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21.1 Introduction

Accurate forecasting of key macroeconomic variables such as Gross Domestic
Product (GDP), inflation, and industrial production, has been at the forefront of
economic research over many decades. Early approaches involved univariate models
or at best low dimensional multivariate systems. The era of big data has led to the
use of regularisation and shrinkage methods such as dynamic factor models, Lasso,
LARS, and Bayesian VARs, in an effort to exploit the plethora of potentially useful
predictors now available. These predictors commonly also include the components
of the variables of interest. For instance, GDP is formed as an aggregate of
consumption, government expenditure, investment, and net exports, with each of
these components also formed as aggregates of other economic variables. While the
macroeconomic forecasting literature regularly uses such sub-indices as predictors,
it does so in ways that fail to exploit accounting identities that describe known
deterministic relationships between macroeconomic variables.

In this chapter we take a different approach. Over the past decade there has been
a growing literature on forecasting collections of time series that follow aggregation
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constraints, known as hierarchical time series. Initially the aim of this literature was
to ensure that forecasts adhered to aggregation constraints thus ensuring aligned
decision-making. However, in many empirical settings the forecast reconciliation
methods designed to deal with this problem have also been shown to improve
forecast accuracy. Examples include forecasting accidents and emergency admis-
sions (Athanasopoulos, Hyndman, Kourentzes, & Petropoulos, 2017), mortality
rates (Shang & Hyndman, 2017), prison populations (Athanasopoulos, Steel, &
Weatherburn, 2019), retail sales (Villegas & Pedregal, 2018), solar energy (Yagli,
Yang, & Srinivasan, 2019; Yang, Quan, Disfani, & Liu, 2017), tourism demand
(Athanasopoulos, Ahmed, & Hyndman, 2009; Hyndman, Ahmed, Athanasopoulos,
& Shang, 2011; Wickramasuriya, Athanasopoulos, & Hyndman, 2018), and wind
power generation (Zhang & Dong, 2019). Since both aligned decision-making
and forecast accuracy are key concerns for economic agents and policy makers
we propose the application of state-of-the-art forecast reconciliation methods to
macroeconomic forecasting. To the best of our knowledge the only application of
forecast reconciliation methods to macroeconomics focuses on point forecasting for
inflation (Capistrán, Constandse, & Ramos-Francia, 2010; Weiss, 2018).

The remainder of this chapter is set out as follows: Section 21.2 introduces the
concept of hierarchical time series, i.e., collections of time series with known linear
constraints, with a particular emphasis on macroeconomic examples. Section 21.3
describes state-of-the-art forecast reconciliation techniques for point forecasts,
while Sect. 21.4 describes the more recent extension of these techniques to proba-
bilistic forecasting. Section 21.5 describes the data used in our empirical case study,
namely Australian GDP data, that is represented using two alternative hierarchical
structures. Section 21.6 provides details on the setup of our empirical study
including metrics used for the evaluation of both point and probabilistic forecasts.
Section 21.7 presents results and Sect. 21.8 concludes providing future avenues for
research that are of particular relevance to the empirical macroeconomist.

21.2 Hierarchical Time Series

To simplify the introduction of some notation we use the simple two-level hierarchi-
cal structure shown in Fig. 21.1. Denote as yTot,t the value observed at time t for the
most aggregate (Total) series corresponding to level 0 of the hierarchy. Below level
0, denote as yi,t the value of the series corresponding to node i, observed at time t .
For example, yA,t denotes the t th observation of the series corresponding to node A
at level 1, yAB,t denotes the t th observation of the series corresponding to node AB
at level 2, and so on.

Let yt = (yTot,t , yA,t , yB,t , yAA,t , yAB,t , yBA,t , yBB,t , yBC,t )
′ denote a vector con-

taining observations across all series of the hierarchy at time t . Similarly denote as
bt = (yAA,t , yAB,t , yBA,t , yBB,t , yBC,t )

′ a vector containing observations only for the
bottom-level series. In general, yt ∈ Rn and bt ∈ Rm where n denotes the number
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Fig. 21.1 A simple two-level
hierarchical structure Total

A

AA AB

B

BA BB BC

of total series in the structure, m the number of series at the bottom level, and n > m

always. In the simple example of Fig. 21.1, n = 8 and m = 5.
Aggregation constraints dictate that yTot = yA,t + yB,t = yAA,t + yAB,t + yBA,t +

yBB,t + yBC,t , yA,t = yAA,t + yAB,t and yB = yBA,t + yBB,t + yBC,t . Hence we can
write

yt = Sbt , (21.1)

where

S =

⎛
⎜⎜⎝

1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I 5

⎞
⎟⎟⎠

is an n × m matrix referred to as the summing matrix and Im is an m-dimensional
identity matrix. S reflects the linear aggregation constraints and in particular how
the bottom-level series aggregate to levels above. Thus, columns of S span the linear
subspace of Rn for which the aggregation constraints hold. We refer to this as the
coherent subspace and denote it by s. Notice that pre-multiplying a vector in Rm by
S will result in an n-dimensional vector that lies in s.

Property 21.1 A hierarchical time series has observations that are coherent, i.e.,
yt ∈ s for all t . We use the term coherent to describe not just yt but any vector in s.

Structures similar to the one shown in Fig. 21.1 can be found in macroeconomics.
For instance, in Sect. 21.5 we consider two alternative hierarchical structures for the
case of GDP and its components. However, while this motivating example involves
aggregation constraints, the mathematical framework we use can be applied for any
general linear constraints, examples of which are ubiquitous in macroeconomics.
For instance, the trade balance is computed as exports minus imports, while the
consumer price index is computed as a weighted average of sub-indices, which are
in turn weighted averages of sub-sub-indices, and so on. These structures can also
be captured by an appropriately designed S matrix.
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Fig. 21.2 A simple two-level
grouped structure AX AY A

BX BY B

X Y Total

An important alternative aggregation structure, also commonly found in macroe-
conomics, is one for which the most aggregate series is disaggregated by attributes
of interest that are crossed, as distinct to nested which is the case for hierarchical
time series. For example, industrial production may be disaggregated along the lines
of geography or sector or both. We refer to this as a grouped structure. Figure 21.2
shows a simple example of such a structure. The Total series disaggregates into yA,t
and yB,t , but also into yX,t and yY,t , at level 1, and then into the bottom-level series,
bt = (yAX, yAY, yBX, yBY)′. Hence, in contrast to hierarchical structures, grouped
time series do not naturally disaggregate in a unique manner.

An important implementation of aggregation structures are temporal hierarchies
introduced by Athanasopoulos et al. (2017). In this case the aggregation structure
spans the time dimension and dictates how higher frequency data (e.g., monthly) are
aggregated to lower frequencies (e.g., quarterly, annual). There is a vast literature
that studies the effects of temporal aggregation, going back to the seminal work of
Amemiya and Wu (1972), Brewer (1973), Tiao (1972), Zellner and Montmarquette
(1971) and others, including Hotta and Cardoso Neto (1993), Hotta (1993),
Marcellino (1999), Silvestrini, Salto, Moulin, and Veredas (2008). The main aim of
this work is to find the single best level of aggregation for modelling and forecasting
time series. In this literature, the analyses, results (whether theoretical or empirical),
and inferences, are extremely heterogeneous, making it very challenging to reach a
consensus or to draw firm conclusions. For example, Rossana and Seater (1995)
who study the effect of aggregation on several key macroeconomic variables state:

Quarterly data do not seem to suffer badly from temporal aggregation distortion, nor are
they subject to the construction problems affecting monthly data. They therefore may be
the optimal data for econometric analysis.

A similar conclusion is reached by Nijman and Palm (1990). Silvestrini et al.
(2008) consider forecasting French cash state deficit and provide empirical evidence
of forecast accuracy gains from forecasting with the aggregate model rather than
aggregating forecasts from the disaggregate model.

The vast majority of this literature concentrates on a single level of temporal
aggregation (although there are some notable exceptions such as Andrawis, Atiya,
and El-Shishiny (2011), Kourentzes, Petropoulos, and Trapero (2014)). Athana-
sopoulos et al. (2017) show that considering multiple levels of aggregation via
temporal hierarchies and implementing forecast reconciliation approaches rather
than single-level approaches results in substantial gains in forecast accuracy across
all levels of temporal aggregation.
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21.3 Point Forecasting

A requirement when forecasting hierarchical time series is that the forecasts adhere
to the same aggregation constraints as the observed data; i.e., they are coherent.

Definition 21.1 A set of h-step-ahead forecasts ỹT +h|T , stacked in the same order
as yt and generated using information up to and including time T , are said to be
coherent if ỹT +h|T ∈ s.

Hence, coherent forecasts of lower level series aggregate to their corresponding
upper level series and vice versa.

Let us consider the smallest possible hierarchy with two bottom-level series,
depicted in Fig. 21.3, where yTot = yA + yB. While base forecasts could lie
anywhere in R3, the realisations and coherent forecasts lie in a two dimensional
subspace s ⊂ R3.
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Fig. 21.3 Representation of a coherent subspace in a three dimensional hierarchy where yTot =
yA + yB. The coherent subspace is depicted as a grey two dimensional plane labelled s. Note that
the columns of s1 = (1, 1, 0)′ and s2 = (1, 0, 1)′ form a basis for s. The red points lying on s can
be either realisations or coherent forecasts
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21.3.1 Single-Level Approaches

A common theme across all traditional approaches for forecasting hierarchical time
series is that a single level of aggregation is first selected and forecasts for that
level are generated. These are then linearly combined to generate a set of coherent
forecasts for the rest of the structure.

Bottom-Up

In the bottom-up approach, forecasts for the most disaggregate level are first
generated. These are then aggregated to obtain forecasts for all other series
of the hierarchy (Dunn, Williams, & Dechaine, 1976). In general, this con-
sists of first generating b̂T +h|T ∈ Rm, a set of h-step-ahead forecasts for the
bottom-level series. For the simple hierarchical structure of Fig. 21.1, b̂T +h|T =
(ŷAA,T +h|T , ŷAB,T +h|T , ŷBA,T +h|T , ŷBB,T +h|T , ŷBC,T +h|T ), where ŷi,T +h|T is the h-
step-ahead forecast of the series corresponding to node i. A set of coherent forecasts
for the whole hierarchy is then given by

ỹBU
T +h|T = Sb̂T +h|T .

Generating bottom-up forecasts has the advantage of no information being lost due
to aggregation. However, bottom-level data can potentially be highly volatile or very
noisy and therefore challenging to forecast.

Top-Down

In contrast, top-down approaches involve first generating forecasts for the most
aggregate level and then disaggregating these down the hierarchy. In general,
coherent forecasts generated from top-down approaches are given by

ỹTD
T +h|T = SpŷTot,T +h|T ,

where p = (p1, . . . , pm)′ is an m-dimensional vector consisting of a set of
proportions which disaggregate the top-level forecast ŷTot,T +h|T to forecasts for the

bottom-level series; hence pŷTot,T +h|T = b̂T +h|T . These are then aggregated by the
summing matrix S.

Traditionally, proportions have been calculated based on the observed historical
data. Gross and Sohl (1990) present and evaluate twenty-one alternative approaches.
The most convenient attribute of these approaches is their simplicity. Generating
a set of coherent forecasts involves only modelling and generating forecasts for
the most aggregate top-level series. In general, such top-down approaches seem to
produce quite reliable forecasts for the aggregate levels and they are useful with
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low count data. However, a significant disadvantage is the loss of information due
to aggregation. A limitation of such top-down approaches is that characteristics
of lower level series cannot be captured. To overcome this, Athanasopoulos et al.
(2009) introduced a new top-down approach which disaggregates the top-level based
on proportions of forecasts rather than the historical data and showed that this
method outperforms the conventional top-down approaches. However, a limitation
of all top-down approaches is that they introduce bias to the forecasts even when the
top-level forecast itself is unbiased. We discuss this in detail in Sect. 21.3.2.

Middle-Out

A compromise between bottom-up and top-down approaches is the middle-out
approach. It entails first forecasting the series of a selected middle level. For
series above the middle level, coherent forecasts are generated using the bottom-
up approach by aggregating the middle-level forecasts. For series below the middle
level, coherent forecasts are generated using a top-down approach by disaggregating
the middle-level forecasts. Similarly to the top-down approach it is useful for when
bottom-level data is low count. Since the middle-out approach involves generating
top-down forecasts, it also introduces bias to the forecasts.

21.3.2 Point Forecast Reconciliation

All approaches discussed so far are limited to only using information from a single
level of aggregation. Furthermore, these ignore any correlations across levels of a
hierarchy. An alternative framework that overcomes these limitations is one that
involves forecast reconciliation. In a first step. forecasts for all the series across all
levels of the hierarchy are computed, ignoring any aggregation constraints. We refer
to these as base forecasts and denote them by ŷT +h|T . In general, base forecasts
will not be coherent, unless a very simple method has been used to compute them
such as for naïve forecasts. In this case, forecasts are simply equal to a previous
realisation of the data and they inherit the property of coherence.

The second step is an adjustment that reconciles base forecasts so that they
become coherent. In general, this is achieved by mapping the base forecasts ŷT +h|T
onto the coherent subspace s via a matrix SG, resulting in a set of coherent forecasts
ỹT +h|T . Specifically,

ỹT +h|T = SGŷT +h|T , (21.2)

where G is an m × n matrix that maps ŷT +h|T to Rm, producing new forecasts for
the bottom level, which are in turn mapped to the coherent subspace by the summing
matrix S. We restrict our attention to projections on s in which case SGS = S.
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This ensures that unbiasedness is preserved, i.e., for a set of unbiased base forecasts
reconciled forecasts will also be unbiased.

Note that all single-level approaches discussed so far can also be represented
by (21.2) using appropriately designed G matrices, however, not all of these will
be projections. For example, for the bottom-up approach, G = (

0(m×n−m) Im

)
in

which case SGS = S. For any top-down approach G = (
p 0(m×n−1)

)
, for which

SGS �= S.

Optimal MinT Reconciliation

Wickramasuriya et al. (2018) build a unifying framework for much of the previous
literature on forecast reconciliation. We present here a detailed outline of this
approach and in turn relate it to previous significant contributions in forecast
reconciliation.

Assume that ŷT +h|T is a set of unbiased base forecasts, i.e., E1:T (ŷT +h|T ) =
E1:T [yT +h | y1, . . . , yT ], the true mean with the expectation taken over the
observed sample up to time T . Let

êT +h|T = yT +h|T − ŷT +h|T (21.3)

denote a set of base forecast errors with Var(êT +h|T ) = Wh, and

ẽT +h|T = yT +h|T − ỹT +h|T

denote a set of coherent forecast errors. Lemma 1 in Wickramasuriya et al. (2018)
shows that for any matrix G such that SGS = S, Var(ẽT +h|T ) = SGWhS

′G′.
Furthermore Theorem 1 shows that

G = (S′W−1
h S)−1S′W−1

h (21.4)

is the unique solution that minimises the trace of SGWhS
′G′ subject to SGS = S.

MinT is optimal in the sense that given a set of unbiased base forecasts, it returns
a set of best linear unbiased reconciled forecasts, using as G the unique solution
that minimises the trace (hence MinT) of the variance of the forecast error of the
reconciled forecasts.

A significant advantage of the MinT reconciliation solution is that it is the first
to incorporate the full correlation structure of the hierarchy via Wh. However,
estimating Wh is challenging, especially for h > 1. Wickramasuriya et al. (2018)
present possible alternative estimators for Wh and show that these lead to different
G matrices. We summarise these below.

• Set Wh = khIn for all h, where kh > 0 is a proportionality constant. This
simple assumption returns G = (S′S)−1S′ so that the base forecasts are
orthogonally projected onto the coherent subspace s minimising the Euclidean
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distance between ŷT +h|T and ỹT +h|T . Hyndman et al. (2011) come to the same
solution, however, from the perspective of the following regression model

ŷT +h|T = SβT +h|T + εT +h|T ,

where βT +h|T = E[bT +h | b1, . . . , bT ] is the unknown conditional mean of
the bottom-level series and εT +h|T is the coherence or reconciliation error with
mean zero and variance V . The OLS solution leads to the same projection
matrix S(S′S)−1S′, and due to this interpretation we continue to refer to this
reconciliation method as OLS. A disadvantage of the OLS solution is that the
homoscedastic diagonal entries do not account for the scale differences between
the levels of the hierarchy due to aggregation. Furthermore, OLS does not
account for the correlations across series.

• Set Wh = khdiag(Ŵ 1) for all h (kh > 0), where

Ŵ 1 = 1

T

T∑
T =1

êt ê
′
t

is the unbiased sample estimator of the in-sample one-step-ahead base forecast
errors as defined in (21.3). Hence this estimator scales the base forecasts using
the variance of the in-sample residuals and is therefore described and referred to
as a weighted least squares (WLS) estimator applying variance scaling. A similar
estimator was proposed by Hyndman et al. (2019).

An alternative WLS estimator is proposed by Athanasopoulos et al. (2017) in
the context of temporal hierarchies. Here Wh is proportional to diag(S1) where 1
is a unit column vector of dimension n. Hence the weights are proportional to the
number of bottom-level variables required to form an aggregate. For example,
in the hierarchy of Fig. 21.1, the weights corresponding to the Total, series A
and series B are proportional to 5, 2 and 3 respectively. This weighting scheme
depends only on the aggregation structure and is referred to as structural scaling.
Its advantage over OLS is that it assumes equivariant forecast errors only at the
bottom level of the structure and not across all levels. It is particularly useful
in cases where forecast errors are not available; for example, in cases where the
base forecasts are generated by judgemental forecasting.

• Set Wh = khŴ 1 for all h (kh > 0) to be proportional to the unrestricted sample
covariance estimator for h = 1. Although this is relatively simple to obtain
and provides a good solution for small hierarchies, it does not provide reliable
results as m grows compared to T . This is referred to this as the MinT(Sample)
estimator.
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• Set Wh = khŴ
D

1 for all h (kh > 0), where Ŵ
D

1 = λDdiag(Ŵ 1) + (1 − λD)Ŵ 1
is a shrinkage estimator with diagonal target and shrinkage intensity parameter

λ̂D =
∑

i �=j V̂ar(r̂ij )∑
i �=j r̂2

ij

,

where r̂ij is the (i, j)th element of R̂1, the one-step-ahead sample correlation
matrix as proposed by Schäfer and Strimmer (2005). Hence, off-diagonal
elements of Ŵ 1 are shrunk towards zero while diagonal elements (variances)
remain unchanged. This is referred to as the MinT(Shrink) estimator.

21.4 Hierarchical Probabilistic Forecasting

A limitation of point forecasts is that they provide no indication of uncertainty
around the forecast. A richer description of forecast uncertainty can be obtained
by providing a probabilistic forecast, also commonly referred to as a density
forecast. For a review of probabilistic forecasts, and scoring rules for evaluating
such forecasts, see Gneiting and Katzfuss (2014). This chapter and Chapter 16
respectively provide comprehensive summaries of methods for constructing density
forecasts and predictive accuracy tests for both point and density forecasts. In recent
years, the use of probabilistic forecasts and their evaluation via scoring rules has
become pervasive in macroeconomic forecasting, some notable (but non-exhaustive)
examples are Geweke and Amisano (2010), Billio, Casarin, Ravazzolo, and Van
Dijk (2013), Carriero, Clark, and Marcellino (2015) and Clark and Ravazzolo
(2015).

The literature on hierarchical probabilistic forecasting is still an emerging area of
interest. To the best of our knowledge the first attempt to even define coherence in
the setting of probabilistic forecasting is provided by Taieb, Taylor, and Hyndman
(2017) who define a coherent forecast in terms of a convolution. An equivalent
definition due to Gamakumara, Panagiotelis, Athanasopoulos, and Hyndman (2018)
defines a coherent probabilistic forecast as a probability measure on the coherent
subspace s. Gamakumara et al. (2018) also generalise the concept of forecast
reconciliation to the probabilistic setting.

Definition 21.2 Let A be a subset1 of s and let B be all points in Rn that are
mapped onto A after premultiplication by SG. Letting ν̂ be a base probabilistic
forecast for the full hierarchy, the coherent measure ν̃ reconciles ν̂ if ν̃(A) = ν̂(B)

for all A.

1Strictly speaking A is a Borel set.
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In practice this definition leads to two approaches. For some parametric dis-
tributions, for instance the multivariate normal, a reconciled probabilistic forecast
can be derived analytically. However, in macroeconomic forecasting, non-standard
distributions such as bimodal distributions are often required to take different
policy regimes into account. In such cases a non-parametric approach based on
bootstrapping in-sample errors proposed Gamakumara et al. (2018) can be used.
These scenarios are now covered in detail.

21.4.1 Probabilistic Forecast Reconciliation in the Gaussian
Framework

In the case where the base forecasts are probabilistic forecasts characterised by
elliptical distributions, Gamakumara et al. (2018) show that reconciled probabilistic
forecasts will also be elliptical. This is particularly straightforward for the Gaussian
distribution which is completely characterised by two moments. Letting the base
probabilistic forecasts be N(ŷT +h|T , �̂T +h|T ), then the reconciled probabilistic

forecasts will be N(ỹT +h|T , �̃T +h|T ), where

ỹT +h|T = SGŷT +h|T (21.5)

and �̃T +h|T = SG�̂T +h|T G′S′. (21.6)

There are several options for obtaining the base probabilistic forecasts and in
particular the variance covariance matrix �̂. One option is to fit multivariate models
either level by level or for the hierarchy as a whole leading respectively to a �̂

that is block diagonal or dense. Another option is to fit univariate models for each
individual series in which case �̂ is a diagonal matrix. A third option that we employ
here is to obtain �̂ using in-sample forecast errors, in a similar vein to how Ŵ 1
is estimated in the MinT method. Here the same shrinkage estimator described in
Sect. 21.3.2 is used. The reconciled probabilistic forecast will ultimately depend on
the choice of G; the same choices of G matrices used in Sect. 21.3 can be used.

21.4.2 Probabilistic Forecast Reconciliation in the
Non-parametric Framework

In many applications, including macroeconomic forecasting, it may not be rea-
sonable to assume Gaussian predictive distributions. Therefore, non-parametric
approaches have been widely used for probabilistic forecasts in different disci-
plines. For example, ensemble forecasting in weather applications (Gneiting, 2005;
Gneiting & Katzfuss, 2014; Gneiting, Stanberry, Grimit, Held, & Johnson, 2008),
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and bootstrap-based approaches (Manzan & Zerom, 2008; Vilar & Vilar, 2013).
In macroeconomics, Cogley, Morozov, and Sargent (2005) discuss the importance
of allowing for skewness in density forecasts and more recently Smith and Vahey
(2016) discuss this issue in detail.

Due to these concerns, we employ the bootstrap method proposed by Gamaku-
mara et al. (2018) that does not make parametric assumptions about the predictive
distribution. An important result exploited by this method is that applying point
forecast reconciliation to the draws from an incoherent base predictive distribution,
results in a sample from the reconciled predictive distribution. We summarise this
process below:

1. Fit univariate models to each series in the hierarchy over a training set from
t = 1, . . . , T . Let these models denote M1, . . . , Mn.

2. Compute one-step-ahead in-sample forecast errors. Collect these into an n × T

matrix Ê = (ê1, ê2, . . . , êT ), where the n-vector êt = yt − ŷt |t−1. Here, ŷt |t−1
is a vector of forecasts made for time t using information up to and including
time t − 1. These are called in-sample forecasts since while they depend only on
past values, information from the entire training sample is used to estimate the
parameters for the models on which the forecasts are based.

3. Block bootstrap from Ê; that is, choose H consecutive columns of Ê at random,
repeating this process B times. Denote the n × H matrix obtained at iteration b

as Ê
b

for b = 1, . . . , B.

4. For all b, compute ϒ̂
b = {γ̂ b

1, . . . , γ̂ b
n}′ ∈ Rn×H : γ̂ b

i,h = f (Mi , êb
i,h) where,

f (.) is a function of fitted univariate model in step 1 and associated error. That
is, γ̂i,h is a sample path simulated from fitted model Mi for ith series and error
approximated by the corresponding block bootstrapped sample error êb

i,h which

is the (i, h)th element of Ê
b
. Each row of ϒ̂

b
is a sample path of h forecasts

for a single series. Each column of ϒ̂
b

is a realisation from the joint predictive
distribution at a particular horizon.

5. For each b = 1, . . . , B, select the hth column of ϒ̂
b

and stack these to form an
n × B matrix ϒ̂T +h|T .

6. For a given G matrix and for each h = 1, . . . , H , compute ϒ̃T +h|T =
SGϒ̂T +h|T . Each column of ϒ̃T +h|T is a realisation from the joint h-step-ahead
reconciled predictive distribution.

21.5 Australian GDP

In our empirical application we consider Gross Domestic Product (GDP) of
Australia with quarterly data spanning the period 1984:Q4–2018:Q3. The Australian
Bureau of Statistics (ABS) measures GDP using three main approaches namely
Production, Income, and Expenditure. The final GDP figure is obtained as an
average of these three figures. Each of these measures is aggregates of economic
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variables which are also targets of interests for the macroeconomic forecaster. This
suggests a hierarchical approach to forecasting could be used to improve forecasts
of all series in the hierarchy including the headline GDP.

We concentrate on the Income and Expenditure approaches as nominal data are
available only for these two. We restrict our attention to nominal data due to the
fact that real data are constructed via a chain price index approach with different
price deflators used for each series. As a result, real GDP data are not coherent—the
aggregate series is not a linear combination of the disaggregate series. For similar
reasons we do not use seasonally adjusted data; the process of seasonal adjustment
results in data that are not coherent. Finally, although there is a small statistical
discrepancy between each series and the headline GDP figure, we simply treat this
statistical discrepancy, which is also published by the ABS, as a time series in its
own right. For further of the details on the data please refer to Australian Bureau of
Statistics (2018).

21.5.1 Income Approach

Using the income approach, GDP is calculated by aggregating all income flows.
In particular, GDP at purchaser’s price is the sum of all factor incomes and taxes,
minus subsidies on production and imports (Australian Bureau of Statistics, 2015):

GDP = Gross operating surplus + Gross mixed income

+ Compensation of employees

+ Taxes less subsidies on production and imports

+ Statistical discrepancy (I).

Figure 21.4 shows the full hierarchical structure capturing all components aggre-
gated to form GDP using the income approach. The hierarchy has two levels of
aggregation below the top-level, with a total of n = 16 series across the whole
structure and m = 10 series at the bottom level.

21.5.2 Expenditure Approach

In the expenditure approach, GDP is calculated as the aggregation of final con-
sumption expenditure, gross fixed capital formation (GFCF), changes in inventories
of finished goods, work-in-progress, and raw materials and the value of exports
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Fig. 21.4 Hierarchical structure of the income approach for GDP. The pink cell contains GDP
the most aggregate series. The blue cells contain intermediate-level series and the yellow cells
correspond to the most disaggregate bottom-level series

less imports of the goods and services (Australian Bureau of Statistics, 2015). The
underlying equation is:

GDP = Final consumption expenditure + Gross fixed capital formation

+ Changes in inventories + Trade balance + Statistical discrepancy (E).

Figures 21.5, 21.6, and 21.7 show the full hierarchical structure capturing all
components aggregated to form GDP using the expenditure approach. The hierarchy
has three levels of aggregation below the top-level, with a total of n = 80 series
across the whole structure and m = 53 series at the bottom level. Descriptions of
each series in these hierarchies along with the series ID assigned by the ABS are
given in the Tables 21.1, 21.2, 21.3, and 21.4 in the Appendix.

Figure 21.8 displays time series from the income and expenditure approaches.
The top panel shows the most aggregate GDP series. The panels below show series
from lower levels for the income hierarchy (left panel) and the expenditure hierarchy
(right panel). The plots show the diverse features of the time series with some
displaying positive and others negative trending behaviour, some showing no trends
but possibly a cycle, and some having a strong seasonal component. These highlight
the need to account for and model all information and diverse signals from each
series in the hierarchy, which can only be achieved through a forecast reconciliation
approach.
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Fig. 21.5 Hierarchical structure of the expenditure approach for GDP. The pink cell contains GDP,
the most aggregate series. The blue and purple cells contain intermediate-level series with the series
in the purple cells further disaggregated in Figs. 21.6 and 21.7. The yellow cells contain the most
disaggregate bottom-level series

21.6 Empirical Application Methodology

We now demonstrate the potential for reconciliation methods to improve forecast
accuracy for Australian GDP. We consider forecasts from h = 1 quarter ahead up
to h = 4 quarters ahead using an expanding window. First, the training sample is
set from 1984:Q4 to 1994:Q3 and forecasts are produced for 1994:Q4 to 1995:Q3.
Then the training window is expanded by one quarter at a time, i.e., from 1984:Q4
to 2017:Q4 with the final forecasts produced for the last available observation in
2018:Q1. This leads to 94 1-step-ahead, 93 2-steps-ahead, 92 3-steps-ahead, and 91
4-steps-ahead forecasts available for evaluation.

21.6.1 Models

The first task in forecast reconciliation is to obtain base forecasts for all series
in the hierarchy. In the case of the income approach, this necessitates forecasting
n = 16 separate time series while in the case of the expenditure approach, forecasts
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Fig. 21.6 Hierarchical structure for Gross Fixed Capital Formations under the expenditure
approach for GDP, continued from Fig. 21.5. Blue cells contain intermediate-level series and the
yellow cells correspond to the most disaggregate bottom-level series

for n = 80 separate time series must be obtained. Given the diversity in these
time series discussed in Sect. 21.5, we focus on an approach that is fast but also
flexible. We consider simple univariate ARIMA models, where model order is
selected via a combination of unit root testing and the AIC using an algorithm
developed by Hyndman, Koehler, Ord, and Snyder (2008) and implemented in
the auto.arima() function in Hyndman, Lee, and Wang (2019). A similar
approach was also undertaken using the ETS framework to produce base forecasts
(Hyndman & Khandakar, 2008). Using ETS models to generate base forecasts had
minimal impact on our conclusions with respect to forecast reconciliation methods
and in most cases ARIMA forecasts were found to be more accurate than ETS
forecasts. Consequently for brevity, we have excluded presenting the results for
ETS models. However, these are available from github2 and are discussed in detail
in Gamakumara (2019). We note that a number of more complicated approaches
could have been used to obtain base forecasts including multivariate models such

2The relevant github repository is https://github.com/PuwasalaG/Hierarchical-Book-Chapter.

https://github.com/PuwasalaG/Hierarchical-Book-Chapter
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Fig. 21.7 Hierarchical structure for Household Final Consumption Expenditure under the expen-
diture approach for GDP, continued from Fig. 21.5. Blue cells contain intermediate-level series and
the yellow cells correspond to the most disaggregate bottom-level series

as vector autoregressions, and models and methods that handle a large number of
predictors such as factor models or least angle regression. However, Panagiotelis,
Athanasopoulos, Hyndman, Jiang, and Vahid (2019) show that univariate ARIMA
models are highly competitive for forecasting Australian GDP even compared
to these methods, and in any case our primary motivation is to demonstrate the
potential of forecast reconciliation.

The hierarchical forecasting approaches we consider are bottom-up, OLS, WLS
with variance scaling and the MinT(Shrink) approach. The MinT(Sample) approach
was also used but due to the size of the hierarchy, forecasts reconciled via this
approach were less stable. Finally, all forecasts (both base and coherent) are
compared to a seasonal naïve benchmark (Hyndman & Athanasopoulos, 2018); i.e.,
the forecast for GDP (or one of its components) is the realised GDP in the same
quarter of the previous year. The naïve forecasts are by construction coherent and
therefore do not need to be reconciled.
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Fig. 21.8 Time plots for series from different levels of income and expenditure hierarchies

21.6.2 Evaluation

For evaluating point forecasts we consider two metrics, the Mean Squared Error
(MSE) and the Mean Absolute Scaled Error (MASE) calculated over the expanding
window. The absolute scaled error is defined as

qT +h = |ĕT +h|T |
(T − 4)−1

∑T
t=5 |yt − yt−4|

,
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where ĕt+h is the difference between any forecast and the realisation,3 and 4 is used
due to the quarterly nature of the data. An advantage of using MASE is that it is a
scale independent measure. This is particularly relevant for hierarchical time series,
since aggregate series by their very nature are on a larger scale than disaggregate
series. Consequently, scale dependent metrics may unfairly favour methods that
perform well for the aggregate series but poorly for disaggregate series. For more
details on different point forecast accuracy measures, refer to Chapter 3 of Hyndman
and Athanasopoulos (2018).

Forecast accuracy of probabilistic forecasts can be evaluated using scoring rules
(Gneiting & Katzfuss, 2014). Let F̆ be a probabilistic forecast and let y̆ ∼ F̆ where
a breve is again used to denote that either base forecasts or coherent forecasts can
be evaluated. The accuracy of multivariate probabilistic forecasts will be measured
by the energy score given by

eS(F̆T +h|T , yT +h) = E
F̆
‖y̆T +h − yT +h‖α − 1

2
E

F̆
‖y̆T +h − y̆∗

T +h‖α ,

where yT +h is the realisation at time T +h, and α ∈ (0, 2]. We set α = 1, noting that
other values of α give similar results. The expectations can be evaluated numerically
as long as a sample from F̆ is available, which is the case for all methods we employ.
An advantage of using energy scores is that in the univariate case it simplifies to the
commonly used cumulative rank probability score (CRPS) given by

CRPS(F̆i , yi,T +h) = E
F̆i

|y̆i,T +h − yi,T +h| − 1

2
E

F̆i
|y̆i,T +h − y̆∗

i,T +h|,

where the subscript i is used to denote that CRPS measures forecast accuracy for a
single variable in the hierarchy.

Alternatives to the energy score were also considered, namely log scores and
variogram scores. The log score was disregarded since Gamakumara et al. (2018)
prove that the log score is improper with respect to the class of incoherent
probabilistic forecasts when the true DGP is coherent. The variogram score gave
similar results to the energy score; these results are omitted for brevity but are
available from github and are discussed in detail in Gamakumara (2019).

21.7 Results

21.7.1 Base Forecasts

Due to the different features in each time series, a variety of ARIMA and seasonal
ARIMA models were selected for generating base forecasts. For example, in the

3Breve is used instead of a hat or tilde to denote that this can be the error for either a base or
reconciled forecast.
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Fig. 21.9 Mean squared errors for naïve and ARIMA base forecasts. Top panels refer to results
summarised over all series while bottom panels refer to results for the top-level GDP series. Left
panels refer to the income hierarchy and right panels to the expenditure hierarchy

income hierarchy, some series require seasonal differencing while other did not.
Furthermore the AR orders vary from 0 to 3, the MA orders from 0 to 2, and
their seasonal counterparts SAR from 0 to 2 and SMA from 0 to 1. Figure 21.9
compares the accuracy of the ARIMA base forecasts to the seasonal naïve forecasts
over different forecast horizons. The panels on the left show results for the Income
hierarchy while the panels on the right show the results for the Expenditure
hierarchy. The top panels summarise results over all series in the hierarchy, i.e.,
we calculate the MSE for each series and then average over all series. The bottom
panels show the results for the aggregate level GDP.

The clear result is that base forecasts are more accurate than the naïve forecasts,
however, as the forecasting horizon increases, the differences become smaller. This
is to be expected since the naïve model here is a seasonal random walk, and for
horizons h < 4, forecasts from an ARIMA model are based on more recent
information. Similar results are obtained when MASE is used as the metric for
evaluating forecast accuracy.
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One disadvantage of the base forecasts relative to the naïve forecasts is that
base forecasts are not coherent. As such we now turn our attention to investigating
whether reconciliation approaches can lead to further improvements in forecast
accuracy relative to the base forecasts.

21.7.2 Point Forecast Reconciliation

We now turn our attention to evaluating the accuracy of point forecasts obtained
using the different reconciliation approaches as well as the single-level bottom-
up approach. All results in subsequent figures are presented as the percentage
changes in a forecasting metric relative to base forecasts, a measure known in the
forecasting literature as skill scores. Skill scores are computed such that positive
values represent an improvement in forecasting accuracy over the base forecasts
while negative values represent a deterioration.

Figures 21.10 and 21.11 show skill scores using MSE and MASE respectively.
The top row of each figure shows skill scores based on averages over all series. We
conclude that reconciliation methods generally improve forecast accuracy relative to
base forecasts regardless of the hierarchy used, the forecasting horizon, the forecast
error measure or the reconciliation method employed. We do, however, note that
while all reconciliation methods improve forecast performance, MinT(Shrink) is
the best forecasting method in most cases.

To further investigate the results we break down the skill scores by different
levels of each hierarchy. The second row of Figs. 21.10 and 21.11 shows the skill
scores for a single series, namely GDP which represents the top-level of both
hierarchies. The third row shows results for all series excluding those of the bottom
level, while the final row shows results for the bottom-level series only. Here,
we see two general features. The first is that OLS reconciliation performs poorly
on the bottom-level series, and the second is that bottom-up performs relatively
poorly on aggregate series. The two features are particularly exacerbated for the
larger expenditure hierarchy. These results are consistent with other findings in
the forecast reconciliation literature (see for instance Athanasopoulos et al., 2017;
Wickramasuriya et al., 2018).

21.7.3 Probabilistic Forecast Reconciliation

We now turn our attention towards results for probabilistic forecasts. Figure 21.12
shows results for the energy score which as a multivariate score summarises
forecast accuracy over the entire hierarchy. Once again all results are presented
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Fig. 21.10 Skill scores for point forecasts from alternative methods (with reference to base
forecasts) using MSE. The left panels refer to the income hierarchy while the right panels refer
to the expenditure hierarchy. The first row refers to results summarised over all series, the second
row to top-level GDP series, the third row to aggregate levels, and the last row to the bottom level
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Fig. 21.12 Skill scores for multivariate probabilistic forecasts from different reconciliation meth-
ods (with reference to base forecasts) using energy scores. The top panels refer to the results for the
Gaussian approach and the bottom panels to the non-parametric bootstrap approach. Left panels
refer to the income hierarchy and right panels to the expenditure hierarchy

as skill scores relative to base forecasts. The top panels refer to results assuming
Gaussian probabilistic forecasts as described in Sect. 21.4.1 while the bottom panels
refer to the non-parametric bootstrap method described in Sect. 21.4.2. The left
panels correspond to the income hierarchy while the right panels correspond to
the expenditure hierarchy. For the income hierarchy, all methods improve upon
base forecasts at all horizons. In nearly all cases the best performing reconciliation
method is MinT(Shrink), a notable result since the optimal properties for MinT have
thus far only been established theoretically in the point forecasting case. For the
larger expenditure hierarchy results are a little more mixed. While bottom-up tends
to perform poorly, all reconciliation methods improve upon base forecasts (with the
single exception of MinT(Shrink) in the Gaussian framework four quarters ahead).
Interestingly, OLS performs best under the assumption of Gaussianity—this may
indicate that OLS is a more robust method under model misspecification but further
investigation is required.

Finally, Fig. 21.13 displays the skill scores based on the cumulative ranked
probability score for a single series, namely top-level GDP. The cause of the poor
performance of bottom-up reconciliation as a failure to accurately forecast aggregate
series is apparent here.
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Fig. 21.13 Skill scores for probabilistic forecasts of top-level GDP from different reconciliation
methods (with reference to base forecasts) using CRPS. Top panels refer to the results for Gaussian
approach and bottom panels refer to the non-parametric bootstrap approach. The left panel refers
to the income hierarchy and the right panel to the expenditure hierarchy

21.8 Conclusions

In the macroeconomic setting, we have demonstrated the potential for forecast
reconciliation methods to not only provide coherent forecasts, but to also improve
overall forecast accuracy. This result holds for both point forecasts and probabilistic
forecasts, for the two different hierarchies we consider and over different forecasting
horizons. Even where the objective is to only forecast a single series, for instance
top-level GDP, the application of forecast reconciliation methods improves forecast
accuracy.

By comparing results from different forecast reconciliation techniques we draw a
number of conclusions. Despite its simplicity, the single-level bottom-up approach
can perform poorly at more aggregated levels of the hierarchy. Meanwhile, when
forecast accuracy at the bottom level is evaluated, OLS tends to break down in some
instances. Overall, the WLS and MinT(Shrink) methods (and particularly the latter)
tend to yield the highest improvements in forecast accuracy. Similar results can be
found in both simulations and the empirical studies of Athanasopoulos et al. (2017)
and Wickramasuriya et al. (2018).

There are a number of open avenues for research in the literature on forecast
reconciliation, some of which are particularly relevant to macroeconomic appli-
cations. First there is scope to consider more complex aggregation structures, for
instance in addition to the hierarchies we have already considered, data on GDP and
GDP components disaggregated along geographical lines are also available. This
leads to a grouped aggregation structure. Also, given the substantial literature on the
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optimal frequency at which to analyse macroeconomic data, a study on forecasting
GDP or other variables as a temporal hierarchy may be of interest. In this chapter
we have only shown that reconciliation methods can be used to improve forecast
accuracy when univariate ARIMA models are used to produce base forecasts. It will
be interesting to evaluate whether such results hold when a multivariate approach,
e.g., a Bayesian VAR or dynamic factor model, is used to generate base forecasts,
or whether the gains from forecast reconciliation would be more modest. Finally,
a current limitation of the forecast reconciliation literature is that it only applies
to collections of time series that adhere to linear constraints. In macroeconomics
there are many examples of data that adhere to non-linear constraints, for instance
real GDP is a complicated but deterministic function of GDP components and price
deflators. The extension of forecast reconciliation methods to non-linear constraints
potentially holds great promise for continued improvement in macroeconomic
forecasting.

Appendix

See Tables 21.1, 21.2, 21.3, 21.4.

Table 21.1 Variables, series IDs and their descriptions for the income approach

Variable Series ID Description

Gdpi A2302467A GDP(I)

Sdi A2302413V Statistical discrepancy (I)

Tsi A2302412T Taxes less subsidies (I)

TfiCoeWns A2302399K Compensation of employees; Wages and salaries

TfiCoeEsc A2302400J Compensation of employees; Employers’ social contributions

TfiCoe A2302401K Compensation of employees

TfiGosCopNfnPvt A2323369L Private non-financial corporations; Gross operating surplus

TfiGosCopNfnPub A2302403R Public non-financial corporations; Gross operating surplus

TfiGosCopNfn A2302404T Non-financial corporations; Gross operating surplus

TfiGosCopFin A2302405V Financial corporations; Gross operating surplus

TfiGosCop A2302406W Total corporations; Gross operating surplus

TfiGosGvt A2298711F General government; Gross operating surplus

TfiGosDwl A2302408A Dwellings owned by persons; Gross operating surplus

TfiGos A2302409C All sectors; Gross operating surplus

TfiGmi A2302410L Gross mixed income

Tfi A2302411R Total factor income
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Table 21.2 Variables, series IDs and their descriptions for expenditure approach

Variable Series ID Description

Gdpe A2302467A GDP(E)

Sde A2302566J Statistical discrepancy(E)

Exp A2302564C Exports of goods and services

Imp A2302565F Imports of goods and services

Gne A2302563A Gross national exp.

GneDfdFceGvtNatDef A2302523J Gen. gov.—National; Final consumption
exp.—Defence

GneDfdFceGvtNatNdf A2302524K Gen. gov.—National; Final consumption
exp.—Non-defence

GneDfdFceGvtNat A2302525L Gen. gov.—National; Final consumption exp.

GneDfdFceGvtSnl A2302526R Gen. gov.—State and local; Final consumption
exp,

GneDfdFceGvt A2302527T Gen. gov.; Final consumption exp.

GneDfdFce A2302529W All sectors; Final consumption exp.

GneDfdGfcPvtTdwNnu A2302543T Pvt.; Gross fixed capital formation (GFCF)

GneDfdGfcPvtTdwAna A2302544V Pvt.; GFCF—Dwellings—Alterations and
additions

GneDfdGfcPvtTdw A2302545W Pvt.; GFCF—Dwellings—Total

GneDfdGfcPvtOtc A2302546X Pvt.; GFCF—Ownership transfer costs

GneDfdGfcPvtPbiNdcNbd A2302533L Pvt. GFCF—Non-dwelling construction—New
building

GneDfdGfcPvtPbiNdcNec A2302534R Pvt.; GFCF—Non-dwelling construction—

New engineering construction

GneDfdGfcPvtPbiNdcSha A2302535T Pvt.; GFCF—Non-dwelling construction—

Net purchase of second hand assets

GneDfdGfcPvtPbiNdc A2302536V Pvt.; GFCF—Non-dwelling construction—Total

GneDfdGfcPvtPbiNdmNew A2302530F Pvt.; GFCF—Machinery and equipment—New

GneDfdGfcPvtPbiNdmSha A2302531J Pvt.; GFCF—Machinery and equipment—

Net purchase of second hand assets

GneDfdGfcPvtPbiNdm A2302532K Pvt.; GFCF—Machinery and equipment—Total

GneDfdGfcPvtPbiCbr A2716219R Pvt.; GFCF—Cultivated biological resources

GneDfdGfcPvtPbiIprRnd A2716221A Pvt.; GFCF—Intellectual property products—

Research and development

GneDfdGfcPvtPbiIprMnp A2302539A Pvt.; GFCF—Intellectual property products—

Mineral and petroleum exploration

GneDfdGfcPvtPbiIprCom A2302538X Pvt.; GFCF—Intellectual property
products—Computer software

GneDfdGfcPvtPbiIprArt A2302540K Pvt.; GFCF—Intellectual property
products—Artistic originals

GneDfdGfcPvtPbiIpr A2716220X Pvt.; GFCF—Intellectual property products Total

GneDfdGfcPvtPbi A2302542R Pvt.; GFCF—Total private business investment

GneDfdGfcPvt A2302547A Pvt.; GFCF

GneDfdGfcPubPcpCmw A2302548C Plc. corporations—Commonwealth; GFCF

(continued)
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Table 21.2 (continued)

Variable Series ID Description

GneDfdGfcPubPcpSnl A2302549F Plc. corporations—State and local; GFCF

GneDfdGfcPubPcp A2302550R Plc. corporations; GFCF Total

GneDfdGfcPubGvtNatDef A2302551T Gen. gov.—National; GFCF—Defence

GneDfdGfcPubGvtNatNdf A2302552V Gen. gov.—National; GFCF—Non-defence

GneDfdGfcPubGvtNat A2302553W Gen. gov.—National; GFCF Total

GneDfdGfcPubGvtSnl A2302554X Gen. gov.—State and local; GFCF

GneDfdGfcPubGvt A2302555A Gen. gov.; GFCF

GneDfdGfcPub A2302556C Plc.; GFCF

GneDfdGfc A2302557F All sectors; GFCF

Table 21.3 Variables, series IDs and their descriptions for changes in inventories—expenditure
approach

Variable Series ID Description

GneCii A2302562X Changes in Inventories

GneCiiPfm A2302560V Farm

GneCiiPba A2302561W Public authorities

GneCiiPnf A2302559K Private; Non-farm Total

GneCiiPnfMin A83722619L Private; Mining (B)

GneCiiPnfMan A3348511X Private; Manufacturing (C)

GneCiiPnfWht A3348512A Private; Wholesale trade (F)

GneCiiPnfRet A3348513C Private; Retail trade (G)

GneCiiPnfOnf A2302273C Private; Non-farm; Other non-farm industries

Table 21.4 Variables, series IDs and their descriptions for household final consumption—
expenditure approach

Variable Series ID Description

GneDfdHfc A2302254W Household Final Consumption Expenditure

GneDfdFceHfcFud A2302237V Food

GneDfdFceHfcAbt A3605816F Alcoholic beverages and tobacco

GneDfdFceHfcAbtCig A2302238W Cigarettes and tobacco

GneDfdFceHfcAbtAlc A2302239X Alcoholic beverages

GneDfdFceHfcCnf A2302240J Clothing and footwear

GneDfdFceHfcHwe A3605680F Housing, water, electricity, gas and other fuels

GneDfdFceHfcHweRnt A3605681J Actual and imputed rent for housing

GneDfdFceHfcHweWsc A3605682K Water and sewerage charges

GneDfdFceHfcHweEgf A2302242L Electricity, gas and other fuel

GneDfdFceHfcFhe A2302243R Furnishings and household equipment

GneDfdFceHfcFheFnt A3605683L Furniture, floor coverings and household goods

GneDfdFceHfcFheApp A3605684R Household appliances

(continued)
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Table 21.4 (continued)

Variable Series ID Description

GneDfdFceHfcFheTls A3605685T Household tools

GneDfdFceHfcHlt A2302244T Health

GneDfdFceHfcHltMed A3605686V Medicines, medical aids and therapeutic
appliances

GneDfdFceHfcHltHsv A3605687W Total health services

GneDfdFceHfcTpt A3605688X Transport

GneDfdFceHfcTptPvh A2302245V Purchase of vehicles

GneDfdFceHfcTptOvh A2302246W Operation of vehicles

GneDfdFceHfcTptTsv A2302247X Transport services

GneDfdFceHfcCom A2302248A Communications

GneDfdFceHfcRnc A2302249C Recreation and culture

GneDfdFceHfcEdc A2302250L Education services

GneDfdFceHfcHcr A2302251R Hotels, cafes and restaurants

GneDfdFceHfcHcrCsv A3605694V Catering services

GneDfdFceHfcHcrAsv A3605695W Accommodation services

GneDfdFceHfcMis A3605696X Miscellaneous goods and services

GneDfdFceHfcMisOgd A3605697A Other goods

GneDfdFceHfcMisIfs A2302252T Insurance and other financial services

GneDfdFceHfcMisOsv A3606485T Other services
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