Matrix Scaling Limits in Finitely Many Iterations

Melvyn B. Nathanson

Abstract The alternate row and column scaling algorithm applied to a positive $n \times n$ matrix *A* converges to a doubly stochastic matrix $S(A)$, sometimes called the *Sinkhorn limit* of *A*. For every positive integer *n*, a two parameter family of row but not column stochastic $n \times n$ positive matrices is constructed that become doubly stochastic after exactly one column scaling.

2010 Mathematics Subject Classification 11C20 · 11B75 · 11J68 · 11J70

1 The Alternate Scaling Algorithm

A *positive matrix* is a matrix with positive coordinates. A *nonnegative matrix* is a matrix with nonnegative coordinates. Let $D = diag(x_1, ..., x_n)$ denote the $n \times n$ diagonal matrix with coordinates x_1, \ldots, x_n on the main diagonal. The diagonal matrix *D* is *positive* if its coordinates x_1, \ldots, x_n are positive. If $A = (a_{i,j})$ is an $m \times n$ positive matrix, if $X = diag(x_1, \ldots, x_m)$ is an $m \times m$ positive diagonal matrix, and if $Y = \text{diag}(y_1, \ldots, y_n)$ is an $n \times n$ positive diagonal matrix, then $XA = (x_i a_{i,j})$, $AY = (a_{i,j}y_i)$, $XAY = (x_ia_{i,j}y_i)$ are $m \times n$ positive matrices.

Let $A = (a_{i,j})$ be an $n \times n$ matrix. The *i*th *row sum* of A is

$$
rowsum_i(A) = \sum_{j=1}^n a_{i,j}.
$$

The *j*th *column sum* of *A* is

$$
colsum_j(A) = \sum_{i=1}^n a_{i,j}.
$$

M. B. Nathanson (\boxtimes)

Lehman College (CUNY), Bronx, NY 10468, USA e-mail: melvyn.nathanson@lehman.cuny.edu

[©] Springer Nature Switzerland AG 2020

M. B. Nathanson (ed.), *Combinatorial and Additive Number Theory III*, Springer Proceedings in Mathematics & Statistics 297, https://doi.org/10.1007/978-3-030-31106-3_12

The matrix *A* is *row stochastic* if it is nonnegative and rowsum_{*i*}(*A*) = 1 for all *i* ∈ $\{1,\ldots,n\}$. The matrix *A* is *column stochastic* if it is nonnegative and colsum $_i(A) = 1$ for all $j \in \{1, \ldots, n\}$. The matrix *A* is *doubly stochastic* if it is both row stochastic and column stochastic.

Let $A = (a_{i,j})$ be a nonnegative $n \times n$ matrix such that rowsum_i(A) > 0 and colsum_{*i*}(*A*) > 0 for all *i*, *j* \in {1, ..., *n*}. Define the *n* × *n* positive diagonal matrix

$$
X(A) = \text{diag}\left(\frac{1}{\text{rowsum}_1(A)}, \frac{1}{\text{rowsum}_2(A)}, \dots, \frac{1}{\text{rowsum}_n(A)}\right).
$$

Multiplying *A* on the left by *X*(*A*) multiplies each coordinate in the *i*th row of *A* by 1 /rowsum_{*i*}(A), and so

$$
(X(A)A)_{i,j} = \frac{a_{i,j}}{\text{rowsum}_i(A)}
$$

and

$$
\text{rowsum}_{i} (X(A)A) = \sum_{j=1}^{n} (X(A)A)_{i,j} = \sum_{j=1}^{n} \frac{a_{i,j}}{\text{rowsum}_{i}(A)}
$$

$$
= \frac{\text{rowsum}_{i}(A)}{\text{rowsum}_{i}(A)} = 1
$$

for all $i \in \{1, 2, \ldots, n\}$. The process of multiplying *A* on the left by $X(A)$ to obtain the row stochastic matrix $X(A)A$ is called *row scaling*. We have $X(A)A = A$ if and only if *A* is row stochastic if and only if $X(A) = I$. Note that the row stochastic matrix $X(A)$ *A* is not necessarily column stochastic.

Similarly, we define the $n \times n$ positive diagonal matrix

$$
Y(A) = \text{diag}\left(\frac{1}{\text{colsum}_1(A)}, \frac{1}{\text{colsum}_2(A)}, \dots, \frac{1}{\text{colsum}_n(A)}\right).
$$

Multiplying *A* on the right by *Y* (*A*) multiplies each coordinate in the *j*th column of *A* by 1 /colsum_{*i*}(*A*), and so

$$
(AY(A))_{i,j} = \frac{a_{i,j}}{\text{colsum}_j(A)}
$$

and

$$
\text{colsum}_j(AY(A)) = \sum_{i=1}^n (AY(A))_{i,j} = \sum_{i=1}^n \frac{a_{i,j}}{\text{colsum}_j(A)}
$$

$$
= \frac{\text{colsum}_j(A)}{\text{colsum}_j(A)} = 1
$$

for all $j \in \{1, 2, \ldots, n\}$. The process of multiplying *A* on the right by $Y(A)$ to obtain a column stochastic matrix $AY(A)$ is called *column scaling*. We have $AY(A) = A$ if and only if $Y(A) = I$ if and only if A is column stochastic. The column stochastic matrix $AY(A)$ is not necessarily row stochastic.

Let *A* be a positive $n \times n$ matrix. Alternately row scaling and column scaling the matrix *A* produces an infinite sequence of matrices that converges to a doubly stochastic matrix This result (due to Brualdi, Parter, and Schnieder [\[1\]](#page-6-0), Letac [\[3](#page-6-1)], Menon [\[4\]](#page-6-2), Sinkhorn [\[7](#page-6-3)], Sinkhorn–Knopp [\[8\]](#page-6-4), Tverberg [\[9\]](#page-6-5), and others) is classical.

Nathanson [\[5,](#page-6-6) [6](#page-6-7)] proved that if *A* is a 2×2 positive matrix that is not doubly stochastic but becomes doubly stochastic after a finite number *L* of scalings, then *L* is at most 2, and the 2×2 row stochastic matrices that become doubly stochastic after exactly one column scaling were computed explicitly. An open question was to describe $n \times n$ matrices with $n \geq 3$ that are not doubly stochastic but become doubly stochastic after finitely many scalings. Ekhad and Zeilberger [\[2](#page-6-8)] discovered the following row-stochastic but not column stochastic 3×3 matrix, which requires exactly one column scaling to become doubly stochastic:

$$
A = \begin{pmatrix} 1/5 & 1/5 & 3/5 \\ 2/5 & 1/5 & 2/5 \\ 3/5 & 1/5 & 1/5 \end{pmatrix} . \tag{1}
$$

Column scaling *A* produces the doubly stochastic matrix

$$
AY(A) = \begin{pmatrix} 1/6 & 1/3 & 3/6 \\ 2/6 & 1/3 & 2/6 \\ 3/6 & 1/3 & 1/6 \end{pmatrix}.
$$

The following construction generalizes this example. For every $n \geq 3$, there is a two parameter family of row-stochastic $n \times n$ matrices that require exactly one column scaling to become doubly stochastic

Let $A = (a_{i,j})$ be an $m \times n$ matrix. For $i = 1, ..., m$, we denote the *i*th row of *A* by

$$
rowi(A) = (ai,1, ai,2, ..., ai,n).
$$

Theorem 1 Let k and ℓ be positive integers, and let $n > \max(2k, 2\ell)$. Let x and z *be positive real numbers such that*

$$
0 < x + z < \frac{1}{k} \quad \text{and} \quad x + z \neq \frac{2}{n} \tag{2}
$$

and let

$$
y = \frac{x+z}{2} \quad \text{and} \quad w = \frac{1 - k(x+z)}{n - 2k}.
$$
 (3)

The n \times *n* matrix A such that

$$
row_{i}(A) = \begin{cases} \underbrace{(x, x, \dots, x, w, w, \dots, w}_{k}, \underbrace{w, z, z, \dots, z}_{n-2k} & \text{if } i \in \{1, 2, \dots, \ell\} \\ \underbrace{(y, y, \dots, y, w, \dots, w, y, y, \dots, y}_{n-2k}, & \text{if } i \in \{\ell + 1, \ell + 2, \dots, n - \ell\} \\ \underbrace{(z, z, \dots, z, w, w, \dots, w, x, x, \dots, x}_{n-2k}, & \text{if } i \in \{n - \ell + 1, n - \ell + 2, \dots, n\} \end{cases}
$$

is row stochastic but not column stochastic. The matrix obtained from A after one column scaling is doubly stochastic.

Proof If

$$
i \in \{1, 2, ..., \ell\} \cup \{n - \ell + 1, n - \ell + 2, ..., n\}
$$

then

$$
rowsum_i(A) = k(x + z) + (n - 2k)w = 1.
$$

If

$$
i\in\{\ell+1,\ell+2,\ldots,n-\ell\}
$$

then

$$
rowsumi(A) = 2ky + (n - 2k)w = 1.
$$

Thus, the matrix *A* is row stochastic.

If

$$
j \in \{1, 2, \ldots, k\} \cup \{n - k + 1, n - k + 2, \ldots, n\}
$$

then

$$
colsum_j(A) = \ell x + (n - 2\ell)y + \ell z = ny = \frac{n}{2}(x + z) \neq 1.
$$

If

 $j \in \{k+1, k+2, \ldots, n-k\}$

then

$$
colsum_j(A) = nw \neq 1.
$$

Thus, matrix *A* is not column stochastic.

The column scaling matrix for *A* is the positive diagonal matrix

$$
Y(A) = \text{diag}\left(\underbrace{\frac{1}{ny}, \dots, \frac{1}{ny}}_{k}, \underbrace{\frac{1}{nw}, \dots, \frac{1}{nw}}_{n-2k}, \underbrace{\frac{1}{ny}, \dots, \frac{1}{ny}}_{k}\right).
$$

For the column scaled matrix *AY* (*A*), we have the following row sums. If

$$
i \in \{1, 2, ..., \ell\} \cup \{n - \ell + 1, n - \ell + 2, ..., n\}
$$

then

$$
rowsum_i(AY(A)) = \frac{kx}{ny} + \frac{(n-2k)w}{nw} + \frac{kz}{ny} = \frac{k(x+z)}{ny} + 1 - \frac{2k}{n} = 1.
$$

If

$$
i \in \{\ell+1,\ell+2,\ldots,n-\ell\}
$$

then

$$
rowsum_i(A) = \frac{2ky}{ny} + \frac{(n-2k)w}{nw} = \frac{2k}{n} + 1 - \frac{2k}{n} = 1.
$$

Thus, the matrix $AY(A)$ is row stochastic. This completes the proof. \Box

For example, let $k = \ell = 1$ and $n = 3$, and let w, x, y, z be positive real numbers such that

$$
0 < x + z < 1, \qquad x + z \neq \frac{2}{3}
$$
\n
$$
y = \frac{x + z}{2} \qquad \text{and} \qquad w = 1 - x - z.
$$

The matrix

$$
A = \begin{pmatrix} x & w & z \\ y & w & y \\ z & w & x \end{pmatrix}, \tag{4}
$$

is row stochastic but not column stochastic. By Theorem[1,](#page-2-0) column scaling *A* produces a doubly stochastic matrix. Choosing $x = 1/5$ and $z = 3/5$, we obtain the matrix (1) .

Here is another example. Let $k = 2$, $\ell = 3$, and $n = 7$. Choosing

$$
x = \frac{1}{4}
$$
, $y = \frac{3}{16}$, $z = \frac{1}{8}$, $w = \frac{1}{12}$

we obtain the row but not column stochastic matrix

$$
A = \begin{pmatrix} 1/4 & 1/4 & 1/12 & 1/12 & 1/12 & 1/8 & 1/8 \\ 1/4 & 1/4 & 1/12 & 1/12 & 1/12 & 1/8 & 1/8 \\ 1/4 & 1/4 & 1/12 & 1/12 & 1/12 & 1/8 & 1/8 \\ 3/16 & 3/16 & 1/12 & 1/12 & 1/12 & 3/16 & 3/16 \\ 1/8 & 1/8 & 1/12 & 1/12 & 1/12 & 1/4 & 1/4 \\ 1/8 & 1/8 & 1/12 & 1/12 & 1/12 & 1/4 & 1/4 \end{pmatrix}.
$$

.

Column scaling produces the doubly stochastic matrix

$$
AY(A) = \begin{pmatrix} 4/21 & 4/21 & 1/7 & 1/7 & 1/7 & 2/21 & 2/21 \\ 4/21 & 4/21 & 1/7 & 1/7 & 1/7 & 2/21 & 2/21 \\ 4/21 & 4/21 & 1/7 & 1/7 & 1/7 & 2/21 & 2/21 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 \\ 2/21 & 2/21 & 1/7 & 1/7 & 1/7 & 4/21 & 4/21 \\ 2/21 & 2/21 & 1/7 & 1/7 & 1/7 & 4/21 & 4/21 \\ 2/21 & 2/21 & 1/7 & 1/7 & 1/7 & 4/21 & 4/21 \end{pmatrix}
$$

Theorem 2 *Every n* \times *n matrix A constructed in Theorem [1](#page-2-0) satisfies* $det(A) = 0$ *.*

Proof There are three cases.

If $k > 1$ or $n - 2k > 1$, then *A* has two equal columns and $det(A) = 0$. If $\ell > 1$ or $n - 2\ell > 1$, then *A* has two equal rows and det(*A*) = 0. If $k = \ell = 1$ and $n = 3$, then

$$
A = \begin{pmatrix} x & w & z \\ y & w & y \\ z & w & x \end{pmatrix}
$$

and

$$
det(A) = w(x - z)(x + z - 2y) = 0.
$$

This completes the proof. \Box

Theorem [2](#page-5-0) is of interest for the following reason. Let $A = (a_{i,j})$ be an $n \times n$ matrix. If det(A) \neq 0, then the system of linear equations

$$
a_{1,1}t_1 + a_{2,1}t_2 + \dots + a_{n,1}t_n = 1
$$

\n
$$
a_{1,2}t_1 + a_{2,2}t_2 + \dots + a_{n,2}t_n = 1
$$

\n
$$
\vdots
$$

\n
$$
a_{1,n}t_1 + a_{2,n}t_2 + \dots + a_{n,n}t_n = 1
$$

has a unique solution. Equivalently, if $det(A) \neq 0$, then there exists a unique $n \times$ *n* diagonal matrix $T = diag(t_1, \ldots, t_n)$ such that the matrix $B = TA$ is column stochastic.

Suppose that the matrix *A* is positive and row stochastic. If $t_i > 0$ for all $i \in \{1, \ldots, n\}$, then *T* is invertible and $B = TA$ is a positive column stochastic matrix. Setting $X = T^{-1}$, we have $XB = A$. Moreover, X is the row scaling matrix associated to *B*. Thus, if *A* is a row stochastic matrix such that column scaling *A* produces a doubly stochastic matrix, then we have pulled *A* back to a column stochastic matrix *B*, and we have increased by 1 the number of scalings needed to get a doubly stochastic matrix.

Unfortunately, the matrices constructed in Theorem [1](#page-2-0) have determinant 0.

2 Open Problems

- 1. Does there exist a positive 3×3 row stochastic but not column stochastic matrix *A* with nonzero determinant such that *A* becomes doubly stochastic after one column scaling?
- 2. Let *A* be a positive 3×3 row stochastic but not column stochastic matrix that becomes doubly stochastic after one column scaling. Does $det(A) = 0$ imply that *A* has the shape of matrix [\(4\)](#page-4-0)?
- 3. Here is the inverse problem: Let *A* be an $n \times n$ row-stochastic matrix. Does there exist a column stochastic matrix *B* such that row scaling *B* produces *A* (equivalently, such that $X(B)B = A$)? Compute *B*.
- 4. Modify the above problems so that the matrices are required to have rational coordinates.
- 5. Determine if, for positive integers $L > 3$ and $n > 3$, there exists a positive $n \times n$ matrix that requires exactly *L* scalings to reach a doubly stochastic matrix.
- 6. Classify all matrices for which the alternate scaling algorithm terminates in finitely many steps.

Acknowledgements Supported in part by a grant from the PSC-CUNY Research Award Program.

References

- 1. R. A. Brualdi, S. V. Parter, and H. Schneider, *The diagonal equivalence of a nonnegative matrix to a stochastic matrix*, J. Math. Anal. Appl. 16 (1966), 31–50.
- 2. S. B. Ekhad and D. Zeilberger, *Answers to some questions about explicit Sinkhorn limits posed by Mel Nathanson*, [arXiv:1902.10783,](http://arxiv.org/abs/1902.10783) 2019.
- 3. G. Letac, *A unified treatment of some theorems on positive matrices*, Proc. Amer. Math. Soc. **43** (1974), 11–17.
- 4. M. V. Menon, *Reduction of a matrix with positive elements to a doubly stochastic matrix*, Proc. Amer. Math. Soc. 18 (1967), 244–247.
- 5. M. B. Nathanson, *Alternate minimization and doubly stochastic matrices*, [arXiv:1812.11935,](http://arxiv.org/abs/1812.11935) 2018.
- 6. M. B. Nathanson, *Matrix scaling and explicit doubly stochastic limits*, Linear Algebra and its Applications 578 (2019), 111–132; <https://doi.org/10.1016/j.laa.2019.05.004>
- 7. R. Sinkhorn, *A relationship between arbitrary positive matrices and doubly stochastic matrices*, Ann. Math. Statist. **35** (1964), 876–879.
- 8. R. Sinkhorn and P. Knopp, *Concerning nonnegative matrices and doubly stochastic matrices*, Pacific J. Math. **21** (1967), 343–348.
- 9. H. Tverberg, *On Sinkhorn's representation of nonnegative matrices*, J. Math. Anal. Appl. 54 (1976), no. 3, 674–677.