therapy was predictive of long-term survival 
(Weber et  al. 2003). Vansteenkiste et  al. found 
that in stage IIIA-N2 NSCLC, a reduction in 
tumor uptake by more than 50% on FDG-PET 
after 3 cycles of neoadjuvant chemotherapy was 
predictive of longer survival (Vansteenkiste et al. 
2004). Hoekstra et  al. reported that in stage 
IIIA-N2 NSCLC, a 35% reduction in tumor FDG 
uptake after one cycle of induction therapy 
showed prolonged overall survival (Hoekstra 
et al. 2005). MacManus and colleagues showed 
that tumor metabolic response predicts outcome 
following radiation therapy (Mac Manus et  al. 
2005). Complete metabolic responders had a 
1-year survival rate of 93% compared to 47% for 
nonresponders, and 2-year survival rate of 62% 
versus 30%, respectively. Although imaging 
patients 3–4  months after radiotherapy mini-
mizes false-positive FDG uptake in radiation- 
induced inflammation, a shorter time frame may 
be acceptable in certain cases (Hicks et al. 2004).

5  The Development of Molecular 
and Functional Therapy 
Response Assessment Criteria

Determining the effectiveness of cancer therapy 
requires a standardized, reproducible, and 
objective method for evaluating therapy 
response. Over the years several efforts were 
made to meet this clinical need resulting in the 
creation of multiple guidelines. The history of 
therapy response assessment in oncology is 
complex. As imaging techniques developed, so 
too did criteria for therapy response assessment. 
Morphologic imaging therapy response assess-
ment criteria such as Response Evaluation 
Criteria In Solid Tumors (RECIST 1.1 
(Eisenhauer et al. 2009)) are effective to moni-
tor cytolytic therapy effect, in which clinical 
efficacy typically translates into tumor mass 
reduction. However, targeted cytostatic thera-
pies (e.g., tyrosine kinase inhibitors such as 
erlotinib and gefitinib) primarily slow or stop 
tumor cell proliferation and may not result in a 
significant change in tumor mass, limiting size-
based criteria for therapy response assessment. 
Initial 18F-FDG-PET studies showed that suc-
cessful response to erlotinib and gefitinib could 
be predicted within days of therapy (Sunaga 
et al. 2008; Takahashi et al. 2012). Also, meta-
bolic treatment response was linked with sur-
vival and quality of life (Sunaga et  al. 2008; 
Takahashi et al. 2012; van Gool et al. 2014a, b; 
Benz et al. 2011; Hachemi et al. 2014).

In 1999, the European Organization for 
Research and Treatment of Cancer (EORTC) 
published criteria for tumor response classifica-
tion which were among the first to include the 
assessment of tumor metabolism using functional 
imaging with FDG PET (Young et  al. 1999). 
These criteria used the standardized uptake value 
(SUV) as a metric for quantifying radiopharma-
ceutical uptake at sites of disease, a metric that 
reflects radiopharmaceutical uptake corrected for 
total body mass (patient weight) and injected 
radiopharmaceutical activity. According to 
EORTC criteria: (1) A complete metabolic 
response (CMR) was when there was no site of 
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disease distinguishable from adjacent 
background activity; (2) progressive metabolic 
disease (PMD) was an increase in maximum 
SUV (SUVmax) of 25% or more from baseline 
or the appearance of new disease sites; (3) a par-
tial metabolic response (PMR) was a reduction in 
SUVmax between 15 and 25% after one or more 
cycles of chemotherapy; and (4) stable metabolic 
disease (SMD) was disease response that could 
not be classified into another category. The num-
ber of lesions to measure and minimum measur-
able lesion activity was not defined. Anatomic 
information was not included.

In 2009, Wahl et  al. proposed Positron 
Emission Tomography Response Criteria In 
Solid Tumors (PERCIST) for FDG PET (Wahl 
et  al. 2009). Main differences between EORTC 
and PERCIST were (Table 1, Aide et al. 2018): 
(1) use of SULpeak (radiopharmaceutical activ-
ity measured in a 1 cm3 sphere at the site of high-
est tumor activity corrected for lean body mass) 
rather than SUVmax, (2) specification of five 
sites of disease (up to two per organ) or target 
lesions to be measured, and (3) definition of a 
measurable lesion as having at least 1.5 times the 
mean SUL of liver.

With the advent of standardized criteria for 
molecular and functional imaging therapy 
response assessment, debate flourished con-
cerning the value of using a qualitative (visual) 
versus a quantitative (objective) approach. A 
study by Lin et  al. comparing qualitative and 
quantitative FDG PET analysis in patients with 
diffuse large B cell lymphoma DLBCL (Lin 
et al. 2007) found the qualitative analysis pre-
dicted event-free survival with an accuracy of 
65.2%, whereas the quantitative SUV-based 
analysis had an accuracy of 76.1%. However, 
quantitative analyses have limitations: (1) 
There are several methods for calculating and 
reporting radiopharmaceutical uptake at dis-
ease sites e.g., correcting for total body mass 
versus lean body mass, reporting maximal 
activity (SUVmax) versus average activity in a 
defined region (SUVpeak, SUVmean), use of 
metabolically active tumor bulk defined by 
indices of metabolic tumor volume (MTV) and 

total lesion glycolysis (TLG) as well as tumor 
metabolic heterogeneity estimated through tex-
ture analysis, among others. (2) Differences in 
scanner hardware, image reconstruction, and 
patient characteristics, among other factors, 
affect radiopharmaceutical uptake at disease 
sites and can impact metrics of response assess-
ment (Ziai et al. 2016).

In an effort to achieve repeatability and repro-
ducibility of response assessment metrics, guide-
lines were produced detailing how oncologic 
PET/CT scans should be performed (Boellaard 
et al. 2015; Fendler et al. 2017). Recommendations 
include the use of a standardized protocol for 
scan acquisition and maintenance of consistency 
between scanners, image acquisition and recon-
struction parameters, dose of radiopharmaceuti-
cal administered and uptake time between 
baseline and follow-up imaging, among others. 
Also phantom derived parameters may help align 
quantification metrics between scanners and 
image reconstructions (Lasnon et al. 2013, 2017; 
Quak et al. 2016). Finally, inclusion of activity in 
a reference region of interest (ROI) such as liver 
or aortic blood pool is suggested in an oncologic 
PET/CT report to serve as an alert for potential 
technical issues if/when this is outside the 
expected range.

Currently, therapy response assessment crite-
ria often include a combination of anatomic, 
molecular, and functional imaging. There are cri-
teria for response assessment that are used in 
clinical trials and are not specific to cancer histol-
ogy. In most cases there are no clinical guidelines 
or standards directing the use of these measure-
ments in patient care and these criteria (such as 
PERCIST) are rarely used in routine clinical 
practice. A few criteria for molecular and func-
tional disease response classification are specific 
to cancer histology (e.g., Deauville/Lugano). 
These criteria are incorporated into clinical 
guidelines (e.g., NCCN [National Comprehensive 
Cancer Network]) and included in clinical PET/
CT reporting. Although the clinical and research 
communities remain fragmented in their use of 
molecular and functional imaging therapy 
response assessment criteria, there is momentum 
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to converge on a common approach for the 
 purposes of PET/CT reporting and the most 
illustrative example of this is lymphoma.

6  Molecular and Functional 
Imaging Response Assessment 
in Lymphoma

Lymphoma is a heterogeneous spectrum of lym-
phoproliferative disease classified as Hodgkin’s 
lymphoma (HL) or non-Hodgkin’s lymphoma 
(NHL) that encompasses a spectrum of disease of 
variable metabolic activity. It is estimated that 
approximately 40% of non-Hodgkin’s lymphoma 
patients and 20% of Hodgkin’s lymphoma 
patients have a residual mediastinal or abdominal 
mass following therapy, and that most are non- 
malignant on pathology (Orlandi et  al. 1990; 
Aisner and Wiernik 1982; Mikhaeel et al. 2000). 
It is difficult to distinguish inflammatory, 
necrotic, or fibrotic tissue from residual lym-
phoma based on anatomic evaluation alone 

(Canellos 1988; Reske 2003; Lewis et al. 1982; 
Surbone et  al. 1988). Molecular and functional 
imaging with PET can distinguish metabolically 
active from non-metabolically active disease and 
helps overcome the limitation of anatomically 
based response assessment for lymphoma. 
Molecular and functional response criteria have 
been used in the evaluation of patients with lym-
phoma for many years.

Following a workshop held in Deauville, 
France, in 2009 (Meignan et  al. 2009), the 
Deauville 5-point scoring system was created 
based on FDG PET, with treatment response 
assessed qualitatively on a 5-point scale according 
to the intensity of uptake at sites of disease rela-
tive to reference activity in mediastinal blood pool 
and liver. Scores of 3 or below (comparable to 
liver activity or less) are considered negative for 
metabolically active residual disease (Fig.  8). 
Scores of 4–5 (above liver activity) are considered 
positive for residual metabolically active disease. 
Several studies have shown interobserver agree-
ment of this system. For example, Barrington 

a b
Fig. 8 Baseline 
18F-FDG PET/CT MIP 
image in a young man 
with Hodgkin’s 
lymphoma shows 
metabolically active 
lymph nodes above the 
diaphragm (a). Interim 
18F-FDG PET/CT MIP 
image shows response to 
therapy, Deauville score 
2 (b)

Molecular and Functional Imaging in Oncology Therapy Response
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et al., Furth et al., and Gallamini et al. comparing 
interobserver agreement in HL reported κ values 
of 0.79–0.85, 0.748, and 0.69–0.84, respectively 
(Barrington et  al. 2010; Furth et  al. 2011; 
Gallamini et al. 2009, 2014). The system was easy 
to apply and was the first molecular and functional 
response criteria to become part of routine clinical 
oncologic PET/CT reporting for patients with HL 
(Meignan et al. 2010, 2012; Le Roux et al. 2011). 
In 2014, following the 12th International 
Conference on Malignant Lymphomas (ICML) in 
Lugano, Switzerland, the Lugano classification 
system was created (Barrington et  al. 2014; 
Cheson et  al. 2014). The Lugano classification 
includes both PET and CT response assessment as 
well as a combination of qualitative and quantita-
tive metrics. The PET criteria are based on the 
Deauville 5-point scoring system, while the inclu-
sion of CT criteria overcame the limitation of 
response in lymphomas with low or variable FDG 
avidity. Reproducibility of the Lugano classifica-
tion system is being determined.

Among the advantages of a standardized 
response assessment in lymphoma is the 
predictive value and ability to modify treatment 

early in the disease course to improve outcome. 
In limited HL, the prognosis is excellent and so 
characterization of functional and molecular 
imaging therapy response on interim FDG PET/
CT (typically after 2 or 4 chemotherapy cycles) 
has failed to distinguish between patients in terms 
of outcome. However, as the disease becomes 
more extensive, an interim positive PET suggests 
poorer outcome (Moghbel et al. 2017). Further, 
inclusion of both PET and CT response assess-
ment typically show improved patient stratifica-
tion and clinical outcome. For example, a study 
of interim PET and CT in HL reported 2-year 
PFS of 95%, 78%, 71%, and 36% with PET−/
CT−, PET−/CT+, PET+/CT−, and PET+/CT+ 
patients, respectively (Kostakoglu et  al. 2012). 
Further, the results of interim PET can show 
complications of therapy (Fig.  9) and enable 
early treatment modification resulting in 
improved outcome. For example, in a study of 
patients with HL and positive interim PET after 
2 cycles of ABVD, escalating therapy (2 cycles 
of BEACOPP + involved node radiotherapy) 
resulted in improved PFS (90.6% versus 77.4%) 
(André et al. 2017).

a b c

Fig. 9 Baseline 18F-FDG PET/CT MIP image in a man 
with Hodgkin’s lymphoma shows metabolically active 
lymph nodes above and below the diaphragm as well as 
osseous and right renal disease (a). Interim 18F-FDG PET/
CT MIP image shows response to therapy; however, there 

was development of pneumonitis likely related to drug 
toxicity (b). 18F-FDG PET/CT MIP image at the comple-
tion of therapy shows response to therapy with resolution 
of the pneumonitis

K. A. Zukotynski et al.



267

Of course, in specific scenarios such as 
patients on immunotherapy, certain modifica-
tions to the criteria must be considered. In 2016, 
modification to the Lugano criteria (LYRIC cri-
teria) was suggested to account for immunother-
apy response assessment. The main change 
compared with the Lugano criteria was the addi-
tion of an indeterminate response category 
(Cheson et al. 2016).

7  Molecular and Functional 
Therapy Response Assessment 
and Immune Therapy

In recent years, there has been investigation into 
immunotherapy (Popovic et al. 2018). Today, the 
most ubiquitous agents include: (1) T lymphocyte- 
associated protein 4 (CTLA-4) inhibitors (e.g., 
ipilimumab) and (2) programmed cell death pro-
tein 1 (PD1) or PD1/programmed cell death pro-
tein ligand 1 (PD1/PD-L1) axis inhibitors (e.g., 
pembrolizumab and nivolumab). The idea is that 
CTLA-4 is a protein recruited to the surface of 
regulatory T cells where it interacts with B7 

receptors on antigen-presenting cells resulting in 
T cell downregulation. Thus, inhibition of 
CTLA-4 results in enhanced T cell activation and 
immune response expansion. PD1 is a transmem-
brane glycoprotein expressed on immune cells 
and PD-L1 is a ligand for PD1 that may be 
expressed on tumor cells. When PD1 is bound by 
PD-L1, it inhibits kinases involved in T cell acti-
vation. Thus, inhibition of this process can also 
enhance immunity. Current research in the area is 
focused, at least in part, on blocking additional 
immune regulatory checkpoints, inducing 
immune responses with vaccines or increasing 
tumor traffic of lymphocytes. The literature sug-
gests ipilimumab monotherapy results in overall 
benefit for about 20% of patients with melanoma 
(Hodi et al. 2010) and that this can be improved 
to over 50% using a combination of ipilimumab 
and nivolumab (Fig. 10), albeit with higher risk 
of toxicity (Larkin et  al. 2015). Interestingly, 
radiation provides immune co-stimulatory sig-
nals, hence the rationale for combining external 
beam or radionuclide therapy with immunother-
apy. It has been postulated that PET may 
noninvasively provide information of the tumor 

a b

Fig. 10 18F-FDG PET/CT images in a woman with meta-
bolically active melanoma. Axial CT, PET, fused and MIP 
images obtained prior to (a) and following (b) ipilimumab 
and nivolumab therapy show complete response. The 

focal radiopharmaceutical uptake in the right central neck 
(orange arrow) was in a thyroid nodule and likely reflects 
primary thyroid pathology (results of biopsy pending)

Molecular and Functional Imaging in Oncology Therapy Response
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microenvironment predictive of response; how-
ever, this remains to be rigorously proven.

By enhancing the immune response, immune- 
related adverse events may be induced (e.g., 
dermatitis (pruritus/rash/vitiligo), endocrine dis-
orders (hypophysitis, thyroiditis, etc.), pneumo-
nitis, gastrointestinal symptoms (diarrhea, colitis, 
etc.), hepatitis, pancreatitis, and myalgia among 
other things). Following immunotherapy, reac-
tive splenic enlargement and reactive lymph node 
enlargement in the tumor drainage basin are also 
common. Since inflammation is typically FDG-
avid, PET can detect immune-related adverse 
events, sometimes weeks before these become 
clinically apparent (Fig. 11) (Kwak et al. 2015). 
Although this is helpful since rapid initiation of 
systemic therapy (e.g., systemic corticosteroids) 
can improve patient outcome, it can make the dis-
ease response difficult to assess.

Clinical and imaging response to immuno-
therapy is variable. Often an early response is 
seen. Inflammatory reactions can occur at tumor 
sites within days of therapy (Reusch et al. 2006). 
In some cases a response can be delayed for 

weeks or months (Le et al. 2013). Further, tumor 
flare cannot be distinguished from progression 
based on morphologic, imaging or even on FDG 
PET/CT. It is estimated that approximately 15% 
of patients with melanoma on ipilimumab show 
increasing disease burden on imaging despite 
clinical benefit (e.g., pseudoprogression or flare), 
although this is lower (less than 3%) with other 
agents (Wolchok et al. 2009). In a small number 
of cases, immunotherapy can provoke rapid dis-
ease progression or hyperprogression (Champiat 
et al. 2017; Saâda-Bouzid et al. 2017). As such it 
is key to correlate imaging findings with the 
patient’s clinical condition: (1) those patients 
with improving or stable clinical condition and 
progression on imaging may be experiencing 
pseudoprogression and, in this case, treatment 
may be continued with response confirmed by 
follow-up imaging; (2) those patients who are 
deteriorating are most likely progressing and dis-
continuing therapy may be warranted since wait-
ing for imaging confirmation could lead to 
deterioration rendering a new therapy 
nonviable.

a b
Fig. 11 18F-FDG PET/
CT MIP images in a 
woman with 
chemotherapy refractory 
non-small cell lung 
cancer obtained prior to 
(a) and following (b) 
immunotherapy show 
partial metabolic 
response as well as 
development of 
thyroiditis (orange 
arrow)
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Recently, two new molecular and functional 
imaging response assessment criteria have been 
proposed in the setting of immunotherapy: (1) 
PET/CT Criteria for Early Prediction of Response 
to Immune Checkpoint Inhibitor Therapy 
(PECRIT) (Cho et  al. 2017) and (2) PET 
Response Evaluation Criteria for Immunotherapy 
(PERCIMT) (Anwar et  al. 2018; Sachpekidis 
et al. 2018). In both cases, the evaluation of clini-
cal benefit is incorporated as well as the use of 
morphologic and functional metrics (Table  1). 
Currently, it is suggested that a baseline PET be 
performed prior to immunotherapy with follow-
 up 8–9 weeks or more after immunotherapy ini-
tiation (typically after 2 or 3 cycles of therapy) 
and at therapy completion. It is thought that the 
value of FDG PET is most pronounced in patients 
with limited morphological response on ana-
tomic imaging, or who develop signs/ symptoms 
of immune-related adverse events. Further, clini-
cal benefit and the presence of a metabolic 
response despite morphologic progression can be 
helpful for clinical decision-making.

Functional and molecular response assess-
ment imaging in oncologic patients receiving 
immunotherapy remains imperfect, and research 
into more specific imaging biomarkers is ongo-
ing, including clinical trials using 89Zr-labeled 
immune checkpoint inhibitors as well as investi-
gation into the use of radiolabeled antibody 
fragments.

8  Conclusion

We have come a long way from the crude manual 
disease assessment of yesterday to the standard-
ized staging and response assessment criteria of 
today. Further, as our technology improves, so 
too does the possibility of more advanced imag-
ing assessment including complex structural and 
functional data acquisition with parametric map-
ping and kinetic modeling allowing evaluation of 
tumor heterogeneity throughout the body. Also, 
the recent proliferation of hybrid scanners that 
include anatomic, functional, and molecular 
imaging capabilities has enhanced our ability to 
assess disease response, adjust therapy regimens, 

and develop an accurate measure of patient prog-
nosis. It has been recognized that standardization 
of image acquisition and analysis parameters as 
well as harmonization of criteria used for 
response assessment across the clinical and 
research landscape is important. As our under-
standing of the biological effects of therapeutic 
interventions improves, so too does our under-
standing of the best time-points for therapy 
response assessment. Although further studies 
are necessary we are starting to converge on a 
universal system, particularly in certain tumors 
such as lymphoma.
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