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1 Department of Engineering, Università degli Studi di Perugia, Via Goffredo
Duranti 93, 06135 Perugia, Italy

bianco@ieee.org, mario.fravolini@unipg.it
2 Section of Radiation Oncology, Department of Surgical and Biomedical Sciences,
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Abstract. There is increasing evidence that shape and texture descrip-
tors from imaging data could be used as image biomarkers for computer-
assisted diagnosis and prognostication in a number of clinical conditions.
It is believed that such quantitative features may help uncover patterns
that would otherwise go unnoticed to the human eye, this way offer-
ing significant advantages against traditional visual interpretation. The
objective of this paper is to provide an overview of the steps involved in
the process – from image acquisition to feature extraction and classifi-
cation. A significant part of the work deals with the description of the
most common texture and shape features used in the literature; overall
issues, perspectives and directions for future research are also discussed.
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1 Introduction

Recent technological advances including new imaging modalities as well as stor-
ing, sharing and computing resources have facilitated the collection of very large
amounts of three-dimensional medical data [1]. In this scenario shape and tex-
ture analysis of such data has been receiving increasing attention during the
last few years. The overall objective is that of extracting quantitative param-
eters from the imaging data (biomarkers) capable of correlating with clinical
features such as disease phenotype and/or survival. The whole process, usually
referred to as radiomics, can be regarded as an improvement on the traditional
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practice wherein medical images were mostly used as pictures for qualitative
visual interpretation only [2,3]. In the management of oncologic disorders, for
instance, a number studies have supported the use of radiomics for a variety of
tasks including prediction of outcome [4,5] and response to treatment [6,7]; dis-
crimination between benign, malignant, primary and metastatic lesions [8–10];
and classification of hystologic subtypes [11].

Radiomics, however, is still a new discipline and definitely far from being
mature. There are significant obstacles that prevent the application on a large
scale – chief among them the lack of large enough datasets for building models
and classifiers, and the absence of standards establishing how the biomarkers
should be computed [12]. The objective of this paper is to provide an overview
of the steps involved, discuss the open issues and indicate directions for future
research. A significant part of the paper deals with the description of the most
common texture and shape features used in the literature.

2 Methods

The flow-chart of Fig. 1 summarises the overall workflow in radiomics. Image
acquisition is always the first step and can optionally be followed by a post-
processing phase. Segmentation is then required to separate the region of inter-
est (ROI) from the background. Feature extraction is the core of the procedure
and consists of extracting a set of meaningful parameters (features) from the
ROI. The features can undergo some post-processing step as for instance selec-
tion and/or reduction. Finally, the resulting data are fed to some classifier or
regression model suitable for the required task.

2.1 Image Acquisition

There are three main classes of medical imaging modalities providing three-
dimensional data [13]: Computed Tomography (CT), Positron Emission Tomog-
raphy (PET) and Magnetic Resonance Imaging (MRI).

Computed Tomography is based on the unlike absorption of X-rays by differ-
ent tissue types, therefore the signal is proportional to the tissue density in this
case [14]. Positron Emission Tomography estimates the metabolic activity of the
tissue by measuring the radioactive decay of some specific radio-tracers. Those
used in PET contain isotopes (e.g. 11C, 15O and 18F ) which emit positrons
through β+ decay. The positrons collide and annihilate with the electrons in
the tissue, this way emitting two γ rays 180◦ apart that are detected by the
sensors [15]. Finally, in Magnetic Resonance Imaging the signal comes from
positrons (hydrogen nuclei) contained in water and lipids. The signal in this
case is proportional relaxation time – i.e. the time to return to the equilibrium
magnetization state once the external magnetisation field is switched off [16].

In all the imaging modalities the scanning usually proceeds axially (head to
feet), this way producing, as a result, a variable number of axial cross-sections
with fixed size (slices). A three-dimensional voxel model is eventually recon-
structed by piling up all the slices.
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Fig. 1. The overall pipeline. Dashed lines indicate optional steps.

2.2 Pre-processing

Pre-processing usually involves one or more of the following operations: (1) win-
dowing (rescaling), (2) filtering and (3) resampling. Although frequently over-
looked, pre-processing is a fundamental step in the pipeline with significant
effects on the overall results, as for instance shown in [17,18].

Windowing consists of applying an upper and lower threshold to the raw
intensity values returned by the scans, this way excluding from the analysis those
values that fall outside the range. In CT, for instance, windowing is routinely
used to exclude from the analysis those anatomic parts (e.g. bones) that are
reputed not relevant to the disease investigated.

Filtering can be carried out either to reduce noise and/or highlight features
at different spatial scales. A variety of methods can be used for this purpose, as
for instance Butterworth smoothing [18], Gaussian [19] and Laplacian of Gaus-
sian [7,20] filters.

Resampling involves changing the number of bits (bit depth) used for encod-
ing the intensity values. The bit depth of the raw data depends on the scanning
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device and settings used (12 and 16 bit are standard values in the practice).
These are usually reduced to lower values (downasmpling) before feature extrac-
tion: eight, six and four bit and are common choices [6,18,21,22].

2.3 Segmentation

The objective of segmentation is that of identifying the part of the scan (ROI)
that is considered relevant to the analysis. A ROI usually represents a clini-
cally relevant region, as for instance a potentially cancerous lesion (Fig. 2). Seg-
mentation is a crucial step, for it provides the input to the subsequent phases.
Unfortunately, this is also a tedious and time-consuming procedure. Although a
number of methods have been investigated for automatising the process – these
include, among the others thresholding [23,24], region growing [23–25], edge
detection [23,24] and convolutional networks [26,27] – segmentation remains by
and large a manual procedure in which the experience and sensitivity of the
physician play a major role. Besides, the decision whether to include or exclude
dubious areas such as necrosis, atelectasis, inflammation and/or oedema is essen-
tially the clinician’s responsibility and, as such, hard to automatise.

TEPTC

Axial Coronal Sagittal Axial Coronal Sagittal

Fig. 2. CT (left) and PET (right) scans of a lung lesion with manually delineated ROI.

2.4 Feature Extraction

Feature extraction can be considered the ‘core’ of the whole procedure and con-
sists of computing meaningful parameters from the regions of interest. There are
two main strategies to feature extraction: the ‘hand-designed’ or ‘hand-crafted’
paradigm one the hand, and Deep Learning on the other.

In the hand designed approach the functions for feature extraction (also
indicated as image descriptors) are mostly designed by hand, the design process
being based on some prior knowledge about filtering, perceptual models and/or
relatively intuitive visual properties (e.g. coarseness, business, contrast, etc.)
This model-driven, ‘a priori’ paradigm is independent on the data to analyse.
By contrast, Deep Learning is a data-driven, ‘a posteriori’ strategy in which
the descriptors are essentially shaped by the data. The feature extractors, in
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this case, are based on sets of combinable blocks (layers) of which only the
overall skeleton is defined a priori, and their behaviour depends on lots of free
parameters whose values need to be determined by training over huge sets of
data. In this paper we are mostly concerned with the hand-design paradigm; for
an overview of Deep Learning and its potential applications in the field we refer
the reader to Refs. [28–30].

Regardless the method used, there are some desirable properties that one
would always expect from features. First, they should be discriminative, i.e.:
they should enable good separation among the classes involved in the problem
investigated (e.g. classification benign vs. malignant). Second, they should be
interpretable on the basis of some physical characteristics (e.g. round/elongated,
coarse/fine, etc.) Third, they should be few : this, again, facilitates interpretation,
limits the computational overhead and reduces the chances of overfitting. Here
below we briefly review some of the most common shape and texture features
used in radiomics.

Shape Features. Shape features have been investigated as potential biomark-
ers for a range of diseases. In oncologic disorders, for instance, lesions presenting
ill-defined (‘spiculated’) borders are considered suggestive of malignancy, aggres-
siveness and in general worse prognosis; whereas those with regular, well defined
margins are more frequently indicative of benign or less aggressive lesions [31–33].
For a quantitative evaluation of shape different parameters have been proposed
– among them compactness, spherical disproportion, sphericity and surface-to-
volume ratio (Eqs. 1–4). In formulas, indicated with A the surface area of the
ROI, V the volume and R the radius of a sphere with volume V we have:

compactness =
V√

πA2/3
(1)

spherical dispr. =
A

4πR2
(2)

sphericity =
π1/3 (6V )2/3

A
(3)

surface-to-vol. ratio =
A

V
(4)

Compactness, spherical disproportion and surface-to-volume ratio from CT,
for instance, were found predictive of malignancy in lung lesions [34]; surface-
to-volume ratio from MRI showed potential to differentiate between clinically
significant and non-significant prostate cancer [31]; and functional spheric-
ity from PET images correlated with clinical outcome in non-small-cell lung
cancer [32].
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Texture Features

Basic Statistics. These are parameters that can be computed directly from the
raw data with no further processing. Resampling is not required. They include:
mean, maximum, median, range, standard deviation, skewness and kurtosis (for
definitions and formulae see also [35]). All these features are by definition invari-
ant to geometric transformations of the input data such as rotation, mirroring,
scaling and/or voxel permutation. Most of these features are also rather intuitive
and their implementation straightforward.

Histogram-Based Features. This kind of features are derived from the probability
distribution (histogram) of the intensity levels within the ROI. Features like
energy (Eq. 5 – sometimes also referred to as uniformity) and entropy (Eq. 6) are
routinely used for assessing the ‘heterogeneity’ of tumour lesions. There is indeed
evidence that higher heterogeneity may correlate with worse overall prognosis
and response to treatment [36–39]. Histogram-based statistics are invariant to
geometric transformations of the input data – just as basic statistics are – but
they heavily depend on the resampling scheme used. In formulas, given N the
number of quantisation levels and p the probability of occurrence of the i-th
intensity level, we have:

energyH =
N−1∑

i=0

[p (i)]2 (5)

entropyH =
N−1∑

i=0

p (i) log2 [p (i)] (6)

where entropy is expressed in bits in this case. Subscript ‘H’ is used to indicate
that the features are computed from histograms and to differentiate them from
those computed from co-occurrence matrices (see below).

Grey-Level Co-occurrence Matrices. Co-occurrence matrices (GLCM) represent
the two-dimensional joint distribution of the intensity levels between pairs of
voxels separated by a given displacement vector. By changing the orientation
and the length of the vector GLCM can probe the local signal variation at dif-
ferent scales and orientations. Co-occurrence matrices, a classic tools in texture
analysis, were originally designed for planar images [40] but their extension to
three-dimensional data is straightforward [41]. In this case there are 26 pos-
sible orientations for a given scale and as many GLCM, of which, however,
only 13 non-redundant. A GLCM with values mainly clustered around the main
diagonal will indicate a texture with low variability; a highly dispersed matrix
will be characteristic of a variable texture. To capture this behaviour one usu-
ally extracts some global parameters from the GLCM, as for instance contrast,
energy, entropy and homogeneity (Eqs. 7–10). Again, these have shown potential
as clinical biomarkers in a number of studies [5,6,22,42]. Indicated with i and j
the indices of the two voxels separated by a given displacement vector, we have:

contr.CM =

∑N−1
i=0

∑N−1
j=0 (i − j)2 p (i, j)

(N − 1)2
(7)
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energyCM =
N−1∑

i=0

N−1∑

i=0

[p (i, j)]2 (8)

entr.CM =
N−1∑

i=0

N−1∑

j=0

p (i, j) log2 [p (i, j)] (9)

hom.CM =
N−1∑

i=0

N−1∑

j=0

p (i, j)
1 + |i − j| (10)

Other Texture Features. Texture analysis has been an area of intense research
for more than forty years, and, as a results, the amount of available methods
is huge. Among those that have received attention in the field of radiomics are:
neighbourhood grey-tone difference matrices (NGTDM [6,21,22,43]), grey-level
run-length matrices (GLRLM [21,22,44]), Local Binary Patterns (LBP [17,45]),
Laws’ masks [46,47] and wavelets [48,49]. For definitions and further details we
refer the reader to the given references.

2.5 Post-processing

The features returned by the extraction phase can undergo further processing
to (a) reduce their number and (b) increase their discrimination capability. The
main strategies to achieve this goal are feature selection and feature genera-
tion [50]. The first aims at identifying the most discriminative features so as
to reduce their overall number while retaining as much information as possi-
ble. This is particularly important in radiomics, where some shape and texture
features tend to be highly correlated to each other, as recently shown in [51].
The second consists of generating new features from the original ones via some
suitable transformation, as for instance Principal Component Analysis (PCA)
and Independent Component Analysis (ICA) [50].

2.6 Data Analysis/Classification

The last step consists of feeding the features to a classifier to make predictions
about the disease type (computer-assisted diagnosis) and/or the clinical out-
look (prognostication). To this end suitable machine learning models and large
enough sets of labelled data (train set) are required. As for the model, one can
choose among a number of different solutions (e.g. linear classifiers, Support
Vector Machines, Classification Trees, neural networks and/or a combination of
them [50,52]): the main problem is selecting the right model for the specific task.
Getting the right data for training, however, can be rather hard, for it requires
finding large enough sets of manually classified/annotated clinical records. For
prognostication the data need also to be longitudinal, which implies following
up on a cohort of patients for a long period of time.
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3 Discussion

A number of recent studies have advocated the use of shape and texture descrip-
tors as potential image biomarkers in the diagnosis and treatment of a range of
disorders. Still, clear advantages for patient management are yet to be demon-
strated above and beyond traditional imaging techniques and basic biomark-
ers [37]. From a technical standpoint there are at least three major hurdles that
still limit the applicability of radiomics on a large scale. The first is the lack
of standardisation in all the steps detailed in Sect. 2. Differences in the imag-
ing acquisition parameters, feature definition and naming conventions, pre- and
post-processing procedures are all sources of variations that reduce reproducibil-
ity, increase artefacts and eventually lead to biased results [36]. To overcome this
problem, an important standardisation initiative is in progress [12]. The second
is the lack of large enough datasets of imaging data to train the classifiers. To
fill this gap, international, open access repositories are being developed [53]. The
third is that some steps of the pipeline (e.g. lesion segmentation) still rely too
heavily on human intervention, which may potentially lead to biased results and
low reproducibility [54].

4 Conclusions

Shape and texture features from three-dimensional biomedical data have been
attracting much research interest in recent years. It is believed that such quan-
titative imaging features may help uncover patterns that would otherwise go
unnoticed to the human eye. In this paper we have provided an overview about
the methods, issues and perspectives. On the whole it is clear that radiomics
has the potential to improve the patient management in a number of diseases,
but there are still significant obstacles along the way – chief among them the
absence of standardisation and the lack of large datasets of clinical data.

Acknowledgements. This work was partially supported by the Department of Engi-
neering at the University of Perugia, Italy, under the Fundamental Research programme
2017.

Appendix: Tools and Packages for Radiomics

A number of applications are already available for managing radiomics data.
Among them, TexRAD (Feedback Medical Ltd, Cambridge, UK) is a commer-
cial tool enabling lesion segmentation, feature extraction and statistical inter-
pretation over radiomic data [55]. LIFEx (IMIV/CEA, Orsay, France) is a free-
ware package allowing textural analysis and radiomic feature measurements from
PET, CT, ultrasound and MR images [56]. Finally, Pyradiomics (Computational
Imaging & Bioinformatics Lab, Harvard Medical School, Cambridge, USA) is an
open-source set of python libraries for the extraction of radiomics data from
medical images as well as image loading and preprocessing [57].
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