Matrix Scaling Limits in Finitely Many m
Iterations crece

Melvyn B. Nathanson

Abstract The alternate row and column scaling algorithm applied to a positive
n X n matrix A converges to a doubly stochastic matrix S(A), sometimes called the
Sinkhorn limit of A. For every positive integer n, a two parameter family of row
but not column stochastic n x n positive matrices is constructed that become doubly
stochastic after exactly one column scaling.
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1 The Alternate Scaling Algorithm

A positive matrix is a matrix with positive coordinates. A nonnegative matrix is a
matrix with nonnegative coordinates. Let D = diag(xy, ..., x,) denote the n x n
diagonal matrix with coordinates xi, ..., x, on the main diagonal. The diagonal
matrix D is positiveifits coordinates xi, . . . , x, are positive. If A = (g; ;) isanm x n
positive matrix, if X = diag(xy, ..., x,) is an m x m positive diagonal matrix, and
if Y = diag(yy, ..., y,) is an n x n positive diagonal matrix, then XA = (x;a; ;),
AY = (a;jy;), XAY = (x;a; jy;) are m x n positive matrices.

Let A = (a; ;) be an n x n matrix. The ith row sum of A is

n
rowsum; (A) = Za,-.j.

j=1

The jth column sum of A is

n
colsum;(A) = Z aj .

i=1
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The matrix A is row stochastic if it is nonnegative and rowsum; (A) = 1 for all i €
{1, ..., n}. The matrix A is column stochastic if itis nonnegative and colsum; (A) =1
forall j € {1, ..., n}. The matrix A is doubly stochastic if it is both row stochastic
and column stochastic.

Let A = (a;;) be a nonnegative n X n matrix such that rowsum;(A) > 0 and

colsum;(A) > Oforalli, j € {1,...,n}. Define the n x n positive diagonal matrix
. 1 1 1
X (A) = diag , e .
rowsum; (A) rowsum;(A) rowsum,, (A)

Multiplying A on the left by X (A) multiplies each coordinate in the ith row of A by
1 /rowsum; (A), and so

(X(A)A),; = —
A rowsum; (A)
and
rowsum; (X(A)A) = 3 (X (A)A);; = Y ——

= = rowsum; (A)

_ rowsum; (A) _
" rowsum; (A)

foralli € {1, 2, ..., n}. The process of multiplying A on the left by X (A) to obtain
the row stochastic matrix X (A)A is called row scaling. We have X (A)A = A if and
only if A is row stochastic if and only if X (A) = I. Note that the row stochastic
matrix X (A)A is not necessarily column stochastic.

Similarly, we define the n x n positive diagonal matrix

. ( 1 1 1 )
Y(A) = diag . .

colsum;(A)’ colsumy(A)” "’ colsum,(A)

Multiplying A on the right by Y (A) multiplies each coordinate in the jth column of
A by 1/colsum;(A), and so

(AY(A)), ) = ——L
A colsum; (A)

and

n

colsum; (AY (A)) = Y (AY(A));; = Y ——bt

P P colsum; (A)
_ colsum; (A) _
- colsum; (A) -
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forall j € {1, 2, ..., n}. The process of multiplying A on the right by Y (A) to obtain
a column stochastic matrix AY (A) is called column scaling. We have AY(A) = A
if and only if Y (A) = I if and only if A is column stochastic. The column stochastic
matrix AY (A) is not necessarily row stochastic.

Let A be a positive n x n matrix. Alternately row scaling and column scaling
the matrix A produces an infinite sequence of matrices that converges to a doubly
stochastic matrix This result (due to Brualdi, Parter, and Schnieder [1], Letac [3],
Menon [4], Sinkhorn [7], Sinkhorn—Knopp [8], Tverberg [9], and others) is classical.

Nathanson [5, 6] proved that if A is a 2 x 2 positive matrix that is not doubly
stochastic but becomes doubly stochastic after a finite number L of scalings, then
L is at most 2, and the 2 x 2 row stochastic matrices that become doubly stochastic
after exactly one column scaling were computed explicitly. An open question was
to describe n x n matrices with n > 3 that are not doubly stochastic but become
doubly stochastic after finitely many scalings. Ekhad and Zeilberger [2] discovered
the following row-stochastic but not column stochastic 3 x 3 matrix, which requires
exactly one column scaling to become doubly stochastic:

1/51/53/5
A=|2/51/52/5]. (1)
3/51/51/5

Column scaling A produces the doubly stochastic matrix

1/6 1/33/6
AY(A) = | 2/6 173 2/6
3/61/31/6

The following construction generalizes this example. For every n > 3, there is a two
parameter family of row-stochastic n x n matrices that require exactly one column
scaling to become doubly stochastic
Let A = (a,-,j) be an m x n matrix. Fori = 1, ..., m, we denote the ith row of
A by
I‘OW,'(A) = ((1,"1 s iy enny a,;,,) .

Theorem 1 Let k and £ be positive integers, and let n > max(2k, 2£). Let x and z
be positive real numbers such that

1 2
O<x+z<- and x+z#-— 2)
k n
and let 1 k( )
L g w= D 3)
2 n—2k

The n x n matrix A such that
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(x,x,..., Xw,w,..., wz,z,...,z ifie{l,2,..., £}
| S —
k n—2k k
bV, vy, .o, w,w,..., wy,y,..., ifie{d+1,£+2,..., n—4¢
row;(A) = 4 @YY VoY, ¥ ifief }
k n—2k k
(z,z Zw,w,..., WX, X, .., x fien—L+1,n—0+4+2,..., n}
—
k n—2k k

is row stochastic but not column stochastic. The matrix obtained from A after one
column scaling is doubly stochastic.

Proof If
ie{l,2,...,0}Un—C+1,n—2¢+2,...,n}
then
rowsum;(A) = k(x +2) + (n —2k)w = 1.
If
ie{fe+1,£+2,...,n—1¢}
then

rowsum; (A) = 2ky + (n — 2k)w = 1.

Thus, the matrix A is row stochastic.

If
je{l,2, . K Un—k+ln—k+2,....n)
then n
colsum;(A) = €x + (n —20)y + €z =ny = g(x—i-z) # 1.
If
jetk+1,k+2, ..., n—k)
then

colsum;(A) = nw # 1.

Thus, matrix A is not column stochastic.
The column scaling matrix for A is the positive diagonal matrix

Y(A) = di 1 1 1 1 1 1
=diag| —,....,—, —, ..., —, —, ..., —
g ny ny nw nw ny ny

k n—2k k
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For the column scaled matrix AY (A), we have the following row sums. If

ie{l,2,..., 0Un—C+1,n—0+2,...,n)

then
k — 2k k k 2k
rowsum; (AY (A)) = —x+u+—z = M+1__ =1.
ny nw ny ny n
If
ie{t+1,£42,...,n—4¥}
then
2ky  (n—=2kw 2k 2k
rowsum;(A) = —+ ———"— = — +1— — =1.
ny nw n n
Thus, the matrix AY (A) is row stochastic. This completes the proof. O

For example, letk = £ = 1 and n = 3, and let w, x, y, z be positive real numbers
such that

2
O<x+z<1, x—i—z;ég
y=x+z and w=1-—x—2z.
2
The matrix
X w2z
A=|ywy], “4)

ZWwXx

is row stochastic but not column stochastic. By Theorem 1, column scaling A pro-
duces a doubly stochastic matrix. Choosing x = 1/5 and z = 3/5, we obtain the
matrix (1).

Here is another example. Let k = 2, £ = 3, and n = 7. Choosing

we obtain the row but not column stochastic matrix

1/4 1/4 1/121/12'1/12 1/8 1/8
1/4 1/4 1/121/121/12 1/8 1/8
1/4 1/4 1/121/121/12 1/8 1/8
A=|3/163/16 1/12 1/12 1/12 3/16 3/16
1/8 1/8 1/121/12 1/12 1/4 1/4
1/8 1/8 1/121/121/12 1/4 1/4
1/8 1/8 1/121/121/12 1/4 1/4
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Column scaling produces the doubly stochastic matrix

4/214/21 177 1)7 1)72/21 2/21
4/214/21 177 1)7 1/7 2/21 2/21
4/214/21 177 1)7 1)72/21 2/21
AYA) = | 177 177 1717177 177 17
2/212/21 17 1)7 1/7 4/21 4/21
2/212/21 17 1/7 17 4/21 4/21
2/212/21 177 1)7 1)7 4/21 4/21

Theorem 2 Every n x n matrix A constructed in Theorem I satisfies det(A) = 0.

Proof There are three cases.
Ifk > 1orn —2k > 1, then A has two equal columns and det(A) = 0.
If¢ > 1orn—2¢ > 1, then A has two equal rows and det(A) = 0.
Ifk=¢=1andn = 3, then

Xwz
A=|ywy
Zwx
and
det(A) = wx —2)(x +z —2y) =0.
This completes the proof. O

Theorem?2 is of interest for the following reason. Let A = (a; ;) be an n x n
matrix. If det(A) # 0, then the system of linear equations

ajh +axit+ -+ apat, =1
aipti Faspt + - Fapat, =1

al,ntl + a2,nt2 +--- 4 an,ntn =1

has a unique solution. Equivalently, if det(A) # 0, then there exists a unique n X
n diagonal matrix 7 = diag(#, ..., t,) such that the matrix B =T A is column
stochastic.

Suppose that the matrix A is positive and row stochastic. If #; > 0 for all
ie{l,...,n}, then T is invertible and B = T A is a positive column stochastic
matrix. Setting X = T~!, we have X B = A. Moreover, X is the row scaling matrix
associated to B. Thus, if A is a row stochastic matrix such that column scaling A pro-
duces a doubly stochastic matrix, then we have pulled A back to a column stochastic
matrix B, and we have increased by 1 the number of scalings needed to get a doubly
stochastic matrix.

Unfortunately, the matrices constructed in Theorem 1 have determinant 0.
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2 Open Problems

1. Does there exist a positive 3 x 3 row stochastic but not column stochastic matrix
A with nonzero determinant such that A becomes doubly stochastic after one
column scaling?

2. Let A be a positive 3 x 3 row stochastic but not column stochastic matrix that
becomes doubly stochastic after one column scaling. Does det(A) = 0 imply that
A has the shape of matrix (4)?

3. Here is the inverse problem: Let A be an n x n row-stochastic matrix. Does
there exist a column stochastic matrix B such that row scaling B produces A
(equivalently, such that X(B)B = A)? Compute B.

4. Modify the above problems so that the matrices are required to have rational
coordinates.

5. Determine if, for positive integers L > 3 and n > 3, there exists a positive n X n
matrix that requires exactly L scalings to reach a doubly stochastic matrix.

6. Classify all matrices for which the alternate scaling algorithm terminates in finitely
many steps.
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