
Chapter 6
Neural Networks

Thomas R. Cook

6.1 Introduction

Neural networks have emerged in the last 10 years as a powerful and versatile set
of machine learning tools. They have been deployed to produce art, write novels,
read handwriting, translate languages, caption images, interpret MRIs, and many
other tasks. In this chapter, we will introduce neural networks and their application
to forecasting.

Though neural networks have recently become very popular, they are an old
technology. Early work on neurons as computing units dates as far back as 1943
(McCulloch and Pitts) with early commercial applications arising in the late 1950s
and early 1960s. The development of neural networks since then, however, has been
rocky. In the late 1960s, work by Minsky and Papert showed that perceptrons (an
elemental form of neural network) were incapable of emulating the exclusive-or
(XOR) function. This led to a sharp decline in neural network research that lasted
through the mid-1980s. From the mid-1980s through the end of the century, neural
networks were a productive but niche area of computer science research. Starting
in the mid-2000s however, neural networks have seen widespread adoption as a
powerful machine learning method. This surge in popularity has been attributable

The views expressed are those of the author and do not necessarily reflect the views of the Federal
Reserve Bank of Kansas City or the Federal Reserve System.

T. R. Cook
Federal Reserve Bank of Kansas City, Kansas City, MO, USA
e-mail: thomas.cook@kc.frb.org

© Springer Nature Switzerland AG 2020
P. Fuleky (ed.), Macroeconomic Forecasting in the Era of Big Data,
Advanced Studies in Theoretical and Applied Econometrics 52,
https://doi.org/10.1007/978-3-030-31150-6_6

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31150-6_6&domain=pdf
mailto:thomas.cook@kc.frb.org
https://doi.org/10.1007/978-3-030-31150-6_6

162 T. R. Cook

largely to a confluence of factors: algorithmic developments that made neural
networks useful for practical applications; advances in processing power that made
model training feasible; the rise of “big data”; and a few high-profile successes in
areas such as computer vision. At this point in time, neural networks have gained
mainstream appeal in areas far beyond computer science such as bioinformatics,
geology, medicine, chemistry, and others.

In economics and finance, neural networks have been used since the early
1990s, mostly in the context of microeconomics and finance. Much of the early
work focused on bankruptcy prediction (see Altman, Marco, & Varetto, 1994;
Odom & Sharda, 1990; Tam, 1991). Additional research using neural networks to
predict creditworthiness was performed around this time and there is a growing
appetite among banks to use artificial intelligence for credit underwriting. More
recently, in the area of finance, neural networks have been successfully used for
market forecasting (see Dixon, Klabjan, & Bang, 2017; Heaton, Polson, & Witte,
2016; Kristjanpoller & Minutolo, 2015; McNelis, 2005 for examples). There has
been some limited use of neural networks in macroeconomic research (see Dijk,
Teräsvirta, & Franses, 2002; Terasvirta & Anderson, 1992, as examples), but much
of this research seems to have occurred prior to the major resurgence of neural
networks in the 2010s.

Although there are already many capable tools in the econometric toolkit, neural
networks are a worthy addition because of their versatility of use and because
they are universal function approximators. This is established by the theorem of
universal approximation, first put forth by Cybenko (1989) with similar findings
offered by Hornik, Stinchcombe, and White (1989) and further generalized by
Hornik (1991). In summary, the theorem states, that for any continuous function
f : R

m �→ R
n, there exists a neural network with one hidden layer, G, that can

approximate f to an arbitrary level of accuracy (i.e., |f (x) − G(x)| < ε for any
ε > 0). While there are other algorithms that can be used as universal function
approximators, neural networks require few assumptions (inductive biases), have a
tendency to generalize well, and scale well to the size of the input space in ways
that other methods do not.

Neural networks are often associated with “big data.” The reason for this is
that people often associate neural networks with complex modeling tasks that are
difficult/impractical with other types of models. For example we often hear of neural
networks in reference to computer vision, speech translation and drug discovery.
Each of these types of task produces high-dimensional, complex outputs (and likely
takes equivalently complex inputs). And, like any type of model, the amount of
data needed to train a neural network typically scales to the dimensionality of its
inputs/outputs. Take, for example, the Inception neural network model (Szegedy
et al., 2015). This is an image classification model that learns a distribution over
about 1000 categories that are then used to classify an image. The capabilities of
this model are impressive, but to get the network to learn such a large distribution

6 Neural Networks 163

of possible image categories, researchers made use of a dataset containing over one
million labeled images.1

The remainder of this chapter will proceed as follows. In the remainder of
this section the technical aspects of neural networks will be presented, focusing
on the fully connected network as a point of reference. Section 6.2 will discuss
neural network model design considerations. Sections 6.3 and 6.4 will introduce
recurrent networks and encoder-decoder networks. Section 6.5 will provide an
applied example in the form of unemployment forecasting.

6.1.1 Fully Connected Networks

A fully connected neural network, sometimes called a multi-layer perceptron, is
among the most straightforward types of neural network models. It consists of
several interconnected layers of neurons that translate inputs into a target output.

The fully connected neural network, and neural networks generally, are funda-
mentally comprised of neurons. A neuron is simply a linear combination of inputs,
plus a constant term (called a bias), and transformed through a function (called an
activation function),

f (xβ + α),

where x is an n-length vector of inputs, β is a corresponding vector of weights, and
α is a scalar bias term.

Neurons are typically stacked into layers. Layers can have various forms, but the
most simple is called a dense, or fully connected layer. For a layer with p neurons,
let B = (β1 . . . βp) so that B has the dimensions (n × p), and let α = (α1 . . . αp).
The matrix B supplies weights for each term in the input vector to each of the p

neurons while α supplies the bias for each neuron. Given an n-length input vector
x, we can write a dense layer with p neurons as,

g(x) = f (xB + α)

=

⎡
⎢⎢⎢⎣

f (xβ1 + α1)

f (xβ2 + α2)
...

f (xβp + αp)

⎤
⎥⎥⎥⎦

T

. (6.1)

1Specifically, a subset of the imagenet dataset. See Russakovsky et al. (2015).

164 T. R. Cook

ŷt+hxt−1

xt−2

xt

Fig. 6.1 Diagram of a fully connected network as might be constructed for a forecasting task.
The network takes in several lags of the input vector x and returns an estimate of the target at the
desired forecast horizon t + h. This network has two hidden layers with three and four neurons
respectively. The output layer is a single neuron, returning a one-dimensional output

As should be clear from this expression, each element in the input vector bears some
influence on (or connection to) each of the p neurons, which is why we call this a
fully connected layer.

The layer described in Eq. (6.1) can also accept higher-order input such as an
m × n matrix of several observations, X = (x1, x2, xm)′, in which case,

g(X) = f (XB + α)

=
⎡
⎢⎣

f (x1β1 + α1) . . . f (x1βp + αp)
...

. . .
...

f (xmβ1 + α1) . . . f (xmβp + αp)

⎤
⎥⎦ .

A fully connected, feed forward network (Fig. 6.1), with K layers is formed by
connecting dense layers together so that the output of the preceding layer serves as
the input for the current layer. Let k index a given layer, then the output of the k-th
layer is

gk(X) = fk(gk−1(X)Bk + αk)

g0(X) = X,

The parameters of the network are all elements Bk , αk for k ∈ (1K). For
simplicity, denote these parameters by θ , where θk = (Bk , αk). Further, for
simplicity, denote the final output of the network G(X; θ) = gK(X).

In the context of a supervised learning problem (such as a forecasting problem),
we have a known target, y, estimated as ŷ = G(X; θ), and we can define a loss
function, L(y; θ) to summarize the discrepancy between our estimate and target.
To estimate the model, we simply find θ that minimizes L(y; θ). The estimation
procedure will be discussed in greater detail below.

6 Neural Networks 165

6.1.2 Estimation

To fit a neural network, we follow a modified variation of gradient descent. Gradient
descent is an iterative procedure. For each of θk ∈ θ , we calculate the gradient of the
loss, ∇θk

L(y; θ). The negative gradient tells us the direction of steepest descent and
the direction in which to adjust θk to reduce L(y; θ). After calculating ∇θk

L(y; θ),
we perform an update,

θk ← θk − γ∇θk
L(y; θ).

where γ controls the size of the update and is sometimes referred to as the learning
rate. After updates are computed for all θk ∈ θ , L(y; θ) is recomputed. These steps
are repeated until a stopping rule has been reached (e.g., the L(y; θ) falls below a
preset threshold).

The computation of ∇θ L(y; θ) is costly and increases with the size of X and y.
To reduce this cost, and the overall computation time needed, we turn to stochastic
gradient descent (SGD). This is a modification of gradient descent in which updates
to θ are calculated using only one observation at a time. For each iteration of the
procedure, one observation, {x,y}, is chosen, then updates to θ are calculated and
applied as described for gradient descent, and a new observation is chosen for use
in the next iteration of the procedure. By using SGD, we reduce the time needed for
each iteration of the optimization procedure, but increase the expected number of
iterations needed to reach performance equivalent to gradient descent.

In many cases the speed of optimization can be further boosted through Mini-
batch SGD. This is a modification of SGD in which updates are calculated using
several observations at a time. Mini-batch SGD should generally require fewer
iterations than SGD, but computing the updates for each iteration will be more
computationally costly. The per-iteration cost of calculating updates to θ , however,
should be lower than for gradient descent. Mini-batch SGD is by far the most
popular procedure for fitting a neural network.

Fitting a neural network is a non-convex optimization problem. It is possible and
quite easy for a mini-batch SGD procedure to get stuck at local minima or saddle
points (Dauphin et al., 2014). To overcome this, a number of modified optimization
algorithms have been proposed. These include RMSprop and adaGrad (Duchi,
Hazan, & Singer, 2011). Generally, these modifications employ adaptive learning
rates and/or notions of momentum to encourage the optimization algorithm to
choose appropriate learning rates and avoid suboptimal local minima (see Ruder,
2016 for a review).

More recently, Adam (Kingma & Ba, 2014) has emerged as a popular variation
of gradient descent and as argued in Ruder (2016), “Adam may be the best overall
choice [of optimizer].” Adam modifies vanilla gradient descent by scaling the
learning rates of individual parameters using the estimated first and second moments
of the gradient. Let θk be the estimated value of θk at the current step in the Adam
optimization procedure, then we can estimate the first and second moments of the

166 T. R. Cook

gradient of θk via exponential moving average,

μt = μt−1γμ + (1 − γμ)(∇θk
L)

νt = νt−1γν + (1 − γν)(∇θk
L)2

μ0 = 0
ν0 = 0,

where arguments to the loss function are suppressed for readability. Both γμ and γν

are hyper parameters that control the pace at which μ and ν change. With μ and ν,
we can assemble an approximate signal to noise ratio of the gradient and use that
ratio as the basis for the update step:

μ̂t = μt

1−(γμ)t

ν̂t = νt

1−(γν)t

θk ← θk + γ
μ̂t√
ν̂t+ε

,

where μ̂t and ν̂t correct for the bias induced by the initialization of μ and ν to zero,
γ is the maximum step-size for any iteration of the procedure (the learning rate),
and where division should be understood in this context as element-wise division.
By constructing the update from a signal to noise ratio the path of gradient descent
becomes smoother. That is, the algorithm is encouraged to take large step sizes along
dimensions of the gradient that are steep and relatively stable; it is cautioned to
take small step sizes along dimensions of the gradient that are shallow or relatively
volatile. As a result, parameter updates are less volatile. The authors of the algorithm
suggest values of γμ = 0.9999, γν = 0.9 and ε = 1e − 8.

Gradient Estimation

Each of the optimization routines described in the previous section rely upon the
computation of ∇θk

L(y; θ) for all θk ∈ θ . This is achieved through the backpropa-
gation algorithm (Rumelhart, Hinton, & Williams, 1986), which is a generalization
of the chain rule from calculus. Consider, for example, a network G(X; θ) with
an accompanying loss L(y; θ) = 1

2m
‖G(X; θ) − y‖2

2 = 1
2m

∑m
i (G(X; θ)i − yi)

2.
Then

∇G(X;θ)L(y; θ) = 1

m
(G(X; θ) − y).

To derive ∇θK
L(y; θ), we simply apply chain rule to the above equation, suppress-

ing arguments to G and g for notational simplicity:

∇θK
L(y; θ) = ∂G

∂θK

T

∇GL(y)

=
[
(f ′(gk−1Bk + αk)gk−1)

T 1
m

(G − y)

(f ′(gk−1Bk + αk))
T 1

m
(G − y),

]T

6 Neural Networks 167

where ∂G
θK

is a generalized form of a Jacobian matrix, capable of representing higher-
order tensors, and f ′ indicates the first derivative of f with respect to its argument.

Collecting right-hand-side gradients into Jacobian matrices, we can extend the
application of backpropagation to calculate the gradient of the loss with respect to
any of the set of parameters θk:

∇θk
L(y; θ) = ∂L(y; θ)

∂Gk

∂gK

∂gK−1

∂gK−1

∂gK−2
. . .

∂gk+1

gk

∂gk

∂θk

.

6.1.3 Example: XOR Network

To illustrate the concepts discussed thus far, we will review a simple, well known
network that illustrates the construction of a neural network from end to end.
This network is known as the XOR network (Minsky & Papert, 1969; Rumelhart,
Hinton, & Williams, 1985). It was an important hurdle in the development of neural
networks.

Consider a dataset with labels y whose values depend on features, X:

X =

⎡
⎢⎢⎣

1 0
0 0
1 1
0 1

⎤
⎥⎥⎦ y =

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ .

The label of any given observation follows the logic of the exclusive-or operation –
yi = 1 only if xi contains exactly one non-zero element.

We can build a fully connected network, G(X; θ) that perfectly represents this
relationship using only two layers and three neurons (two in the first layer and one
in the last layer):

g1(X) = f (XB1 + α1) (6.2)

g2(X) = f (g1(X)B2 + α2) (6.3)

B1 =
[
β11 β12

β13 β14

]
B2 =

[
β21

β22

]

f (a) = 1

1 + e−a
.

The structure of this network is illustrated in Fig. 6.2.

168 T. R. Cook

xi1

xi2

yi

Fig. 6.2 The XOR network. This network is sufficiently simple that each neuron can be labeled
according to the logical function it performs

Because this is a classification problem, we will measure loss by log-loss (i.e.,
negative log-likelihood)2:

L(y; θ) = −
m∑
i

yi log(G(X; θ)i) + (1 − yi) log(1 − G(X; θ)i)

= − (y log(G(X; θ)) + (1 − y)log(1 − G(X; θ))).

(6.4)

Calculation of gradients for the final layer yields

∂L(y; θ)

∂G(X; θ)
= y − G(X; θ)

(G(X; θ) − 1)G(X; θ)

and application of chain rule provides gradients for θ1 and θ2,

∇θ2L(y; θ) =
[

∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂B2

∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂α2

]

=
[
g1(X)T (y − G(X; θ))

(y − G(X; θ))

] (6.5)

∇θ1L(y; θ) =
[

∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂g1(X)

∂g1(X)
∂B1

∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂g1(X)

∂g1(X)
∂α1

]

=
[
XT (y − G(X; θ))BT

2
 f ′(XB1 + α1)

(y − G(X; θ))BT
2
 f ′(XB1 + α1),

] (6.6)

2We use log-loss because it is the convention (in both the machine learning and statistical literature)
for this type of categorization problem. Other loss functions, including mean squared error would
likely work as well.

6 Neural Networks 169

Algorithm 1 Gradient descent to fit the XOR network
Data: X, y

Input: γ , stop_rule
Initialize θ = B1, B2, α1, α2 to random values
while stop_rule not met do

Forward pass:
calculate ŷ = G(X; θ) as in (6.2)–(6.3)
calculate L(y; θ) by log-loss(ŷ, y) as in (6.4)
Backward pass:
calculate ∇θ2 = ∇θ2L(y; θ) as in (6.5)
calculate ∇θ1 = ∇θ1L(y; θ) as in (6.6)
Update:
θ1 ← θ1 − γ∇θ1

θ2 ← θ2 − γ∇θ2

end while

where f ′ indicates the first derivative of the activation function (i.e., f ′(a) =
f (a)
 (1 − f (a))). To fit (or train) this model, we minimize L(y; θ) via vanilla
gradient descent as described in Algorithm 1.

Figure 6.3 illustrates the results of this training process. It shows that, as
the number of training iterations increases, the model output predicts the correct
classification of each element in y.

Fig. 6.3 The path of the loss function over the training process. Annotations indicate the model
prediction at various points during the training process. The model target is y = [1, 0, 0, 1]

170 T. R. Cook

6.2 Design Considerations

The XOR neural network is an example of a network that is very deliberately
designed in the way that one might design a circuit or economic model. Each neuron
in the network carries out a specific and identifiable task. The neurons in g1 learn
to emulate OR and NOT AND gates on the input, while the g2 neuron learns to
emulate an AND gate on the output of g1.3 It is somewhat unusual to design neural
network models this explicitly. Moreover explicitly designing a neural network this
way obviates one of the central advantages of neural network models: a network
model with sufficient number of neurons and an appropriate amount of training data
can learn to approximate any function without being ex ante and explicitly designed
to approximate that function.

The typical process for designing a neural network occurs without guidance from
an explicit, substantive theory. Instead, the process of designing a neural network is
usually functional in nature. As such, when designing a neural network, we are
usually left with many design decisions or, alternatively stated, a large space of
hyper parameters to explore. Finding the optimal set of hyper parameters needed to
make a neural network work effectively for a given problem is one of the biggest
challenges to building a successful model. Efficient, automatic processes to optimize
model hyper parameters is an active area of research. In this section, we will discuss
some of the common design decisions that we must make when designing a neural
network model.

6.2.1 Activation Functions

Activation functions are what enable neural networks to approximate non-linear
functions. Any differentiable function can be used as an activation function.
Moreover, some non-differentiable functions can also be used, as long as there are
relatively few points of non-differentiability. Activation functions also tend to be
monotonic, though this is not required. The influence of an activation function on
model performance is inherently related to the structure of the network model, the
method of weight initialization, and idiosyncrasies in the data.

For model training to be successful, the codomain of the final layer activation
function must admit the range of possible target values, y. For many forecasting
tasks, then, the most appropriate final layer activation function is the identify
function, f (a) = a.

Generally for hidden layers, we want to choose activation functions that return
the value of the input (i.e., approximate identity) when the value of the input is near

3See Bland (1998), Rumelhart et al. (1985) for further discussion.

6 Neural Networks 171

Table 6.1 Common activation functions

Sigmoid f (a) = 1
1+ea

ReLU (Nair & Hinton, 2010)
f (a) =

{
a a > 0

0 a ≤ 0

Leaky ReLU (Maas, Hannun, & Ng, 2013)
f (a) =

{
a a > 0

a α a ≤ 0
& 0 < α � 1

Hyperbolic tangent (Karlik & Olgac, 2011) f (a) = ea−1
ea+1

Swish f (xβ) = x 1
1+exβ

zero. This is a desirable property because it removes complications with weight
initialization (Sussillo & Abbott, 2014).

Additionally, we want to choose activations that are unbounded (in at least one
direction). This helps to prevent neuron saturation (which occurs when gradients
approach zero). In turn, this helps prevent the problem of vanishing gradients (Ben-
gio, Simard, & Frasconi, 1994; Glorot & Bengio, 2010) in which early network
layers update very slowly. The severity of this problem scales to the depth of
the network (assuming the same, bounded, activation function is used for every
layer in the network). In the extreme, this can cause adjustments to model weights
to effectively stop very early in the training process. It is largely because of the
vanishing gradient problem that sigmoid and hyperbolic tangent (see Table 6.1
below) have fallen out of favor for general use.

Table 6.1 provides a list of some common activation functions. Sigmoid and
Hyperbolic Tangent activation functions were commonly used in the early develop-
ment of neural networks, but in recent years the Rectified Linear Unit (ReLU) has
become the most popular choice for activation function. Other activation functions
such as Swish have emerged more recently and, while they have not found the same
widespread adoption, recent research suggests that they may perform better than
ReLU in general settings (Ramachandran, Zoph, & Le, 2017).

6.2.2 Model Shape

Cybenko (1989) provides the universal approximation theorem, which establishes
that a feed forward network with a single hidden layer can approximate any
continuous function. Hornik et al. (1989) provides a related and contemporaneous
result. As a matter of theory then, no network should need to be larger than
two layers (an output layer and a hidden layer) to predict a target from a given
input. This, however, requires that each layer (especially the hidden layer) contain
sufficient neurons to approximate the desired function. Indeed, the hidden layer in a
two layer network may require as many neurons as the number of training samples,

172 T. R. Cook

N , to effectively approximate a desired function (Huang, 2003; Huang & Babri,
1997).

Additional hidden layers can drastically reduce the parameter space without
impinging the expressiveness of the model (Hastad, 1986; Telgarsky, 2016). For
example, results from Huang (2003) show that a three layer network with m output
neurons can exactly fit the target data when the first layer contains

√
(m + 2)N +

2
√

N/(m + 2) neurons and the second layer contains m
√

N/(m + 2) neurons.
Combined, this three layer network has 2

√
(m + 2)N � N neurons. This result

establishes the size of a three layer network that is needed to considerably overfit
the training data. As such, it establishes an upper bound to the parameterization
of a three layer network. Note that increasing the number of layers does not serve
to improve the performance of the model per se, but rather lowers the number of
neurons required to fit the model. Further, difficulties with weight initialization and
vanishing/exploding gradients increase with depth.

There are few well-established rules for determining ex ante how many layers
a network should have or how many neurons should go in each layer. Broadly
speaking, over-parameterization of a network will not impact the model’s accuracy
as long as an appropriate training methodology is used (Zou, Cao, Zhou, & Gu,
2018). But over-parameterization will increase computational costs and it may
increase the likelihood that training becomes prematurely stuck in a suboptimal
minima. Under-parameterization, on the other hand will limit the expressiveness
of a network and yield an under-performing model. The most obvious, heuristic
strategy to determining the appropriate size and shape of a network is to begin with a
small network and successively adjust its depth (the number of layers) or width (the
number of neurons in each layer) in small increments to improve training accuracy.

6.2.3 Weight Initialization

While gradient descent and backpropagation provide a method to optimize param-
eters in a neural network, we must set the initial values for the parameters. Caution
must be taken when initializing weights as bad initializations can cause gradients to
saturate (i.e., reduce to small values near zero) prematurely. When this happens, the
associated neuron will produce the same output regardless of variation in its input.
These neurons are called “dead neurons.” In practice, a few dead neurons will not
influence the accuracy of a model if the network layer is large. If however, most
or all of the neurons in a layer die, then gradient descent will lose the ability to
update earlier layers and the network will become effectively unresponsive to its
input. Poor weight initialization can also cause volatility in the training process, and
may prevent gradient descent from finding an ideal set of parameters.

One might suspect that i.i.d. random draws from a distribution would be sufficient
to initialize all weights in a network. For example, we might initialize all weights in
a network with a random draw from a standard normal distribution. Indeed this was
a common approach with early neural networks. For small networks, this will work.

6 Neural Networks 173

However for deep neural networks, this is inadequate and will tend to encourage
the problems described in the preceding paragraph. Indeed, it is the inadequacy
of random initialization that led researchers to conclude that deep neural networks
performed worse than simple ones (Bengio, Lamblin, Popovici, & Larochelle,
2007).

Early breakthroughs in weight initialization came in 2006 and 2007 (Bengio
et al., 2007; Hinton, Osindero, & Teh, 2006) in the form of network pre-training.
This is a method where the network is built iteratively, one layer at a time. We begin
with a single-layer network with weights initialized to random values. Then train
that single-layer network. When training is complete, recover the weights for the
layer as the initialization weights for that layer. Then add an additional layer and
repeat the process until the network is complete. This process is still occasionally
employed, but it is time-consuming for large networks.

Instead, consider the method put forth in Glorot and Bengio (2010). This paper
observes that the tendency for gradients to vanish (or explode) is somewhat con-
trolled by keeping variances consistent across layers. To avoid vanishing gradients,
we want to initialize weights so that the variance of the output of each layer is
roughly consistent with the variance of the output of the preceding layer (and
ultimately the variance of the input). To achieve this, the authors suggest initializing
all weights βi ∈ Bk as,

βi ∼ N

(
0,

2

pk + pk−1

)
,

where pk is the number of output neurons for layer k, and pk−1 is the number
of output neurons from the preceding layer (i.e., the number of input neurons to
the current layer). This approach has been widely adopted in the neural network
community as it tends to produce good results.

6.2.4 Regularization

To build models that generalize well, it is necessary prevent overfitting. This can
partially be accomplished by adopting a training regime that uses out of sample data
to determine when gradient descent should stop. We can further prevent overfitting
by limiting the complexity of a neural network. To do this, we engage in the process
of regularization. There are a number of approaches to regularization; we will
discuss two of the more commonly used forms: weight decay and dropout.

Weight decay, or alternatively L2 regularization, applies a loss penalty to each
weight in a layer according to its L2 norm: λk

2 ‖Bk‖2
2. The hyper parameter λk

controls the magnitude of the penalty. When weight decay is employed, it is
typically applied identically to each layer. Consider a network G containing no
bias terms, so that all of the network weights can be represented in a single vector
θ = (vec(B1) . . . vec(BK)), and where, for each layer λk = λ. Then we can rewrite

174 T. R. Cook

the model’s objective function4 J to incorporate the loss function, L along with the
penalty as

J (θ) = L(y; θ) + λk

2

K∑
k

‖Bk‖2
2

= L(y; θ) + λ

2
‖θ‖2

2

with a gradient

∇θJ (θ) = ∇θL(y; θ) + λθ .

Through some rearrangement of terms in the (vanilla gradient descent) update step,
it becomes clear why this type of regularization is called weight decay:

θ ← (1 − γ λ)θ − γ∇θJ (θ).

That is, by applying an L2 regularization penalty, we are imposing a reduction in
θ by a factor of (1 − γ λ) at each iteration of the training process. For a given non-
zero βi ∈ θ , if during the training process ∇θL(y; θ) does not encourage movement
in the direction of βi , then it will decay towards zero. In the aggregate, then, the
application of weight decay will produce parameter estimates that emphasize the
parameters that represent significant contribution to the reduction of the objective
function (Goodfellow, Bengio, & Courville, 2016). At the same time, the application
of weight decay discourages the model fitting procedure from overreacting to non-
systematic variation in the model target (Krogh & Hertz, 1992). Note that for weight
decay to work properly, λ must be set so that γ λ < 1

Outside of weight decay, a common approach to regularization is a process
called dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).
Consider a network G(X) with a layer k and its preceding layer k − 1 with p

neurons. The application of dropout to layer k draws a p-length vector r ∼
Bernoulli(π) at each step in the training process. It then modifies the input to
layer k,

gk(X) = f (r
 gk−1(x)Bk + αk).

This modification is only applied during the training process. After the model has
been trained,

gk(X) = f (gk−1(x)Bk + αk).

4In this setting, the goal of the model fitting process would be to minimize this objective function.

6 Neural Networks 175

The application of r to the output of layer k − 1 effectively turns some of the neurons
in the network off. The dropout procedure accomplishes two things.

First, dropout limits overfitting by breaking heavily correlated updates of con-
nected neurons (co-adaption). Updates become heavily correlated when one neuron
updates to compensate for the output of a connected neuron. This is undesirable as
it tends to correspond to fitting idiosyncrasies in the data and thus overfitting (see
discussion in Srivastava et al., 2014). Dropout introduces instability in the inputs
to a layer, thus breaking the ability of a neuron in that layer to become overly
dependent on the output from any given neuron in the preceding layer. This breaks
co-adaptation and thus reduces the propensity for overfitting.

Second, dropout allows us to approximate many models at once. Since dropout
will set the output of a random number of neurons to zero, it achieves the effect
of removing those neurons (briefly) from the network. With the neurons removed,
we can consider the network to be an example of a sparse network sampled from
G. Srivastava et al. (2014) argue that this interpretation suggests that training a
network with dropout provides estimates that approximate a model averaging over
many sparse networks. Gal and Ghahramani (2016) extend this view to argue that
models with dropout can be interpreted as Bayesian models. Specifically, they argue
that dropout in a deep neural network is equivalent to variational inference with a
Gaussian process. By applying dropout during inference as well as estimation, we
can generate uncertainty estimates via bootstrap simulation.

6.2.5 Data Preprocessing

Neural network models do not require strong assumptions about the data generating
process. As a matter of practice however, neural network models are quite sensitive
to several properties of the data.

When feeding a model with more than one feature, it is important that the features
are at roughly similar scales (to within about an order of magnitude). In theory, a
neural network should be able to adjust to inputs of differing scales. But in the
initial iterations of training, larger-scaled inputs will dominate gradients and thus
parameter adjustments. This can lead to premature saturation of the neurons or very
slow model convergence. Pre-scaling the model inputs to have similar scales will
alleviate this problem. Typical approaches include scaling inputs to standard normal
distribution (normalization), and scaling inputs to the interval (0, 1] through the
following affine transformation:

x∗ = x − min(x)

max(x) − min(x)
.

Beyond scaling the data, it is important to consider its bounds. Neural networks
excel at generating predictions that generally lie within the boundaries of the
training data. Out-of-bounds predictions are subject to more error. In some cases,

176 T. R. Cook

Fig. 6.4 Left: neural network predictions of a sine wave. The training data (in gray) is randomly
distributed about the sin curve on the interval [−2π , 2π]. Trained model estimates (blue) are
shown for the interval [−4π , 4π]. The sin function (orange) is provided for reference. Right:
neural network predictions for a random walk with drift. Training data consists of the first
1000 observations of the walk. In-bounds model predictions (orange) are shown for the first
1000 observations. Out-of-bounds model predictions (blue) are shown for observations beyond
observation 1040

this error will be severe. See, for example the left panel in Fig. 6.4. A neural
network was given scaler training values x ∈ [−2π , 2π], and trained to predict
corresponding values of y distributed about sin(x). After training, the model
faithfully reproduces sin(x) within the interval represented by the training data.
Predictions outside of this interval (i.e., out-of-bounds) do not conform to a sine
wave and resemble a linear extrapolation from the model predictions of the nearest
training data.

In other cases, out-of-bounds predictions may present errors that are less severe.
The right panel of Fig. 6.4 shows neural network predictions of a random walk
with drift. A fully-connected network was trained on the first 1000 observa-
tions. For each observation yt , the network was provided with prior observations,
(yt−1, yt−2 . . . yt−30), as input. The figure shows predictions on test-data (i.e., data
not used for model training, but generated from the same random walk process). The
network can fit in-bounds observations (the first 1000 observations) quite closely.
Predictions for out-bounds predictions follow the general trend of the random walk,
but are subject to considerably more error. The size of the error tends to grow with
distance from the training data.

For economists, the issues posed by out-of-bounds predictions will most likely
create complications in dealing with non-stationary data. To reduce the potential

6 Neural Networks 177

for errors in model prediction, researchers can transform data into a mean-reverting
(or as nearly mean-reverting as possible) form using standard econometric tools.
An alternative technique that has seen success in recent years is to employ
wavelet networks for forecasting with non-stationary data. Wavelet networks refer
to networks that operate on data that has been preprocessed through a wavelet
decomposition (see Jothimani, Yadav, & Shankar, 2015; Lineesh, Minu, & John,
2010; Minu, Lineesh, & John, 2010, as examples).5

6.3 RNNs and LSTM

For purposes of forecasting we are almost always making use of time-series data
or data that is in some other way sequential. We can incorporate the temporal
dependencies of our data into fully connected networks by structuring model inputs
as in a distributed lag model. This approach, however, increases the model input
space and requires corresponding increases to the size of model’s parameter space.
It also requires that all inputs to the model be of the same size and will require us to
drop one observation per lag in our data.

Recurrent neural networks (RNNs) are a type of neural network that is designed
for sequence data; in the context of forecasting, these type of networks can be a
good alternative to a fully connected model. Unlike a fully connected network, a
recurrent neural network layer imposes an ordering on its inputs and considers them
as a sequence. Consider a sequence6 x = (x1, x2 . . . xT). We can write a basic RNN
(Fig. 6.5) model as G(x; θ), with the output of any given layer written as:

gt (x) = f (xtBx + gt−1(x)Bg)

g0(x) = 0,

where Bx is a 1 × p matrix of weights, Bg is a p × p matrix of weights, and the
resulting gt (x) is a p-length vector.

This model diverges substantially from the fully connected architecture discussed
in Sect. 6.1.1. All layers share a single set of weights, (Bx , Bg). Further, while
each layer gt (x) receives input from the preceding layer gt−1(x), each layer also
receives external input from the t-th element in x. Because each layer includes a
new input and because each layer’s output is taken as input to the subsequent layer,
we can think of gt (x) as representing the state of the model at a specific point in
the sequence. The state of the model at t is an accumulation of the model response

5An alternative form of the wavelet neural network uses wavelet functions as activation functions
for hidden nodes in the network. This form of wavelet network, however, is designed to improve
optimization speeds, create self-assembling networks, or achieve ends other than accommodating
non-stationary data.
6We focus here on a sequence of scalar values. All discussion in this section extends to sequences
of multi-dimensional input (e.g., a sequence of vectors).

178 T. R. Cook

xt

gt−1(x) gt(x) gt+1(x) gt+2(x)

xt+1 xt+2

xt gt(x)

f(xt+1Bx + gt(x)Bg)f(xtBx + gt−1(x)Bg) f(xt+2Bx + gt+1(x)Bg)

Fig. 6.5 Comparison of cell-based and unrolled implementations of an RNN. The top network
represents the unrolled conceptualization of the RNN. The bottom network illustrates a network
containing an RNN cell

to all items in x prior to t and as such, can be thought of as a representation of the
network’s memory.

In a forecasting framework, we might only be primarily interested in the final
layer output gT (x), which we could treat as an estimate of a target variable at a
specified forecast horizon, yT +h. However, because of the structure of this network
and the fact that its parameters are shared, we can collect the output of each layer
as g = (g1(x), g2(x) . . . gT (x)) in which case the network becomes a mapping
G : x → g.

To this point, we have been discussing the model G(x; θ) as a set of T network
layers. This conception of an RNN is called the “unrolled” form of an RNN. It
is useful and more intuitive to illustrate the concept of an RNN in the context of
its unrolled form. In practice, however, it is often more efficient to program the
RNN as a special network object called a cell. A cell implements a for-loop in the
computational graph of the model. Implemented as a cell, the RNN produces the
entire sequence g from the inputs x and occupies the same space in a network as a
single layer. This makes it easier to embed the RNN into larger networks and brings
computational benefits in terms of memory efficiency.

A simple RNN, such as the one described above, illustrates the concept of an
RNN, but it will not perform well will lengthy input sequences. As discussed by
Bengio et al. (1994), they will have difficulty learning long-term time-dependencies.
For example, a simple RNN may have difficulty learning that the impact of a
shock in an input time series leads the response in the output series by several
periods. When simple RNN models do learn long-term dependencies, they usually
suffer from vanishing gradients. When this occurs, the model parameters become

6 Neural Networks 179

established based upon only early portions of the input sequence and later portions
of the input sequence have no effect on parameter updates.

The Long Short Term Memory (LSTM) network (Fig. 6.6) (Hochreiter &
Schmidhuber, 1997) has emerged as a variant of the RNN that does not suffer
from vanishing gradients and is capable of learning long-term dependencies. This
type of network incorporates both long-run state information (long-run memory)
as well as short-term state information (short-term memory). This type of network
also includes mechanisms for resetting the long-run memory and thereby helping to
avoid the vanishing gradients problem (Gers, Schmidhuber, & Cummins, 2000).

An LSTM network is a collection of several equations that take the current input,
xt , the network output generated at the previous timestep, ht−1, and the network
state st−1, which is responsible for its long-run memory, and produce a new output,
ht , and an updated version of the network state, st . Collecting Zt = [xt , ht−1], and
writing the inverse logit function as σ , we can represent an LSTM cell with two
equations,

st =
forget︷ ︸︸ ︷

st−1︸︷︷︸
old state

 σ(ZtBd)︸ ︷︷ ︸
delete selection

+
modify︷ ︸︸ ︷

σ(ZtBi)︸ ︷︷ ︸
modification selection

 tanh(ZtBc)︸ ︷︷ ︸
modification magnitude

(6.7)

ht = σ(ZtBo)
 tanh(st). (6.8)

Equation (6.7) updates the LSTM cell’s memory. It is comprised of two components.
The first component is a forget step, which selects which components of the cell’s
memory to delete. The second component is a modification step which identifies
which portions of the state should be modified and the extent of modification. The
raw cell output, ht , is a representation of the cell state (memory) filtered through
an output gate based on the current input and previous cell output. The use of
hyperbolic tangent (tanh) activation functions serves to maintain the scale of values
in the state and cell outputs. This helps to prevent gradients from vanishing or
exploding.

With the raw output, ht from an LSTM cell, we typically add an additional layer
to transform it into a direct prediction that is compatible with our target variable,
ŷt = f (htβy).

Note, the parameters θ = [Bd , Bi , Bc, Bo, βy] are shared across timesteps. At
the same time, note that the LSTM cell passes the raw output ht and long-run state,
st , from one timestep to the next. Thus, even though the LSTM cell parameters
are shared across timesteps, the computation of the gradients for the parameters
requires iterating backward through the timesteps (see Werbos, 1990) to compute

180 T. R. Cook

xt xt+1

ht

st

xt+2

ht+1

st+1

xt

ht

st

yt yt+1 yt+2

yt

Fig. 6.6 Illustration of rolled and unrolled versions of an LSTM cell. This figure is similar to
Fig. 6.4, the top network represents the unrolled conceptualization of the LSTM. The bottom
network illustrates a network containing an LSTM cell. The operations within the layers labeled
“LSTM” and “LSTM Cell” are provided in Eqs. (6.7)–(6.8). The networks are shown with a final
layer that transforms output h into its final form, y

the intermediate gradients for the state and raw output:

∂L(yt ; θ)

∂ht

= ∂L(yt ; θ)

∂yt

βy + ∂L(yt ; θ)

∂ht+1

∂ht+1

∂ht

∂L(yt ; θ)

∂st

= ∂L(yt ; θ)

∂ht

 tanh′(st) + ∂L(yt ; θ)

∂st+1

∂st+1

∂st

.

We can recover these gradients by observing that ∂L(yt ;θ)
∂sT +1

= ∂L(yt ;θ)
∂hT +1

= 0 and
that

∂L(yt ; θ)

∂ht−1
= ∂L(yt ; θ)

∂σ (ZtBd)
σ ′(ZtBd)Ḃd + ∂L(yt ; θ)

∂σ (ZtBi)
σ ′(ZtBi)Ḃi+

∂L(yt ; θ)

∂tanh(ZtBc)
tanh′(ZtBc)Ḃc + ∂L(yt ; θ)

∂σ (ZtBo)
σ ′(ZtBo)Ḃo

∂L(yt ; θ)

∂st−1
=∂L(yt ; θ)

∂st

 σ(ZtBd),

where Ḃ indicates the portion of the parameter that is multiplied by ht−1 in ZtB =
(xt , ht−1)B.

6 Neural Networks 181

With these intermediate gradients, we can calculate gradients for each item in θ ,

∂L(yt ; θ)

∂βy

= h
∂L(yt ; θ)

∂y

∂L(yt ; θ)

∂Bd

= Zt

(
∂L(yt ; θ)

∂st

 st−1
 σ ′(ZtBd)

)

∂L(yt ; θ)

∂Bi

= Zt

(
∂L(yt ; θ)

∂st

 tanh(Zt , Bc)
 σ ′(ZtBi)

)

∂L(yt ; θ)

∂Bc

= Zt

(
∂L(yt ; θ)

∂st

 σ(Zt , Bi)
 tanh′(ZtBc)

)

∂L(yt ; θ)

∂Bo

= Zt

(
∂L(yt ; θ)

∂ht

 tanh(st)
 σ ′(ZtBo)

)
.

With the gradients calculated, we can fit the model via gradient descent.

6.4 Encoder-Decoder

The LSTM model can be used in the context of forecasting as follows. Consider
a time series X = (x1 . . . xT), a target series corresponding to an h-step ahead
forecast horizon y = (y1+h, y2+h . . . yT +h), and an LSTM model G(x; θ) = ŷT +h.
The estimate produced by the LSTM model would be analogous to a direct forecast
(see Marcellino, Stock, & Watson, 2006). An iterative forecast could be generated,
but the fundamental LSTM model would remain unchanged.

Instead, we can make use of an encoder-decoder network (Cho et al., 2014;
Sutskever, Vinyals, & Le, 2014). This type of network is a member of a broader
class of networks called sequence-to-sequence networks. The encoder-decoder
architecture was initially developed to facilitate language modeling tasks (e.g.,
translation). Specifically, it was developed to allow a model to predict words in
the output while considering the context of individual words in the input along with
the context of the words that have already been predicted in the output.

The model is comprised of two components, aptly named the encoder and
the decoder. The encoder consists of the RNN model from the previous section,
G(x; θ). For the purposes of our discussion here, consider the encoder to be an
LSTM cell with an accompanying fully connected final layer. The encoder takes the
sequence x and returns a fixed-length representation. Conventionally, we specify
this fixed-length representation as the final output from the models, gT (x). We also
recover from G(x; θ) the RNN cell’s final state, sT .

The second component of the model is called the decoder. It consists of an
RNN network and a final, fully connected layer. Whereas the encoder began with
a variable length sequence and produced a fixed-length output gT (x), the decoder

182 T. R. Cook

sT

gT (x)

(sT , gT (x))

yT+1 yT+2 yT+3

(sT , yT+1) (sT , yT+2) (sT , yT+3)

x

Fig. 6.7 Illustration of an encoder-decoder network. The figure shows an LSTM cell encoding
inputs x into a fixed-length representation via an LSTM cell. The fixed-length representation is
then processed through an unrolled LSTM network (the decoder module) to produce a variable
length sequence y. Network weights for the encoder module are shared across timesteps; weights
for the decoder module are also shared across timesteps

begins with a fixed-length input gT (x) and produces a variable length output. It
does this by taking output of the previous timestep as input to produce output for
the current timestep. In practice, for use in forecasting, we would fix the length of
the decoder output to correspond to the desired forecast horizon.

As a specific implementation, consider the decoder, D(g, sT ; θ), as an LSTM
network with a fully connected final layer. Following Cho et al. (2014), the decoder
takes in the final encoder state, sT , as part of its input at every timestep. Denote by
ht the raw output7 of the LSTM at timestep t and as produced by dt . We can write
the decoder output of each timestep along the forecast horizon, h ∈ (1, 2, . . . , H),
as

yT +h = f (dT +h([yT +h−1, sT], hT +h−1)βy)

yT +0 = f (dT +0([gT (x), sT], 0)βy),

where f is the decoder’s final layer activation function and where βy is the vector
of weights for corresponding to the decoder’s final layer. Note that just as with the
RNN cell, the parameters βy are shared across timesteps. The reason for this is to
ensure that the raw output from the RNN cell is converted into a target output in a
consistent fashion for each timestep. Figure 6.7 provides an illustration of this entire
encoder-decoder network.

Gradients for this model are derived in the same fashion as they are for RNNs, via
backpropagation through time. As with the other neural network models discussed
in this chapter, we train this model using gradient descent.

7In other words, the output of the decoder LSTM prior to the final, fully connected layer.

6 Neural Networks 183

6.5 Empirical Application: Unemployment Forecasting

In this section we will examine the performance of the three neural network
architectures (Fully Connected, LSTM, Encoder-Decoder) as applied to the task of
unemployment forecasting. This analysis will closely follow Cook and Hall (2017).

6.5.1 Data

To test the performance of the neural network approach, we trained each of the
models presented above to predict the civilian unemployment rate. This measure
is collected monthly by the US Bureau of Labor and Statistics. It measures the
percentage of the labor force that is currently unemployed. The unemployment rate
only measures unemployment in the US. At the time of this writing, data for the
unemployment rate is available as far back as 1948, and as recently as last month.

Unemployment is a useful indicator to target for this exercise for a few reasons.
First, unemployment is a substantively meaningful indicator to forecast; the Federal
Reserve works to manage the unemployment rate as part of its dual mandate, and it
is closely monitored by economic actors and scholars across a variety of sectors.

Second, in contrast to GDP, unemployment usually undergoes limited revision
after its initial release. This is an important consideration since it allows us to
generally sidestep the problems of collecting and assembling appropriate “vintages”
of the data. We use the last release of the unemployment rate for all training and
testing. To be clear, the largest discrepancy between the original vintage of the data
and final release of the data is about 23 basis points, with the average discrepancy
being nine basis points. We will assume the impact of these discrepancies on the
predictive accuracy of our forecasts to be negligible.

For this exercise, we will target 1, 3, 6, 9, and 12 month forecast horizons for the
target. For each forecast horizon, we train each of the three models presented above,
yielding 15 total model variants for training.

The target will be the sole series used as input for each of the models. For each
observation, the model inputs are the previous 36 monthly values of the target, along
with first and second order differences in the target. In theory, the model could
identify and extract the first and second order differences of the input data, but we
supply them directly because (1) we can be reasonably certain that they will supply
the model with useful information and (2) because it allows us to reduce the training
time and simplify the model structure.

It is possible and relatively easy to add additional series to these models and there
should be performance gains from doing so. We will refrain from adding additional
series here, however, as this will simplify our discussion of the model.

184 T. R. Cook

6.5.2 Model Specification

The fully connected model is comprised of one hidden layer, with a 32 neurons, and
a final output layer consisting of a single neuron. The ReLU activation function is
applied to each neuron in the hidden layer. The output layer neuron uses a linear (i.e.,
the identity) activation function. Dropout is applied to all layers with a probability of
dropout set to 10%. Weight decay is also applied to all layer with a value of 0.0009.
Each of the hyperparameters was chosen via hand tuning.

The LSTM model is comprised of a single LSTM cell with state and output sizes
set to twelve. Due to complexities with the LSTM cell, it does not employ dropout or
weight decay. The output layer of the LSTM model, is a single neuron with a linear
activation function. We could apply the output layer to all outputs from the LSTM
cell yielding G(x|θ) = (f (h1βy), f (h2βy), . . . f (hT βy)). However, since we only
care about the final output from the sequence, we discard the output of all earlier
timesteps and apply the output layer to only the output from the final timestep,
yielding our model output G(x|θ) = f (hT βy). This reduces the computational

cost of model training by reducing the complexity of calculating ∂L(yt ;θ)
∂βy

.

The Encoder-Decoder model uses two LSTM cells and a final, fully connected
output layer. The encoder module is identical to the LSTM model just described.
The decoder module consists of an LSTM module with a state size of twelve. A
final output layer consisting of a single neuron with a linear activation function
is applied to the output of each timestep. The parameters of this output layer are
shared across all timesteps. As described Eq. (6.4), the initial input to the decoder is
the output from the encoder module. At every subsequent timestep, the input to the
decoder is the decoder output from the previous timestep.

6.5.3 Model Training

We construct a training data set from the unemployment rate data from 1963 to 1996.
Every tenth observation in this period is sequestered into a validation dataset. We
use the validation dataset to evaluate the performance of the model and implement
early stopping in the training process. The remainder of the data, from 1997 to 2015,
is sequestered into a testing dataset. We use this dataset to assess the performance
of the trained model.

The training process is subject to stochasticity. The initial weights for each
model network are randomly distributed using Xavier initialization. Random weight
initialization drives stochasticity in the training process. Beyond this, there are a
few other sources of stochasticity in the training process, including dropout and the
optimization routine itself (mini-batch Adam).

As a consequence of the stochasticity inherent to the model training process,
repeated runs of the same model will yield trained networks that vary in their
weights and, consequently, in forecasts. To accommodate this variance, we train 30

6 Neural Networks 185

Table 6.2 Performance metrics for DARM and neural network models at 0–4 quarter prediction
horizons

Fully Encoder
Horizon connected LSTM decoder DARM

1 Months Mean MAE 20.61 4.10 4.02 11.7

St. Dev. 4.22 0.12 0.07

3 Months Mean MAE 25.38 15.43 15.53 32.8

St. Dev. 5.50 0.08 0.21

6 Months Mean MAE 34.64 28.76 29.00 49.3

St. Dev. 4.45 0.61 0.25

9 Months Mean MAE 47.69 44.99 44.79 65.8

St. Dev. 3.26 1.93 0.88

12 Months Mean MAE 63.45 63.06 61.01 90.7

St. Dev. 3.04 3.28 1.70

All metrics presented as hundredths of one percent

instances of each model. This allows us to assess expected model performance as
well as assess the variance in performance across repeated runs of the same model.

All model variants trained in less than 5 min.

6.5.4 Results

Model performance is provided in Table 6.2. Each of the first three columns describe
the performance of a model in terms of test mean absolute error (MAE), aggregated
across repeated iterations. The mean MAE indicates the average model perfor-
mance. The standard deviation of the MAE gives some sense of the distribution in
model performance across repeated trainings of a model. The final column provides
performance metrics against a benchmark model.

As a benchmark, we consider a direct8 autoregressive model (DARM) that uses
monthly data. The model is specified as follows:

ŷt+h =
k∑

i=1

βiyt−i , (6.9)

where t indexes the time of forecast, k is the number of lags, and n indicates the
forecast horizon. In this paper, we use the DARM model estimates published by the
SPF (Stark, 2017).

8This is to be contrasted with an iterative model, in which the next-step-ahead is forecast and then
iterative extrapolation is used to generate a prediction for the desired forecast horizon.

186 T. R. Cook

Broadly speaking, each of the neural network models outperform the benchmark
model, with the exception of the fully connected model at the 1 month horizon. The
encoder-decoder and LSTM models outperform the fully connected models quite
strongly at the early horizons. At the 9 and 12 month horizons, the models converge
in performance. It is notable, however, that the standard deviation of the mean
absolute forecasting error is considerably lower for the LSTM and encoder-decoder
models, with the encoder-decoder model having the lowest variance in performance
at most horizons.

6.6 Conclusion

This chapter has discussed the fundamentals of neural network models with a
primary focus on their application to supervised, predictive tasks. Through this
discussion, it showed the flexibility of neural networks and their potential for
application to econometric tasks such as forecasting. Yet this chapter is by no means
a complete description of the potential of neural networks in econometric settings.
Macroeconomists might find additional uses for neural networks in unsupervised
econometric applications (e.g., interpreting textual data or generating low dimen-
sional representations of large datasets), or agent-based applications (where neural
networks might be used in the context of reinforcement learning). Moreover, as
new sources of “Big Data” emerge, economists will be able to train networks to
produce increasingly sophisticated outputs or to operate on increasingly complex
inputs. Lastly, it is important to note that neural networks represent an area of rapid
methodological research and innovation. For example, strong efforts are afoot to
adapt neural networks for use within the framework of causal inference. As these
efforts develop, so will the utility of neural networks in macroeconomic analysis.

References

Altman, E. I., Marco, G., & Varetto, F. (1994). Corporate distress diagnosis: Comparisons using
linear discriminant analysis and neural networks (the Italian experience). Journal of Banking
& Finance, 18(3), 505–529.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep
networks. In Advances in Neural Information Processing Systems (pp. 153–160).

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. Retrieved from
http://www.comp.hkbu.edu.hk/~markus/teaching/comp7650/tnn-%2094-gradient.pdf

Bland, R. (1998). Learning xor: Exploring the space of a classic problem. Stirling: Department of
Computing Science and Mathematics, University of Stirling.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,
Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint, 1406.1078.

http://www.comp.hkbu.edu.hk/~markus/teaching/comp7650/tnn-%2094-gradient.pdf

6 Neural Networks 187

Cook, T. R., & Hall, A. S. (2017). Macroeconomic indicator forecasting with deep neural networks.
Federal Reserve Bank of Kansas City Research Working Paper (pp. 17-11).

Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2, 183–192.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization. In
Advances in Neural Information Processing Systems (pp. 2933–2941).

Dijk, D. v., Teräsvirta, T., & Franses, P. H. (2002). Smooth transition autoregressive models—A
survey of recent developments. Econometric Reviews, 21(1), 1–47.

Dixon, M., Klabjan, D., & Bang, J. H. (2017). Classification-based financial markets prediction
using deep neural networks. Algorithmic Finance, 6(3–4), 67–77.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2121–2159.

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation. In Proceedings of the
33rd International Conference on Machine Learning (Vol. 3, pp. 1661–1680).

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with
LSTM. Neural Computation, 12(10), 2451–2471.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feed-forward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (pp. 249–256). Retrieved from http://proceedings.mlr.press/v9/
glorot10a/glorot10a.pdf?%20hc_location=ufi

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press. http://
www.deeplearningbook.org

Hastad, J. (1986). Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing (pp. 6–20).

Heaton, J., Polson, N. G., & Witte, J. H. (2016). Deep learning in finance. arXiv preprint,
1602.06561.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18(7), 1527–1554.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2), 251–257.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), 359–366.

Huang, G.-B. (2003). Learning capability and storage capacity of two-hidden-layer feedforward
networks. IEEE Transactions on Neural Networks, 14(2), 274–281.

Huang, G.-B., & Babri, H. A. (1997). General approximation theorem on feedforward networks. In
Proceedings of the 1997 International Conference on Information, Communications and Signal
Processing (Vol. 2, pp. 698–702). Piscataway: IEEE.

Jothimani, D., Yadav, S. S., & Shankar, R. (2015). Discrete wavelet transform-based prediction of
stock index: A study on national stock exchange fifty index. Journal of Financial Management
and Analysis, 28(2), 35–42.

Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in
generalized MLP architectures of neural networks. International Journal of Artificial
Intelligence and Expert Systems, 1(4), 111–122. Retrieved from https://www.researchgate.net/
publication/%20228813985_Performance_Analysis_of_Various_Activation_Functions_in_
Generalized_MLP_Architectures_of_Neural_Networks

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint,
1412.6980.

Kristjanpoller, W., & Minutolo, M. C. (2015). Gold price volatility: A forecasting approach using
the artificial neural network–GARCH model. Expert Systems with Applications, 42(20), 7245–
7251.

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?%20hc_location=ufi
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?%20hc_location=ufi
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.researchgate.net/publication/%20228813985_Performance_Analysis_of_Various_Activation_Functions_in_Generalized_MLP_Architectures_of_Neural_Networks
https://www.researchgate.net/publication/%20228813985_Performance_Analysis_of_Various_Activation_Functions_in_Generalized_MLP_Architectures_of_Neural_Networks
https://www.researchgate.net/publication/%20228813985_Performance_Analysis_of_Various_Activation_Functions_in_Generalized_MLP_Architectures_of_Neural_Networks

188 T. R. Cook

Krogh, A., & Hertz, J. A. (1992). A simple weight decay can improve generalization. In Advances
in Neural Information Processing Systems (pp. 950–957).

Lineesh, M., Minu, K., & John, C. J. (2010). Analysis of nonstationary nonlinear economic time
series of gold price: A comparative study. In International Mathematical Forum (Vol. 5, 34, pp.
1673–1683). Citeseer.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network
acoustic models. In Proceedings of the 30th International Conference on Machine Learning
(Vol. 30, 1, p. 3). Retrieved from http://robotics.stanford.edu/~amaas/papers/%20relu_hybrid_
icml2013_final.pdf

Marcellino, M., Stock, J. H., & Watson, M. W. (2006). A comparison of direct and iterated
multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics,
135, 499–526.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
The Bulletin of Mathematical Biophysics, 5(4), 115–133.

McNelis, P. (2005). Neural networks in finance: Gaining predictive edge in the market. Amster-
dam: Elsevier.

Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computation geometry (Vol. 200,
pp. 355–368). Cambridge: MIT Press.

Minu, K., Lineesh, M., & John, C. J. (2010). Wavelet neural networks for nonlinear time series
analysis. Applied Mathematical Sciences, 4(50), 2485–2495.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (pp. 807–814).
Retrieved from http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf

Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In
Proceedings of the 1990 International Joint Conference on Neural Networks (pp. 163–168).
Piscataway: IEEE.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions. arXiv preprint,
1710.05941. Retrieved from https://arxiv.org/pdf/1710.05941

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint,
1609.04747.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by
error propagation. San Diego: California University, La Jolla Institute for Cognitive Science.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533–536. Retrieved from http://www.cs.toronto.edu/~
hinton/absps/naturebp.pdf

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,. . . Bernstein, M., et al. (2015).
Imagenet large scale visual recognition challenge. International Journal of Computer Vision,
115(3), 211–252.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1), 1929–1958.

Stark, T. (2017). Error statistics for the survey of professional forecasters for unemployment
rate. Philadelphia: Federal Reserve Bank of Philadelphia. Retrieved from https://www.
philadelphiafed.org/-/media/research-and-data/%20real-time-center/survey-of-professional-
forecasters/data-%20files/unemp/spf_error_statistics_unemp_1_aic.pdf?la=en

Sussillo, D., & Abbott, L. (2014). Random walk initialization for training very deep feedforward
networks. arXiv preprint, 1412.6558.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems (pp. 3104–3112).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,. . . Rabinovich, A. (2015).
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1–9).

Tam, K. Y. (1991). Neural network models and the prediction of bank bankruptcy. Omega, 19(5),
429–445.

http://robotics.stanford.edu/~amaas/papers/%20relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/%20relu_hybrid_icml2013_final.pdf
http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://arxiv.org/pdf/1710.05941
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
https://www.philadelphiafed.org/-/media/research-and-data/%20real-time-center/survey-of-professional-forecasters/data-%20files/unemp/spf_error_statistics_unemp_1_aic.pdf?la=en
https://www.philadelphiafed.org/-/media/research-and-data/%20real-time-center/survey-of-professional-forecasters/data-%20files/unemp/spf_error_statistics_unemp_1_aic.pdf?la=en
https://www.philadelphiafed.org/-/media/research-and-data/%20real-time-center/survey-of-professional-forecasters/data-%20files/unemp/spf_error_statistics_unemp_1_aic.pdf?la=en

6 Neural Networks 189

Telgarsky, M. (2016). Benefits of depth in neural networks. arXiv preprint, 1602.04485.
Terasvirta, T., & Anderson, H. M. (1992). Characterizing nonlinearities in business cycles using

smooth transition autoregressive models. Journal of Applied Econometrics, 7(S1), S119–S136.
Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings

of the IEEE, 78(10), 1550–1560.
Zou, D., Cao, Y., Zhou, D., & Gu, Q. (2018). Stochastic gradient descent optimizes over-

parameterized deep ReLU networks. arXiv preprint, 1811.08888.

	6 Neural Networks
	6.1 Introduction
	6.1.1 Fully Connected Networks
	6.1.2 Estimation
	Gradient Estimation

	6.1.3 Example: XOR Network

	6.2 Design Considerations
	6.2.1 Activation Functions
	6.2.2 Model Shape
	6.2.3 Weight Initialization
	6.2.4 Regularization
	6.2.5 Data Preprocessing

	6.3 RNNs and LSTM
	6.4 Encoder-Decoder
	6.5 Empirical Application: Unemployment Forecasting
	6.5.1 Data
	6.5.2 Model Specification
	6.5.3 Model Training
	6.5.4 Results

	6.6 Conclusion
	References

