
Chapter 13
Diversity, Endemism, and Evolutionary
History of Montane Biotas Outside
the Andean Region
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and Alexandre Antonelli

Abstract Mountain ranges are important centers of biodiversity around the world.
This high diversity is the result of the presence of different soil types and underlying
bedrock, a variety of micro-climatic regimes, high topographic heterogeneity, a
heterogeneous and complex vegetation cline, and a dynamic geo-climatic history.
Neotropical research on mountains has focused on the Andes, while other mountain
ranges are lacking in biodiversity and biogeographic studies. However, the
non-Andean mountains comprise important elements of the South American relief,
are home to a substantial proportion of Neotropical species, and exhibit a complex
and reticulate history of diversification of their biota. Here, we provide a brief review
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of the biological and biogeographical importance of the major non-Andean South
American mountain ranges, discussing their role for diversification and maintenance
of Neotropical biodiversity. We focus on six regions: the Serra do Mar Range, the
Mantiqueira Mountains, the Espinhaço Mountains, the Northeastern Highlands, the
Central Brazilian Highlands, and the Pantepui region. We summarize the main
geophysical and biotic characteristics of each mountain range, as well as key results
from phylogenetic studies, the fossil record, and studies tackling biogeographi-
cal patterns of diversity, richness, and endemism. Moreover, mountain biodiversity
studies can incorporate not only environmental data, but also information on more
recent man-made landscape shifts. Here, we provide an example of how human
population density interacts with climate and species traits to explain richness
patterns in one group of montane organisms particularly vulnerable to environmental
changes: anuran amphibians. Our results and the evidence published to date indicate
that the Neogene and Quaternary were pivotal periods of Neotropical diversification
for many terrestrial taxa, promoting endemism in non-Andean mountains. In gen-
eral, all non-Andean mountain ranges have high levels of species richness and
endemism as compared to their surrounding lowlands. Biotic interchange among
them, the Andes, and their surrounding biotas has been intensive over tens of
millions of years, greatly contributing to the outstanding levels of Neotropical
biodiversity observed today. Despite their vast and understudied biodiversity, moun-
tain ecosystems are fragile, facing severe challenges in the face of climate change,
habitat loss, and extinctions. Efforts to better understand and protect South American
mountain ecosystems are urgently needed.

Keywords Atlantic Forest · Caatinga · Campos de altitude · Campos rupestres ·
Cerrado · Diversification · Montane habitats · Tepuis

1 Introduction

There is a strong connection between mountains and biodiversity. Topographic
variation, heterogeneity of soil types, and altitudinal gradients are important factors
that, together with climatic variability, generate habitat diversity in mountains and
increase species richness and endemism (Tuomisto et al. 2003; Körner 2004; Fischer
et al. 2011; Fjeldså et al. 2012; Luebert and Muller 2015; Badgley et al. 2017;
Antonelli et al. 2018a). Furthermore, the composition and spatial distribution of
biodiversity in mountain ranges may also reflect environmental tolerances, habitat
fragmentation, and distinct life histories of species (Marquet et al. 2004; Leibold
et al. 2004; Ricklefs 2004; Schipper et al. 2008). With their often-isolated positions
on continents, like islands in a surrounding ocean, mountain ranges are key to
understanding evolutionary processes since they generate, receive, and maintain
biodiversity (Hughes and Atchison 2015; Antonelli et al. 2009, 2018a)—thereby
influencing spatial patterns of biological diversity (Homeier et al. 2010; Bonaccorso
and Guayasamin 2013; Hoorn et al. 2013, 2018a; Guedes et al. 2014; Moura et al.
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2016; Bacon et al. 2018a). Mountain ranges around the world are known to hold
about one-third of all terrestrial species and are recognized as important centers of
biological diversity (Körner et al. 2017). These areas are crucial for the maintenance
of biodiversity and have been of interest since the days of early naturalists, including
Alexander von Humboldt and Charles Darwin (Wulf 2016).

Owing to their remoteness and, sometimes, extremely difficult access, the biodi-
versity of mountains remains poorly explored. In the Neotropics, much attention has
been paid to the patterns and processes of diversity of the rich Andean biota, the
longest mountain range on Earth (e.g., Rundel et al. 1994; Kessler 2001; Cadena
2007; Castroviejo-Fisher et al. 2014; Luebert and Weigend 2014; Bacon et al. 2016,
2018a, b; Sanín et al. 2016; Hoorn et al. 2018b). However, besides the Andes, the
Neotropics harbor several other important mountain ranges.

In the Neotropics, outside South America, there is pronounced relief (<3100 m)
on several Caribbean islands such as Cuba, Hispaniola, and Jamaica. Mexican and
Central American mountains and plateaus are also extensive and highly complex,
including volcanos that reach above 4200 m of altitude in Guatemala, and several
volcanos in Mexico that exceed 5000 m.

In South America, non-Andean mountain ranges are generally lower than 3000 m
and include the Serra do Mar Range, the Mantiqueira Mountains, the Espinhaço
Mountains, the Diamantina Plateau, the Central Brazilian Highlands (e.g., the
Guimarães Plateau, the Serra Geral Plateau, the Caiaponia Mountain, the Veadeiros
Plateau, the Central Brazilian Plateau, the Canastra Range, the Mesas Plateau region,
the Parecis Plateau, and the Bodoquena Range), the Northeastern Highlands and the
Pantepui Region (Fig. 13.1). These non-Andean mountains act as refugia and centers
of endemism and diversification for Neotropical organisms (Rull 2005; Carnaval
et al. 2009; Désamoré et al. 2010; Bonacorso and Guayasamin 2013; Chaves et al.
2014; Azevedo et al. 2016; Huber et al. 2018).

The Atlantic Forest is a hotspot of biodiversity (Myers et al. 2000) that comprises
three non-Andean mountain ranges: the Serra do Mar Range, the Mantiqueira
Mountains, and Espinhaço Mountains. The biodiversity of this complex rainforest
system is one of the best documented in South America (e.g., Bello et al. 2017;
Bovendorp et al. 2017; Culot et al. 2019; Santos et al. 2018; Vancine et al. 2018).
However, most of its original vegetation has been degraded, and a large portion of it
has been completely lost as a result of human disturbances (Ribeiro et al. 2009),
leaving only 9%–16% of its original extent. The effects of degradation are seen at a
broad range of spatial scales, including changes in microclimatic conditions
(Didham and Lawton 1999), species abundances and community composition
(Ewers and Didham 2005), geographic distributions of species (Ewers and Didham
2005), and effects on global climate change (Travis 2003). There is also evidence
that deforestation has changed the distributional patterns of some species in the
Atlantic Forest (Sancha et al. 2014).

The scarcity of species inventories for most biological groups inhabiting South
American mountains, combined with an even more severe lack of phylogenetic and
fossil information, are major obstacles to understanding the origin and maintenance
of the huge biological diversity on mountains (Zizka and Antonelli 2018). In this
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Fig. 13.1 The non-Andean Mountains of South America. Map of the Neotropical region showing
the major non-Andean Mountains of continental South America reviewed here, according to the
indication and naming of the Global Mountains Biodiversity Assessment (GMBA 2018). The map
was produced on QGis 2.14.10 using a relief mask provided by Natural Earth Data (https://www.
naturalearthdata.com)
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chapter, we (1) provide an overview of non-Andean mountains in South America
from an environmental and a biological perspective, and (2) summarize what is
known about the mechanisms potentially underlying local diversification. To
address these goals, we combine evidence from phylogenies, the fossil record, and
biogeographical patterns. As an empirical example of how biodiversity data can be
studied and interpreted in the light of anthropogenic pressures, we (3) select one
specific group (amphibians), and one mountain range (the Serra do Mar, in the
Brazilian Atlantic Forest), to analyze the influence of bioclimatic variables and
human population density on species richness.

2 Non-Andean South American Mountains: What Are
They?

Central and Eastern South America have several mountain ranges that often support
relatively high levels of biodiversity. In this section, we focus on the most prominent
non-Andean mountains (Fig. 13.1) based on a recent shapefile provided by The
Global Mountain Biodiversity Assessment (GMBA 2018). Our aim is to discuss the
origin and diversification of their biota, as well their patterns of species richness,
endemism, and distribution. Below, we summarize the main geophysical and biotic
characteristics of each mountain range.

Serra do Mar Range, or Serra do Mar. This is a continuous mountain range
extending about 1500 km along the east coast of Brazil between the states of Rio de
Janeiro in the north to northern Rio Grande do Sul in the south (Fig. 13.1). The Serra
do Mar Range forms a narrow strip of cliffs and eroded escarpments on granite-
gneiss bedrock (Gontijo-Pascutti et al. 2012). In the region that faces to the coast,
these cliffs drop 1000–1300 m (all altitudes are provided as meters above sea level),
while the interior (continental) face has small peaks where elevation reaches between
500 and 1100 m. The range’s highest peaks are in the Serra dos Órgãos (e.g., 2366 m
in Maior Peak, 2257 m in Caledônia Peak, and 2255 m in Pedra do Sino) in the state
of Rio de Janeiro, and in the Serra da Bocaina (1550 m) in the state of São Paulo
(Almeida 1964; Ab’Saber 1971; Gontijo-Pascutti et al. 2012). The Serra do Mar
Range is mostly covered by the Atlantic Forest (with the exception of barren granite
outcrops), with a complex set of physiognomies dominated by ombrophilous mon-
tane forest (Fig. 13.2a, b) (Veloso et al. 1991; Morellato and Haddad 2000; Medeiros
et al. 2012), and patches of highland grasslands above 1000 m (Garey and Provete
2016). The region has outstanding levels of species richness and endemism and is
therefore recognized as a global hotspot of biodiversity (Fig. 13.2i–l; Myers et al.
2000). Currently, less than 10% of the original area of the Atlantic Forest remains, of
which most is concentrated in the Serra do Mar region (Galindo-Leal and Câmara
2003; Ribeiro et al. 2009).

Mantiqueira Mountains, or Serra da Mantiqueira. These mountains derive from
the same tectonic events that formed the Serra do Mar Range, making their exact
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Fig. 13.2 Landscapes and biodiversity of non-Andean South American Mountains. Examples of
the diversity of habitats in mountains along with some characteristic taxa: (a) Serra do Mar Range,
dominated by ombrophilous Atlantic Forest in the state of São Paulo, Brazil; (b) View from the top
of Serra da Bocaina, one of the highest peaks of the Serra do Mar in the state of São Paulo, Brazil,
reaching 1500 m above sea level; (c) View of the mountainous relief of the Itatiaia massif, in the
Mantiqueira Mountains at the border between the states of Minas Gerais and Rio de Janeiro, Brazil;
(d) The highland grassland campos de altitude of the Serra da Bocaina; (e) Forested areas in the
Northeastern Highlands in Areia, Paraíba, Brazil; (f) View of the Pantepui Region, Guiana
Highland, in French Guiana; (g) General view of the Diamantina Plateau showing a complex
physiognomy including savanna (Cerrado), semi-arid (Caatinga), and forested vegetation; (h) Blue
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delimitation difficult (Modenesi-Gauttieri et al. 2002; Gontijo-Pascutti et al. 2012).
The Mantiqueira region stretches for about 900 km along the borders of three
Brazilian states (Minas Gerais, Rio de Janeiro, and São Paulo; Figs. 13.1 and
13.2c). It is divided into two distinct geomorphological units, Campos do Jordão
(in the states of São Paulo and Minas Gerais) and Itatiaia (reaching the states of
Minas Gerais and Rio de Janeiro) massifs, formed by crystalline rocks at altitudes
between 1700 and 2000 m (Ab’Saber and Bernardes 1958; Almeida 1964; Ab’Saber
1970; Gontijo-Pascutti et al. 2012). The highest portions of the Mantiqueira Moun-
tains are the Agulhas Negras Peak (2792 m), Três Estados Peak (2665 m), Mina Peak
(2798 m), and the isolated Bandeira Peak (inside Serra do Caparó, 2891 m). The
region is also part of the Atlantic Forest bioregion and besides the typical rainforests
of the region, it also includes highland grasslands or campos de altitude. The campos
de altitude are a series of cool-humid, grass-dominated formations found exclusively
on the uplifted blocks of igneous or high-grade metamorphic rocks above the treeline
(up to 1000 m; Fig. 13.2d). The vegetation consists mainly of grasses and herba-
ceous daises and allies (Asteraceae) and Melastomataceae, with many endemic
species (Safford 1999a, b; Almeida et al. 2004; Garey and Provete 2016; Silva
et al. 2018).

Espinhaço Mountains, or Cadeia do Espinhaço. This is the second largest South
American mountain range after the Andes, extending for about 1000 km and up to
75 km wide (Fig. 13.1). The Espinhaço range is formed by sets of smaller ranges,
with many local names, and the altitude generally varies between 800 and 1000 m.
Some higher elevations can be found along its extension, the highest ones being the
Sol (2072 m) and Itambé Peaks (2002 m), both in the state of Minas Gerais. The
Espinhaço Mountains separate two large river basins: the São Francisco to the west
and the Doce to the east; and they also form a border between the Atlantic Forest and
the open, savanna landscapes of the Cerrado and Caatinga bioregions. The
Espinhaço Mountains are an important geographical and ecological barrier that
shaped the distribution and diversification of many Neotropical organisms occurring
across the region (Ab’Saber 1977; Alkmin 2012). The special soil conditions (acidic,
nutrient-impoverished and low in phosphorus), climate, and relief harbor a unique
physiognomy, the rocky grasslands (campos rupestres) being the most peculiar one.
The campos rupestres are not a single homogeneous vegetation type, but instead are
a mosaic of related communities composed mainly of grasses (Poaceae) and

⁄�

Fig. 13.2 (continued) lily Vellozia sp., common in the Serra da Canastra after the fire season; (i)
Dendropsophus elegans, an endemic frog species of the Atlantic Forest, shown here in the Serra do
Mar Range; (j) The Black-cheeked Gnateater Conopophaga melanops, an endemic species of the
Atlantic Forest photographed in the limits of the Serra do Mar Range, São Paulo, Brazil; (k)
Echinanthera amoena, an endemic snake of the Atlantic Forest, whose distribution coincides with
the limits of the Serra do Mar Range; (l)Mazama guazoubira, a species of mammal found on Serra
do Mar Range, state of São Paulo, Brazil. Photo credits: a, e, h, i, k: TBG; b–d: DBP; f: AA; g:
Daniela Coelho; j: Giulia B. D’Angelo; l: Marcela Nascimento
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Asteraceae, also containing many narrowly distributed and threatened taxa, such as
orchids growing directly on rocky outcrops (Antonelli et al. 2010). This landscape is
interspersed with savanna vegetation patches, including denser shrubs and sparse
treelets, which cover the higher slopes and mountaintops (between 700 and 2000 m
of elevation), especially in the Espinhaço Mountains (Giulietti and Pirani 1988;
Almeida et al. 2004; Chaves et al. 2014). The campos rupestres, also present over
other non-Andean highlands, cover less than 1% of the Brazilian territory, yet they
harbor a disproportionate 17% of the country’s estimated plant diversity, and almost
half of the diversity of the Cerrado (Fernandes et al. 2018).

Diamantina Plateau, or Chapada Diamantina. This is the northernmost portion of
the Espinhaço Mountains. The Diamantina Plateau comprises an area of about
35,000 km2 in the state of Bahia, northeastern Brazil (Fig. 13.1). The highest
altitudes can be found in Almas, Itobira, and Barbados Peaks, reaching from 1958
to 2033 m, respectively (Alkmin 2012). The Diamantina Plateau is part of the
Caatinga bioregion (Ab’Saber 1977; Morrone 2014), but it contains a diverse set
of landscapes and physiognomies, including typical elements of the Caatinga, open
grasslands typical of the Cerrado, campos rupestres, and semi-deciduous Atlantic
Forest (Fig. 13.2g). The altitudinal variation along the relief and the complex mosaic
of vegetation provide a large variety of habitats, supporting a high diversity of
species and an endemic biota (Funch et al. 2005; Harley et al. 2005; Queiroz et al.
2005; Rocha et al. 2005; Conceição et al. 2005; Conceição and Pirani 2007;
Echternacht et al. 2011; Fernandes and Hamdan 2014).

Central Brazilian Highlands, or Planalto Brasileiro. This is set of distinct plateaus
or hills covered mostly by the Cerrado vegetation, including pre-Cambrian forma-
tions such as the Central Brazilian Plateau, Veadeiros Plateau and the Canastra
Range as well as multiple other plateaus or hills of diverse geological origins,
generally uplifted Phanerozoic sedimentary basins (e.g., Guimarães Plateau, Serra
Geral Plateau, Mesas Plateau region, Parecis Plateau, Bodoquena Range) (Fig. 13.1;
Bartorelli 2012; Petri and Sanches 2012; Carvalho Junior et al. 2015). The altitude
across the Central Brazilian Highlands ranges from 400 to 1650 m. The Veadeiros
Plateau is one of the highest areas (600–1600 m). The plateau’s topographic
heterogeneity determines many features of the Cerrado bioregion, such as soil
composition, local climate, vegetation mosaics, and distribution of many groups of
organisms simultaneously (Brown and Gifford 2002; Azevedo et al. 2016). The
Central Brazilian Highlands is characterized by the most diverse physiognomies
among the regions surveyed here, including several types of savannas (from open
grasslands—campinas, cerrado limpo—to more densely forested areas or campo
sujo), campos rupestres or rocky grasslands, and seasonal forests, all regulated by
seasonality of precipitation and fire (Henriques 2005). The Cerrado harbors a
relatively high species richness and endemism level as compared to other savannas
around the world, which could be related to the presence of such diverse plateau
systems, and is a global biodiversity hotspot (Myers et al. 2000; DRYFLOR 2016;
Bacon et al. 2017; Guedes et al. 2018).

Northeastern Highlands, or Brejos Nordestinos. The region comprises about
43 mountains and plateaus between 600 and 1200 m altitude, situated in northeastern
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Brazil in the states of Bahia, Ceará, Pernambuco, and Paraíba (Fig. 13.1; Ab’Sáber
2003; Tabarelli and Santos 2004). The vegetation on each of these mountains
(Caatinga moist forest enclaves, according to WWF’s ecoregion delimitation) is
recognized as an archipelago of “exception landscapes” with higher humidity than
the semi-arid surrounding Caatinga (Andrade-Lima 1966; Ab’Sáber 2003; Tabarelli
and Santos 2004). In general, the vegetation in these Northeastern Highlands is
complex and includes caatinga vegetation, elements of the Cerrado such as campos
rupestres, carrasco (a kind of xerophilous vegetation in sandy soils present on some
plateaus contiguous to the Caatinga bioregion; Andrade-Lima 1978; Araújo et al.
1999), and dense and humid relictual forested areas (Fig. 13.2e; Ab’Saber 1967,
1974).

The Pantepui Region, or Pantepui. This is the third major mountain system in
South America by area (Figs. 13.1 and 13.2f). It is a biogeographic province
composed of extensive table mountains—“tepuis”—derived from the sandstone of
the Roraima Group, which in turn is part of the Guiana Shield that covers a large
portion of northern South America (Fig. 13.1) (Rull 2004, 2005; Rull and Nogué
2007). The summits of the tepuis range from ~1500 to 3000 m, are sometimes flat
and in those cases termed “table mountains” (Gibbs and Barron 1993; McDiarmid
and Donnelly 2005; Rull 2005; Rull and Nogué 2007). The Pantepui Region has a
varied and specialized diversity of flowering plants comprising about 2500 species
(Huber 1988). Since the surface of the tepui summits represents only about 0.5% of
the total area of the Pantepui Region, its density of endemic species is one of the
highest on Earth, making the Pantepui one of the most important centers of species
endemism in the Neotropics (Huber 1988, 1995; Berry and Riina 2005; Rull 2004,
2005; Rull and Nogué 2007; Désamoré et al. 2010).

3 Non-Andean South American Mountains: What Lives
There?

Due to its large area and high topographic and habitat heterogeneity, the Serra do
Mar Range is a center of endemism for many animal and plant taxa (Cardoso-da-
Silva et al. 2004; Loyola et al. 2009; Villalobos et al. 2013). A recent spatial
prioritization study (Loyola et al. 2009) identified the Serra do Mar Range as an
important area for conservation of terrestrial vertebrates, including both endemic and
threatened species. Villalobos et al. (2013) found similar results and pointed to the
uniqueness of the central portion of the Atlantic Forest bioregion as having high
richness of small-ranged anuran species. The concentration of small-ranged species
in this region suggests that the complex topography of the region, coupled with the
dispersal limitation of anurans, may have contributed to the speciation process. A
biogeographic regionalization scheme based on taxonomic species composition
(Vasconcelos et al. 2014) also found a similar result, further highlighting the
distinctive anuran species composition between the southeastern and northern
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portion of the Atlantic Forest. Those authors also found that temperature, topo-
graphic variation, and precipitation seasonality best predicted the formation of the
regionalization pattern. Overall, these results agree with the division of the Atlantic
Forest bioregion into two distinct regions: one north and one south of the Doce
River, as distinguished by many lineages of vertebrates and a major shift in climatic
space through time (Carnaval et al. 2014).

A particular habitat in the montaintops of the Serra do Mar Range and
Mantiqueira Mountains known to comprise several endemic taxa is the campos
de altitude (Garey and Provete 2016; Silva et al. 2018). Open vegetation physiog-
nomies of the Andes and campos de altitude of the Serra do Mar Range and
Mantiqueira Mountains share about one third of plant genera (Safford 1999b,
2007). Among animals, an example of disjunct distribution is the sister relationship
between the bufonid frog genera Amazophrynella and Dendrophryniscus, in which
the former occurs in the Amazonia and Andes, whereas the latter occurs in the
Atlantic rainforest, including the Serra do Mar Range; their split dates to the Eocene
(Fouquet et al. 2012).

Several phylogeographic studies found evidence that birds, squamate reptiles
(Cabanne et al. 2007; Batalha-Filho and Miyaki 2011), anuran amphibians
(Thomé et al. 2014), and small mammals (Dantas et al. 2011) have only recently
expanded their ranges towards the southern portion of the Atlantic Forest, as a result
of the warmer climate compared to the Last Glacial Maximum. Many of these
species appear to have diverged recently from their ancestors (Gaston 2003). The
speciation mode of most anuran species is allopatric (Lynch 1989; Hua and Wiens
2010; Skeels and Cardillo 2019), which points to the role of mountains as vicariant
barriers to lowland species, promoting endemism. Taken together, these results help
explain the high number of small-ranged species in the mountainous areas of
southeastern Brazil in general, and the Serra do Mar Range in particular.

The Espinhaço Mountains are geologically more stable than the Andes, with a
Precambrian origin followed by comparatively fewer tectonic events in the Cenozoic
(Saadi 1995). Similar to the Andes, the Espinhaço Mountains are an orographic
barrier (Derby 1906), important in maintaining a minimum level of precipitation and
humidity in the windward side of the range through geological time (Magalhães et al.
2015). In general, such geologic and climatic stability are related to high levels of
endemism of both recent and relatively unique and ancient lineages (Loarie et al.
2009). Endemism levels are also high in different portions of the mountain range,
which from a biogeographic viewpoint may be considered as a series of sky islands
with various levels of differentiation among different lineages (Bonatelli et al. 2014;
Ramos et al. 2018) or distinct species of the same genera occurring on different
mountain tops (Echternacht et al. 2011). The Espinhaço Mountains harbor more than
4000 species of vascular plants, with endemism levels around 30% (Giulietti et al.
1997). Most of the endemic species of plants and animals across the region are
associated with high altitude open fields on rock outcrops. These include one
endemic monotypic genus of rodent (Calassomys apicalis), four bird species, and
10 Mimosa plant species (Silva 1997; Simon and Proença 2000; Almeida et al.
2007). The herpetofauna is narrowly distributed, with at least 18 species of frogs and
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five endemic reptiles only found in the southern portion of the Espinhaço (Azevedo
et al. 2016). Although the campos rupestres harbor the majority of the endemics of
the Espinhaço Mountains, some species are endemic to other environments, such as
gallery forests on mountaintops, as is the case of some Bokermannohyla frogs and
the lizard Enyalius erythroceneus (Napoli and Juncá 2006; Rodrigues et al. 2006;
Leite et al. 2008).

The Central Brazilian Highlands have a higher diversity of plants than lower
elevation areas within the Cerrado (Munhoz and Felfili 2006). The plant genus
Mimosa (Fabaceae) alone contains more than 20 species restricted to the Veadeiros
Plateau (Simon and Proença 2000). The same pattern of high richness and endemism
is known for amphibians of the Veadeiros Plateau, with the occurrence of five
endemic frogs from a total of 54 species, one of the highest levels of amphibian
richness in South America (Santoro and Brandão 2014). Some other species are
more widespread within the Central Brazilian Highlands, occurring also in other
highlands to the south of the Veadeiros Plateau (500–1300 m). The Central Brazilian
Plateau harbors several small-ranged species of reptiles, amphibians, plants, and
rodents, but no endemic bird species (Silva 1997; Simon and Proença 2000;
Marinho-Filho et al. 2002; Azevedo et al. 2016). However, comparisons of the
whole Central Brazilian Plateau with other mountain ranges are difficult, given the
many differences in area and climate, and the fact that the plateau has a more gentle
and eroded relief and deeper and well drained soils than other mountain systems
discussed here (Ab’Sáber 2003). The Central Brazilian Plateau does not serve as an
orogenic barrier (Derby 1906; Bookhagen and Strecker 2008) as the Espinhaço
Mountains do, the latter being more subject to the extreme climatic seasonality of
central South America. To the west of the Cerrado domain, there are several small
isolated plateaus and table mountains (e.g., Bodoquena, Guimarães, Huanchaca, and
Parecis Ranges), generally below 900 m. Although lower in elevation and with
relatively more gentle relief, these mountains and plateaus also harbor endemic
species of reptiles, amphibians, and plants (Simon and Proença 2000; Azevedo
et al. 2016), but most of them do not have any endemic mammal or bird species
(with exception of the rodent Jucelinomis huanchaca from the Huanchaca Plateau;
Emmons 1999).

The summits of the Pantepui Region harbor vegetation more similar to the
Páramos and the campos de altitude of the Atlantic Forest than to the surrounding
lowland Amazonian Forest. However, sometimes these table mountains can also be
surrounded by tropical savanna (Huber 1995). The entire region harbors 2100
species of vascular plants, of which around 1300 are endemic (Huber et al. 2018).
The difference in endemism levels for the Pantepui Region compared to other
Brazilian ranges is remarkable, with 43 species of birds compared to only four for
the (southern) Espinhaço (Borges et al. 2018), and nine in the Diamantina Plateau
(Guedes et al. 2014). Regional endemism for the herpetofauna is even more extreme,
reaching 87.6% of the amphibians and 74.2% of the reptiles (McDiarmid and
Donnelly 2005). In contrast to plants and birds, there are fewer/lower affinities
between the Pantepui Region and the Andean herpetofauna (Kok 2013). This is an
interesting pattern that contrasts with most biogeographical hypotheses proposed
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based on the distribution of organisms with good dispersal abilities (many vascular
plants and birds; Antonelli et al. 2009; Borges et al. 2018; Huber et al. 2018).

Campos rupestres from different mountains share more vascular plant species
with the surrounding Cerrado savannas than to any other mountains or bioregions
(Neves et al. 2018a, b), which contrasts with the situation for the tepuis and their
distant biotic affinities. High mountains in the Atlantic Forest domain also harbor
campos de altitude (Safford 1999a, b; Ribeiro et al. 2007). Besides being primarily
related to central Brazilian campos rupestres, the vascular flora of the campos de
altitude share a strong floristic similarity to the Páramos in the Andean mountains,
and to southern temperate grasslands (DeForest Safford 2007). This can be exem-
plified by the species radiation of the fern genus Jamesonia (Pteridaceae) in the
Páramos, which is the sister taxon of Eriosorus myriophyllus, a fern typical of the
highland grasslands in the Atlantic Forest (Sánchez-Baracaldo 2004). The birds
Asthenes luizae and Cinclodes espinhacensis from the campos rupestres of the
Espinhaço Mountains also show biogeographical connections among southern Bra-
zilian mountains and the Andes, probably connected by montane regions across the
Patagonian-Chacoan region c. 8 million years ago (Ma) (Derryberry et al. 2011).

Biotic connections, or interchange, across montane habitats have taken place
across different routes, including the Southern route (southern Brazilian moun-
tains—Patagonia—southern Andes). The hummingbird Colibri delphinae has a
disjunct distribution across the northern Espinhaço Mountains, Pantepui Region,
northern Andes, Central America, and the island of Trinidad (Schuchmann 1999).
Similarly, Chaves et al. (2014) provide an extensive list of widespread plant species
across the Pantepui Region, and south-eastern and southern Brazil, including ferns,
grasses, bromeliads, and plants of the families Cyperaceae, Eriocaulaceae,
Velloziaceae, and Xyridaceae (Costa et al. 2008; Rapini et al. 2008; Salino and
Almeida 2008; Versieux et al. 2008; Viana and Filgueiras 2008; Mello-Silva 2010).
Finally, the rodent species Podoxymys roraimae also suggests an old biogeograph-
ical connection between the Cerrado of the Central Brazilian Plateau and the
Pantepui Region during the Pliocene (Leite et al. 2015).

Alternatively, at least some disjunct distributions may not reflect bioregion
connectivity, but rather represent sporadic dispersal events. Indeed, intensive dis-
persal among Neotropical mountain ranges and with surrounding lowlands may
explain the reticulate evolutionary history of many Neotropical bioregions, as
recently shown by a large cross-comparative analysis of dated phylogenies of plants
and animals (Antonelli et al. 2018b; Fine and Lohmann 2018).

310 T. B. Guedes et al.



4 Evolutionary Origins and Species Diversification in Non-
Andean Mountains: Insights from Phylogenetic Studies

One of the main goals of evolutionary biology is to understand the mechanisms that
drive spatial variation in biodiversity (Quintero et al. 2015). One way to investigate
such mechanisms is by using molecular phylogenies, which provide insights into the
origin and diversification of extant lineages. When integrated with fossil informa-
tion, phylogenies are particularly powerful tools for historical inference by enabling
time calibration through node or tip constraints (Ronquist et al. 2012) or through
diversification rates and biogeographic analyses (Silvestro et al. 2016). When
lineages are endemic to an area—or are highly characteristic of a particular biore-
gion—their evolutionary history can be used to interpret the history of the region
itself (Eiserhardt et al. 2017). Further, the inference of ancestral areas enables the
investigation of how entire biotas and local communities are assembled through time
(Bacon 2013; Antonelli et al. 2018b). The similarity of divergence times for diverse
taxa can inform on the formation of a bioregion or geological feature (e.g., Bacon
et al. 2015), although a conceptual and methodological reliance on concordance may
be unnecessary (Papadopoulou and Knowles 2016; Zamudio et al. 2016).

Molecular data indicate that the diversification of many Neotropical terrestrial
organisms took place during the Neogene, with lineages accruing their present
diversity and distribution in the Quaternary (since 2.6 Ma; Rull 2011). For example,
Machado et al. (2014) found a Neogene origin for snakes of Bothrops neuwiedi
species group, with population differentiation likely driven by Quaternary climate
change. Specifically, the species from the campos de altitude of the Mantiqueira
Mountains diverged around 1.2–0.58 Ma, similar to the even younger ages of the
EspinhaçoMountains (less than 1 Ma; Machado et al. 2014). Neogene origins were
also found in the radiation of Minaria plants (Apocynaceae), comprising 21 species
that are primarily endemic to the campos rupestres (Ribeiro et al. 2014). Minaria
arose in the Diamantina Plateau during the Late Miocene and Early Pliocene in
campos rupestres, and during the Pliocene the genus diversified across its entire
range, particularly in the northern Diamantina Plateau of Bahia. These plant diver-
gence times are older than those of the endemic birds in Cinclodes (Late Pleistocene;
Freitas et al. 2012) and younger than those inferred for another characteristic campos
rupestres plant group, Hoffmannseggella (syn. Cattleya) orchids (Orchidaceae;
14–11 Ma; Antonelli et al. 2010).

Historical biogeography uses phylogenies to infer the ancestral areas of line-
ages through time, which can in turn be used to suggest geological and/or climatic
connectivity among regions. Yet, evidence about the origins and diversification
along the non-Andean mountains seems far from settled, and more data are needed
to understand temporal patterns. Sometimes, the reticulate and complex history of
clades may not always reflect the geological history of the area. For instance,
although the final upheaval of the Central Brazilian Highlands took place
c. 4–2 Ma, Beerling and Osborne (2006) and Werneck et al. (2012) inferred that
widespread lizard populations (Phyllopezus pollicaris) of the Caatinga and Cerrado
diverged during the Miocene. In contrast, Carnaval and Bates (2007) found the
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divergence of two frog species from the Northeastern Highlands of Ceará to be
much more recent (ca. 0.1 Ma). These mountain enclaves of the Northeastern
Highlands are some of the least sampled among all non-Andean mountains, with
few phylogenetic studies published to date. In contrast, the mountains of Central
Brazil are fairly well known, and increased interest in the patterns and causes of high
Cerrado diversity has shown divergence of endemic clades primarily occurring since
4 Ma (e.g., Almeida et al. 2007; Giugliano et al. 2007; Simon et al. 2009).

Climatic changes through time also have an important role in shaping the
evolutionary trajectory of species, which may affect both geographic distribution
patterns and species composition, as well as genetic variability across landscapes.
The evolutionary history of the titi monkey genus Callicebus suggests a separation
between the Central Brazilian Highlands and Northeastern Highlands lineages from
those of the Serra do Mar Range in the Pleistocene (crown ages of ca. 2 and 6 Ma,
respectively; Carneiro et al. 2018). Similarly, the manakin bird Neopelma pallescens
originated in the Serra do Mar Range and dispersed to areas including Central
Brazilian Highlands in the Late Miocene (Capurucho et al. 2018). In recent geolog-
ical times, besides glacial cycling during the Quaternary the central Serra do Mar
Range remained climatically more stable in comparison to southern parts of the
range (Carnaval et al. 2009), leading to complex patterns of genetic diversity within
frog species across their distribution. These types of climatic changes have also led
to different responses among communities, creating different evolutionary trajecto-
ries for lizard species (Prates et al. 2016).

Usually, ancient geomorphological landscapes also have ancient environments
occupied by ancient lineages. However, the Pantepui mountain system is one of
the oldest in South America, but its biota contains both ancient and more recent
lineages. Among the earliest diverging lineages are tepuian bromeliads
(Bromeliaceae; Givnish et al. 2011), dating to c. 9.1 Ma. More recent endemic
lineages include a species of opossum (Podoxymys roraimae; Pavan et al. 2016)
and a toucanet (Aulacorhynchus whitelianus; Bonaccorso and Guayasamin 2013),
which diverged in the Pleistocene. A review of the diversification of the Pantepui
biota is provided by Huber et al. (2018).

5 Connecting Studies of Biodiversity and Human Impacts
on Non-Andean Montane Biotas: A Case Study from
the Serra Do Mar Range

Among the non-Andean montane regions, the Serra do Mar Range is one of the most
heavily altered by humans, with a long history of deforestation dating back to
colonial times between 1500 and 1815 (Dean 1997). This is one of the most densely
populated areas in Brazil, comprising São Paulo and Rio de Janeiro, the two largest
Brazilian cities (ca. 19 million inhabitants). Because evidence suggests that defor-
estation has changed the distributional patterns of small mammals in the Atlantic
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Forest (Sancha et al. 2014), possibly driven by extinction, we expect that more
densely occupied regions within this range will generally have lower species
richness.

Anurans are especially diverse in the Serra do Mar Range (Villalobos et al. 2013).
However, it is unknown whether the anthropogenic impacts detected in small
mammals (Sancha et al. 2014) are reflected in these taxa, especially because the
effect of deforestation in natural communities varies depending on life history and
species traits. In general, species exhibiting narrow environmental requirements
should be more heavily affected than ecological generalists.

To further understand whether and how human population density interacts with
climate (reflecting climatic niche space; Wiens et al. 2006) and the evolutionary
history of the local biota, and hence influences species richness patterns along the
Serra do Mar Range, we deconstructed the total species richness into groups based
on three life-history traits correlated with resource use: habitat use (terrestrial pond
dwellers, burrowing, stream dwellers, and arboreal species), reproductive mode
(species with free-swimming larvae vs. direct developers), and body size
(50.99 mm � SVL � 51 mm, based on breaks of the snout-vent length data;
Fig. 13.3), following Marquet et al. (2004). With this, we sought to test how
important life-history traits are in determining species richness patterns at a broad
spatial scale, given the human footprint. Direct-developing anuran species (i.e.,
without larval phase) require high levels of humidity (da Silva et al. 2012). Thus,
we expect them to show a nested distributional pattern along a rainfall seasonality
gradient. We expect the highest species richness of direct-developing species to be in
areas with high temperature and precipitation and low human influence. Since
streams are more common in regions with high altitude, we expect the richness of
stream-dwellers to be higher in high altitude areas. Yet it is unknown if these areas
have been preferentially altered by humans.

For our analysis, we built a grid with 57 cells of 0.5� covering the Serra do Mar
Range in the SAM software (Rangel et al. 2010), using the limits of this ecoregion as
provided by Olson et al. (2001). To calculate species richness for each cell, we
overlaid polygons depicting the extent of occurrence (‘range maps’) of all anuran
species available in IUCN (2009). Species were considered present if at least 50% of
the range polygon covered the cell. We then used six climatic variables (following
Wiens et al. 2006; Qian and Ricklefs 2007) obtained from Worldclim v. 1.4
(Hijmans et al. 2005). These variables (see Table 13.1) are related to physiological
limits of amphibian species and influence their broad-scale distribution (e.g., Wiens
et al. 2006). We built a global stationary Generalized Least Squares (GLS) model to
predict the total richness and the richness of each group of species separately
(response variables) as a function of macroclimatic variables and human population
density (predictor variables; Fig. 13.4), while also accounting for the spatial auto-
correlation in the data. Finally, we used a semi-variogram to explicitly model the
residuals and to build their variance-covariance matrix (Dormann et al. 2013) into
the model. Moran’s I of residuals was used to diagnose if the GLS model success-
fully accommodated spatial autocorrelation.
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Fig. 13.3 Observed richness patterns of the 233 anuran species occurring in the Serra do Mar
Range. (a) all species; (b) arboreal; (c) fossorial; (d) terrestrial; (e) terrestrial stream dwellers; (f)
terrestrial with free-swimming larvae; (g) direct developers; (h) large-bodied species; (i) small-
bodied species. The figure shows that the richness of most species peaks in the northern portion of
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We found that the variable that most influenced species richness was temperature
seasonality (Table 13.1). This supported our expectations, since the Serra do Mar
Range has generally low rainfall seasonality and high species richness. However, the
relative importance of each individual variable analyzed differed for each group of
species, depending on their life-history traits. Surprisingly, altitude and human
population size were negatively related to the richness of small-bodied and pond-
dweller species, yet positively related to the richness of other species groups
(Fig. 13.4; Table 13.1). Ponds are much more common in lowlands, where flat
terrain necessary for their formation is found, while streams are more common in the
escarpments and high-altitude areas, due to the sloped terrain. Data available for
ectotherms demonstrate that larger species occur in cooler places as predicted by
Bergmann’s rule (Ashton 2002; Ashton and Feldman 2003; Morrison and Hero
2003; Vinarski 2014; Zamora-Camacho et al. 2014; Amado et al. 2018; but see
Adams and Church 2008; Romano and Ficetola 2010 for contrasting results).
Together, these factors may explain the negative relationship between altitude and
richness of small-bodied species we found.

Overall, our empirical results show that life-history traits are important for
assessing and explaining species–climate relationships in mountains. Such traits
are part of the functional diversity of ecosystems and should be included alongside
total richness in similar analyses whenever possible. Also, some predictor variables
showed shifts in coefficient, such as temperature seasonality, positively affecting the
richness of fossorial species, but negatively affecting that of stream-dwellers and
large species, besides total richness.

Ecological theory predicts that highly seasonal environments present harsh con-
ditions for most species, acting like a strong environmental filter (Ricklefs 2004;
Wiens et al. 2006; Qian and Ricklefs 2007). We therefore expected temperature
seasonality to negatively affect species richness. However, surprisingly, fossorial
species were positively correlated with it, probably because belowground habitats
would buffer them against variations in ambient temperature.

Contrary to our initial hypothesis, we found human population density to be
positively correlated with richness of direct-developing species, and also free-
swimming larvae, fossorial species, stream dwellers, and arboreal species
(Table 13.1), with standardized slope varying from 0.047 to 0.21. This unexpected
result may be an artefact of sampling bias, since urban centers also concentrate more
researchers and research institutions (Oliveira et al. 2016).

⁄�

Fig. 13.3 (continued) the Serra do Mar Range, in the state of Rio de Janeiro, decreasing towards the
south. The region with the highest richness is also the one with the highest peaks (see main text)
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Fig. 13.4 Predicted richness patterns of the 233 anuran species occurring in the Serra do Mar
Range, using a generalized least square (GLS) approach. (a) all species; (b) arboreal; (c) fossorial;
(d) terrestrial; (e) terrestrial stream dwellers; (f) terrestrial with free-swimming larvae; (g) direct
developers; (h) large-bodied species; (i) small-bodied species. A visual comparison between this
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6 Future Directions

The generally low level of biological sampling carried out in most mountain ranges
surveyed to date precludes robust evolutionary inferences. Only fragmentary evolu-
tionary stories have been told, showing how particular species are related and when
they derived from common ancestors in the surrounding landscapes or from distant
regions. How general are the patterns described? We still do not know. Our review
motivates several additional questions, which could be addressed by a more thor-
ough genetic, and if possible paleontological, sampling in each mountain range. For
instance, are the rainforest species in mountain enclaves in the Caatinga remnants
of a once much larger Atlantic rainforest, or the result of dispersals from the Andean
slopes, Amazonia, or eastern Brazil? How did surface uplift and associated land-
scape changes influence the rates of speciation and extinction in Neotropical
mountains, and how were those related to biotic and abiotic changes? How often
have biotic corridors been created in deep history that linked the montane biotas
across South America, and what biological impact did such connections have on the
distribution and diversification of Neotropical diversity (e.g., Costa et al. 2017)?
What was the importance of in situ adaptation of lowland ancestors versus long-
distance establishment of pre-adapted species for the high levels of montane ende-
micity (Antonelli 2015; Merckx et al. 2015)? What role did Neotropical mountains
play in protecting species from episodes of past climate changes, due to their lower
climatic velocity in comparison with lowlands (Sandel et al. 2011)? Will mountains
provide refugia for biodiversity from escalating human pressures in the future?
Addressing these important questions will require concerted efforts from researchers
across disciplines.

Across the world, mountains play key roles as cradles and reservoirs of biodi-
versity. Although the contribution of the Andes to Neotropical diversity cannot be
understated (Antonelli et al. 2018c; Rangel et al. 2018), it is now time to increase
efforts to better understand the evolution and distribution patterns of the rich and
highly endemic biota found on other Neotropical mountain ranges. On an even more
urgent level, we need to investigate the effects of deforestation and other changes in
land use on distributional patterns among communities, in order to facilitate the
prioritization of areas for conservation. Through a case study of the amphibians of
the Serra do Mar Range, we provide one example of how human impacts can be
assessed alongside current climatic conditions and species traits, which reflect the
evolutionary history of local lineages, in correlative studies of observed biodiversity
patterns. Although we were unable to detect a strong human imprint in the system of

Fig. 13.4 (continued) and the previous figure shows that patterns predicted by the model closely
resemble the observed ones, with small extensions towards the borders of the Serra do Mar Range in
the predicted richness. The results suggest that including human population size in the statistical
niche model, as well as analyzing both total species richness and smaller groups of species, can
improve the prediction of species richness in a global biodiversity hotspot
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focus, we hope that our review will inspire work on the various aspects of research
outlined here, and most importantly lead to a recognition of the complexity, chal-
lenges, and amazing prospects ahead of us.
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