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Abstract. Additive Manufacturing is a very time consuming technology. An
estimation of the build time is fundamental to:

• Evaluate the production cost in budgeting process.
• Make use of optimization methods, which use as parameter the build time,

for determining optimal build direction.

In both these cases a fast and valid build time estimator, which can work with
a few input data deducible from geometric model, is required.
In the proposed paper a reliable parametric-based method to determine the

build time for additive manufactured objects is provided. The implemented
method is based on a back-propagation artificial neural network, which gives the
possibility to implement the complex functions that elapse some driving build-
time factors and the build time. The neural network training is based on data
provided by a properly developed analyzer of the list of commands given to AM
machines, which performs an analytical estimation of the build time. The
implementation of the proposed methodology is illustrated and some compar-
isons between the real and estimated build-time are provided, then the results are
critically analyzed.

Keywords: Build time estimation � Adaptive model � Process planning �
Additive Manufacturing

1 Introduction

Additive Manufacturing (AM) is a technology for fabricating functional prototypes and
small batches of part. It allows to realize components characterized from a complex
shape and provides important advantages related to the cost saving, compared with
other manufacturing processes, and the reduction of the Time to Market [1, 2]. But AM
is also a very time consuming technology. Due to the limitations of the technologies
currently in use the speeds of the growing process need to be limited for maintaining a
good quality of the manufactured part. Consequently AM is generally applied only to
small batches of parts. In this sense is very important to provide an estimation of the
build time before the part is realized, in order to evaluate the production costs.
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This information is essential for the sellers during the budgeting process for providing
the part cost to the customer and also for planning the production. Indeed many
optimization methods for AM have been suggested during the last years [3–12], whose
intents are to increase the profits and also the quality of the manufactured objects. In
these methods, whose final output is the optimal build direction of the interested part,
the build time is generally required as input. Consequently, a reliable way for evalu-
ating this parameter is necessary.

Two possibilities are offered by the literature to estimate the build time: by
parametric-based methods [13–21] or by detail analysis-based methods, such as [24]. In
parametric-based methods the build time is expressed as a function of the driving build-
time factors. These last can be evaluated starting from the geometrical model and
before defining the manufacturing process, which can be very useful for the budgeting
process. The parametric-based methods are fast and easy-to-use but, on the other side,
their accuracy is poor. In detail-analysis based method instead the estimation of the
build time is very accurate but they commonly require a full geometrical information of
the interested part, which could not be available in some situations.

In this paper the use of a parametric-based method is illustrated. Most of the driving
factors of the build time are identified and analyzed. Then these factors are used as
input of an artificial neural network, which allows to identify the correlation between
the driving build-time factors and the build time. A similar work was proposed by the
Authors in a previous activity research, but it evidenced some limitations related to the
calculation of some driving factors due to new typologies of hatching that have been
introduced during this recent years (Fig. 1). Moreover network learning was very slow
since, not being available an accurate tool for estimating the build time, the real value
of this last was required. Both limitations have been passed thanks to the use of the new
methodologies which will be afterwards described.

2 Proposed Method

In parametric-based methods the build time tf is expressed as

tf ¼ tf T ;DTF1;DTF2; . . .;DTFnð Þ ð1Þ

The parameter T is representative of the technology in use, while DTFi identifies
the i-th driving build-time factor. A very difficult step is represented by the individu-
ation of these factors. In order to avoid cross-correlation the driving build-time factors
should be independent each other. Moreover, to make the method general-purpose,
they should be independent from the specific technology used for manufacturing the
part.

In the proposed method the use of the following five driving build-time factors is
suggested:

Vmat
L Volume of part/Layer thickness
pmat Total length of part’s perimeter
nr�mat Number of repositioning required for part’s hatching
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Vsup

L Volume of supports/Layer thickness
nr�sup Number of repositioning required for supports hatching

In Table 1 each factor is compared with the most widespread AM technologies to
establish which parameters should be used for a specified process.

The chosen factors can be evaluated relatively easily starting from the geometrical
model of the part. Moreover they are quite independent between them, as it was
demonstrated in [20].

The driving build-time factors are evaluated by a method implemented into a
Matlab script, which process a.stl representation of the object.

The volume of the part Vmat is computed using the methodology proposed by [22].

Some technologies, as evidenced in Table 1, require a deposition of the layer
contour. A very accurate estimation of the total layers’ contour is provided by the
formula (2) suggested by [23], in which the perimeter is calculated as the “projection”
of the triangular facets of the geometrical model divided by the layer distance.

pmat ¼
PnT

j¼1 Sj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z � nj

� �2q
L

ð2Þ

Where:

nT Number of triangular facets of geometrical model
Sj Area of j-th triangular facet
z Normal vector of building direction
nj Normal vector of j-th triangular facet

Another parameter which significantly affects the build time is related to the
number of repositioning of the deposition tool. During each repositioning an acceler-
ation and a jerk phase are required, causing an increasing of the build time [24]. The
number of repositioning is strictly related with the typology of hatching used. In Fig. 1
some of the most common hatching structures are reported.

Table 1. Correlation between the driving build-time factors and typically commercial rapid
prototyping technologies.

Driving build-time factors Technologies
FDM SLA SLS LOM 3DP MJM EBM SLM

MATERIAL
Vmat
L

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pmat ✓ ✓ ✓ ✓ ✓ ✓

nr�mat ✓ ✓ ✓ ✓ ✓ ✓ ✓

SUPPORT
Vsup

L
✓ ✓ ✓ ✓ ✓

nr�sup ✓ ✓ ✓ ✓ ✓
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For the structures 1, 2 and 3, in order to evaluate the number of repositioning
nr�mat, an extension of the methodology already in use for the rectangular hatching is
proposed [21].

nr�mat ¼
X2
k¼1

PnT
j¼1 Sj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z � nj

� �2q
HmatL

sk;c � nj;xy
�� ��

0
@

1
A

Where:

Hmat Hatching distance
sk;c Normal vector referred to hatching direction
nj;xy Projection onto the stratification plane of the normal vector of j-th

triangular facet

The phase h of the vector sk;c assumes different values depending on hatching
typology, in accordance with Table 2.

For the structures 4 and 5 instead, the number of repositioning is not proportional
to the external perimeter pmat but rather to the hatching area Ai of the i-th layer. In that
case the expressions reported in Fig. 2 are used for evaluating nr�mat:

Fig. 1. Most in use typologies of hatching for AM.

Table 2. Relationship between k, phase h and hatching typology.

Hatching typology k = 1 k = 2

Grid (1) h s1;c
� � ¼ s h s2;c

� � ¼ sþ p
2

Triangular (2) h s1;c
� � ¼ s h s2;c

� � ¼ sþ p
3

Rectangular (3) h s1;c
� � ¼ s s2;c ¼ 0
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A formulation for determining the same parameters with reference to the supports
should now be provided. But no information about the support structures is contained
into the geometrical model and, moreover, these last are strictly dependent on user
choices and technology in use. So a strategy, based on voxelization, has been imple-
mented into a Matlab script for determining the geometrical information referred to the
supports [24]. The total volume of supports Vsup is provided by the sum of the volume
of the voxel elements:

Vsup ¼
XNv

i¼1

Vv;i

Where:

Nv Number of voxel elements
Vv;i Volume of the i-th voxel element

While the total number of repositioning nr�sup required for the supports is obtained
considering the total perimeter psup of the supporting structure.

psup ¼ Nv 4
d2

L

� �

Where:

d Grid dimension of voxel element

Then the same methodology proposed for the material can be used, depending on
the kind of hatching chosen.

Fig. 2. Formulation of for wiggle and honeycomb hatching.
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Now a relationship between the proposed driving build-time factors and the build
time needs to be founded. Generally speaking, the function (1) is very complex and
unknown. So an Artificial Neural Network (ANN) is used to meet the request. Those
mathematical instruments represent a powerful solution for generating a complete
representation of a domain not entirely known.

A neural network, being able to reproduce non-linear functions, provides the
possibility of considering all the complex dependencies which elapse between the
driving build-time factors, offering, for example, the opportunity to predict the effects
of the acceleration and jerk phases. Moreover a neural network is characterized by an
adaptive capability; if the estimation provided by the network for a prototype results to
be unsatisfactory, this last can be added to the set of samples used for training the
network. In this way the accuracy of results increases over time.

For our purpose, a typical back-propagation artificial network with two hidden layer
(Fig. 3) has been used. The parameter T , which identifies the AM technology in use, is
provided in input to the network in addition to the driving build-time factors. That
parameter should work as a logical value and it is chosen between the positive integer
numbers depending on the technology in use (TFDM ¼ 1; TSLA ¼ 2; . . .; TSLM ¼ 8Þ:
In order to train the network, the real build time of the test samples is required. In [21]
the learning process was very slow because, not being disposable a reliable way for
evaluating this quantity, each test case required to be physically realized. Therefore, in
order to maintain the method economically and temporally sustainable, few samples
could be provided for network learning. For example no other build direction except the
optimal one was used and this represented a significant limitation of the network’s
ability to generalize the results.

Fig. 3. Configuration of the artificial neural network.
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In the proposed method, by the use of a detail-analysis based method [24], now an
extremely accurate evaluation of the build time, based on the use of GCode, is applied
for evaluating very precisely the real build time. The use of this methodology requires
that some specific information concerning the manufacturing process should be pro-
vided, for example the magnitude of accelerations and jerks, or the infill percentage of
part and support. The necessity to know this information represents a limit of the
method itself in comparison with the proposed one, but the use of it allows us to obtain
very quickly an evaluation of the build time. In this way many test cases, using
different orientations or shapes, can be used as reference for the learning process,
increasing the method accuracy. In Fig. 4, the workflow followed for obtaining the real
build time of the samples used for network learning is illustrated.

3 The Results

In order to train the ANN, seventy-seven test cases, which are characterized from
different shape, dimension, geometrical and topological complexity, have been used
taking as reference the FDM technology. Some of these test cases have been evaluated
more than once by changing building direction and/or scaling its geometry. Therefore
the ANN was trained by using ninety training instances.

A first experiment (A) was conducted for identifying the best number of nodes to
use for the two hidden layers of ANN. As evidenced by [25], an optimal number of
nodes can be founded only trough an empirical investigation and it is affected by the
complexity of the problem. If the number of nodes is too low, the accuracy of the
neural network will low too. Otherwise if the number of nodes is increased beyond a
threshold level, then the method will lost its capability to generalize the results.

Six different ANN configurations were trained, using, respectively, 25, 50, 65, 75,
85 and 100 nodes. Then the samples reported in Fig. 5 were submitted to the ANNs to
verify their capability to evaluate the build time. These samples belong to the seventy-
seven models used for training ANNs, but they were rotated and/or scaled and then
submitted to neural network. The estimation error, shown in Fig. 6, evidence that the
optimal case is provided when 75 nodes are used for each hidden layer. In that con-
figuration the area of the polygonal figure that corresponds to 75 nodes is minimum.

Fig. 4. Workflow for obtaining the build time using the proposed detail-analysis based method.
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In order to analyze the behavior of the ANN in regard to new geometrical models, not
used in the training phase, another experiment (B) was conducted. Six samples, reported
in Fig. 7, were analyzed and their build time estimated. The results, reported in Table 3,
evidenced a very satisficing estimation of the build time when 100 nodes are used.

Fig. 5. Validation samples used for experiment (A).

0 %

20 %

40 %

60 %

80 %

100 %

120 %

1

2

3

4

5

6

7

8

25 NODES 50 NODES 65 NODES

75 NODES 85 NODES 100 NODES

Fig. 6. Relationship between number of nodes and percentage error in build time estimation of
experiment (A) for the eight proposed samples.
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The difference between the behavior of the neural network towards already-trained
samples, in which only the building direction or the size have been modified, and new
samples has been attributed to a mathematical instability of ANN. When too many
neural connections are present into the hidden layers, small variations of the driving
build-time factors cause a significant change of the build time. In the case of experi-
ment (A) many of the driving build-time factors does not vary a lot when the build
direction changes. For example one the most significant driving factors, such as the
volume, is not affected by build direction. This does not occur in the experiment
(B) when new geometrical models are analyzed. In that experiment an increasing
number of neurons seems to improve the accuracy of the network. This is demonstrated
by the fact that, when 75 nodes are used, the average error for the build time estimation
is equal to 43% of the real build time, while for the case of 100 nodes the average error
is only 6%.

4 Conclusions

In this paper a parametric-based approach for evaluating the build time for AM tech-
nologies has been presented. A parametric estimation of this quantity could be very
useful for a fast and privacy-aimed evaluation of the costs required for manufacturing
an object. Respect to the published methods by Authors, in this paper the following
new elements are introduced:

Fig. 7. Validation samples used for experiment (B).

Table 3. Results of experiment (B).

Model 75 NODES 100 NODES REAL BUILD TIME
Estimation [min] Error Estimation [min] Error [min]

A 123 18% 106 3% 104
B 241 39% 159 8% 173
C 239 146% 89 8% 97
D 131 3% 131 3% 135
E 553 15% 423 12% 479
F 490 36% 748 2% 762
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• Among eight original driving build-time factors, only the five with a low correlation
each other have been considered. A new parameter T has been introduced in for-
mula (1) which considers the AM technology in use.

• A new formulation of the driving build-time factors is proposed in order to take into
account the different typologies of hatching for AM.

• A fast analytical procedure was used for determination of the real build time.

In order to approximate the build time, the very complex and non-linear function of
the previously defined driving build-time factors, an ANN with two hidden layers is
used.

With a first experimentation the optimal number of neurons for the two hidden
layers was defined. The net training was performed with ninety test cases opportunely
chosen.

The obtained results show a good performance with a mean error of 6% in the build
time estimation for objects for which the ANN has never been trained.

In a further work may be interesting to use an ANN with more neural connections
which may lead to an even better estimation of the build time. Furthermore the
availability of a reliable detailed-analysis based method for evaluate the build time
could be exploit for improving even more the quality of the test cases. For example, as
suggested by the results of experiment (A), a better specialization of the ANN for
different build directions of a same object is required.
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