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Abstract We show that if h(x, y) = ax2 + bxy + cy2 ∈ Z[x, y] satisfies Δ(h) =
b2 − 4ac �= 0, then any subset of {1, 2, . . . , N } lacking nonzero differences in the
imageofh has size atmost a constant dependingonh times N exp(−c

√
log N ),where

c = c(h) > 0. We achieve this goal by adapting an L2 density increment strategy
previously used to establish analogous results for sums of one ormore single-variable
polynomials. Our exposition is thorough and self-contained, in order to serve as an
accessible gateway for readers who are unfamiliar with previous implementations of
these techniques.

MSC 2010 11B30

1 Introduction

Established independently by Sárközy and Furstenberg during the 1970s, settling a
question of Lovász, it is a well-studied fact that any set of integers of positive upper
density necessarily contains two distinct elements that differ by a perfect square.
Equivalently, if A ⊆ N contains no such pair, then

lim
N→∞

|A ∩ [1, N ]|
N

= 0.

Herewe use [1, N ] to denote {1, 2, . . . , N } and |X | to denote the size of a finite set X .
Furstenberg [2] achieved this result qualitatively via ergodic theory, specifically his
correspondence principle, but obtained no information on the rate at which the den-
sity must decay, while Sárközy [20] employed a Fourier analytic density increment
strategy to show that if A ⊆ [1, N ] has no square differences, then
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|A|
N

	
(

(log log N )2

log N

)1/3

. (1)

Throughout the paper we use log to denote the natural logarithm, and we use “	” to
denote “less than a constant times”, with subscripts indicating on what parameters,
if any, the implied constant depends. Sárközy’s argument was driven by the Hardy–
Littlewood circle method, and was inspired by Roth’s [14] proof that sets of positive
upper density contain three-term arithmetic progressions.

Using a more intricate Fourier analytic argument, Pintz, Steiger, and Szemerédi
[13] improved (1) to

|A| 	 N (log N )−c log log log log N , (2)

with c = 1/12.While more elementary Fourier analytic proofs [3, 10] and a Fourier-
free density increment proof [4] have also been discovered, it is versions of these
two Fourier analytic attacks that have yielded the best quantitative information. In
the ensuing decades, these two methods have been refined and applied to other sets
of prohibited differences, such as more general polynomial images [1, 5, 9, 22],
shifted primes [8, 19, 21], polynomial curves in higher-dimensional integer lattices
[11], and images of the primes under polynomials [7, 17].

With regard to sums of one or more single-variable polynomials, the author [15]
pushed these two methods to their breaking points. In the case of one single-variable
polynomial, if h ∈ Z[x] has degree k ≥ 2 and h(N) contains a multiple of q for every
q ∈ N, known as an intersective polynomial, then any set A ⊆ [1, N ]with no nonzero
differences in the image of h satisfies (2) for any c < (log((k2 + k)/2))−1, with the
implied constant depending on h and c. The intersective condition is necessary to
force any density decay, as otherwise one can take A = qN if h(N) misses qZ, and
in that sense this is a maximal extension of the elaborate techniques developed in
[1, 13].

Further, if we allow the additional degree of freedom of a second polynomial, then
the more straightforward density increment approach yields density bounds that are
even better than (2), as described below.

Theorem 1 ([15]) Suppose g, h ∈ Z[x] are nonzero intersective polynomials and
A ⊆ [1, N ]. If

a − a′ �= g(m) + h(n)

for all distinct pairs a, a′ ∈ A and all m, n ∈ N, then

|A| 	g,h Ne−c(log N )μ ,

where c = c(g, h) > 0, μ = μ(deg(g), deg(h)) > 0, and μ(2, 2) = 1/2.

As a notable example, Theorem1 gives an upper bound of exp(−c
√
log N ) for the

density of subsets of [1, N ] lacking differences that are the sum of two squares. There
is also a brief discussion of sums of three or more single-variable polynomials at the
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end of [15], but the improvements in density bounds are modest as exp(−c
√
log N )

arises as a natural limit of the method, a fact that we discuss in Sect. 2.3.
While the generality of Theorem1 is pleasing, prohibited differences of the form

g(m) + h(n) can be thought of as the diagonal special case of differences of the form
h(m, n) where h ∈ Z[x, y]. Of course, if h(x, y) = h̃(g(x, y)) for some g ∈ Z[x, y]
and h̃ ∈ Z[x] with deg(h̃) ≥ 2, then the image of h is contained in the image of h̃, in
which casewe could not hope to improve on the original setting of one single-variable
polynomial. However, in other cases, we expect that the freedom of two variables
should allow for improved density bounds. It is with this expectation in mind that
we gently wade into the arena of potentially non-diagonal two-variable polynomials
by exploring the following natural generalization of the aforementioned special case
m2 + n2.

Definition 1 h ∈ Z[x, y] is called a binary quadratic form if

h(x, y) = ax2 + bxy + cy2

for some a, b, c ∈ Z. Further, we define the discriminant of h by

Δ(h) = b2 − 4ac,

noting that h(x, y) = d(r x + sy)2 for some d, r, s ∈ Z if and only if Δ(h) = 0.

Our main result is the following, which says that under the necessary restriction
that a binary quadratic formdoes not collapse into a dilated perfect square,we achieve
the same density bounds previously established in the diagonal case, which are likely
the best possible for our chosen method.

Theorem 2 Suppose h ∈ Z[x, y] is a binary quadratic form with Δ(h) �= 0. If A ⊆
[1, N ] with

a − a′ �= h(m, n)

for all distinct pairs a, a′ ∈ A and all m, n ∈ N, then

|A| 	h Ne−c
√
log N ,

where c = c(h) > 0.

We note that the image of every nonzero binary quadratic form contains a dilation
of the squares, and hence our result is only material because the established density
bound is better than (2). Our goal for the remainder of the paper is twofold: to
establish Theorem2, which we hope will serve as a starting point for the application
of these methods to more general polynomials in several variables, and to provide
thorough and self-contained exposition of all of the components of this iteration
scheme for those unfamiliar with its previous applications, such as the original case
of the squares.
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2 Main Iteration Lemma: Deducing Theorem2

The principle behind a density increment strategy is that a set which lacks the desired
arithmetic structure should spawn a new, significantly denser subset of a slightly
smaller interval with an inherited lack of arithmetic structure. Iterating this procedure
enough times for the density to reach 1 provides an upper bound on the density of
the original set.

For this section, we fix a binary quadratic form h ∈ Z[x, y] with Δ(h) �= 0, and
we let

I (h) = {h(m, n) : m, n ∈ N} \ {0}.

Our iteration scheme is encapsulated by the following lemma, fromwhichwe quickly
deduce Theorem2.

Lemma 1 Suppose A ⊆ [1, N ] with |A| = δN and δ ≥ N−1/20. If (A − A) ∩
I (h) = ∅, then there exists A′ ⊆ [1, N ′]with |A′| = δ′N ′ and a constant c = c(h) >

0 with
N ′ h δ4N , δ′ ≥ (1 + c)δ, and (A′ − A′) ∩ I (h) = ∅.

2.1 Proof of Theorem2

Suppose A ⊆ [1, N ] with |A| = δN and (A − A) ∩ I (h) = ∅. Setting A0 = A,
N0 = N , and δ0 = δ, Lemma1 yields, for each m, a set Am ⊆ [1, Nm] with |Am | =
δmNm and (Am − Am) ∩ I (h) = ∅ satisfying

Nm ≥ cδ4Nm−1 ≥ (cδ4)mN (3)

and
δm ≥ (1 + c)δm−1 ≥ (1 + c)mδ (4)

as long as
δm ≥ N−1/20

m . (5)

By (4), we see that the density δm will surpass 1, and hence (5) must fail, for m =
C log(δ−1). In particular, by (3) we have

δ ≤ (cδ4)−C log(δ−1)N−1/20,

which can be rearranged to
N ≤ eC log2(δ−1)

and hence implies
δ 	h e−c

√
log N ,

as required. �
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2.2 Roadmap for the Remainder of the Paper

Our task is is now completely reduced to a proof of Lemma1, the two major com-
ponents of which are described below.

i. The condition (A − A) ∩ I (h) = ∅ represents unexpected, nonuniform behav-
ior, which we expect to be detectable in the Fourier analytic behavior of A.
More specifically, we use orthogonality of characters and adaptations of stan-
dard exponential sum estimates to locate a single small denominator q such that
the Fourier transform of the characteristic function of A, translated to have mean
value zero, has substantial L2 concentration near rationals with denominator q.
The Fourier analytic infrastructure is introduced in Sect. 3.1, the proof of this
component is carried out in Sect. 4.2, and the required exponential sum estimates
are exposed in great detail in Sect. 5.

ii. The substantial L2 concentration of the transform of the translated characteristic
function of A near rationals with a particular denominator q indicates a corre-
lation of A with a linear phase function. In particular, we show that this implies
that A has significantly increased relative density on a long arithmetic progres-
sion P of step size q. Since this implication has nothing to do with h, or any
other assumptions about A, we prove a general version preemptively in Sect. 3.2.
Finally, by shifting and rescaling the intersection of A with a subprogression of
P of step size q2, we obtain our new, denser set A′ with (A′ − A′) ∩ I (h) = ∅.
The complete deduction of Lemma1 from these two components is carried out
in Sect. 4.1.

2.3 A Discussion of Novelty and Bounds

As indicated in the introduction, the procedure outlined in Sect. 2.2, though refined
over the years, goes back to Sárközy in the 1970s. The improvement in bounds in
Theorems1 and 2, as compared to the case of one single-variable polynomial, comes
from the details of the numerology in Lemma1, most notably the size of the density
increment δ′ ≥ (1 + c)δ. This effectively optimal increase in density is facilitated
by the quality of the exponential sum estimates mentioned in item (i) above.

More specifically, the size of the density increment can be traced to the level
of decay achieved in normalized complete local exponential sums. In the original
setting of square differences, for example, the relevant decay comes from the standard
estimate ∣∣∣∣∣

1

q

q−1∑
r=0

e2πir
2a/q

∣∣∣∣∣ 	 q−1/2 (6)

for (a, q) = 1, which ultimately leads to a density increment δ′ ≥ δ + cδ2. Substi-
tuting this increment size, and other minor necessary modifications, into the proof
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in Sect. 2.1 leads to the upper bound

δ 	 log log N

log N
,

which is better than Sárközy’s original result (1). The reader may refer to [12] or
[16] for full expositions of this refinement in the cases of squares, shifted primes,
and, in the latter case, intersective polynomials.

In the case of sums of two squares, covered in Theorem1, the relevant decay
comes from the analogous two-variable sum that then splits, allowing one to use the
same estimate (6) to conclude

∣∣∣∣∣
1

q2

q−1∑
r,s=0

e2πi(r
2+s2)a/q

∣∣∣∣∣ =
∣∣∣∣∣
1

q

q−1∑
r=0

e2πir
2a/q

∣∣∣∣∣
2

	 q−1

for (a, q) = 1, which is good enough to get the optimal density increment. The
novelty of Theorem2 is rooted in the fact that whenΔ(h) �= 0, we get the same level
of decay, namely ∣∣∣∣∣

1

q2

q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣ 	h q
−1

for (a, q) = 1, even though the sum no longer necessarily splits.
In order to improve on the bound exp(−c

√
log N ) using this approach, for any

fixed set of prohibited differences, one of two components of the numerology of
Lemma1 must be improved: either the ratio N ′/N must decay more slowly than any
power of δ, or the ratio δ′/δ must tend to infinity, as δ → 0, neither of which appear
feasible in any nontrivial context. However, the question of whether the known upper
bounds are even remotely sharp remains completely open in all of the aforementioned
cases. For amore detailed discussion of lower bounds, constructions, and conjectures,
the reader may refer to Sect. 1.4 of [15].

3 Preliminaries

3.1 Fourier Analysis and the Circle Method on Z

We embed our finite sets in Z, on which we utilize the discrete Fourier transform.
Specifically, for a function F : Z → C with finite support, we define F̂ : T → C,
whereT denotes the circle parametrized by the interval [0, 1]with 0 and 1 identified,
by

F̂(α) =
∑
n∈Z

F(n)e−2πinα.
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In this finite support context, Plancherel’s Identity

∑
n∈Z

|F(n)|2 =
∫ 1

0
|F̂(α)|2dα (7)

is a direct consequence of the orthogonality relation

∫ 1

0
e2πinαdα =

{
1 if n = 0

0 if n ∈ Z \ {0}. (8)

Given N ∈ N and a set A ⊆ [1, N ] with |A| = δN , we examine the Fourier analytic
behavior of A by considering the balanced function, f A, defined by

f A = 1A − δ1[1,N ].

We analyze f̂ A, and other exponential sums, using the Hardy–Littlewood circle
method, decomposing the frequency space into two components: the set of points on
the circle that are close to rationals with small denominator, and the complement.

Definition 2 Given N ∈ N and η > 0, we define, for each q ∈ N and a ∈ [1, q],

Ma/q = Ma/q(N , η) =
{
α ∈ T : |α − a

q
| <

1

η2N

}
, Mq =

⋃
(a,q)=1

Ma/q ,

and

M′
q =

⋃
r |q

Mq =
q⋃

a=1

Ma/q .

We then define M, the major arcs and m, the minor arcs, by

M =
η−1⋃
q=1

Mq , m = T \ M.

We note that if η2N > 2Q2, then

Ma/q ∩ Mb/r = ∅ (9)

whenever a/q �= b/r and q, r ≤ Q.
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3.2 Density Increment Lemma

The following standard result shows that for A ⊆ [1, N ], L2 concentration of f̂ A
near rationals with a particular denominator q implies increased relative density on
a long arithmetic progression of step size q, as described in item (ii) in Sect. 2.2.

Lemma 2 Suppose A ⊆ [1, N ] with |A| = δN. If q ∈ N, σ, η > 0, and

∫
M′

q

| f̂ A(α)|2dα ≥ σδ2N ,

then there exists an arithmetic progression

P = {x + �q : 1 ≤ � ≤ L}

with qL  min{σ, η2}N and |A ∩ P| ≥ (1 + σ/32)δL.

Proof Suppose A ⊆ [1, N ] with |A| = δN , σ, η > 0. Suppose further that

∫
M′

q

| f̂ A(α)|2dα ≥ σδ2N , (10)

and let P = {q, 2q, . . . , Lq} with L = �min{σ, η2}N/128q�. We will show that
some translate of P satisfies the conclusion of Lemma2. We note that for α ∈ [0, 1],

|1̂P(α)| =
∣∣∣

L∑
�=1

e−2πi�qα
∣∣∣ ≥ L −

L∑
�=1

|1 − e−2πi�qα| ≥ L − 2πL2‖qα‖, (11)

where ‖ · ‖ denotes the distance to the nearest integer. Further, if α ∈ M′
q , then

‖qα‖ ≤ q

η2N
≤ 1

4πL
. (12)

Therefore, by (11) and (12) we have

|1̂P(α)| ≥ L/2 for all α ∈ M′
q . (13)

By (10), (13), and Plancherel’s Identity (7) we see

σδ2N ≤
∫
M′

q

| f̂ A(α)|2dα ≤ 4

L2

∫ 1

0
| f̂ A(α)|2|1̂P(α)|2dα = 4

L2

∑
n∈Z

| f A ∗ 1̃P(n)|2,
(14)
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where 1̃P(n) = 1P(−n) and

f A ∗ 1̃P(n) =
∑
m∈Z

f A(m)1P(m − n) = |A ∩ (P + n)| − δ|(P + n) ∩ [1, N ]|.
(15)

We now take advantage of the fact that f A, and consequently f A ∗ 1̃P , has mean
value zero. In other words, ∑

n∈Z
f A ∗ 1̃P(n) = 0. (16)

As with any real valued function, we can write

| f A ∗ 1̃P | = 2( f A ∗ 1̃P)+ − f A ∗ 1̃P , (17)

where ( f A ∗ 1̃P)+ = max{ f A ∗ 1̃P , 0}.
For the purposes of proving Lemma2, we can assume that f A ∗ 1̃P(n) ≤ 2δL for

all n ∈ Z, as otherwise the progression P + nwouldmore than satisfy the conclusion.
Combined with the trivial upper bound f A ∗ 1̃P(n) ≥ −δL , we can assume

| f A ∗ 1̃P(n)| ≤ 2δL for all n ∈ Z. (18)

By (14), (16)–(18), we have

∑
n∈Z

( f A ∗ 1̃P)+(n) = 1

2

∑
n∈Z

| f A ∗ 1̃P | ≥ 1

4δL

∑
n∈Z

| f A ∗ 1̃P |2 ≥ σδNL

16
. (19)

By (15), we see that f A ∗ 1̃P(n) = 0 if n /∈ [−qL , N ]. Letting E = {n ∈ Z : P +
n ⊆ [1, N ]} and F = [−qL , N ] \ E , we see that |F | ≤ 2qL . Therefore, by (18),
(19), and the bound 128qL ≤ σN , we have

∑
n∈E

( f A ∗ 1̃P)+(n) ≥ σδNL

16
− 2δL|F | ≥ σδNL

16
− 4qδL2 >

σδNL

32
. (20)

Recalling that |E | ≤ N and f A ∗ 1̃P(n) = |A ∩ (P + n)| − δL for all n ∈ E , we
have that there exists n ∈ Z with

|A ∩ (P + n)| ≥ (1 + σ/32)δL ,

as required.
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4 L2 Concentration

For this section, we once again fix a binary a quadratic form h ∈ Z[x, y] with
Δ(h) �= 0, and let

I (h) = {h(m, n) : m, n ∈ N} \ {0}.

The following result makes precise the implication outlined in item (i) in Sect. 2.2,
in which the condition (A − A) ∩ I (h) = ∅ forces substantial L2 concentration of
f̂ A near rationals with a single small denominator. Combining this with Lemma2,
we then quickly deduce Lemma1.

Lemma 3 Suppose A ⊆ [1, N ] with |A| = δN, and let η = c0δ for a sufficiently
small constant c0 = c0(h) > 0. If (A − A) ∩ I (h) = ∅, δ ≥ N−1/20, and |A ∩ (N/9,
8N/9)| ≥ 3δN/4, then there exists q ≤ η−1 such that

∫
M′

q

| f̂ A(α)|2dα h δ2N .

4.1 Proof of Lemma1

Suppose A ⊆ [1, N ], |A| = δN , δ ≥ N−1/20, and (A − A) ∩ I (h) = ∅.
If |A ∩ (N/9, 8N/9)| < 3δN/4, then

max{|A ∩ [1, N/9]|, |A ∩ [8N/9, N ]|} > δN/8.

In other words, A has density at least 9δ/8 on one of these intervals.
Otherwise, Lemmas3 and 2 apply, so in either case, letting η = c0δ, there exists

q ≤ η−1 and an arithmetic progression

P = {x + �q : 1 ≤ � ≤ L}

with qL h δ2N and |A ∩ P| ≥ (1 + c)δL . Partitioning P into subprogressions of
step size q2, the pigeonhole principle yields a progression

P ′ = {y + �q2 : 1 ≤ � ≤ N ′} ⊆ P

with N ′ ≥ L/2q and |A ∩ P ′| ≥ (1 + c)δN ′. This allows us to define a set A′ ⊆
[1, N ′] by

A′ = {� ∈ [1, N ′] : y + �q2 ∈ A},

which clearly satisfies |A′| ≥ (1 + c)δN ′ and N ′ h δ2N/q2 h δ4N . Moreover,
since q2h(m, n)=h(qm, qn), A′ inherits the lack of h(m, n) differences from A. �
Our task is now completely reduced to a proof of Lemma3.
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4.2 Proof of Lemma3

Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ. We let J = |b1| + |b2| + |b3|,
M = √

N/9J , Z = {(m, n) ∈ [1, M]2 : h(m, n) = 0}, and Λ = [1, M]2 \ Z .
We note that

|Z | 	h M. (21)

If (A − A) ∩ I (h) = ∅, then since h(Λ) ⊆ [−N/9, N/9], we see that
∑
x∈Z

(m,n)∈Λ

f A(x) f A(x + h(m, n)) =
∑
x∈Z

(m,n)∈Λ

1A(x)1A(x + h(m, n))

− δ
∑
x∈Z

(m,n)∈Λ

1A(x)1[1,N ](x + h(m, n))

− δ
∑
x∈Z

(m,n)∈Λ

1[1,N ](x − h(m, n))1A(x)

+ δ2
∑
x∈Z

(m,n)∈Λ

1[1,N ](x)1[1,N ](x + h(m, n))

≤
(
δ2N − 2δ|A ∩ (N/9, 8N/9)|

)
|Λ|.

Therefore, if |A ∩ (N/9, 8N/9)| ≥ 3δN/4, we have

∑
n∈Z

1≤m≤M

fA(n) f A(x + h(m, n)) ≤ −δ2N |Λ|/2. (22)

One can check using orthogonality (8) and Plancherel’s Identity (7) that

∑
x∈Z

(m,n)∈Λ

f A(x) f A(x + h(m, n))

=
∑
x,y∈Z

(m,n)∈Λ

f A(x) f A(y)
∫ 1

0
e2πi(x−y+h(m,n))αdα

=
∫ 1

0

(∑
x∈Z

f A(x)e
2πi xα

) ⎛
⎝∑

y∈Z
f A(y)e

−2πiyα

⎞
⎠

⎛
⎝ ∑

(m,n)∈Λ

e2πih(m,n)α

⎞
⎠ dα

=
∫ 1

0
| f̂ A(α)|2SM(α)dα + O(δN |Z |),
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where
Sx (α) =

∑
1≤m,n≤x

e2πih(m,n)α.

Combined with (21), (22), and the triangle inequality, this yields

∫ 1

0
| f̂ A(α)|2|SM(α)|dα ≥ δ2NM2/4. (23)

By adapting traditional exponential sum estimates to this two-variable setting, and
at one point carefully exploiting that Δ(h) �= 0, we have that if δ ≥ N−1/20, then

|SM(α)| 	h M2/q for α ∈ Mq , q ≤ η−1, (24)

and
|SM(α)| ≤ CηM2 ≤ δM2/8 for α ∈ m, (25)

provided we choose c0 ≤ 1/8C. We prove and discuss these estimates in detail in
Sect. 5.

By (25) and Plancherel’s Identity (7), we have

∫
m

| f̂ A(α)|2|SM(α)|dα ≤ δ2NM2/8,

which by (23) yields

∫
M

| f̂ A(α)|2|SM(α)|dα ≥ δ2NM2/8. (26)

By (24) and (26) we have

δ2NM2 	h

η−1∑
q=1

M2

q

∫
Mq

| f̂ A(α)|2dα. (27)

We then make use of the following proposition, a more general version of which can
be found in Proposition 5.6 of [15], which exploits the more inclusive definition of
M′

q as compared withMq .

Proposition 1 If η2N > 2Q2, then

max
q≤Q

∫
M′

q

| f̂ A(α)|2dα ≥ 1

2

Q∑
q=1

q−1
∫
Mq

| f̂ A(α)|2dα.
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Proof By (9) we have

Qmax
q≤Q

∫
M′

q

| f̂ A(α)|2dα ≥
Q∑

q=1

∫
M′

q

| f̂ A(α)|2dα

=
Q∑

q=1

∑
r |q

∫
Mr

| f̂ A(α)|2dα

=
Q∑

r=1

�Q/r�
∫
Mr

| f̂ A(α)|2dα

≥ Q

2

Q∑
r=1

r−1
∫
Mr

| f̂ A(α)|2dα,

and the proposition follows.

Lemma3 then follows immediately from (27) and Proposition 1. �

5 Exponential Sum Estimates

In this section, we carefully adapt traditional exponential sum estimates in order to
establish the crucial upper bounds (24) and (25). For the entirety of the section, we
fix a nonzero binary quadratic form

h(x, y) = b1x
2 + b2xy + b3y

2 ∈ Z[x, y].

Unlike in previous sections, we do not make the perpetual assumption that Δ(h) =
b22 − 4b1b3 �= 0, but rather enforce this condition only when necessary.

5.1 Major Arc Estimates

We begin our pursuit of (24) by establishing an asymptotic formula for the relevant
exponential sumnear rationalswith small denominator. To achieve this goal,wemake
multiple appeals to the following standard formula, which is simply integration by
parts applied to an appropriate Riemann–Stieltjes integral.

Lemma 4 (Abel’s Partial Summation Formula) If φ : R → C is continuously dif-
ferentiable, f : N → C, F(x) = ∑

1≤n≤x f (n), and M > 0, then

∑
1≤n≤M

f (n)φ(n) = F(M)φ(M) −
∫ M

0
F(x)φ′(x)dx .
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We now proceed with the asymptotic formula, obtained by applying Lemma4 one
variable at a time.

Lemma 5 If a, q ∈ N, α = a/q + β, and M > 0, then

SM(α) =
∑

1≤m,n≤M

e2πih(m,n)α

= q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + O(qM(1 + JM2β)),

where J = |b1| + |b2| + |b3| and

G(a, q) =
q−1∑
r,s=0

e2πih(r,s)a/q .

Proof For each fixed 1 ≤ m ≤ M and y > 0, we see that

Smy (a/q) =
∑

1≤n≤y

e2πih(m,n)a/q

=
q−1∑
s=0

e2πih(m,s)a/q |{1 ≤ n ≤ y : n ≡ s mod q}|

= y

q
Gm(a, q) + O(q),

where

Gm(a, q) =
q−1∑
s=0

e2πih(m,s)a/q .

Then, letting hy = ∂h
∂y and combining the above with Lemma4 and integration by

parts, we have

SmM(α) =
∑

1≤n≤M

e2πih(m,n)a/qe2πih(m,n)β

= SmM(a/q)e2πih(m,M)β −
∫ M

0
Smy (a/q)(2πihy(m, y)β)e2πih(m,y)βdy

= q−1Gm(a, q)

(
Me2πih(m,M)β −

∫ M

0
y2πihy(m, y)βe2πih(m,y)βdy

)

+ O(q(1 + JM2β))

= q−1Gm(a, q)

∫ M

0
e2πih(m,y)βdy + O(q(1 + JM2β)).
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Similarly, summing in m we have

S̃x (a/q) =
∑

1≤m≤x

Gm(a, q)

=
q−1∑
r=0

Gr (a, q) |{1 ≤ m ≤ x : m ≡ r mod q}|

= x

q
G(a, q) + O(q),

and, letting hx = ∂h
∂x , we apply the same sequence of steps to see that SM(α) equals

q−1
∑

1≤m≤M

Gm(a, q)

∫ M

0
e2πih(m,y)βdy + O(qM(1 + JM2β))

=q−1
(
S̃M(a/q)

∫ M

0
e2πih(M,y)βdy

−
∫ M

0

∫ M

0
S̃x (a/q)(2πihx (x, y)β)e2πih(x,y)βdxdy

)
+ O(qM(1 + JM2β))

=q−2G(a, q)
(
M

∫ M

0
e2πih(M,y)βdy

−
∫ M

0

∫ M

0
x(2πihx (x, y)β)e2πih(x,y)βdxdy

)
+ O(qM(1 + JM2β))

=q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + O(qM(1 + JM2β)),

and the formula is established.

The crucial denominator q in (24) comes from the following result, previously dis-
cussed in Sect. 2.3, which is the one and only juncture at which we requireΔ(h) �= 0.
This key ingredient, as well as the standard proof we recreate for Lemma8, rely on
a technique known as Weyl differencing, in which we take the modulus squared of
the exponential sum in order to reduce the quadratic dependence in each variable to
a linear dependence.

Lemma 6 If Δ(h) �= 0 and a, q ∈ N with (a, q) = 1, then

∣∣∣∣∣
q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣ 	h q.

Proof Fixing a, q ∈ N with (a, q) = 1, exploiting that |z|2 = zz for any z ∈ C, and
changing variables r ′ = r + t , s ′ = s + u, we see that
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∣∣∣∣∣
q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣
2

=
q−1∑

r,r ′,s,s ′=0

e2πi(h(r ′,s ′)−h(r,s))a/q

=
q−1∑

r,s,t,u=0

e2πi(h(r+t,s+u)−h(r,s))a/q

=
q−1∑

r,s,t,u=0

e2πi(2b1r t+b1t2+b2ru+b2st+b2tu+2b3su+b3u2)a/q

=
q−1∑
t,u=0

e2πih(t,u)a/q

(
q−1∑
r=0

e2πi(2b1t+b2u)ra/q

) (
q−1∑
s=0

e2πi(b2t+2b3u)sa/q

)

=
q−1∑
t,u=0

e2πih(t,u)a/q

{
q2 if 2b1t + b2u ≡ b2t + 2b3u ≡ 0 mod q

0 else
,

where the last equality follows from the orthogonality relation

q−1∑
r=0

e2πirb/q =
{
q if q | b
0 else

.

Looking at the two congruence conditions above, multiplying the first expression by
b2, and multiplying the second expression by 2b1, we get the system

2b1b2t + b22u ≡ 2b1b2t + 4b1b3u ≡ 0 mod q.

By subtracting the two resulting expressionswe see that q must divideΔ(h)u. Letting
d = gcd(q,Δ(h)), we have that u must be one of the d multiples of q/d, which each
yield at most gcd(q, 2b1b2) choices for t . In particular, ifΔ(h) �= 0, then the number
of simultaneous solutions is Oh(1), and the lemma follows.

5.2 Proof of (24)

Returning to the setting of the proof of Lemma3, if α ∈ Mq with

q ≤ η−1 	h δ−1 ≤ N 1/20 	 M1/10,

then α = a/q + β with
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|β| <
1

η2N
	h N−9/10 	 M−9/5

for some a with (a, q) = 1. In this case, Lemma5 tells us that

SM(α) = q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + Oh(M

1.3).

Applying Lemma6 and trivially bounding the double integral by M2, we have

|SM(α)| 	h M2/q,

as claimed in (24). �

5.3 Minor Arc Estimates

Webegin our pursuit of (25) with the following standard oscillatory integral estimate,
which will allow us to exhibit (25) in the case that α is fairly close to a rational with
small denominator, but not so close as to lie in the major arcs.

Lemma 7 (Van der Corput’s Lemma for Quadratic Polynomials) If g(x) = x2 +
bx + c ∈ R[x] and I ⊆ R is an interval, then

∣∣∣∣
∫
I
e2πig(x)βdx

∣∣∣∣ 	 |β|−1/2.

Proof Fix g(x) = x2 + bx + c ∈ R[x] and an interval I ⊆ R, and let E = (I +
b/2) ∩ {x : |x | ≥ |β|−1/2}, where I + b/2 denotes the translation of the interval I
by b/2. We know that the measure of (I + b/2) \ E is at most 2|β|−1/2, so we
complete the square and change variables to see that

∣∣∣∣
∫
I
e2πig(x)βdx

∣∣∣∣ =
∣∣∣∣
∫
I
e2πi((x+b/2)2−b2/4+c)βdx

∣∣∣∣
=

∣∣∣∣
∫
I
e2πi(x+b/2)2βdx

∣∣∣∣
=

∣∣∣∣
∫
I+b/2

e2πiy
2βdy

∣∣∣∣
	 |β|−1/2 +

∣∣∣∣
∫
E
e2πiy

2βdy

∣∣∣∣ .
Writing

e2πiy
2β = 1

4πiyβ

d

dx
(e2πiy

2β),
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we have by integration by parts that

∫
E
e2πiy

2βdy =
[
e2πiy

2β

4πiyβ

]
+

∫
E

e2πiy
2β

4πiy2β
dy,

where the expression in brackets is appropriately evaluated at endpoints of E . By
construction, |y| ≥ |β|−1/2 at each endpoint of E , and hence

∣∣∣∣
∫
E
e2πiy

2βdy

∣∣∣∣ 	 |β|−1/2 + |β|−1
∫

|y|≥|β|−1/2

1

y2
dy 	 |β|−1/2,

which establishes the desired estimate.

With regard to estimating the double integral in the conclusion of Lemma5, since
we assumed h was not identically zero, we can relabel or make a linear change of
variables to reduce to the case where b1 �= 0. Then, by applying Lemma7 to the
integral in x for every fixed y, we immediately get the following estimate.

Corollary 1 If M > 0, then

∣∣∣∣
∫ M

0

∫ M

0
e2πih(x,y)βdxdy

∣∣∣∣ 	h M |β|−1/2. (28)

For our final ingredient, we turn to the following traditional estimate, which we
utilize to establish (25) when α is close to a denominator that is neither too small
nor too large.

Lemma 8 (Weyl’s Inequality for Quadratic Polynomials) Suppose g(x) = bx2 +
cx + d ∈ R[x], b ∈ N, a, q ∈ N, t ≥ 1, and x > 0. If (a, q) = 1 and |α − a/q| ≤
tq−2, then

∣∣∣∣∣
∑

1≤n≤x

e2πig(n)α

∣∣∣∣∣ 	 (
bx log q + t x + btx2/q + q log q

)1/2
.

Proof Letting S denote the exponential sum we wish to estimate, we see that

|S|2 =
∑

1≤n,n′≤x

e2πi(h(n′)−h(n))α = x + 2�
( ∑
1≤n<n′≤x

e2πi(h(n′)−h(n))α

)
, (29)

where the x accounts for terms where n = n′, and � denotes the real part. With a
change of variables n′ = n + h, we have
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∑
1≤n<n′≤x

e2πi(h(n′)−h(n))α =
∑

1≤n≤x−1

∑
1≤h≤x−n

e2πi(h(n+h)−h(n))α

=
∑

1≤n≤x−1

∑
1≤h≤x−n

e2π(2bnh+h2+ch)α

=
∑

1≤h≤x−1

e2πi(h
2+ch)α

∑
1≤n≤x−h

e2πi(2bhn)α.

Applying the geometric series formula to the inner sum, and the triangle inequality,
gives us ∣∣∣∣∣

∑
1≤n<n′≤x

e2πi(h(n′)−h(n))α

∣∣∣∣∣ 	
∑

1≤h≤2bx

min
{
x, ‖hα‖−1

}
, (30)

where ‖ · ‖ denotes the distance to the nearest integer.
Fixing q ∈ N and breaking the sum in h into intervals of length q, we have

∑
1≤h≤2bx

min
{
x, ‖hα‖−1

} ≤
∑

1≤ j≤2bx/q

q−1∑
s=0

min
{
x, ‖(q j + s)α‖−1} . (31)

If a ∈ N with |α − a/q| ≤ tq−2, we can write α = a/q + O(t/q2), and hence

(q j + s)α = q jα + sa

q
+ O(t/q).

Further, if we let k be the nearest integer to q2 jα, then q jα = k/q + O(t/q) and
hence

(q j + s)α = sa + k

q
+ O(t/q).

Combined with (31), this yields

∑
1≤h≤2bx

min
{
x, ‖hα‖−1

} ≤
∑

1≤ j≤2bx/q

q−1∑
s=0

min

{
x, ‖ sa + k

q
+ O(t/q)‖−1

}
. (32)

If (a, q) = 1, then as s runs over all congruence classes modulo q, so does sa. In
particular, the O(t/q) error term dominates for at most O(t) terms, and we have

∑
1≤ j≤2bx/q

q−1∑
s=0

min

{
x, ‖ sa + k

q
+ O(t/q)‖−1

}
	

∑
1≤ j≤2bx/q

(
t x +

q/2∑
s=1

q

s

)

	 (2bx/q + 1)(t x + q log q),

which combines with (29), (30), and (32) to yield the desired estimate.
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In the same way we deduce Corollary1 from Lemma7, we reduce to the case of
b1 �= 0 and apply Lemma8 to the sum in m for every fixed n to immediately get the
following estimate.

Corollary 2 Suppose a, q ∈ N, α ∈ [0, 1], and x > 0. If (a, q) = 1 and |α −
a/q| ≤ q−2, then

∣∣∣∣∣
∑

1≤m,n≤x

e2πih(m,n)α

∣∣∣∣∣ 	h x
(
x log q + x2/q + q log q

)1/2
. (33)

Remark. We note that under the assumption Δ(h) �= 0, the estimates (28) and (33)
can be improved to |β|−1 and

(
x4/q2 + (x3/q + x2 + qx) log q

)1/2
,

respectively. For the former, since it is in a continuous setting, one can simply use
that if b2 − 4ac �= 0, then

ax2 + bxy + cy2 = u2 + v2

after an invertible linear change of variables, and then apply Lemma7 separately in
u and v. The latter estimate can be established by mimicking the two-variable Weyl
differencing process, and exploitation of nonzero discriminant, exhibited in the proof
of Lemma6. However, for the purposes of proving Theorem2, we only require this
sort of “optimal cancellation” on the major arcs, so for the sake of brevity, and for
the sake of exposing the components used in previous applications of this method,
we leave the details of these improvements as exercises for the reader.

5.4 Proof of (25)

Returning to the setting of the proof of Lemma3, we consider α ∈ m. By the pigeon-
hole principle, there exists 1 ≤ q ≤ M7/4 and (a, q) = 1 such that

|α − a/q| ≤ 1

qM7/4
≤ 1

q2
.

Writing α = a/q + β, if q ≤ M1/4, then we have from Lemma5 that

SM(α) = q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + Oh(M

3/2). (34)
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If q ≤ η−1, then it must be the case that |β| > (η2N )−1, since otherwise we
would have α ∈ M. In this case, recalling that N 	h M2 and η h δ ≥ N−1/20 h

M−1/10, it follows from (34), Corollary1, and trivially bounding G(a, q) by q2 that

|SM(α)| 	 M |β|−1/2 + Oh(M
3/2) 	h ηM2.

If η−1 ≤ q ≤ M1/4, then by (34), Lemma6, and trivially bounding the double integral
by M2, we have

SM(α) 	h M2/q + Oh(M
3/2) 	h ηM2.

Finally, if M1/4 ≤ q ≤ M7/4, then by Corollary2 we have

|SM(α)| 	h M(M log q + M2/q + q log q)1/2 	 M15/8 	h ηM2,

and (25) is established in all cases. �
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