
Matrix Scaling Limits in Finitely Many
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Melvyn B. Nathanson

Abstract The alternate row and column scaling algorithm applied to a positive
n × n matrix A converges to a doubly stochastic matrix S(A), sometimes called the
Sinkhorn limit of A. For every positive integer n, a two parameter family of row
but not column stochastic n × n positive matrices is constructed that become doubly
stochastic after exactly one column scaling.
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1 The Alternate Scaling Algorithm

A positive matrix is a matrix with positive coordinates. A nonnegative matrix is a
matrix with nonnegative coordinates. Let D = diag(x1, . . . , xn) denote the n × n
diagonal matrix with coordinates x1, . . . , xn on the main diagonal. The diagonal
matrix D is positive if its coordinates x1, . . . , xn are positive. If A = (ai, j ) is anm × n
positive matrix, if X = diag(x1, . . . , xm) is an m × m positive diagonal matrix, and
if Y = diag(y1, . . . , yn) is an n × n positive diagonal matrix, then X A = (xiai, j ),
AY = (ai, j y j ), X AY = (xiai, j y j ) are m × n positive matrices.

Let A = (ai, j ) be an n × n matrix. The i th row sum of A is

rowsumi (A) =
n∑

j=1

ai, j .

The j th column sum of A is

colsum j (A) =
n∑

i=1

ai, j .

M. B. Nathanson (B)
Lehman College (CUNY), Bronx, NY 10468, USA
e-mail: melvyn.nathanson@lehman.cuny.edu

© Springer Nature Switzerland AG 2020
M. B. Nathanson (ed.), Combinatorial and Additive Number Theory III,
Springer Proceedings in Mathematics & Statistics 297,
https://doi.org/10.1007/978-3-030-31106-3_12

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31106-3_12&domain=pdf
mailto:melvyn.nathanson@lehman.cuny.edu
https://doi.org/10.1007/978-3-030-31106-3_12


162 M. B. Nathanson

The matrix A is row stochastic if it is nonnegative and rowsumi (A) = 1 for all i ∈
{1, . . . , n}. Thematrix A is column stochastic if it is nonnegative and colsum j (A) = 1
for all j ∈ {1, . . . , n}. The matrix A is doubly stochastic if it is both row stochastic
and column stochastic.

Let A = (ai, j ) be a nonnegative n × n matrix such that rowsumi (A) > 0 and
colsum j (A) > 0 for all i, j ∈ {1, . . . , n}. Define the n × n positive diagonal matrix

X (A) = diag

(
1

rowsum1(A)
,

1

rowsum2(A)
, . . . ,

1

rowsumn(A)

)
.

Multiplying A on the left by X (A) multiplies each coordinate in the i th row of A by
1/rowsumi (A), and so

(X (A)A)i, j = ai, j
rowsumi (A)

and

rowsumi (X (A)A) =
n∑

j=1

(X (A)A)i, j =
n∑

j=1

ai, j
rowsumi (A)

= rowsumi (A)

rowsumi (A)
= 1

for all i ∈ {1, 2, . . . , n}. The process of multiplying A on the left by X (A) to obtain
the row stochastic matrix X (A)A is called row scaling. We have X (A)A = A if and
only if A is row stochastic if and only if X (A) = I . Note that the row stochastic
matrix X (A)A is not necessarily column stochastic.

Similarly, we define the n × n positive diagonal matrix

Y (A) = diag

(
1

colsum1(A)
,

1

colsum2(A)
, . . . ,

1

colsumn(A)

)
.

Multiplying A on the right by Y (A) multiplies each coordinate in the j th column of
A by 1/colsum j (A), and so

(AY (A))i, j = ai, j
colsum j (A)

and

colsum j (AY (A)) =
n∑

i=1

(AY (A))i, j =
n∑

i=1

ai, j
colsum j (A)

= colsum j (A)

colsum j (A)
= 1
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for all j ∈ {1, 2, . . . , n}. The process of multiplying A on the right by Y (A) to obtain
a column stochastic matrix AY (A) is called column scaling. We have AY (A) = A
if and only if Y (A) = I if and only if A is column stochastic. The column stochastic
matrix AY (A) is not necessarily row stochastic.

Let A be a positive n × n matrix. Alternately row scaling and column scaling
the matrix A produces an infinite sequence of matrices that converges to a doubly
stochastic matrix This result (due to Brualdi, Parter, and Schnieder [1], Letac [3],
Menon [4], Sinkhorn [7], Sinkhorn–Knopp [8], Tverberg [9], and others) is classical.

Nathanson [5, 6] proved that if A is a 2 × 2 positive matrix that is not doubly
stochastic but becomes doubly stochastic after a finite number L of scalings, then
L is at most 2, and the 2 × 2 row stochastic matrices that become doubly stochastic
after exactly one column scaling were computed explicitly. An open question was
to describe n × n matrices with n ≥ 3 that are not doubly stochastic but become
doubly stochastic after finitely many scalings. Ekhad and Zeilberger [2] discovered
the following row-stochastic but not column stochastic 3 × 3 matrix, which requires
exactly one column scaling to become doubly stochastic:

A =
⎛

⎝
1/5 1/5 3/5
2/5 1/5 2/5
3/5 1/5 1/5

⎞

⎠ . (1)

Column scaling A produces the doubly stochastic matrix

AY (A) =
⎛

⎝
1/6 1/3 3/6
2/6 1/3 2/6
3/6 1/3 1/6

⎞

⎠ .

The following construction generalizes this example. For every n ≥ 3, there is a two
parameter family of row-stochastic n × n matrices that require exactly one column
scaling to become doubly stochastic

Let A = (
ai, j

)
be an m × n matrix. For i = 1, . . . ,m, we denote the i th row of

A by
rowi (A) = (

ai,1, ai,2, . . . , ai,n
)
.

Theorem 1 Let k and � be positive integers, and let n > max(2k, 2�). Let x and z
be positive real numbers such that

0 < x + z <
1

k
and x + z �= 2

n
(2)

and let

y = x + z

2
and w = 1 − k(x + z)

n − 2k
. (3)

The n × n matrix A such that
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rowi (A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, x, . . . , x︸ ︷︷ ︸
k

w,w, . . . , w︸ ︷︷ ︸
n−2k

z, z, . . . , z︸ ︷︷ ︸
k

if i ∈ {1, 2, . . . , �}

(y, y, . . . , y︸ ︷︷ ︸
k

w,w, . . . , w︸ ︷︷ ︸
n−2k

y, y, . . . , y︸ ︷︷ ︸
k

if i ∈ {� + 1, � + 2, . . . , n − �}

(z, z, . . . , z︸ ︷︷ ︸
k

w,w, . . . , w︸ ︷︷ ︸
n−2k

x, x, . . . , x︸ ︷︷ ︸
k

if i ∈ {n − � + 1, n − � + 2, . . . , n}

is row stochastic but not column stochastic. The matrix obtained from A after one
column scaling is doubly stochastic.

Proof If
i ∈ {1, 2, . . . , �} ∪ {n − � + 1, n − � + 2, . . . , n}

then
rowsumi (A) = k(x + z) + (n − 2k)w = 1.

If
i ∈ {� + 1, � + 2, . . . , n − �}

then
rowsumi (A) = 2ky + (n − 2k)w = 1.

Thus, the matrix A is row stochastic.
If

j ∈ {1, 2, . . . , k} ∪ {n − k + 1, n − k + 2, . . . , n}

then
colsum j (A) = �x + (n − 2�)y + �z = ny = n

2
(x + z) �= 1.

If
j ∈ {k + 1, k + 2, . . . , n − k}

then
colsum j (A) = nw �= 1.

Thus, matrix A is not column stochastic.
The column scaling matrix for A is the positive diagonal matrix

Y (A) = diag

⎛

⎜⎜⎝
1

ny
, . . . ,

1

ny︸ ︷︷ ︸
k

,
1

nw
, . . . ,

1

nw︸ ︷︷ ︸
n−2k

,
1

ny
, . . . ,

1

ny︸ ︷︷ ︸
k

⎞

⎟⎟⎠ .
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For the column scaled matrix AY (A), we have the following row sums. If

i ∈ {1, 2, . . . , �} ∪ {n − � + 1, n − � + 2, . . . , n}

then

rowsumi (AY (A)) = kx

ny
+ (n − 2k)w

nw
+ kz

ny
= k(x + z)

ny
+ 1 − 2k

n
= 1.

If
i ∈ {� + 1, � + 2, . . . , n − �}

then

rowsumi (A) = 2ky

ny
+ (n − 2k)w

nw
= 2k

n
+ 1 − 2k

n
= 1.

Thus, the matrix AY (A) is row stochastic. This completes the proof. �
For example, let k = � = 1 and n = 3, and let w, x, y, z be positive real numbers

such that

0 < x + z < 1, x + z �= 2

3

y = x + z

2
and w = 1 − x − z.

The matrix

A =
⎛

⎝
x w z
y w y
z w x

⎞

⎠ , (4)

is row stochastic but not column stochastic. By Theorem1, column scaling A pro-
duces a doubly stochastic matrix. Choosing x = 1/5 and z = 3/5, we obtain the
matrix (1).

Here is another example. Let k = 2, � = 3, and n = 7. Choosing

x = 1

4
, y = 3

16
, z = 1

8
, w = 1

12

we obtain the row but not column stochastic matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/4 1/4 1/12 1/12 1/12 1/8 1/8
1/4 1/4 1/12 1/12 1/12 1/8 1/8
1/4 1/4 1/12 1/12 1/12 1/8 1/8
3/16 3/16 1/12 1/12 1/12 3/16 3/16
1/8 1/8 1/12 1/12 1/12 1/4 1/4
1/8 1/8 1/12 1/12 1/12 1/4 1/4
1/8 1/8 1/12 1/12 1/12 1/4 1/4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Column scaling produces the doubly stochastic matrix

AY (A) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

4/21 4/21 1/7 1/7 1/7 2/21 2/21
4/21 4/21 1/7 1/7 1/7 2/21 2/21
4/21 4/21 1/7 1/7 1/7 2/21 2/21
1/7 1/7 1/7 1/7 1/7 1/7 1/7
2/21 2/21 1/7 1/7 1/7 4/21 4/21
2/21 2/21 1/7 1/7 1/7 4/21 4/21
2/21 2/21 1/7 1/7 1/7 4/21 4/21

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 2 Every n × n matrix A constructed in Theorem1 satisfies det(A) = 0.

Proof There are three cases.
If k > 1 or n − 2k > 1, then A has two equal columns and det(A) = 0.
If � > 1 or n − 2� > 1, then A has two equal rows and det(A) = 0.
If k = � = 1 and n = 3, then

A =
⎛

⎝
x w z
y w y
z w x

⎞

⎠

and
det(A) = w(x − z)(x + z − 2y) = 0.

This completes the proof. �
Theorem2 is of interest for the following reason. Let A = (

ai, j
)
be an n × n

matrix. If det(A) �= 0, then the system of linear equations

a1,1t1 + a2,1t2 + · · · + an,1tn = 1

a1,2t1 + a2,2t2 + · · · + an,2tn = 1

...

a1,nt1 + a2,nt2 + · · · + an,ntn = 1

has a unique solution. Equivalently, if det(A) �= 0, then there exists a unique n ×
n diagonal matrix T = diag(t1, . . . , tn) such that the matrix B = T A is column
stochastic.

Suppose that the matrix A is positive and row stochastic. If ti > 0 for all
i ∈ {1, . . . , n}, then T is invertible and B = T A is a positive column stochastic
matrix. Setting X = T−1, we have XB = A. Moreover, X is the row scaling matrix
associated to B. Thus, if A is a row stochastic matrix such that column scaling A pro-
duces a doubly stochastic matrix, then we have pulled A back to a column stochastic
matrix B, and we have increased by 1 the number of scalings needed to get a doubly
stochastic matrix.

Unfortunately, the matrices constructed in Theorem1 have determinant 0.
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2 Open Problems

1. Does there exist a positive 3 × 3 row stochastic but not column stochastic matrix
A with nonzero determinant such that A becomes doubly stochastic after one
column scaling?

2. Let A be a positive 3 × 3 row stochastic but not column stochastic matrix that
becomes doubly stochastic after one column scaling. Does det(A) = 0 imply that
A has the shape of matrix (4)?

3. Here is the inverse problem: Let A be an n × n row-stochastic matrix. Does
there exist a column stochastic matrix B such that row scaling B produces A
(equivalently, such that X (B)B = A)? Compute B.

4. Modify the above problems so that the matrices are required to have rational
coordinates.

5. Determine if, for positive integers L ≥ 3 and n ≥ 3, there exists a positive n × n
matrix that requires exactly L scalings to reach a doubly stochastic matrix.

6. Classify allmatrices forwhich the alternate scaling algorithm terminates infinitely
many steps.
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