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Preface

Workshops on Combinatorial and Additive Number Theory (CANT) have been
organized at the CUNY Graduate Center in New York every year since 2003. The
4-day CANT conferences are held in May, usually from Tuesday to Friday of the
week immediately preceding or immediately following Memorial Day. They have
become a fixed point in the number theory calendar.

These workshops are arranged by the New York Number Theory Seminar. The
seminar was started in 1981 by David and Gregory Chudnovsky, Harvey Cohn, and
Melvyn B. Nathanson, and for 38 years has been meeting at the CUNY Graduate
Center every Thursday afternoon during the academic year, and also in the summer.

This volume contains papers presented at the CANT 2017 and CANT 2018
workshops. There are 17 papers on important topics in number theory and related
parts of mathematics. These topics include sumsets, partitions, convex polytopes
and discrete geometry, Ramsey theory, commutative algebra and arithmetic
geometry, and applications of logic and nonstandard analysis to number theory.

I thank the Number Theory Foundation, Springer, and the Journal of Number
Theory (Elsevier) for their support of CANT.

I am grateful to Springer and to mathematics editor Dahlia Fisch for making
possible the publication of the proceedings of the CANT 2017 and CANT 2018
workshops.

Previous volumes are [1] and [2].

New York, USA Melvyn B. Nathanson
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Weighted Zero-Sums for Some Finite
Abelian Groups of Higher Ranks

S. D. Adhikari, Bidisha Roy and Subha Sarkar

Abstract In this article, we consider the study of theDavenport constantwithweight
{±1} for some finite abelian groups of higher ranks and take up some related ques-
tions. For instance,we show that for an oddprime p, any sequence overG = (Z/pZ)3

of length 4p − 3 which contains at least five zero-elements, there is a {±1}-weighted
zero-sum subsequence of length p. We also show that for an odd prime p and for
a positive even integer k ≥ 2 which divides p − 1, if θ is an element of order k of
the multiplicative group (Z/pZ)∗ and A is the subgroup of (Z/pZ)∗ generated by θ ,
then any sequence over (Z/pZ)k+1 of length 4p + p−1

k − 1 contains an A-weighted
zero-sum subsequence of length 3p. In the introduction, we give a small expository
account of the area and mention some relevant expository articles.

1 Introduction

Let G be a finite abelian group (written additively) and let exp(G) be the exponent
of the group G. By a sequence over G we mean a finite sequence of elements from
G in which repetition of terms is allowed. In this way we can view a sequence as an
element of the free abelian monoid F(G) with multiplicative notation.

We call a sequence S = g1g2 . . . gk ∈ F(G) to be a zero-sum sequence if g1 +
g2 + · · · + gk = 0 where 0 is the identity element of G.

For an abelian group G, the Davenport constant D(G) is defined to be the least
positive integer � such that if we take any sequence of length � from G, there is a
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non-empty zero-sum subsequence. The earlymotivation for the study of this constant
[33] was factorization in algebraic number fields. Later this constant found important
roles in graph theory (see for instance, [13] or [19]) and in the proof of the infinitude
of Carmichael numbers by Alford et al. [10].

Given a finite abelian group G = (Z/n1Z) × (Z/n2Z) × · · · × (Z/ndZ) with
n1|n2| · · · |nd , writing M(G) = 1 + ∑d

i=1(ni − 1), it is trivial to see that M(G) ≤
D(G) ≤ |G|. The equality D(G) = |G| holds if and only if G = Z/nZ, the cyclic
group of order n. Olson [30, 31] proved that D(G) = M(G) for all finite abelian
groups of rank 2 and for all p-groups. It is also known that D(G) > M(G) for
infinitely many finite abelian groups of rank d > 3 (see [21], for instance).

The best known bound is due to van Emde Boas and Kruyswijk [12] who proved
that

D(G) ≤ n

(

1 + log
|G|
n

)

, (1)

where n is the exponent of G. This was again proved by Alford et al. [10].
We state the following conjectures:

1. We have D(G) = M(G) for all G with rank d = 3 or G = (Z/nZ)d [20] and
[18].

2. For G = (Z/n1Z) × (Z/n2Z) × · · · × (Z/ndZ) with n1|n2| · · · |nd , D(G) ≤∑d
i=1 ni [28].

For an abelian groupG with exp(G) = n, the Erdős–Ginzburg–Ziv constant s(G)

is defined to be the least positive integer � such that if we take any sequence of length
� over G there is a zero-sum subsequence of length n.

The name Erdős–Ginzburg–Ziv constant is after the prototype of zero-sum result
[17] by Erdős, Ginzburg and Ziv, where it was proved that s(Z/nZ) ≤ 2n − 1. The
example of the sequence (0, 0, . . . , 0

︸ ︷︷ ︸
n−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

) of length (2n − 2) having no zero-

sum subsequence of length n, establishes that s(Z/nZ) = 2n − 1.
For the group G = (Z/nZ)2, Kemnitz [27] had conjectured that s(G) = 4n − 3.

In 2000, Rónyai [34] came very close to it by proving that s((Z/pZ)2) ≤ 4p − 2,
for a prime p and finally the conjecture was confirmed by Reiher [32] in 2007.

Till now the exact value of the constant s(G) where G = (Z/nZ)d and d ≥ 3 is
unknown. For all odd integers n, Elsholtz [16] proved a lower bound as

s((Z/nZ)d) ≥ (1 · 125)� d
3 �(n − 1)2d + 1.

In the other direction, Alon and Dubiner [11] proved that there is an absolute
constant c > 0 so that for all n,

s((Z/nZ)d) ≤ (cd log2 d)dn.

For further readings in this direction we refer to the following articles [8, 11, 13,
15, 19].



Weighted Zero-Sums for Some Finite Abelian Groups of Higher Ranks 3

The present article is related to a particular weighted generalization of the above
zero-sum constants, first considered (see the early papers [3, 4, 9, 35]) about twelve
years back, which became popular (see [22, 23, 25, 36–38]) and the results here
have found some applications (see [24, 26]) as well.

Let G be a finite abelian group of exponent n and A ⊂ [1, n − 1]. We call a
sequence S = g1g2 . . . gk ∈ F(G) to be an A-weighted zero-sum sequence if there
exist a1, . . . , ak in A such that

k∑

i=1

aigi = 0.

The Davenport constant of G with weight A, denoted by DA(G), is then defined
to be the least positive integer � such that any sequence (x1, x2, . . . , x�) over G of
length �, has a non-empty A-weighted zero-sum subsequence.

Notice that when A = {1}, we get the classical Davenport constant D(G).
Similarly, for a finite abelian group G of exponent n and a non-empty subset A of

[1, n − 1], one defines sA(G) (as introduced in [2]; the notation used here being the
standard one at present) to be the least integer k such that any sequence S of length k
of elements in G has an A-weighted zero-sum subsequence of length n. Once again,
taking A = {1}, one recovers the classical Erdős–Ginzburg–Ziv constant s(G).

For G = (Z/nZ), exact values and good bounds of DA(G) and sA(G) are known
for several subsets A ⊂ [1, n − 1] of weights (see for instance [1, 2, 4, 9, 14]).

When A = {±1}, it was proved in [4] that s{±1}(Z/nZ) = n + �log2 n� and for
an odd integer n, it was proved in [2] that s{±1}((Z/nZ)2) = 2n − 1.

When exp(G) is even, the following asymptotic behavior of s{±1}(G) was estab-
lished in [5]:

For finite abelian groups of even exponent and fixed rank, we have

s{±1}(G) = exp(G) + log2 |G| + O(log2 log2 |G|) as exp(G) → ∞.

In Sect. 2, we take up the first open case of odd exponent and discuss the problem
of determining the exact value of the constant s{±1}((Z/pZ)3).

The combinatorial constant sA(G) can be further generalized as follows. For any
integer m ≥ 1, the constant smn,A(G) is the least positive integer � such that any
sequence S over G of length � has an A-weighted zero-sum subsequence of length
mn. When m = 1, we get sn,A(G) = sA(G).

Recently, Adhikari andMazumdar [6] considered the rank 3 case and by amethod
of Rónyai in [34], they proved the following result.

Theorem 1 For an odd prime p, we have s3p,{±1}((Z/pZ)3) ≤ 9p−3
2 .

In another paper [7] the above authors proved the following result for elementary
abelian p-groups of even rank.

Theorem 2 Let p be an odd prime and let k ≥ 3 be a divisor of p − 1. Let θ be an
element of order k of the multiplicative group (Z/pZ)∗ and A be the subgroup of
(Z/pZ)∗ generated by θ . Then, we have
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s3p,A((Z/pZ)2k) ≤ 5p − 2.

Here in Sect. 3, we prove a result similar to Theorem 2 for elementary abelian
p-groups of odd rank. More precisely, we shall prove the following.

Theorem 3 Let p be an odd prime and let k ≥ 2 be an even integer which divides
p − 1. Let θ be an element of order k of the multiplicative group (Z/pZ)∗ and A be
the subgroup of (Z/pZ)∗ generated by θ . Then, we have

s3p,A((Z/pZ)k+1) ≤ 4p + p − 1

k
− 1.

Remark 1 If (e1, e2, . . . , ek+1) be a basis of (Z/pZ)k+1, then observing that the
sequence

03p−1
k+1∏

i=1

ei

has no A-weighted zero-sum subsequence of length 3p, we see that

s3p,A((Z/pZ)k+1) ≥ 3p + k + 1.

So, for general k, there is a gap between this lower bound and the upper bound
given by the theorem above. If k = p − 1, then the lower bound obtained above is
3p + k + 1 = 4p and the upper bound obtained in the theorem is 4p + p−1

k − 1 =
4p.

Remark 2 Since p is an odd prime, 2 | (p − 1) and by putting k = 2 in Theorem 3,
one obtains Theorem 1.

2 The Group (Z/ pZ)3

Before taking up the particular group (Z/pZ)3,wedetermine theweightedDavenport
constant D{±1}((Z/nZ)d), where n and d are positive integers.

We begin by the following Lemma.

Lemma 1 For given positive integers n and d, consider the group G = (Z/nZ)d

and let (y1, . . . , y�) be a sequence over G of length � > d log2 n.
Then there exists a non-empty J ⊂ [1, �] and ε j ∈ {±1} for each j ∈ J such that

∑

j∈J

ε j y j = 0.
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Proof Consider the sequence of 2� elements

⎛

⎝
∑

j∈I
y j

⎞

⎠

I⊂[1,�]
overG. Since 2� > nd ,

there exist I1, I2 ⊂ [1, �] with I1 �= I2 such that

∑

j∈I1
y j =

∑

j∈I2
y j .

Set J = I1 ∪ I2 \ I1 ∩ I2 and

ε j =
{
1 when j ∈ I1 ∩ J ;
−1 when j ∈ I2 ∩ J.

Then it is clear that J is non-empty and
∑

j∈J ε j y j = 0. �
Lemma 2 For given positive integers n and d, there exists a sequence of length
d�log2 n� over G = (Z/nZ)d such that it has no non-empty {±1}-weighted zero-
sum subsequence. That is, D{±1}((Z/nZ)d) ≥ d�log2 n� + 1.

Proof Let us define r ∈ N by 2r+1 ≤ n < 2r+2 and consider the following sequence
of length d(r + 1) over G.

(1, 0, 0, . . . , 0), (2, 0, 0, . . . , 0), (22, 0, 0, . . . , 0), . . . , (2r , 0, 0, . . . , 0),

(0, 1, 0, . . . , 0), (0, 2, 0, . . . , 0), (0, 22, 0, . . . , 0), . . . , (0, 2r , 0, . . . , 0),

(0, 0, 1, . . . , 0), (0, 0, 2, . . . , 0), (0, 0, 22, . . . , 0), . . . , (0, 0, 2r , . . . , 0),

. . . . . . . . . . . . . . . . . . . . .

(0, 0, 0, . . . , 1), (0, 0, 0, . . . , 2), (0, 0, 0, . . . , 22), . . . , (0, 0, 0, . . . , 2r ).

This sequence has (r + 1)d = d�log2 n� elements and a {±1}-weighted sum of
any non-empty subsequence of it gives rise to an element whose absolute value
in each co-ordinate is ≤ 2r+1 − 1 and hence is not the zero element of G by the
uniqueness of binary representation of a number. �
Theorem 4 For given positive integers n and d,

D{±1}((Z/nZ)d) = d�log2 n� + 1.

Proof The result follows from Lemmas 1 and 2. �
Lemma 3 ([6]) Let p be an odd prime and G be the group (Z/pZ)3. Then there
exists a sequence of length 4p − 4 such that there is no {±1}-weighted zero-sum
subsequence of length p. In other words s{±1}(G) ≥ 4p − 3.
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Remark 3 Let p be an odd prime. FromTheorem 4, D{±1}((Z/pZ)3) = 3�log2 p� +
1.For p > 3�log2 p�, given a sequence S of length p over (Z/pZ)3, if T is amaximal
{±1}-weighted zero-sum subsequence of S, then |S| − |T | ≤ 3�log2 p�. So, given a
sequence over (Z/pZ)3, of length p + 3�log2 p� with 3�log2 p� zeros, there must
be a {±1}-weighted zero-sum subsequence of length p.

We expect that s{±1}(G) = 4p − 3; that is, given a sequence of length 4p − 3 over
(Z/pZ)3, there is a zero-sum subsequence of length p. We observe the following
conditional result.

Theorem 5 Let p be an odd prime and G = (Z/pZ)3. Then, any sequence S =
x1 · · · x4p−3 of length 4p − 3 over G with at least five zero-elements has a subse-
quence xi1 , . . . , xip of length p such that

ω1xi1 + · · · + ωpxi p = 0

in G where ωi ∈ {±1}.
Proof Let z1, . . . , z5 be 5 zero-elements in the sequence. We denote the remaining
4p − 8 elements by g1, . . . g4p−8.

If p ≤ 5, then we trivially get a required zero-sum subsequence of length p with
the zi ’s. So, we assume that p > 5.

Key step. Consider the 3p elements g1, . . . , g3p−3, z1, z2, z3 (which is possible,
since for p > 5, 4p − 8 > 3p − 3) and rewrite them as

a1, b1, c1, . . . , ap, bp, cp,

where ap, bp, cp are the elements z1, z2, z3.
If the sums ai + b j + ck corresponding to the distinct triples (i, j, k) are all dis-

tinct, they give us all the p3 elements of the group G. In that case, adding the subse-
quence of the remaining elements of length p − 3 to these three-element sequences,
we get subsequences of length p whose sums will run over all the elements of the
group G and hence giving a zero-sum subsequence of length p.

If the sums ai + b j + ck are not all distinct, two 3-sums will be the same and
they will produce a non-empty {±1}-weighted zero-sum subsequence not involving
z1, z2, z3. (For instance, if a1 + b1 + cp = a2 + b3 + c4, we have a1 + b1 − a2 −
b3 − c4 = 0 as cp = z3 = 0.) We denote it by T1 and observe that 1 ≤ |T1| ≤ 6.

Next, we remove elements of this sequence T1 from the sequence g1 . . . g3p−3

and replace them by the same number of elements from g3p−2, . . . , g4p−8 (which are
p − 5 in number).

After that we repeat the above mentioned “key-step” and stop when we reach the
stage when p ≥ |T1 ∪ T2 ∪ · · · ∪ Tr | ≥ p − 5.

Thus we adjoin some elements from z1, . . . , z5 with T1 ∪ T2 ∪ · · · ∪ Tr to get a
p-length {±1}-weighted zero-sum subsequence of S. �
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Remark 4 As is easy to observe, the proof of the above theorem goes through if,
instead of five zero-elements, the sequence S = x1 · · · x4p−3 has three zero-elements
and a pair of elements xi , x j such that either xi = x j or xi = −x j .

Also, we can generalize Theorem 5 as follows:
Let d ≥ 3 be an integer and p ≥ d�log2 n� be any prime. (We note that for odd d,

the counter example leading to Lemma 3 can be modified to give s{±1}(Z/pZ)d) ≥
(d + 1)p − d).

Then any sequence S=a1 · · · a(d+1)p−d of length (d+1)p − d over G = (Z/pZ)d

with at least 2d − 1 zero-elements contains a subsequence ai1 . . . aip of length p such
that

ε1ai1 + · · · + εpaip = 0

in G where εi ∈ {±1}.

3 Proof of Theorem 3

We start with some lemmas.
The following lemma has been proved in [7]; we record it here.

Lemma 4 Let p be an odd prime and let k be a divisor of p − 1. Let θ be an element
of order k of (Z/pZ)∗ and D = {0, θ, θ2, . . . , θ k}. For a positive integer m, let us
consider the vector space

C = {
functions f : Dm → (Z/pZ)

}

over the field Z/pZ. Then the monomials
∏

1≤i≤m xrii , ri ∈ [0, k] constitute a basis
of C over Z/pZ.

Now, we state the well known theorem of Chevalley-Warning (see for instance,
[29]).

Theorem 6 Let p be a prime number and F a finite field of characteristic p. For
i = 1, 2, . . . ,m, let fi ∈ F[x1, x2, . . . , xn] be a non-zero polynomial of degree di in
n-variables over the field F. Let N denote the number of n-tuples (x1, x2, . . . , xn)
of elements of F such that

fi (x1, x2, . . . , xn) = 0,

for all i = 1, 2, . . . ,m. If d1 + d2 + · · · + dm < n, then

N ≡ 0 (mod p).

In particular, if N ≥ 1, then there is a non-zero simultaneous solution over F.
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Lemma 5 Let p be an odd prime and let k ≥ 2 be an even integer which divides
p − 1. Let A = {θ, θ2, . . . , θ k = 1} be the subgroup of (Z/pZ)∗ generated by θ

which is of order k. Let S = ∏t
i=1 wi ∈ F((Z/pZ)k+1) be a sequence of length

t = 2p + p − 1

k
− 1. Then S has an A-weighted zero-sum subsequence of length

either p or 2p.

Proof For all integers i = 1, 2, . . . , t , we let wi = (ai1, ai2, . . . , ai(k+1)) ∈
(Z/pZ)k+1. We shall consider the following system of equations over Z/pZ.

t∑

i=1

ai1x
p−1
k

i = 0,
t∑

i=1

ai2x
p−1
k

i = 0, . . . ,
t∑

i=1

ai(k+1)x
p−1
k

i = 0

and
t∑

i=1

x p−1
i = 0.

Note that the sum of the degrees of the polynomials is (k + 1) p−1
k + (p − 1) =

2p + p−1
k − 2 < 2p + p−1

k − 1 = t , the number of variables.
Since the above system has the trivial zero solution, by Theorem 6, there exists a

non-zero solution (y1, y2, . . . , yt ) ∈ (Z/pZ)t of the above system.
If we write I = {i : yi �= 0 (mod p)}, then from the first (k + 1) equations, we

get ∑

i∈I
y(p−1)/k
i (ai1, ai2, . . . , a(k+1)i ) = (0, 0, . . . , 0)

and from the last equation, we get |I | ≡ 0 (mod p). Since yi �= 0 (mod p) for all
i ∈ I , we see that y(p−1)/k

i ∈ A. Since t < 3p, we get either |I | = p or |I | = 2p.
Hence, we conclude that the sequence S has an A-weighted zero-sum subsequence
of length either p or 2p. �

Corollary 1 Let p be an odd prime and let k ≥ 2 be an even integer which divides
p − 1. Let A = {θ, θ2, . . . , θ k = 1} be the subgroup of (Z/pZ)∗ generated by θ

which is of order k. Let S = ∏t
i=1 wi ∈ F((Z/pZ)k+1) be a sequence of length

t = 3p + p − 1

k
− 1. Then S has an A-weighted zero-sum subsequence of length

2p.

Proof Since the given sequence S is of length t = 3p + p−1
k − 1 over (Z/pZ)k+1, it

has an A-weighted zero-sum subsequence T of length either p or 2p by Lemma 5. If
T is of length 2p, then we are done. Otherwise, consider the deleted sequence ST−1

which is of length

3p + p − 1

k
− 1 − p = 2p + p − 1

k
− 1
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and hence, by Lemma 5, we get ST−1 has an A-weighted zero-sum subsequence T1
of length either p or 2p. If |T1| = 2p, then we are done. If |T1| = p, then T T1 is of
length 2p and it is the required subsequence. �

Corollary 2 Let p be an odd prime and let k ≥ 2 be an even integer which divides
p − 1. Let A = {θ, θ2, . . . , θ k = 1} be the subgroup of (Z/pZ)∗ generated by θ

which is of order k. Let S = ∏t
i=1 wi ∈ F((Z/pZ)k+1) be a sequence of length

t = 4p + p − 1

k
− 1. If S has an A-weighted zero-sum subsequence of length p,

then it has an A-weighted zero-sum subsequence of length 3p.

Proof Since S has an A-weighted zero-sum subsequence T of length p, consider the
deleted sequence ST−1 which is of length 3p + p−1

k − 1. Therefore, by Corollary 1,
we get an A-weighted zero-sum subsequence T1 of ST−1 of length 2p. Hence, T T1
is the required zero-sum subsequence. �

Proof of Theorem 3 For an odd prime p and an even integer k ≥ 2 such that k
divides p − 1, θ is an element of order k of the multiplicative group (Z/pZ)∗ and A
is the subgroup of (Z/pZ)∗ generated by θ . We have to show that

s3p,A((Z/pZ)k+1) ≤ 4p + p − 1

k
− 1.

Note that D as defined in Lemma 4 is A ∪ {0}.
Let S = ∏m

i=1 wi ∈ F((Z/pZ)k+1) be a sequence of length m = 4p + p−1
k − 1.

For all i = 1, 2, . . . ,m, we let wi = (ai1, ai2, . . . , ai(k+1)) ∈ (Z/pZ)k+1. We shall
prove that S has an A-weighted zero-sum subsequence of length 3p.

If possible, suppose that the assertion is false. That is, S has no A-weighted
zero-sum subsequence of length 3p. Therefore, by Corollary 2, S cannot have any
A-weighted zero-sum subsequence of length p. Thus, if T = ∏�

j=1 wi j is a subse-
quence of S of length � = 3p or p, then for any (z1, . . . , z�) ∈ A�, we have

z1wi1 + · · · + z�wi� �≡ (0, 0, . . . , 0) (mod p). (2)

In order to get a contradiction, we need to invoke Lemma 4. For this purpose, we
shall introduce some polynomials as follows. Let

σ(x1, x2, . . . , xm) =
∑

I⊂[1,m],
|I |=p

∏

i∈I
xki ,

be the p-th elementary symmetric polynomial of the variables xk1 , x
k
2 , . . . , x

k
m . We

also consider the following polynomials,
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P1(x1, x2, . . . , xm) =
⎛

⎝

(
m∑

i=1

ai1xi

)p−1

− 1

⎞

⎠

⎛

⎝

(
m∑

i=1

ai2xi

)p−1

− 1

⎞

⎠ . . .

⎛

⎝

(
m∑

i=1

ai(k+1)xi

)p−1

− 1

⎞

⎠ ,

P2(x1, x2, . . . , xm) =
⎛

⎝

(
m∑

i=1

xki

)p−1

− 1

⎞

⎠ ,

P3(x1, x2, . . . , xm) = (σ (x1, x2, . . . , xm) − 2)(σ (x1, x2, . . . , xm) − 4)

and

P(x1, x2, . . . , xm) = P1(x1, x2, . . . , xm)P2(x1, x2, . . . , xm)P3(x1, x2, . . . , xm).

First, we note that

deg(P) ≤ (k + 1)(p − 1) + k(p − 1) + 2kp = 4kp + p − 1 − 2k. (3)

Claim P(α1, . . . , αm) = 0 for all (α1, . . . , αm) ∈ Dm\{(0, 0, . . . , 0)} and
P(0, 0, . . . , 0) = 8.

Let α = (α1, . . . , αm) ∈ Dm\{(0, 0, . . . , 0)} be an arbitrary element.
If the number of non-zero entries of α is not a multiple of p and if we take

I = {1 ≤ i ≤ m : αi �= 0}, then
⎛

⎝

(
m∑

i=1

αk
i

)p−1

− 1

⎞

⎠ =
⎛

⎝

(
∑

i∈I
αk
i

)p−1

− 1

⎞

⎠ = 0

by Fermat’s Little Theorem and hence we get P2(α1, . . . , αm) = 0.
If the number of non-zero entries of α is either p or 3p, then by (2), we get

P1(α1, . . . , αm) = 0.
If the number of non-zero entries of α is 2p, then σ(α) = (2p

p

) = 2 ∈ Z/pZ and if

the number of non-zero entries ofα is 4p, then σ(α) = (4p
p

) = 4 ∈ Z/pZ. Therefore,
if the number of non-zero entries of α is either 2p or 4p, then P3(α1, . . . , αm) = 0.
Therefore the polynomial P(x1, x2, . . . , xm) vanishes at all the points of Dm , except
at (0, 0, . . . , 0) and P(0, 0, . . . , 0) = 8, as (k + 1) is odd. This proves the claim.

Consider the function P : Dm → Z/pZ in C given by the polynomial P(α1, . . . ,

αm).
Now, let R = 8(1 − xk1 )(1 − xk2 ) . . . (1 − xkm) ∈ (Z/pZ)[x1, . . . , xm]. Then

R(α1, . . . , αm) = 0 for all α = (α1, . . . , αm) ∈ Dm\{(0, 0, . . . , 0)} and R(0, . . . ,
0) = 8 .

Therefore, P(x1, . . . , xm) and R(x1, . . . , xm) are equal as elements in C.
By Lemma 4, we know that C has a special basis consisting of monomials of the

form
∏

1≤i≤m xrii , ri ∈ [0, k]. Now, we write P as a linear combination of these basis
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elements by replacing each xtk+r
i for some integers t ≥ 1 and r ∈ [1, k] by xri and

let Q be the polynomial obtained in this way. Also, in this process, the degree of the
polynomial Q is not increased. Hence by (3) we get, deg Q ≤ 4kp + p − 1 − 2k.
Clearly, as elements in C, P and Q are the same. Hence, Q and R are the same as
elements in C.

However, deg R = mk = 4kp + p − 1 − k > 4kp + p − 1 − 2k ≥ deg Q.
This will lead to a nontrivial relation among the basis elements consisting of the

monomials
∏

1≤i≤m xrii , which is impossible. �
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28. W. Narkiewicz, J. Śliwa, Finite abelian groups and factorization problems - II, Colloq. Math.

46, (1982), 115-122.
29. MelvynB.NathansonAdditiveNumberTheory: InverseProblemsand theGeometry of Sumsets,

Springer, 1996.
30. J.E. Olson, A combinatorial problem in finite abelian groups, I, J. Number Theory 1, (1969),

8-10.
31. J.E. Olson, A combinatorial problem in finite abelian groups, II, J. Number Theory 1, (1969),

195-199.
32. C. Reiher, On Kemnitz’ conjecture concerning lattice points in the plane, Ramanujan J. 13

(2007), 333-337.
33. K. Rogers,ACombinatorial problem in Abelian groups, Proc. Cambridge Phil. Soc. 59, (1963),

559-562.
34. L. Rónyai, On a conjecture of Kemnitz, Combinatorica, 20 (2007), 569-573.
35. R. Thangadurai, A variant of Davenport’s constant, Proc. Indian Acad. Sci. (Math. Sci.), 117,

No. 2, (2007), 147 –158.
36. Xingwu Xia, Two generalized constants related to zero-sum problems for two special sets,

Integers 7 (2007), A52.
37. Xingwu Xia, Zhigang Li, Some Davenport constants with weights and Adhikari & Rath’s

conjecture, Ars Combin. 88, (2008), 83-95.
38. P. Yuan, X. Zeng, Davenport constant with weights, European Journal of Combinatorics, 31

(2010), 677-680.



Counting Monogenic Cubic Orders

Shabnam Akhtari

Abstract This article is an extension of the author’s talk at CANT 2018 conference.
In a cubic number field K , we give an absolute upper bound for the number of
monogenic orders which have small index compared to the discriminant of OK , the
ring of integers of K . We will also show that a positive proportion of cubic number
fields, when ordered by their discriminant, are not monogenic. We will not present
any new proofs. We will rather rephrase some of the previous results of the author
and collaborators in the language of cubic orders, after giving an overview of the
subject. Our main results are stated in Sect. 5.

1 Introduction

A number field K is a finite field extension ofQ. In order to generalize the arithmetic
of Q to an algebraic number field K, we might think of a ring O with the following
properties:
(1) K is the quotient field of O.
(2) O ∩ Q = Z.
(3) The additive group of O is finitely generated.
A ring in K with these properties is called an order of K .

It is easy to see that for K �= Q there are infinitely many orders of K , for instance
for every algebraic integer α in K that has degree [K : Q], the ring Z[α] is an order.
But it is known that there is one maximal order OK containing all orders of K . The
maximal order OK is indeed the familiar ring of integers of K and one of the most
important objects in algebraic number theory. The ring of integers of a number field
has a number of useful and striking properties.
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We note that a significant property of OK is that it is integrally closed, however
an order O is not necessarily integrally closed.

A simple way to think of an order is a subring of OK which is also a Z-module
(a finitely generated additive subgroup of K ) of rank n = [K : Q]. It is clear from
the definition that Z is the only order inQ. The orders in quadratic number fields are
very well understood.

Let K be a quadratic number field. Then there exists a unique square-free d ∈ Z

such that K = Q(
√
d). Let

ω =
{

1+√
d

2 if d ≡ 1 (mod 4)√
d if d ≡ 2, 3 (mod 4).

Then {1,ω} is a basis of OK . It is known that every order in K = Q(
√
d) has the

form Oq = Z[qω], with a positive rational integer q called the conductor of Oq .
As a simple example, consider the quadratic number field Q(

√
5), with the ring of

integer Z[ 1+
√
5

2 ]. We have Z[√5] ⊂ Z[ 1+
√
5

2 ]. In [18], the authors consider a similar
problem in cubic fields and describe how to find all orders of K with conductor q,
for any cubic number field K and any conductor ideal q of K .

For number field K of degree greater than 2 the maximal orderOK is not always
of the form Z[α]. For instance, let K = Q(β) with β3 + β2 − 2β + 8 = 0. Then
γ = β+β2

2 ∈ OK and 1, β, γ is a basis of the module OK , but there is no α ∈ OK

withOK = Z[α] (see, for example, [16] or [23]). This is simply because a quadratic
field is uniquely determined by its discriminant, and this is not true for number fields
of higher degrees.

Before directing our attention to cubic number fields, let us assume that O is an
order in a number field K of degree n. Since OK is also a free Z-module of rank
[K : Q], it follows from the structure theorem forZ-modules that the quotientO/OK

is a finite abelian group. The order of this quotient is called the index of the order
O in OK . Let α ∈ OK be a primitive element of K , that is K = Q(α). Let O+

K and
O+ be the additive groups of the modules OK and O, respectively. The index of α
is defined by the module index

I (α) = (O+
K : Z[α]+).

Wenote that 1,α, . . . ,αn−1 generates an integral basis forOK if andonly if I (α) = 1,
and we say α generates a power integral basis.

Algebraic integers of index 1 are particularly interesting, as they provide power
integral bases for the ring of integers of the number field. In fact, the ring O is said
to be monogenic if it is generated by one element as a Z-algebra, i.e., O = Z[α] for
some α ∈ O. The element α is then called a monogenizer. If α is a monogenizer of
O, then so is±α + c for any c ∈ Z. Twomonogenizersα andα′ are called equivalent
if α′ = ±α + c for some c ∈ Z. It is a deep result of Győry in [15] that any orderO
can have at most finitely many monogenizations, which means there are only finitely
many equivalence classes of α ∈ O such that O = Z[α]. This naturally raises the
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question as to how many monogenizations an order O can have in terms of, say, the
degree n of the number field K , or whether such bounds even exist.

In this manuscript, we explore the problem of counting the number of algebraic
integers α of a fixed index m in a cubic number field K , which means that the index
of the order Z[α] in OK is equal to m. We will relate this problem to counting
the number of integral solutions of a family of Diophantine equations, called index
form equations. Furthermore, we will see that in a cubic number field K , there is a
correspondence between the algebraic integers α ∈ OK with

K = Q(α) and I (α) = m,

and the number of integral solutions to a Diophantine equation of the shape

I (x2, x3) = ±m,

where m ∈ Z is fixed. Then we will appeal to some known results to give an upper
bound for the number of orders of a given index in cubic number fields.

We will show, for every 0 < ε < 1
8 , that the ring of integers OK in a cubic field of

discriminant D can have at most B(ε) monogenic subrings of index less than D1/8−ε

(see Theorem 2). We will also show that a positive proportion of cubic number
fields, when ordered by their discriminant, is not monogenic (see Theorem 5). These
statements are consequences of some of previous results of the author and Manjul
Bhargava [1, 2]. As a consequence of previous work of Bennett [7] and Okazaki
[20], we will see that a cubic order can be monogenized in at most 10 different ways
(see Theorems 3 and 4).

The best bounds for the number of monogenizations of an order in a number
field of degree greater than 3 can be found in [9]. For a number field K of degree
n over Q, let NK (B) be the number of suborders O of the ring of integers OK

of K with |disc(O)| ≤ B. In [17], an asymptotic formula is given for NK (B). In
[6] an asymptotic formula is given for the number of cubic orders having bounded
discriminant and nontrivial automorphism group. For general treatment of index
form equations and their several applications, the reader is referred to [10] and [12].

2 Modules, Lattices and Orders

Modules play an important role in the arithmetic of number fields. By a module M
in number field K we mean a finitely generated subgroup of K+, where K+ is the
additive group of the field K . Since K+ is torsion-free,M is a free Z-module of rank
r(M) ≤ [K : Q]. If r(M) = [K : Q], we sayM is a complete module or a lattice in
K . Orders in a number field K arise in a natural way in connection with modules in
K . Let M be a complete module in K . Then

O(M) := {α ∈ K : αM ⊆ M}
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is an order. Furthermore, for every order O in K there exists a complete module M
with O = O(M); for example, one can take M = O.

We note that a lattice in K is an order if it is also a subring (closed under multi-
plication, and contains 1). For example, for any rational number a, aZ is a lattice in
Q, but the only order in Q is Z. More generally, a lattice

Γ = Zβ1 + · · · + Zβn

is an order if and only if it contains 1, and the rational numbers cli j in the expansion

βiβ j =
n∑

l=1

cli jβl

are integers, where {β1, . . . ,βn} is a basis for the lattice Γ .
In this manuscript, we consider the problem of counting the number of orders in

a cubic number field K with given index. Of course, one can think of an order as
a sub-lattice of OK and count the number of full sub-lattices. This will provide an
upper bound for the number of orders, but there are many sub-lattices that are not
closed under multiplication, and therefore we seek a finer way to count the number
of orders.

3 The Structure of Index Forms

Let K be an algebraic number field of degree n. The ring of integersOK is a finitely-
generated Z-module. Indeed, it is a free Z-module, and thus has an integral basis.
While the existence and concept of an integral basis is easy enough to understand,
computing an integral basis for specific number fields is often very difficult.

First we recall the definition of the discriminant. Let K be a number field of degree
n and α1, . . . ,αn a linearly independent set of n elements of K . Let σ1, . . . ,σn :
K → C be all the embeddings of K . The discriminant of (α1, . . . ,αn) is defined as
the square of the determinant of an n × n matrix;

DK/Q(α1, . . . ,αn) := (
det(σiα j )

)2
,

where i, j ∈ {1, . . . , n}.
If {β1, . . . ,βn} forms a basis for K , then the discriminant of K is

DK = DK/Q(β1, . . . ,βn).

In [12], one can find a complete account of basic concepts and fundamental facts
related to index form equations, as well as elaborated computational methods for
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several specific number fields. In this section we recall some important statements
from [12] that will help us understand the structure of index form equations.

Lemma 1 Let α1, . . . ,αn ∈ OK be linearly independent over Q and set

O = Z[α1, . . . ,αn].

then
DK/Q(α1, . . . ,αn) = J 2DK ,

where
J = (O+

K : O+),

O+
K and O+ are the additive groups of the modules OK and O, respectively.

For every γ ∈ K , γ(i) (1 ≤ i ≤ n) denote the algebraic conjugates of γ. Let
{1,ω2, . . . ,ωn} be an integral basis of K . Let

X = (X1, . . . , Xn),

and
L(X) = X1 + ω2X2 + · · · + ωn Xn, (1)

with algebraic conjugates

L(i)(X) = X1 + ω(i)
2 X2 + · · · + ω(i)

n Xn,

(1 ≤ i ≤ n). Kronecker and Hensel called the form L(X) the Fundamental form and

DK/Q(L(X)) =
∏

1≤i< j≤n

(
L(i)(X) − L( j)(X)

)2
(2)

the Fundamental discriminante. The following is Lemma 1.1.2 of [12].

Lemma 2 We have

DK/Q(L(X)) = (I (X1, . . . , Xn))
2 DK ,

where DK is the discriminant of field K , the linear form L(X) and its discriminant are
defined in (1) and (2), and I (X1, . . . , Xn) is a homogeneous form in n − 1 variables
of degree n(n−1)

2 with integer coefficients.

The form I (X1, . . . , Xn) in the statement of Lemma 2 is called the index form
corresponding to the integral basis {1,ω2, . . . ,ωn}. A very important property of the
index form is that for any primitive algebraic integer (i.e.; K = Q(α))

α = x1 + x2ω2 + · · · + xnωn,
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we have
I (α) = |I (x2, . . . , xn)| .

This is a consequence of Lemma 2, as we have

(I (x2, . . . , xn))
2 DK

= DK/Q (L(x1, . . . , xn))

= DK/Q(α)

= DK/Q

(
1,α, . . . ,αn−1

)
= (I (α))2 DK .

We conclude that α generates a power integral basis of K if and only if
(x2, . . . , xn) ∈ Z

n−1 satisfies the index form equation

I (X2, . . . , Xn) = ±1. (3)

Therefore, the problem of determining all power integral bases in K is equivalent
to solving the index form Eq. (3). We note that the index form is independent of the
variable X1, for if β = α + a, where a ∈ Z, then I (α) = I (β).

We will direct our attention to cubic number fields and therefore consider the
index form equations of the shape

I (x2, x3) = ±m, (4)

where m ∈ Z.

4 The Correspondence of Cubic Forms and Rings

Let F(x, y) ∈ Z[x, y] be a binary form and A =
(
a b
c d

)
, with a, b, c, d ∈ Z. Define

the binary form FA in the following way.

FA(x, y) := F(ax + by, cx + dy).

Suppose A ∈ GL2(Z) and that (x0, y0) is a solution of F(x, y) = h. Then

A

(
x0
y0

)
=

(
ax0 + by0
cx0 + dy0

)

and (ax0 + by0, cx0 + dy0) is a solution of FA−1(x, y) = h. Nowassume that F(x, y)
factors in C as
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F(x, y) =
n∏

i=1

(αi x − βi y).

The discriminant disc(F) of F is given by

disc(F) =
∏
i< j

(αiβ j − α jβi )
2.

For any 2 × 2 matrix A, we have

disc(FA) = (detA)n(n−1)disc(F). (5)

If A ∈ GL2(Z) then we say that FA and −FA are equivalent to F . We denote by
NF,m the number of solutions in integers x and y of the equation F(x, y) = ±m. If
F1 and F2 are equivalent then NF1,m = NF2,m and disc(F1) = disc(F2). This is an
equivalence relationship.

The parametrization of cubic rings is due to Levi [19], Delone-Faddeev [8], and
in its most general form, Gan-Gross-Savin [14]. The statement is that isomorphism
classes of cubic rings are in natural one-to-one-correspondence with classes of inte-
gral binary cubic forms. Given

F(x, y) = ax3 + bx2y + cxy2 + dy3 ∈ Z[x, y]

the associated cubic ring R(F) has Z-basis 1,ω, θ, with multiplication table given
by

ωθ = −ad

ω2 = −ac − bω + aθ

θ2 = −bd − dω + cθ.

Conversely, given a cubic ring R, let 1,ω, θ be aZ-basis for R. Translatingω and θ by
the appropriate elements of Z, we may assume that ωθ ∈ Z. Under this assumption,
there exist constants l,m, n ∈ Z such that

ωθ = n

ω2 = m − bω + aθ

θ2 = l − dω + cθ.

We have the associative law

ω2θ = ωωθ and ωθ2 = ωθθ,

which implies that
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n = −ad,m = −ac, and l = −bd,

for some a, b, c, d ∈ Z. This means the cubic ring R can be associated to the binary
cubic form

F(x, y) = ax3 + bx2y + cxy2 + dy3,

and we have R = R(F).
Not only does this correspondence give a bijection between cubic rings and cubic

forms, but it also shows that certain properties and invariants of each type of object
translate nicely. For instance, one can easily check that the form F(x, y) and the
ring R(F) have the same discriminant. In order to count cubic rings and orders,
we can use this parametrization. We remark that in [6] this correspondence is used
to establish an asymptotic formula for the number of cubic orders having bounded
discriminant. We recommend [6] for more details about this correspondence, and for
one of its several striking applications.

5 Thue Equations, and Their Applications

Let F(x, y) be a binary form with integer coefficients, degree n ≥ 3 and non-zero
discriminant. Letm be a non-zero integer and consider the equation F(x, y) = m, in
integers x and y. It has only finitely many solutions as was first established by Thue
[22] in 1909 in the case that F is irreducible over Q. There is an extensive literature
dealing with the problem of estimating from above the number of solutions to Thue
equations (see e.g., [2–4, 7, 21]).

5.1 The Number of Elements with Small Index in a Cubic
Number Field

We already observed that an index form equation in a cubic number field K is indeed
a Thue equation. Namely, if the ring of integers OK in the cubic field K has Z-basis
1, α, β, then the product of the pairwise differences of the three algebraic conjugates
of αx + βy, divided by the square root of the discriminant of OK∏

1≤i< j≤3

[
(α(i) − α( j))x + (β(i) − β( j))y

]
√
Disc(OK )

,

where α(1) = α, α(2) and α(3) are the algebraic conjugates of α and β(1) = β, β(2)

and β(3) are the algebraic conjugates of β, is an integral binary cubic form (called
the index form of OK ). Conversely, every equivalence class of integral binary cubic
form arises uniquely in this way from a unique cubic order. It’s called the index
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form because F(x, y) now has the following interpretation: the monogenic ring
Z[αx + βy], for any x, y ∈ Z, has index F(x, y) in OK .

Notice that if F(x0, y0) = m, for some x0, y0 ∈ Z, then F(−x0,−y0) = −m.
Also (x0, y0) corresponds to a monogenizer α and (−x0,−y0) corresponds to the
monogenizer−μ. But wewill countμ and−μ as onemonogenizer, as clearlyZ[μ] =
Z[−μ]. In the following statements about the number of solutions of cubic Thue
equations, possible solutions (x0, y0) and (−x0,−y0) are deemed as one solution.

The following was shown by the author in [2].

Theorem 1 (Akhtari) Let F(x, y) ∈ Z[x, y] be an irreducible cubic binary form of
discriminant D. Let m be an integer with

0 < m ≤ |D| 1
8−ε

(3.5)3/23
3
8

,

where 0 < ε < 1
8 . Then the inequality 0 < |F(x, y)| ≤ m has at most 27 + 3

4ε solu-
tions in integers x and y with gcd(x, y) = 1.

This result implies that the ring of integers OK in a cubic field of discriminant D
can have at most B monogenic subrings of index less than D1/8−ε, where B is a
constant depending on ε. Let us take ε = 1

16 in the above theorem. Then we have the
following.

Theorem 2 Let K be a cubic number field of discriminant D. The ring of integers

OK in a cubic field has at most 39 monogenic subrings of index less than |D| 1
16

(3.5)3/23
3
8
.

5.2 The Number of Monogenizations of a the Ring of
Integers of a Cubic Number Field

The parametrization of cubic orders due to Levi and Delone-Fadveev (see Sect. 4)
implies that every order O in a cubic field is the invariant order of a unique integral
binary cubic form up to equivalence. One can also simply observe that any solution
to the index form equation

I (x2, x3) = ±1

provides amonogenization for the ring of integersOK . Therefore to count the number
of monogenizations of a cubic ring, we have to search for solutions of a cubic Thue
equation of the shape

F(x, y) = ±1,

in integers x and y.
The following is the main Theorem in [7].



22 S. Akhtari

Theorem 3 (Bennett) Let F(x, y) be an irreducible cubic form. The Thue equation
F(x, y) = ±1 has at most 10 solutions in integers x, y.

The above result was improved in [20] for forms of large discriminant (see also the
author’s work [5]).

Theorem 4 (Okazaki) Let F(x, y) be an irreducible cubic form. The Thue equa-
tion F(x, y) = ±1 has at most 7 solutions in integers x, y, provided that |DF | is
sufficiently large.

It follows from Theorems 3 and 4 that an order O in a cubic field can have at
most 10 monogenizations, and if O has a large discriminant, then it has at most 7
monogenizations.

We should mention that Gaál and Schulte [13] used effective methods for solving
Thue equations to determine all power integral bases in totally real and also complex
cubic number fields of small discriminants. For degree n ≥ 4, Evertse and Győry
proved in [11] that and order O in a number field K of degree n can have at most(
3 × 72n!)n−2

monogenizations. The best known results to date for n ≥ 4 is due
to Evertse [9], who proved that an order O in a number field K of degree n can
have at most 24(n+5)(n−2) monogenizations. As we saw in Sect. 3, when the degree
n ≥ 4, the index form is not a binary form anymore, and therefore the theory of Thue
equations cannot be applied directly to count the number of monogenizations of an
order. We recommend [9] for a comprehensive review of results on the number of
monogenization of orders in higher degree number fields.

5.3 A Positive Proportion of Cubic Orders Is Not Monogenic

It will follow from a work of Bhargava and the author that a positive proportion of
cubic orders is not monogenic. To see this, we use Delone-Fadveev correspondence
and recall that if a cubic order is monogenic, then the Thue equation F(x, y) = 1
must have a solution in integers x , y, where F(x, y) is the binary form corresponding
to the order (see Sect. 4).

In [1] we show for every integer n ≥ 3 that many (indeed, a positive proportion)
of binary forms of degree n are not proper subforms, locally represent 1 at every
place, but globally fail to represent 1. To state our precise result, first we note that by
creating local obstructions, it is possible to construct several cubic forms that do not
represent one. As a simple example consider any binary cubic form that is congruent
to

xy(x + y)

modulo 2. Such forms never represent 1 (or any odd number).
Another way to construct forms that do not represent 1 is to work with “subforms”

of a given form. For afixedbinary form F(x, y), we can construct subforms F |L (x, y)
in the following way. Let F(x, y) be a binary cubic form and L be any index p sub-
lattice of Z2. There are p + 1 such sub-lattices. Let



Counting Monogenic Cubic Orders 23

L = 〈
(a, b), (c, d)

〉
,

with ad − bc = p. We define the subform

F |L(x, y) := F(ax + by, cx + dy).

If the equation F |L(x, y) = 1 has an integral solution, say (x0, y0), then (ax0 +
by0, cx0 + dy0) is an integral solution to the equation F(x, y) = 1. By Theorem 3,
the equation F(x, y) = 1 has atmost 10 solutions in integers x and y. Sowe conclude
that as L varies over all index p sub-lattices of Z2, the equations

F |L(x, y) = 1,

except at most 10 of them, have no solution in integers x and y. Thus, we have
constructed at least p + 1 − 10 binary forms that do not represent 1. This waywe can
construct arbitrarily many sub-formsG(x, y) = F(ax + by, cx + dy) of F(x, y) so
that G(x, y) does not represent 1. The intersection of two different sub-lattices of
index p has index p2 and can not represent 1. Therefore a solution to F(x, y) = 1
can not correspond to two different sub-lattices of index p.

In [1] we have shown that a positive proportion of cubic binary forms, which
are not subforms of other binary forms, does not represent 1 (and in fact, any fixed
integer).

Theorem 5 (Akhtari–Bhargava) When integral binary cubic forms F(x, y) ∈
Z[x, y] are ordered by absolute discriminant, a positive proportion of the GL2(Z)-
classes of these forms F has the following properties:

(i) they locally everywhere represent 1 (i.e., F(x, y) = 1 has a solution inR2 and
in Z2

p for all p);
(ii) they globally do not represent 1 (i.e., F(x, y) = 1 has no solution in Z2); and
(iii) they are maximal forms (i.e., F is not a proper subform of any other form).

More precisely, let N1(3, X) denote the number of GL2(Z)-classes of integral
binary cubic forms having absolute discriminant less than X that aremaximal, locally
represent 1, but do not globally represent 1; and let N (3, X) denote the total number
of GL2(Z)-classes of integral binary cubic forms having absolute discriminant less
than X . Then we proved that

lim inf
X→∞

N1(3, X)

N (3, X)
> 0. (6)
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The Zeckendorf Game

Paul Baird-Smith, Alyssa Epstein, Kristen Flint and Steven J. Miller

Abstract Zeckendorf proved that every positive integer n can be written uniquely
as the sum of non-adjacent Fibonacci numbers. We use this to create a two-player
game. Given a fixed integer n and an initial decomposition of n = nF1, the two
players alternate by using moves related to the recurrence relation Fn+1 = Fn +
Fn−1, and whoever moves last wins. The game always terminates in the Zeckendorf
decomposition, though depending on the choice of moves the length of the game
and the winner can vary. We find upper and lower bounds on the number of moves
possible. The upper bound is on the order of n log n, and the lower bound is sharp at
n − Z(n)moves,where Z(n) is the number of terms in theZeckendorf decomposition
of n. Notably, Player 2 has the winning strategy for all n > 2; interestingly, however,
the proof is non-constructive.
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1 Introduction

1.1 History

The Fibonacci numbers are one the most interesting and famous sequences. They
appear in many varied settings, from Pascal’s triangle to mathematical biology.
Among their fascinating properties, the Fibonacci numbers lend themselves to a
beautiful theorem of Zeckendorf [7]: each positive integer n can be written uniquely
as the sum of distinct, non-adjacent Fibonacci numbers. This is called the Zeck-
endorf decomposition of n and requires that we define the Fibonacci numbers
by F1 = 1, F2 = 2, F3 = 3, F4 = 5... instead of the usual 1, 1, 2, 3, 5... to create
uniqueness. The Zeckendorf theorem has been generalized many times (see for
example [2, 3, 5, 6]), allowing the game explored in this paper potentially to be
played similarly on other recurrences. For details on these and other generalizations,
as well as references to the literature on generalizations of Zeckendorf’s theorem,
see the companion papers [1, 4].

1.2 Main Results

We introduce some notation. By {1n} or {F1
n} we mean n copies of 1, the first

Fibonacci number. If we have 3 copies of F1, 2 copies of F2, and 7 copies of F4, we
could write either {F1

3 ∧ F2
2 ∧ F4

7} or {13 ∧ 22 ∧ 57}.
Definition 1.1 (The Two Player Zeckendorf Game) At the beginning of the game,
there is an unordered list of n 1’s. Let F1 = 1, F2 = 2, and Fi+1 = Fi + Fi−1; there-
fore the initial list is {F1

n}. On each turn, a player can do one of the following
moves.

1. If the list contains two consecutive Fibonacci numbers, Fi−1, Fi , then a player
can change these to Fi+1. We denote this move {Fi−1 ∧ Fi → Fi+1}.

2. If the list has two of the same Fibonacci number, Fi , Fi , then

a. if i = 1, a player can change F1, F1 to F2, denoted by {F1 ∧ F1 → F2},
b. if i = 2, a player can change F2, F2 to F1, F3, denoted by {F2 ∧ F2 → F1 ∧

F3}, and
c. if i ≥ 3, a player can change Fi , Fi to Fi−2, Fi+1, denoted by {Fi ∧ Fi →

Fi−2 ∧ Fi+1}.
The players alternative moving. The game ends when one player moves to create the
Zeckendorf decomposition.

The moves of the game are derived from the recurrence, either combining terms
to make the next in the sequence or splitting terms with multiple copies. We first
show the game is well-defined, and then provide bounds on its length.
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Theorem 1.2 Every game terminates within a finite number of moves at the Zeck-
endorf decomposition.

Now that we know that the Zeckendorf game is playable, we might wonder how
long it will take to play.

Theorem 1.3 The shortest game, achieved by a greedy algorithm, arrives at the
Zeckendorf decomposition in n − Z(n) moves, where Z(n) is the number of terms
in the Zeckendorf decomposition of n. The longest game is bounded by i ∗ n, where
i is the index of the largest Fibonacci number less than or equal to n.

The theoretical upper bound presented here grows on a log-linear scale because the
index of the largest Fibonacci number less than or equal to n is less than logφ(

√
5Fi +

1/2), where φ is the golden ratio. This relation comes from Binet’s formula. Since
there is a wide span between the lower bound and the theoretical bound, we simulated
random games and were led to the following conjectures.

Conjecture 1.4 As n goes to infinity, the number ofmoves in a randomgamedecom-
posing n into it’s Zeckendorf expansion, when all legal moves are equally likely,
converges to a Gaussian.

Conjecture 1.5 The longest game on any n is achieved by applying splitting moves
whenever possible. Specifically, the longest possible game applies moves in the
following order: merging ones, splitting from smallest to largest, and adding consec-
utives, from smallest to largest.

Conjecture 1.6 The average game is of a length linear with n.

Of course, we are interested not just in how long the game takes, but who wins.

Theorem 1.7 For all n > 2, Player 2 has the winning strategy for the Zeckendorf
Game.1

Since someonemust alwaysmake the finalmove, and the game always terminates,
for each n one of the two players must have a winning strategy. In other words,
someone must always be able to force their victory. This theorem shows that for all
nontrivial games, Player 2 has this strategy. The proof is not constructive: it merely
shows the existence of Player 2’s winning strategy; we cannot identify how they
should move. Though we can give exact winning strategies for small n, we leave the
general winning strategy for future research.

1If n = 2, there is only one move, and then the game is over.
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2 The Zeckendorf Game

2.1 The Game Is Playable

In this section, we provide many proofs related to the Zeckendorf Game. We begin
with the proof of Theorem 1.2, which shows that the game is well defined and
playable, starting with an important lemma.

Lemma 2.1 (Fibonacci Monovariant) The sum of the square roots of the indices on
any given turn is a monovariant.2

Proof Our moves cause the following changes in the proposed monovariant. We
observe that we only have to consider the affected terms because the suggested
monovariant is a sum, so unaffected terms contribute the same before and after the
move. Here, k is the index of Fk , a term in the current decomposition.

• Adding consecutive terms: −√
k − 2 − √

k − 1 + √
k

• Splitting: −2
√
k + √

k − 2 + √
k + 1

• Adding 1’s: −2 + √
2

• Splitting 2’s: −2
√
2 + 1 + √

3.

We note that for all positive k > 2, in other words all indices not addressed in
a special case above, all of these moves cause negative changes. We can see this
by the fact that

√
x is a monotonically increasing, concave function. So this is a

monovariant; the sum of the square roots of the indices constantly decrease with
each move, so it is strictly decreasing.

With this lemma, we now prove Theorem 1.2.

Proof (Proof of Theorem 1.2) At the beginning of the game, we have a sum of the
square roots of the indices of our list of numbers equal to

√
n, where n is the number

we have chosen for the game. From the monovariant of Lemma 2.1, we know that the
listed moves always decrease this sum. Therefore, no two moves can have the same
monovariant value, and there will be no repeat turns. Since the game essentially
moves among a subset of partitions of n, of which there are a finite number, this
implies that the game must always end within a finite number of turns. Moreover,
the game always ends at the Zeckendorf decomposition. If it terminated elsewhere,
there would either be duplicate terms or the recurrence would apply, by definition.
So, there would still be a valid move and the game would not have terminated. This
concludes the proof.

2For us, monovariant is a quantity which is either non-increasing or non-decreasing.
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Now that we know for sure that we can play the Zeckendorf Game, we wonder
how long the game will take. First, we address the question of whether the game
must always take the same amount of turns. If it does, this game is definitely not
fair because it predetermines a victor! Fortunately, this is not the case as long as we
choose an n greater than 3.

Lemma 2.2 Given any positive integer n such that n > 3, there are at least two
distinct sequences of moves M = {mi } where the application of each set of moves to
the initial set, denoted M({F1}n), leads to Zn, the Zeckendorf decomposition of n.

Proof Ifwe show that there are twodistinct sets ofmoves that arrive at theZeckendorf
decomposition of 4, we have proved the claim because for all n > 4: we can follow
the two different identified games up to 4, both of which are valid paths to the
Zeckendorf decomposition.

The following two sequences of moves result in the Zeckendorf composition of 4:

M1 = {{F1 ∧ F1 → F2}, {F1 ∧ F1 → F2}, {2F2 → F1 ∧ F3}}
M2 = {{F1 ∧ F1 → F2}, {F1 ∧ F2 → F3}}

Therefore, there are multiple games for any n > 3.

Remark 2.3 If n ≤ 3 there is one unique sequence of moves that arrives at the
Zeckendorf decomposition. If n = 1, M = {}. If n = 2, M = {F1 ∧ F1 → F2}. If
n = 3, M = {{F1 ∧ F1 → F2}, {F1 ∧ F2 → F3}}.
Corollary 2.4 For any positive n > 3, there are at least two games with different
numbers of moves. Further, there is always a game with an odd number of moves
and one with an even number of moves.

Proof In Lemma 2.2, we showed that two different sets of moves M1 and M2 arrive
at the Zeckendorf Decomposition of 4. Notice that |M1| = 3 but |M2| = 2. As there
are no losing games, for any n > 4, we can follow either of these games up to the
Zeckendorf decomposition of 4. Regardless of the number or sequence of moves it
takes to resolve the rest of the game (call the sequence Mk , with |Mk | = k), we have
already identified two sets of moves with different orders, M1 ∧ Mk and M2 ∧ Mk ,
that describe a complete game. |M1 ∧ Mk | = 3 + k, but |M2 ∧ Mk | = 2 + k. If k is
even, 3 + k is odd and 2 + k is even. If k is odd, 3 + k is even and 2 + k is even.
This proves the claim.

2.2 Bounds on the Lengths of Games

We have now established that this game has variation in both game length and parity.
It is natural to ask howmuch variety there is between short, long, and average games.
To this end, we provide a proof of Theorem 1.3. To do so, we first include a lemma
about the structure of a game following a greedy algorithm.
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Lemma 2.5 Let m(n) be the number of moves in a deterministic game where the
players must always move on the largest valued number. Let Z(n) be the number of
terms in the Zeckendorf decomposition of n. Then m(n) = n − Z(n).

Proof Each player acts on the largest valued summand with an available move. The
game on n takes m(n) moves. Looking at the game on n + 1, we observe that the
list of summands will eventually reach {1, a, b, c, . . . } where {a, b, c, . . . } is the
Zeckendorf decomposition of n. Thus m(n + 1) = m(n) + k(n + 1), where k is a
function that is always non-negative.

If the smallest summand in the Zeckendorf decomposition for n is greater than
or equal to 3, there are no additional moves that can be made and k(n + 1) = 0.
However, if the smallest summand is 1 or 2, the smallest summand can be combined
with the additional 1. Because an additional move was completed, k(n + 1) ≥ 1. It
then may be possible to now make another move with the decomposition that was
just created. For every additional move that can be made, k(n + 1) increases by 1.
We also know that for each additional move, the number of terms in the Zeckendorf
decomposition decreases by 1, because each move combines two numbers into one.
We have

Z(n + 1) = Z(n) + 1 − k(n + 1)

m(n + 1) = m(n) + k(n + 1). (1)

Define t (n) by
t (n) := Z(n) + m(n). (2)

By adding the equations given by (1) we see that t (n) satisfies a simple recurrence:

Z(n + 1) + m(n + 1) = Z(n) + m(n) + 1

t (n + 1) = t (n) + 1

= t (n − 1) + 2

= t (n − 2) + 3
...

= t (1) + n. (3)

Since 1 is a Fibonacci number, the Zeckendorf decomposition of 1 is just 1, and
we have Z(1) = 1 and m(1) = 0. Thus

t (n + 1) = t (1) + n

= Z(1) + m(1) + n

= 1 + 0 + n

t (n + 1) = n + 1. (4)
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From this, we see that for any positive integer n, t (n) = n and so, with the
definition of t (n), we have that

t (n) = Z(n) + m(n)

n = Z(n) + m(n)

m(n) = n − Z(n). (5)

We have shown that for any positive integer n, when starting from a list of length
n that contains all 1’s, the number of moves it takes to reach the Zeckendorf decom-
position for n will be equal to n minus the number of terms in the final Zeckendorf
decomposition for n. Thus, we have shown Lemma 2.5.

Proof A quick way to arrive at the Zeckendorf decomposition would be to decrease
one term on every move. This would make a short game happen in n − Z(n) moves.
No gamewould be faster, because each possible move decreases the number of terms
by at most one. That this game is achievable follows from Lemma 2.5. Since this
number of moves is theoretically shortest and is actually possible, it is a sharp lower
bound on the number of moves in the Zeckendorf game.

For the longest game, we return to the monovariant established in Lemma 2.1. We
observe that the least each move can change the sum is by a splitting move way late
into the game. Splitting moves cost at least 2

√
� − √

� − 2 − √
� + 1, where � is the

index of the largest Fibonacci number less than or equal to n. We notice that 2
√

� −√
� − 2 − √

� + 1 >
√

� − √
� − 1 because square root is concave and increasing.

Then, we observe that 1 = n − (n − 1) = (
√
n − √

n − 1)(
√
n + √

n − 1), which
implies that

√
n − √

n − 1 = 1√
n+√

n−1
> 1

n . So, 2
√

� − √
� − 2 − √

� + 1 > 1/�.
This gives that it will take atmost � · nmoves to reach the Zeckendorf decomposition.
Since � is a Fibonacci index, we recall Binet’s formula to get a bound in terms
of n: F� = 1√

5
(φ� − (−φ)−�). We note that |φ−�√

5
| < 1

2 , which implies that
√
5F� <

φ� − 1/2. Taking a base φ logarithm of both sides, we get logφ(
√
5F� + 1/2) > �.

This shows that � · n < logφ(
√
5n + 1/2)n.

2.3 Conjectures on Game Lengths

Using Mathematica code (see Appendix 4), we support the conjectures on game
length introduced in the introductionwith simulation data.We address Conjecture 1.4
first. Observing Fig. 1, the best fit Gaussian seems to align well with the distribution
ofmoves taken over 9,999 simulations of the ZeckendorfGamewith n = 60. Figure2
shows the same experiment on n = 200 with 9,999 simulations.

To see how Conjecture 1.5 may be true, we provide two pieces of evidence. The
first is the move count from simulation of the deterministic algorithm stated in the
conjecture. Recall that the order of moves is adding ones, splitting from smallest to
largest, then adding consecutives from smallest to largest. Figure3 shows an array
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Fig. 1 Frequency graph of the number of moves in 9,999 simulations of the Zeckendorf Game with
random moves when n = 60 with the best fit Gaussian over the data points

Fig. 2 Frequency graph of the number of moves in 9,999 simulations of the Zeckendorf Game with
random moves when n = 200 with the best fit Gaussian over the data points

with the x component being n and the y component being the number of moves in the
hypothesized deterministic longest game algorithm. The second piece of evidence
comes from a Java program, a link to and readme forwhich is included inAppendix 4.
The Java program explores all possible moves in the Zeckendorf game for a given n.
The data produced here is the longest possible move length for the n listed. Observe
that the two arrays provide identical data. This suggests that the hypothesized longest
game algorithm may actually be the theoretically longest game on each n (Fig. 4).

In support of Conjecture 1.6, we offer the graph in Fig. 5. Using data from sim-
ulating the Zeckendorf game on varying n, we plot the average number of moves
in a game against n. We observe that a best fit line with slope of around 1.2 fits the
data points well. Due to computer restraints, we are unable to provide data beyond
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Fig. 3 Data taken from the simulation of the deterministic longest game proposed by the algorithm
in Conjecture 1.5

Fig. 4 Computer proven
data of the number of moves
in the longest route to victory
courtesy of the Java code
written by Paul Baird-Smith

n = 200 (not pictured in the graph, but included in the data). The average taken on
n = 200 is 239, very close to 1.2 · 200.

2.4 Winning Strategies

Since someone must always make the final move, and the game always ends at the
Zeckendorf decomposition, there are no ties. Therefore one player or the other has
a winning strategy on each n. This section is devoted to the proof that Player 2 has
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Fig. 5 Graph of the average number of moves in the Zeckendorf game with simulations ranging
from 999 to 9,999 for varying n with the best fit line over the data points

the winning strategy for all n > 2, the statement of Theorem 1.7. For this proof, we
use a visual aid provided in Fig. 6.

Proof Assume that Player 1 wins the game. Therefore, Player 1 must have the win-
ning strategy from the node in the first row with the caption {1(n)}. We color this
node red in Fig. 7. Since this node only has one child, Player 1 must have the win-
ning strategy from {1(n−2) ∧ 2} in row two. Player 2 makes the next move, so Player
1 must have the winning strategy from both the nodes in row 3; if not, Player 2 would
move to the one from which Player 1 did not have the winning strategy. We focus on
the children of the node {1(n−3) ∧ 3} in row 3. This node has one descendant only;
therefore {1(n−5) ∧ 2 ∧ 3} in row 4 must have a winning strategy for Player 1. Player
2 makes the move next, so all three children of {1(n−5) ∧ 2 ∧ 3} in row 5 must be a
winning strategy for Player 1. Observe that one such child is {1(n−5) ∧ 5} in row 5. If
Player 1 has the winning strategy from that node in row 5, if that node is on the next
layer, in row 6, following the same winning strategy, Player 2 can win from the row
6 node {1(n−5) ∧ 5}. So we color that node blue on row 6 of Fig. 7 to indicate Player
2 having a winning strategy. Since that node has only one child, {1(n−7) ∧ 2 ∧ 5} in
row 7, Player 2 must have a winning strategy from that node. This means that any
parent of this node must be a winning strategy location for Player 2 because Player
2 could just move to {1(n−7) ∧ 2 ∧ 5} in row 7 from those parents. This means that
{1(n−8) ∧ 2 ∧ 3(2)} in row 6must have a winning strategy for Player 2; however, since
both children in row 6 of {1(n−6) ∧ 3(2)} in row 5 have winning strategies for Player
2, this means the row 5 node must be a winning strategy for Player 2, not Player 1
as we had earlier deduced. This leads to a contradiction that proves the claim for n
sufficiently large (n ≥ 9). For the small cases of 2 < n < 9, computer code such as
the one referenced in Appendix 4 can show that Player 2 has the winning strategy
by brute force.



The Zeckendorf Game 35

Fig. 6 Tree depicting the general structure of the first several moves of the Zeckendorf game

Fig. 7 Tree depicting the proof of Theorem 1.7. Red boxes have a winning strategy for Player 1,
and blue boxes indicate a winning strategy for Player 2
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Fig. 8 Game tree for n = 9, showing awinning path in green. Image courtesy of the code referenced
in Appendix 4

This result is non-trivial and surprising. Game trees for large n have many, many
nodes, with no obvious path to victory for either player (see Fig. 8 for n = 9 and Fig. 9
for n = 12 for an example of how quickly the number of nodes grows). Additionally,
this is merely an existence proof, which means we cannot tell how Player 2 should
move to achieve his victory. This makes the game less rigged for human players;
indeed, random simulations of the games show Players 1 and 2 winning roughly
even amounts of the time.

3 Future Work

There are many more ways that studies of this game can be extended. This paper
covered the Zeckendorf Game quite extensively, but improved upper bounds may
still be found on the number of moves in any game. This work also showed the
existence of a winning strategy for player two for all n > 2, but it does not show
what that strategy is.

The Zeckendorf Game is on the Fibonacci recurrence; however, the fact that
Zeckendorf’s theorem generalizes means that the game could be played on other
recurrences. Finding which classes of recurrences have meaningful games, bounding
themoves on those games, and considering winning strategies are all fruitful avenues
for further exploration.

Expanding in another direction, the Zeckendorf Game as conceived of by this
thesis is a two-player game. What if more players want to join? Who wins in that
case, for either the Generalized or regular Zeckendorf Game? The analysis done here
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Fig. 9 Game tree for n = 12, showing a winning path in green. Image courtesy of the code in
Appendix 4

only shows there is a winning strategy that takes an even number of moves for all
n > 2 for the Zeckendorf Game. It says nothing about the number of moves modulo
k, where k is odd and greater than 2!

4 Code

Programs for simulating a random version of the Zeckendorf game, running a deter-
ministic worst game algorithm of the Zeckendorf game, and simulating a random
Tribonacci Zeckendorf game is available at

http://github.com/paulbsmith1996/ZeckendorfGame/blob/master/
ZeckGameMathematica.nb.

TreeDrawer is used to give a visual representation of the tree structure of the
Zeckendorf game. It plays through a specified game, determining all moves that can
be made, and draw all possible paths to the end of this game. The ReadMe file can
be found at https://github.com/paulbsmith1996/ZeckendorfGame. TreeDrawer can
be executed, after compilation, by running the command

http://github.com/paulbsmith1996/ZeckendorfGame/blob/master/ZeckGameMathematica.nb
http://github.com/paulbsmith1996/ZeckendorfGame/blob/master/ZeckGameMathematica.nb
https://github.com/paulbsmith1996/ZeckendorfGame
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appletviewer TreeDrawer.java

Do not delete the comment in the preamble, as this is used at runtime by the
appletviewer. Email paul.bairdsmith@gmail.com for more information.
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Iterated Riesel and Iterated Sierpiński
Numbers

Holly Paige Chaos and Carrie E. Finch-Smith

Abstract In 1956, Riesel showed that there are infinitely many Riesel numbers—
odd positive integers k with the property that k · 2n − 1 is composite for all natural
numbers n. A few years later, Sierpiński proved an analagous result using the expres-
sion k · 2n + 1 instead. We create iterated Riesel numbers by iterating the process of
multiplying by a (fixed) power of 2 and subtracting 1 from the product (or adding
1 to the product, in the case of iterated Sierpiński numbers). In this paper, we show
that there are infinitely many iterated Riesel numbers, where we iterate the process
49 times. In addition, we prove an analogous result for iterated Sierpiński numbers.

1 Introduction

In 1956, Hans Riesel showed that 509203 is the smallest number in an infinite
sequence of integers in arithmetic progression with a startling property: 509203 ·
2n − 1 is not prime for any natural number n (see [14]). A few years later, Wacław
Sierpiński showed that 1551138074646259338 · 2n + 1 is composite for all natural
numbers n, and that this is the smallest integer in an infinite arithmetic progression
of integers with this property (see [15]). In the years since 1960, numbers with these
properties, known as Riesel numbers and Sierpiński numbers in honor of the work of
these two mathematicians, have been studied. In particular, the occurrence of Riesel
numbers or Sierpiński numbers within other interesting sequences has been a fertile
and interesting area of study. For example, there are Riesel numbers and Sierpiński
numbers and Riesel-Sierpiński numbers in the sequence of Carmichael numbers (see
[4]), in the sequence of Fibonacci numbers (see [12, 13]), in the sequence of Lucas
numbers (see [3]), in the sequence of Cullen numbers (see [5]), in the sequence of

H. P. Chaos
Wake Forest University, 1834 Wake Forest Rd, Winston-Salem, NC 27109, USA
e-mail: chaohp18@wfu.edu

C. E. Finch-Smith (B)
Washington and Lee University, 204 W. Washington St., Lexington, VA 24450, USA
e-mail: finchc@wlu.edu

© Springer Nature Switzerland AG 2020
M. B. Nathanson (ed.), Combinatorial and Additive Number Theory III,
Springer Proceedings in Mathematics & Statistics 297,
https://doi.org/10.1007/978-3-030-31106-3_4

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31106-3_4&domain=pdf
mailto:chaohp18@wfu.edu
mailto:finchc@wlu.edu
https://doi.org/10.1007/978-3-030-31106-3_4


40 H. P. Chaos and C. E. Finch-Smith

perfect powers (see [7, 9, 11]), and in infinitely many sequences of polygonal num-
bers (see [2]). In addition, there are other nonlinear sequences that contain Riesel
numbers, Sierpiński numbers, or Riesel-Sierpiński numbers (see [10]).

The standard method for proving results in this area is to use a covering of the
integers, and we also employ this technique in our work. A covering is a set of con-
gruences with the property that every integer satisfies at least one of the congruences.
For example, the congruences below form a covering of the integers.

0 (mod 2)
3 (mod 4)
2 (mod 3)
1 (mod 8)
1 (mod 12)
21 (mod 24)

(1)

In fact, this covering appears for the first time in the 1950 article [8] in which
Erdős shows that there are infinitely many odd integers that are not the sum of a
prime and a power of 2. In the construction of Riesel and Sierpiński numbers, the
moduli used in the covering are linked to the prime divisors of 2M − 1, where M
is the least common multiple of the moduli in the covering. (See Sect. 2 for more
details.)

In this paper, we discuss Riesel numbers with the property that all of the following
expressions are composite for all natural numbers n; on the right side, we provide
an equivalent expression that we prefer to use in computations.

k · 2n − 1 = k · 2n − 1

(k · 2n − 1) · 2n − 1 = k · 22n − 2n − 1

((k · 2n − 1) · 2n − 1) · 2n − 1 = k · 23n − 22n − 2n − 1
...

((· · · (k · 2n − 1) · 2n − 1) · · · ) · 2n − 1 = k · 2�n − · · · − 23n − 22n − 2n − 1

We now establish some notation. Let � ∈ N. If k is an odd positive integer such
that all of the expressions above are composite, then we call k an �-iterated Riesel
number. When we focus our attention on constructing k so that the expression k ·
2�n − · · · − 23n − 22n − 2n − 1 is composite for all natural numbers n, we saywe are
building a covering for level � and that we are constructing a level � Riesel number.
Throughout the rest of this article, for an odd prime p, we use order(2, p) to denote
the order of 2 modulo p. That is, if m = order(2, p), then m is the smallest positive
integer with the property that p divides 2m − 1.

We conclude our introductory remarks with an outline of the remainder of the
article. In the next section, we construct an infinite family of 3-iterated Riesel num-
bers. In Sect. 3, we present a few general theorems that simplify the computations in
our work. After this, in Sect. 4, we illustrate how the theorems from Sect. 3 are used
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to construct a 49-iterated Riesel number. We note that the complete set of data that
proves that we attain infinitely many 49-iterated Riesel numbers appears in Sect. 5.
We conclude with some conjectures in Sect. 5.

2 Preliminary Results

We begin our discussion by demonstrating a construction of a 3-iterated Riesel num-
ber. The implications in the table below, combined with the fact that the congruences
for n form a covering of the integers, show that if k is odd and satisfies the given
congruences, then k is a Riesel number.

k ≡ −1 (mod 3) & n ≡ 1 (mod 2) ⇒ k · 2n − 1 ≡ 0 (mod 3)
k ≡ −1 (mod 5) & n ≡ 2 (mod 4) ⇒ k · 2n − 1 ≡ 0 (mod 5)
k ≡ −1 (mod 17) & n ≡ 4 (mod 8) ⇒ k · 2n − 1 ≡ 0 (mod 17)
k ≡ −1 (mod 257) & n ≡ 8 (mod 16) ⇒ k · 2n − 1 ≡ 0 (mod 257)
k ≡ −1 (mod 65537) & n ≡ 16 (mod 32) ⇒ k · 2n − 1 ≡ 0 (mod 65537)
k ≡ −1 (mod 641) & n ≡ 32 (mod 64) ⇒ k · 2n − 1 ≡ 0 (mod 641)
k ≡ 1 (mod 6700417) & n ≡ 0 (mod 64) ⇒ k · 2n − 1 ≡ 0 (mod 6700417)

Using the Chinese Remainder Theorem, the values of k that satisfy all of the
congruences in the table above can be combined into one congruence:

k ≡ 2935363327246958234 (mod 3 · 5 · 17 · 257 · 65537 · 641 · 6700417). (2)

Now, we also include the congruences for k from the following table. Note that
the congruences for n in the right column form a covering of the integers. For this
table, corresponding congruences for k and n combine to ensure that k · 22n − 2n − 1
is divisible by the appropriate prime.

k ≡ −1 (mod 3) & n ≡ 0 (mod 2)
k ≡ 0 (mod 19) & n ≡ 9 (mod 18)
k ≡ −1 (mod 7) & n ≡ 1 or 2 (mod 3)
k ≡ −1 (mod 73) & n ≡ 3 or 6 (mod 9)

Again using the Chinese Remainder Theorem, we combine the congruences for
k into a single statement:

k ≡ 4598 (mod 3 · 19 · 7 · 73). (3)

This means that if k is odd and satisfies the congruences in (2) and (3), then k is
a 2-iterated Riesel number.
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We pause to point out that there is a startling detail apparent in the preceding table.
When constructing a standard (non-iterated) Riesel number k, there is exactly one
congruence in the covering that is connected to a congruence class for k. However,
in our level 2 computations, we see that the choice of residue class for k modulo 7
corresponds to two congruences in the covering. This also occurs with the choice
of residue class for k modulo 73. This observation lays the groundwork for the
theoretical results presented in the next section.

We repeat the process on level 3 to complete our work to construct a 3-iterated
Riesel number. We again present a table with congruence requirements for k and a
set of covering congruences for n. In this table, the congruences for k and n ensure
that k · 23n − 22n − 2n − 1 is divisible by the appropriate prime. From this table,

k ≡ −1 (mod 3) & n ≡ 1 (mod 2)
k ≡ 0 (mod 13) & n ≡ 4 or 8 (mod 12)
k ≡ −1 (mod 5) & n ≡ 2 (mod 4)
k ≡ −1 (mod 241) & n ≡ 6, 12, or 18 (mod 24)
k ≡ −1 (mod 97) & n ≡ 24 (mod 48)
k ≡ 3 (mod 673) & n ≡ 0 (mod 48)

we see that k satisfies the following congruence:

k ≡ 450591674 (mod 3 · 13 · 5 · 241 · 97 · 673). (4)

Again, the congruences for n form a covering of the integers. Moreover, note that if
the modulus in a congruence for k already appeared in one of the tables for lower
levels, then the information about k is consistent. For example, in all three levels, we
have k ≡ 2(mod 3), and k ≡ 4(mod 5) appears in the first and third tables.

Notice once again in the preceding table that the equivalence classes of k modulo
13 and modulo 241 both yield a family of congruences that are used in the covering.
In addition, we note that the congruence class for k in the tables above is frequently
either 0 or −1 modulo p. This also foreshadows our work in Sect. 3.

Combining the information about k from the three tables in this section, we see
that if

k ≡ 1 (mod 2),

k ≡ 4598 (mod 3 · 19 · 7 · 73), and

k ≡ 2935363327246958234 (mod 3 · 5 · 17 · 257 · 65537 · 641 · 6700417),

then k is a Riesel number, and all three of the integers

k · 2n − 1, k · 22n − 2n − 1, and k · 23n − 22n − 2n − 1

are composite for all natural numbers n. Furthermore, there are infinitely many such
k in arithmetic progression with this property. The smallest k in this arithmetic
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progression is
k = 18419953728187341536673053729519,

and the common difference of the arithmetic progression is

2 · 3 · 5 · 7 · 17 · 19 · 73 · 257 · 65537 · 641 · 6700417.

Hence, we have just demonstrated that there are infinitely many 3-iterated Riesel
numbers.

We remark now that the expression for level � Sierpiński numbers is

k · 2�n + 2(�−1)n + · · · + 2n + 1.

Since
k · 2�n + 2(�−1)n + · · · + 2n + 1 ≡ 0 (mod p)

if and only if

−k · 2�n − 2(�−1)n − · · · − 2n − 1 ≡ 0 (mod p),

we see that we can replace k with −k in our work above to obtain infinitely many
3-iterated Sierpiński numbers. That is, if

k ≡ 4840805080467375634786089026591 (mod 73260758808654717171459142756110),

then all three of the integers shown below are composite for all natural numbers n:

k · 2n + 1, k · 22n + 2n + 1, and k · 23n + 22n + 2n + 1.

In this section, we have seen that the choice k ≡ 2(mod 3) seems to cover either
the even or the odd values of n for each level. In fact, an easy computation shows
that we have the following result.

Theorem 1 Let k ≡ 2(mod 3), and suppose

k · 2�n − · · · − 23n − 22n − 2n − 1 ≡ 0 (mod 3).

Then either {
� ≡ 2 (mod 3)
n ≡ 0 (mod 2)

or

{
� ≡ 1 (mod 2)
n ≡ 1 (mod 2)

.

We give an analogous result for k ≡ 4(mod 5) before moving on to the general
setting in the next section.
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Theorem 2 Let k ≡ 4(mod 5), and suppose

k · 2�n − · · · − 23n − 22n − 2n − 1 ≡ 0 (mod 5).

Then � and n satisfy one of the pairs of congruences given below.

{
� ≡ 4(mod 5)
n ≡ 0(mod 4)

,

{
� ≡ 3(mod 4)
n ≡ 1(mod 4)

,

{
� ≡ 1(mod 2)
n ≡ 2(mod 4)

, or

{
� ≡ 3(mod 4)
n ≡ 3(mod 4)

.

Notice that in both Theorems 1 and 2, there is some overlap in the congruences for
�. In particular, we have the following corollaries.

Corollary 1 If k ≡ 2(mod 3) and � ≡ 5(mod 6), then

k · 2�n − · · · − 23n − 22n − 2n − 1 ≡ 0 (mod 3)

for all natural numbers n.

Corollary 2 If k ≡ 4(mod 5) and � ≡ 19(mod 20), then

k · 2�n − · · · − 23n − 22n − 2n − 1 ≡ 0 (mod 5)

for all natural numbers n.

Instead of continuing to pursue results related to specific primes, we move into a
more general discussion below.

3 Theoretical Results

Working with congruences to construct a level � Riesel number for smaller values
of � obfuscates the connections between the levels, the primes, and the moduli of
the congruences used in the coverings. In this section, we present theoretical results
illustrating these connections. In particular, these results predict which choice(s) of
residue class for k yield multiple congruences in the covering for n.

We approach the construction of a level � Riesel number by first considering how
to ensure that 0(mod m) appears in the covering. To this end, suppose p is an odd
prime, and let m denote the order of 2 modulo p. Then n ≡ 0(mod m) gives

k · 2�n − · · · − 22n − 2n − 1 ≡ k − � (mod p).

Thus, we have our first general theorem.
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Theorem 3 Let p be an odd prime, and letm=order(2, p). Suppose n ≡ 0(mod m).
Then

k · 2�n − · · · − 23n − 22n − 2n − 1 ≡ 0 (mod p)

if and only if k ≡ �(mod p).

Theorem 3 illustrates that there is a connection between the level � and the prime
p. The following theorem begins to shed light on the frequent appearance of k ≡ 0
(mod p) and k ≡ −1(mod p) in our work in Sect. 2.

Theorem 4 Let p be an odd prime, and let m = order(2, p). Let � ∈ N. Suppose

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 (5)

is divisible by p for n ≡ ±1(mod m). Then the expression in (5) is divisible for all
n with 1 ≤ n ≤ m − 1. Moreover, we have either

{
k ≡ 0 (mod p)
� ≡ 0 (mod m)

or

{
k ≡ −1 (mod p)
� ≡ −1 (mod m)

.

Proof Let p be an odd prime, and let m = order(2, p). Let � ∈ N. Suppose

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p)

for n ≡ ±1(mod m). When n ≡ 1(mod m), this implies k · 2� ≡ 2� − 1(mod p).
This is equivalent to

1 ≡ 2�(1 − k) (mod p),

which implies k ≡ 1 − 2−� (mod p). When n ≡ −1(mod m), we have

k · 2−� ≡ 1 + 2−� + · · · + 2−(�−1) (mod p),

which implies k ≡ 2(2� − 1)(mod p). Equating the two expressions for k, we have
2(2� − 1) ≡ 1 − 2−� (mod p). After rearranging, we see that

(2�+1 − 1)(2� − 1) ≡ 0 (mod p).

If p divides 2�+1 − 1, then � ≡ −1(mod m), and in this case, we have k ≡ −1
(mod p). On the other hand, if p divides 2� − 1, then � ≡ 0(mod m), which in turn
implies that k ≡ 0(mod p).

Suppose now that 1 < n < m − 1. Then p does not divide 2n − 1.
If � ≡ 0(mod m), then p divides 2�n − 1. Since

2�n − 1 = (2n − 1)(2(�−1)n + 2(�−2)n + · · · + 22n + 2n + 1),
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we see that

2(�−1)n + 2(�−2)n + · · · + 22n + 2n + 1 ≡ 0 (mod p).

So if k ≡ 0(mod p), then we have

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p).

If k ≡ −1(mod p), then

k · 2−n(2n − 1) ≡ 2−n − 1 (mod p).

So if � ≡ −1(mod m), we have

k · 2�n(2n − 1) ≡ 2�n − 1 (mod p),

and since p does not divide 2n − 1, we see that

k · 2�n ≡ 2(�−1)n + 2(�−2)n + · · · + 22n + 2n + 1 (mod p).

Therefore, if

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p)

for n ≡ ±1(mod m), then we have

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p)

for all n with 1 ≤ n ≤ m − 1, provided either k ≡ 0(mod p) and � ≡ 0(mod m) or
k ≡ −1(mod p) and � ≡ −1(mod m). �

The proof of the previous theorem helps us to develop the following partial con-
verse. We note that Theorem 4 and its proof help us to understand how primes,
levels, and moduli connected for iterated Riesel numbers, but Theorem 5 is useful in
computations related to the construction of level � Riesel numbers.

Theorem 5 Let p be an odd prime, and let m = order(2, p). Let � ∈ N. If either

{
k ≡ 0 (mod p)
� ≡ 0 (mod m)

or

{
k ≡ −1 (mod p)
� ≡ −1 (mod m)

,

then k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 is divisible by p for all n not
divisible by m.

Proof Suppose first that k ≡ 0(mod p) and � ≡ 0(mod m). Then p divides 2� − 1,
and hence also 2�n − 1.Moreover, for n �≡ 0(mod m), we have 2n − 1 �≡ 0(mod p).
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This implies that p divides

2(�−1)n + 2(�−2)n + · · · + 22n + 2n + 1.

Furthermore, since k ≡ 0(mod p), we see that

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p).

Now suppose k ≡ −1(mod p) and � ≡ −1(mod m). Then p divides 2�+1 − 1,
and hence also 2(�+1)n − 1. Thus,

2�n + 2(�−1)n + 2(�−2)n + · · · + 22n + 2n + 1 ≡ 0 (mod p).

Since k ≡ −1(mod p), we see now that

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p).

Putting together Theorems 3 and 5, we have the following corollary. Note that
Corollaries 1 and 2 are special cases of Corollary 3.

Corollary 3 Let � ∈ N. Let p be an odd prime, and let m = order(2, p). If either

{
k ≡ 0 (mod p)
� ≡ 0 (mod pm)

or

{
k ≡ −1 (mod p)
� ≡ −1 (mod pm)

,

then k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 is divisible by p for all natural
numbers n.

We remarked in Sect. 2 that some choices of residue class for k correspond to a
family of congruences in the covering for n. The next theorem provides insight about
these families of congruences.

Theorem 6 Let p be an odd prime, and let m = order(2, p). Let � ∈ N. Suppose

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p) (6)

for n ≡ ±a (mod m) for some a with 1 < a < m − 1. Then the expression in (6) is
divisible by p for all natural numbers n not divisible by m with n ≡ ad (mod m) for
some integer d.

Proof Let p be an odd prime, and let m = order(2, p). Let � ∈ N. Suppose

k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 ≡ 0 (mod p)

for n ≡ ±a (mod m) for some a with 1 < a < m − 1.
Then we have
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k · 2a� = 2a(�−1) + 2a(�−2) + · · · + 2a + 1 (mod p)

(2a − 1)k · 2a� ≡ 2a� − 1 (mod p)

(2a − 1)k ≡ 1 − 2−a� (mod p).

We also have

k · 2−a� = 2−a(�−1) + 2−a(�−2) + · · · + 2−a + 1 (mod p)

k ≡ 2a + 22a + · · · + 2(�−1)a + 2a� (mod p)

k + 1 ≡ k · 2a� + 2a� (mod p)

k(1 − 2a�) ≡ 2a� − 1 (mod p)

(k + 1)(2a� − 1) ≡ 0 (mod p).

Thus, either k ≡ −1(mod p) or p divides 2a� − 1. If 2a� − 1 ≡ 0(mod p), then

(2a − 1)k ≡ 1 − 2−a� (mod p)

implies k is divisible by p since 2a − 1 is not divisible by p. Moreover, in this case
we also have

a� ≡ 0 (mod m).

If k ≡ −1(mod p), then we have

2a� + 2a(�−1) + 2a(�−2) + · · · + 2a + 1 ≡ 0 (mod p).

This implies 2a(�+1) − 1 is divisible by p, whence a(� + 1) ≡ 0(mod m). �

Similar to using Theorem 5 to construct level � Riesel numbers, we present the
following partial converse of Theorem6. This result is the one thatwe use to construct
a covering for level � in certain circumstances. We omit the proof due to its similarity
with the proof of Theorem 5.

Theorem 7 Let p be an odd prime, and let m = order(2, p). Let � ∈ N. If either
k ≡ 0(mod p)anda� ≡ 0(mod m)or k ≡ −1(mod p)anda(� + 1) ≡ 0(mod m),
then k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 is divisible by p for all n not
divisible by m such that n ≡ ad (mod m) with d ∈ Z.

4 Construction of 49-Iterated Riesel Numbers

In Sect. 2, we showed the primes and covering congruences used to construct a
3-iterated Riesel number. In this section, we continue our work; the result is a
49-iterated Riesel number. While in Sect. 2 we included the implication for each pair
of congruences (information about k modulo p and a congruence for the covering),
in this section we simply indicate the level completed along with the congruences.
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4.1 Levels Completed Using One Prime

Applying Corollary 3 with the prime p = 3 and k ≡ 2(mod 3), we see that all levels
with � ≡ 5(mod 6) are covered using the very simple covering shown below for
even and odd integers.

0 (mod 2)
1 (mod 2)

Applying the same corollary with the prime p = 5 and k ≡ 4(mod 5), we have
the covering

0 (mod 4)
1 (mod 4)
2 (mod 4)
3 (mod 4)

for levels with � ≡ 19(mod 20).
Similarly, levels with � ≡ 20(mod 21) are completed using the covering

0 (mod 3)
1 (mod 3)
2 (mod 3)

by using k ≡ 6(mod 7) for the prime p = 7.
Notice that applyingCorollary 3helps us to show that k · 2�n − 2(�−1)n − 2(�−2)n −

· · · − 22n − 2n − 1 is composite for all n for 94 of every 420 values of � just using
the primes 3, 5, and 7.

4.2 Levels Completed Using Two Primes

Since we have chosen k ≡ 2(mod 3), we can also see that if � and n are odd, then
k · 2�n − 2(�−1)n − · · · − 2n − 1 is divisible by 3. Also, using Theorem 3, we see that
k ≡ 4(mod 5) implies that if � ≡ 4(mod 5), then k · 2�n − 2(�−1)n − · · · − 2n − 1
is divisible by 5 if n is a multiple of 4. In addition, if n ≡ 2(mod 4) and � is odd,
then k · 2�n − 2(�−1)n − · · · − 2n − 1 is divisible by 5. Altogether, these facts means
that if � ≡ 9(mod 10), then k · 2�n − 2(�−1)n − · · · − 2n − 1 is divisible by 5 for all
natural numbers n. Combining this with the results in the previous subsection, we
see that k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 is composite for all n for 74
of every 210 values of � just using the primes 3, 5, and 7.

Our work for level 14 illustrates another approach to finding a covering.
Since k ≡ 2(mod 3) and � = 14 means � ≡ 2(mod 3), Theorem 3 tells us that
k · 2�n − 2(�−1)n − 2(�−2)n − · · · − 22n − 2n − 1 is divisible by 3 for all even values
of n. In addition, the order of 2 modulo p = 43 is m = 14.
Thus choosing k ≡ 0(mod 43), Theorem 5 gives all n other than n ≡ 0(mod 14) in
the covering since � ≡ 0(mod m).
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4.3 Levels Completed Using More Than Two Primes

We illustrate the process used to complete other levels by focusing on a few examples.
To start, consider level � = 6. First,we use p = 127with correspondingm = 7. Since
� ≡ −1(mod m), we use k ≡ −1(mod p) and Theorem 5 to obtain n ≡ 1a (mod 7)
(with 0 < a < 7) in the covering. This means that we are simply missing values of
n that are multiples of 7. Next, we use p = 337 with corresponding m = 21. Since
7� ≡ 0(mod m), we use k ≡ 0(mod p) and Theorem 7 to obtain n ≡ 7a (mod 21)
(with 0 < 7a < 21) in the covering. At this stage, the values of n that are missing in
the covering are the multiples of 21. Since there is not another primewith order(2, p)
dividing 21 (other than 7, 127, and 337, which have already been used), we expand
the least common multiple of the moduli in the covering to 42. The multiples of 21
are now represented by n ≡ 0 (mod 42) and n ≡ 21 (mod 42). We handle n ≡ 0
(mod 42) by choosing k ≡ �(mod 5419) since order (2, 5419) = 42. We complete
the covering using p = 43 with corresponding m = 14. Since 7� ≡ 0(mod m), we
use k ≡ 0(mod p) and Theorem 7 to obtain n ≡ 7a (mod 14) (with 0 < 7a < 14) in
the covering. That is, we now have n ≡ 7(mod 14) in the covering, which accounts
for n ≡ 21(mod 42).

For a final example, consider � = 32. Since � ≡ 2 (mod 3), we have n ≡ 0
(mod 2) in the covering by Theorem 1. Next, consider p = 23 with correspond-
ing m = 11. By Theorem 5, since � ≡ −1(mod m), using k ≡ −1(mod p) pro-
duces n ≡ 1a (mod 11) (with 0 < a < 11) in the covering. Hence, we now only
lack odd multiples of 11 in the covering. Now we employ p = 727 with correspond-
ingm = 121. Since 11(� + 1) ≡ 0(mod 121), using k ≡ −1(mod p) and Theorem
7 yields n ≡ 11a (mod 121) (with 0 < 11a < 121) in the covering. Since the least
common multiple of 2, 11, and 121 is 242, we see that the only values of n that we
need to account for are in the residue class n ≡ 121(mod 242). We thus complete
the covering using p = 117371. Taking k ≡ 0(mod p), since 121� ≡ 0(mod 242),
Theorem 7 implies we obtain n ≡ 121a (mod 242) (with 0 < 121a < 242) in the
covering.

5 Conjectures

The theoretical results in Sect. 3 and experience building coverings for various levels
lead us to make the following conjectures.

Conjecture 1 Let � ∈ N. Then there are infinitely many level � Riesel numbers.

While our first conjecture simply posits that we can build a covering for any given
level �, the following conjecturemakes the stronger claim that we can build coverings
for all levels up to and including � (using consistent equivalence class values for k
as appropriate).

Conjecture 2 Let � ∈ N. Then there are infinitely many �-iterated Riesel numbers.
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Appendix

Level Congruences for k Congruences for n
1 k ≡ −1 (mod 3) n ≡ 1 (mod 2)

k ≡ −1 (mod 5) n ≡ 2 (mod 4)
k ≡ −1 (mod 17) n ≡ 4 (mod 8)
k ≡ −1 (mod 257) n ≡ 8 (mod 16)
k ≡ −1 (mod 65537) n ≡ 16 (mod 32)
k ≡ −1 (mod 641) n ≡ 32 (mod 64)
k ≡ 1 (mod 6700417) n ≡ 0 (mod 64)

2 k ≡ −1 (mod 3) n ≡ 0 (mod 2)
k ≡ 0 (mod 19) n ≡ 9 (mod 18)
k ≡ −1 (mod 7) n ≡ 1a (mod 3)
k ≡ −1 (mod 73) n ≡ 3a (mod 9)

3 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ 0 (mod 13) n ≡ 4a (mod 12)
k ≡ −1 (mod 5) n ≡ 2 (mod 4)
k ≡ −1 (mod 241) n ≡ 6a (mod 24)
k ≡ −1 (mod 97) n ≡ 24 (mod 48)
k ≡ 3 (mod 673) n ≡ 0 (mod 48)

4 k ≡ −1 (mod 5) n ≡ 0 (mod 4)
k ≡ 0 (mod 41) n ≡ 5a (mod 20)
k ≡ −1 (mod 31) n ≡ 1a (mod 5)

5 k ≡ −1 (mod 3) n ≡ 0, 1 (mod 2)
6 k ≡ −1 (mod 127) n ≡ 1a (mod 7)

k ≡ 0 (mod 43) n ≡ 7 (mod 14)
k ≡ 0 (mod 337) n ≡ 7a (mod 21)
k ≡ 6 (mod 5419) n ≡ 0 (mod 42)

7 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ 0 (mod 43) n ≡ 2a (mod 14)
k ≡ −1 (mod 5) n ≡ 2 (mod 4)
k ≡ −1 (mod 241) n ≡ 3a (mod 24)
k ≡ −1 (mod 97) n ≡ 6a (mod 48)
k ≡ −1 (mod 17) n ≡ 1a (mod 8)
k ≡ 0 (mod 2017) n ≡ 56a (mod 336)
k ≡ 7 (mod 3361) n ≡ 0 (mod 336)

8 k ≡ −1 (mod 3) n ≡ 0 (mod 2)
k ≡ −1 (mod 73) n ≡ 1a (mod 9)
k ≡ 0 (mod 19) n ≡ 9 (mod 18)

9 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ −1 (mod 5) n ≡ 0 (mod 2)
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10 k ≡ −1 (mod 23) n ≡ 1a (mod 11)
k ≡ −1 (mod 727) n ≡ 11a (mod 121)
k ≡ 10 (mod p1) n ≡ 0 (mod 121)

11 k ≡ −1 (mod 3) n ≡ 0, 1 (mod 2)
12 k ≡ −1 (mod 8191) n ≡ 1a (mod 13)

k ≡ −1 (mod 4057) n ≡ 13a (mod 169)
k ≡ 12 (mod 6740339310641) n ≡ 0 (mod 169)

13 k ≡ −1 (mod 3) n ≡ 1a (mod 2)
k ≡ 0 (mod 2731) n ≡ 2a (mod 26)
k ≡ 0 (mod p2) n ≡ 26a (mod 338)
k ≡ 13 (mod p3) n ≡ 0 (mod 338)

p1 = 1786393878363164227858270210279
p2 = 4929910764223610387
p3 = 18526238646011086732742614043

Level Congruences for k Congruences for n
14 k ≡ −1 (mod 3) n ≡ 0 (mod 2)

k ≡ 0 (mod 43) n ≡ 1a (mod 14)
15 k ≡ −1 (mod 3) n ≡ 1 (mod 2)

k ≡ −1 (mod 5) n ≡ 2 (mod 4)
k ≡ −1 (mod 41) n ≡ 2a (mod 20)
k ≡ −1 (mod 251) n ≡ 10a (mod 50)
k ≡ 1 (mod 101) n ≡ 0 (mod 100)

16 k ≡ −1 (mod 131071) n ≡ 1a (mod 17)
k ≡ −1 (mod 12761663) n ≡ 17a (mod 289)
k ≡ 12 (mod p4) n ≡ 0 (mod 289)

17 k ≡ −1 (mod 3) n ≡ 0, 1 (mod 2)
18 k ≡ 0 (mod 19) n ≡ 1a (mod 18)

k ≡ 0 (mod 37) n ≡ 2a (mod 36)
k ≡ 18 (mod 109) n ≡ 0 (mod 36)

19 k ≡ −1 (mod 5) n ≡ 0, 1a (mod 4)
20 k ≡ −1 (mod 3) n ≡ 0 (mod 2)

k ≡ 0 (mod 41) n ≡ 1a (mod 20)
21 k ≡ −1 (mod 23) n ≡ 1a (mod 11)

k ≡ 334 (mod 397) n ≡ 11 (mod 44)
k ≡ 21 (mod 683) n ≡ 0 (mod 22)
k ≡ 2048 (mod 2113) n ≡ 33 (mod 44)

22 k ≡ −1 (mod 23) n ≡ 0 (mod 11)
k ≡ 0 (mod 89) n ≡ 1a (mod 11)

23 k ≡ −1 (mod 3) n ≡ 0, 1 (mod 2)
24 k ≡ −1 (mod 5) n ≡ 0 (mod 4)

k ≡ 600 (mod 601) n ≡ 1a (mod 25)
k ≡ 0 (mod 41) n ≡ 5a (mod 20)

25 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ 25 (mod 1801) n ≡ 0 (mod 25)
k ≡ 0 (mod 4051) n ≡ 2a (mod 50)

26 k ≡ −1 (mod 3) n ≡ 0 (mod 2)
k ≡ 0 (mod 2731) n ≡ 1a (mod 26)

27 k ≡ 27 (mod 113) n ≡ 0 (mod 28)
k ≡ −1 (mod 29) n ≡ 1a (mod 28)
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28 k ≡ 0 (mod 43) n ≡ 1a (mod 14)
k ≡ −1 (mod 29) n ≡ 0 (mod 28)
k ≡ 0 (mod 15790321) n ≡ 14 (mod 56)
k ≡ 599 (mod 5153) n ≡ 42 (mod 112)
k ≡ 45437131183 (mod 54410972897) n ≡ 98 (mod 112)

29 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ −1 (mod 5) n ≡ 0 (mod 2)

30 k ≡ 0 (mod 11) n ≡ 1a (mod 10)
k ≡ 0 (mod 41) n ≡ 10a (mod 20)
k ≡ 0 (mod 13) n ≡ 2a (mod 12)
k ≡ −1 (mod 31) n ≡ 0 (mod 5)

31 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ −1 (mod 5) n ≡ 2 (mod 4)
k ≡ −1 (mod 5581) n ≡ 4a (mod 124)
k ≡ 31 (mod 8681) n ≡ 0 (mod 124)

p4 = 179058312604392742511009

Level Congruences for k Congruences for n
32 k ≡ −1 (mod 3) n ≡ 0 (mod 2)

k ≡ −1 (mod 23) n ≡ 1a (mod 11)
k ≡ −1 (mod 727) n ≡ 11a (mod 121)
k ≡ 0 (mod 117371) n ≡ 121 (mod 242)

33 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ −1 (mod 5) n ≡ 2 (mod 4)
k ≡ −1 (mod 17) n ≡ 0 (mod 4)

34 k ≡ −1 (mod 5) n ≡ 0 (mod 4)
k ≡ 0 (mod 41) n ≡ 10 (mod 20)
k ≡ −1 (mod 31) n ≡ 1a (mod 5)
k ≡ 0 (mod 11) n ≡ 5 (mod 10)

35 k ≡ −1 (mod 3) n ≡ 0, 1 (mod 2)
36 k ≡ 0 (mod 37) n ≡ 1a (mod 36)

k ≡ 0 (mod 433) n ≡ 2a (mod 72)
k ≡ 0 (mod 38737) n ≡ 0 (mod 72)

37 k ≡ 0 (mod 233) n ≡ 1a (mod 37)
k ≡ 37 (mod 616318177) n ≡ 0 (mod 37)

38 k ≡ 0 (mod 174763) n ≡ 1a (mod 38)
k ≡ 38 (mod 524287) n ≡ 0 (mod 19)

39 k ≡ −1 (mod 5) n ≡ 0, 1a (mod 4)
40 k ≡ 0 (mod 41) n ≡ 1a (mod 20)

k ≡ 0 (mod 11) n ≡ 1a (mod 10)
k ≡ 0 (mod 4278255361) n ≡ 2a (mod 80)
k ≡ 40 (mod 61681) n ≡ 0 (mod 40)

41 k ≡ −1 (mod 3) n ≡ 0, 1 (mod 2)
42 k ≡ 0 (mod 337) n ≡ 1a (mod 21)

k ≡ 0 (mod 92737) n ≡ 3a (mod 63)
k ≡ 42 (mod 649657) n ≡ 0 (mod 63)

43 k ≡ 0 (mod 431) n ≡ 1a (mod 43)
k ≡ 43 (mod 9719) n ≡ 0 (mod 43)

44 k ≡ −1 (mod 3) n ≡ 0 (mod 2)
k ≡ −1 (mod 73) n ≡ 1a (mod 9)
k ≡ 0 (mod 19) n ≡ 9 (mod 18)
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45 k ≡ −1 (mod 3) n ≡ 1 (mod 2)
k ≡ −1 (mod 5) n ≡ 2 (mod 4)
k ≡ 0 (mod 11) n ≡ 2a (mod 10)
k ≡ 0 (mod 251) n ≡ 10a (mod 50)
k ≡ 0 (mod 13) n ≡ 4a (mod 12)
k ≡ −1 (mod 241) n ≡ 12 (mod 24)
k ≡ −1 (mod 97) n ≡ 24 (mod 48)
k ≡ 45 (mod 4801) n ≡ 0 (mod 1200)

46 k ≡ 0 (mod 47) n ≡ 1a (mod 23)
k ≡ 46 (mod 178481) n ≡ 0 (mod 23)

47 k ≡ −1 (mod 3) n ≡ 0, 1 (mod 2)
48 k ≡ 0 (mod 13) n ≡ 1a (mod 12)

k ≡ −1 (mod 7) n ≡ 0 (mod 3)
49 k ≡ −1 (mod 3) n ≡ 1 (mod 2)

k ≡ −1 (mod 5) n ≡ 0 (mod 2)
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A General Framework for Studying
Finite Rainbow Configurations

Mike Desgrottes, Steven Senger, David Soukup and Renjun Zhu

Abstract Given a coloring of a set, classical Ramsey theory looks for various con-
figurations within a color class. Rainbow configurations, also called anti-Ramsey
configurations, are configurations that occur across distinct color classes. We present
some very general results about the types of colorings that will guarantee various
types of rainbow configurations in finite settings, as well as several illustrative corol-
laries. The main goal of this note is to present a flexible framework for decomposing
finite sets while guaranteeing the existence of some desired structure across the
decomposition.

1 Introduction

Classical Ramsey problems typically involve partitioning an ambient set up into
disjoint subsets called color classes, then looking for conditions under which a given
configuration will be present in one of the color classes. One canonical example
is Schur’s Theorem, which says that if you color the natural numbers with a finite
number of colors, then there must be a color class with a triple of the form (x, y, x +
y).

Here,we consider so-called anti-Ramseyor rainbowproblems.Rainbowproblems
have been studied in different contexts; see [1, 9] and the references therein for some
arithmetic rainbow results, and see [2, 10] and the references therein for results in
graph theory. We begin with some basic definitions.

Definition 1 A coloring of a set X is a function f : X → C for some setC of colors.
The preimages { f −1(i)}, for each i ∈ C , are the color classes of the coloring. Notice
that the color classes form a partition of X .

Definition 2 A rainbow configuration is a k-tuple (x1, x2, . . . , xk) ∈ Xk such that
x1, x2, . . . , xk all belong to distinct color classes.
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1.1 Results

In this paper, we prove some very general results on what kinds of colorings will
guarantee the existence of various types of rainbow configurations. Ourmain result is
very general, so we first give an illustrative corollary, which can be seen as a rainbow
version of Schur’s Theorem. We refer the reader to [1, 9] for related results.

Theorem 1 Suppose we have a coloring of a finite abelian group, G. If no color
class has size ≥ 2

27 |G| then there must be a rainbow triple of the form (x, y, x + y).

Theorem1 is a corollary of our main theorem.

Theorem 2 Let X be a finite set of size n, and E ⊂ Xk be a set of k-tuples, with the
property that there exist Mi, j , such that for any

x = (x1, x2, . . . , xk) ∈ E,

we have that |{y ∈ E : yi = xi , y j = x j }| ≤ Mi, j . Define

M =
∑

i< j

Mi, j .

If no color class has size ≥ Cn, where |E | ≥ Dn2, and C < 2D
9M , then there must be

a rainbow k-tuple in E.

In this statement, E is the set of k-tuples of elements of X that formwhatever con-
figuration we are concerned with (such as (x, y, x + y) in Theorem1). The quantity
M depends on howmany of these k-tuples share a pair of coordinates (in Theorem1,
each pair of coordinates uniquely determines a triple). We start with some ambient
set, X , that can be decomposed into disjoint subsets, with some control on the size
of these subsets. The main idea is that we can guarantee the existence of various
types of configurations if we know something about the structure of these configu-
rations (measured by the Mi, j ), as well as how many such configurations there are
(measured by D). Note that the structure is quantified without dependence on any
particular algebraic structure. This allows Theorem2 to apply to settings where there
is no explicit algebraic structure.

To illustrate the use of Theorem2, we now list a few other applications. The
next result was inspired by the corresponding Ramsey problem: which colorings of
various rings admit monochromatic quadruples of the form (x, y, x + y, xy)? Note
that this result involves both addition and multiplication. We state a similar result
in the negative. That is, if there are no rainbow configurations, then we must have a
color class that is too large. See [5–7, 11] for background and related Ramsey type
problems. In what follows, let Fq denote the finite field of q elements, where q is an
odd prime power.

Corollary 1 If we color Fq such that each color class has size <
(2−o(1))q

63 , then
there must be a rainbow quadruple of the form (x, y, x + y, xy).
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Following this, we have a result guaranteeing the existence of long rainbow arith-
metic progressions in awide class of finite abelian groups. See [14] and the references
contained therein ([1] in particular), for more on rainbow arithmetic progressions.

Corollary 2 If we color a finite (additive) abelian group G, with no (nonidentity)
element of order< k, then if there are no rainbow k-arithmetic progressions, at least
one color class has size ≥ 2

9(k2)
|G|.

We also include this application of Theorem2 with an ambient set that is not
even a group. Let for integers a < b, let [a . . . b] denote the “interval of integers,”
{a, (a + 1), . . . , (b − 1), b}.
Corollary 3 If we color [1 . . . n] such that there are no rainbow triples of the form
(x, y, x + y), then at least one color class has size ≥ 1−o(1)

27 n.

In this example, we show how Thorem 2 can be used to get quantitative informa-
tion. Under some slightly stronger conditions, we can estimate how many rainbow
configurations must be present.

Corollary 4 Suppose the conditions of Theorem2 are satisfied, but are strengthened
so that no color class has size ≥ Cpn for some p ∈ (0, 1]. Then there are at least
(1 − p)Dn2 rainbow elements of E.

We now present a more geometric result, whose proof uses more machinery. In
[8], Alex Iosevich and Misha Rudnev used the following definition of distance for
use in a vector space over a finite field. For x, y ∈ F

2
q , we write

|x − y| = (x1 − y1)
2 + (x2 − y2)

2.

This notion of distance shares many properties of the Euclidean distance in R2. The
following is a version of the main result in [12], due to the second listed author.

Corollary 5 If F2
q is colored so that no color class is of size bigger than cq2 for

any positive constant, c, and equilateral triangles exist, then there is a rainbow
equilateral triangle.

2 Proof of Theorem2

The basic idea of this proof will be to assume that we have no rainbow configuration,
then find that there must be some large color class. To do this, we will merge color
classes together to get a relatively uniform count. Note that merging color classes
can destroy but not create rainbow configurations. So if we began without a rainbow
configuration, then merging classes will not create one. Once we have a uniform
count, we can use the quantities measuring the structure and number of configura-
tions, using M and D respectively, to derive a contradiction on the total number of
elements in the ambient set.
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Proof FixC > 0 to be determined later. Now, proceed to greedilymerge the smallest
two color classes pairwise until every class has size between (1/2)Cn and (3/2)Cn.

That is to say, if it is not the case that every color class is of size between (1/2)Cn
and (3/2)Cn, then we merge the smallest two color classes and check again. We
repeat this merging process until every color class has size between (1/2)Cn and
(3/2)Cn. Let s denote the number of color classes after this merging.

There are |E | k-tuples in the set E . Fix a color i , and let ni denote the number
of elements from X in color class i. Recall that M bounds how many k-tuples from
E share (at least) a pair of coordinates. So the number of k-tuples in E with at least
two elements from color i is at most Mn2i . Now, if there are no rainbow k-tuples then
every k-tuple in E must have at least two coordinates of the same color, so

|E | ≤ M
s∑

i=1

n2i ≤ M
s∑

i=1

(
3

2
Cn

)2

≤ 9M

4
sC2n2,

where we used the assumption that ni ≤ (3/2)Cn for all i . So we have that

s ≥ 4

9M

1

C2

|E |
n2

≥ 4D

9M

1

C2
.

But every class has size at least (1/2)Cn, which, since they are all disjoint, implies
that X has at least

1

2
Cn · 4D

9M
C−2 = 2D

9M

n

C
> n

elements, a contradiction. �

3 Corollaries of Theorem2

Here, we prove Theorem1, Corollaries1, 2, 3, 5, and 4. These illustrate how to use
Theorem2. In particular, they will show how to get a handle the constants Mi, j and
D in various situations.

3.1 Proof of Theorem1

Proof We will apply Theorem2 with X = G and k = 3. The set E ⊂ X3 will be
the set of triples of G of the form (x, y, x + y). Now, M1,2 will be the number of
different triples in G that can share the first two coordinates. But any pair of first and
second coordinates, x and y, will uniquely determine the third coordinate, x + y.
There may be other triples in X3 that share the first two coordinates, but only one of
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them will be in E, so M1,2 = 1. Notice that any pair of elements x and x + y will
uniquely determine y, so M1,3 = 1. Similarly, M2,3 will be 1, so

M =
∑

i< j

Mi, j = M1,2 + M1,3 + M2,3 = 3.

All that is left is for us to applyTheorem2 is to get a value for D. Soweneed to see how
big E is in terms of X . As each pair of elements, x and y, from G generates a distinct
triple (x, y, x + y) in E , we see that |E | = n2, so D = 1. Plugging everything into
Theorem2 guarantees the existence of a rainbow triple of the form (x, y, x + y) for
any coloring where each color class is smaller than Cn, where

C <
2D

9M
= 2

27
.

3.2 Proof of Corollary1

Proof Similar to the proof of Theorem1,wewill set X = Fq , find a set of quadruples,
E , and estimate the constants M and D to plug into Theorem2. Initially, we would
startwith all quadruples of the form (x, y, x + y, xy) as E , butwe drop all quadruples
with xy = 0, because given xy = x = 0 there are still many possible quadruples, and
a quadruple with x = xy would necessarily be nonrainbow. So M1,4 would be too
large to get an effective bound. This leaves the number of possible quadruples that
comprise our set E to be

q2 − 2q + 1 = (1 − o(1))q2.

Now, |Fq | = q, so n = q. Since E = (1 − o(1))n2, we have that D = (1 − o(1)).
Knowing any two of x, y, x + y clearly fixes the rest of the tuple, and knowing

xy and either x or y does the same (as xy �= 0). Therefore Mi, j = 1 for all of the
Mi, j except M3,4. If we know x + y and xy then x and y must be roots of the
polynomial t2 − (x + y)t + (xy), of which there are at most two (so there are at
most two quadruples, since we can change the order of x and y). This gives us that
M3,4 = 2, and summing this with the other Mi, j gives M = 7.

When we put these values into Theorem2, we get that there must be a rainbow
quadruple of the form (x, y, x + y, xy) if all of the color classes are smaller than
Cq, for

C <
2D

9M
= 2 − o(1)

63
.



60 M. Desgrottes et al.

3.3 Proof of Corollary2

Proof Again, we will find a suitable set E , then compute the corresponding values
of M and D. Since our ambient group is G, we have that n = |G|. We set E to be
the set of all ordered k-tuples whose elements form an ordered k-term arithmetic
progression:

E := {(z, z + x, . . . , z + (k − 1)x) : z, x ∈ G}.

Note that in E , we could have two elements that consist of the same group elements,
but in distinct orders. Each of the k-term arithmetic progressions above will be
distinct, giving us n2 distinct elements in E , one for every pair of elements, (z, x) ∈
G2. So D = 1.

Toget a handle onM , we need to see howoften two k-term arithmetic progressions
can have two elements in the same spot (e.g., they have the same fifth element and
same ninth element). So suppose that the k-term arithmetic progressions generated
in E by (z, x) and (z′, x ′) share the same elements at the slots numbered a and b, for
some distinct a, b ∈ [0 . . . (k − 1)]. That is,

z + ax = z′ + ax ′ and z + bx = z′ + bx ′.

This gives ax − ax ′ = z′ − z = bx − bx ′. Then a(x − x ′) = b(x − x ′), meaning

(a − b)(x − x ′) = 0;

so x − x ′ has order ≤ |a − b|, meaning x = x ′ (since |a − b| < k), which implies
that the two progressions are identical. Thus all the Mi, j are 1, and there are

(k
2

)
of

them. So M = (k
2

)
, D = 1 and the result follows. �

3.4 Proof of Corollary3

Proof This runs essentially the same way as the proof of Theorem1, with M = 3.
However, there is a slightly different calculation for D. Note that if we choose x = c,
there are n − c possible choices for y such that x + y ∈ [1 . . . n]. Therefore:

|E | =
n∑

c=1

n − c =
(
n

2

)
=

(
1

2
− o(1)

)
n2,

giving D = 1
2 − o(1), and we apply Theorem2. �
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3.5 Proof of Corollary4

Proof Using Theorem2, we see that there must be a rainbow element of E . Thus
we can remove it from E , and we can keep finding rainbow elements as long as
|E | > Dpn2. So there are at least Dn2 − Dpn2 = (1 − p)Dn2 rainbow elements of
E . �

3.6 Proof of Corollary5

The proof of this result is a bit more involved, and requires a bit more background
than the others.

3.6.1 Existence of Equilateral Triangles

We first have to address what it means that equilateral triangles exist. For some q,
there are no triples of points x, y, z ∈ F

2
q such that |x − y| = |y − z| = |x − z|. See

[3], (Lemma4.1 in particular) by Bennett, Iosevich, and Pakianathan, for more on
this point. In this case, it is enough that there is an element σ ∈ Fq such that σ 2 = 3.

3.6.2 Geometric Lemmas

Before we dive into the proof, we will need two lemmas, which we will use to get
our estimates on M and D. Both can be found in multiple sources, and are stated
without proof. The first is pulled from the proof of Theorem 2 of [13] and the second
is stated as a special case of Lemma1.2 from [4].

Lemma 1 If E ⊂ F
2
q and |E | � q

3
2 , then

|{(x, y) ∈ E × E : |x − y| = 1}| � q−1|E |2.

Lemma 2
|{(x, y) ∈ F

2
q × F

2
q : |x − y| = 1}| = (1 + o(1))q3.

With these results in tow, we are ready to put everything together. Corollary5 is a
corollary of the proof of Theorem2, as we will need to handle the number of color
classes after merging rather carefully.
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3.6.3 Finishing the Proof

Proof We will apply Theorem2 with X = F
2
q , so n = q2. By assumption, we have

that no color class is of size proportional to q2, so after the merging process in the
proof of Theorem2, we will have s different color classes, where s is bigger than any
constant1 with respect to q. Call these color classes E1, E2, . . . , Es, and possibly
reorder them so that |E j | ≥ |E j+1| for j = 1, . . . , (s − 1).

Next, we estimate M . Due to the symmetry in an equilateral triangle, all of the
Mi, j will be equal, so we need only estimate M1,2. One of the properties of this
notion of distance is that distinct circles can intersect in no more than two points. Fix
any color class, E j . If we take two points, x, y ∈ E j , that are a unit distance apart,
and draw unit circles centered at them, these circles can intersect at most twice. Call
those two intersection points z and z′. Then (x, y, z) and (x, y, z′) are the only two
triples of points from F

2
q that make unit equilateral triangles with x and y as the first

two entries. Now we apply Lemma1 to each color class and see that

M1,2 ≤
s∑

j=1

2|{(x, y) ∈ E j × E j : |x − y| = 1}| � q−1s|E1|2.

Since the Mi, j are equal, we have that M = 3M1,2. Putting this together with the
bound on M1,2 gives

M � q−1s|E1|2.

Now, we apply Lemma2 to see that there are (1 + o(1))q3 pairs of points (x, y) ∈ F
2
q

that are a unit distance apart, that is, with |x − y| = 1. Note that in any equilateral
triangle, there are exactly three pairs of points that are a unit distance apart. Now,
as discussed above, each such pair is in exactly two equilateral triangles. Therefore,
the total number of equilateral triangles that exist in F2

q , regardless of color, must be
2
3 (1 + o(1))q3, giving us that we can set D = 2

3q.
From here, we finish by putting the estimates on s, M , and D together to see that

C <
2D

9M
� q−1s|E1|2

2
3q

≤ s|E1|2
q2

,

This holds as long as |E1| � Cs−1q2 ≤ Cn, which we know to be true, as s is larger
than any constant with respect to q. �
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1For example, if s > log q, that would suffice, but in fact this works for any slowly growing function
in q.
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Translation Invariant Filters and
van der Waerden’s Theorem

Mauro Di Nasso

Abstract Wepresent a self-contained proof of a strong version of van der Waerden’s
Theorem. By using translation invariant filters that are maximal with respect to inclu-
sion, a simple inductive argument shows the existence of “piecewise syndetically”-
manymonochromatic arithmetic progressions of any length k in every finite coloring
of the natural numbers. All the presented constructions are constructive in nature,
in the sense that the involved maximal filters are defined by recurrence on suitable
countable algebras of sets. No use of the axiom of choice or of Zorn’s Lemma is
needed.

1 Introduction

The importance of maximal objects in mathematics is well-known, starting from
the fundamental examples of maximal ideals in algebra, and of ultrafilters in certain
areas of topology and of Ramsey theory. In this paper we focus on maximal filters
on suitable countable algebras of sets which are stable under translations. By using
such maximal objects, along with ultrafilters extending it, we give a proof of a strong
version of the following classical result in Ramsey theory:

Theorem ([5]) In every finite partition N = C1 ∪ · · · ∪ Cr there exists a piece C =
Ci that contains arbitrarily long arithmetic progressions, that is, for every k there
exists a progression x + y, x + 2y, . . . , x + ky ∈ C.

In fact, we will prove the existence of “piecewise syndetically”-many monochro-
matic arithmetic progressions of any length k.

Usually, van der Waerden’s Theorem is proved either by double induction using
elementary, but elaborated, combinatorial arguments in the style of the original proof
[5], or by using properties of the smallest ideal K (βN,⊕) in the algebra of ultra-
filters (see [4, Chap.14]; see also [1, 2] for stronger versions). In our proof, for any
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given piecewise set, we restrict to a suitable countable algebra of sets, and explicitly
construct by recursion a maximal translation invariant filter, and then an ultrafilter
extending it. The desired result is finally obtained by a short proof by induction, that
is essentially a simplified version of an argument that was used in [3] in the frame-
work of the compact right-topological semigroup (βN,⊕). It is worth remarking
that, contrarily to the usual ultrafilter proof, we make no explicit use of the algebra
in the space of ultrafilters; in fact, we make no use of the axiom of choice nor of
Zorn’s Lemma.

2 Preliminary Notions

N = {1, 2, 3, . . .} denotes the set of positive integers, and N0 = N ∪ {0} the set of
non-negative integers. For A ⊆ N and n ∈ N0, the leftward shift of A by n is the set:

A − n := {m ∈ N | n + m ∈ A}

Elemental notions in combinatorics of numbers that we will use in this paper are
those of thick set, syndetic set, and piecewise syndetic set. For completeness, let us
recall them here.

A set A ⊆ N is thick if it includes arbitrarily long intervals. Equivalently, A is
thick if every finite set F = {n1, . . . , nk} ⊂ N has a rightward shift included in A,
that is, there exists x such that

F + x := {n1 + x, . . . , nk + x} ⊆ A.

Notice that such an x can be picked in A. In terms of intersections, the property
of thickness of A can be rephrased by saying that the family {A − n | n ∈ N0} has
the finite intersection property (FIP for short), that is,

⋂k
i=1(A − ni ) �= ∅ for any

n1, . . . , nk ∈ N0.
A set A ⊆ N is syndetic if it has “bounded gaps”, that is, there exists k ∈ N such

that A meets every interval of length k. Equivalently, A is syndetic if a finite number
of leftward shifts of A covers all the natural numbers, that is, N = ⋃k

i=1(A − ni ) for
suitable n1, . . . , nk ∈ N0.

A set is piecewise syndetic if it is the intersection of a thick set with a syndetic
set. Equivalently, A is piecewise syndetic if a finite number of leftward shifts cover
a thick set, that is,

⋃k
i=1(A − ni ) is thick for suitable n1, . . . , nk ∈ N0.

Notice that the families of thick, syndetic, and piecewise syndetic sets are all
invariant with respect to shifts. Awell-known relevant property of piecewise syndetic
sets that is satisfied neither by thick sets nor by syndetic sets, is the Ramsey property
below. For the sake of completeness, we include here a proof.

Proposition 2.1 In every finite partition A = C1 ∪ · · · ∪ Cr of a piecewise syndetic
set A, one of the pieces Ci is piecewise syndetic.
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Proof For simplicity, let us say that an interval I is k-good for the set B if for every
sub-interval J ⊆ I of length k one has J ∩ B �= ∅. By the hypothesis of piecewise
syndeticity of A, there exists k ∈ N and a sequence of intervals 〈In | n ∈ N〉 with
increasing length such that every In is k-good for A. It is enough to consider the
case when A = C1 ∪ C2 is partitioned into two pieces, because the general case
A = C1 ∪ · · · ∪ Cr where r ≥ 2 will then follow by induction. We distinguish two
cases.

Case # 1: There exists h such that infinitely many intervals In are h-good for C1.
In this case C1 is piecewise syndetic.

Case # 2: For every h, there are only finitely many intervals In that are h-good
for C1. So, for every h we can pick an interval Inh of length ≥ h that is not h-good.
Let Jh ⊆ Inh be a sub-interval of length h such that Jh ∩ C1 = ∅. The sequence
of intervals 〈Jh | h ∈ N〉 shows that C2 is piecewise syndetic. Indeed, given h, for
every sub-interval J ⊆ Jh of length k we have that J ∩ C1 ⊆ Jh ∩ C1 = ∅; and so
J ∩ C2 = J ∩ A �= ∅, since J ⊆ Inh and Inh is k-good for A. �

3 Maximal Translation Invariant Filters

In the following, by family we mean a nonempty collection of subsets of N.

Definition 3.1 A family G is translation invariant if A ∈ G ⇒ A − 1 ∈ G (and
hence, A − n ∈ G for all n ∈ N0).

An algebra of sets (on N) is a family that contains N and is closed under finite
unions, finite intersections, and complements. The [translation invariant] algebra
generated by a family G is the smallest [translation invariant] algebra of sets that
contains G .

Proposition 3.2 If the familyG is countable, then one can give explicit constructions
of both the (countable) algebra generated by G , and the (countable) translation
invariant algebra generated by G , in terms of any given enumeration of the sets in
G .

Proof Let 〈An | n ∈ N〉 be an enumeration of the sets in G , and fix 〈Fn | n ∈ N〉
an enumeration of the nonempty finite sets of natural numbers.1 For A ⊆ N, denote
A+1 = A and A−1 = Ac. Then the following family BG is the smallest algebra of
sets that contains G :

BG :=
⎧
⎨

⎩

t⋃

i=1

( ⋂

k∈Fni

Aσi (k)
k

) ∣
∣
∣ n1, . . . , nt ∈ N, σi : Fni → {+1,−1}

⎫
⎬

⎭
.

1E.g., if n = ∑∞
k=1 ank2k−1 is written in binary expansion where ank ∈ {0, 1}, then we can let

Fn := {k | ank = 1}.
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Notice that if G is translation invariant, then alsoBG is translation invariant. So, the
algebraBG ′ generated by the family of shifts G ′ := {A − n | A ∈ G , n ∈ N0} is the
smallest translation invariant algebra containing G . �

A filter on an algebra of setsB is a nonempty familyF ⊆ B such that:

• F is closed under finite intersections, that is, A, B ∈ F ⇒ A ∩ B ∈ F ;
• F is closed under supersets, that is, if B ∈ B and B ⊇ A ∈ F then B ∈ F .

Every familyG ⊆ Bwith the finite intersection property (FIP for short) generates
a filter 〈G 〉, namely

〈G 〉 := {B ∈ B | B ⊇ A1 ∩ · · · ∩ Ak for suitable A1, . . . , Ak ∈ G }.

An ultrafilter U on the algebra of setsB is a filter with the additional property that
A ∈ U whenever A ∈ B and the complement Ac /∈ U . It is easily verified that a filter
U is an ultrafilter if and only if the Ramsey property holds: If A1 ∪ · · · ∪ Ak ∈ U
where all sets Ai ∈ B, then A j ∈ U for some j . Ultrafilters can also be characterized
as those filters that are maximal under inclusion and so, by a straight application of
Zorn’s Lemma, it is proved that every filter can be extended to an ultrafilter.

The following objects are the main ingredient in our proof of van der Waerden’s
Theorem.

Definition 3.3 A translation invariant filter (TIF for short) is a filterF on a trans-
lation invariant algebra B such that A ∈ F ⇒ A − 1 ∈ F (and hence A − n ∈ F
for all n ∈ N0).

Notice that if the algebra B is translation invariant, and the family G ⊆ B is
translation invariant, then the generated filter 〈G 〉 is a TIF.

The notions of TIF and thick set are closely related.

Proposition 3.4 A set A is thick if and only if it belongs to a TIF F .

Proof Recall that A is thick if and only if the family G = {A − n | n ∈ N0} has the
FIP. Since G is translation invariant, the generated filter 〈G 〉 on the algebraBG is a
TIF that contains A.

Conversely, assume that A ∈ F for some TIF F . Then trivially the family G =
{A − n | n ∈ N0} has the FIP because G ⊆ F . �

Similarly to ultrafilters, by a straightforward application of Zorn’s Lemma it can
be shown that every TIF can be extended to amaximal TIF. However, in the countable
case, recursive constructions suffice to produce both ultrafilters and maximal TIFs,
which are thus obtained in a constructive manner, without any use of the axiom of
choice.

Proposition 3.5 Let B = {Bn | n ∈ N} be a countable algebra of sets.
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1. Given a familyG ⊆ Bwith the FIP, inductively defineG0 = G ;Gn+1 = Gn ∪ {Bn}
in case Bn ∩ A �= ∅ for every A ∈ Gn; and Gn+1 = Gn otherwise. Then U :=⋃

n Gn is an ultrafilter on B that extends G .
2. Assume that the algebra B is translation invariant. Given a translation invariant

family G ⊆ B with the FIP, inductively define G0 = G ; Gn+1 = Gn ∪ {Bn − k |
k ∈ N0} in case that union has the FIP; and Gn+1 = Gn otherwise. Then M :=⋃

n Gn is a maximal TIF that extends G .

Proof (1). By the definition, it is clear that all families Gn have the FIP, and so also
their increasing union U has the FIP. Now assume by contradiction that A ∈ B
is such that both A, Ac /∈ U . If A = Bn and Ac = Bm then, by the definition of
U , there exist U ∈ Gn and U ′ ∈ Gm such that A ∩ U = Ac ∩ U ′ = ∅, and hence
U ∩ U ′ = ∅, against the FIP ofU . Finally, if B ⊇ A where B ∈ B and A ∈ U then
B ∈ U , as otherwise, by what just proved, Bc ∈ U , and hence ∅ = Bc ∩ A ∈ U , a
contradiction.

(2). By induction, it directly follows from the definition that all families Gn have
the FIP and are translation invariant; so, the same properties hold for M . Now let
B ⊇ A where A ∈ M and B ∈ B, say B = Bn . Notice that Gn ∪ {B − k | k ∈ N0}
has the FIP because A − k ⊆ B − k for all k and Gn ∪ {A − k | k ∈ N0} ⊆ M has
the FIP. Then B ∈ Gn+1 ⊆ M , and we can conclude that M is a TIF. As for the
maximality, letM ′ ⊇ M be a TIF. Given A ∈ M ′, pick n with A = Bn . The family
Gn ∪ {A − n | n ∈ N0} has the FIP, since it is included in the filter M ′, and so A ∈
Gn+1. This shows that M ′ ⊆ M , and hence the two TIFs are equal. �

Two properties of maximal TIFs that will be relevant to our purposes are the
following.

Proposition 3.6 LetB be a translation invariant algebra, and letU be an ultrafilter
on B that includes a maximal TIF M . Then:

1. Every B ∈ U is piecewise syndetic.
2. For every B ∈ U , the set BU := {n ∈ N | B − n ∈ U } is syndetic.2

Proof Notice first that for every B ∈ U there exist n1, . . . , nk such that the union⋃k
i=1(B − ni ) ∈ M . Indeed, if� := {Bc − n | n ∈ N0} then the unionM ∪ � does

not have the FIP, as otherwiseM ∪ �would generate a TIF that properly extendsM
(since it would contain Bc while Bc /∈ M ), against the maximality. So, there exist
A ∈ M and n1, . . . , nk such that A ∩ ⋂k

i=1(Bc − ni ) = ∅. But then⋃k
i=1(B − ni ) ∈

M , because it is a superset of A ∈ M .
(1). Pick a finite union of shifts

⋃k
i=1(B − ni ) ∈ M . By Proposition 3.4, that

union is thick because it is an element of a TIF, and hence B is piecewise syndetic.
(2). As above, pick a finite union of shifts

⋃k
i=1(B − ni ) ∈ M . By translation

invariance, for every m ∈ N one has that
⋃k

i=1(B − ni − m) ∈ M ⊆ U and so, by
the Ramsey property of ultrafilters, there exists i such that B − ni − m ∈ U , that
is, m ∈ BU − ni . This shows that N = ⋃k

i=1(BU − ni ) is a finite union of shifts of
BU , and hence BU is syndetic. �

2We remark that in general the set BU does not belong to the algebra of sets B.
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4 A Strong Version of van der Waerden’s Theorem

The following property of piecewise syndetic sets was first proved by exploiting
the properties of ultrafilters in the smallest ideal of the right-topological semigroup
(βN,⊕) (see [1, 2]).

Theorem 4.1 Let A be a piecewise syndetic set. Then for every k ∈ N, the set
APk(A) := {x ∈ A | ∃y ∈ N s.t. x + iy ∈ A for i = 1, . . . , k} is piecewise syndetic.

Notice that, as a straight consequence, one obtains the following strong version
of van der Waerden’s Theorem.

Theorem 4.2 In every finite partition N = C1 ∪ · · · ∪ Cr there exists a piece C = Ci

such that, for every k ∈ N, the set APk(C) is piecewise syndetic.

Proof By the Ramsey property of piecewise syndetic sets (see Proposition 2.1), we
can pick a color Ci which is piecewise syndetic. �

In this section we will give a new proof of the above theorem which relies on
the existence of an ultrafilter U on an appropriate translation invariant algebra B,
which extends a maximal TIF and contains a shift of A.

Proof (of Theorem 4.1) Let B be the (countable) translation invariant algebra of
sets generated by the translation invariant family {A − n | n ∈ N0}. By the property
of piecewise syndeticity, a finite union of shifts T = ⋃m

j=1(A − n j ) is thick. Then
the translation invariant family G := {T − n | n ∈ N0} ⊆ B has the FIP, and by
Proposition 3.5 we can pick a maximal TIFM onB withM ⊇ G , and an ultrafilter
U onB withU ⊇ M . The desired result is a consequence of the following general
property.

Claim. Let U be an ultrafilter that extends a maximal TIF. If a shift B − � ∈ U
for some � ∈ N0, then BU − � contains arbitrarily long arithmetic progressions.

Indeed, let us assume the claim. Since the finite union T = ⋃m
j=1(A − n j ) ∈ G ⊆

U , by theRamseyproperty of ultrafilters there existsn j such that A − n j ∈ U . Then,
for every k ∈ N there exist x and y such that x + iy ∈ AU − n j for i = 0, 1, . . . , k.
But then B := ⋂k

i=0(A − n j − x − iy) ∈ U , and hence also the superset APk(A) −
n j − x ⊇ B belongs to U , as one can easily verify. Now recall that all sets in U
are piecewise syndetic by Proposition 3.6, and so we can conclude that APk(A) is
piecewise syndetic because it is a shift of a member of U .

We are left to prove the Claim. We proceed by induction on k, and prove that if
B − � ∈ U for some � ∈ N0, then BU − � contains a k-termarithmetic progression.3

If B − � ∈ U , then the set (B − �)U = BU − � is syndetic by Proposition 3.6.
In particular, BU − � �= ∅, and this proves the induction base k = 1.

Let us turn to the inductive step k + 1, and assume that B − � ∈ U . Let �0 =
�. By syndeticity of BU − �0, there exists a finite F ⊂ N0 such that for every

3This inductive construction uses a simplified version of an argument in [3].
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n ∈ N there exists x ∈ F with �0 + n + x ∈ BU . For convenience, let us assume
that 0 ∈ F . By the inductive hypothesis, there exist �1 ∈ N0 and y1 ∈ N such
that �1 + iy1 ∈ BU − �0 for i = 1, . . . , k, that is, �0 + �1 + x0 + iy1 ∈ BU where
x0 = 0 ∈ F . Pick x1 ∈ F with �0 + �1 + x1 ∈ BU . If x1 = x0 then we already found
a (k + 1)-term arithmetic progression in BU − �0, as desired. Otherwise, let us con-
sider the intersection

B1 := (B − x1) ∩
k⋂

i=1

(B − x0 − iy1).

Since �0 + �1 + x1 ∈ BU and �0 + �1 + x0 + iy1 ∈ BU for all i = 1, . . . , k, the
shift B1 − �0 − �1 ∈ U and so, by the inductive hypothesis, there exist �2 ∈ N0 and
y2 ∈ N such that �2 + iy2 ∈ (B1)U − �0 − �1 for i = 1, . . . , k. In consequence, �0 +
�1 + �2 + x0 + i(y1 + y2) ∈ BU and �0 + �1 + �2 + x1 + iy2 ∈ BU for every i =
1, . . . , k. Pick x2 ∈ F such that �0 + �1 + �2 + x2 ∈ BU . Notice that if x2 = x0 or
x2 = x1 then we have a (k + 1)-term arithmetic progression in BU − �0. Otherwise,
let us consider the intersection

B2 := (B − x2) ∩
k⋂

i=1

(B − x1 − iy2) ∩
k⋂

i=1

(B − x0 − i(y1 + y2)).

Similarly as above, one can easily verify that B2 − �0 − �1 − �2 ∈ U and so, by the
inductive hypothesis, we can pick an arithmetic progression in BU − �0 − �1 − �2 of
length k. We iterate the procedure. As the set F is finite, after finitely many steps we
will find elements xn = xm where n > m, and finally obtain the following arithmetic
progression of length k + 1:

�0 + �1 + · · · + �n + xn + i(ym+1 + · · · + yn) i = 0, 1, . . . , k. �

5 TIFs and Left Ideals in the Space of Ultrafilters

The usual ultrafilter proof of van der Waerden’s Theorem (see [4, Sect. 14.1]) is
grounded on the existence of minimal ultrafilters, that is, on ultrafilters that belong
to a minimal left ideal of the compact right-topological semigroup (βN,⊕). In this
final section, we show how (maximal) translation invariant filters are in fact related
to the closed (minimal) left ideals of (βN,⊕). Let us recall here the involved notions.

The space βN is the topological space of all ultrafilters U over the full algebra
of sets B = P(N) where a base of (cl)open sets is given by the family {OA | A ⊆
N}, with OA := {U ∈ βN | A ∈ U }. The space βN is Hausdorff and compact, and
coincides with the Stone-Cĕch compactification of the discrete space N.

The pseudosum U ⊕ V of ultrafilters U ,V ∈ βN is defined by letting:
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A ∈ U ⊕ V ⇐⇒ {n ∈ N | A − n ∈ V } ∈ U .

The operation ⊕ is associative (but not commutative), and for every V the map
U �→ U ⊕ V is continuous. This makes (βN,⊕) a right-topological semigroup.

A left ideal L ⊆ βN is a nonempty set such that V ∈ L implies U ⊕ V ∈ L for
every U ∈ βN. The notion of right ideal is defined similarly. Left ideals that are
minimal with respect to inclusion are particularly relevant objects, as they satisfy
special properties. For instance, their union K (βN,⊕) is shown to be the smallest
bilateral ideal (i.e., it is both a left and a right ideal). Moreover, all ultrafilters U
in K (βN,⊕), named minimal ultrafilters, have the property that every set A ∈ U
includes arbitrarily long arithmetic progressions.4

It is well-known that there are natural correspondences between families with the
finite intersection property on the full algebra P(N), and closed nonempty subsets
of βN. Indeed, the following properties are directly verified from the definitions.

• If G ⊆ P(N) is a family with the FIP then C(G ) := {V ∈ βN | V ⊇ G } is a
nonempty closed subspace.

• If X ⊆ βN is nonempty then F(X) := ⋂{V | V ∈ X} is a filter onP(N).
• C(F(X)) = X (the topological closure of X ) for every nonempty X ⊆ βN.
• F(C(G )) = 〈G 〉 (the filter generated by G ) for every family G ⊆ P(N) with the
FIP.

Proposition 5.1 IfF is a TIF onP(N) then C(F ) is a closed left ideal of (βN,⊕);
and conversely, if L is a left ideal of (βN,⊕) then F(L) is a TIF on P(N). Moreover,
M is a maximal TIF onP(N) if and only ifC(M ) is a minimal left ideal of (βN,⊕);
and L is a minimal left ideal of (βN,⊕) if and only if F(L) is a maximal TIF on
P(N).

Proof Let V ∈ C(F ) and letU ∈ βN be any ultrafilter. For every A ∈ F , by trans-
lation invariance we know that A − n ∈ F for all n, and so {n | A − n ∈ V } = N ∈
U . This shows that A ∈ U ⊕ V . As this is true for every A ∈ F , we conclude that
U ⊕ V ∈ C(F ), and so C(F ) is a closed left ideal.

Now let L be a left ideal, and let A ∈ F(L) be in the filter determined by L .
For every V ∈ L , we have that U1 ⊕ V ∈ L , where U1 := {B ⊆ N | 1 ∈ B} is the
principal ultrafilter generated by1.Then A ∈ U1 ⊕ V ,which is equivalent to A − 1 ∈
V . As this holds for every V ∈ L , we have proved that A − 1 ∈ F(L), and so F(L)

is a TIF, as desired.
LetF be a TIF. If the left ideal C(F ) is not minimal, pick a minimal L � C(F ).

Then F � F(L), and hence F is not maximal. Indeed, L ⊆ C(F ) ⇒ F(L) ⊇
F(C(F )) = F ; moreover, F �= F(L), as otherwise C(F ) = C(F(L)) = L = L ,
against our assumptions. (Recall that a minimal left ideal L is necessarily closed
because, by minimality, L = βN ⊕ V := {U ⊕ V | U ∈ βN} for every given V ∈
L , and βN ⊕ V is closed as it the image of the compact Hausdorff space βN under

4For all notions and basic results on the space of ultrafilters βN and on its algebraic structure,
including properties of the smallest ideal K (βN,⊕), we refer the reader to the book [4].
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the continuous function U �→ U ⊕ V .) In a similar way, one shows the converse
implication: If the TIFF is not maximal then the left ideal C(F ) is not minimal. In
consequence, L = C(F(L)) is minimal if and only if F(L) is maximal, and also the
last equivalence is proved. �

As a straight consequence, we obtain the desired characterization.

Proposition 5.2 An ultrafilter U on P(N) includes a maximal TIF if and only if
U belongs to the smallest ideal K (βN,⊕).

Proof Recall that U ∈ K (βN,⊕) if and only if U belongs to some minimal left
ideal. Now let U ⊇ M where M is a maximal TIF. Since M = F(C(M )), we
have that U ∈ C(M ), where C(M ) is a minimal left ideal. Conversely, let U ∈ L
where L is a minimal left ideal. Then F(L) is a maximal TIF and U ⊇ F(L), since
U ∈ L = C(F(L)). �

Remark 5.3 One can generalize the contents of this paper from the natural numbers
to arbitrary countable semigroups (S, ·). Indeed, the notion of translation invariant
filter also makes sense in that more general framework.5 Precisely, for A ⊆ S and
s ∈ S, denote by s−1A := {t ∈ S | s · t ∈ A}. We say that an algebraB of subsets of
S is translation invariant if B ∈ B ⇒ s−1B ∈ B for all s ∈ S. Then one defines a
TIF on a translation invariant algebraB as a filterF such that A ∈ F ⇒ s−1 A ∈ F
for all s ∈ S. By the same arguments as the ones used in this paper, one can prove
that a reformulation of Theorem 4.1 holds, provided one adopts the appropriate
generalization of the notion of piecewise syndetic set.6
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tions (2nd edition), W. de Gruyter, 2012.

5. B.L. van der Waerden, Beweis einer baudetschen vermutung, Nieuw. Arch. Wisk. 15 (1927),
212–216.



Central Values for Clebsch–Gordan
Coefficients

Robert W. Donley Jr.

Abstract We develop further properties of the matrices M(m, n, k) defined by the
author and W. G. Kim in a previous work. In particular, we continue an alternative
approach to the theory of Clebsch–Gordan coefficients in terms of combinatorics and
convex geometry. New features include a censorship rule for zeros, a sequence of 36-
pointed stars of zeros, and another proof of Dixon’s Identity. As a major application,
we reinterpret the work of Raynal et al. on vanishing Clebsch–Gordan coefficients
as a “middle-out” approach to computing M(m, n, k).

1 Introduction

In the representation theory of SU (2), the Clebsch–Gordan decomposition for tensor
products of irreducible representations yields a uniform pattern for highest weights,
generally, as an arithmetic progression of integers with difference two, symmetric
about zero. Curiously, at the vector level, if one tensors two vectors of weight zero,
a similar arithmetic progression of weights occurs, but now with difference four. In
the theory of spherical varieties, extensions of this problem consider minimal gap
lengths in the weight monoid associated to spherical vector products. An elementary
calculation for the case of SU (2) initiates the present work, given in Proposition15,
and we review the open problem of vanishing beyond the weight zero case.

Continuing the work began in [3], this approach to Clebsch–Gordan coefficients
substitutes the use of hypergeometric series [12] and the like with elementary com-
binatorial methods (generating functions, recurrences, finite symmetry groups, Pas-
cal’s triangle). Of course, hypergeometric series are fundamental to the theory; a long
range goal would be to return this alternative approach, once sufficiently developed,
to the hypergeometric context with general parameters. At the practical level, certain
computer simulations in nuclear physics and chemistrymay require excessively large
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numbers of Clebsch–Gordan coefficients, possibly with large parameters. Methods
for an integral theory have immediate scientific applications.

As with [3], this work contains many direct elementary proofs of known, but
perhaps lesser known at large, results and gives them a new spatial context. One
central item of concern, the domain space, is a set of integer points inside of a five-
dimensional cone, equipped with an order 72 automorphism group, which in turn
consists of the familiar symmetries for the determinant.

Key observations in this work depend on the fixed points of the symmetry group
in the cone, a distinguished subgroup of dihedral type D12, polygonal subsets of
the domain invariant under the subgroup action, and the simultaneous use of recur-
rences with the subgroup’s center. One byproduct of the theory is yet another proof of
Dixon’s Identity and some variants, and, with this identity, our computational view-
point shifts from the specific “outside-in” algorithmof [3] to a universal “middle-out”
approach, adapted from the work in [9].

Section2 recalls the algorithm of [3] for M(m, n, k), and Sect. 3 develops basic
properties of M(m, n, k). Sections4 and 5 review the theory of the so-called “trivial”
zeros, and Sects. 6–9 reconsider the results of [9] as computations near the center of
M(m, n, k).

2 Coordinate Vector Matrices for Clebsch–Gordan Sums

As a function in five variables, cm,n,k(i, j) is defined on the integer points of the cone

0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ min(m, n), 0 ≤ i + j − k ≤ m + n − 2k.

It is convention to extend this domain by zero; here it is enough to do so at least for the
matrices M(m, n, k) defined below and for clarity we often omit the corner zeros. In
general, the various Clebsch–Gordan coefficients Cm,n,k(i, j) and cm,n,k(i, j) differ
by a nonzero factor, and our approach to vanishing of Clebsch–Gordan coefficients
is through vanishing of the sum cm,n,k(i, j).

From [3], all cm,n,k(i, j) in (3) below may be computed algorithmically as a
matrix M(m, n, k). With m, n, k fixed, Proposition1 and Theorem1 below produce
M(m, n, k), with columns corresponding to coordinate vectors for weight vectors in
the subrepresentation V (m + n − 2k) of V (m) ⊗ V (n). Consideration of Pascal’s
identity gives an explicit formula for cm,n,k(i, j) in Proposition2.

For non-negative integers a, b, c, multinomial coefficients are defined by

(
a + b
a

)
= (a + b)!

a! b! and

(
a + b + c
a, b, c

)
= (a + b + c)!

a! b! c! . (1)

First the highest weight vectors for V (m + n − 2k) are defined by
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Proposition 1 (Leftmost column for M(m, n, k)) With 0 ≤ i ≤ k, define the (i +
1, 1)th entry of M(m, n, k) by

cm,n,k(i, k − i) = (−1)i
(
m − i
k − i

) (
n − k + i

i

)
. (2)

Repeated application f to these highest weight vectors produces coordinates for
general weight vectors in the corresponding V (m + n − 2k), recorded as

Proposition 2 (Entry at coordinate (i + 1, i + j − k + 1) in M(m, n, k))

cm,n,k(i, j) =
k∑

l=0

(−1)l
(
i + j − k
i − l

)(
m − l
k − l

)(
n − k + l

l

)
. (3)

We also note the following alternative expression from [3]:

cm,n,k(i, j) =
k∑

l=0

(−1)l
(
i + j − k
i − l

)(
m − i
k − l

) (
n − j
l

)
. (4)

With this expression, results in later sections may be interpreted by way of Dixon’s
Identity and its extensions for binomial sums.

Theorem 1 (Definition of Matrix M(m, n, k)) To calculate the coordinate vector
matrix M(m, n, k):

1. initialize a matrix with m + 1 rows and m + n − 2k + 1 columns,
2. set up coordinates for the highest weight vector in the leftmost column using

Proposition 1, and extend the top row value,
3. apply Pascal’s recurrence rightwards in an uppercase L pattern, extending by

zero where necessary,
4. for the zero entries in lower-left corner, corresponding entries in the upper-right

corner are set to zero, and
5. the (i + 1, i + j − k + 1)th entry is cm,n,k(i, j).

In this work, we often remove corner zeros for visual clarity. Many examples of
M(m, n, k) will be given throughout this work.

3 Elementary Rules

A useful parametrization for the domain of cm,n,k(i, j) is given by the set of Regge
symbols ∣∣∣∣∣∣

∣∣∣∣∣∣
n − k m − k k
i j m + n − i − j − k

m − i n − j i + j − k

∣∣∣∣∣∣

∣∣∣∣∣∣ . (5)
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Note that each row or column sums to J = m + n − k. That is, the domain space is
in one-one correspondence with all 3-by-3 matrices with nonnegative integer entries
having this magic square property. Here we follow [12], while [9] switches rows 2
and 3.

In turn, one may define the Regge group of symmetries; each of the 72 deter-
minant symmetries, generated by row exchange, column exchange, and transpose,
correspond to a transformation of cm,n,k(i, j).

Of particular interest here is the dihedral subgroup D12 of twelve elements gen-
erated by column switches and the interchange of rows 2 and 3. Some elements,
including a generating set, are given as follows:

Proposition 3 (R23 Symmetry–Weyl Group) With the asterisks defined by (1),

(
m + n − k
i, j, ∗

)
cm,n,k(m − i, n − j) = (−1)k

(
m + n − k

m − i, n − j, ∗
)
cm,n,k(i, j).

(6)

Proposition 4 (C12 Symmetry) When defined,

cn,m,k( j, i) = (−1)kcm,n,k(i, j). (7)

Proposition 5 (C13 Symmetry) With i ′ = i + j − k and m ′ = m + n − 2k,

cm ′,n,n−k(m
′ − i ′, j) = (−1)n− j cm,n,k(i, j). (8)

Proposition 6 (C123 Symmetry) With i ′ = i + j − k and m ′ = m + n − 2k,

cm ′,m,m−k(m
′ − i ′, i) = (−1)m−k+i cm,n,k(i, j). (9)

Since theWeyl group symmetry preservesm, n, and k, it transformsM(m, n, k) to
itself. In fact, the net effect of this symmetry is to rotate M(m, n, k) by 180◦, change
signs according to the parity of k, and rescale values by a positive scalar, rational
in the five parameters. In particular, the zero locus of cm,n,k(i, j) in M(m, n, k) is
preserved under this symmetry.

In the complement of the corner triangles of zeros, the upper, left-most, and lower-
left edges in M(m, n, k) have non-vanishing entries by construction. By the Weyl
group symmetry, the remaining outer edges also have this property. Thus these edges
trace out a polygon, possibly degenerating to a segment, with no zeros on its outer
edges.

Definition 1 We refer to the complement of the corner triangles of zeros in
M(m, n, k) as the polygon of M(m, n, k). A zero in the interior of the polygon
of M(m, n, k) is called a proper zero. Other terminology for zeros will be noted
below.

Opposing edges of this polygon have the same length. The horizontal edges have
length n − k + 1, the slanted edges have length m − k + 1, and the vertical edges
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have length k + 1.When the polygon is a hexagon, one notes that the absolute values
of the entries along the top, lower-left, and right-sided edges are constant and equal
to, respectively, (

m
k

)
,

(
n
k

)
, and

(
m + n − 2k

m − k

)
. (10)

These binomial coefficients are composed of parts m − k, n − k, and k. These val-
ues apply to the degenerate cases (parallelogram or line segment) accordingly. The
remaining edges link these values through products of binomial coefficients; the
indices in the starting coefficient decrease by 1 as the indices in the terminal coeffi-
cient increase likewise. See Proposition1 for the leftmost vertical edge.

We note the decomposition

D12
∼= S3 × C2, (11)

where S3 represents the permutation subgroup generated by column switches and the
Weyl group symmetry generates the two-element group C2. While column switches
do not preserve M(m, n, k) in general, the polygon of M(m, n, k) maps to the
polygon of values in another M(m2, n2, k2), differing only by sign changes. Thus
there is a well-defined correspondence between the proper zeros of M(m, n, k) and
M(m2, n2, k2) under a column switch.

Of the column switches listed, the C12 symmetry changes sign according to
k and inverts proper values in each column, and the C13 symmetry changes sign
according to n − j and reflects values across the northeasterly diagonal. The column
switch C123 rotates values by 120◦ counter-clockwise and changes sign according
to m − k + i .

For example, the polygons of M(3, 4, 2), M(3, 3, 1), M(4, 3, 2) below permute
among themselves under the D12 symmetries:

⎡
⎢⎢⎣

3 3 3
−6 −3 0 3
6 0 −3 −3

6 6 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3 3 3
−3 0 3 6

−3 −3 0 6
−3 −6 −6

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

6 6
−6 0 6
3 −3 −3 3

3 0 −3
3 3

⎤
⎥⎥⎥⎥⎦ .

Next, we note two additional recurrences from [3]; these impose further restric-
tions on proper zeros within M(m, n, k).

Proposition 7 (Pascal’s Recurrence) When all terms are defined,

cm,n,k(i, j) = cm,n,k(i, j − 1) + cm,n,k(i − 1, j).

Proposition 8 (Reverse Recurrence) When all terms are defined,

a1 cm,n,k(i, j) = a2 cm,n,k(i + 1, j) + a3 cm,n,k(i, j + 1)
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where

1. a1 = (i + j − k + 1)(m + n − i − j − k),
2. a2 = (i + 1)(m − i), and
3. a3 = ( j + 1)(n − j).

The reverse recurrence is Pascal’s recurrence after application of the Weyl group
symmetry. It follows a rotated capital-L pattern, only now weighted by positive
integers when 0 < i < m and 0 < j < n.

These recurrences immediately yield

Proposition 9 (Censorship Rule) Suppose cm,n,k(i, j) = 0 properly in M(m, n, k).
Then adjacent zeros in M(m, n, k) may occur only at the upper-right or lower-left
entries. That is, in the following submatrix of M(m, n, k), the bulletsmust be nonzero:

⎡
⎣ • • ∗

• 0 •
∗ • •

⎤
⎦ .

Proof First note that, in either recurrence relation, if any two terms in the relation
are zero, then so is the third. Now suppose a pair of proper zeros are horizontally
adjacent. Then, alternating the two relations, one begins a sequence

⎡
⎣∗ ∗ ∗

∗ ∗ ∗
∗ 0 0

⎤
⎦ →

⎡
⎣ ∗ ∗ ∗

∗ 0 ∗
∗ 0 0

⎤
⎦ →

⎡
⎣∗ ∗ ∗
0 0 ∗
∗ 0 0

⎤
⎦ →

⎡
⎣ 0 ∗ ∗
0 0 ∗
∗ 0 0

⎤
⎦ → · · · .

Eventually this serpentine must place a zero at a nonzero entry on the top row
of M(m, n, k), a contradiction. The case of two vertically adjacent zeros follows
similarly. Finally, for the diagonal case

[
0 ∗
∗ 0

]
,

either recurrence rule begins the serpentine. �

As an adjunct to censorship, certain pairs of zeros severely restrict nearby values.

Proposition 10 With X nonzero, the following allowable pairs of zeros fix adjacent
values: ⎡

⎣ X
0 X

−X −X 0

⎤
⎦ ,

⎡
⎣ X

−X 0
0 −X −X

⎤
⎦ ,

⎡
⎣ 0

X X
−X 0 X

⎤
⎦ .

In particular, each triangle implies one of the following three equalities:

(i + 1)(m − i) = (i ′ + 1)(m ′ − i ′) = ( j + 1)(n − j),
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where i ′ = i + j − k, m ′ = m + n − 2k, and cm,n,k(i, j) corresponds to the middle
entry of the leftmost column.

Proof The restriction on values follows immediately from Pascal’s recurrence. The
parameter conditions follow from the second recurrence. �

Finally, it will be convenient to note four degenerate cases of M(m, n, k); the first
three cases give all conditions for when the polygon is not a hexagon.

1. When k = 0 and n > 0, the parallelogram of nonzero entries of M(m, n, 0) con-
sists of entries in Pascal’s triangle, with columns corresponding to segments of
the triangle’s rows. When n = k = 0, M(m, 0, 0) is an identity matrix of size
m + 1,

2. When k = m with n ≥ m, M(m, n,m) contains no zeros; ignoring signs, the
upper-right corner corresponds to the peak of Pascal’s triangle, with diagonals
corresponding to segments of the triangle’s rows,

3. Whenm = n = k, M(m,m,m)degenerates to a vertical segment of lengthm + 1,
and

4. When m ≥ 4 even, n = 2 and k = 1, a central vertical triplet of zeros occurs, but
only the central zero is proper.

In fact, with n ≥ m, the C23 symmetry carries M(m, n − m, 0) to M(m, n,m)

Cases 1–4 are represented below by M(2, 2, 0), M(2, 4, 2), M(2, 2, 2), and
M(4, 2, 1), respectively:

⎡
⎣ 1 1 1 0 0

0 1 2 3 0
0 0 1 3 6

⎤
⎦ ,

⎡
⎣ 1 1 1

−3 −2 −1
6 3 1

⎤
⎦ ,

⎡
⎣ 1

−1
1

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎣

4 4 0 0 0
−2 2 6 0 0
0 −2 0 6 0
0 0 −2 −2 4
0 0 0 −2 4

⎤
⎥⎥⎥⎥⎦ .

4 Diagonal Zeros

Consideration of dihedral reflections leads one to a large family of proper zeros
through Propositions4, 5, and the C23 symmetry. In particular, these zeros occur
when a column switch in the Regge symbol fixes an entry of M(m, n, k) and changes
parity. Zeros of this type always occur as diagonal subsets in M(m, n, k).

To see this, first observe that when n = 2k, M(m, 2k, k) is a square matrix of size
m + 1, and the C13 symmetry preserves the northeasterly diagonal. In this case, the
subgroup of the Regge group generated by C13 and R23, of type C2 × C2, preserves
both the polygon and the diagonal. Specifically, the top row of the general Regge
symbol for these parameters
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∣∣∣∣∣∣

∣∣∣∣∣∣
k m − k k
i j m − i − j − k

m − i 2k − j i + j − k

∣∣∣∣∣∣

∣∣∣∣∣∣ . (12)

is unchanged by the R23 and C13 symmetries.
With m 
= 2k, four edges of the polygon now have length k + 1, upon which the

subgroup acts transitively.Whenm = 2k, the polygon is a regular hexagon preserved
by the dihedral subgroup D12 of Sect. 3.

Proposition 11 Suppose k > 0 and m + k is odd. Then

cm,2k,k(i,m + k − 2i) = 0. (13)

Proof Note that coordinates in M(m, n, k) are indexed by x = i + j − k + 1 and
y = i + 1, and the indices for the diagonal in question are solutions to

(i + j − k + 1) + (i + 1) = m + 2 or j = m + k − 2i. (14)

Substituting n = 2k into Proposition5, one obtains

cm,2k,k(m + k − i − j, j) = (−1) j cm,2k,k(i, j). (15)

For entries on the diagonal, this equation reduces to

cm,2k,k(i, j) = (−1)m+kcm,2k,k(i, j), (16)

and cm,2k,k(i, j) vanishes under the given parity condition. �

For example, we have M(4, 6, 3) and M(5, 4, 2), respectively:

⎡
⎢⎢⎢⎢⎣

4 4 4 4
−12 −8 −4 0 4
20 8 0 −4 −4

−20 0 8 8 4
−20 −20 −12 −4

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

10 10 10
−12 −2 8 18

6 −6 −8 0 18
6 0 −8 −8 10

6 6 −2 −10
6 12 10

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Next we give a formula for the entries below the diagonal as single term expres-
sions. There are k proper zeros on the diagonal, and we denote the position of such
a zero as measured from lower-left to upper-right.

Proposition 12 The value of the entry directly below the tth proper zero on the
diagonal is given as a single term expression by

(−1)k+t+1

(
2k
k

) (
k − 1
t − 1

)
(2k − 2t + 1)!

(2k − 1)!
(m+k+1

2 )! (m−k−3+2t
2 )!

(m−k−1
2 )! (m+k+3−2t

2 )! . (17)
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Proof The coordinates for the sth proper zero on the diagonal are

(i + 1, i + j − k + 1) =
(
m + k − 2s + 3

2
,
m − k + 2s + 1

2

)
(18)

with

i = m + k − 2s + 1

2
, j = 2s − 1. (19)

The entry directly below the first zero has value

cm,2k,k

(
m + k + 1

2
, 1

)
= (−1)k

(
2k
k

)
.

The second recurrence allows us to compute values below the diagonal by a sequence
of factors: at the sth proper zero,

[
0 x
y y

]
−→ x = −a2

a3
y = − (m + k − 2s + 3)(m − k + 2s − 1)

8s(2k − 2s + 1)
y.

Thus the value of the entry below the t th zero on the diagonal is

(−1)k+t−1

(
2k
k

) t−1∏
s=1

(m + k − 2s + 3)(m − k + 2s − 1)

8s(2k − 2s + 1)
. (20)

Since

t−1∏
s=1

(2N − 2s) = 2t−1(N − 1)!
(N − t)! ,

t−1∏
s=1

(2N + 2s) = 2t−1(N + t − 1)!
N ! , (21)

and
t−1∏
s=1

(2N − 2s + 1) = (2N − 1)!(N − t)!
2t−1(2N − 2t + 1)!(N − 1)! , (22)

the result follows by substitution into (20). �

In particular, whenm even, k odd and t = k+1
2 , the entry below the central zero is

(−1)
k+1
2

2(k + 1)2

m(m + 2)

(
m+k+1

2
k+1
2 , k+1

2 , m−k−1
2

)
. (23)

When m is odd, k even and t = k
2 + 1, there is a central square
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[
X 0
0 X

]
(24)

with

X = (−1)
k
2
k + 2

m + 1

(
m+k+1

2
k
2 ,

k+2
2 , m−k−1

2

)
. (25)

Two other types of zero diagonals may be obtained by applying column switches
to (13). Applying the C12 symmetry yields

Proposition 13 Suppose k > 0 and n + k is odd. Then

c2k,n,k(n + k − 2 j, j) = 0. (26)

This diagonal of zeros connects the midpoints of the horizontal edges of the polygon.
By the censorship rule, no zeros on this diagonal are adjacent, and the diagonal
is fixed by the C23 symmetry. Applying the C13 symmetry to the parameters of
Proposition13 gives

Proposition 14 Suppose k > 0 is odd. Then

cm,m,k(i, i) = 0. (27)

This diagonal of zeros connects the midpoints of the vertical edges of the polygon.
Again, no zeros on this diagonal are adjacent, and this diagonal is fixed by the C12
symmetry.

From above, M(4, 6, 3) transforms into M(6, 4, 3) and M(4, 4, 1), respectively:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 20
−20 0 20
12 −8 −8 12

−4 8 0 −8 4
−4 4 4 −4

−4 0 4
4 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

4 4 4 4
−4 0 4 8 12

−4 −4 0 8 20
−4 −8 −8 0 20

−4 −12 −20 −20

⎤
⎥⎥⎥⎥⎦ .

Next suppose m = n = 2k with k odd; see Fig. 1 below. The polygon in M(2k,
2k, k) is now a regular hexagon with sides of length k + 1, and entries on three sides

have constant absolute value

(
2k
k

)
. The full D12 subgroup preserves M(2k, 2k, k),

as the general entry has Regge symbol

∣∣∣∣∣∣

∣∣∣∣∣∣
k k k
i j 3k − i − j

2k − i 2k − j i + j − k

∣∣∣∣∣∣

∣∣∣∣∣∣ . (28)
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Fig. 1 M(10, 10, 5) with m = n = 2k and k = 5 odd

In particular, when i = j = k, the central entry is a fixed point under the full Regge
group. Since k is odd, the polygon now possesses three diagonals of zeros (six-
pointed star) with several interesting consequences; first, when k ≥ 5 odd, there is
an equilateral triangle, centered about the central value and with sides of length 7,
with nonzero entries of fixed absolute value:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
X X

−X 0 X
0 −X −X 0
X X 0 −X −X

−X 0 X X 0 −X
0 −X −X 0 X X 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By (23), the nonzero entry X is equal to

c2k,2k,k(k + 1, k − 1) = (−1)
k+1
2

k + 1

6k

(
3k+3
2

k+1
2 , k+1

2 , k+1
2

)
.

Furthermore, the large triangle is an aggregation of the three smaller triangular zero
pair patterns in Proposition10.

Next, as each non-central zero on a diagonal is fixed by an order two subgroup
in the Regge group, each orbit under the full Regge group contains 36 zeros. Since
each Regge symmetry induces a linear change in indices, we have

Theorem 2 For each odd k > 1, c2k,2k,k(k, k) is a fixed point of the full Regge group
and is at the center of both M(2k, 2k, k) and a 36-pointed star of zeros in the five-
dimensional Clebsch–Gordan domain space.
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5 Four Cases and Some Special Values

Following [9], we now focus on behavior of cm,n,k(i, j) near the center ofM(m, n, k).
The shape of the center is determined by parities ofm, n, and k; these are determined
by the top line of the Regge symbol, and, through the D12 symmetries, we can narrow
our results to four cases (Table1):

Suppose both m and n are even. Recall that M(m, n, k) is a matrix of size m + 1
by m + n − 2k + 1. Thus there is a central entry, cm,n,k(

m
2 , n

2 ), which we refer to as
the central value of M(m, n, k), and, with its adjacent entries, we obtain a square
submatrix of size 3, which we refer to as the central square of M(m, n, k). As seen
in the fourth degenerate case, a central square for k > 0 can only have non-proper
zeros when n = 2, k = 1, and m ≥ 4 is even.

Proposition 15 Suppose m and n are even. The central value cm,n,k(
m
2 , n

2 ) = 0 if
and only if k is odd.

Proof If k is odd then the Weyl group symmetry implies

cm,n,k

(m
2

,
n

2

)
= −cm,n,k

(m
2

,
n

2

)
, (29)

and the central value vanishes.
In the other direction, suppose the central value vanishes. Consider the central

square ⎡
⎣−Y ∗ ∗

Y 0 ∗
∗ X X

⎤
⎦

with X and Y nonzero. From the lower left hook and the second recurrence rule with
i = m

2 and j = n
2 − 1, we have

a1Y = a2X,

and positivity of ai implies that X and Y have the same parity. Since −Y and X have
opposite parity, the Weyl group symmetry switches signs and k is odd. �

Remark 1 This condition is equivalent to the Regge symbol havingmatching bottom
rows with J = m + n − k odd. This result also corresponds to the linearization for-

Table 1 Central area of M(m, n, k) based on parity

m − k n − k k Center

Even Even Even Single entry (
= 0)

Odd Even Even Size 2 square

Even Odd Odd Size 2 square

Odd Odd Odd Single entry (= 0)
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mula for products of Legendre polynomials, as seen, for instance, as Corollary 6.8.3
in [1], and it may be shown directly using the Weyl group and the Casimir operator.
In the physics literature, zeros of this type, or their translates under the Regge group,
are referred to as “trivial” zeros; all diagonal zeros are of this type. Trivial zeros
also correspond to indices outside the polygons and those omitted under raising or
lowering operators.

In turn, the proposition may be interpreted as a “gap 4” result when tensoring
vectors of weight zero, in contrast with the usual Clebsch–Gordan decomposition,
which corresponds to “gap 2.” Since a contribution only occurs for k even,

f m/2φm ⊗ f n/2φn =
min(m,n)/2∑

k ′=0

Cm,n,2k ′(m/2, n/2) f m/2+n/2−2k ′
φm,n,2k ′ . (30)

Note that the vectors in the sum have nonzero coefficients and correspond to irre-
ducible constituents V (m + n − 4k ′) for 0 ≤ k ′ ≤ 1

2 min(m, n).

A first step to computing near the center of M(m, n, k) requires knowing either
the central value or a near central value. To compute these values inductively, one
first notes some values of cm,n,k(i, j) for small k and a four-term recurrence relation.
One obtains the following directly from either summation formula:

cm,n,0(i, j) =
(
i + j
i

)
, cm,n,1(i, j) =

(
i + j
i

)
mj − ni

i + j
, (31)

cm,n,2(i, j) =
(
i + j
i

)
jm( j − 1)(m − 1) − 2i j (m − 1)(n − 1) + in(i − 1)(n − 1)

(i + j)(i + j − 1)
(32)

Zeros corresponding to k = 1, 2 are further classified in [11] and [8], respectively.
Next

Lemma 1 When all terms are defined,

cm+2,n+2,k+2(i + 1, j + 1) + cm,n,k(i, j) = cm,n+2,k+2(i, j + 1) + cm+2,n,k+2(i + 1, j).

Proof Using formulas (7.2), (7.3), (7.4), and (7.55) from [3], we have:

cm+2,n+2,k+2(i + 1, j + 1)

= cm+1,n+2,k+2(i, j + 1) + cm+2,n+1,k+2(i + 1, j)

= cm,n+2,k+2(i, j + 1) + cm,n+1,k+1(i, j)

+ cm+2,n,k+2(i + 1, j) − cm+1,n,k+1(i, j)

= cm,n+2,k+2(i, j + 1) + cm+2,n,k+2(i + 1, j) − cm,n,k(i, j).

See [10] for a normalized version of the lemma, alongwith normalized versions of
equations (7.2), (7.3) in [3]. As a special case of the lemma, we obtain another proof
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ofDixon’s Identity, first proven in [5].Many alternative proofs exist; see, for instance,
[4, 6, 13].

Theorem 3 (Dixon’s Identity) When m, n, and k are even, the central value

cm,n,k

(m
2

,
n

2

)
=

k∑
l=0

(−1)l
( m+n−2k

2m
2 − l

)( m
2

k − l

)( n
2
l

)
= (−1)

k
2

(
m+n−k

2
m−k
2 , n−k

2 , k
2

)
.

Proof We prove the theorem by induction on N = m + n + k. For the base case, if
k = 0, the result follows by (31). Now suppose the theorem holds for N ≤ m + n +
k + 4. Using Lemma1,

cm+2,n+2,k+2

(
m + 2

2
,
n + 2

2

)

= cm,n+2,k+2

(
m

2
,
n + 2

2

)
+ cm+2,n,k+2

(
m + 2

2
,
n

2

)
− cm,n,k

(
m

2
,
n

2

)

= (−1)
k+2
2

( (
m+n−k

2
m−k−2

2 , n−k
2 , k+2

2

)
+

(
m+n−k

2
m−k
2 , n−k−2

2 , k+2
2

)
+

(
m+n−k

2
m−k
2 , n−k

2 , k
2

) )

= (−1)
k+2
2

m + n − k + 2

k + 2

(
m+n−k

2
m−k
2 , n−k

2 , k
2

)

= (−1)
k+2
2

(
m+n−k+2

2
m−k
2 , n−k

2 , k+2
2

)
.

Thus the induction step holds and the theorem is proved. �

With similar proofs, the remaining three cases follow:

Proposition 16 With m and n even and k odd, the value below the central zero is
given by

cm,n,k

(m
2

+ 1,
n

2
− 1

)
= (−1)

k+1
2

2(k + 1)(m − k + 1)

m(m + 2)

(
m+n−k+1

2
m−k+1

2 , n−k−1
2 , k+1

2

)
.

Proposition 17 With m odd and n and k even, the lower-right central value is given
by

cm,n,k

(
m + 1

2
,
n

2

)
= (−1)

k
2
m − k + 1

m + 1

(
m+n−k+1

2
m−k+1

2 , n−k
2 , k

2

)
.

Proposition 18 With m and k odd and n even, the lower-right central value is given
by
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cm,n,k

(
m + 1

2
,
n

2

)
= (−1)

k+1
2

k + 1

m + 1

(
m+n−k

2
m−k
2 , n−k−1

2 , k+1
2

)
.

6 Case 1: m, n, and k Even

We now turn our attention to the first of four cases of “non-trivial” zeros. Non-trivial
zeros are also called “polynomial” or “structural” in the literature.

For fixedm, n, and k, the use of exponents i and j allow for indexing ofM(m, n, k)
more or less according to usual matrix notation. When m and n are both even, the
polygon rotates or reflects about the central value under the D12 symmetries; in the
other two cases, the central area may change shape. Positioning the central value as
the origin, we develop two infinite lattices of rational functions of m, n, and k, one
for each case in the table when m and n are even.

To compute a given M(m, n, k), one extracts the appropriate polygon from the
lattice, evaluates the corresponding rational function at m, n, and k, and rescales by
the central or near-central value from Sect. 5. An algorithm to construct this lattice
follows:

1. obtain a recursive formula to compute down two columns from the center,
2. use Pascal’s recurrence to compute down-and-to-the-right from the center, and
3. apply the D12 symmetries to extend to the entire lattice.

First we consider the case with k even. The central value X is given by Theorem3.
To begin, we have

Proposition 19 Suppose m, n, and k are even, and M(m, n, k) has central square

⎡
⎣ Z X ∗ ∗
Y X X B0X
∗ A1X B1X

⎤
⎦

for nonzero X. Then

B0 = λm ′ − λm + λn

2λn
, A1 = λm ′ − λm − λn

2λm
, B1 = λm ′ + λm − λn

2λm
,

where m ′ = m + n − 2k and λs = s(s + 2).

Proof Since k is even, X is nonzero. The following four equations follow from
Propositions 7 and 8 and the Weyl group symmetry (6):

1. Z + Y = 1,
2. 1 + A1 = B1,

3. λm ′Y = λm A1 + λn, and
4. λm ′ Z = λmB1.
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These equations reduce to a linear system in A1 and B1 with the above solutions.
The reverse recurrence yields the formula for B0. �

Consider the following fourth-quadrant submatrix with X in the central position:

⎡
⎢⎢⎣

X
A1X B1X
A2X B2X C2X
A3X B3X C3X D3X

⎤
⎥⎥⎦ . (33)

Alternating between the two main recurrences as in Proposition19 immediately
yields

Theorem 4 Let X be the central value determined by Theorem3, and define λs =
s(s + 2). The first two columns of matrix (33) are computed recursively by

A1 = λm ′ − λm − λn

2λm
, B1 = λm ′ + λm − λn

2λm
, (34)

As+1 = (λm ′ − λm + λ2s)As + (λ2s−2 − λn)Bs

λm − λ2s
, (35)

Bs+1 = λm ′ As + (λ2s−2 − λn)Bs

λm − λ2s
. (36)

In the triangle from the first column to the diagonal, unreduced denominators are
equal along rows and increase by a factor of λm − λ2s as we pass from the sth to the
(s + 1)st row. That is, the denominator for index s + 1 equals

ds+1 = 2
s∏

l=0

(λm − λ2l) = 22s+3 (m+2s+2
2 )!

(m−2s−2
2 )! . (37)

This implies immediately

Corollary 1 For s ≥ 1, let N (As) and N (Bs) be the numerators in the unreduced
expressions of As and Bs, respectively. Then N (As) and N (Bs) are computed recur-
sively by

N (A1) = λm ′ − λm − λn, N (B1) = λm ′ + λm − λn, (38)

[
N (As+1)

N (Bs+1)

]
=

[
λm ′ − λm + λ2s λ2s−2 − λn

λm ′ λ2s−2 − λn

] [
N (As)

N (Bs)

]
. (39)

To proceed towards the diagonal, for instance, we have for s ≥ 1,

Cs+1 = Bs + Bs+1, N (Cs+1) = (λm − λ2s)N (Bs) + N (Bs+1). (40)
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The denominator is non-vanishing for s < m
2 , and vanishing in a coordinate rela-

tive to the the central value reduces to solving the corresponding Diophantine equa-
tion, say N (As) = 0, in m, n, and k.

In [9], three families of zeros corresponding to orders 1, 2, and 3, with 6, 12, and 17
subfamilies, respectively, are classified. Here order is a measure of “distance” using
3-term hypergeometric contiguity relations. It may be computed from the Regge
symbol directly (Sect. 4 of [9]). Order 1 subfamilies are indexed I through V I , and,
in particular, these zeros admit a full parameterization, as do subfamilies 2.7 and 2.8.
Each subfamily of order 2 zeros contains infinitely many zeros. Cardinality in order
3 is an open question, with infinitely many zeros known in types 3.1 and 3.2. We
further note that the conjecture by Brudno in footnote 7 of [7] is case I of [9].

For m, n, k even, these subfamilies correspond to positions around the central
value as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.1 3.2 3.2 3.1
3.2 2.1 2.2 2.1 3.2
3.2 2.2 I I 2.2 3.2
3.1 2.1 I • I 2.1 3.1

3.2 2.2 I I 2.2 3.2
3.2 2.1 2.2 2.1 3.2

3.1 3.2 3.2 3.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Diophantine equations in the subcentral triangle given by

• I : N (A1) = λm ′ − λm − λn = 0,
• 2.1: N (A2) = (λm ′ − λm + 8)(λm ′ − λm − λn) − λn(λm ′ + λm − λn) = 0,
• 2.2: N (B2) = λm ′(λm ′ − λm − λn) − λn(λm ′ + λm − λn) = 0,
• 3.1: N (A3) = (λm ′ − λm + 24)N (A2) − (λn − 8)N (B2) = 0,
• 3.2: N (B3) = λm ′ N (A2) − (λn − 8)N (B2) = 0.

Under the D12 symmetries, the numerators change by permuting m ′, m, and n and
rescaling as in Propositions3–6.

Now suppose m = n = 2k with k even. The central value reduces to the original
Dixon Identity

Corollary 2 (Dixon [2])When m = n = 2k and k even, the central value

c2k,2k,k(k, k) =
k∑

l=0

(−1)l
(
k
l

)3

= (−1)
k
2

(
3k
2

k
2 ,

k
2 ,

k
2

)
. (41)

Although we no longer have the diagonals of zeros from the odd k case in Sect. 4,
there is a central equilateral triangle, with sides of length 4, given by
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⎡
⎢⎢⎢⎢⎣

−X

X/2 −X/2

X/2 X X/2

−X −X/2 X/2 X

⎤
⎥⎥⎥⎥⎦ .

We note two conjectures, which hold experimentally for k < 2000:

1. when k is odd, zeros only occur on one of the three diagonals in the polygon of
M(2k, 2k, k), and

2. when k is even, no zeros occur in the polygon of M(2k, 2k, k) unless k = 8, in
which case there are six doublets forming a hexagon (Fig. 2).

7 Case 2: m and n Even, k Odd

Assume m and n even, and k odd. This section proceeds in a manner similar, but
somewhat simpler than the previous section.

Consider the following fourth-quadrant submatrix, with central value 0 and near
central value X given by Proposition16:

⎡
⎢⎢⎢⎢⎣

0
X X

A2X B2X C2X
A3X B3X C3X D3X
A4X B4X C4X D4X E4X

⎤
⎥⎥⎥⎥⎦ . (42)

Alternating between the two main recurrences as in Proposition19 immediately
yields

Theorem 5 Let X be the sub-central value determined by Proposition16, and define
λs = s(s + 2). With s ≥ 1, the first two columns of (42) are computed recursively by

A1 = 1, B1 = 1, (43)

As+1 = (λm ′ − λm + λ2s)As − (λn − λ2s−2)Bs

λm − λ2s
, (44)

Bs+1 = λm ′ As − (λn − λ2s−2)Bs

λm − λ2s
. (45)

In the triangle from the first column to the diagonal, unreduced denominators are
equal along rows and increase by a factor of λm − λ2s as we pass from the sth to the
(s + 1)st row. That is, with s ≥ 1, the denominator for index s + 1 equals
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ds+1 =
s∏

l=1

(λm − λ2l) = 22s+2

λm

(m+2s+2
2 )!

(m−2s−2
2 )! . (46)

This implies immediately

Corollary 3 For s ≥ 1, let N (As) and N (Bs) be the numerators in the unreduced
expressions of As and Bs, respectively. Then N (As) and N (Bs) are computed recur-
sively by

N (A1) = 1, N (B1) = 1, (47)

[
N (As+1)

N (Bs+1)

]
=

[
λm ′ − λm + λ2s λ2s−2 − λn

λm ′ λ2s−2 − λn

] [
N (As)

N (Bs)

]
. (48)

To proceed towards the diagonal, for instance, we have for s ≥ 1,

Cs+1 = Bs + Bs+1, N (Cs+1) = (λm − λ2s)N (Bs) + N (Bs+1). (49)

As before, when m is large enough, the denominator is non-vanishing, and van-
ishing in a coordinate relative to the the central value reduces to solving the corre-
sponding Diophantine equation, say

N (As) = 0, (50)

in m, n, and k. In the classification of [9], diagonal zeros from Sect. 4 closest to the
central zero are denoted by R. Form, n even and k odd, these subfamilies correspond
to positions around the central value as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.15 3.16 3.17 3.16 3.15
3.16 2.11 2.12 2.12 2.11 3.16
3.17 2.12 I I R I I 2.12 3.17
3.16 2.12 R • • R 2.12 3.16
3.15 2.11 I I • 0 • I I 2.11 3.15

3.16 2.12 R • • R 2.12 3.16
3.17 2.12 I I R I I 2.12 3.17

3.16 2.11 2.12 2.12 2.11 3.16
3.15 3.16 3.17 3.16 3.15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Diophantine equations in the subcentral triangle are given by

• I I : N (A2) = λm ′ − λm − λn + 8 = 0,
• R: N (B2) = λm ′ − λn = (m − 2k)(m + 2n − 2k + 2) = 0,
• 2.11: N (A3) = (λm ′ − λm + 24)N (A2) − (λn − 8)N (B2) = 0,
• 2.12: N (B3) = λm ′ N (A2) − (λn − 8)N (B2) = 0,
• 3.15: N (A4) = (λm ′ − λm + 48)N (A3) − (λn − 24)N (B3) = 0,
• 3.16: N (B4) = λm ′ N (A3) − (λn − 24)N (B3) = 0,
• 3.17: N (C4) = (λm − 48)N (B3) + N (B4) = 0.
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We have relabeled subfamilies 2.15–2.17 in Table3 of [9] as 3.15–3.17 here; the
groupings naturally correspond to concentric hexagons about the center.

8 Parametrization of Type I and II Zeros

In [9], a full parametrization for zeros of type I–V I are given. For expository pur-
poses, we include an algorithm for generating all (m, n, k) satisfying

I : N (A1) = 0 and I I : N (A2) = 0.

Types I I I–V I admit similar parameterizations; each case requires solving a Dio-
phantine equation of the form xy = uv, where x, y, u, v are linear expressions in
m, n, and k.

Proposition 20 With k > 0 and even, all solutions to

m, n even, m ′ = m + n − 2k, λm ′ = λm + λn (51)

are given by
m = 2N , n = Q − P − 1, k = N − P (52)

for some integers N , P, Q with

1. N ≥ 3,
2. PQ = N (N + 1) for 1 ≤ P < Q and P < N , and
3. P and Q (resp. P and N) have opposite (resp. same) parity.

Proof Consider the equation

A2 + 1 = B2 + C2 (53)

with all A, B,C > 2 and odd. Basic algebra yields

A − C

2

A + C

2
= B − 1

2

B + 1

2
. (54)

Thus solutions are given precisely when

A = P + Q, B = 2N + 1, C = Q − P. (55)

Now completing the square in (51) yields

(m ′ + 1)2 + 1 = (m + 1)2 + (n + 1)2, (56)

and the proposition follows. �
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Fig. 3 M(6, 10, 2): the smallest example with type I zeros

Table 2 Some basic series of Type I Zeros (Position A1)

P N N + 1

s s(2t + 1)

2s + 1 2t (2s + 1)

2(4s + 1) (4s + 1)(4t + 3)

2(4s + 3) (4s + 3)(4t + 1)

. . . . . .

2a(2a+1s + b) (2a+1s + b)(2a+1t + c)

For example, when N = 3, P = 1 and Q = 12, we have (m, n, k) = (6, 10, 2),
see Fig. 3.

Consideration of divisibility properties allows one to directly parametrize some
subseries of solutions to (51), as noted in the Table2. The first line covers all cases
where P divides N . The next series gives the general series where the odd part of P
divides N + 1; in this case, with 0 < b, c < 2a+1,

bc = 1 (mod 2a), bc 
= 1 (mod 2a+1). (57)

Noting that N and N + 1 have no common factors, we leave it to the reader to
generalize to other series.

Associated to I I : N (A2) = 0, we have

Proposition 21 With k > 1 and odd, all solutions to

m, n even, m ′ = m + n − 2k, λm ′ + 8 = λm + λn (58)

are given by
m = 2N + 2, n = Q − P − 1, k = N − P + 1 (59)

for some integers N , P, Q with

1. N ≥ 3,
2. PQ = N (N + 3) for 1 ≤ P < Q and P < N , and
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3. P and Q (resp. P and N) have opposite (resp. same) parity.

Proof Completing the square in (58) yields

(m ′ + 1)2 + 9 = (m + 1)2 + (n + 1)2, (60)

and the proof now follows as in Proposition20. �

Remark. For example, we have (m, n, k) = (8, 16, 3) when N = 3, P = 1 and
Q = 18.

With l ≥ 2, solutions of (58) of the form (m, n, k) = (2l, 2, 1) correspond to the
fourth degenerate case. That is, with respect to M(m, n, k), we obtain a vertical zero
triplet with a single proper zero.

9 Cases 3 and 4: m Odd, n Even

The remaining two cases allow for a simultaneous treatment. In both cases, the center
is a square of size 2, and the lower-right entries are given by Propositions17 and 18.

Proposition 22 Suppose m is odd and n is even, and M(m, n, k) has central square

[
X ′ ∗
A0X X

]

for nonzero X. Then

A0 = m ′ − m

m ′ + 1
if k even; A0 = m ′ + m + 2

m ′ + 1
if k odd

where m ′ = m + n − 2k.

Proof See Proposition19. In this case, the Weyl group symmetry yields

(m + 1)X = (−1)k(m ′ + 1)X ′. (61)

�

Consider the following fourth-quadrant submatrix, where X represents the lower-
right entry of the central square:

⎡
⎢⎢⎣

A0X X
A1X B1X
A2X B2X C2X
A3X B3X C3X D3

⎤
⎥⎥⎦ . (62)
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As before, we have

Theorem 6 Let X be the lower-right entry determined by Propositions17 or 18,
and define λs = s(s + 2). The first two columns of (62) are computed recursively by

A0 = m ′ − m

m ′ + 1
if k even; A0 = m ′ + m + 2

m ′ + 1
if k odd; B0 = 1, (63)

As+1 = (λm ′ − λm + λ2s+1 + 1)As + (λ2s − λn)Bs

λm − λ2s+1
, (64)

Bs+1 = (λm ′ + 1)As + (λ2s − λn)Bs

λm − λ2s+1
. (65)

In the subcentral triangle, unreduced denominators are equal along rows and
increase by a factor of λm − λ2s+1 as we pass from the sth to the (s + 1)st row. That
is, with s ≥ 0, the denominator for index s + 1 equals

ds+1 = (m ′ + 1)
s∏

l=0

(λm − λ2l+1) = 22s+3 m ′ + 1

m + 1

(m+2s+3
2 )!

(m−2s−3
2 )! . (66)

This implies immediately

Corollary 4 For s ≥ 0, let N (As) and N (Bs) be the numerators in the unreduced
expressions of As and Bs, respectively. Then N (As) and N (Bs) are computed recur-
sively by

N (A0) = m ′ − m if k even; N (A0) = m ′ + m + 2 if k odd; N (B0) = m ′ + 1,
(67)[

N (As+1)

N (Bs+1)

]
=

[
λm ′ − λm + λ2s+1 + 1 λ2s − λn

λm ′ + 1 λ2s − λn

] [
N (As)

N (Bs)

]
. (68)

As before, numerators correspond to the following positions, up to a C2 × C2

symmetry:

m odd, n even, k even⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.4 3.6 3.14 3.12
3.6 2.4 2.6 2.10 3.8
3.14 2.6 I V V I 2.8 3.10
3.12 2.10 V I • R 2.8 3.8

3.8 2.8 R • V I 2.10 3.12
3.10 2.8 V I I V 2.6 3.14

3.8 2.10 2.6 2.4 3.6
3.12 3.14 3.6 3.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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• R: N (A0) = m ′ − m = n − 2k = 0,
• 2.8: N (A1) = (m ′ − m)(λm ′ − λm + 4) − λn(m ′ + 1) = 0,
• V I : N (B1) = (m ′ + 1)[(m ′ − m)(m ′ + 1) − λn] = 0,
• 3.8: N (A2) = (λm ′ − λm + 16)N (A1) − (λn − 8)N (B1) = 0,
• 2.10: N (B2) = (λm ′ + 1)N (A1) − (λn − 8)N (B1) = 0,
• 3.12: N (B3) = (λm ′ + 1)N (A2) − (λn − 24)N (B2) = 0,
• IV: N (C1) = (m ′ + 1)[λm − λn − 3 + (m ′ − m)(m ′ + 1)] = 0,
• 2.6: N (C2) = (λm − 15)N (B1) + N (B2) = 0,
• 3.14: N (C3) = (λm − 35)N (B2) + N (B3) = 0,
• 2.4: N (D2) = (λm − 15)N (C1) + N (C2) = 0,
• 3.6: N (D3) = (λm − 35)N (C2) + N (C3) = 0,
• 3.4: N (E3) = (λm − 35)N (D2) + N (D3) = 0.

m odd, n even, k odd⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.3 3.5 3.13 3.11
3.5 2.3 2.5 2.9 3.7
3.13 2.5 I I I V 2.7 3.9
3.11 2.9 V • • 2.7 3.7

3.7 2.7 • • V 2.9 3.11
3.9 2.7 V I I I 2.5 3.13

3.7 2.9 2.5 2.3 3.5
3.11 3.13 3.5 3.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

• 2.7: N (A1) = (m ′ + m + 2)(λm ′ − λm + 4) − λn(m ′ + 1) = 0,
• V : N (B1) = (m ′ + 1)[(m ′ + m + 2)(m ′ + 1) − λn] = 0,
• 3.7: N (A2) = (λm ′ − λm + 16)N (A1) − (λn − 8)N (B1) = 0,
• 2.9: N (B2) = (λm ′ + 1)N (A1) − (λn − 8)N (B1) = 0,
• 3.11: N (B3) = (λm ′ + 1)N (A2) − (λn − 24)N (B2) = 0,
• I I I : N (C1) = (m ′ + 1)[λm − λn − 3 + (m ′ + m + 2)(m ′ + 1)] = 0,
• 2.5: N (C2) = (λm − 15)N (B1) + N (B2) = 0,
• 3.13: N (C3) = (λm − 35)N (B2) + N (B3) = 0,
• 2.3: N (D2) = (λm − 15)N (C1) + N (C2) = 0,
• 3.5: N (D3) = (λm − 35)N (C2) + N (C3) = 0,
• 3.3: N (E3) = (λm − 35)N (D2) + N (D3) = 0.

For types 3.9 and 3.10, simultaneously consider the entries Z1 of this type near
A1. Application of both recurrences yields

N (Z1) = (λm ′ + λm + 2)2 − 4λm ′λm − 28 − λn[(m ′ + 1)N (A0) + λm − 3]

and

Z1 = A0N (Z1)

(λm ′ − 3)
.
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10 Computer Implementation

In [9], an analysis is given for certain vanishing cm,n,k(i, j) with J = m + n −
k < 3,000. We leave it to the reader to pursue those details there.

The algorithms in this work require only rudimentary programming expertise,
implemented on conventional hardware (2013MacBook Pro). The figures were con-
structed using Excel, which was also used to compute all M(m, n, k) above. Other
algorithms, such the numerator formulas, were stress-tested using MAPLE.
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Numerical Semigroups Generated by
Squares and Cubes of Three Consecutive
Integers

Leonid G. Fel

Abstract We derive the polynomial representations for minimal relations of the
generating set of numerical semigroups Rk

n = 〈(n − 1)k, nk, (n + 1)k〉, k = 2, 3.We
find also the polynomial representations for degrees of syzygies in the Hilbert series
H

(
z, Rk

n

)
of these semigroups, their Frobenius numbers F

(
Rk
n

)
and genera G

(
Rk
n

)
.

We discuss an extension of polynomial representations for minimal relations on
numerical semigroups Rk

n , k ≥ 4.

2010Mathematics SubjectClassification Primary—20M14 ·Secondary—11P81

1 Symmetric and Nonsymmetric Numerical Semigroups
〈(n − 1)k, nk, (n + 1)k〉

Numerical semigroups S3=〈d1, d2, d3〉, generated by three integers, exhibit a non-
trivial example of semigroups with well established relations [2] between degrees
of syzygies and values of generators. In this regards, the relations fk imposed on
generators, fk(d1, d2, d3) = 0, may increase a number of semigroups with explicitly
computable Hilbert series H(z, S3), Frobenius numbers F(S3) and genera G(S3).
Usually the generators of such semigroups are represented as elements of some
ordered sets: arithmetic [1], almost arithmetic [11] or geometric [9] progressions,
Pythagorean triples [2], Fibonacci [3, 8] or Lucas [3] numbers and others.

Recently, the two 3-generated semigroups were studied [7] to establish an explicit
expression for their Frobenius numbers. These are semigroups R2

n and R3
n , generated

by squares and cubes of three consecutive positive integers, respectively, where

Rk
n = 〈(n − 1)k, nk, (n + 1)k〉, k ∈ N. (1)
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Making use of the Euclidean algorithm with negative [12] and positive [10] remain-
ders for computation of the Frobenius number, the authors [7] were able to find
polynomial expressions in n for F

(
R2
n

)
and F

(
R3
n

)
on residue class of n modulo 4

and 18, respectively,

Fj
(
R2
n

) =
3∑

i=0

A j
i n

i , j = n (mod 4), n �= 3, 4, 5, 6, 9, 13, A j
i ∈ Q, (2)

Fj
(
R3
n

) =
5∑

i=0

B j
i n

i , j = n (mod 18), B j
i ∈ Q, (3)

n �= 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 26, 27, 36, 45, 54, 63, 72,

90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270.

A long list of sophisticated formulas for Fj
(
R2
n

)
and Fj

(
R3
n

)
in [7], accompanied by

34 exclusions (6 cases for R2
n and 28 cases for R3

n), poses a question to find another
representation (Rep) which allows to include all exclusive cases or, at least, to reduce
substantially their number. Another reason to discuss this problem again is to find not
only the Frobenius numbers, but also the Hilbert series and genera for all semigroups
Rk
n , k = 2, 3.
Note that the excluding values of n in (2), (3) give rise to the four symmetric semi-

groups, R2
3 , R

2
4 , R

2
5 and R3

3. The rest of 30 excluding semigroups are nonsymmetric.
Simple considerations (Propositions 1, 2) show that among all semigroups R2

n
and R3

n only the four above mentioned semigroups are symmetric. To prove that we
recall necessary conditions when a semigroup 〈d1, d2, d3〉 becomes symmetric,

(a) d3 ∈ 〈d1, d2〉, gcd(d1, d2) = 1, d j > 3, or (4)

(b) 〈d1, d2, d3〉, d j > 3, satisfies Watanabe’s Lemma [13] adapted to 3 generators,

A literal quotation of Watanabe’s Lemma [13] for arbitrary number of generators
reads:

Lemma 1 ([13]) Let H1 = 〈n1, . . . , nk〉 be a semigroup, a and b be positive integers
such that:

• (i) a ∈ H1 and a �= ni , i = 1, . . . , k,
• (ii) a and b are relatively prime.

If we put H = 〈a, bn1, . . . , bnk〉 (which we will denote by H = 〈a, bH1〉) then:
1. H is a complete intersection if and only if H1 is a complete intersection.
2. H is symmetric if and only if H1 is symmetric.

To adapt Watanabe’s Lemma for 3-generated semigroups we have to take into
account:
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• Every symmetric semigroup 〈d1, d2, d3〉 is always complete intersection and vice-
versa (see, e.g., [5].) That makes dichotomy “symmetric” and “complete intersec-
tion” not important.

• If H1 = 〈n1, n2〉, and a = n1, then the 3-generated semigroup H = 〈n1, bn1, bn2〉
can be reduced up to H = 〈n1, bn2〉. But the 2-generated semigroup is always
symmetric. That is why the claim in Watanabe’s Lemma about a �= ni , i = 1, 2,
i.e., in the case of the 3-generated semigroup H , may be omitted.

Thus, we arrive at the following version of Watanabe’s Lemma [13] for 3-generated
semigroups.

Lemma 2 Let a numerical semigroup 〈d1, d2, d3〉 be given such that d1 = aδ1, d2 =
aδ2, δ j ≥ 2, and gcd(δ1, δ2) = gcd(a, d3) = 1. Then 〈d1, d2, d3〉 is symmetric iff
d3 ∈ 〈δ1, δ2〉.
For semigroups, satisfyingLemma2, the following formula for the Frobenius number
holds [5, 6],

F (〈d1, d2, d3〉) = aF (〈δ1, δ2〉) + (a − 1)d3, F (〈δ1, δ2〉) = δ1δ2 − δ1 − δ2.

(5)

1.1 Symmetric Numerical Semigroups R2
n and R3

n

Prove an exclusive property of semigroups R2
3 , R

2
4 , R

2
5 .

Proposition 1 There exist only three symmetric numerical semigroups R2
n , n =

3, 4, 5.

Proof Note that semigroups R2
n , n = 3, 4, are symmetric due to the condition (4a).

Find more n which satisfy (4a),

(n + 1)2 = a1(n − 1)2 + a2n
2, a1, a2 ∈ N, n > 4. (6)

Simplifying the last equality we obtain the Diophantine equation

(a1 + a2 − 1)(n − 4)2 + 2(3a1 + 4a2 − 5)(n − 4) + 9a1 + 16a2 − 25 = 0,

with constraints (6) on three variables a1, a2, n which has no solutions.
Consider another way to symmetrize R2

n by providing condition (4b) according
to Lemma 2. This may occur only when n = 2p + 1 and results in the Diophantine
equation in b1, b2, p,

(2p + 1)2 = b1 p
2 + b2(p + 1)2, b1, b2 ∈ N, p ≥ 2. (7)

Solving (7) as a quadratic equation, we obtain
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p = 2 − b2 ± �

b1 + b2 − 4
, �2 = b1 + b2 − b1b2. (8)

Combining the last expressions with the constraint p ≥ 2 in (7) we obtain

4b21 + 9b22 + 13b1b2 − 41b1 − 61b2 + 100 ≤ 0. (9)

Find a canonical representation of a quadratic form in (9) by substitution T ,

T : b1 = q1 + 11/5, b2 = q2 + 9/5, → 4q2
1 + 9q2

2 + 13q1q2 ≤ 0.

(10)

An inequality (10) is satisfied when −1 ≤ q2/q1 ≤ −4/9. Apply an inverse substi-
tution T −1 to the double inequality and keep in mind constraints (7) and obtain four
linear inequalities,

b1 + b2 ≥ 4, 4b1 + 9b2 ≤ 25, b1, b2 ≥ 1,

which have one solution, b1 = 4, b2 = 1. By (8) it leads to p = 2 and gives rise to
R2
5 . �

The next Propositions deal with symmetric semigroups R3
n .

Proposition 2 There exists only one symmetric numerical semigroup R3
n, n = 3.

Its proof is similar to proof of Proposition 1 but more cumbersome and therefore is
given in Appendix 5.

1.2 Nonsymmetric Numerical Semigroups Generated by
Three Integers

According to Propositions 1 and 2 there are exactly four symmetric semigroups
among the whole set of R2

n , R
3
n , 3 ≤ n < ∞, and calculation of their Frobenius

numbers, genera and Hilbert series does not need general formulas. The situation
changes drastically if we turn to nonsymmetric semigroups. In the present paper
we calculate the Hilbert series for nonsymmetric semigroups Rk

n , k = 2, 3, making
use of an approach of minimal relations for three generators d1, d2, d3. Recall this
approach following [2].

A nonsymmetric numerical semigroup S3 = 〈d1, d2, d3〉,

S3 =
{

s ∈ N ∪ {0} | s =
3∑

i=1

xidi , xi , d j ∈ N ∪ {0}
}

, (11)

gcd(d1, d2, d3) = 1, d j ≥ 3,
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is said to be generated by a minimal set of three integers d j , if none of them is
linearly representable by the rest of them. By [2, 6] there exists a matrix A3 of
minimal relations,

A3

⎛

⎝
d1
d2
d3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ , A3 =
⎛

⎝
a11 −a12 −a13

−a21 a22 −a23
−a31 −a32 a33

⎞

⎠ ,

⎧
⎨

⎩

gcd(a11, a12, a13) = 1
gcd(a21, a22, a23) = 1
gcd(a31, a32, a33) = 1

,

(12)

a11 = min {v11 | v11 ≥ 2, v11d1 = v12d2 + v13d3, v12, v13 ∈ N ∪ {0}} ,

a22 = min {v22 | v22 ≥ 2, v22d2 = v21d1 + v23d3, v21, v23 ∈ N ∪ {0}} , (13)

a33 = min {v33 | v33 ≥ 2, v33d3 = v31d1 + v32d2, v31, v32 ∈ N ∪ {0}} .

such that the nine matrix elements ai j satisfy the six Diophantine equations,

a11 = a21 + a31, a22 = a12 + a32, a33 = a13 + a23, a j j ≥ 2, (14)

ai j ≥ 1, i �= j,

d1 = a22a33 − a23a32, d2 = a33a11 − a31a13, d3 = a11a22 − a12a21. (15)

The generating function H(z, S3) of numerical semigroups S3,

H(z, S3) =
∑

s ∈ S3

zs, F(S3) = max{N \ S3}, G(S3) = #{N \ S3},

is referred to as the Hilbert series of S3. The rational Rep of H(z, S3), the degrees
ei and ti of the 1st and 2nd syzygies, the Frobenius number F(S3) and genus G(S3)
read [2],

H(z, S3) = (
1 − ze1 − ze2 − ze3 + zt1 + zt2

) 3∏

i=1

(
1 − zdi

)−1
, ei = aii di , (16)

t1 = D0 + D1, t2 = D0 + D2, e1 + e2 + e3 = t1 + t2, F1 = t1 − D3,

F(S3) = max {F1, F2} , 2G(S3) = 1 + D0 + D1 + D2 − D3, F2 = t2 − D3,

D0 = a11a22a33, D1 = a12a23a31, D2 = a13a32a21, D3 = d1 + d2 + d3,

Prove Lemma on uniqueness of matrix A3.

Lemma 3 Let a nonsymmetric numerical semigroup S3 be given. Then there exists
a unique matrix A3 of minimal relations (12), (13) which satisfies (14).

Proof If a numerical semigroup S3 be given, then itsHilbert series H(z, S3) is defined
in (16) byuniquevalues of syzygies degrees e j , t j andgeneratorsd j due to uniqueness
of the product of polynomial

∏3
i=1

(
1 − zdi

)
and infinite series, and both of them are

uniquely defined,
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3∏

i=1

(
1 − zdi

) ∑

s ∈ S3

zs = 1 − ze1 − ze2 − ze3 + zt1 + zt2 .

A standard proof of uniqueness of matrixA3 by contradiction is to suppose that there
are two different matrices (ai j ) and (bi j ), which provide similar equalities, and to
prove that these equalities have identically the same solutions.

First, equating degrees e j of the 1st syzygy according to (16) we arrive at aii di =
bii di , that results in equalities, aii = bii , i = 1, 2, 3.

Next, to explore the uniqueness of degrees t j for two matrices, let us make use of
the other expressions for t j , which may be found if we combine (15) and (16), see
also formulas (117) in [2],

t1 = a33d3 + a12d2 = b33d3 + b12d2, t2 = a22d2 + a13d3 = b22d2 + b13d3.

Keeping in mind a coincidence of diagonal elements aii = bii and uniqueness of
generators d j , we obtain a12 = b12, a13 = b13, that lead due to (15) to complete
coincidence of two matrices ai j = bi j , i, j = 1, 2, 3. �

Corollary 1 Let a numerical semigroup S3 be generated by aminimal set {d1, d2, d3}
according to (11)–(14). There exists only one way to partition a j j d j , j = 1, 2, 3,
a j j ≥ 2, in a sum of di and dk, i, k �= j , with integer coefficients aik ≥ 1.

Lemma 3 has one more Corollary which is important in a view of a subject of the
present paper, namely, a polynomial Rep (PRep) of the matrix A3. Let all matrix
elements of A3 for semigroup Rk

n , have the PRep in n on residue class of n modulo
Tk , i.e.,

if n = Tkm + q and 0 ≤ q < Tk , then ai j = Ai j (m; q) is a polynomial in m. (17)

Corollary 2 Let a numerical semigroup Rk
n be generated by a minimal set {(n −

1)k, nk, (n + 1)k} and matrix elements ai j of A3 have the PRep in n according to
(17). Then such PRep is unique.

Proof By (17), for every fixed k and given n thematrixA3 has PRep, ai j = Ai j (m; q).
Let, bywayof contradiction, there exists another PRepai j = Bi j (m; q), which differs
from Ai j (m; q). On the other hand, by Lemma 3 the valuations of Ai j (m; q) and
Bi j (m; q) coincide for all integersm, q. Prove that the both polynomials are coincided
identically, i.e., Ai j (m; q) ≡ Bi j (m; q).

Let Ai j (m; q) and Bi j (m; q) are polynomials in m with the following PReps,

Ai j (m; q) =
αi j∑

k=0

Ai j,k(q)mk, αi j = deg Ai j (m; q),

Bi j (m; q) =
βi j∑

k=0

Bi j,k(q)mk, βi j = deg Bi j (m; q).
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Consider a polynomial difference Ci j (m; q)

Ci j (m; q) = Ai j (m; q) − Bi j (m; q) =
γi j∑

k=0

Ci j,k(q)mk,

Ci j,k(q) = Ai j,k(q) − Bi j,k(q), γi j = degCi j (m; q) = max{αi j , βi j } < ∞.

The polynomial Ci j (m; q) has a finite degree and infinite number of zeroes m ∈ N,
since the values of Ai j (m; q) and Bi j (m; q) are coincided for all integers m. The
only polynomial, which satisfies the above requirements, is the zero polynomial, i.e.,
Ai j (m; q) ≡ Bi j (m; q). �

In Sects. 2 and 3 we derive the PRep for matrix elements of minimal relations A3

in numerical semigroups R2
n and R3

n , respectively, and reduce a large number of
exclusive semigroups [7] with F(R2

n) and F(R3
n), which differ from polynomials

(2), (3), by making use of expression (16). These exclusions were happen when in
different ranges of n a difference D1(n) − D2(n) has changed its sign. In otherwords,
the both sequences F1 and F2 contribute to the PRep of the Frobeniius numbers. In
Sect. 4 we discuss briefly the results of numerical calculations [4] of the PRep for
minimal relations A3 in semigroups R4

n , and pose Conjecture 1 about the PRep for
numerical semigroups Rk

n with arbitrary degrees k.

1.3 Polynomial Representations for Numerical Semigroups
Rk
n

Consider a semigroup Rk
n , generated by integer degrees of consecutive integers, and

write a matrix equation (12), (13) supplemented by relations (15),
⎛

⎝
a11 −a12 −a13

−a21 a22 −a23
−a31 −a32 a33

⎞

⎠

⎛

⎝
(n − 1)k

nk

(n + 1)k

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ ,

⎧
⎨

⎩

a22a33 − a23a32 = (n − 1)k,
a33a11 − a31a13 = nk,
a11a22 − a12a21 = (n + 1)k,

(18)

where ai j are natural numbers satisfying three equalities (14) and strict inequalities,

ai j ∈ N, a11 > a12, a13, a22 > a23. (19)

which follow by comparison of terms in the l.h.s. and r.h.s. of matrix equation (18).
Keeping in mind three identities in (18), let us distinguish two cases of even and odd
degrees k > 1 and assume that the PRep for matrix elements ai j (n) may be chosen
as follows:

1. If k = 2p then all nine elements ai j (n) have PRep of degree p. (20)

2. If k = 2p − 1then only six elements a1 j (n), a2 j (n) have PRep of degree p

while the other three elements a3 j (n) − of degree p − 1.
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We justify these assumptions in the next sections for the cases k = 2, 3. We give a
detailed derivation of the PRep for matrix elements of minimal relations by solving
the Diophantine equations for semigroups R2

n and R3
n in Sects. 2 and 3, respectively.

We find their Frobenius numbers and genera in all residue classes of n modulo 4 for
R2
n and modulo 18 for R3

n .
ByLemma3andCorollary 2 of uniqueness, the obtainedPRep formatrix elements

of A3, Frobenius numbers and genera do not depend on the way of their derivation.
However, in the general case of semigroups Rk

n with arbitrary degrees k the problem
of PRep is left still open.

2 Numerical Semigroups R2
n, n ≥ 6

Consider a semigroup R2
n with a linear Rep of the matrix elements ai j (n) =

�i j + ϒi j n, where �i j ∈ Z, ϒi j ∈ N ∪ {0}, however ai j (n) ∈ N, and substitute it
into the matrix equation (18), and balance degrees of n in the l.h.s. and r.h.s. of
quadratic equalities in n. That gives a reduction of 18 indeterminates �i j , ϒi j up to
six independent rational variables ξi ∈ Q, 1 ≤ j ≤ 6.

a11 = ξ1 + (
2ξ1 + ξ2

4

)
n, a12 = −ξ2 + 4ξ1n, a13 = ξ1 + (−2ξ1 + ξ2

4

)
n,

a21 = ξ3 + (
2ξ3 + ξ4

4

)
n, a22 = −ξ4 + 4ξ3n, a23 = −ξ3 + (

2ξ3 − ξ4
4

)
n,

a31 = −ξ5 + (−2ξ5 + ξ6
4

)
n, a32 = ξ6 + 4ξ5n, a33 = −ξ5 + (

2ξ5 + ξ6
4

)
n.

(21)

Due to relations (14), (15) the variables ξi satisfy the following equalities,

ξ1 = ξ3 − ξ5, ξ2 = ξ4 + ξ6, ξ1ξ6 + ξ2ξ5 = ξ3ξ6 + ξ4ξ5 = ξ2ξ3 − ξ1ξ4 = 1, (22)

where the last three equalities are equivalent. Require a non-negativeness of the linear
(in n) part (
pn) of ai j (n) in (21), that together with (19) gives


pn(a13) : ξ2 ≥ 8ξ1, 
pn(a23) : 8ξ3 ≥ ξ4, 
pn(a31) : ξ6 ≥ 8ξ5, (23)


pn(a12) : ξ1 ≥ 0, 
pn(a22) : ξ3 ≥ 0, 
pn(a32) : ξ5 ≥ 0,

a11 > a13 : ξ1 > 0, a22 > a23 : (2n + 1)ξ3 +
(n
4

+ 1
)

ξ4 > 0.

Consider a matrix element a33 ∈ N in (21) and minimize it over ξ5, ξ6 ≥ 0 satisfying
(23) and preserving a3i ∈ N, i = 1, 2, for the other two elements in (22). That results
in ξ5 = 0, ξ6 ∈ N. Summarizing the last result and relations (22), (23), we obtain

ξ1 > 0, ξ2 ≥ 8ξ1, ξ3 = ξ1, −∞ ≤ ξ4 ≤ 8ξ1, ξ5 = 0, ξ6 > 0 → a31 = a33. (24)

To provide all entries in A3 to be integers, we consider four different cases, i.e.,
T2 = 4. Substitute successively n = 4m + j , 0 ≤ j ≤ 3, into (21), and minimize
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a11, a22, a33 ∈ N over ξ1, ξ2, ξ4, ξ6, which satisfy equalities (22) and inequalities
(24). E.g., if n = 4m, then

a11 = ξ1 + (8ξ1 + ξ2)m, a22 = −ξ4 + 16ξ1m, a33 = ξ6m.

Minimizing a11 over ξ1, ξ2 we get due to the two first inequalities in (24): ξ1 = 1,
ξ2 = 8. In the similar way (minimizing a33 over ξ6 and keeping in mind the last
inequality in (24)) we get ξ6 = 1. Finally, due to the second identity in (22), we
obtain ξ4 = 7.
1. n = 4m.

a11 = ξ1 + (8ξ1 + ξ2)m, a12 = −ξ2 + 16ξ1m, a13 = ξ1 + (−8ξ1 + ξ2)m,

a21 = ξ1 + (8ξ1 + ξ4)m, a22 = −ξ4 + 16ξ1m, a23 = −ξ1 + (8ξ1 − ξ4)m,

a31 = ξ6m, a32 = ξ6, a33 = ξ6m.

ξ1 = 1, ξ2 = 8, ξ4 = 7, ξ6 = 1.

⎛

⎝
16m + 1 −8(2m − 1) −1

−(15m + 1) 16m − 7 −(m − 1)
−m −1 m

⎞

⎠ ,

G = 4m(34m2 − 21m + 2),
F = 20, if m = 1,
F = 272m3 − 168m2 + m − 2, if m ≥ 2.

2. n = 4m + 2.

a11 = ξ2
2 + 5ξ1 + (8ξ1 + ξ2)m, a12 = 8ξ1 − ξ2 + 16ξ1m, a13= ξ2

2 −3ξ1 + (ξ2−8ξ1)m,

a21 = ξ4
2 + 5ξ1 + (8ξ1 + ξ4)m, a22 = 8ξ1 − ξ4 + 16ξ1m, a23=− ξ4

2 −3ξ1 + (8ξ1−ξ4)m,

a31 = ξ6
2 + ξ6m, a32 = ξ6, a33 = ξ6

2 + ξ6m.

ξ1 = 1/2, ξ2 = 5, ξ4 = 3, ξ6 = 2.

⎛

⎝
9m + 5 −(8m − 1) −(m + 1)

−(7m + 4) 8m + 1 −m
−(2m + 1) −2 2m + 1

⎞

⎠ ,

G = m(80m2 + 71m + 16),

F = 312, if m = 1,

F = 160m3 + 128m2 + 10m − 9, if m ≥ 2.

3. n = 4m + 1.

a11 = ξ2
4 + 3ξ1 + (ξ2 + 8ξ1)m, a12 = 4ξ1 − ξ2 + 16ξ1m, a13 = ξ2

4 − ξ1 + (ξ2 − 8ξ1)m,

a21 = ξ4
4 + 3ξ1 + (ξ4 + 8ξ1)m, a22 = 4ξ1 − ξ4 + 16ξ1m, a23 = ξ1 − ξ4

4 + (8ξ1 − ξ4)m,

a31 = ξ6
4 + ξ6m, a32 = ξ6, a33 = ξ6

4 + ξ6m.

ξ1 = 1/4, ξ2 = 5, ξ4 = 1, ξ6 = 4.
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⎛

⎝
7m + 2 −4(m − 1) −(3m + 1)

−(3m + 1) 4m −m
−(4m + 1) −4 4m + 1

⎞

⎠ ,

G = 2m(32m2 + 9m + 1),
F = 112m3 + 48m2 + 8m − 1, if m ≤ 3,
F = 128m3 − 20m − 5, if m ≥ 4.

4. n = 4m + 3.

a11= 3ξ2
4 +7ξ1 + (ξ2+8ξ1)m, a12=12ξ1−ξ2+16ξ1m, a13= 3ξ2

4 −5ξ1 + (ξ2−8ξ1)m,

a21= 3ξ4
4 +7ξ1 + (ξ4+8ξ1)m, a22=12ξ1−ξ4+16ξ1m, a23=5ξ1− 3ξ4

4 + (8ξ1−ξ4)m,

a31 = 3ξ6
4 + ξ6m, a32 = ξ6, a33 = 3ξ6

4 + ξ6m.

ξ1 = 1/4, ξ2 = 3, ξ4 = −1, ξ6 = 4.

⎛

⎝
5m + 4 −4m −(m + 1)

−(m + 1) 4(m + 1) −(3m + 2)
−(4m + 3) −4 4m + 3

⎞

⎠ ,

G = 2(32m3 + 57m2 + 33m + 6),
F = 128m3 + 2242 + 124m + 19, if m ≥ 1,
F = 23, G = 12, if m = 0.

A coincidence of formulas for F(R2
n) with those obtained in [7] when t2 > t1

occur in the cases

n = 4m, m ≥ 2, n = 4m + 1, m ≥ 4, n = 4m + 2, m ≥ 2, n = 4m + 3, m ≥ 1.

Otherwise (t2 < t1) we obtain the other six formulas related to the six excluded
cases (2),

n=4m, m=1, n=4m + 1, 1 ≤ m ≤ 3, n=4m + 2, m=1, n=4m + 3, m=0.

3 Numerical Semigroups R3
n, n ≥ 4

Consider a semigroup R3
n and, instead of a straightforward construction of PRep as

in Sect. 2, start with a simple algebraic observation. Write the third minimal relation
in (18) as follows,

a32n
3 = (a33 − a31)

(
n3 + 3n

) + (a33 + a31)(3n
2 + 1), (25)

and, according to assumption (20.2), simplify it by choosing

a31 = pn + q, a33 = pn − q, p, q ∈ Q. (26)

A choice of the linear Rep (26) for a31, a33 will be justified later, according to
Lemma 3, by uniqueness of PRep of all matrix elements in A3 found in Sects. 3.1,
3.2 and satisfied six equalities (14), (15). Substitute (26) into Eq. (25) and obtain,
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a32n
2 = 2p(3n2 + 1) − 2q(n2 + 3), or a32 = 6p − 2q + 2

p − 3q

n2
.

To eliminate the dependence of a32 on n−2 in the last relation we put

p = 3q → a31 = q(3n + 1), a32 = 16q, a33 = q(3n − 1).

To satisfy gcd(a31, a32, a33) = 1 in (12), we have to distinguish two different cases:
q = 1 if n = 2N and q = 1/2 if n = 2N + 1.

3.1 Numerical Semigroups R3
n, n = 0 (mod 2)

The matrix A3 of minimal relations (12), (13) and three equalities (15) read,

⎛

⎝
a21 + 6N + 1 16 − a22 a23 − (6N − 1)

−a21 a22 −a23
−(6N + 1) −16 (6N − 1)

⎞

⎠ ,

(2N − 1)3 = a22(6N − 1) − 16a23, 8N 3 = a21(6N − 1) + a23(6N + 1),

(2N + 1)3 = a22(6N + 1) + 16a21. (27)

According to (20.2), choose elements of the 1st and 2nd rows in A3 as quadratic
polynomials in N on residue class of N modulo τ3 which will be found later, i.e.,
N = τ3m + j , 0 ≤ j < τ3,

a21 = r2m
2 + r1m + r0, a22 = k2m

2 + k1m + k0, (28)

a23 = l2m
2 + l1m + l0,

a11 = r2m
2 + (6τ3 + r1)m + r0 + 6 j + 1, a12 = k2m

2 + k1m + 16 + k0, (29)

a13 = −l2m
2 + (6τ3 − l1)m + 6 j − 1 − l0.

By (19), require a2i , a1i > 0 and a11 > a12 for the largem ≥ 1 and a11, a22 > 0when
m = 0,

(a) l2 = 0, 0 < l1 < 6τ3,

(b) r2 > k2 > 0, or if r2 = k2 > 0 then 6τ3 + r1 > k1,

(c) r0 + 6 j + 1 > 0, k0 > 0. (30)

Substitute (28), (29) into (27) and balance degrees ofm in the l.h.s. and r.h.s. of cubic
equalities in m. Nine variables ri , ki , li ∈ Z, i = 0, 1, 2, (including l2 = 0) satisfy
twelve linear equations, but not all of them are independent. The system may be
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reduced substantially,

k2 = r2 = 4τ 2
3

3
, l2 = 0, k1 = 8τ3

9
(3 j − 2), (31)

3τ3k0 − 8l1 = τ3

(
4 j2 − 16

3
j + 19

9

)
, (6 j − 1)k0 − 16l0 = (2 j − 1)3,(32)

3τ3k0 + 8r1 = τ3

(
4 j2 + 16 j + 35

9

)
, (6 j + 1)k0 + 16r0 = (2 j + 1)3,

and the variables satisfy constraints (30). The minimal value of τ3, providing k1 ∈ Z

in (31), is τ3 = 9, so that T3 = 18. The five variables, r0, r1, k0, l0, l1, depend on j
and satisfy four Diophantine equations (32), supplemented by constraints (30), and
may be solved in nine different cases, 0 ≤ j ≤ 8.We present here, as an example, the
Diophantine equations and their detailed numerical solutions, satisfying constraints
(30), for two first cases, (a) j = 0 and (b) j = 1, and skip the other,

(a) 27k0 − 8l1 = 19, 27k0 + 8r1 = 35, k0 + 16l0 = 1, k0 + 16r0 = 1 :
k0 = r1 = l1 = 1, l0 = r0 = 0, k2 = r2 = 108, k1 = −16,

(b) 27k0 − 8l1 = 7, 27k0 + 8r1 = 215, 5k0 − 16l0 = 1, 7k0 + 16r0 = 27 :
k0 = 13, r1 = −17, l1 = 43, l0 = 4, r0 = −4,

k2 = r2 = 108, k1 = 8.

1. n = 18m, m ≥ 1,

⎛

⎝
108m2 + 55m + 1 −(108m2 − 16m − 15) −(53m − 1)
−m(108m + 1) 108m2 − 16m + 1 −m
−(54m + 1) −16 54m − 1

⎞

⎠ ,

G = 314928m5 + 110808m4 + 16632m3 + 532m2 − 62m,

F = 629856m5 + 215784m4 + 34020m3 + 1890m2 − 109m − 1, if m ≤ 15,

F = 629856m5 + 221616m4 − 58320m3 + 1944m2 − 108m − 1, if m ≥ 16,

2. n = 18m + 2, m ≥ 1; n �= 2

⎛

⎝
108m2 + 37m + 3 −(108m2 + 8m − 3) −(11m + 1)

−(108m2 − 17m − 4) 108m2 + 8m + 13 −(43m + 4)
−(54m + 7) −16 54m + 5

⎞

⎠ ,

G = 314928m5 + 285768m4 + 104760m3 + 15244m2 + 786m + 6,

F = 629856m5 + 571536m4 + 190512m3 + 31752m2 + 2548m + 75,

3. n = 18m + 4, m ≥ 1; n �= 4.
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⎛

⎝
108m2 + 55m + 7 −(108m2 + 32m + 1) −(5m + 1)
−(108m2 + m − 6) 108m2 + 32m + 17 −(49m + 10)

−(54m + 13) −16 54m + 11

⎞

⎠ ,

G = 314928m5 + 460728m4 + 270648m3 + 77476m2 + 10674m + 564,

F = 629856m5 + 921456m4 + 532656m3 + 153144m2 + 21812m + 1223,

4. n = 18m + 6, m ≥ 1; n �= 6.

⎛

⎝
108m2 + 109m + 25 −(108m2 + 56m − 3) −(35m + 11)
−(108m2 + 55m + 6) 108m2 + 56m + 13 −(19m + 6)

−(54m + 19) −16 54m + 17

⎞

⎠ ,

G = 314928m5 + 635688m4 + 514296m3 + 202780m2 + 38434m + 2778,

F = 629856m5 + 1271376m4 + 968112m3 + 355752m2 + 63828m + 4499,

5. n = 18m + 8, m ≥ 0,

⎛

⎝
108m2 + 145m + 44 −(108m2 + 80m + 1) −(47m + 20)

−(108m2 + 91m + 19) 108m2 + 80m + 17 −(7m + 3)
−(54m + 25) −16 54m + 23

⎞

⎠ ,

G = 314928m5 + 810648m4 + 835704m3 + 428308m2 + 108658m + 10888,

F = 629856m5 + 1580472m4 + 1604772m3 + 821178m2 + 210979m + 21700,

if m = 0, 1,

F = 629856m5 + 1621296m4 + 1590192m3 + 753624m2 + 173908m + 15695,

if m ≥ 2.

6. n = 18m + 10, m ≥ 0,

⎛

⎝
108m2 + 163m + 58 −(108m2 + 104m + 13) −(41m + 22)

−(108m2 + 109m + 27) 108m2 + 104m + 29 −(13m + 7)
−(54m + 31) −16 54m + 29

⎞

⎠ ,

G = 314928m5 + 985608m4 + 1234872m3 + 769612m2 + 237666m + 29022,

F = 55222, if m = 0,

F = 629856m5 + 1971216m4 + 2398896m3 + 1429704m2 + 419252m + 48539,

if m ≥ 1,

7. n = 18m + 12, m ≥ 0,
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⎛

⎝
108m2 + 163m + 61 −(108m2 + 128m + 33) −(17m + 11)

−(108m2 + 109m + 24) 108m2 + 128m + 49 −(37m + 24)
−(54m + 37) −16 54m + 35

⎞

⎠ ,

G = 314928m5 + 1160568m4 + 1711800m3 + 1257796m2 + 459058m + 66444,

F = 629856m5 + 2321136m4 + 3394224m3 + 2466936m2 + 892404m + 128663,

8. n = 18m + 14, m ≥ 0,

⎛

⎝
108m2 + 199m + 90 −(108m2 + 152m + 45) −(29m + 22)

−(108m2 + 145m + 47) 108m2 + 152m + 61 −(25m + 19)
−(54m + 43) −16 54m + 41

⎞

⎠ ,

G = 314928m5 + 1335528m4 + 2266488m3 + 1917916m2 + 807378m + 135042,

F = 629856m5 + 2671056m4 + 4482864m3 + 3730536m2 + 1541908m + 253539,

9. n = 18m + 16, m ≥ 0,

⎛

⎝
108m2 + 217m + 108 −(108m2 + 176m + 65) −(23m + 20)

−(108m2 + 163m + 59) 108m2 + 176m + 81 −(31m + 27)
−(54m + 49) −16 54m + 47

⎞

⎠ ,

G = 314928m5 + 1510488m4 + 2898936m3 + 2776756m2 + 1325266m + 251824,

F = 629856m5 + 3020976m4 + 5758128m3 + 5458968m2 + 2576660m + 484767.

3.2 Numerical Semigroups R3
n, n = 1 (mod 2)

The matrix A3 of minimal relations (12), (13) and three equalities (15) read,

⎛

⎝
a21 + (3N + 2) 8 − a22 a23 − (3N + 1)

−a21 a22 −a23
−(3N + 2) −8 3N + 1

⎞

⎠ ,

(2N )3 = a22(3N + 1) − 8a23, (2N + 1)3 = a21(3N + 1) + a23(3N + 2),

(2N + 2)3 = a22(3N + 2) + 8a21. (33)

We skip the intermediate calculations repeating the procedure performed in Sect. 3.1.
1. n = 18m + 1, m ≥ 1; n �= 1.
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⎛

⎝
216m2 + 29m + 1 −(216m2 − 8m) −m

−(216m2 + 2m − 1) 216m2 − 8m + 8 −(26m + 1)
−(27m + 2) −8 27m + 1

⎞

⎠ ,

G = 629856m5 + 160380m4 + 23220m3 + 2330m2 + 73m,

F = 1259712m5 + 320760m4 + 44712m3 + 4644m2 + 154m − 1,

2. n = 18m + 3, m ≥ 1; n �= 3.

⎛

⎝
216m2 + 83m + 8 −(216m2 + 40m) −(7m + 1)

−(216m2 + 56m + 3) 216m2 + 40m + 8 −(20m + 3)
−(27m + 5) −8 27m + 4

⎞

⎠ ,

G = 629856m5 + 510300m4 + 172260m3 + 30134m2 + 2657m + 91,

F = 181, if m = 0,

F = 1259712m5 + 1020600m4 + 332424m3 + 55404m2 + 4698m + 157, if m ≥ 1.

3. n = 18m + 5, m ≥ 0,

⎛

⎝
216m2 + 128m + 19 −(216m2 + 88m + 8) −(4m + 1)

−(216m2 + 101m + 11) 216m2 + 88m + 16 −(23m + 6)
−(27m + 8) −8 27m + 7

⎞

⎠ ,

G = 629856m5 + 860220m4 + 476820m3 + 134186m2 + 18993m + 1066,

F = 1259712m5 + 1720440m4 + 946728m3 + 263412m2 + 37082m + 2107,

4. n = 18m + 7, m ≥ 0,

⎛

⎝
216m2 + 191m + 42 −(216m2 + 136m + 16) −(19m + 7)

−(216m2 + 164m + 31) 216m2 + 136m + 24 −(8m + 3)
−(27m + 11) −8 27m + 10

⎞

⎠ ,

G = 629856m5 + 1210140m4 + 936900m3 + 365246m2 + 71609m + 5637,

F = 10745, if m = 0,

F = 1259712m5 + 2420280m4 + 1840968m3 + 693468m2 + 129322m + 9537,

if m ≥ 1,

5. n = 18m + 9, m ≥ 0,

⎛

⎝
216m2 + 245m + 69 −(216m2 + 184m + 32) −(25m + 12)

−(216m2 + 218m + 55) 216m2 + 184m + 40 −(2m + 1)
−(27m + 14) −8 27m + 13

⎞

⎠ ,
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G = 629856m5 + 1560060m4 + 1552500m3 + 776234m2 + 195001m + 19684,

F = 1259712m5 + 3108456m4 + 3083184m3 + 1537596m2 + 385666m + 38919,

if m ≤ 3,

F = 1259712m5 + 3120120m4 + 3061800m3 + 1488132m2 + 358074m + 34087,

if m ≥ 4,

6. n = 18m + 11, m ≥ 0,

⎛

⎝
216m2 + 290m + 97 −(216m2 + 232m + 56) −(22m + 13)

−(216m2 + 263m + 80) 216m2 + 232m + 64 −(5m + 3)
−(27m + 17) −8 27m + 16

⎞

⎠ ,

G = 629856m5 + 1909980m4 + 2323620m3 + 1417694m2 + 433745m + 53223,

F = 103589, if m = 0,

F = 1259712m5 + 3819960m4 + 4609224m3 + 2766636m2 + 826058m + 98125,

if m ≥ 1,

7. n = 18m + 13, m ≥ 0,

⎛

⎝
216m2 + 326m + 123 −(216m2 + 280m + 90) −(10m + 7)

−(216m2 + 299m + 103) 216m2 + 280m + 96 −(17m + 12)
−(27m + 20) −8 27m + 19

⎞

⎠ ,

G = 629856m5 + 2259900m4 + 3250260m3 + 2342114m2 + 845465m + 122286,

F = 1259712m5 + 3120120m4 + 3061800m3 + 1488132m2 + 358074m + 34087.

8. n = 18m + 15, m ≥ 0,

⎛

⎝
216m2 + 380m + 167 −(216m2 + 328m + 120) −(16m + 13)

−(216m2 + 353m + 144) 216m2 + 328m + 128 −(11m + 9)
−(27m + 23) −8 27m + 22

⎞

⎠ ,

G = 629856m5 + 2609820m4 + 4332420m3 + 3601550m2 + 1499153m + 249937,

F = 1259712m5 + 5219640m4 + 8637192m3 + 7135452m2 + 2943162m + 484897.

9. n = 18m + 17, m ≥ 0,

⎛

⎝
216m2 + 425m + 209 −(216m2 + 376m + 160) −(13m + 12)

−(216m2 + 398m + 183) 216m2 + 376m + 168 −(14m + 13)
−(27m + 26) −8 27m + 25

⎞

⎠ ,
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G = 629856m5 + 2959740m4 + 5570100m3 + 5247626m2 + 2474713m + 467304,

F = 1259712m5 + 5919480m4 + 11117736m3 + 10433124m2 + 4892186m + 917039.

Formulas for F(R3
n) in the cases

n = 18m, m ≥ 16, n = 18m + 2, m �= 0, n = 18m + 4, m �= 0,

n = 18m + 6, m �= 0, n = 18m + 8, m ≥ 2, n = 18m + 10, m ≥ 1,

n = 18m + 12, m ≥ 0, n = 18m + 14, m ≥ 0, n = 18m + 16, m ≥ 0,

n = 18m + 1, m ≥ 0, n = 18m + 3, m ≥ 1, n = 18m + 5, m ≥ 0,

n = 18m + 7, m ≥ 1, n = 18m + 9, m ≥ 4, n = 18m + 11, m ≥ 1,

n = 18m + 13, m ≥ 0, n = 18m + 15, m ≥ 0, n = 18m + 17, m ≥ 0,

coincide with those obtained in [7] when t2 > t1. In the opposite case (t2 < t1)

n = 18m, 1 ≤ m ≤ 15, n = 18m + 2, m = 0, n = 18m + 4, m = 0,

n = 18m + 6, m = 0, n = 18m + 8, m = 0, 1, n = 18m + 10, m = 0,

n = 18m + 3, m = 0, n = 18m + 7, m = 0, n = 18m + 9, 0 ≤ m ≤ 3,

n = 18m + 11, m = 0.

we get the other 28 formulas. These are exactly the 28 excluded cases (3).

3.3 Exceptional Nonsymmetric Semigroups R3
n, n = 4, 6

R3
4 :

⎛

⎝
7 −1 −1

−1 18 −9
−6 −17 10

⎞

⎠ ,
G = 558
F = 1098

, R3
6 :

⎛

⎝
31 −10 −5
−6 13 −6

−25 −3 11

⎞

⎠ ,
G = 2670
F = 5249

.

4 Extension on Numerical Semigroups Rk
n, k ≥ 4

It is quite natural to ask about PRep of minimal relations for semigroups Rk
n with

arbitrary k. Albeit nothing rigorous is known for k ≥ 4, the case k = 4 is worth to
discuss briefly.

Making use of the Euclidean numerical algorithm with negative [12] and positive
[10] remainders for computation of the Frobenius numbers, in the article [7], besides a
calculation of the PRep for F(R2

n), F(R3
n), there were put forwardweak arguments to

predict a value ofmodulus T4 of residue class. Namely, F(R4
n) is given by polynomial
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expressions in n on residue class of n modulo 88 ‘whereas experimental tests make
us believe that we need 40 formulas’.

Motivated by the last observation [7] and making use of assumption (20.1), we
have undertaken an attempt [4] to verify numerically an assertion T4 = 40 and, if
so, to calculate the PRep of minimal relations for semigroups R4

n . If such PRep does
exist and is computable then by Lemma 3 and Corollary 2 it is unique and does not
depend on the way of its derivation.

To perform calculations, we define n = T4m + q and choose a qudratic in m
Rep of all matrix elements ai j (n) = Li j (q)m2 + Mi j (q)m + Ni j (q). Due to (14),
among 27 indeterminates Li j (q),Mi j (q),Ni j (q) with fixed q there are only 18 lin-
early independent variables. In fact, their number may be decreased much stronger
if we impose three (quartic in m) equalities in (18). However, instead of treating
non-linear equalities, we choose another way to solve three linear Diophantine equa-
tions (18) for k = 4 and fixed q. For this purpose, choose three different m and
find Li j (q),Mi j (q),Ni j (q) according to minimality requirement (13) and Corol-
lary 1. Finally, verify a validity of matrix A3 of minimal relations by non-linear
equalities (18).

Below we list the main results of this study [4].

• There exist only three symmetric numerical semigroups R4
n , n = 3, 5, 7.

• If n = 0 (mod 2) then all matrix elements of A3 for semigroup R4
n , have the

quadratic Rep in n on residue class of n modulo T4 = 40.
• If n = 1 (mod 2) then all matrix elements of A3 for semigroup R4

n , have the
quadratic Rep in n on residue class of n modulo T4 = 20.

• There exist 15 exceptional nonsymmetric semigroups R4
n , where

n = 6, 9, 10, 13, 14, 17, 20, 26, 27, 30, 33, 40, 60, 80, 120.

The whole list of quadratic Rep of minimal relations for semigroups R4
n comprise 30

matrix formulas for which we refer the readers to preprint [4].
In spite of numerical results, discussed in this section, the problem of PRep of

minimal relations for semigroups R4
n cannot be considered solved finally so far we

have not a pure proof on the value of T4. The last question is still awaiting its answer.

4.1 Conjecture and Question

In this section we state a conjecture and put a question, which concerned with numer-
ical semigroups Rk

n , n > 3, k > 4, where an appearance of symmetric semigroups
seems very rare.

Indeed, besides semigroups Rk
3 , 5 ≤ k < ∞, numerical calculations give only two

symmetric numerical semigroups according to Lemma 2,

R11
5 : 511 = 1093 · 211 + 263 · 311, R13

5 : 513 = 51118 · 213 + 503 · 313,

among others numerical semigroups Rk
2p+1, 2 ≤ p ≤ 50, 5 ≤ k ≤ 103.
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Conjecture 1 Let a numerical semigroup Rk
n , n = Tkm + j , be given by theirmatrix

A3 of minimal relations on residue class of n modulo Tk,

A3
(
Rk
Tkm+ j

) =
⎛

⎜
⎝

K (k)
11 (m, j) −K (k)

12 (m, j) −K (k)
13 (m, j)

−K (k)
21 (m, j) K (k)

22 (m, j) −K (k)
23 (m, j)

−K (k)
31 (m, j) −K (k)

32 (m, j) K (k)
33 (m, j)

⎞

⎟
⎠ , 0 ≤ j < Tk . (34)

Then polynomial expressions in m for K (k)
ir (m, j) read in two different cases.

If k = 2q, then

K (2q)
ir (m, j) = Air ( j)m

q + Bir ( j)m
q−1 + · · · + Cir ( j)m + Dir ( j), 1 ≤ i, r ≤ 3, (35)

and the Frobenius number and genus have the asymptotic behavior: F(n),G(n) =
O (

n3q
)
.

If k = 2q + 1, then the matrix elements with (i, r) = (1, 1), (1, 2), (2, 1), (2, 2)
are given by

K (2q+1)
ir (m, j) = Eir ( j)m

q+1 + Iir ( j)m
q + · · · + Jir ( j)m + Hir ( j), (36)

while the matrix elements with (i, r) = (1, 3), (2, 3), (3, 1), (3, 2), (3, 3) are given
by

K (2q+1)
ir (m, j) = Mir ( j)m

q + Nir ( j)m
q−1 + · · · + Pir ( j)m + Sir ( j), (37)

and the Frobenius number and genus have the asymptotic behavior: F(n),G(n) =
O (

n3q+2
)
.

Question 1 Keeping in mind

T2 = 4, T3 = 18, T4 = 20 if n = 1 (mod 2) and T4 = 40 if n = 0 (mod 2)

find Tk for the higher k.

Acknowledgements The research was supported by the Kamea Fellowship.

5 Appendix: Proof of Propositions 2

Proof Semigroup R3
3 is symmetric due to requirement (4a). Find more n which

satisfy (4a),

(n + 1)3 = e1(n − 1)3 + e2n
3, e1, e2 ∈ N, n > 3.

Simplifying the last equality we obtain the Diophantine equation
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(e1 + e2 −1)t3 +3(2e1 + 3e2 −4)t2 +3(4e1 + 9e2 −16)t +8e1 + 27e2 −64 = 0, (38)
t = n − 3.

Decompose the whole integer lattice Z+
2 := {e1, e2 | e1, e2 ≥ 1} in different sets,

Z
+
2 =

5⋃

j=1

E j , E1 = {e1, e2 | e1 ≥ 5; e2 = 1},

E2 = {e1, e2 | e1 ≥ 2; e2 = 2}, E3 = {e1, e2 | e1 ≥ 1; e2 ≥ 3},
E4 = {e1, e2 | 1 ≤ e1 ≤ 4; e2 = 1}, E5 = {e1 = e2 = 1}.

If (e1, e2) ∈ E j , 1 ≤ j ≤ 3, then the sequence of coefficients in Eq. (38) has no
changes of signs and therefore, by Descartes’ rule of signs, Eq. (38) has no positive
solutions in t . If (e1, e2) ∈ E j , j = 4, 5, a straightforward numerical verification
shows that none of 5 cubic equations (38) has an integer positive solution in t .

Consider an alternative way to symmetrize R3
n by providing condition (4b), which

may occur only when n = 2q + 1 and results in the Diophantine equation in c1, c2 ∈
N, q > 1,

(2q + 1)3 = c1q
3 + c2(q + 1)3, or

(c1 + c2 − 8)q3 + 3(c2 − 4)q2 + 3(c2 − 2)q + c2 − 1 = 0. (39)

Substituting q = p + 1, p > 0, into (39) we obtain the cubic Diophantine equation
in p,

(c1 + c2 − 8)p3 + 3(c1 + 2c2 − 12)p2 + 3(c1 + 4c2 − 18)p + c1 + 8c2 − 27 = 0, (40)

which has no positive integer solutions p. Indeed, to prove this statement, we make
use of Descartes’ rule of signs for integer coefficients in Eq. (40). For this purpose
decompose the whole integer lattice Z+

2 := {c1, c2 | c1, c2 ≥ 1} in different sets,

Z
+
2 = C ∪ C, C =

7⋃

j=1

C j , C =
6⋃

j=1

C j ,

C1 = {c1, c2 | 1 ≤ c1 ≤ 7, c1 ≥ 19; c2 = 1},
C2 = {c1, c2 | 1 ≤ c1 ≤ 6, c1 ≥ 11; c2 = 2},
C3 = {c1, c2 | 1 ≤ c1 ≤ 3, c1 ≥ 6; c2 = 3},
C4 = {c1, c2 | c1 ≥ 4; c2 = 4}, C5 = {c1, c2 | c1 ≥ 3; c2 = 5},
C6 = {c1, c2 | c1 ≥ 2; c2 = 6}, C7 = {c1, c2 | c1 ≥ 1; c2 ≥ 7},
C1 = {c1, c2 | 8 ≤ c1 ≤ 18; c2 = 1}, C2 = {c1, c2 | 7 ≤ c1 ≤ 10; c2 = 2},
C3 = {c1, c2 | 4 ≤ c1 ≤ 5; c2 = 3}, C4 = {c1, c2 | 1 ≤ c1 ≤ 3; c2 = 4},
C5 = {c1, c2 | 1 ≤ c1 ≤ 2; c2 = 5}, C6 = {c1 = 1; c2 = 6}.



Numerical Semigroups Generated by Squares and Cubes of Three Consecutive Integers 121

If (c1, c2) ∈ C then the sequence of coefficients in Eq. (40) has no changes of signs
and therefore, by Descartes’ rule of signs, Eq. (40) has no positive solutions in p.
Regarding the rest of the cases, when (c1, c2) ∈ C, a straightforward numerical ver-
ification shows that none of 23 cubic equations (40) has an integer positive solution
in p. �

References

1. A. Brauer, On a problem of partitions, Am. J. Math. 64, 299–312 (1942)
2. L.G. Fel, Frobenius problem for semigroups S (d1, d2, d3), Funct. Analysis and Other Math.,

1, 119–157 (2006)
3. L.G. Fel, Symmetric Semigroups Generated by Fibonacci and Lucas Triples, Integers, 9, 107–

116 (2009)
4. L.G. Fel, Numerical semigroups generated by squares, cubes and quartics of three consecutive

integers, http://arxiv.org/pdf/1608.08693v1.pdf
5. J. Herzog,Generators andRelations of Abelian Semigroups and SemigroupRings,Manuscripta

Math., 3, 175–193 (1970)
6. S.M. Johnson, A linear Diophantine problem, Canad. J. Math., 12, 390–398 (1960)
7. M. Lepilov, J. O’Rourke, I. Swanson, Frobenius numbers of numerical semigroups generated

by three consecutive squares or cubes, Semigroup Forum, 91, 238–259 (2015)
8. J.M. Marin, J.L. Ramirez Alfonsin, M.P. Revuelta, On the Frobenius number of Fibonacci

numerical semigroups, Integers, 7, A14, 1–7 (2007)
9. D.C. Ong, V. Ponomarenko,Frobenius number of geometric sequences, Integers, 8, A33 (2008)
10. J.L. Ramirez Alfonsin and Ö.J. Rödseth,Numerical semigroups: Apéry sets and Hilbert series,

Semigroup Forum, 79, 323–340 (2009)
11. J.B. Roberts, Note on linear forms, Proc. Am. Math. Soc. 7, 465–469 (1956)
12. Ö.J. Rödseth,A linearDiophantine problemofFrobenius, J. ReineAngew.Math., 301, 171–178

(1978)
13. K. Watanabe, Examples of 1-dim Gorenstein Domains, Nagoya Math. J., 49, 101–109 (1973)

http://arxiv.org/pdf/1608.08693v1.pdf


On Supra-SIM Sets of Natural Numbers

Isaac Goldbring and Steven Leth

Abstract We introduce the class of supra-SIM sets of natural numbers. We prove
that this class is partition regular and closed under finite-embeddability. We also
prove some results on sumsets and SIM sets motivated by their positive Banach
density analogues.

1 Introduction

Ramsey theory on the integers can crudely be described as the study of partition
regular properties of the integers, namely those properties P of integers such that,
whenever A ⊆ N hasP and A = B � C (disjoint union), then at least one of B or C
has propertyP . Here are some of the more prominent examples of partition regular
properties of the integers:

• having infinite cardinality (Pigeonhole principle);
• having arbitrary long arithmetic progressions (van der Waerden’s theorem);
• containing a set of the form

FS(X) := {a1 + · · · + an : a1, . . . , an ∈ X distinct, n ∈ N}

for some infinite set X (Hindman’s theorem);
• being piecewise syndetic;
• having positive Banach density.
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In this paper, we introduce a new partition regular property of the natural numbers,
namely that of being supra-SIM. SIM1 sets were introduced by the second author in
[6] in connection with Stewart and Tijdeman’s result that intersections of difference
sets of sets of positive density are syndetic. This property arises from an analogous
natural property of internal subsets of the nonstandard natural numbers ∗

N in the
sense of nonstandard analysis. While one can prove an analog of the aforementioned
result of Stewart andTijdeman by replacing the hypothesis of positiveBanach density
with the assumption of SIM, it was pointed out that the SIM property has some
unusual features that should not lead one to view it simply as a notion of largeness.
In particular, it was shown that a SIM set A has the property that all of its supersets
are also SIM precisely when A is syndetic.

Thus, it is natural to consider the class of supra-SIM sets, which we define to be
the class of sets which contain a SIM set. In this article, we show that the class of
supra-SIM sets has better combinatorial features than the class of SIM sets itself.
In particular, we show that this class is partition regular and is closed under finite-
embeddability, neither of which are true for the class of SIM sets. We achieve these
results by proving a simple nonstandard characterization of being supra-SIM.

In the final section, we continue the theme of proving analogues of results for
positive Banach density with (supra-)SIM assumptions by considering results on
sumsets. Indeed, we prove the SIM analogue of Jin’s sumset theorem [5] as well
as Nathanson’s result from [8], which yielded partial progress on Erdős’ B + C
conjecture (which was recently solved in [7]).

We assume that the reader is familiar with basic nonstandard analysis as it pertains
to combinatorial number theory. Alternatively, one can consult the recent manuscript
[2], which also contains a chapter on SIM sets. Nevertheless, we will recall the
relevant definitions and facts about SIM sets in the next section.

We thank Mauro Di Nasso for useful conversations regarding this work.

2 Preliminaries

Let I := [y, z] be an infinite, hyperfinite interval. Set stI := st[y,z] : I → [0, 1] to
be the map stI (a) := st ( a−y

z−y ). For A ⊆ ∗
N internal, we set stI (A) := stI (A ∩ I ).

We recall that stI (A) is a closed subset of [0, 1] and we may thus consider λI (A) :=
λ(stI (A)), where λ is Lebesgue measure on [0, 1].

We also consider the quantity gA(I ) := d−c
|I | , where [c, d] ⊆ I is maximal so that

[c, d] ∩ A = ∅.
The main idea in what is to follow is the desire to compare the notions of making

gA(I ) small (an internal notion) andmakingλI (A) large (an external notion). There is
always a connection in one direction, namely that if λI (A) > 1 − ε, then gA(I ) < ε.
We now consider sets where there is also a relationship in the other direction.

1SIM stands for the standard interval measure property.
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Definition 1 We say that A has the interval-measure property (or IM property) on
I if for every ε > 0, there is δ > 0 such that, for all infinite J ⊆ I with gA(J ) ≤ δ,
we have λJ (A) ≥ 1 − ε.

If A has the IM property on I , we let δ(A, I, ε) denote the supremum of the δ’s
that witness the conclusion of the definition for the given ε.

It is clear from the definition that if A has the IM property on an interval, then it
has the IM property on every infinite subinterval. Also note that it is possible that
A has the IM property on I for a trivial reason, namely that there is δ > 0 such that
gA(J ) > δ for every infinite J ⊆ I . Let us temporarily say that A has the nontrivial
IM property on I if this does not happen, that is, for every δ > 0, there is an infinite
interval J ⊆ I such that gA(J ) ≤ δ. It will be useful to reformulate this in different
terms. In order to do that, we recall an important standard tool that is often employed
in the study of sets with the IM property, namely the Lebesgue density theorem.
Recall that for a measurable set E ⊆ [0, 1], a point r ∈ E is a (one-sided) point of
density of E if

lim
s→r+

μ(E ∩ [r, s])
s − r

= 1.

The Lebesgue density theorem asserts that almost every point of E is a density point
of E .

Fact 2.1 Suppose that A ⊆ ∗
N is internal and I is an infinite, hyperfinite interval

such that A has the IM property on I . Then the following are equivalent:

1. There is an infinite subinterval J of I such that A has the nontrivial IM property
on J .

2. There is an infinite subinterval J of I such that λJ (A) > 0.

In practice, the latter property in the previous proposition is easier to work with.
Consequently, let us say that A has the enhanced IM property on I if it has the IM
property on I and λI (A) > 0.

In the proof of our main partition regularity result, the following internal partition
regularity theorem will be essential.

Theorem 1 Suppose that A has the enhanced IM property on I . Further suppose
that A ∩ I = B1 ∪ · · · ∪ Bn with each Bi internal. Then there is i and infinite J ⊆ I
such that Bi has the enhanced IM property on J .

Proof We prove the theorem by induction on n. The result is clear for n = 1. Now
suppose that the result is true for n − 1 and suppose A ∩ I = B1 ∪ · · · ∪ Bn with each
Bi internal. If there is an i and infinite J ⊆ I such that Bi ∩ J = ∅ and λJ (A) > 0,
then we are done by induction. We may thus assume that whenever λJ (A) > 0, then
each Bi ∩ J �= ∅. We claim that this implies that each of the Bi have the IM property
on I . Since there must be an i such that λI (Bi ) > 0, for such an i it follows that Bi

has the enhanced IM property on I .
Fix i and set B := Bi . Suppose that J ⊆ I is infinite, ε > 0, and gB(J ) ≤

δ(A, I, ε); we show that λJ (B) ≥ 1 − ε. Since gA(J ) ≤ gB(J ) ≤ δ(A, I, ε), we
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have that λJ (A) ≥ 1 − ε. Suppose that [r, s] ⊆ [0, 1] \ stJ (B). Then r = stJ (x) and
s = stJ (y) with

y−x
|J | ≈ s − r and B ∩ [x, y] = ∅. By our standing assumption, this

implies that λ[x,y](A) = 0, whence it follows that λJ (A ∩ [x, y]) = 0. It follows that
λJ (B) = λJ (A) ≥ 1 − ε, as desired. �

We will need two other facts about SIM sets, both of which are implicit in [6] but
are spelled out in more detail in [2].

Fact 2.2 If A is an internal set that has the IM property on I , then there is w ∈ N

and a descending hyperfinite sequence I = I0, I1, . . . , IK of hyperfinite subintervals
of I such that:

• |IK | ≤ w;
• |Ik+1|

|Ik | ≥ 1
w for all k < K;

• whenever Ik is infinite, we have λIk (A) > 0.

Fact 2.3 Suppose that A1, . . . , An are internal sets that satisfy the IM prop-
erty on I1, . . . , In respectively. Fix ε > 0 such that ε < 1

n . Take δ > 0 with δ <

mini=1,...,n δ(Ai , Ii , ε). Then there is w ∈ N such that, whenever [ai , ai + b] satisfies

[ai , ai + b] ⊆ Ii and gAi ([ai , ai + b]) ≤ δ for all i = 1, . . . , n,

then there is c ∈ ∗
N such that

Ai ∩ [ai + c, ai + c + w] �= ∅ for all i = 1, . . . , n.

Finally, we recall the definition of SIM sets.

Definition 2 A ⊆ N has the standard interval-measure property (or SIM property)
if:

• ∗A has the IM property on every infinite hyperfinite interval;
• ∗A has the enhanced IM property on some infinite hyperfinite interval.

It is possible to give a reformulation of SIM sets in completely standard terms;
see [6] for the details.

3 Supra-SIM Sets and Their Properties

We begin by noting that the collection of SIM sets is not closed under the operation
of taking supersets.

Example 3.1 Suppose that B has the SIMproperty but is not syndetic. Then as shown
in [6], there is A ⊇ B such that A is not SIM.

This implies that not all piecewise syndetic sets are SIM sets. As we will see below,
the property of being a SIM set is also not partition regular. It is thus more interesting
to consider the notion of a “supra-SIM” set, defined below.
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Definition 3.2 A ⊆ N is supra-SIM if there is B ⊆ A such that B has the SIM
property.

Example 3.3 ([6]) Piecewise syndetic sets are supra-SIM.

In [6], SIM sets of Banach density 0 are constructed. This implies that there are supra-
SIM sets that do not have positive Banach density, and thus also are not piecewise
syndetic.

In order to prove our main results on supra-SIM sets, we use a convenient non-
standard reformulation. The next theorem is the core of the matter.

Theorem 3.4 Suppose that A ⊆ N is such that ∗A has the enhanced IM property
on some interval I . Then A is a supra-SIM set.

Proof Without loss of generality, I ⊆ ∗
N \ N. For each ε > 0, fix

δ(ε) < min(δ(A, I, ε), ε, 1
4 ).

For ease of notation, we set δk := δ( 1k ). By underflow, for each n, k ∈ N, there
exists Mn,k ∈ N such that whenever a subinterval J of I satisfies g∗A(J ) < δk and
l(J ) > Mn,k , then it takes the sum of the lengths of at least n gaps of ∗A on J to add
to l(J )

k . Since λI (∗A) > 0, for each n there exists an infinite subinterval J of I such
that g∗A(J ) < 1

n .
By transfer, we may inductively define a sequence of pairwise disjoint intervals

(In) in N satisfying the following properties:

(i) Writing In = [an, bn], we have an > nbn−1.
(ii) In has a subinterval of length at least n with gA(J ) < 1

n .
(iii) For all k ≤ n and for all J ⊆ In , if l(J ) > Mn,k and gA(J ) < δk , then at least

n gaps of A on J are required to cover at least l(J )

k .

Set B := ⋃
n(A ∩ In). We claim that B has the SIM property.

Let I ′ be an infinite hyperfinite interval. We show that ∗B has the IM property on
I ′ as witnessed by the function δ′(ε) := 1

2δk , where
1
k < ε. Fix ε > 0 and consider

an infinite subinterval J of I ′ such that g∗B(J ) ≤ 1
2δk .

By condition (i), If J intersects more than one of the IK , with the largest such
index being M , then every point in any J ∩ IK with K < M is less than 1

M aM , and so
is infinitesimal compared to the length of J (which is at least aM − bM−1). Thus, all
these points are mapped to 0 by the stJ mapping. Next note that aM must be within
the first δk portion of J , else g∗B(J ) ≥ δk . If the right endpoint of J is at most bM , we
then have that l(J ∩ IM) ≥ (1 − δk)l(J ). If J ends after IM , then again we see that
bM must occur in the last δk portion of J , so l(J ∩ IM) ≥ (1 − 2δk)l(J ). In either
case, we have l(J ∩ IM) ≥ (1 − 2δk)l(J ).

It follows that

g∗B(J ∩ IM) ≤ g∗B(J ) · l(J )

l(J ∩ IM)
≤ δk

2(1 − 2δk)
≤ δk .

Since g∗B(J ∩ IM) = g∗A(J ∩ IM) and it requires M gaps of ∗A to add to l(J )

k , we
see that λJ (

∗B) ≥ 1 − 1
k > (1 − ε), as desired.
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It remains to show that ∗B has the enhanced IM property on some interval. To
see that, observe that if N is of non-finite length, then IN has a subinterval J of size
at least N with g∗A(J ) ≤ δN ≈ 0; since g∗B(J ) = g∗A(J ), we see that ∗B has the
enhanced IM property on J . �

Here is our promised nonstandard reformulation of supra-SIM sets.

Corollary 3.5 A is supra-SIM if and only if there is B ⊆ A and infinite hyperfinite
I such that ∗B has the enhanced IM property on I .

Proof If A is supra-SIM, then there is B ⊆ A that is SIM. By definition of SIM, this
B is as desired. Conversely, if B and I are as in the condition, then B is supra-SIM
by the theorem, whence so is A. �

The partition regularity of supra-SIM now follows easily:

Corollary 3.6 The notion of being a supra-SIM set is partition regular.

Proof Suppose that A is supra-SIM and A = C � D. Take B ⊆ A SIM. Take infinite
I such that ∗B has the enhanced IM property on I . Then by Theorem 1, we have,
without loss of generality, that ∗(B ∩ C) has the enhanced IM property on some
infinite subinterval of I . It follows from the previous corollary that C is supra-SIM.

�

From this and Theorem 5.7 in [4] we obtain the following corollary.

Corollary 3.7 Every supra-SIM set is contained in an ultrafilter consisting entirely
of supra-SIM sets.

Example 3.8 Being SIM is not partition regular. Indeed, consider

A := {1, 3, 4, 7, 8, 9, 13, 14, 15, 16, . . .},

where A continues to consist of m elements in the set followed by m elements that
are not in the set, with m increasing by 1 each time. Then, if k is large (but finite),
on any infinite hyperfinite interval I that consists of k disjoint intervals that are in
∗A and k disjoint intervals that are not in ∗A, we have that g∗A(I ) and g∗(N\A)(I ) are
both roughly equal to 1/(2k), while λI (

∗A) and λI (
∗(N \ A)) are both 1/2.

The argument in the proof of Theorem 3.4 is robust enough to allow us to adapt
it to prove another desirable property of supra-SIM sets that is also possessed by
sets of positive Banach density. Recall that A is said to be finitely-embedded in B if,
given any finite F ⊆ A, there is t ∈ N such that t + F ⊆ B. (Equivalently, there is
t ∈ ∗

N such that t + A ⊆ ∗B.) Note that if A is finitely embedded in B and (A) > 0,
then (B) > 0.

Theorem 3.9 Suppose that A is finitely embedded in B and A is supra-SIM. Then
B is supra-SIM.
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Proof Without loss of generality, we may assume that A is actually SIM. For n ∈ N,
let Xn be the set of intervals I in ∗

N of length at least n such that g∗A(I ) ≤ 1
n and

t + (∗A ∩ I ) ⊆ ∗B for some t ∈ ∗
N. Since A is SIM and finitely-embeddable in B,

each Xn �= ∅. Thus, by overflow, there is I ∈ ⋂
n Xn .

As in the proof of Theorem 3.4, we may use transfer to inductively define a
sequence of pairwise disjoint intervals (In) inN and a sequence (tn) fromN satisfying
the following properties:

(i) Writing tn + In = [an, bn], we have an > nbn−1.
(ii) In has a subinterval of length at least n with gA(J ) < 1

n .
(iii) For all k ≤ n and for all J ⊆ In , if |J | > Mn,k and gA(J ) < δk , then at least n

gaps of A on J are required to cover at least l(J )

k .
(iv) tn + (A ∩ In) ⊆ B.

Let C := ⋃
n(tn + (A ∩ In)). As in the proof of Theorem 3.4, C has the SIM

property. By (iv), C ⊆ B, so B is supra-SIM, as desired. �

Of course the previous proposition fails for SIM sets. As mentioned in the intro-
duction, they are almost never even closed under taking supersets.

We end this section by mentioning arguably the most pressing open question
concerning supra-SIM sets.

Question 1 Are sets of positive Banach density supra-SIM?

Our results from this section yield a prima facie simpler criterion for obtain-
ing a positive solution to the previous question. First recall that, for A ⊆ N, the
Shnirelmann density of A is σ(A) := infn≥1

|A∩[1,n]|
n .

Corollary 3.10 Suppose there is ε > 0 such that every set A ⊆ N with σ(A) ≥
1 − ε is supra-SIM. Then every set of positive Banach density is supra-SIM.

Proof Suppose that ε is as in the hypothesis of the corollary and suppose that (A) > 0.
Take a finite F ⊆ N such that (A + F) ≥ 1 − ε. Take B ⊆ N such that B is finitely
embedded in A and σ(B) ≥ (A + F) (see, for example, [2, Corollary 12.12]). By
assumption, B is supra-SIM. By Theorem 3.9, A + F is supra-SIM. By Corollary
3.6, A + i is supra-SIM for some i ∈ F . It remains to observe that being supra-SIM
is translation invariant.

4 SIMsets and Sumsets

4.1 The Sumset Phenomenon

One of the first successes of nonstandard methods in combinatorial number theory
was the following theorem of Renling Jin.
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Fact 4.1 Suppose that A, B ⊆ N are such that (A), (B) > 0. Then A + B is piece-
wise syndetic.

In this subsection, we prove the analogous result, replacing the positive Banach
density assumption with a SIM assumption.

Proposition 4.2 If A and B have the SIMproperty, then A + B is piecewise syndetic.

Proof By Fact 2.2 and the Lebesgue density theorem, we can obtain intervals I and J
of the same infinite length such that λI (∗A) = λJ (∗B) = 1. Let u be the left endpoint
of I and v be the right endpoint of J . We apply Fact2.3 with A1 := ∗A − u, A2 :=
v− ∗B, I1 := I − u, and I2 := J − v to obtain a finite w as in the conclusion of that
result. Now for any finite m, gA1(I1 + m) ≈ 0 and gA2(I2) ≈ 0. Thus, by the choice
of w, there must exist c ∈ ∗

N such that

A1 ∩ [m + c,m + c + w] �= ∅ and A2 ∩ [c, c + w] �= ∅.

If we fix x ∈ A1 ∩ [m + c,m + c + w] and y ∈ A2 ∩ [c, c + w], then
x − y ∈ (A1 − A2) ∩ [m − w,m + w] = ((∗A − u

) − (
v −∗ B

)) ∩ [m − w,m + w].

This shows that there is an element of ∗A+ ∗B in every interval of the form [u + v +
m − w, u + v + m + w]. By overspill, there is an infinite interval starting at u + v

in which there is no gap of ∗A+ ∗B greater than 2w, completing the proof. �

4.2 Towards B + C for SIMsets

In [3], Erdős made the following conjecture.

Conjecture 4.3 Suppose that A ⊆ N is such that d(A) > 0. Then there are infinite
sets B,C ⊆ N such that B + C ⊆ A.

The first progress on this conjecture was due to Nathanson [8]:

Fact 4.4 Suppose that (A) > 0. Then for any n ∈ N, there are B,C ⊆ N such that
B is infinite, |C | = n, and B + C ⊆ A.

Nathanson’s result follows immediately from repeated applications of the follow-
ing fact, which he attributes to Kazhdan in [8].

Fact 4.5 Suppose that (A) > 0. Then there are arbitrarily large t ∈ N such that
(A ∩ (A − t)) > 0.

We remark in passing that the proof of Kazhdan’s lemma appearing in [8] is
quite complicated but that it is possible to give a very simple nonstandard proof as
in [2]. In this subsection, we prove the supra-SIM version of Nathanson’s result.
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First, we should mention that, building somewhat upon ideas from [1], Moreira,
Richter, and Robertson positively settle the Erdős conjecture in [7], even weakening
the hypothesis to positive Banach density and also proving a version for countable
amenable groups.

Here is the Kazhdan lemma for supra-SIM sets:

Proposition 4.6 (Kazhdan Lemma for supra-SIM sets) Suppose that A ⊆ N is
supra-SIM and set TA := {t ∈ N : A ∩ (A − t) is supra-SIM}. Then TA is syn-
detic.

Proof Suppose that ∗A has the enhanced IM property on the interval I . Letw ∈ N be
as in Fact 2.3 for A1 := A2 := ∗A and I1 := I2 := I, for some appropriately small ε
and corresponding δ. We show thatTA has no gaps of length larger than w. Towards
this end, fix t ∈ N and set

Bt :=
w⋃

k=0

(∗A − (t + k)
)
.

Claim: If J is any subinterval of I on which λJ (∗A) > 0,then

∗A ∩ Bt ∩ J �= ∅.

Proof of the Claim: By the Lebesgue density theorem, we may choose [a1, b] ⊂ J
with sufficiently small gap that wemay apply Fact 2.3 with a2 := a1 + t . This allows
us to find a c with c + w ≤ b such that ∗A ∩ [a1 + c, a1 + c + w] �= ∅
∗A ∩ [a1 + t + c, a1 + t + c + w] �= ∅.This is equivalent to:∗A ∩ [a1 + c, a1 + c +
w] �= ∅ (∗A − t) ∩ [a1 + c, a1 + c + w] �= ∅.

Let d be an element in ∗A ∩ [a1 + c, a1 + c + w]. That same d must then be in
Bt since it is within w of an element in (∗A − t), and this completes the proof of the
claim. �

The claim implies that, for any infinite subinterval J of I , we have that

λJ (
∗A ∩ Bt ) = λJ (

∗A),

as J cannot contain any infinite intervals in the complement of ∗A ∩ Bt that have pos-
itive ∗Ameasure. It follows immediately that ∗A ∩ Bt has the enhanced IM property
on I . By Theorem 1, it follows that for some k = 0, . . . ,w, we have that

∗A ∩ (∗A − (t + k))

has the enhanced IM property on some infinite subinterval of I . For this k, it follows
that A ∩ (A − (t + k)) is supra-SIM. �

As in the case of the originalNathanson result, repeated application of the previous
proposition implies.
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Corollary 4.7 (Nathanson’s theorem for supra-SIM sets) Suppose that A is supra-
SIM. Then for any n ∈ N, there is an infinite B ⊆ A and C ⊆ N with |C | = n such
that B + C ⊆ A.

Of course, we should ask.

Question 2 Suppose that A is supra-SIM. Do there exist infinite B,C ⊆ N such that
B + C ⊆ A?

Acknowledgements Goldbring’s work was partially supported by NSF CAREER grant DMS-
1349399.
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3. P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number the-
ory, volume 28 of Monographies de L’Enseignement Mathématique. Universit de Genève,
L’Enseignement Mathématique, Geneva, 1980.

4. N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, 2nd edn., De Gruyter,
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Mean Row Values in (u, v)-Calkin–Wilf
Trees

Sandie Han, Ariane M. Masuda, Satyanand Singh and Johann Thiel

Abstract We fix integers u, v ≥ 1, and consider an infinite binary tree T (u,v)(z)
with a root node whose value is a positive rational number z. For every vertex a/b,
we label the left child as a/(ua + b) and right child as (a + vb)/b. The resulting tree
is known as the (u, v)-Calkin–Wilf tree. As z runs over [1/u, v] ∩ Q, the vertex sets
ofT (u,v)(z) form a partition of Q+. When u = v = 1, the mean row value converges
to 3/2 as the row depth increases. Our goal is to extend this result for any u, v ≥ 1.
We show that, when z ∈ [1/u, v] ∩ Q, the mean row value inT (u,v)(z) converges to
a value close to v + log 2/u uniformly on z.

1 Introduction

In [8], Nathanson defines an infinite binary tree generated by the following rules:

1. fix two positive integers u and v,
2. label the root of the tree by a rational z, and

3. for any vertex labeled
a

b
, label its left and right children by

a

ua + b
and

a + vb

b
,

respectively.

In the case where u, v, and z are equal to 1, the tree generated is the well-known
Calkin–Wilf tree [3] (see Fig. 1). Since Nathanson’s definition represents a gener-
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1/1

2/1

3/1

4/13/4

2/3

5/32/5

1/2

3/2

5/23/5

1/3

4/31/4

Fig. 1 The first four rows of the Calkin–Wilf tree

Fig. 2 The first three rows
of T (u,v)(z)

z

z+ v

z+2v
1

u+ 1
z+v

1
u+ 1

z

1
u+ 1

z

+ v
1

2u+ 1
z

alization1 of the Calkin–Wilf tree, we refer to trees defined in the above manner as
(u, v)-Calkin–Wilf trees, and we denote them by T (u,v)(z) (see Fig. 2). The set of
depth n vertices of T (u,v)(z) is denoted by T (u,v)(z; n). For example, we see from
Fig. 1 that T (1,1)(1; 1) = {1/2, 2}.

The vertices of T (1,1)(1) are all positive rational numbers without any repeti-
tion [3]. More generally, the trees T (u,v)(z) form a partition of Q+ as z runs over
[1/u, v] ∩ Q; see [8]. The Calkin–Wilf tree has many other interesting properties [3,
5, 6, 8, 9], one of which is the fact that the mean value of vertices of depth n con-
verges to 3/2 as n → ∞ [1, 10]. Our main result generalizes this property for all
(u, v)-Calkin–Wilf trees.

The proof that the mean value of vertices of depth n converges to 3/2 is not
difficult and only makes use of one property of the Calkin–Wilf tree; namely, both
a/b and b/a appear (in symmetric positions) on every row; see Fig. 1.

Proposition 1 If
a

b
∈ T (1,1)(1; n), then

b

a
∈ T (1,1)(1; n).

The proof of Proposition 1 follows quickly from induction on the depth n. We
omit the details.

Theorem 1 For n ≥ 0, let A(n) = 1

2n

∑

y∈T (1,1)(1;n)

y. Then lim
n→∞ A(n) = 3

2
.

1For other generalizations, see [2, 7].
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Proof Let S(n) =
∑

y∈T (1,1)(1;n)

y. Rewriting y as a/b and using both the definition of

the Calkin–Wilf tree and Proposition 1, we see that, for n ≥ 1,

2S(n) =
∑

a
b ∈T (1,1)(1;n−1)

(
a

a + b
+ a

b
+ 1 + b

b + a
+ b

a
+ 1

)

=
∑

a
b ∈T (1,1)(1;n−1)

(
a

b
+ b

a
+ 3

)

= 2S(n − 1) + 3 · 2n−1.

This gives the recurrence relation S(0) = 1 and S(n) = S(n − 1) + 3 · 2n−2 for n ≥
1. Solving the recurrence relation gives that S(n) = 3

2 · 2n − 1
2 for n ≥ 0. The desired

result follows immediately since A(n) = S(n)/2n . �

Let S(u,v)(z; n) =
∑

y∈T (u,v)(z;n)

y and A(u,v)(z; n) = S(u,v)(z; n)/2n . Suppose uv >

1. As a consequence of Lemma 5 and Theorem 2, we show that if z ∈ [1/u, v] ∩ Q,
then lim

n→∞ A(u,v)(z; n) exists,2 that the limit is independent of the value of z, and

that the limit has a value close to v + log 2/u. Unfortunately, Proposition 1 does not
generalize to other (u, v)-Calkin–Wilf trees by Lemma 3, so a different approach is
needed in this broader setting.

At first the value v + log 2/u may seem surprising, but a simple heuristic argument
quickly leads to this quantity. Note that if a/b is a vertex in a (u, v)-Calkin–Wilf
tree, then its children are given by

a

ua + b
= 1

u + b
a

<
1

u
and

a + vb

b
= a

b
+ v > v.

Following this pattern from depth n to depth n + 1 suggests that a quarter of all
elements of a fixed (large) depth have integer part of roughly size v, an eighth have
integer part of roughly size 2v, etc. Similarly, half of all elements have a fractional
part of roughly size 1/u, a quarter have a fractional part of roughly size 1/(2u), etc.
So we expect that

A(u,v)(z; n) ≈ 1

2n

(
2n

4

(
v + 2

u

)
+ 2n

8

(
2v + 2

2u

)
+ 2n

16

(
3v + 2

3u

)
+ · · ·

)

= v

4

∞∑

k=0

k + 1

2k
+ 1

u

∞∑

k=1

1

k2k

= v + log 2

u
,

2The reason for limiting our choice of roots to [1/u, v] ∩ Q is that these rationals are the “orphan”
roots in the sense that they are not the children of any rational in any (u, v)-Calkin–Wilf tree [8].
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where the last equality follows from the Taylor series expansions for 1/(1 − x)2 and
log(1 − x).

This heuristic throws away a lot of information from the denominator in the frac-
tional part of each element. We would therefore expect the true value of A(u,v)(z; n)

to be smaller than v + log 2/u.

As for the independence of the limit of A(u,v)(z; n) from z ∈ [1/u, v] ∩ Q, we
note that if a/b is a vertex in a (u, v)-Calkin–Wilf tree with continued fraction rep-
resentation a/b = [q0, q1, . . . , qr ], then the children of a/b have easily computable
continued fractions, as the next result shows.

Lemma 1 ([5, Lemma 5]) Let a/b be a positive rational number with continued
fraction representation a/b = [q0, q1, . . . , qr ]. It follows that

(a) if q0 = 0, then a/(ua + b) = [0, u + q1, . . . , qr ];
(b) if q0 �= 0, then a/(ua + b) = [0, u, q0, q1, . . . , qr ];
(c) and (a + vb)/b = [v + q0, q1, . . . , qr ].
It follows from the result above that, for large n, most vertices of depth n will have
approximately n/2 coefficients in their continued fraction expansions. This lowers
the influence of the root on the value of A(u,v)(z; n) as it is quickly buried by the
above process. We will make this notion precise in Lemma 7.

2 Main Result

We show that for z ∈ [1/u, v] ∩ Q, the limit of A(u,v)(z; n) exists as n → ∞ in two
main steps:

(A) First we show that, for z = 1/u or z = v, the mean A(u,v)(z; n) is monotonic
increasing and bounded above as n → ∞.

(B) Second we show that A(u,v)(z1; n) − A(u,v)(z2; n) → 0 as n → ∞ for any
z1, z2 ∈ [1/u, v] ∩ Q.

We begin with a useful lemma for comparing rational numbers based on their
continued fraction coefficients.

Lemma 2 ([11, p. 101]) Suppose that α, β ∈ Q are distinct with α = [p0, p1, . . . ,

ps] and β = [q0, q1, . . . , qr ]. Let k be the smallest index such that pk �= qk. Then
α < β if and only if pk < qk when k is even and pk > qk when k is odd. If no such
k exists and n < m, then α < β if and only if n is even.

Wenote here two useful results from [5] that will be used to obtain ourmain result.
Lemma 3 and Corollary 4 show two things: that there is a very close relationship
between two vertices in the same (u, v)-Calkin–Wilf tree via their continued fraction
representations if one is the descendant of the other, and that the continued fraction
representation of a vertex in a (u, v)-Calkin–Wilf tree encodes its depth in the tree.
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Lemma 3 ([5, Theorem 3]) Suppose that z and z′ are positive rational numbers with
continued fraction representations z = [q0, q1, . . . , qr ] and z′ = [p0, p1, . . . , ps].
Then z′ is a descendant of z in the (u, v)-Calkin–Wilf tree with root z if and only if
the following conditions all hold:

(a) s ≥ r and 2 | (s − r);
(b) for 0 ≤ j ≤ s − r − 1, v | p j when j is even and u | p j when j is odd;
(c) for 2 ≤ i ≤ r , ps−r+i = qi ;
(d) and

(i) if q0 �= 0, then ps−r ≥ q0, v | (ps−r − q0) and ps−r+1 = q1;
(ii) otherwise, if q0 = 0, then v | ps−r , ps−r+1 ≥ q1, and u | (ps−r+1 − q1).

Lemma 4 ([5, Corollary 3])Using the same hypothesis as Lemma 3, if n is the depth
of z′, then

n = 1

v

( ∑

0≤ j≤s−r−1
j even

p j +
∑

0≤i≤r
i even

(ps−r+i − qi )

)

+ 1

u

( ∑

0≤ j≤s−r−1
j odd

p j +
∑

0≤i≤r
i odd

(ps−r+i − qi )

)
.

The following lemma gives us the desired monotonicity for A(u,v)(z; n) when
z = 1/u or z = v.

Lemma 5 For any n ≥ 0, if z = 1/u or z = v, then S(u,v)(z; n + 1) > 2S(u,v)(z; n).

Proof Let n ≥ 0 be given. Enumerate the elements inT (u,v)(z; n) andT (u,v)(z; n +
1) as they appear from left to right in the (u, v)-Calkin–Wilf tree by s0, s1, . . . , s2n−1

and t0, t1, . . . , t2n+1−1, respectively. Clearly, for 0 ≤ i ≤ 2n − 1, t2i and t2i+1 are the
left and right children of si . Our goal is therefore to show that

2
2n−1∑

i=0

si <

2n+1−1∑

i=0

ti .

This desired inequality can be reduced further by noting that t2i+1 = si + v. In other
words, we obtain the desired result if we can show that

2n−1∑

i=0

si < 2nv +
2n−1∑

i=0

t2i .

Let In = ∑2n−1
i=0 [si ]. That is,In is the sum of the integer parts of all of the depth n

elements of the (u, v)-Calkin–Wilf tree.
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Claim: In = (2n − 1)v + [w] for n ≥ 0.
We prove the above claim by induction. Clearly I0 = [w]. Suppose that the

claim holds for some k ≥ 1. Since the left child of any number appearing in the
(u, v)-Calkin–Wilf tree is smaller than 1/u and the right child of any element is
always the original element plus v, it follows thatIk+1 = Ik + 2kv. By assumption,
Ik = (2k − 1)v + [w], from which the desired result immediately follows.

Our previous claim shows that we obtain the desired result if we can show that

[w] +
2n−1∑

i=0

{si } < v +
2n−1∑

i=0

t2i . (1)

If we take w = 1/u, then [w] = 0 and, by Lemma 4, the short continued fraction
representation of {si }must be of the form [0, α1u, α2v, . . . , αku]with m := m(si ) =
n + 2 − ∑k

i=1 αi > 0. Since {s2n−1} = [0, u] and t0 = [0, (n + 2)u], we see that, in
this case, (1) reduces further to the inequality

2n−2∑

i=0

{si } <

2n−1∑

i=1

t2i . (2)

If αk = 1, then there is an 1 ≤ i∗ ≤ 2n − 1 such that

t2i∗ = [0, α1u, α2v, . . . , (αk−1 + 1)v, mu].

If αk > 1, then there is an 1 ≤ i∗ ≤ 2n − 1 such that

t2i∗ = [0, α1u, α2v, . . . , (αk − 1)u, v, mu].

In either case, it follows that {si } < t2i∗ by Lemma 2. Note that the above association
between {{si }}2n−2

i=0 and {t2i }2n−1
i=1 is bijective, from which (1) follows in this case.

If we take w = v, then [w] = v and, by Lemma 4, the short continued fraction
representation of {si } must be of the form [0, α1u, α2v, . . . , αkv] with m defined as
in the previous case. Since {s2n−1} = 0 and t0 = [0, (n + 1)u, v], we see that, in this
case, (1) also reduces to (2). If m = 1, then there is an 1 ≤ i∗ ≤ 2n − 1 such that

t2i∗ = [0, α1u, α2v, . . . , (αk + 1)v].

If m > 1, then there is an 1 ≤ i∗ ≤ 2n − 1 such that

t2i∗ = [0, α1u, α2v, . . . , αkv, (m − 1)u, v].

As in the previous case, (1) follows, completing the proof of the lemma. �
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The following theorem establishes v + log 2/u as an upper bound of A(u,v)(z; n).
Note that by f (x) = O(g(x)) we mean that | f (x)| ≤ C |g(x)| for some constant C
(which may differ depending on context) and all sufficiently large x .

Theorem 2 If u and v are positive integers with uv > 1 and z ∈ Q, then A(u,v)(z; n)

is bounded above for all n ≥ 0. In particular,

v + log 2

u
− lim

n→∞ A(u,v)(z; n) = O

(
1

u2v

)
.

Proof For brevity, we let S(n) := S(u,v)(z; n), A(n) := A(u,v)(z; n), and T (n) :=
T (u,v)(z; n).

For n ≥ 1, every rational number in the set T (n) is either the left-child or right-
child of a rational number in the set T (n − 1). In particular, for every y ∈ T (n −
1), there is a unique x ∈ T (n) that is the right-child y. By definition, x = y + v.
Likewise, there is a unique z ∈ T (n) that is the left-child y, making z = 1

u+ 1
y
. It

follows that

S(n) = S(n − 1) + 2n−1v +
∑

y∈T (n−1)

1

u + 1
y

. (3)

By dividing both sides of (3) by 2n , we immediately obtain the equality

A(n) = 1

2
A(n − 1) + v

2
+ 1

2n

∑

y∈T (n−1)

1

u + 1
y

. (4)

By induction on (4), we can express A(n) as

A(n) = 1

2n
A(0) + v

n∑

k=1

1

2k
+ 1

2n

n∑

k=1

∑

y∈T (n−k)

1

u + 1
y

= z

2n
+ v

(
1 − 1

2n

)
+ 1

2n

n∑

k=1

∑

y∈T (n−k)

1

u + 1
y

(5)

Taking the limit as n → ∞ of both sides of (5) shows that, to complete the proof, it
is enough to prove that

lim
n→∞

1

2n

n∑

k=1

∑

y∈T (n−k)

1

u + 1
y

= log 2

u
+ O

(
1

u2v

)
. (6)
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Let m = �n/2
. We split the double sum in (6) into two parts,

n∑

k=1

∑

y∈T (n−k)

1

u + 1
y

=
m∑

k=1

∑

y∈T (n−k)

1

u + 1
y

+
n∑

k=m+1

∑

y∈T (n−k)

1

u + 1
y

. (7)

For m < k ≤ n, we apply the following simple upper bound in (7),

∑

y∈T (n−k)

1

u + 1
y

≤ 2n−k

u
.

It follows that

n∑

k=m+1

∑

y∈T (n−k)

1

u + 1
y

≤
n∑

k=m+1

2n−k

u

= 1

u

n−(m+1)∑

i=0

2i

= 2n−m − 1

u
. (8)

Since m → ∞ as n → ∞, if we apply (8) to (7), then, by (6), we have reduced the
problem to showing that

lim
n→∞

1

2n

m∑

k=1

∑

y∈T (n−k)

1

u + 1
y

= log 2

u
+ O

(
1

u2v

)
. (9)

Using the same reasoning on the sum
∑

y∈T (n−k)

1

u + 1
y

that led to (3), we see that,

for n − k > 2,

∑

y∈T (n−k)

1

u + 1
y

=
∑

y∈T (n−(k+1))

1

2u + 1
y

+
∑

y∈T (n−(k+1))

1

u + 1
v+y

. (10)

We convert the rightmost sum on the right-hand side of (10) into a sum of geometric
series,

∑

y∈T (n−(k+1))

1

u + 1
v+y

= 1

u

∑

y∈T (n−(k+1))

1

1 + 1
u(v+y)

= 1

u

∑

y∈T (n−(k+1))

∞∑

j=0

( −1

u(v + y)

) j

. (11)
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The justification for (11) follows from the fact that 0 < 1
u(v+y)

≤ 1
uv ≤ 1

2 for any
positive rational y. So

∑

y∈T (n−(k+1))

1

u + 1
v+y

= 1

u

∑

y∈T (n−(k+1))

(
1 + O

(
1

uv

))

= 2n−(k+2)

u

(
1 + O

(
1

uv

))
(12)

Combining (12) with (10), we see that

∑

y∈T (n−k)

1

u + 1
y

=
∑

y∈T (n−(k+1))

1

2u + 1
y

+ 2n−(k+2)

u

(
1 + O

(
1

uv

))
.

We can now repeat all of the above steps starting from (10) with the sum

∑

y∈T (n−(k+1))

1

2u + 1
y

.

Inductively, for any positive integer j < n − k, it follows that

∑

y∈T (n−k)

1

u + 1
y

=
∑

y∈T (n−(k+ j))

1

( j + 1)u + 1
y

+
j∑

i=1

2n−(k+i+1)

iu

(
1 + O

(
1

uv

))

(13)

where the constant associated with the big-oh term is uniform for all of the sums.
Let m ′ = �n/4
. Then, from (13), for 1 ≤ k ≤ m,

∑

y∈T (n−k)

1

u + 1
y

=
∑

y∈T (n−(k+m ′))

1

(m ′ + 1)u + 1
y

+
m ′∑

i=1

2n−(k+i+1)

iu

(
1 + O

(
1

uv

))

= O

(
2n−(k+m ′+1)

(m ′ + 1)u

)
+

m ′∑

i=1

2n−(k+i+1)

iu

(
1 + O

(
1

uv

))
. (14)

(Note that for n sufficiently large, since k ≤ m, then k + m ′ ≤ 3n/4, so n − (k +
m ′) ≥ 1. In particular, we can apply (13) with j = m ′.)

Using the Taylor series expansion of log(1 − x) for |x | < 1, we see that

m ′∑

i=1

2n−(k+i+1)

iu
= 2n−(k+1)

u

m ′∑

i=1

1

i2i
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= 2n−(k+1)

u

(
log 2 −

∑

i>m ′

1

i2i

)
. (15)

Combining (14) and (15) with the double sum from (9), it follows that

1

2n−1

m∑

k=1

∑

y∈T (n−k)

1

u + 1
y

= 1

u

m∑

k=1

1

2k

(
log 2 −

∑

i>m ′

1

i2i

)(
1 + O

(
1

uv

))
+ O

(
1

(m ′ + 1)u

)
(16)

The result (9) now follows from taking the limit of (16) as n → ∞. �
Lemma 5 and Theorem 2 immediately give (A). To show (B), we give a crude esti-

mate of the difference between two rational numbers based on their short continued
fraction representations.

Lemma 6 Suppose that α, β ∈ Q are distinct with α = [p0, p1, . . . , ps] and β =
[q0, q1, . . . , qr ]. Let k be the largest index such that pk = qk. Then

|α − β| ≤
k∏

j=1

1

p2
j

.

Proof We rewrite the continued fraction representations of α and β as

α = [p0, p1, . . . , pk, pk+1, . . . , ps] and β = [p0, p1, . . . , pk, qk+1, . . . , qr ].

(Note that we cannot have k = r = s and that if k = r or k = s, the estimates below
still apply.) Now, for Ai = [pi , . . . , ps] and Bi = [qi , . . . , qr ] with 1 ≤ i ≤ k + 1,

|α − β| =
∣∣∣∣p0 + 1

p1 + A1
− p0 − 1

p1 + B1

∣∣∣∣

=
∣∣∣∣

1

p1 + A1
− 1

p1 + B1

∣∣∣∣

≤
∣∣∣∣p1 + 1

p2 + A2
− p1 − 1

p2 + B2

∣∣∣∣ · 1

p2
1

...

≤
∣∣∣∣

1

pk+1 + Ak+1
− 1

qk+1 + Bk+1

∣∣∣∣ ·
k∏

j=1

1

p2
j

≤
k∏

j=1

1

p2
j

.

�
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In the casewhere the rationals fromLemma 6 are vertices of possibly two different
(u, v)-Calkin–Wilf trees, we get the following corollary.

Corollary 1 With α and β as in Lemma 6 and, additionally, suppose that α and β

are vertices of possibly two different (u, v)-Calkin–Wilf trees, then

α − β = O

(
max{u, v}

2k

)
.

Proof The corollary follows from the fact that if the two rationalsα andβ are vertices
on (u, v)-Calkin–Wilf trees, then pi is divisible by v for even i and divisible by u for
odd i by Lemma 3. �

Before we begin our proof of (B), we need one additional lemma.

Lemma 7 Let y = [q0, q1, . . . , qr ] with qr �= 1 when y �= 1 and r = 0 when y = 1
and define �(y) = r . Let fz(n, m) = #{y ∈ T (u,v)(z; n) : �(y) = m + �(z)}, then for
m ≥ 0,

fz(n, m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n + 1

m

)
if 2 � m and z > 1

(
n + 1

m + 1

)
if 2 � m and z < 1

(
n

m

)
if z = 1

0 otherwise.

Proof The desired result can be shown to be true for n < 2 by inspection.
Assume that the statement is true for all 0 ≤ j ≤ k for some k ≥ 2 and let

y ∈ T (u,v)(z; k + 1) be such that �(y) = m + �(z). That is, we assume y is a ratio-
nal number counted by fz(k + 1, m). There is a sequence of rational numbers
z0 = z, z1, . . . , zk+1 = y such that zi+1 is a descendant of zi for 0 ≤ i < k + 1. By
Lemma3,we see that �(zi+1) − �(zi ) ∈ {0, 1, 2}. In fact, for i ≥ 1, �(zi+1) − �(zi ) =
2 if and only if zi+1 is a left child of zi and zi is a right child of zi−1, �(z1) − �(z0) = 2
if and only if z1 is a left child of z0 with z0 > 1, and �(z1) − �(z0) = 1 if and only
if z1 is a left child of z0 with z0 = 1.

We now consider the following three cases:
Case 1: z2 is a right child of z1 and z1 is a right child of z0.

In this case we have that y ∈ T (u,v)(z2; k − 1) with �(y) = m + �(z2).
Case 2: z2 is a left child of z1 and z1 is a right child of z0.

In this case we have that y ∈ T (u,v)(z2; k − 1) with �(y) = m − 2 + �(z2).
Case 3: z1 is a left child of z0.

In this case we have that y ∈ T (u,v)(z1; k) with
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�(y) =

⎧
⎪⎨

⎪⎩

m − 2 + �(z1) if z0 > 1

m + �(z1) ifz0 < 1

m − 1 + �(z1) ifz0 = 1.

It follows from the three cases above that,

fz(k + 1, m) =

⎧
⎪⎨

⎪⎩

fz′(k − 1, m) + fz′′(k − 1, m − 2) + fz′′′(k, m − 2) ifz0 > 1

fz′(k − 1, m) + fz′′(k − 1, m − 2) + fz′′′(k, m) ifz0 < 1

fz′(k − 1, m) + fz′′(k − 1, m − 2) + fz′′′(k, m − 1) ifz0 = 1.
(17)

where z′ = z0 + 2v > 1, z′′ = 1
u+ 1

v+z0

< 1, and z′′′ = 1
u+ 1

z0

< 1.

We will now make heavy use of the well-known binomial coefficient identity(n
m

) = (n−1
m

) + (n−1
m−1

)
to complete the proof.

For z0 > 1, the desired result is trivially true when 2 | m, so we assume otherwise.
Therefore, by assumption

fz(k + 1, m) =
(

k

m

)
+

(
k

m − 1

)
+

(
k + 1

m − 1

)

=
(

k + 1

m

)
+

(
k + 1

m − 1

)

=
(

k + 2

m

)
.

Similarly, for z0 < 1, the desired result is also trivially true when 2 | m, so we
assume otherwise. Therefore, by assumption

fz(k + 1, m) =
(

k

m

)
+

(
k

m − 1

)
+

(
k + 1

m + 1

)

=
(

k + 1

m

)
+

(
k + 1

m + 1

)

=
(

k + 2

m + 1

)
.

Finally, for z0 = 1, by assumption, when m is odd,

fz(k + 1, m) =
(

k

m

)
+

(
k

m − 1

)
+ 0

=
(

k

m

)
+

(
k

m − 1

)

=
(

k + 1

m

)
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and when m is even,

fz(k + 1, m) = 0 + 0 +
(

k + 1

m

)

=
(

k + 1

m

)
.

Having exhausted all possibilities, we complete the proof by induction. �

An application of the de Moivre-Laplace limit theorem [4, p. 186] shows that the
number of continued fraction coefficients in depth n elements is normally distributed
with mean approximately n/2.

Corollary 1 and Lemma 7 can now be used to compare the difference between
rationals in different (u, v)-Calkin–Wilf trees that are in the same position relative
to the root, showing that the mean values of the rows for different trees are asymp-
totically the same.

Proposition 2 For any z1, z2 ∈ [1/u, v] ∩ Q, we have that

A(u,v)(z1; n) − A(u,v)(z2; n) → 0

as n → ∞.

Proof We begin by considering the case where z1 = 1/u and z2 = v. Let y ∈
T (u,v)(v; n). Then by Lemmas 3 and 4, y has a continued fraction representa-
tion of the form y = [α0v, α1u, . . . , αkv] with ∑k

i=0 αi = n + 1. Consider the map
f : T (u,v)(v; n) → T (u,v)(1/u; n) given by

f (y) =
{

[α0v, α1u, . . . , (αk−1 + 1)u] ifαk = 1

[α0v, α1u, . . . , (αk − 1)v, u] otherwise.

It is clear that f represents a well-defined bijection. In particular, by Corollary 1 and
Lemma 7,

A(u,v)

(
1

u
; n

)
− A(u,v)(v; n)

= 1

2n

∑

y∈T (u,v)(v;n)

f (y) − y

= O

(
max{u, v}

2n

( ∑

y∈T (u,v)(v;n),ak=1

1

2k−1
+

∑

y∈T (u,v)(v;n),ak>1

1

2k

))

= O

(
max{u, v}

2n

∑

y∈T (u,v)(v;n)

1

2k

)
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= O

(
max{u, v}

2n

n+1∑

k=0

(
n + 1

k

)
1

2k

)

= O

(
max{u, v} ·

(
3

4

)n )
,

which goes to 0 as n → ∞.

The cases z1 = 1/u and z2 ∈ (1/u, 1] ∩ Q and z1 = v and z2 ∈ [1, v) ∩ Q can be
handled in a similar way. These three cases complete the proof of the proposition. �

Proposition 2 completes the proof of (B), giving the desired result.
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Dimensions of Monomial Varieties

Melvyn B. Nathanson

Abstract The dimensions of certain varieties defined by monomials are computed
using only high school algebra.

2010 Mathematics Subject Classification 13C15 · 12D99 · 12-01 · 13-01.

1 Krull Dimension and Varieties

In this paper, a ring R is a commutative ring with a multiplicative identity, and a field
F is an infinite field of any characteristic.

Let S be a nonempty set of polynomials in F[t1, . . . , tn]. The variety (also called
the algebraic set) V determined by S is the set of points in Fn that are common zeros
of the polynomials in S, that is,

V = V (S) = {
(x1, . . . , xn) ∈ Fn : f (x1, . . . , xn) = 0 for all f ∈ S

}
.

The vanishing ideal I(V ) is the set of polynomials that vanish on the variety V , that
is,

I(V ) = { f ∈ F[t1, . . . , tn] : f (x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ V } .

We have S ⊆ I(V ), and so I(V ) contains the ideal generated by S. The quotient ring

F(V ) = F[t1, . . . , tn]/I(V )

is called the coordinate ring of V .
A prime ideal chain of length n in the ring R is a strictly increasing sequence of

n + 1 prime ideals of R. The Krull dimension of R is the supremum of the lengths
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of prime ideal chains in R. We define the dimension of the variety V as the Krull
dimension of its coordinate ring F(V ).

It is a basic theorem in commutative algebra that the polynomial ring F[t1, . . . , tn]
has Krull dimension n. (Nathanson [4] gives an elementary proof. Other references
are Atiyah and Macdonald [1, Chap. 11], Cox et al. [2, Chap. 9], and Kunz [3, Chap.
2]). If S = {0} ⊆ F[t1, . . . , tn] is the set whose only element is the zero polynomial,
then V = V ({0}) = Fn . By Lemma 2, the vanishing ideal of V is I(V ) = I(Fn) =
{0}. We obtain the coordinate ring

F(V ) = F[t1, . . . , tn]/I(V ) ∼= F[t1, . . . , tn],

and so the variety Fn has dimension n.
We adopt standard polynomial notation. Let N0 denote the set of nonnegative

integers. Associated to every n-tuple I = (i1, . . . , in) ∈ Nn
0 is the monomial

t I = t i11 · · · t inn .

Every polynomial f ∈ R[t1, . . . , tn] can be represented uniquely in the form

f =
∑

I∈Nn
0

cI t
I

where cI ∈ R and cI �= 0 for only finitely many I ∈ Nn
0 .

In this paper, two results about polynomials from high school algebra will enable
us to compute the dimensions of certain varieties defined by monomials. The first
result is a factorization formula, and the second result follows from the fact that a
polynomial of degree d has at most d roots in a field.

Lemma 1 For every nonnegative integer i , there is the polynomial identity

ui − vi = (u − v)Δi (u, v). (1)

where

Δi (u, v) =
i−1∑

j=0

ui−1− jv j . (2)

Proof We have

(u − v)

i−1∑

j=0

ui−1− jv j =
i−1∑

j=0

ui− jv j −
i−1∑

j=0

ui−1− jv j+1

=
i−1∑

j=0

ui− jv j −
i∑

j=1

ui− jv j

= ui − vi .
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Lemma 2 Let F be an infinite field. A polynomial f ∈ F[t1, . . . , tn] satisfies
f (x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ Fn if and only if f = 0.

Proof The proof is by induction on n. Let n = 1. A nonzero polynomial f ∈ F[t1]
of degree d has at most d roots in F, and so f (x1) �= 0 for some x1 ∈ F. Thus, if
f (x1) = 0 for all x1 ∈ F, then f = 0.
Let n ≥ 1, and assume that the Lemma holds for polynomials in n variables. Let

f ∈ F[t1, . . . , tn, tn+1] have degree d in the variable tn+1. There exist polynomials
fi ∈ F[t1, . . . , tn] such that

f = f (t1, . . . , tn, tn+1) =
d∑

i=0

fi (t1, . . . , tn)t
i
n+1

For all (x1, . . . , xn) ∈ Fn , the polynomial

g(tn+1) = f (x1, . . . , xn, tn+1) =
d∑

i=0

fi (x1, . . . , xn)t
i
n+1 ∈ F[tn+1]

satisfies g(xn+1) = 0 for all xn+1 ∈ F, and so g = 0. Therefore, fi (x1, . . . , xn) = 0
for all (x1, . . . , xn) ∈ Fn and i = 0, 1, . . . , d. By the induction hypothesis, fi = 0
for all i = 0, 1, . . . , d, and so f = 0.

2 An Example of a Plane Curve

A hypersurface is a variety that is the set of zeros of one nonzero polynomial. A plane
algebraic curve is a hypersurface in F2. In this section we compute the dimension
of a hypersurface V in Fm+1 defined by a polynomial of the form

f ∗ = tm+1 − λta11 ta22 · · · tamm
where λ ∈ F and (a1, . . . , am) ∈ Nm

0 .We shall prove that themonomial hypersurface

V = {(x1, . . . , xm, xm+1) ∈ Fm+1 : f ∗(x1, . . . , xm, xm+1) = 0}
= {(x1, . . . , xm, xm+1) ∈ Fm+1 : xm+1 = λxa11 xa22 · · · xamm }

has dimension m.
We begin with an example. Consider themonomial 4t31 and the curve inF

2 defined
by the polynomial

f ∗ = t2 − 4t31 ∈ F[t1, t2].

Let
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V = {
(x1, x2) ∈ F2 : f ∗(x1, x2) = 0

} = {
(x1, x2) ∈ F2 : x2 = 4x31

}
.

We shall prove that the vanishing ideal I(V ) is the principal ideal generated by f ∗.
Because f ∗ ∈ I(V ), it suffices to show that every polynomial in I(V ) is divisible
by f ∗.

For I = (i1, i2) ∈ N2
0 and t I = t i11 t

i2
2 , let

b1 = i1 + 3i2

and let Δi2 be the polynomial defined by (2) in Lemma 1. We have

t I − 4i2 tb11 = t i11 t
i2
2 − 4i2 t i1+3i2

1 = t i11

(
t i22 − 4i2 t3i21

)

= t i11

(
t i22 − (

4t31
)i2

)
= t i11 Δi2(t2, 4t

3
1 )

(
t2 − 4t31

)

= gI f
∗

where gI = t i11 Δi2(t2, 4t
3
1 ) ∈ F[t1, t2].

Every polynomial f ∈ F[t1, t2] can be represented uniquely in the form

f =
∑

I=(i1,t2)∈N2
0

cI t
i1
1 t

i2
2 =

∑

b1∈N0

∑

I=(i1,i2)∈N2
0

i1+3i2=b1

cI t
i1
1 t

i2 .

A polynomial f ∈ F[t1, t2] is in the vanishing ideal I(V ) if and only if, for all
x1 ∈ F,

0 = f (x1, 4x
3
1) =

∑

b1∈N0

∑

I=(i1,i2)∈N2
0

i1+3i2=b1

cI x
i1
1

(
4x31

)i2

=
∑

b1∈N0

∑

I=(i1,i2)∈N2
0

i1+3i2=b1

cI4
i2xi1+3i2

1

=
∑

b1∈N0

⎛

⎜⎜
⎝

∑

I=(i1,i2)∈N2
0

i1+3i2=b1

cI4
i2

⎞

⎟⎟
⎠ xb11 .

By Lemma 2, because F is an infinite field, the coefficients of this polynomial are
zero, and so ∑

I=(i1,i2)∈N2
0

i1+3i2=b1

cI4
i2 = 0

for all b1 ∈ N0. The ordered pair I = (b1, 0) is one of the terms in this sum, and so
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−c(b1,0) =
∑

I=(i1,i)∈N2
0,

i�+3im+1=b1
I �=(b1,0)

cI4
i2 .

Therefore, f ∈ I(V ) implies

f =
∑

b1∈N0

⎛

⎜⎜⎜⎜⎜
⎝
c(b1,0)t

b1
1 +

∑

I=(i1,i2)∈N2
0

i1+3i2=b1
I �=(b1,0)

cI t
i1
1 t

i2
2

⎞

⎟⎟⎟⎟⎟
⎠

=
∑

b1∈N0

⎛

⎜⎜⎜⎜⎜
⎝

∑

I=(i1,i2)∈N2
0

i1+3i2=b1
I �=(b1,0)

cI t
i1
1 t

i2
2 −

∑

I=(i1,i)∈N2
0,

i�+3im+1=b1
I �=(b1,0)

cI4
i2 tb11

⎞

⎟⎟⎟⎟⎟
⎠

=
∑

b1∈N0

∑

I=(i1,i2)∈N2
0

i1+3i2=b1
I �=(b1,0)

cI
(
t i11 t

i2
2 − 4i2 tb11

)

=
∑

b1∈N0

∑

I=(i1,i2)∈N2
0

i1+3i2=b1
I �=(b1,0)

cIg
I f ∗

and so f ∗ divides f . Thus, every polynomial f ∈ I(V ) is contained in the principal
ideal generated by f ∗.

The function
ϕ : F[t1, t2] → F[t1]

defined by
ϕ(t1) = t1

and
ϕ(t2) = 4t31

is a surjective ring homomorphism with

kernel(ϕ) = {
f ∈ F[t1, t2] : f (t1, 4

i2 t31 ) = 0
} = I(V ).

Therefore,
F[V ] = F[t1, t2]/I(V ) ∼= F[t1].
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The polynomial ring F[t1] has Krull dimension 1, and so the coordinate ring F(V )

of the curve has Krull dimension 1 and the curve has dimension 1.

3 Dimension of a Monomial Hypersurface

We shall prove that every monomial hypersurface in Fm+1 has dimension m. The
proof is elementary, like the proof in Sect. 2, but a bit more technical.

Lemma 3 For λ ∈ F and (a1, . . . , am) ∈ Nm
0 , consider the polynomial

f ∗ = tm+1 − λta11 · · · tamm ∈ F[t1, . . . , tm+1].

For I = (i1, . . . , im, im+1) ∈ Nm+1
0 and � ∈ {1, . . . ,m}, let

b� = i� + a�im+1.

There exists a polynomial gI ∈ F[t1, . . . , tm+1] such that

t I − λim+1 tb11 · · · tbmm = gI f
∗.

Proof Let Δi (u, v) be the polynomial defined by (2). We have

t I−λim+1 tb11 · · · tbmm
= t i11 · · · t imm t im+1

m+1 − λim+1 t i1+a1im+1
1 · · · t im+amim+1

m

= t i11 · · · t imm
(
t im+1
m+1 − λim+1 ta1im+1

1 · · · tamim+1
m

)

= t i11 · · · t imm
(
t im+1
m+1 − (

λta11 · · · tamm
)im+1

)

= t i11 · · · t imm Δim+1(tm+1,λt
a1
1 · · · tamm )

(
tm+1 − λta11 · · · tamm

)

= gI f
∗

where
gI = t i11 · · · t imm Δim+1(tm+1,λt

a1
1 · · · tamm ) ∈ F[t1, . . . , tm+1].

This completes the proof. �

Theorem 1 Let F be an infinite field. For λ ∈ F and (a1, . . . , am) ∈ Nm
0 , consider

the polynomial

f ∗ = tm+1 − λta11 ta22 · · · tamm ∈ F[t1, . . . , tm, tm+1]

and the associated hypersurface
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V = {
(x1, . . . , xm, xm+1) ∈ Fm+1 : f ∗ (x1, . . . , xm, xm+1) = 0

}

= {(
x1, . . . , xm,λxa11 xa22 · · · xamm

) ∈ Fm+1 : (x1, . . . , xm) ∈ Fm
}
.

The vanishing ideal I(V ) is the principal ideal generated by f ∗.

Proof The vanishing ideal I(V ) contains f ∗, and so I(V ) contains the principal
ideal generated by f ∗. Therefore, it suffices to prove that I(V ) is contained in the
principal ideal generated by f ∗.

For every (m + 1)-tuple I = (i1, . . . , im, im+1) ∈ Nm+1
0 , there is a uniquem-tuple

(b1, . . . , bm) ∈ Nm
0 defined by

b� = i� + a�im+1

for � = 1, . . . ,m. Thus, every polynomial f ∈ F[t1, . . . , tm, tm+1] can be represented
uniquely in the form

f =
∑

I∈Nm+1
0

cI t
I

=
∑

(b1,...,bm )∈Nm
0

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m

cI t
i1
1 · · · t imm t im+1

m+1.

A polynomial f ∈ F[t1, . . . , tm, tm+1] is in the vanishing ideal I(V ) if and only if,
for all (x1, . . . , xm) ∈ Fm ,

0 = f (x1, . . . , xm,λxa11 xa22 · · · xamm )

=
∑

(b1,...,bm )∈Nm
0

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m

cI x
i1
1 · · · ximm

(
λxa11 xa22 · · · xamm

)im+1

=
∑

(b1,...,bm )∈Nm
0

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m

cIλ
im+1xi1+a1im+1

1 · · · xim+amim+1
m

=
∑

(b1,...,bm )∈Nm
0

⎛

⎜⎜⎜⎜⎜
⎝

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m

cIλ
im+1

⎞

⎟⎟⎟⎟⎟
⎠
xb11 · · · xbmm .

By Lemma 2, the coefficients of this polynomial are zero, and so
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∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m

cIλ
im+1 = 0 (3)

for all (b1, . . . , bm) ∈ Nm
0 . The (m + 1)-tuple I = (b1, . . . , bm, 0) is one of the terms

in the sum (3), and so

−c(b1,...,bm ,0) =
∑

I=(i1,...,im ,im+1)∈Nm+1
0 ,

i�+a�im+1=b�

for �=1,...,m,
I �=(b1,...,bm ,0)

cIλ
im+1 .

Therefore, f ∈ I(V ) implies

f =
∑

(b1,...,bm )∈Nm
0

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m

cI t
I

=
∑

(b1,...,bm )∈Nm
0

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m
I �=(b1,...,bm ,0)

cI t
I + c(b1,...,bm ,0)t

b1
1 · · · tbmm

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=
∑

(b1,...,bm )∈Nm
0

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m
I �=(b1,...,bm ,0)

cI t
I −

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m
I �=(b1,...,bm ,0)

cIλ
im+1 tb11 · · · tbmm

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=
∑

(b1,...,bm )∈Nm
0

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m
I �=(b1,...,bm ,0)

cI
(
t I − λim+1 tb11 · · · tbmm

)

=
∑

(b1,...,bm )∈Nm
0

∑

I=(i1,...,im ,im+1)∈Nm+1
0

i�+a�im+1=b�

for �=1,...,m
I �=(b1,...,bm ,0)

cIgI f
∗

by Lemma 3, and so f is in the principal ideal generated by f ∗. This completes the
proof. �
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Theorem 2 Let F be an infinite field. For λ ∈ F and (a1, . . . , am) ∈ Nm
0 , the hyper-

surface

V = {(
x1, . . . , xm,λxa11 xa22 · · · xamm

) ∈ Fm+1 : (x1, . . . , xm) ∈ Fm
}

has dimension m.

Proof The function
ϕ : F[t1, . . . , tm+1] → F[t1, . . . , tm]

defined by
ϕ(t�) = t� for � = 1, . . . ,m

and
ϕ(tm+1) = λta11 · · · tamm

is a surjective ring homomorphism with

kernel(ϕ) = {
f ∈ F[t1, . . . , tm] : f (t1, . . . , tm,λim+1 ta11 · · · tamm = 0

} = I(V ).

Therefore,
F[V ] = F[t1, . . . , tm, tm+1]/I(V ) ∼= F[t1, . . . , tm].

The polynomial ring F[t1, . . . , tm] has Krull dimension m, and so the coordinate
ring F[V ] has Krull dimension m and the hypersurface V has dimension m. This
completes the proof. �

4 Varieties Defined by Several Monomials

Let m and k be positive integers, and let n = m + k. For j = 1, 2, . . . , k, let λ j ∈ F
and (a1, j , a2, j , . . . , am, j ) ∈ Nm

0 . Consider the polynomials

f ∗
j = tm+ j − λ j t

a1, j
1 t

a2, j
2 · · · tam, j

m ∈ F[t1, . . . , tn]. (4)

Let V be the variety in Fn determined by the set of polynomials

S = { f ∗
j : j = 1, . . . , k}

and let I(V ) be the vanishing ideal of V . We shall prove that the coordinate ring
F[V ] = F[t1, . . . , tn]/I(V ) is isomorphic to the polynomial ring F[t1, . . . , tm], and
so V has dimension m.

Lemma 4 Let F be an infinite field. For j = 1, 2, . . . , k, let λ j ∈ F and (a1, j ,
a2, j , . . . , am, j ) ∈ Nm

0 . Define the polynomial f
∗
j by (4). For I=(i1, . . . , im, im+1, . . . ,
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im+k) ∈ Nm+k
0 and � ∈ {1, . . . ,m}, let

b� = i� +
k∑

j=1

a�, j im+ j .

There exist polynomials gI,1, . . . , gI,k ∈ F[t1, . . . , tm+k] such that

t I −
k∏

j=1

λ
im+ j

j t b11 · · · tbmm =
k∑

j=1

gI, j f ∗
j . (5)

Proof The proof is by induction on k. The case k = 1 is Lemma 3. Assume that
Lemma 4 is true for the positive integer k. We shall prove the Lemma for k + 1.

For
I = (i1, . . . , im+k) ∈ Nm+k

0

and
I ′ = (i1, . . . , im+k+1) ∈ Nm+k+1

0

we have

t I =
m∏

�=1

t i��

k∏

j=1

t
im+ j

m+ j

and

t I
′ =

m∏

�=1

t i��

k+1∏

j=1

t
im+ j

m+ j = t I t im+k+1
m+k+1.

For � = 1, . . . ,m, define

b� = i� +
k∑

j=1

a�, j im+ j

and

b′
� = i� +

k+1∑

j=1

a�, j im+ j = b� + a�,k+1im+k+1.

We have

t I
′ −

k+1∏

j=1

λ
im+ j

j t
b′
1

1 · · · tb′
m

m
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= t im+k+1
m+k+1

⎛

⎝t I −
k∏

j=1

λ
im+ j

j t b11 · · · tbmm
⎞

⎠

+ t im+k+1
m+k+1

⎛

⎝
k∏

j=1

λ
im+ j

j t b11 · · · tbmm
⎞

⎠ −
k+1∏

j=1

λ
im+ j

j t
b′
1

1 · · · tb′
m

m

By the induction hypothesis, there exist polynomials gI,1, . . . , gI,k ∈ F[t1, . . . , tm+k]
that satisfy (5), and so

t im+k+1
m+k+1

⎛

⎝t I −
k∏

j=1

λ
im+ j

j t b11 · · · tbmm
⎞

⎠ = t im+k+1
m+k+1

k∑

j=1

gI, j f ∗
j .

Applying the factorization formula (1), we obtain

t
im+k+1
m+k+1

⎛

⎝
k∏

j=1

λ
im+ j
j t

b1
1 · · · tbmm

⎞

⎠ −
k+1∏

j=1

λ
im+ j
j t

b′1
1 · · · tb

′
m

m

=
⎛

⎝
k∏

j=1

λ
im+ j
j t

b1
1 · · · tbmm

⎞

⎠

⎛

⎝t
im+k+1
m+k+1 − λ

im+k+1
k+1

m∏

�=1

t
a�,k+1im+k+1
�

⎞

⎠

=
⎛

⎝
k∏

j=1

λ
im+ j
j t

b1
1 · · · tbmm

⎞

⎠

⎛

⎜
⎝t

im+k+1
m+k+1 −

⎛

⎝λk+1

m∏

�=1

t
a�,k+1
�

⎞

⎠

im+k+1
⎞

⎟
⎠

=
⎛

⎝
k∏

j=1

λ
im+ j
j t

b1
1 · · · tbmm

⎞

⎠ Δim+k+1

⎛

⎝tm+k+1, λk+1

m∏

�=1

t
a�,k+1
�

⎞

⎠

⎛

⎝tm+k+1 − λk+1

m∏

�=1

t
a�,k+1
�

⎞

⎠

= gI,k+1 f ∗k+1

where

gI,k+1 =
⎛

⎝
k∏

j=1

λ
im+ j

j t b11 · · · tbmm
⎞

⎠ Δim+k+1

(

tm+k+1, λk+1

m∏

�=1

ta�,k+1

�

)

.

This completes the proof. �

Theorem 3 LetF be an infinite field. Let n = m + k. For j = 1, 2, . . . , k, letλ j ∈ F
and (a1, j , a2, j , . . . , am, j ) ∈ Nm

0 , and let f ∗
j ∈ F[t1, . . . , tn] be the polynomial

f ∗
j (t1, . . . , tm, tm+1, . . . , tm+k) = tm+ j − λ j t

a1, j
1 t

a2, j
2 · · · tam, j

m .

Let V ⊆ Fn be the variety determined by the set S = { f ∗
1 , . . . , f ∗

k } ⊆ F[t1, . . . , tn].
The vanishing ideal I(V ) is the ideal generated by S.
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Proof The ideal I(V ) contains S, and so I(V ) contains the ideal generated by S.
Thus, it suffices to prove that ideal generated by S contains every polynomial in
I(V ).

The variety determined by S is

V = {(
x1, . . . , xm,λ1x

a1,1
1 · · · xam,1

m , . . . ,λk x
a1,k
1 · · · xam,k

m

) : (x1, . . . , xm) ∈ Fm
}
.

For every (m + k)-tuple I = (i1, . . . , im, im+1, . . . , im+k) ∈ Nm+k
0 , there is a unique

m-tuple (b1, . . . , bm) ∈ Nm
0 such that

b� = i� +
k∑

j=1

a�, j im+ j

for � = 1, . . . ,m. Let

∑

I (b1,...,bm )

=
∑

I=(i1,...,im ,im+1,...,im+k )∈Nn
0

i�+∑k
j=1 a�, j im+ j=b�

for �=1,...,m

.

Every polynomial f ∈ F[t1, . . . , tn] has a unique representation in the form

f =
∑

I∈Nn
0

cI t
I =

∑

(b1,...,bm )∈Nm
0

∑

I (b1,...,bm )

cI t
I

where cI ∈ F and cI �= 0 for only finitely many n-tuples I . If f ∈ I(V ), then

0 = f
(
x1, . . . , xm,λ1x

a1,1
1 · · · xam,1

m , . . . ,λk x
a1,k
1 · · · xam,k

m

)

=
∑

(b1,...,bm )∈Nm
0

∑

I (b1,...,bm )

cI x
i1
1 · · · ximm

(
λ1x

a1,1
1 · · · xam,1

m

)im+1 · · · (λk x
a1,k
1 · · · xam,k

m

)im+k

=
∑

(b1,...,bm )∈Nm
0

∑

I (b1,...,bm )

cI

k∏

j=1

λ
im+ j

j

m∏

�=1

x
i�+∑k

j=1 a�, j im+ j

�

=
∑

(b1,...,bm )∈Nm
0

⎛

⎝
∑

I (b1,...,bm )

cI

k∏

j=1

λ
im+ j

j

⎞

⎠ xb11 · · · xbmm

for all (x1, . . . , xm) ∈ Fm . Note that I = (b1, . . . , bm, 0, . . . , 0) ∈ I(b1,...,bm ). It fol-
lows from Lemma 2 that

0 =
∑

I(b1 ,...,bm )

cI

k∏

j=1

λ
im+ j

j = c(b1,...,bm ,0,...,0) +
∑

I(b1 ,...,bm )

I �=(b1,...,bm ,0,...,0)

cI

k∏

j=1

λ
im+ j

j
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for all (b1, . . . , bm) ∈ Nm
0 , and so

f =
∑

(b1,...,bm )∈Nm
0

∑

I (b1,...,bm )

cI t
I

=
∑

(b1,...,bm )∈Nm
0

⎛

⎜⎜
⎝

∑

I(b1 ,...,bm )

I �=(b1,...,bm ,0,...,0)

cI t
I + c(b1,...,bm ,0,...,0)t

b1
1 · · · tbmm

⎞

⎟⎟
⎠

=
∑

(b1,...,bm )∈Nm
0

⎛

⎜⎜
⎝

∑

I(b1 ,...,bm )

I �=(b1,...,bm ,0,...,0)

cI t
I −

∑

I(b1 ,...,bm )

I �=(b1,...,bm ,0,...,0)

cI

k∏

j=1

λ
im+ j

j t b11 · · · tbmm

⎞

⎟⎟
⎠

=
∑

(b1,...,bm )∈Nm
0

∑

I(b1 ,...,bm )

I �=(b1,...,bm ,0,...,0)

cI

⎛

⎝t I −
k∏

j=1

λ
im+ j

j t b11 · · · tbmm
⎞

⎠ .

Lemma 4 immediately implies that f is in the ideal generated by S. This completes
the proof. �

Theorem 4 The variety V has dimension m.

Proof The function

ϕ : F[t1, . . . , tm+1, . . . , tm+k] → F[t1, . . . , tm]

defined by
ϕ(t�) = t� for � = 1, . . . ,m

and
ϕ(tm+ j ) = λ j t

a1, j
1 · · · tam, j

m for j = 1, . . . , k

is a surjective ring homomorphism with

kernel(ϕ)

= {
f ∈ F[t1, . . . , tn] : f

(
t1, . . . , tm,λ1t

a1,1
1 · · · tam,1

m , . . . ,λk t
a1,k
1 · · · tam,k

m

) = 0
}

= I(V ).

Therefore,
F[V ] = F[t1, . . . , tn]/I(V ) ∼= F[t1, . . . , tm]

and the coordinate ring of I(V ) has Krull dimension m. This completes the
proof. �
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Matrix Scaling Limits in Finitely Many
Iterations

Melvyn B. Nathanson

Abstract The alternate row and column scaling algorithm applied to a positive
n × n matrix A converges to a doubly stochastic matrix S(A), sometimes called the
Sinkhorn limit of A. For every positive integer n, a two parameter family of row
but not column stochastic n × n positive matrices is constructed that become doubly
stochastic after exactly one column scaling.

2010 Mathematics Subject Classification 11C20 · 11B75 · 11J68 · 11J70

1 The Alternate Scaling Algorithm

A positive matrix is a matrix with positive coordinates. A nonnegative matrix is a
matrix with nonnegative coordinates. Let D = diag(x1, . . . , xn) denote the n × n
diagonal matrix with coordinates x1, . . . , xn on the main diagonal. The diagonal
matrix D is positive if its coordinates x1, . . . , xn are positive. If A = (ai, j ) is anm × n
positive matrix, if X = diag(x1, . . . , xm) is an m × m positive diagonal matrix, and
if Y = diag(y1, . . . , yn) is an n × n positive diagonal matrix, then X A = (xiai, j ),
AY = (ai, j y j ), X AY = (xiai, j y j ) are m × n positive matrices.

Let A = (ai, j ) be an n × n matrix. The i th row sum of A is

rowsumi (A) =
n∑

j=1

ai, j .

The j th column sum of A is

colsum j (A) =
n∑

i=1

ai, j .
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The matrix A is row stochastic if it is nonnegative and rowsumi (A) = 1 for all i ∈
{1, . . . , n}. Thematrix A is column stochastic if it is nonnegative and colsum j (A) = 1
for all j ∈ {1, . . . , n}. The matrix A is doubly stochastic if it is both row stochastic
and column stochastic.

Let A = (ai, j ) be a nonnegative n × n matrix such that rowsumi (A) > 0 and
colsum j (A) > 0 for all i, j ∈ {1, . . . , n}. Define the n × n positive diagonal matrix

X (A) = diag

(
1

rowsum1(A)
,

1

rowsum2(A)
, . . . ,

1

rowsumn(A)

)
.

Multiplying A on the left by X (A) multiplies each coordinate in the i th row of A by
1/rowsumi (A), and so

(X (A)A)i, j = ai, j
rowsumi (A)

and

rowsumi (X (A)A) =
n∑

j=1

(X (A)A)i, j =
n∑

j=1

ai, j
rowsumi (A)

= rowsumi (A)

rowsumi (A)
= 1

for all i ∈ {1, 2, . . . , n}. The process of multiplying A on the left by X (A) to obtain
the row stochastic matrix X (A)A is called row scaling. We have X (A)A = A if and
only if A is row stochastic if and only if X (A) = I . Note that the row stochastic
matrix X (A)A is not necessarily column stochastic.

Similarly, we define the n × n positive diagonal matrix

Y (A) = diag

(
1

colsum1(A)
,

1

colsum2(A)
, . . . ,

1

colsumn(A)

)
.

Multiplying A on the right by Y (A) multiplies each coordinate in the j th column of
A by 1/colsum j (A), and so

(AY (A))i, j = ai, j
colsum j (A)

and

colsum j (AY (A)) =
n∑

i=1

(AY (A))i, j =
n∑

i=1

ai, j
colsum j (A)

= colsum j (A)

colsum j (A)
= 1
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for all j ∈ {1, 2, . . . , n}. The process of multiplying A on the right by Y (A) to obtain
a column stochastic matrix AY (A) is called column scaling. We have AY (A) = A
if and only if Y (A) = I if and only if A is column stochastic. The column stochastic
matrix AY (A) is not necessarily row stochastic.

Let A be a positive n × n matrix. Alternately row scaling and column scaling
the matrix A produces an infinite sequence of matrices that converges to a doubly
stochastic matrix This result (due to Brualdi, Parter, and Schnieder [1], Letac [3],
Menon [4], Sinkhorn [7], Sinkhorn–Knopp [8], Tverberg [9], and others) is classical.

Nathanson [5, 6] proved that if A is a 2 × 2 positive matrix that is not doubly
stochastic but becomes doubly stochastic after a finite number L of scalings, then
L is at most 2, and the 2 × 2 row stochastic matrices that become doubly stochastic
after exactly one column scaling were computed explicitly. An open question was
to describe n × n matrices with n ≥ 3 that are not doubly stochastic but become
doubly stochastic after finitely many scalings. Ekhad and Zeilberger [2] discovered
the following row-stochastic but not column stochastic 3 × 3 matrix, which requires
exactly one column scaling to become doubly stochastic:

A =
⎛

⎝
1/5 1/5 3/5
2/5 1/5 2/5
3/5 1/5 1/5

⎞

⎠ . (1)

Column scaling A produces the doubly stochastic matrix

AY (A) =
⎛

⎝
1/6 1/3 3/6
2/6 1/3 2/6
3/6 1/3 1/6

⎞

⎠ .

The following construction generalizes this example. For every n ≥ 3, there is a two
parameter family of row-stochastic n × n matrices that require exactly one column
scaling to become doubly stochastic

Let A = (
ai, j

)
be an m × n matrix. For i = 1, . . . ,m, we denote the i th row of

A by
rowi (A) = (

ai,1, ai,2, . . . , ai,n
)
.

Theorem 1 Let k and � be positive integers, and let n > max(2k, 2�). Let x and z
be positive real numbers such that

0 < x + z <
1

k
and x + z �= 2

n
(2)

and let

y = x + z

2
and w = 1 − k(x + z)

n − 2k
. (3)

The n × n matrix A such that
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rowi (A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, x, . . . , x︸ ︷︷ ︸
k

w,w, . . . , w︸ ︷︷ ︸
n−2k

z, z, . . . , z︸ ︷︷ ︸
k

if i ∈ {1, 2, . . . , �}

(y, y, . . . , y︸ ︷︷ ︸
k

w,w, . . . , w︸ ︷︷ ︸
n−2k

y, y, . . . , y︸ ︷︷ ︸
k

if i ∈ {� + 1, � + 2, . . . , n − �}

(z, z, . . . , z︸ ︷︷ ︸
k

w,w, . . . , w︸ ︷︷ ︸
n−2k

x, x, . . . , x︸ ︷︷ ︸
k

if i ∈ {n − � + 1, n − � + 2, . . . , n}

is row stochastic but not column stochastic. The matrix obtained from A after one
column scaling is doubly stochastic.

Proof If
i ∈ {1, 2, . . . , �} ∪ {n − � + 1, n − � + 2, . . . , n}

then
rowsumi (A) = k(x + z) + (n − 2k)w = 1.

If
i ∈ {� + 1, � + 2, . . . , n − �}

then
rowsumi (A) = 2ky + (n − 2k)w = 1.

Thus, the matrix A is row stochastic.
If

j ∈ {1, 2, . . . , k} ∪ {n − k + 1, n − k + 2, . . . , n}

then
colsum j (A) = �x + (n − 2�)y + �z = ny = n

2
(x + z) �= 1.

If
j ∈ {k + 1, k + 2, . . . , n − k}

then
colsum j (A) = nw �= 1.

Thus, matrix A is not column stochastic.
The column scaling matrix for A is the positive diagonal matrix

Y (A) = diag

⎛

⎜⎜⎝
1

ny
, . . . ,

1

ny︸ ︷︷ ︸
k

,
1

nw
, . . . ,

1

nw︸ ︷︷ ︸
n−2k

,
1

ny
, . . . ,

1

ny︸ ︷︷ ︸
k

⎞

⎟⎟⎠ .
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For the column scaled matrix AY (A), we have the following row sums. If

i ∈ {1, 2, . . . , �} ∪ {n − � + 1, n − � + 2, . . . , n}

then

rowsumi (AY (A)) = kx

ny
+ (n − 2k)w

nw
+ kz

ny
= k(x + z)

ny
+ 1 − 2k

n
= 1.

If
i ∈ {� + 1, � + 2, . . . , n − �}

then

rowsumi (A) = 2ky

ny
+ (n − 2k)w

nw
= 2k

n
+ 1 − 2k

n
= 1.

Thus, the matrix AY (A) is row stochastic. This completes the proof. �
For example, let k = � = 1 and n = 3, and let w, x, y, z be positive real numbers

such that

0 < x + z < 1, x + z �= 2

3

y = x + z

2
and w = 1 − x − z.

The matrix

A =
⎛

⎝
x w z
y w y
z w x

⎞

⎠ , (4)

is row stochastic but not column stochastic. By Theorem1, column scaling A pro-
duces a doubly stochastic matrix. Choosing x = 1/5 and z = 3/5, we obtain the
matrix (1).

Here is another example. Let k = 2, � = 3, and n = 7. Choosing

x = 1

4
, y = 3

16
, z = 1

8
, w = 1

12

we obtain the row but not column stochastic matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/4 1/4 1/12 1/12 1/12 1/8 1/8
1/4 1/4 1/12 1/12 1/12 1/8 1/8
1/4 1/4 1/12 1/12 1/12 1/8 1/8
3/16 3/16 1/12 1/12 1/12 3/16 3/16
1/8 1/8 1/12 1/12 1/12 1/4 1/4
1/8 1/8 1/12 1/12 1/12 1/4 1/4
1/8 1/8 1/12 1/12 1/12 1/4 1/4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Column scaling produces the doubly stochastic matrix

AY (A) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

4/21 4/21 1/7 1/7 1/7 2/21 2/21
4/21 4/21 1/7 1/7 1/7 2/21 2/21
4/21 4/21 1/7 1/7 1/7 2/21 2/21
1/7 1/7 1/7 1/7 1/7 1/7 1/7
2/21 2/21 1/7 1/7 1/7 4/21 4/21
2/21 2/21 1/7 1/7 1/7 4/21 4/21
2/21 2/21 1/7 1/7 1/7 4/21 4/21

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 2 Every n × n matrix A constructed in Theorem1 satisfies det(A) = 0.

Proof There are three cases.
If k > 1 or n − 2k > 1, then A has two equal columns and det(A) = 0.
If � > 1 or n − 2� > 1, then A has two equal rows and det(A) = 0.
If k = � = 1 and n = 3, then

A =
⎛

⎝
x w z
y w y
z w x

⎞

⎠

and
det(A) = w(x − z)(x + z − 2y) = 0.

This completes the proof. �
Theorem2 is of interest for the following reason. Let A = (

ai, j
)
be an n × n

matrix. If det(A) �= 0, then the system of linear equations

a1,1t1 + a2,1t2 + · · · + an,1tn = 1

a1,2t1 + a2,2t2 + · · · + an,2tn = 1

...

a1,nt1 + a2,nt2 + · · · + an,ntn = 1

has a unique solution. Equivalently, if det(A) �= 0, then there exists a unique n ×
n diagonal matrix T = diag(t1, . . . , tn) such that the matrix B = T A is column
stochastic.

Suppose that the matrix A is positive and row stochastic. If ti > 0 for all
i ∈ {1, . . . , n}, then T is invertible and B = T A is a positive column stochastic
matrix. Setting X = T−1, we have XB = A. Moreover, X is the row scaling matrix
associated to B. Thus, if A is a row stochastic matrix such that column scaling A pro-
duces a doubly stochastic matrix, then we have pulled A back to a column stochastic
matrix B, and we have increased by 1 the number of scalings needed to get a doubly
stochastic matrix.

Unfortunately, the matrices constructed in Theorem1 have determinant 0.
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2 Open Problems

1. Does there exist a positive 3 × 3 row stochastic but not column stochastic matrix
A with nonzero determinant such that A becomes doubly stochastic after one
column scaling?

2. Let A be a positive 3 × 3 row stochastic but not column stochastic matrix that
becomes doubly stochastic after one column scaling. Does det(A) = 0 imply that
A has the shape of matrix (4)?

3. Here is the inverse problem: Let A be an n × n row-stochastic matrix. Does
there exist a column stochastic matrix B such that row scaling B produces A
(equivalently, such that X (B)B = A)? Compute B.

4. Modify the above problems so that the matrices are required to have rational
coordinates.

5. Determine if, for positive integers L ≥ 3 and n ≥ 3, there exists a positive n × n
matrix that requires exactly L scalings to reach a doubly stochastic matrix.

6. Classify allmatrices forwhich the alternate scaling algorithm terminates infinitely
many steps.
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Not All Groups Are LEF Groups, or Can
You Know If a Group Is Infinite?

Melvyn B. Nathanson

Abstract This is an introduction to the class of groups that are locally embeddable
into finite groups.
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1 Finite or Infinite?

A simple question: Do the finite subsets of a group tell us if the group is infinite?
Assume that we can only see the finite subsets of a group, and, also, that we can
determine if a finite subset is a subset of some finite group. This means that we can
answer the following question. Let A be a finite subset of a groupG. Does there exist a
finite group H and a partial homomorphism f : A → H that is one-to-one. A partial
homomorphism from a subset A of a group to a group H is a function f : A → H
such that, if a, b ∈ A and ab ∈ A, then f (ab) = f (a) f (b). A one-to-one partial
homomorphism is also called a local embedding. Of course, if the group G is finite,
then, for every subset A of G, the restriction of the identity homomorphism on G to
the subset A is a local embedding into a finite group.

Does there exist an infinite group G such that every finite subset of G looks like
(equivalently, can be partially embedded into) a subset of a finite group? Does there
exist an infinite group G in which some finite subset of G is not also a subset of a
finite group?

Theorem 3 answers the second question. The following example answers the first
question. Let A be a nonempty finite subset of the infinite abelian group Z. Choose
an integer

m > max{|a − b| : a, b ∈ A} = max(A) − min(A).
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Consider the function f : A → Z/mZ defined by f (a) = a + mZ for all a ∈ A.
This is a partial homomorphism because it is the restriction of the canonical homo-
morphism a �→ a + mZ fromZ toZ/mZ. For a, b ∈ A, we have f (a) = f (b) if and
only if a ≡ b (mod m) if and only if m divides |a − b|. The inequality |a − b| < m
implies that f (a) = f (b) if and only if a = b, and so f is a local embedding. Thus,
every finite subset of the infinite group Z can be embedded into a finite cyclic group.
By looking only at finite subsets, we cannot decide if Z is infinite.

Let us call a group G locally embeddable into finite groups, or an LEF group, if
every finite subset of G can be embedded into a finite group. Mal’cev [5] introduced
this concept in general algebraic structures. Vershik and Gordon [8] extended it to
groups, and obtained many fundamental results.

Here are two classes of LEF groups.

Theorem 1 Every locally finite group is an LEF group. Every abelian group is an
LEF group.

Proof A group is locally finite if every finite subset generates a finite group. For such
groups, the proof is immediate from the definition.

For abelian groups, the proof follows easily from the structure theorem for finitely
generated abelian groups, and an easy modification of the preceding argument that
Z is an LEF group. �

It is natural to ask: Is every infinite group an LEF group, or does there exist an
infinite group that is not an LEF group?

2 Finitely Presented Groups

Let W be a group with identity e, and let X be a subset of W that generates W .
We assume that e /∈ X . The length of an element w ∈ W with w �= e is the smallest
positive integer k = �(w) such that there is a representation of w in the form

w = xε1
1 xε2

2 · · · xεk
k (1)

where
xi ∈ X and εi ∈ {1,−1} for i = 1, . . . , k. (2)

We define �(e) = 0. Note that �(w) = 1 if and only if w = x or w = x−1 for some
x ∈ X .

For every nonnegative integer L , we define the “closed ball”

BL = {w ∈ W : �(w) ≤ L}.
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We have

B0 = {e} and B1 = {e} ∪ {xε : x ∈ X and ε ∈ {1,−1}} .

If the generating set X is finite, then, for every L , the groupW contains only finitely
many elements w of length �(w) ≤ L , and so the BL is a finite subset of W .

If w ∈ BL , then w satisfies (1) and (2) for some k ≤ L . For all j = 1, . . . , k, the
partial product

w j = xε1
1 xε2

2 · · · xε j

j

has length �(w j ) ≤ j ≤ L , and so w j ∈ BL . (We observe that if �(w j ) < j , then
�(w) < k, which is absurd. Therefore, �(w j ) = j for all j ∈ {1, . . . , k}.) Letw0 = e.
Note that w = wk and that

w j = w j−1x
ε j

j

for all j ∈ {1, . . . , k}. If f : BL → H is a partial homomorphism, then

f (w) = f (wk−1x
εk
k ) = f (wk−1) f (x

εk
k )

= f (wk−2x
εk−1
k−1 ) f (x

εk
k ) = f (wk−2) f

(
xεk−1
k−1

)
f (xεk

k )

= · · ·
= f

(
xε1
1

)
f (xε2

2 ) · · · f (
xεk−1
k−1

)
f (xεk

k )

For partial products in finite groups, see Nathanson [6].
Let X be a nonempty set, and let F(X) be the free group generated by X . Let R

be a nonempty subset of F(X). The normal closure of R in F(X), denoted N (R),
is the smallest normal subgroup of F(X) that contains R. The subgroup N (R) is
generated by the set

{
wr εw−1 : w ∈ F(X), r ∈ R, ε ∈ {1,−1}} .

A group G is finitely presented if

G = 〈X; R〉 = F(X)/N (R)

where F(X) is the free group generated by a finite set X and the subgroup N (R) is
the normal closure of a finite subset R of F(X). If π : F(X) → G is the canonical
homomorphism, then the set

X∗ = π(X) = {xN (R) : x ∈ X}

generates G.
The following result is Proposition 1.10 in Pestov and Kwiatkowska [7].
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Theorem 2 Let G be a finitely presented infinite group. If G is an LEF group, then
G contains a nontrivial proper normal subgroup. Equivalently, a finitely presented
infinite simple group is not an LEF group.

Proof Let G = 〈X; R〉 = F(X)/N be a finitely presented infinite group, where
F(X) is the free group generated by a finite set X , and N = N (R) is the normal
closure of a finite subset R of F(X). Let eF be the identity in F(X). The identity in
G is eG = eF N = N . The canonical homomorphism π : F(X) → G is defined by
π(w) = wN for all w ∈ F(X).

Choose an integer L such that

L ≥ max{�(w) : w ∈ X ∪ R}.

The closed ball
BL = {w ∈ F(X) : �(w) ≤ L}

is a finite subset of F(X). We have

{eF } ∪ X ∪ X−1 ∪ R ⊆ BL .

The set
A = π (BL) ⊆ G

is a finite subset of G that contains X∗ = π(X). Also, eG = π(eF ) = N ∈ A.
If G is an LEF group, then there exist a finite group H and a local embedding f

of A into H . Let eH be the identity in H . For all x ∈ X , we have π(x) ∈ A and so

f π(x) ∈ H.

By the universal property of a free group, there exists a unique homomorphism

f ∗ : F(X) → H

such that
f ∗(x) = f π(x)

for all x ∈ X . The subgroup
N ∗ = kernel( f ∗)

is a normal subgroup of F(X). We shall prove that

N � N ∗
� F(X). (3)

The diagram is



Not All Groups Are LEF Groups, or Can You Know If a Group Is Infinite? 173

F(X)
π

f ∗

G

N ∗ BL
π

A
f

H

N X

π

f π

If N ∗ = F(X), then x ∈ N ∗ for all x ∈ X . Because X ⊆ BL andπ(x) = xN ∈ A,
we have

f (xN ) = f π(x) = f ∗(x) = eH = f (N ).

Because f is one-to-one and f (xN ) = f (N ), it follows that π(x) = xN = N for
all x ∈ X . The set π(X) generates G, and so G = {N } is the trivial group, which is
absurd. Therefore, N ∗ is a proper normal subgroup of F(X).

Next we prove that N ∗ contains N . Let r ∈ R. There is a nonnegative integer
k = �(r) ≤ L such that

r =
k∏

i=1

xεi
i

where (xi )ki=1 is a sequence of elements of X and (εi )
k
i=1 is a sequence of elements

of {1,−1}.
Because r ∈ R ⊆ N , we have r N = N and

f ∗(r) = f ∗
(

k∏

i=1

xεi
i

)

=
k∏

i=1

f ∗ (xi )
εi =

k∏

i=1

f π (xi )
εi

=
k∏

i=1

f (xi N )εi = f

(
k∏

i=1

xεi
i N

)

= f (r N )

= f (N ) = eH .

Therefore, r ∈ N ∗. Because R ⊆ N ∗ and N ∗ is a normal subgroup of F(X), it follows
that N ∗ contains N , which is the normal closure of R, and so N ⊆ N ∗.

Finally, if N = N ∗ = kernel( f ∗), thenG = F(X)/N = F(X)/N ∗ is isomorphic
to a subgroup of the finite group H , and so G is finite, which is absurd. Therefore,
N is a proper subgroup of N ∗.

This proves relation (3). The correspondence theorem in group theory implies
that N ∗/N is a nontrivial proper normal subgroup of G, and so G is not a simple
group. It follows that no finitely presented infinite simple group is an LEF group.
This completes the proof. �
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Theorem 3 There exist infinite groups that are not LEF groups. In particular, the
Thompson groups T and V are not LEF groups.

Proof The Thompson groups T and V are finitely presented infinite simple groups
(Cannon, Floyd, and Parry [2],Cannon and Floyd [1]). �

For recent work, including other examples of groups that are not LEF groups,
see [3, 4].
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Binary Quadratic Forms in Difference
Sets

Alex Rice

Abstract We show that if h(x, y) = ax2 + bxy + cy2 ∈ Z[x, y] satisfies Δ(h) =
b2 − 4ac �= 0, then any subset of {1, 2, . . . , N } lacking nonzero differences in the
imageofh has size atmost a constant dependingonh times N exp(−c

√
log N ),where

c = c(h) > 0. We achieve this goal by adapting an L2 density increment strategy
previously used to establish analogous results for sums of one ormore single-variable
polynomials. Our exposition is thorough and self-contained, in order to serve as an
accessible gateway for readers who are unfamiliar with previous implementations of
these techniques.

MSC 2010 11B30

1 Introduction

Established independently by Sárközy and Furstenberg during the 1970s, settling a
question of Lovász, it is a well-studied fact that any set of integers of positive upper
density necessarily contains two distinct elements that differ by a perfect square.
Equivalently, if A ⊆ N contains no such pair, then

lim
N→∞

|A ∩ [1, N ]|
N

= 0.

Herewe use [1, N ] to denote {1, 2, . . . , N } and |X | to denote the size of a finite set X .
Furstenberg [2] achieved this result qualitatively via ergodic theory, specifically his
correspondence principle, but obtained no information on the rate at which the den-
sity must decay, while Sárközy [20] employed a Fourier analytic density increment
strategy to show that if A ⊆ [1, N ] has no square differences, then
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|A|
N

	
(

(log log N )2

log N

)1/3

. (1)

Throughout the paper we use log to denote the natural logarithm, and we use “	” to
denote “less than a constant times”, with subscripts indicating on what parameters,
if any, the implied constant depends. Sárközy’s argument was driven by the Hardy–
Littlewood circle method, and was inspired by Roth’s [14] proof that sets of positive
upper density contain three-term arithmetic progressions.

Using a more intricate Fourier analytic argument, Pintz, Steiger, and Szemerédi
[13] improved (1) to

|A| 	 N (log N )−c log log log log N , (2)

with c = 1/12.While more elementary Fourier analytic proofs [3, 10] and a Fourier-
free density increment proof [4] have also been discovered, it is versions of these
two Fourier analytic attacks that have yielded the best quantitative information. In
the ensuing decades, these two methods have been refined and applied to other sets
of prohibited differences, such as more general polynomial images [1, 5, 9, 22],
shifted primes [8, 19, 21], polynomial curves in higher-dimensional integer lattices
[11], and images of the primes under polynomials [7, 17].

With regard to sums of one or more single-variable polynomials, the author [15]
pushed these two methods to their breaking points. In the case of one single-variable
polynomial, if h ∈ Z[x] has degree k ≥ 2 and h(N) contains a multiple of q for every
q ∈ N, known as an intersective polynomial, then any set A ⊆ [1, N ]with no nonzero
differences in the image of h satisfies (2) for any c < (log((k2 + k)/2))−1, with the
implied constant depending on h and c. The intersective condition is necessary to
force any density decay, as otherwise one can take A = qN if h(N) misses qZ, and
in that sense this is a maximal extension of the elaborate techniques developed in
[1, 13].

Further, if we allow the additional degree of freedom of a second polynomial, then
the more straightforward density increment approach yields density bounds that are
even better than (2), as described below.

Theorem 1 ([15]) Suppose g, h ∈ Z[x] are nonzero intersective polynomials and
A ⊆ [1, N ]. If

a − a′ �= g(m) + h(n)

for all distinct pairs a, a′ ∈ A and all m, n ∈ N, then

|A| 	g,h Ne−c(log N )μ ,

where c = c(g, h) > 0, μ = μ(deg(g), deg(h)) > 0, and μ(2, 2) = 1/2.

As a notable example, Theorem1 gives an upper bound of exp(−c
√
log N ) for the

density of subsets of [1, N ] lacking differences that are the sum of two squares. There
is also a brief discussion of sums of three or more single-variable polynomials at the
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end of [15], but the improvements in density bounds are modest as exp(−c
√
log N )

arises as a natural limit of the method, a fact that we discuss in Sect. 2.3.
While the generality of Theorem1 is pleasing, prohibited differences of the form

g(m) + h(n) can be thought of as the diagonal special case of differences of the form
h(m, n) where h ∈ Z[x, y]. Of course, if h(x, y) = h̃(g(x, y)) for some g ∈ Z[x, y]
and h̃ ∈ Z[x] with deg(h̃) ≥ 2, then the image of h is contained in the image of h̃, in
which casewe could not hope to improve on the original setting of one single-variable
polynomial. However, in other cases, we expect that the freedom of two variables
should allow for improved density bounds. It is with this expectation in mind that
we gently wade into the arena of potentially non-diagonal two-variable polynomials
by exploring the following natural generalization of the aforementioned special case
m2 + n2.

Definition 1 h ∈ Z[x, y] is called a binary quadratic form if

h(x, y) = ax2 + bxy + cy2

for some a, b, c ∈ Z. Further, we define the discriminant of h by

Δ(h) = b2 − 4ac,

noting that h(x, y) = d(r x + sy)2 for some d, r, s ∈ Z if and only if Δ(h) = 0.

Our main result is the following, which says that under the necessary restriction
that a binary quadratic formdoes not collapse into a dilated perfect square,we achieve
the same density bounds previously established in the diagonal case, which are likely
the best possible for our chosen method.

Theorem 2 Suppose h ∈ Z[x, y] is a binary quadratic form with Δ(h) �= 0. If A ⊆
[1, N ] with

a − a′ �= h(m, n)

for all distinct pairs a, a′ ∈ A and all m, n ∈ N, then

|A| 	h Ne−c
√
log N ,

where c = c(h) > 0.

We note that the image of every nonzero binary quadratic form contains a dilation
of the squares, and hence our result is only material because the established density
bound is better than (2). Our goal for the remainder of the paper is twofold: to
establish Theorem2, which we hope will serve as a starting point for the application
of these methods to more general polynomials in several variables, and to provide
thorough and self-contained exposition of all of the components of this iteration
scheme for those unfamiliar with its previous applications, such as the original case
of the squares.



178 A. Rice

2 Main Iteration Lemma: Deducing Theorem2

The principle behind a density increment strategy is that a set which lacks the desired
arithmetic structure should spawn a new, significantly denser subset of a slightly
smaller interval with an inherited lack of arithmetic structure. Iterating this procedure
enough times for the density to reach 1 provides an upper bound on the density of
the original set.

For this section, we fix a binary quadratic form h ∈ Z[x, y] with Δ(h) �= 0, and
we let

I (h) = {h(m, n) : m, n ∈ N} \ {0}.

Our iteration scheme is encapsulated by the following lemma, fromwhichwe quickly
deduce Theorem2.

Lemma 1 Suppose A ⊆ [1, N ] with |A| = δN and δ ≥ N−1/20. If (A − A) ∩
I (h) = ∅, then there exists A′ ⊆ [1, N ′]with |A′| = δ′N ′ and a constant c = c(h) >

0 with
N ′ 
h δ4N , δ′ ≥ (1 + c)δ, and (A′ − A′) ∩ I (h) = ∅.

2.1 Proof of Theorem2

Suppose A ⊆ [1, N ] with |A| = δN and (A − A) ∩ I (h) = ∅. Setting A0 = A,
N0 = N , and δ0 = δ, Lemma1 yields, for each m, a set Am ⊆ [1, Nm] with |Am | =
δmNm and (Am − Am) ∩ I (h) = ∅ satisfying

Nm ≥ cδ4Nm−1 ≥ (cδ4)mN (3)

and
δm ≥ (1 + c)δm−1 ≥ (1 + c)mδ (4)

as long as
δm ≥ N−1/20

m . (5)

By (4), we see that the density δm will surpass 1, and hence (5) must fail, for m =
C log(δ−1). In particular, by (3) we have

δ ≤ (cδ4)−C log(δ−1)N−1/20,

which can be rearranged to
N ≤ eC log2(δ−1)

and hence implies
δ 	h e−c

√
log N ,

as required. �
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2.2 Roadmap for the Remainder of the Paper

Our task is is now completely reduced to a proof of Lemma1, the two major com-
ponents of which are described below.

i. The condition (A − A) ∩ I (h) = ∅ represents unexpected, nonuniform behav-
ior, which we expect to be detectable in the Fourier analytic behavior of A.
More specifically, we use orthogonality of characters and adaptations of stan-
dard exponential sum estimates to locate a single small denominator q such that
the Fourier transform of the characteristic function of A, translated to have mean
value zero, has substantial L2 concentration near rationals with denominator q.
The Fourier analytic infrastructure is introduced in Sect. 3.1, the proof of this
component is carried out in Sect. 4.2, and the required exponential sum estimates
are exposed in great detail in Sect. 5.

ii. The substantial L2 concentration of the transform of the translated characteristic
function of A near rationals with a particular denominator q indicates a corre-
lation of A with a linear phase function. In particular, we show that this implies
that A has significantly increased relative density on a long arithmetic progres-
sion P of step size q. Since this implication has nothing to do with h, or any
other assumptions about A, we prove a general version preemptively in Sect. 3.2.
Finally, by shifting and rescaling the intersection of A with a subprogression of
P of step size q2, we obtain our new, denser set A′ with (A′ − A′) ∩ I (h) = ∅.
The complete deduction of Lemma1 from these two components is carried out
in Sect. 4.1.

2.3 A Discussion of Novelty and Bounds

As indicated in the introduction, the procedure outlined in Sect. 2.2, though refined
over the years, goes back to Sárközy in the 1970s. The improvement in bounds in
Theorems1 and 2, as compared to the case of one single-variable polynomial, comes
from the details of the numerology in Lemma1, most notably the size of the density
increment δ′ ≥ (1 + c)δ. This effectively optimal increase in density is facilitated
by the quality of the exponential sum estimates mentioned in item (i) above.

More specifically, the size of the density increment can be traced to the level
of decay achieved in normalized complete local exponential sums. In the original
setting of square differences, for example, the relevant decay comes from the standard
estimate ∣∣∣∣∣

1

q

q−1∑
r=0

e2πir
2a/q

∣∣∣∣∣ 	 q−1/2 (6)

for (a, q) = 1, which ultimately leads to a density increment δ′ ≥ δ + cδ2. Substi-
tuting this increment size, and other minor necessary modifications, into the proof
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in Sect. 2.1 leads to the upper bound

δ 	 log log N

log N
,

which is better than Sárközy’s original result (1). The reader may refer to [12] or
[16] for full expositions of this refinement in the cases of squares, shifted primes,
and, in the latter case, intersective polynomials.

In the case of sums of two squares, covered in Theorem1, the relevant decay
comes from the analogous two-variable sum that then splits, allowing one to use the
same estimate (6) to conclude

∣∣∣∣∣
1

q2

q−1∑
r,s=0

e2πi(r
2+s2)a/q

∣∣∣∣∣ =
∣∣∣∣∣
1

q

q−1∑
r=0

e2πir
2a/q

∣∣∣∣∣
2

	 q−1

for (a, q) = 1, which is good enough to get the optimal density increment. The
novelty of Theorem2 is rooted in the fact that whenΔ(h) �= 0, we get the same level
of decay, namely ∣∣∣∣∣

1

q2

q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣ 	h q
−1

for (a, q) = 1, even though the sum no longer necessarily splits.
In order to improve on the bound exp(−c

√
log N ) using this approach, for any

fixed set of prohibited differences, one of two components of the numerology of
Lemma1 must be improved: either the ratio N ′/N must decay more slowly than any
power of δ, or the ratio δ′/δ must tend to infinity, as δ → 0, neither of which appear
feasible in any nontrivial context. However, the question of whether the known upper
bounds are even remotely sharp remains completely open in all of the aforementioned
cases. For amore detailed discussion of lower bounds, constructions, and conjectures,
the reader may refer to Sect. 1.4 of [15].

3 Preliminaries

3.1 Fourier Analysis and the Circle Method on Z

We embed our finite sets in Z, on which we utilize the discrete Fourier transform.
Specifically, for a function F : Z → C with finite support, we define F̂ : T → C,
whereT denotes the circle parametrized by the interval [0, 1]with 0 and 1 identified,
by

F̂(α) =
∑
n∈Z

F(n)e−2πinα.
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In this finite support context, Plancherel’s Identity

∑
n∈Z

|F(n)|2 =
∫ 1

0
|F̂(α)|2dα (7)

is a direct consequence of the orthogonality relation

∫ 1

0
e2πinαdα =

{
1 if n = 0

0 if n ∈ Z \ {0}. (8)

Given N ∈ N and a set A ⊆ [1, N ] with |A| = δN , we examine the Fourier analytic
behavior of A by considering the balanced function, f A, defined by

f A = 1A − δ1[1,N ].

We analyze f̂ A, and other exponential sums, using the Hardy–Littlewood circle
method, decomposing the frequency space into two components: the set of points on
the circle that are close to rationals with small denominator, and the complement.

Definition 2 Given N ∈ N and η > 0, we define, for each q ∈ N and a ∈ [1, q],

Ma/q = Ma/q(N , η) =
{
α ∈ T : |α − a

q
| <

1

η2N

}
, Mq =

⋃
(a,q)=1

Ma/q ,

and

M′
q =

⋃
r |q

Mq =
q⋃

a=1

Ma/q .

We then define M, the major arcs and m, the minor arcs, by

M =
η−1⋃
q=1

Mq , m = T \ M.

We note that if η2N > 2Q2, then

Ma/q ∩ Mb/r = ∅ (9)

whenever a/q �= b/r and q, r ≤ Q.
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3.2 Density Increment Lemma

The following standard result shows that for A ⊆ [1, N ], L2 concentration of f̂ A
near rationals with a particular denominator q implies increased relative density on
a long arithmetic progression of step size q, as described in item (ii) in Sect. 2.2.

Lemma 2 Suppose A ⊆ [1, N ] with |A| = δN. If q ∈ N, σ, η > 0, and

∫
M′

q

| f̂ A(α)|2dα ≥ σδ2N ,

then there exists an arithmetic progression

P = {x + �q : 1 ≤ � ≤ L}

with qL 
 min{σ, η2}N and |A ∩ P| ≥ (1 + σ/32)δL.

Proof Suppose A ⊆ [1, N ] with |A| = δN , σ, η > 0. Suppose further that

∫
M′

q

| f̂ A(α)|2dα ≥ σδ2N , (10)

and let P = {q, 2q, . . . , Lq} with L = �min{σ, η2}N/128q�. We will show that
some translate of P satisfies the conclusion of Lemma2. We note that for α ∈ [0, 1],

|1̂P(α)| =
∣∣∣

L∑
�=1

e−2πi�qα
∣∣∣ ≥ L −

L∑
�=1

|1 − e−2πi�qα| ≥ L − 2πL2‖qα‖, (11)

where ‖ · ‖ denotes the distance to the nearest integer. Further, if α ∈ M′
q , then

‖qα‖ ≤ q

η2N
≤ 1

4πL
. (12)

Therefore, by (11) and (12) we have

|1̂P(α)| ≥ L/2 for all α ∈ M′
q . (13)

By (10), (13), and Plancherel’s Identity (7) we see

σδ2N ≤
∫
M′

q

| f̂ A(α)|2dα ≤ 4

L2

∫ 1

0
| f̂ A(α)|2|1̂P(α)|2dα = 4

L2

∑
n∈Z

| f A ∗ 1̃P(n)|2,
(14)
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where 1̃P(n) = 1P(−n) and

f A ∗ 1̃P(n) =
∑
m∈Z

f A(m)1P(m − n) = |A ∩ (P + n)| − δ|(P + n) ∩ [1, N ]|.
(15)

We now take advantage of the fact that f A, and consequently f A ∗ 1̃P , has mean
value zero. In other words, ∑

n∈Z
f A ∗ 1̃P(n) = 0. (16)

As with any real valued function, we can write

| f A ∗ 1̃P | = 2( f A ∗ 1̃P)+ − f A ∗ 1̃P , (17)

where ( f A ∗ 1̃P)+ = max{ f A ∗ 1̃P , 0}.
For the purposes of proving Lemma2, we can assume that f A ∗ 1̃P(n) ≤ 2δL for

all n ∈ Z, as otherwise the progression P + nwouldmore than satisfy the conclusion.
Combined with the trivial upper bound f A ∗ 1̃P(n) ≥ −δL , we can assume

| f A ∗ 1̃P(n)| ≤ 2δL for all n ∈ Z. (18)

By (14), (16)–(18), we have

∑
n∈Z

( f A ∗ 1̃P)+(n) = 1

2

∑
n∈Z

| f A ∗ 1̃P | ≥ 1

4δL

∑
n∈Z

| f A ∗ 1̃P |2 ≥ σδNL

16
. (19)

By (15), we see that f A ∗ 1̃P(n) = 0 if n /∈ [−qL , N ]. Letting E = {n ∈ Z : P +
n ⊆ [1, N ]} and F = [−qL , N ] \ E , we see that |F | ≤ 2qL . Therefore, by (18),
(19), and the bound 128qL ≤ σN , we have

∑
n∈E

( f A ∗ 1̃P)+(n) ≥ σδNL

16
− 2δL|F | ≥ σδNL

16
− 4qδL2 >

σδNL

32
. (20)

Recalling that |E | ≤ N and f A ∗ 1̃P(n) = |A ∩ (P + n)| − δL for all n ∈ E , we
have that there exists n ∈ Z with

|A ∩ (P + n)| ≥ (1 + σ/32)δL ,

as required.
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4 L2 Concentration

For this section, we once again fix a binary a quadratic form h ∈ Z[x, y] with
Δ(h) �= 0, and let

I (h) = {h(m, n) : m, n ∈ N} \ {0}.

The following result makes precise the implication outlined in item (i) in Sect. 2.2,
in which the condition (A − A) ∩ I (h) = ∅ forces substantial L2 concentration of
f̂ A near rationals with a single small denominator. Combining this with Lemma2,
we then quickly deduce Lemma1.

Lemma 3 Suppose A ⊆ [1, N ] with |A| = δN, and let η = c0δ for a sufficiently
small constant c0 = c0(h) > 0. If (A − A) ∩ I (h) = ∅, δ ≥ N−1/20, and |A ∩ (N/9,
8N/9)| ≥ 3δN/4, then there exists q ≤ η−1 such that

∫
M′

q

| f̂ A(α)|2dα 
h δ2N .

4.1 Proof of Lemma1

Suppose A ⊆ [1, N ], |A| = δN , δ ≥ N−1/20, and (A − A) ∩ I (h) = ∅.
If |A ∩ (N/9, 8N/9)| < 3δN/4, then

max{|A ∩ [1, N/9]|, |A ∩ [8N/9, N ]|} > δN/8.

In other words, A has density at least 9δ/8 on one of these intervals.
Otherwise, Lemmas3 and 2 apply, so in either case, letting η = c0δ, there exists

q ≤ η−1 and an arithmetic progression

P = {x + �q : 1 ≤ � ≤ L}

with qL 
h δ2N and |A ∩ P| ≥ (1 + c)δL . Partitioning P into subprogressions of
step size q2, the pigeonhole principle yields a progression

P ′ = {y + �q2 : 1 ≤ � ≤ N ′} ⊆ P

with N ′ ≥ L/2q and |A ∩ P ′| ≥ (1 + c)δN ′. This allows us to define a set A′ ⊆
[1, N ′] by

A′ = {� ∈ [1, N ′] : y + �q2 ∈ A},

which clearly satisfies |A′| ≥ (1 + c)δN ′ and N ′ 
h δ2N/q2 
h δ4N . Moreover,
since q2h(m, n)=h(qm, qn), A′ inherits the lack of h(m, n) differences from A. �
Our task is now completely reduced to a proof of Lemma3.
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4.2 Proof of Lemma3

Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ. We let J = |b1| + |b2| + |b3|,
M = √

N/9J , Z = {(m, n) ∈ [1, M]2 : h(m, n) = 0}, and Λ = [1, M]2 \ Z .
We note that

|Z | 	h M. (21)

If (A − A) ∩ I (h) = ∅, then since h(Λ) ⊆ [−N/9, N/9], we see that
∑
x∈Z

(m,n)∈Λ

f A(x) f A(x + h(m, n)) =
∑
x∈Z

(m,n)∈Λ

1A(x)1A(x + h(m, n))

− δ
∑
x∈Z

(m,n)∈Λ

1A(x)1[1,N ](x + h(m, n))

− δ
∑
x∈Z

(m,n)∈Λ

1[1,N ](x − h(m, n))1A(x)

+ δ2
∑
x∈Z

(m,n)∈Λ

1[1,N ](x)1[1,N ](x + h(m, n))

≤
(
δ2N − 2δ|A ∩ (N/9, 8N/9)|

)
|Λ|.

Therefore, if |A ∩ (N/9, 8N/9)| ≥ 3δN/4, we have

∑
n∈Z

1≤m≤M

fA(n) f A(x + h(m, n)) ≤ −δ2N |Λ|/2. (22)

One can check using orthogonality (8) and Plancherel’s Identity (7) that

∑
x∈Z

(m,n)∈Λ

f A(x) f A(x + h(m, n))

=
∑
x,y∈Z

(m,n)∈Λ

f A(x) f A(y)
∫ 1

0
e2πi(x−y+h(m,n))αdα

=
∫ 1

0

(∑
x∈Z

f A(x)e
2πi xα

) ⎛
⎝∑

y∈Z
f A(y)e

−2πiyα

⎞
⎠

⎛
⎝ ∑

(m,n)∈Λ

e2πih(m,n)α

⎞
⎠ dα

=
∫ 1

0
| f̂ A(α)|2SM(α)dα + O(δN |Z |),
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where
Sx (α) =

∑
1≤m,n≤x

e2πih(m,n)α.

Combined with (21), (22), and the triangle inequality, this yields

∫ 1

0
| f̂ A(α)|2|SM(α)|dα ≥ δ2NM2/4. (23)

By adapting traditional exponential sum estimates to this two-variable setting, and
at one point carefully exploiting that Δ(h) �= 0, we have that if δ ≥ N−1/20, then

|SM(α)| 	h M2/q for α ∈ Mq , q ≤ η−1, (24)

and
|SM(α)| ≤ CηM2 ≤ δM2/8 for α ∈ m, (25)

provided we choose c0 ≤ 1/8C. We prove and discuss these estimates in detail in
Sect. 5.

By (25) and Plancherel’s Identity (7), we have

∫
m

| f̂ A(α)|2|SM(α)|dα ≤ δ2NM2/8,

which by (23) yields

∫
M

| f̂ A(α)|2|SM(α)|dα ≥ δ2NM2/8. (26)

By (24) and (26) we have

δ2NM2 	h

η−1∑
q=1

M2

q

∫
Mq

| f̂ A(α)|2dα. (27)

We then make use of the following proposition, a more general version of which can
be found in Proposition 5.6 of [15], which exploits the more inclusive definition of
M′

q as compared withMq .

Proposition 1 If η2N > 2Q2, then

max
q≤Q

∫
M′

q

| f̂ A(α)|2dα ≥ 1

2

Q∑
q=1

q−1
∫
Mq

| f̂ A(α)|2dα.
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Proof By (9) we have

Qmax
q≤Q

∫
M′

q

| f̂ A(α)|2dα ≥
Q∑

q=1

∫
M′

q

| f̂ A(α)|2dα

=
Q∑

q=1

∑
r |q

∫
Mr

| f̂ A(α)|2dα

=
Q∑

r=1

�Q/r�
∫
Mr

| f̂ A(α)|2dα

≥ Q

2

Q∑
r=1

r−1
∫
Mr

| f̂ A(α)|2dα,

and the proposition follows.

Lemma3 then follows immediately from (27) and Proposition 1. �

5 Exponential Sum Estimates

In this section, we carefully adapt traditional exponential sum estimates in order to
establish the crucial upper bounds (24) and (25). For the entirety of the section, we
fix a nonzero binary quadratic form

h(x, y) = b1x
2 + b2xy + b3y

2 ∈ Z[x, y].

Unlike in previous sections, we do not make the perpetual assumption that Δ(h) =
b22 − 4b1b3 �= 0, but rather enforce this condition only when necessary.

5.1 Major Arc Estimates

We begin our pursuit of (24) by establishing an asymptotic formula for the relevant
exponential sumnear rationalswith small denominator. To achieve this goal,wemake
multiple appeals to the following standard formula, which is simply integration by
parts applied to an appropriate Riemann–Stieltjes integral.

Lemma 4 (Abel’s Partial Summation Formula) If φ : R → C is continuously dif-
ferentiable, f : N → C, F(x) = ∑

1≤n≤x f (n), and M > 0, then

∑
1≤n≤M

f (n)φ(n) = F(M)φ(M) −
∫ M

0
F(x)φ′(x)dx .
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We now proceed with the asymptotic formula, obtained by applying Lemma4 one
variable at a time.

Lemma 5 If a, q ∈ N, α = a/q + β, and M > 0, then

SM(α) =
∑

1≤m,n≤M

e2πih(m,n)α

= q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + O(qM(1 + JM2β)),

where J = |b1| + |b2| + |b3| and

G(a, q) =
q−1∑
r,s=0

e2πih(r,s)a/q .

Proof For each fixed 1 ≤ m ≤ M and y > 0, we see that

Smy (a/q) =
∑

1≤n≤y

e2πih(m,n)a/q

=
q−1∑
s=0

e2πih(m,s)a/q |{1 ≤ n ≤ y : n ≡ s mod q}|

= y

q
Gm(a, q) + O(q),

where

Gm(a, q) =
q−1∑
s=0

e2πih(m,s)a/q .

Then, letting hy = ∂h
∂y and combining the above with Lemma4 and integration by

parts, we have

SmM(α) =
∑

1≤n≤M

e2πih(m,n)a/qe2πih(m,n)β

= SmM(a/q)e2πih(m,M)β −
∫ M

0
Smy (a/q)(2πihy(m, y)β)e2πih(m,y)βdy

= q−1Gm(a, q)

(
Me2πih(m,M)β −

∫ M

0
y2πihy(m, y)βe2πih(m,y)βdy

)

+ O(q(1 + JM2β))

= q−1Gm(a, q)

∫ M

0
e2πih(m,y)βdy + O(q(1 + JM2β)).
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Similarly, summing in m we have

S̃x (a/q) =
∑

1≤m≤x

Gm(a, q)

=
q−1∑
r=0

Gr (a, q) |{1 ≤ m ≤ x : m ≡ r mod q}|

= x

q
G(a, q) + O(q),

and, letting hx = ∂h
∂x , we apply the same sequence of steps to see that SM(α) equals

q−1
∑

1≤m≤M

Gm(a, q)

∫ M

0
e2πih(m,y)βdy + O(qM(1 + JM2β))

=q−1
(
S̃M(a/q)

∫ M

0
e2πih(M,y)βdy

−
∫ M

0

∫ M

0
S̃x (a/q)(2πihx (x, y)β)e2πih(x,y)βdxdy

)
+ O(qM(1 + JM2β))

=q−2G(a, q)
(
M

∫ M

0
e2πih(M,y)βdy

−
∫ M

0

∫ M

0
x(2πihx (x, y)β)e2πih(x,y)βdxdy

)
+ O(qM(1 + JM2β))

=q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + O(qM(1 + JM2β)),

and the formula is established.

The crucial denominator q in (24) comes from the following result, previously dis-
cussed in Sect. 2.3, which is the one and only juncture at which we requireΔ(h) �= 0.
This key ingredient, as well as the standard proof we recreate for Lemma8, rely on
a technique known as Weyl differencing, in which we take the modulus squared of
the exponential sum in order to reduce the quadratic dependence in each variable to
a linear dependence.

Lemma 6 If Δ(h) �= 0 and a, q ∈ N with (a, q) = 1, then

∣∣∣∣∣
q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣ 	h q.

Proof Fixing a, q ∈ N with (a, q) = 1, exploiting that |z|2 = zz for any z ∈ C, and
changing variables r ′ = r + t , s ′ = s + u, we see that
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∣∣∣∣∣
q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣
2

=
q−1∑

r,r ′,s,s ′=0

e2πi(h(r ′,s ′)−h(r,s))a/q

=
q−1∑

r,s,t,u=0

e2πi(h(r+t,s+u)−h(r,s))a/q

=
q−1∑

r,s,t,u=0

e2πi(2b1r t+b1t2+b2ru+b2st+b2tu+2b3su+b3u2)a/q

=
q−1∑
t,u=0

e2πih(t,u)a/q

(
q−1∑
r=0

e2πi(2b1t+b2u)ra/q

) (
q−1∑
s=0

e2πi(b2t+2b3u)sa/q

)

=
q−1∑
t,u=0

e2πih(t,u)a/q

{
q2 if 2b1t + b2u ≡ b2t + 2b3u ≡ 0 mod q

0 else
,

where the last equality follows from the orthogonality relation

q−1∑
r=0

e2πirb/q =
{
q if q | b
0 else

.

Looking at the two congruence conditions above, multiplying the first expression by
b2, and multiplying the second expression by 2b1, we get the system

2b1b2t + b22u ≡ 2b1b2t + 4b1b3u ≡ 0 mod q.

By subtracting the two resulting expressionswe see that q must divideΔ(h)u. Letting
d = gcd(q,Δ(h)), we have that u must be one of the d multiples of q/d, which each
yield at most gcd(q, 2b1b2) choices for t . In particular, ifΔ(h) �= 0, then the number
of simultaneous solutions is Oh(1), and the lemma follows.

5.2 Proof of (24)

Returning to the setting of the proof of Lemma3, if α ∈ Mq with

q ≤ η−1 	h δ−1 ≤ N 1/20 	 M1/10,

then α = a/q + β with
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|β| <
1

η2N
	h N−9/10 	 M−9/5

for some a with (a, q) = 1. In this case, Lemma5 tells us that

SM(α) = q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + Oh(M

1.3).

Applying Lemma6 and trivially bounding the double integral by M2, we have

|SM(α)| 	h M2/q,

as claimed in (24). �

5.3 Minor Arc Estimates

Webegin our pursuit of (25) with the following standard oscillatory integral estimate,
which will allow us to exhibit (25) in the case that α is fairly close to a rational with
small denominator, but not so close as to lie in the major arcs.

Lemma 7 (Van der Corput’s Lemma for Quadratic Polynomials) If g(x) = x2 +
bx + c ∈ R[x] and I ⊆ R is an interval, then

∣∣∣∣
∫
I
e2πig(x)βdx

∣∣∣∣ 	 |β|−1/2.

Proof Fix g(x) = x2 + bx + c ∈ R[x] and an interval I ⊆ R, and let E = (I +
b/2) ∩ {x : |x | ≥ |β|−1/2}, where I + b/2 denotes the translation of the interval I
by b/2. We know that the measure of (I + b/2) \ E is at most 2|β|−1/2, so we
complete the square and change variables to see that

∣∣∣∣
∫
I
e2πig(x)βdx

∣∣∣∣ =
∣∣∣∣
∫
I
e2πi((x+b/2)2−b2/4+c)βdx

∣∣∣∣
=

∣∣∣∣
∫
I
e2πi(x+b/2)2βdx

∣∣∣∣
=

∣∣∣∣
∫
I+b/2

e2πiy
2βdy

∣∣∣∣
	 |β|−1/2 +

∣∣∣∣
∫
E
e2πiy

2βdy

∣∣∣∣ .
Writing

e2πiy
2β = 1

4πiyβ

d

dx
(e2πiy

2β),
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we have by integration by parts that

∫
E
e2πiy

2βdy =
[
e2πiy

2β

4πiyβ

]
+

∫
E

e2πiy
2β

4πiy2β
dy,

where the expression in brackets is appropriately evaluated at endpoints of E . By
construction, |y| ≥ |β|−1/2 at each endpoint of E , and hence

∣∣∣∣
∫
E
e2πiy

2βdy

∣∣∣∣ 	 |β|−1/2 + |β|−1
∫

|y|≥|β|−1/2

1

y2
dy 	 |β|−1/2,

which establishes the desired estimate.

With regard to estimating the double integral in the conclusion of Lemma5, since
we assumed h was not identically zero, we can relabel or make a linear change of
variables to reduce to the case where b1 �= 0. Then, by applying Lemma7 to the
integral in x for every fixed y, we immediately get the following estimate.

Corollary 1 If M > 0, then

∣∣∣∣
∫ M

0

∫ M

0
e2πih(x,y)βdxdy

∣∣∣∣ 	h M |β|−1/2. (28)

For our final ingredient, we turn to the following traditional estimate, which we
utilize to establish (25) when α is close to a denominator that is neither too small
nor too large.

Lemma 8 (Weyl’s Inequality for Quadratic Polynomials) Suppose g(x) = bx2 +
cx + d ∈ R[x], b ∈ N, a, q ∈ N, t ≥ 1, and x > 0. If (a, q) = 1 and |α − a/q| ≤
tq−2, then

∣∣∣∣∣
∑

1≤n≤x

e2πig(n)α

∣∣∣∣∣ 	 (
bx log q + t x + btx2/q + q log q

)1/2
.

Proof Letting S denote the exponential sum we wish to estimate, we see that

|S|2 =
∑

1≤n,n′≤x

e2πi(h(n′)−h(n))α = x + 2�
( ∑
1≤n<n′≤x

e2πi(h(n′)−h(n))α

)
, (29)

where the x accounts for terms where n = n′, and � denotes the real part. With a
change of variables n′ = n + h, we have
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∑
1≤n<n′≤x

e2πi(h(n′)−h(n))α =
∑

1≤n≤x−1

∑
1≤h≤x−n

e2πi(h(n+h)−h(n))α

=
∑

1≤n≤x−1

∑
1≤h≤x−n

e2π(2bnh+h2+ch)α

=
∑

1≤h≤x−1

e2πi(h
2+ch)α

∑
1≤n≤x−h

e2πi(2bhn)α.

Applying the geometric series formula to the inner sum, and the triangle inequality,
gives us ∣∣∣∣∣

∑
1≤n<n′≤x

e2πi(h(n′)−h(n))α

∣∣∣∣∣ 	
∑

1≤h≤2bx

min
{
x, ‖hα‖−1

}
, (30)

where ‖ · ‖ denotes the distance to the nearest integer.
Fixing q ∈ N and breaking the sum in h into intervals of length q, we have

∑
1≤h≤2bx

min
{
x, ‖hα‖−1

} ≤
∑

1≤ j≤2bx/q

q−1∑
s=0

min
{
x, ‖(q j + s)α‖−1} . (31)

If a ∈ N with |α − a/q| ≤ tq−2, we can write α = a/q + O(t/q2), and hence

(q j + s)α = q jα + sa

q
+ O(t/q).

Further, if we let k be the nearest integer to q2 jα, then q jα = k/q + O(t/q) and
hence

(q j + s)α = sa + k

q
+ O(t/q).

Combined with (31), this yields

∑
1≤h≤2bx

min
{
x, ‖hα‖−1

} ≤
∑

1≤ j≤2bx/q

q−1∑
s=0

min

{
x, ‖ sa + k

q
+ O(t/q)‖−1

}
. (32)

If (a, q) = 1, then as s runs over all congruence classes modulo q, so does sa. In
particular, the O(t/q) error term dominates for at most O(t) terms, and we have

∑
1≤ j≤2bx/q

q−1∑
s=0

min

{
x, ‖ sa + k

q
+ O(t/q)‖−1

}
	

∑
1≤ j≤2bx/q

(
t x +

q/2∑
s=1

q

s

)

	 (2bx/q + 1)(t x + q log q),

which combines with (29), (30), and (32) to yield the desired estimate.
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In the same way we deduce Corollary1 from Lemma7, we reduce to the case of
b1 �= 0 and apply Lemma8 to the sum in m for every fixed n to immediately get the
following estimate.

Corollary 2 Suppose a, q ∈ N, α ∈ [0, 1], and x > 0. If (a, q) = 1 and |α −
a/q| ≤ q−2, then

∣∣∣∣∣
∑

1≤m,n≤x

e2πih(m,n)α

∣∣∣∣∣ 	h x
(
x log q + x2/q + q log q

)1/2
. (33)

Remark. We note that under the assumption Δ(h) �= 0, the estimates (28) and (33)
can be improved to |β|−1 and

(
x4/q2 + (x3/q + x2 + qx) log q

)1/2
,

respectively. For the former, since it is in a continuous setting, one can simply use
that if b2 − 4ac �= 0, then

ax2 + bxy + cy2 = u2 + v2

after an invertible linear change of variables, and then apply Lemma7 separately in
u and v. The latter estimate can be established by mimicking the two-variable Weyl
differencing process, and exploitation of nonzero discriminant, exhibited in the proof
of Lemma6. However, for the purposes of proving Theorem2, we only require this
sort of “optimal cancellation” on the major arcs, so for the sake of brevity, and for
the sake of exposing the components used in previous applications of this method,
we leave the details of these improvements as exercises for the reader.

5.4 Proof of (25)

Returning to the setting of the proof of Lemma3, we consider α ∈ m. By the pigeon-
hole principle, there exists 1 ≤ q ≤ M7/4 and (a, q) = 1 such that

|α − a/q| ≤ 1

qM7/4
≤ 1

q2
.

Writing α = a/q + β, if q ≤ M1/4, then we have from Lemma5 that

SM(α) = q−2G(a, q)

∫ M

0

∫ M

0
e2πih(x,y)βdxdy + Oh(M

3/2). (34)
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If q ≤ η−1, then it must be the case that |β| > (η2N )−1, since otherwise we
would have α ∈ M. In this case, recalling that N 	h M2 and η 
h δ ≥ N−1/20 
h

M−1/10, it follows from (34), Corollary1, and trivially bounding G(a, q) by q2 that

|SM(α)| 	 M |β|−1/2 + Oh(M
3/2) 	h ηM2.

If η−1 ≤ q ≤ M1/4, then by (34), Lemma6, and trivially bounding the double integral
by M2, we have

SM(α) 	h M2/q + Oh(M
3/2) 	h ηM2.

Finally, if M1/4 ≤ q ≤ M7/4, then by Corollary2 we have

|SM(α)| 	h M(M log q + M2/q + q log q)1/2 	 M15/8 	h ηM2,

and (25) is established in all cases. �

Acknowledgements The author would like to thank Neil Lyall who co-authored the expository
note [12], in the context of squares and shifted primes, that served as a template for this paper.

References

1. A. Balog, J. Pelikán, J. Pintz, E. Szemerédi, Difference sets without κ-th powers, Acta.
Math. Hungar. 65 (2) (1994), 165–187

2. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on
arithmetic progressions, J. d’Analyse Math, 71 (1977), 204–256

3. B. Green,On arithmetic structures in dense sets of integers, Duke Math. Jour. 114 (2002) no.
2, 215–238

4. B. Green, T. Tao, T. Ziegler, A Fourier-free proof of the Furstenberg-
Sárközy theorem, https://terrytao.wordpress.com/2013/02/28/a-fourier-free-proof-of-the-
furstenberg-sarkozy-theorem/

5. M. Hamel, N. Lyall, A. Rice, Improved bounds on Sárközy’s theorem for quadratic
polynomials, Int. Math. Res. Not. no. 8 (2013), 1761–1782

6. T. Kamae, M. Mendès France, van der Corput’s difference theorem, Israel J. Math. 31,
no. 3–4, (1978), pp. 335–342

7. H.- Z. Li, H. Pan, Difference sets and polynomials of prime variables, Acta. Arith. 138, no.
1 (2009), 25–52

8. J. Lucier, Difference sets and shifted primes, Acta. Math. Hungar. 120 (2008), 79–102
9. J. Lucier, Intersective sets given by a polynomial, Acta Arith. 123 (2006), 57–95
10. N. Lyall, A new proof of Sárközy’s theorem, Proc. Amer. Math. Soc. 141 (2013), 2253–2264
11. N. Lyall, À. Magyar, Polynomial configurations in difference sets, J. Number Theory 129

(2009), 439–450
12. N. Lyall, A. Rice, Two theorems of Sárközy, http://alexricemath.com/wp-content/uploads/

2013/06/DoubleSarkozy.pdf
13. J. Pintz, W. L. Steiger, E. Szemerédi, On sets of natural numbers whose difference set

contains no squares, J. London Math. Soc. 37 (1988), 219–231
14. K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), pp. 104–109
15. A. Rice,Amaximal extension of the best-known bounds for the Sárközy-Furstenberg Theorem,

Acta Arith. 187 (2019), 1–41

https://terrytao.wordpress.com/2013/02/28/a-fourier-free-proof-of-the-furstenberg-sarkozy-theorem/
https://terrytao.wordpress.com/2013/02/28/a-fourier-free-proof-of-the-furstenberg-sarkozy-theorem/
http://alexricemath.com/wp-content/uploads/2013/06/DoubleSarkozy.pdf
http://alexricemath.com/wp-content/uploads/2013/06/DoubleSarkozy.pdf


196 A. Rice

16. A. Rice, Improvements and extensions of two theorems of Sárközy, Ph.D. thesis, University
of Georgia, 2012. http://alexricemath.com/wp-content/uploads/2013/06/AlexThesis.pdf

17. A. Rice, Sárközy’s theorem for P -intersective polynomials, Acta Arith. 157 (2013), no. 1,
69–89

18. I. Ruzsa, Difference sets without squares, Period. Math. Hungar. 15 (1984), 205–209
19. I. Ruzsa, T. Sanders,Difference sets and the primes, Acta.Arith. 131, no. 3 (2008), 281–301
20. A. Sárközy,On difference sets of sequences of integers I, Acta.Math. Hungar. 31(1–2) (1978),

125–149
21. A. Sárközy, On difference sets of sequences of integers III, Acta. Math. Hungar. 31(3–4)

(1978), 355–386
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Egyptian Fractions, Nonstandard
Extensions of R, and Some Diophantine
Equations Without Many Solutions

David A. Ross

Abstract Non-Archimedean extensions ofR are used to simplify and extend results
related to the study of Egyptian fractions.

1 Introduction

Egyptian fractions are numbers a which can be expressed as the sum of reciprocals,
e.g. a = 1/a1 + 1/a2 + · · · + 1/as with ai ∈ N. Such fractions have been a fruitful
source for interesting mathematical problems since Fibonacci’s Liber Abaci. For
example, in 1921 Kellogg [7] conjectured a bound (later proved by Curtiss [3]) on
the number of positive integer solutions for the Diophantine equation

1/x1 + 1/x2 + · · · + 1/xs = 1.

The question is equivalent to asking for the number of ways 1 can be expressed as
an Egyptian fraction with s terms. Such questions about the structure of solutions to
equations like the Kellogg equation have drawn the attention of Erdos [4], Graham
[5], Sierpinski [10], and more recently Nathanson [9].

We show that many such results can be proved quite easily with the help of
sufficiently saturated elementary extensions of R as an ordered field. The approach
makes it possible not only to give new proofs of known results, but also to extend
them in significant ways. For example, the result noted in Sect. 2.3 (and proved in
Sect. 3.2) that the set As is not only nowhere dense, but in fact compact, was missed
by Sierpinski. Similarly, our proof of Lagarias’s Theorem in Sect. 3.3 gives extended
information about large solutions of the equation.

For convenience we use the language of nonstandard analysis, though it is easy
to see that we mainly use a few straightforward consequences of compactness. We
review notation and results we need in Appendix4.
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2 The Structure of Some Sets of Egyptian Fractions

This section is motivated by the results of Sierpinski [10]. We begin with some
notation.

N does not contain 0. Z
# = Z \ {0}.

For c ∈ R, monad(c) = {x ∈ R
∗ : x ≈ c} = ⋂

n∈N
(∗ c − 1/n, c + 1/n).

For s ∈ N,
As = {1/n1 + 1/n2 + · · · + 1/ns : ni ∈ Z

#}

Bs = {1/n1 + 1/n2 + · · · + 1/ns : ni ∈ N}

Note Bs ⊆ As ⊆ [−s, s] and As ⊆ As+1, Bs ⊆ Bs+1 (since1/n = 1/2n + 1/2n).

2.1 Number of A3-Representations

Theorem 2.1 ([10], Théorème 1) Let 0 �= a ∈ A3 \ A1. Then a has only finitely
many representations as a = 1/n1 + 1/n2 + 1/n3

Proof Else by overflow a = 1/n1 + 1/n2 + 1/n3 where at least one of n1, n2, n3 is
infinite. There are three cases:

1. Only one (say n1) is finite. Then a = a◦ = (◦ 1/n1 + 1/n2 + 1/n3) = 1/n1, so
a ∈ A1, a contradiction.

2. Only one (say n1) is infinite. Then 1/n1 = a − 1/n2 − 1/n3 is standard, a con-
tradiction.

3. n1, n2 and n3 are all infinite. Then a = a◦ = (◦ 1/n1 + 1/n2 + 1/n3) = 0, a con-
tradiction.

Since none of these cases is possible, the theorem is proved. �

2.2 Mycielski’s Theorem

Sierpinski attributes this result to Jan Mycielski.

Theorem 2.2 ([10], Théorème 3) Bs has no strictly increasing sequences.

Proof Else let s be least where Bs contains an increasing sequence an . LetM ∈ N
∗ be

infinite, and x1, . . . , xs ∈ N
∗ with aM = 1/x1 + 1/x2 + · · · + 1/xs .Wemay suppose

that xi is finite for i ≤ r , xi infinite otherwise. Consider two cases:

1. r = s. Then aM = aM◦ is standard, and by transfer an = aM for some standard
n, contradicting strict monotonicity.
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2. r < s. Then by transfer there is a subsequence, which WOLG we can again
call an , and bn ∈ Bs−r , with an = 1/x1 + 1/x2 + · · · + 1/xr + bn . Then bn is an
increasing sequence in Bs−r , contradicting minimality of s. �

2.3 Nowhere Dense Sets

Recall that E is a nowhere dense (nwd) subset ofR provided for every a < b there are
a < a′ < b′ < b with E ∩ (a′, b′) = ∅. Nonstandardly, that means for every open
interval (a, b) there is a monad μ ⊆ (a, b)∗ with μ ∩ E∗ = ∅.

Theorem 2.3 ([10], Théorème 2) For s ∈ N, As is nwd.

Proof Let a < b, let c ∈ (a, b) \ As, c �= 0, and μ = monad(c).
Claim: μ ∩ As

∗ = ∅. Otherwise, let x ∈ μ ∩ As
∗ , in particular x = 1/x1 + 1/x2 +

· · · + 1/xs for some x1, . . . , xs ∈ Z
#∗ . We may suppose that xi is finite for i ≤ r , xi

infinite otherwise. Then:

c = x◦ =
{
0, if r = 0;
1/x1 + 1/x2 + · · · + 1/xr ∈ Ar ⊆ As, otherwise.

This contradicts the choice of c.
Let v be any *-interval in μ, for example v = (c − ε, c + ε) where ε is a positive

infinitesimal. Then v witnesses “there is a subinterval v of (∗ c, d) with v ∩ As
∗ =

∅,” so by transfer there is a subinterval v of (c, d) with v ∩ As = ∅, proving the
result. �

Theproof showsmore, that As ∪ {0} is closed (and therefore compact; seeSect. 3.2
for a general result). Since As is countable, and closed countable sets are always nwd,
the last paragraph of the proof is superfluous if one prefers to cite elementary results
about perfect sets.

2.4 Sierpinski’s Proof

Sierpinski’s proof of Theorem2.3 used a strong lemma of independent interest. We
can prove a generalization of it very like the proof of Theorem2.3.

Lemma 2.1 Let E ⊆ R be nwd, Let B ⊆ R have no limit points except possibly 0.
If either E or B is bounded then H = E + B is nwd. �

Proof Given a < b, let c ∈ (a, b) and μ = monad(c), with μ ∩ E∗ = ∅. Note that
E + x is nwd for each x ∈ B, and so for any finite I ⊆ B so is E + I . Put Bn =
{b ∈ B : 1/n < |b| < n}. Note that Bn is finite.

Claim: For some finite I ⊆ B, μ ∩ H∗ ⊆ E + I∗ .
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Suppose not. Then by saturation there is an

x ∈
⋂

n∈N

(
(c − 1/n, c + 1/n) ∩ (H \ (E + Bn)

)∗
,

and x = e + b for some e ∈ E∗ and b ∈ B∗ with b either infinite or infinitesimal. If
b is infinite then e = x − b ≈ c − b is infinite, which means that B and E are both
unbounded. If b is infinitesimal then e ≈ x ≈ c, so μ ∩ E∗ �= ∅. Either way this is
a contradiction, proving the claim.

For this finite I, E + I∗ is *-nwd, so there is a *-interval v ⊆ μ ⊆ (a, b)∗ such
that v ∩ E + I∗ = v ∩ H∗ = ∅. By transfer, there is an interval v ⊆ (a, b) with
v ∩ H = ∅, witnessing that H is nwd. �
Corollary 2.1 ([10], Lemme 2) Let E be nwd, then

⋃
n∈Z# E + 1/n is nwd.

Proof Let B = {1/n : n ∈ Z
#} in Lemma2.1

We used, by the way, the following elementary standard lemma that we will not
prove.

Lemma 2.2 ([10], Lemme 1) The union of two (and therefore finitely many) nwd
sets is nwd.

3 Egyptian-Like Equations

3.1 Kellogg’s Equation

Consider a slight generalization of Kellogg’s equation:

a1/x1 + · · · + as/xs = a (1)

where s ∈ N and a, a1, . . . , as are fixed positive real numbers.

Lemma 3.1 Equation1 has at most finitely many solutions with xi ∈ N.

The equation where each ai = 1 is discussed in Sierpinski [10].
The following proof does not originate with the author, though we have been

unable to discover a reference.

Proof Otherwise by overspill there is a *-solution x1, . . . , xs ∈ N
∗ with at least one

xi infinite. We may suppose that xi is finite for i ≤ r , xi infinite otherwise. We have:

a − (a1/x1 + · · · + ar/xr ) = ar+1/xr+1 + · · · + as/xs

The left-hand-side of this identity is a standard real number, the right-hand-side is a
nonzero infinitesimal, a contradiction.
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Štefan Znám has considered a similar equation (see Brenton and Vasiliu [2]) in
connection with the problem of finding finite sets of natural numbers such that each
is a divisor of the product of the rest, plus one:

1/x1 + · · · + 1/xs + 1/x1x2 · · · xs = a

More generally, consider a generalized Znám equation:

a = a1/x1 + · · · + as/xs + b/x1x2 · · · xs (2)

where s ∈ N and a, b, a1, . . . , as are fixed positive real numbers.

Lemma 3.2 Equation2 has at most finitely many solutions with xi ∈ N.

Proof Otherwise as before there is a *-solution x1, . . . , xn ∈ N
∗ with at least one xi

infinite. We may suppose that xi is finite for i ≤ r , xi infinite otherwise. We have:

a − (a1/x1 + · · · + ar/xr ) = ar+1/xr+1 + · · · + as/xs + b/x1x2 · · · xs
The left-hand side of this identity is a standard real number, the right-hand side is a
nonzero infinitesimal, a contradiction. �

3.2 Equations with More Complicated Terms

These arguments translate fairly easily to equations whose terms are even more
complicated. For example, consider the equation

∑

I

aI
∏

i∈I
xi

= a∅ (3)

where the sum ranges over nonempty subsets I of {1, . . . , s}, and aI ∈ R.

Theorem 3.1 Suppose in Eq.3 that every aI ≥ 0 and a∅ > 0. The following are
equivalent:

1. For every i ≤ s there is an I with i ∈ I and aI �= 0.
2. Equation3 has only finitely many solutions in N.

Proof (2) ⇒ (1) is trivial. For (1) ⇒ (2), suppose there are infinitelymany solutions
in N. Then there is a solution in N

∗ with at least one xi infinite. Let I be a subset of
{1, . . . , s}with aI > 0. Then aI∏

i∈I xi
is a positive infinitesimal. It follows that a∅ is the

sum of one or more positive infinitesimals and zero or more positive real numbers,
which is impossible. �
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Now, let

Cs =
{∑

I

aI
∏

i∈I
ni

: ni ∈ N

}

,

the set of real numbers a∅ which can occur in Eq.3 with positive integer solutions.
For the next result we add the condition that the coefficients aI only depend on the

cardinality of I , so they do not depend on rearrangements of the variables x1, . . . , xs .

Theorem 3.2 The set {0} ∪ C1 ∪ · · · ∪ Cs is compact.

Proof Let x = ∑

I

aI∏

i∈I
ni

∈ Cs
∗ . We may suppose that ni is finite for i ≤ r , ni infinite

otherwise. Then c = x◦ = 0 if r = 0, otherwise

c =
∑

J

aJ
∏

i∈ j
ni

where the sum ranges over nonempty subsets J of {1, . . . , r}, so c ∈ Cr by the
condition on aI . Either way, c ∈ {0} ∪ C1 ∪ · · · ∪ Cs , proving the theorem. �

3.3 A Theorem of Lagarias

We now consider the case when solutions are allowed to be negative. Following
Lagarias [8] Consider the following special case of the generalized Znám equation,

c(1/x1 + · · · + 1/xs) + b/x1x2 · · · xs = a (4)

where a, b, c ∈ Z
#, c ≥ 1,and gcd(b, c) = 1.

Straightforward examination of Eq.4 with infinite values for some of the terms
xi will give us conditions under which this equation has infinitely many solution.

So suppose Eq.4 has a solution x1, . . . , xs , xi ∈ Z
#∗ , with one or more infi-

nite values. We can suppose that xi is finite for i ≤ r , xi infinite otherwise. Since
c(1/xr+1 + · · · + 1/xs) ≈ b/x1x2 · · · xs ≈ 0, and c(1/x1 + · · · + 1/xr ) is standard,
we have

c(1/x1 + · · · + 1/xr ) = a, and

c(1/xr+1 + · · · + 1/xs) = − b/x1x2 · · · xs . (5)

From (5), c(
∏

i>r
xi )(

∑

i>r

1
xi

) = −b/
∏

i≤r
xi and (

∏

i>r
xi )(

∑

i>r

1
xi

) ∈ Z
∗ , so c and

∏

i≤r
xi di-

vide b; therefore,
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c = 1 and b = b′ ∏

i≤r

xi for some b′ ∈ Z
# (6)

If d = gcd(x j , xk) is infinite for some r < j < k ≤ s then

0 ≈ −b′/d =
( ∏

i>r,i �=k

xi

)( xk
d

)( ∑

i>r

1

xi

)

∈ Z
∗ , (7)

but since b′/xk �= 0, this is a contradiction; therefore,

x j , xk have no infinite common divisors, r < j �= k ≤ s (8)

In particular, |xr+1|, . . . , |xs | are distinct.
Since |a| = | ∑

i≤r

1
xi

| ≤ ∑

i≤r
| 1
xi

| ≤ r ,

If |a| = r then x1 = x2 = · · · = xr = sign(a) = ±1 (9)

If r = s − 1, ie only xs is infinite, then from (5) 1/xs = −b/
∏

i≤s
xi , or b = − ∏

i<s
xi .

Combined with (9) we get

If |a| = r = s − 1 then x1 = x2 = · · · = xr = sign(a) = ±1

and b = −(sign(a)s−1)

Note that if |a| = s − 1 then s − 1 = |a| ≤ r ≤ s − 1; it follows:

If |a| = s − 1 then x1 = x2 = · · · = xr = sign(a) = ±1

and b = −(sign(a)s−1)
(10)

With the aid of transfer and Lemma4.1 we can combine results (6), (8), and (10)
into the following theorem.

Theorem 3.3 Let a, b, c ∈ Z
# with c ≥ 1 and gcd(b, c) = 1. If Eq.4 has infinitely

many integer solutions, then:

(i) c = 1;
(ii) Either (a) |a| = s − 1 and b = −(sign(a)s−1), or (b) |a| < s − 1 and b is

arbitrary;
(iii) There is no sequence {(xn1 , xn2 , . . . , xns )}n of solutions of Eq.4 such that

limn→∞ |xni | = ∞ for every i;
(iv) There is no sequence {(xn1 , xn2 , . . . , xns )}n of solutions of Eq.4 such that for

some j �= k, limn→∞ gcd(|xnj |, |xnk |) = ∞;
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(v) For some a1, . . . , ar , r < s, and every N ∈ N, there is a solution of Eq.4
with xi = ai for i ≤ r , and |xi | > N for r < i ≤ s. For any such a1, . . . , ar ,∑

i≤r
1
ai

= a and
∏

i≤r ai divides b.

Parts (i) and (ii) of Theorem3.3 comprise the main result of Lagarias [8]. That
paper proves a converse, that under conditions (i) and (ii) there are infinitely many
solutions to Eq.4. This is easy to see by observing that for every a, b, c, and s
satisfying (i) and (ii), one of the following is a solution (where σ = sign(a), H is
infinite, and M, N , and P are nonzero integers with b = MN + MP + N P):

(σ, . . . , σ
︸ ︷︷ ︸

s−1

, H)

(σ, . . . , σ
︸ ︷︷ ︸

s−k

, 1,−1, 1,−1, . . . , 1,−1
︸ ︷︷ ︸

k−2

,±H,∓(H + b))

(σ, . . . , σ
︸ ︷︷ ︸

s−k

, 1,−1, 1,−1, . . . , 1,−1
︸ ︷︷ ︸

k−3

,±M,±N ,±P)
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4 Appendix: Nonstandard Extensions of R

In this section we review the properties we need for the models used in this paper.
Let

R = 〈R,+,×, 0, 1,≤, . . . 〉

be the real numbers considered as a first order structure in a countable language L
extending the language of ordered fields. Consider a non-Archimedean ordered field
extension:

R∗ = 〈 R
∗ ,+,×, 0, 1,≤, . . . 〉

(By convention, we don’t put stars on the extensions of the usual operation symbols.)
Since R

∗ is non-Archimedean, it has a positive infinitesimal ε, ie ε > 0 and
−1/n < ε < 1/n for each n ∈ N

+.
Note 1/ε is larger in absolute value than every positive integer N . Denote by

Fin( R
∗ ) the finite elements of R

∗ , x ∈ Fin( R
∗ ) ⇐⇒ (∃N ∈ N)[ −N < x < N ]

For p, q ∈ R
∗ write p ≈ q if p − q is an infinitesimal.

Here are some useful properties of arithmetic in the ordered field R∗ . (The proofs
of these, and all other results in this section, can be found in any basic introduction to
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Fig. 1 The standard part map

nonstandard analysis, but are also very easy exercises not requiring anymathematical
logic.)

1. ≈ is an equivalence relation on R.
2. The finite and infinitesimal elements of R

∗ are subrings of R
∗ .

3. The infinitesimals form a maximal multiplicative ideal in Fin( R
∗ ).

4. Denote by st(x) or x◦ the quotient map from Fin( R
∗ ) onto R (sometimes called

the standard part map).
5. For x ∈ R, st−1(x) = monad(x) (see Sect. 2). Fin( R

∗ ) = ⋃
x∈R

monad(x).
6. st is a ring homomorphism, x◦ ≈ x for all x ∈ Fin( R

∗ ), and x◦ = x for all x ∈ R.
7. The order does not strictly respect ≈, since if x ′ ≈ x < y ≈ y′ it might happen

that x ′
≮ y′ (even x ′ > y′), but it is the case that if x ≤ y then x ′ < y′ or x ′ ≈ y′,

which we write x ′ � y′.
8. If x � y, x ≈ x ′, and y ≈ y′ then x ′ � y′.
9. If x � y, x ≈ x ′, and y ≈ y′ then x ′

� y′.

The standard part map is illustrated in Fig. 1 (where in the picture r is standard
and s ≈ r ).

The properties above apply to any non-Archimedean ordered field extension of
R. It will be convenient for this paper to assume that our extension satisfies some
additional properties.

First, the structure R should contain enough additional predicates so that all the
sets of interest to us are first-order definable. To that end we will assume that the
languageL contains unarypredicate symbols forN, Z

#, Ar , Br aswell as symbols for
any other mathematical elements that appear in the paper. In particular, when proving
a result like Lemma3.1 we assume that there are symbols ai for the corresponding
real constants appearing in the statement of the lemma. More subtly, when proving
Theorem2.2we assume that there is a function symbol in the language for the function
a(i) = ai from N to R.

Elements of R, as well as any constant, set, or function which is definable in R,
will be called standard.
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If E is a definable set inR, write E∗ for the corresponding set in R∗ , e.g.:

As
∗ =

{
1

x1
+ · · · + 1

xs
: xi ∈ Z

#∗
}

Next, we assume that R∗ is an elementary extension ofR. Elementary extension
means that any first-order statement about elements ofR is true in R∗ if and only if
it is true inR; in nonstandard analysis this is usually called the transfer property. In
particular, R∗ is an ordered field, and finite Boolean equations and inequalities that
hold for definable subsets of R hold as well for the stars of these sets. Moreover, if
A is a finite definable subset of R then A∗ = A.

Finally, it will be convenient to assume that the extension R∗ satisfies properties
such as the following: if A ⊆ N

n is definable inR then

A is infinite ⇐⇒ A∗ has elements with infinite components.

To that end we assume that the structure R∗ is an ℵ1-saturated elementary exten-
sion of R (see, for example, [1] or [6]). It is a basic and straightforward result in
Model Theory that such ℵ1-saturated elementary extensions exist.

ℵ1-saturation of R∗ and transfer together imply the following useful property:

Lemma 4.1 1. If an is a definable standard sequence then
limn→∞ an = ∞ if and only if for any infinite M, aM is infinite.

2. A definable set A ⊆ R contains arbitrarily large numbers if and only if A∗ con-
tains an infinite number.

3. A definable subset A ⊆ N is infinite if and only if A∗ contains an infinite number.
4. A definable subset A ⊆ N

n is infinite if and only if for some 〈a1, . . . , an〉 ∈ An∗
and i ≤ n, ai is infinite.

In the framework of nonstandard analysis the second property in Lemma4.1,
together with its generalizations, is called overflow.

We conclude this appendix with some basic topology.

Lemma 4.2 Let U ⊂ R be definable. The following are equivalent:

1. U is open.
2. For every x ∈ U, monad(x) ⊆ U∗ .
3. st−1[U ] ⊆ U∗ .

Lemma 4.3 Let K ⊂ R be definable. The following are equivalent:

1. K is compact.
2. For every x ∈ K∗ there is a y ∈ K with x◦ = y.
3. K∗ ⊆ st−1[K ].



Egyptian Fractions, Nonstandard Extensions of R … 207

References

1. Arkeryd, L.O., Cutland, N.J., Henson, C.W. (Eds.), Nonstandard Analysis: Theory and Appli-
cations, Springer Netherlands, Nato Science Series C, 493, 1997.

2. Brenton, L., and Vasiliu, A., Znam’s Problem, Mathematics Magazine, 2002, 3–11.
3. Curtiss, D. R., On Kellogg’s Diophantine Problem, Amer. Math. Monthly, 29, 1922, 380–387.
4. Erdös, P., On a Diophantine equation, Matematikai Lapok., 1950, 192–210.
5. Graham, R. L., On finite sums of unit fractions, Proc. London Math. Soc., 1964, 193–207.
6. Keisler, H.J., Foundations of infinitesimal calculus, Prindle Weber & Schmidt 1976, 214pp.

Available online at http://www.math.wisc.edu/~keisler/foundations.pdf.
7. Kellogg, O. D., On a Diophantine problem, Amer. Math. Monthly 28, 1921, 300–303.
8. Lagarias, J. C., Cyclic systems of simultaneous congruences, Int. J. Number Theory 6, 2010,

no. 2, 219–245.
9. Nathanson, M. B.,Weighted real Egyptian numbers, Functiones et Approximatio Commentarii

Mathematici, 2018.
10. Sierpinski, W., Sur les décompositions de nombres rationnels en fractions primaires, 1956.

http://www.math.wisc.edu/~keisler/foundations.pdf


A Dual-Radix Approach to Steiner’s
1-Cycle Theorem

Andrey Rukhin

Abstract This article presents three algebraic proofs of Steiner’s 1-Cycle Theorem
[14] within the context of the (accelerated) 3x + 1 dynamical system. Furthermore,
under an assumption of an exponential upper-bound on the iterates, the article demon-
strates that the only 1-cycles in the (accelerated) 3x − 1 dynamical system are (1)
and (5, 7).

1 Introduction

Within the context of the 3x + 1 Problem, Steiner’s 1-cycle Theorem [14] is a result
pertaining to the non-existence of 1-cycles (or circuits): for all a, b ∈ N, Steiner
shows that a rational expression of the form

2a − 1

2a+b − 3b
(1)

does not assume a positive integer value except in the case where a = b = 1. In the
proof, the author appeals to the continued fraction expansion of log2 3, transcendental
number theory, and extensive numerical computation (see [13]). This argument serves
as the basis for demonstrating the non-existence of 2-cycles in [12], and the non-
existence of m-cycles in [13] where m ≤ 68.

The result has been strengthened in [4] as follows: Let C denote a cycle in the
(accelerated) 3x + 1 dynamical system T : 2Z + 1 → 2Z + 1, defined by the map-
ping

T (x) = 3x + 1

2e(x)

This work was supported by the Naval Surface Warfare Center Dahlgren Division’s In-House
Laboratory Independent Research Program.

A. Rukhin (B)
Naval Surface Warfare Center, Dahlgren, VA 22448, USA
e-mail: andrey.rukhin@navy.mil

© Springer Nature Switzerland AG 2020
M. B. Nathanson (ed.), Combinatorial and Additive Number Theory III,
Springer Proceedings in Mathematics & Statistics 297,
https://doi.org/10.1007/978-3-030-31106-3_16

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31106-3_16&domain=pdf
mailto:andrey.rukhin@navy.mil
https://doi.org/10.1007/978-3-030-31106-3_16


210 A. Rukhin

where e(x) is the 2-adic valuation of the quantity 3x + 1. If e(x) ≥ 2, the element
x is said to be a descending element in C , and we define δ(C) to be the number
of descending elements in C . Theorem 1.1 in [4] demonstrates that the number of
cycles satisfying the inequality δ(C) < 2 log (|C |) is finite; Steiner’s result addresses
the case where d(C) = 1 by showing that the only (accelerated) cycle with a single
descending element is the cycle including 1.

However, the author in [9] declares that the “most remarkable thing about
[Steiner’s theorem] is the weakness of its conclusion compared to the strength of
the methods used in its proof." This article offers alternative proofs of this theorem
by demonstrating the non-integrality of the maximal element of a 1-cycle

(2a+1 + 1)3b−1 − 2a+b

2a+b − 3b
= 2 · 3b−1

(
2a − 1

2a+b − 3b

)
− 1

within a variety of algebraic settings. Assuming the upper bound on periodic iterates
established in [2], these proofs exploit the fact that the denominator in the above
expression is coprime to both 2 and 3. Based on the results in [11], the first proof
appeals to elementary modular arithmetic, the second proof exploits identities on
weighted binomial coefficients and the Fibonacci numbers, and the third proof ana-
lyzes the 2-adic and 3-adic digits of the values in a 1-cycle.

The article concludes with a similiar analyses of the existence of 1-cycles within
the (accelerated) 3x − 1 dynamical system: we will demonstrate that, under the
assumption of an exponential upper bound on the iterate values of a periodic orbit,
the only 1-cycles are (1) and (5, 7).

2 Overview

2.1 Notation

This manuscript inherits all of the notation and definitions established in [11],
which we summarize here. Let τ ∈ N, and let e, f ∈ N

τ where e = (e0, . . . , eτ−1)

and f = ( f0, . . . , fτ−1). For each u ∈ Z, define Eu = ∑
0≤w<u ew mod τ and Eu =∑

0≤w<u e(τ−1−w) mod τ ; we will define Fu and Fu in an analogous manner with the
elements of f .

For a positive integer b, we will write [b] = {1, . . . , b} and [b) = {1, . . . , b − 1};
furthermore, we will write [b]0 = [b] ∪ {0} and [b)0 = [b) ∪ {0}.

For any integer a and positive base b (b ≥ 1), let [a]b denote the element1 of [b)0
that satisfies the equivalence [a]b ≡ a mod b. We will also write [a]−1

b to denote the
element in [b)0 that satisfies the equivalence [a]b [a]

−1
b ≡

b
1.

1This element is also known as the standard (or canonical) representative of the equivalence class
a mod b.
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For themaximal iterate value nmax within a 1-cycle, wewill defineμτ = nmax mod
3τ and λτ = nmax mod 2e+τ−1 for e, τ ∈ N

We will write (−)u to denote the quantity (−1)u for each u ∈ N0.

2.2 Argument Overview

The dual-radix approach to the non-existence of circuits is based upon the following
premises:

i. We will establish an upper bound of 3τ for a potential, periodic iterate value over
N for the (accelerated) 3x + 1 Problem. In this context, the authors in [2] have
demonstrated that the maximal iterate nmax within a periodic orbit admits the
upper bound

nmax <

(
3
2

)τ−1

1 − 3τ

2Eτ

≤ τC

(
3

2

)τ−1

= o
(
3τ−1

)
(2)

for some effectively computable constant C (by applying the result in [1]). A
recent upper bound on C is available in [10], in which the author establishes the
inequality2 ∣∣−Eτ log 2 + τ log 3

∣∣ ≥ E
−13.3
τ ; (3)

consequently, assuming 2Eτ > 3τ , we can bound3 the denominator in (2) from

below 1 − 3τ

2Eτ
≥ E

−13.3
τ

2 . According to [5], for a periodic orbit over N of length

Eτ , the ratio
Eτ

τ
satisfies the inequality

Eτ

τ
≤ lg

(
3 + 1

nmin

)
≤ 2;

numerical computation yields nmax <
(
3
2

)τ−1
2 · (2τ )13.3 < 3τ when τ ≥ 103.

Thus, if nmax > 3τ and nmax ∈ N, then τ < 103. However, the author in [7]
demonstrates that the length of a non-trivial periodic orbit (excluding 1) over
N must satisfy the inequality 2τ ≥ Eτ ≥ 35, 400.
Thus, if nmax ∈ N, then nmax < 3τ < 2Eτ , and the equalities nmax = μτ = λτ

must hold.
ii. Within a circuit of order τ in the (accelerated) 3x + 1 dynamical system, the

maximal element equals

2In their notation, we set u0 = 0, u1 = −Eτ , and u2 = τ .
3We can shed the logarithms: when |w| < 1, the power series expansion of log(1 + w) =∑

u≥1(−1)u−1 wu

u yields | log(1 + w)| ≤ 2|w| when |w| ≤ 1
2 . See [6] (Corollary 1.6).
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(2e + 1)3τ−1 − 2e+τ−1

2e+τ−1 − 3τ
= 2 · 3τ−1

(
2e−1 − 1

2e+τ−1 − 3τ

)
− 1

for some e ∈ N (see [3]).
When τ = 1, the left-hand side the equality above satisfies the inequality 1

2e−3 ≤
1; the maximal iterate equals 1 when e = 2, and the ratio in (1) equals 1.
When τ > 1, we will analyze the difference of canonical residues

μτ = [
(2e + 1)3τ−1 − 2e+τ−1

] [2e+τ−1]−1 mod 3τ

and
λτ = [

(2e + 1)3τ−1 − 2e+τ−1
] [−3τ ]−1 mod 2Eτ ;

we will demonstrate the inequality μτ �= λτ (contradicting the assumption that
nmax = μτ = λτ as per above).
We will also perform similar analyses on the maximal element of a circuit within
the (accelerated) 3x − 1 dynamical system; we will show that, assuming4 the
inequality nmax < 2Eτ , a circuit over N exists if and only if either e = 1, or
τ = e = 2.

3 Circuits with the 3x + 1 Dynamical System

Throughout the remainder of the manuscript, unless otherwise stated, we assume
that

i. τ ∈ N with τ ≥ 2;
ii. f = (1, . . . , 1) ∈ N

τ ;
iii. e = (1, . . . , 1︸ ︷︷ ︸

τ−1

, e) for some e ∈ N; and

iv. a = (a0, . . . , aτ−1) ∈ {−1,+1}τ .
We begin with the following assumptions.

Assumption 3.1 Assume 3.1 and 3.3 from [11], and let a = 1τ . Let N = (2e + 1)
3τ−1 − 2e+τ−1, and let D = 2e+τ−1 − 3τ where D > 0.

Assume that

nmax = N

D
< min

(
3τ , 2Eτ

)
,

let μτ = nmax mod 3τ , and let λτ = nmax mod 2e+τ−1.

Under these assumptions, ifnmax ∈ N, then the chain of equalitiesnmax = μτ = λτ

holds.

4Appealing to a similar argument outlined above, this condition holds for finitely many τ for each
fixed e ∈ N.
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Our goal for the remainder of this subsection is to prove the following theorem.

Theorem 1 Assume 3.1.
We have the equalities

μτ =
⎧⎨
⎩
3τ−1 − 1 e ≡

2
0

3τ − 1 e ≡
2
1

when τ ≡
2
0, and

μτ =
⎧⎨
⎩
2 · 3τ−1 − 1 e ≡

2
0

3τ − 1 e ≡
2
1

when τ ≡
2
1.

Furthermore, when τ ≡
2
1 ≡

2
e − 1, then

λτ = 2e
(
2τ−1 − 1

3

)
+ 2e+τ−1 − 1

3
= (2τ − 1)2e − 1

3
.

For completeness, we have

λτ =
⎧⎨
⎩

(2τ−1−1)2e−1
3 e ≡

2
0

2e+τ−1 − 2e+1
3 e ≡

2
1

when τ ≡
2
0, and

λτ =
⎧⎨
⎩

(2τ −1)2e−1
3 e ≡

2
0

2e+τ−1 − 2e+1
3 e ≡

2
1

when τ ≡
2
1.However, in order to expedite the proofs, we exclude three out of the four

cases when the corresponding canonical 3-residue μτ is even (assuring the inequality
μτ �= λτ ). We exclude the remaining case with the following lemma.

Lemma 1 Assume that τ ≡
2
1 ≡

2
e − 1; furthermore, let μτ = 2 · 3τ−1 − 1, and

λτ = (2τ −1)2e−1
3 . Then, the inequality μτ �= λτ holds.

Proof Bywayof contradiction, assume that the natural number e satisfies the equality
2 · 3τ−1 − 1 = (2τ −1)2e−1

3 ; equivalently, we require that the equality 2 (3τ − 1) =
(2τ − 1)2e holds. However, we have that

2e−2 (2τ − 1) = 3τ − 1

2
≡
2

∑
0≤w<τ

3w ≡
2
1
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for all odd, positive τ . When e = 2, the value of τ must satisfy the equality 2 − 1
2τ =(

3
2

)τ ; however, this equality fails to hold for τ > 1. �

Lemma 1, Assumptions 3.1, and Theorem 1, along with the bounds provided in
[5, 7, 13], demonstrate the non-existence of circuits in the 3x + 1 dynamical system.

3.1 Elementary Modular Arithmetic

Our first proof of Theorem 1 appeals to elementary modular arithmetic.

Proof We will write

μτ ≡
3τ

ND−1 ≡
3τ

[
(2e + 1)3τ−1 − 2e+τ−1

] [
2e+τ−1

]−1 ≡
3τ

[[
2τ−1

]−1

31
+
[
2e+τ−1

]−1

31

]
3τ−1 − 1.

It follows that μτ ≡
3τ

3τ−1 (−)τ−1
[
1 + (−)e

]− 1. Thus, when e ≡
2
1, we have μτ =

3τ − 1 ≡
2
0. Similarly, when e ≡

2
0 and τ ≡

2
0, we have μτ = 3τ−1 − 1 ≡

2
0. When

τ ≡
2
1 ≡

2
e − 1, we arrive at the equality μτ = 2 · 3τ−1 − 1.

For the 2-remainder, we begin by writing

λτ ≡
2e+τ−1

ND−1 ≡
2e+τ−1

[
(2e + 1)3τ−1 − 2e+τ−1

] [−3τ
]−1 ≡

2e+τ−1
2e [−3]−1

2τ−1 + [−3]−1 .

When τ ≡
2
1 ≡

2
e − 1, we have

[−31
]−1
2τ−1 = 2τ−1−1

3 and
[−31

]−1
2e+τ−1 = 2e+τ−1−1

3 .

As

2e
(
2τ−1 − 1

3

)
+ 2e+τ−1 − 1

3
= 2

(
2e+τ−1

)− 2e − 1

3
< 2e+τ−1,

we arrive at the chain of equalities λτ = 2e
(
2τ−1−1

3

)
+ 2e+τ−1−1

3 = (2τ −1)2e−1
3 . �

3.2 Weighted Binomial Coefficients

The previous approach is apparently limited; it is unclear to the author how to extrap-
olate this approach to admissible sequences of order τ with an arbitrary 2-grading
(e0, . . . , eτ−1). In this subsection, we introduce a more robust approach to identi-
fying the 3-residues and 2-remainders of the iterates of an admissible cycle in a
(3, 2)-system. Moreover, we do so by connecting the residues of (3, 2)-systems to
the well-known Fibonacci sequence by way of elementary equivalence identities,
which we establish first.
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Lemma 2 For a, b, z ∈ N, the equivalence

( ∑
0≤w<b

zw

)a

≡
zb

∑
0≤w<b

(
a − 1 + w

w

)
zw

holds.

Proof Define Sb(z) = ∑
0≤w<b z

w, and define Ta,b(z) = ∑
0≤w<b

(a−1+w

w

)
zw. The

proof is by induction on b.
When b = 1, we arrive at the equivalence 1a ≡

z

(a−1
0

)
for all a, z ∈ N.

Assume the claim holds for b ∈ N. The identity Sb+1(z) = zSb(z) + 1 allows the
chain of equivalences

[
Sb+1(z)

]a ≡
zb+1

∑
0≤y<b+1

(
a

y

)
zy [Sb(z)]

y ≡
zb+1

(
a

0

)
z0 +

∑
1≤y<b+1

(
a

y

)
zyTy,b(z).

We will recast the coefficient of z0 as
(a−1

0

)
, and we will write

∑
1≤y<b+1

(
a

y

)
zyTy,b(z) =

∑
1≤y<b+1

∑
0≤u<b

zu+y

(
a

y

)(
y − 1 + u

u

)
.

For each w ∈ [b + 1), the coefficient of zw is
∑

1≤y≤w

(a
y

)(
w−1
w−y

) = ∑
0≤y<w

( a
w−y

)
(
w−1
y

)
, which equals

(a−1+w

w

)
as per theVandermonde–Chu identity. �

Identity (Fibonacci Identity)Let F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.
The equality Fn = ∑

0≤k<n

(n−1−k
k

)
holds.

We will use these identities to establish the remainder approximation functions.

Lemma 3 Define the map Mτ : Nτ × N
τ → Z to be

Mτ = Mτ (e, a) =
∑

0≤w<u

(−)Ew+13waw

∑
0≤y<τ−w

(
Ew+1 − 1 + y

y

)
3y,

and define the map �τ : Nτ × N
τ → Z to be

�τ = �τ (e, a) =
∑

0≤w<τ

(−)w2Ewaτ−1−w

∑
0≤y<ηw

(
w + y

y

)
4y,

where ηw =
⌈

Eτ−w

2

⌉
.

Then, the equivalences Mτ ≡
3τ

μτ and �τ ≡
2Eτ

λτ hold.
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Proof We will make use of the following elementary identities involving Euler’s
totient function φ: we have 3φ(2) − 1 = 2 and 2φ(3) − 1 = 3. In light of these identi-
ties, we will appeal to Lemma 2: for a, b ∈ N, we will write

[
2a
]−1 ≡

3b

⎛
⎝1 − 3

φ(2)
⌈

b
φ(2)

⌉

2

⎞
⎠

a

≡
3b

(−)a

⎛
⎝ ∑

0≤y<b

3y

⎞
⎠

a

≡
3b

(−)a
∑

0≤y<b

(
a − 1 + y

y

)
3y,

and

[
3b
]−1 ≡

2a

⎛
⎝1 − 2

φ(3)
⌈

a
φ(3)

⌉

3

⎞
⎠

b

≡
2a

(−)b

⎛
⎝ ∑

0≤y<	 a
2 


4y

⎞
⎠

b

≡
2a

(−)b
∑

0≤y<	 a
2 


(
b − 1 + y

y

)
4y .

We derive the 3-remainder approximation function as follows:

μτ ≡
3τ

[
ND−1

]
3τ ≡

3τ

∑
0≤w<τ

3w2Eτ−1−waw

[
2Eτ

]−1

≡
3τ

∑
0≤w<τ

(−)Ew+13waw

∑
0≤y<τ−w

(
Ew+1 − 1 + y

y

)
3y .

We derive the 2-remainder approximation function analogously:

λτ ≡
2Eτ

∑
0≤w<τ

3w2Eτ−1−waw

[−3τ
]−1 ≡

2Eτ

∑
0≤w<τ

(−)w2Ewaτ−1−w

∑
0≤y<ηw

(
w + y

y

)
4y .

�

It will prove useful to re-index these double-sums: for example, in the 3-residue
approximation, for each fixed w ∈ [τ )0 the coefficient of 3

w is

Sw =
∑

0≤y≤w

(−)Ey+1

(
Ey+1 − 1 + w − y

w − y

)
ay;

thus, we can write Mτ = ∑
0≤w<τ 3

wSw.

The following example illustrates the connection between an orbit over N within
the 3x + 1 dynamical system and the Fibonacci Sequence.

3.2.1 Example: The (1, 4, 2)-Orbit in the 3x + 1 Dynamical System

For this example, define ey = 2 and ay = 1 for each y ∈ [τ )0; thus, the sum
Ey+1 = 2(y + 1) ≡

2
0. We can express the 3-remainder approximation as Mτ =
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∑
0≤w<τ 3

wSw, where

Sw :=
∑

0≤y≤w

(−)2(y+1)

(
2(y + 1) − 1 + w − y

w − y

)
=

∑
0≤y≤w

(
2w + 1 − y

y

)
.

The sequence (Sw)w≥0 is the even-indexed bisection of the Fibonacci sequence
(Fw)w≥0 as per Identity 1.3.1; we have Sw = F2(w+1) for w ≥ 0. It is known5 that
this bisection satisfies the recurrence6 F2w = 3F2(w−1) − F2(w−2) forw ≥ 0; thus, we
will write Mτ = ∑

0≤w<τ 3
wSw = ∑

0≤w<τ 3
wF2(w+1), and we continue by writing

∑
0≤w<τ

3w
[
3F2w − F2(w−1)

] =
∑

0≤w<τ−1

3w+1F2w + 3τ F2(τ−1) − F−2

−
∑

1≤w<τ

3wF2(w−1) = 3τ F2(τ−1) + 1.

For the 2-remainder approximation, we have the equalities �τ = ∑
0≤w<τ

4w
∑

0≤y≤w

(
w

y

)
(−1)y = ∑

0≤w<τ 4
w(1 − 1)w = 1 for τ ∈ N.

The Fibonacci sequence appears within the 2-remainder approximation for the
following proof of Theorem 1. In order to expedite the derivation of this 2-remainder,
we will first prove the following lemma.

Lemma 4 For a ∈ N0, let Fa denote the ath Fibonacci number; furthermore, for k ∈
N0, define σ (a, k) = 2

(a+1
k

)− (a
k

)
, and define S (k) = ∑

0≤i<k σ (2k − i, i + 1).
For k ∈ N0, the equality S (k) = F2k+2 + 2F2k+1 − 3 holds.

Proof Assume the conditions within the statement of the lemma. For k = 0, we have
S (k) = 0 = F2 + 2F1 − 3. When k > 0, we will write

S (k) =
∑
0≤i<k

[
2

(
2k − i + 1

i + 1

)
−
(
2k − i

i + 1

)]

=
∑

1≤i<k+1

[
2

(
2k + 2 − i

i

)
−
(
2k + 1 − i

i

)]

= 2

[
F2k+3 −

(
2k + 2

0

)
−
(
k + 1

k + 1

)]
−
[
F2k+2 −

(
2k + 1

0

)]

= F2k+2 + 2F2k+1 − 3.

�

We proceed with the proof of the theorem.

5OEIS:A001906
6We assume the standard definition F−u = (−)u−1Fu for u ∈ N.
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Proof First, we will demonstrate the equality Mτ = −1 + 3τ−1 (−)τ−1
[
1 + (−)e

] ;
afterwards, when assuming τ ≡

2
1 ≡

2
e − 1, we will show that

�τ = 2e
(
2τ−1 − 1

3

)
+ 2e+τ−1 − 1

3
+ 2e+τ−1 (Fτ−2 − 1) .

In circuits, we have

Ew =
{

w w < τ

e + τ − 1 w = τ ,

for w ∈ [τ ). Thus, when w < τ − 1, we have

Sw =
∑

0≤y≤w

(−)Ey+1

(
Ey+1 − 1 + w − y

w − y

)

=
∑

0≤y≤w

(−)y+1

(
w

w − y

)

= −
∑

0≤y≤w

(−)w−y

(
w

y

)

= −(1 − 1)w

=
{
0 w > 0

−1 w = 0.
;

when w = τ − 1 ≥ 1, we have

Sτ−1 =
∑

0≤y≤τ−1

(−)Ey+1

(
Ey+1 − 1 + τ − 1 − y

τ − 1 − y

)

=
∑

0≤y≤τ−2

(−)y+1

(
τ − 1

τ − 1 − y

)
+ (−)e+τ−1

(
e + τ − 2

0

)

= −(1 − 1)τ−1 + (−)τ−1

(
τ − 1

τ − 1

)
+ (−)e+τ−1

(
e + τ − 2

0

)

= (−)τ−1
[
1 + (−)e

]
.

It follows that Mτ = −1 + 3τ−1 (−)τ−1
[
1 + (−)e

]
. Thus, when e ≡

2
1, we have

μτ = 3τ − 1. Similarly, when e ≡
2
0 and τ ≡

2
0, we have μτ = 3τ−1 − 1.

When τ ≡
2
1 ≡

2
e − 1, we arrive at the equality μτ = 2 · 3τ−1 − 1. Continuing

with these parity conditions, we let Tw denote the sum
∑

0≤y<
⌈

Eτ−w
2

⌉ (w+y
y

)
4y . We

write



A Dual-Radix Approach to Steiner’s 1-Cycle Theorem 219

�τ =
∑

0≤w<τ

(−)w2EwTw

= T0 +
∑

1≤w<τ

(−)w2EwTw

=
∑

0≤y< e+τ−1
2

(
y

y

)
4y +

∑
1≤w<τ

(−)w2Ew

(
w

0

)
+

∑
1≤w<τ

(−)w2Ew

[
Tw −

(
w

0

)]
.

We proceed with the first two sums in the final expression. When e + τ − 1 ≡
2
0, we

will write

T0 =
∑

0≤y< e+τ−1
2

(
y

y

)
4y = 2e+τ−1 − 1

3
.

In circuits, we have Ew = e + w − 1 for w ∈ [τ ); thus, when τ − 1 ≡
2
0, we will

also write

∑
1≤w<τ

(−)w2Ew

(
w

0

)
≡

2e+τ−1
2e

∑
0≤w<τ−1

(−)w+12w

≡
2e+τ−1

2e
∑

0≤w< τ−1
2

[
22w+1 − 22w

]

≡
2e+τ−1

2e
∑

0≤w< τ−1
2

4w

≡
2e+τ−1

2e
(
2τ−1 − 1

3

)
.

What remains to be shown is that
∑

1≤w<τ (−)w2Ew
[
Tw − (

w

0

)] ≡
2e+τ−1

0. To this end,

for each k ∈ N0, we will define

�̂2k+1 =
∑

1≤w<2k−1

(−)w2w−1
∑

1≤y<	 2k+1−w
2 


(
w + y

y

)
4y;

we will show that

∑
1≤w<τ

(−)w2Ew

[
Tw −

(
w

0

)]
= 2e�̂τ = 2e+τ−1 (Fτ−2 − 1) .

Assume the notation from the statement of Lemma 4. We will demonstrate the
chain of equalities

�̂2k+1 = �̂2k−1 + 4k−1S (k − 1) = 4k (F2k−1 − 1)
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inductively for k ∈ N. Firstly, we have �̂3 = 0 + 40S (0) = 40 (F1 − 1) = 0 for
k = 1. Assuming the inductive claim, we proceed with the chain of equalities for
k ≥ 2:

�̂2k+1 =
∑

1≤w<2k−1

(−)w2w−1
∑

1≤y<	 2k+1−w
2 


(
w + y

y

)
4y = �̂2k−1 + Ak,

where

Ak =
∑

1≤w<2k−1

(−)w2w−1

(
w + ⌈

2k−1−w
2

⌉
⌈
2k−1−w

2

⌉
)
4	 2k−1−w

2 
.

The sum

Ak =
∑

1≤w<2k−1

(−)w2w−1

(
k + w + ⌈−1−w

2

⌉
k + ⌈−1−w

2

⌉
)
4k+	−1−w

2 


=
∑

1≤w< 2k−1
2

[
22w−1

(
k + w

k − w

)
− 22w−2

(
k − 1 + w

k − w

)]
4k−w

= 4k−1
∑

1≤w<k

[
2

(
k + w

k − w

)
−
(
k − 1 + w

k − w

)]

= 4k−1
∑

1≤w<k

[
2

(
2k − w

w

)
−
(
2k − 1 − w

w

)]

= 4k−1
∑

0≤w<k−1

[
2

(
2k − 1 − w

w + 1

)
−
(
2k − 2 − w

w + 1

)]

= 4k−1S (k − 1) .

Thus, with Lemma 4 and the inductive hypothesis, we can write

�̂2k+1 = �̂2k−1 + 4k−1S (k − 1) = 4k−1 [F2k−3 + F2k−2 + 3F2k−1 − 4
] = 4k

[
F2k−1 − 1

]

as required. Consequently, when τ ≡
2
1 ≡

2
e − 1, the 2-remainder approximation

�τ = 2e
(
2τ−1 − 1

3

)
+ 2e+τ−1 − 1

3
+ 2e+τ−1 (Fτ−2 − 1

) ≡
2e+τ−1

2e
(
2τ−1 − 1

3

)
+ 2e+τ−1 − 1

3
.

�

Note that the approach within this subsection exploits the serendipitous pair of
identities 3φ(2) − 1 = 2 and 2φ(3) − 1 = 3. In general, Euler’s Theorem allows one
to write mφ(l) − 1 = [−l]−1

mφ(l) l, and lφ(m) − 1 = [−m]−1
lφ(m) m; however, for arbitrary,

coprimem and l exceeding 1, the terms [−l]−1
mφ(l) and [−m]−1

lφ(m) may prevent one from
executing the approach above in an analogous manner.
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3.3 Dual-Radix Modular Division

The approach in this section, based on the work in [11], demonstrates a different
method of proving Theorem 1 using dual-radix modular division.

Proof Under the assumption that

ew =
{
1 w ∈ [τ − 1)0
e w = τ − 1,

we have the following initial conditions for the recurrence in Theorem 4.4 in [11].
For v ∈ [τ )0, the 3-adic digit dv,0 ≡

3
[2ev ]−1; thus, we have

dv,0 =
{
2 v ∈ [τ − 1)0
1 + e mod 2 v = τ − 1;

furthermore, the 2-adic digit bv,0 ≡
2ev−1

[−3]−1; thus, we have

bv,0 =
{

22	 e
2
−1
3 v = 0

1 v ∈ [τ − 1] .

For u > 0, the equivalences

dv,u ≡
3

[
2ev
]−1 [

dv+1,u−1 − bv+u,u−1
]

and
bv,u ≡

2ev−1−u
[−3]−1

[
dv−u,u−1 − bv−1,u−1

]

yield, by induction on u, the equalities dv,u = 2[2 − 1] = 2 for v < τ − 1 − u, and
bv,u = 1[2 − 1] = 1 for v > u.

Firstly, we will identify the 3-adic digits of the 3-remainder of n0 = nmax. When
e ≡

2
1,wehave the initial conditiondτ−1,0 = 2.Thus, foru ∈ [τ ), the digitdτ−1−u,u ≡

3

[2eτ−1−u ]−1
[
dτ−u,u−1 − bτ−1,u−1

] ≡
3
2 [2 − 1] ≡

3
2, and thus we have d0,τ−1 = 2.

Consequently, we have μτ = ∑
0≤w<τ 3

wd0,w = 3τ − 1.

When e ≡
2
0, we have the initial condition dτ−1,0 = 1, and dτ−2,1 ≡

3

[
21
]−1

[
dτ−1,0 − bτ−1,0

] ≡
3

[
21
]−1

[1 − 1] ≡
3
0. By induction, for u ∈ [τ ) where u ≡

2
0, the

digit
dτ−1−u,u ≡

3

[
2eτ−1−u

]−1 [
dτ−u,u−1 − bτ−1,u−1

] ≡
3
2 [0 − 1] ≡

3
1.
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For u ≡
2
1, the digit dτ−1−u,u ≡

3
[2eτ−1−u ]−1

[
dτ−u,u−1 − bτ−1,u−1

] ≡
3
2 [1 − 1] ≡

3
0.

Thus, the digit d0,τ−1 = τ mod 2. Thus, when τ ≡
2
0, the 3-adic remainder μτ =∑

0≤w<τ−1 3
w(2) + 3τ−1(0) = 3τ−1 − 1; and, when τ ≡

2
1, the 3-adic residue μτ =∑

0≤w<τ−1 3
w(2) + 3τ−1(1) = 2 · 3τ−1 − 1.

We will now determine the 2-adic digits of n when τ ≡
2
1 ≡

2
e − 1: the ini-

tial 2-adic digit b0,0 = 2e−1
3 , and the digit b0,1 ≡

2eτ−2
[−3]−1

[
dτ−1,0 − bτ−1,0

] ≡
21

(1) ·
[1 − 1] ≡

21
0. For u ∈ [τ ) where u ≡

2
0, we have b0,u ≡

2eτ−1−u
[−3]−1

[
dτ−u,u−1 − bτ−1,u−1

] ≡
21

(1) · [0 − 1] ≡
21
1, and, when u ≡

2
1, we have b0,u ≡

2eτ−1−u

[−3]−1
[
dτ−u,u−1 − bτ−1,u−1

] ≡
21

(1) · [1 − 1] ≡
21
0. Thus, when τ ≡

2
1 ≡

2
e − 1, the

2-adic remainder

λτ = b0,0 +
∑

1≤u<τ

2Eub0,u

= 2e − 1

3
+ 2e

∑
2≤u<τ

2u−1[u ≡
2
0]

= 2e − 1

3
+ 2e+1

∑
0≤u<τ−2

2u[u ≡
2
0]

= 2e − 1

3
+ 2e+1

∑
0≤u≤ τ−3

2

4u

= 2e − 1

3
+ 2e+1

(
4

τ−1
2 − 1

3

)

= 2e
(
2τ−1 − 1

3

)
+ 2e+τ−1 − 1

3
.

�

3.4 Circuits in the 3x − 1 Dynamical System

We conclude this article by applying the previous analyses to the 3x − 1 dynamical
system; now, we will consider the case where aw = −1 for all w ∈ [τ )0.

We will extend the argument in [2] to the case where 3τ > 2Eτ : the magnitude
of the numerator of a maximal iterate in a periodic orbit can be bound from above
as follows:

∣∣∣(2e + 1
)
3τ−1 − 2Eτ

∣∣∣ = 3τ

[
2e + 1

3
− 2Eτ

3τ

]
< 3τ−1

(
2e + 1

)
.
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We can bound the denominator 3τ − 2Eτ from below by appealing to the inequality
(3) once again to conclude that the maximal iterate nmax within a periodic orbit in
the 3x − 1 dynamical system satisfies the inequality

nmax <

2e+1
3

1 − 2e+τ−1

3τ

<

(
2e + 1

3

)
2 (e + τ − 1)13.3 = o(2e+τ−1)

for any fixed e ∈ N. Thus, we will reuse the notation of the previous section and
begin with the following assumptions.

Assumption 3.2 Assume 3.1, except that now we assume that N = 2e+τ−1 −
(2e + 1)3τ−1, and D = 2e+τ−1 − 3τ < 0.

As before, define μτ = ND−1 mod 3τ and λτ = ND−1 mod 2e+τ−1.

Our goal for the remainder of this subsection is to prove the following theorem.

Theorem 2 Assume (3.2).
The 3-remainder

μτ =
⎧⎨
⎩
2 · 3τ−1 + 1 e ≡

2
0

1 e ≡
2
1

when τ ≡
2
0, and

μτ =
⎧⎨
⎩
3τ−1 + 1 e ≡

2
0

1 e ≡
2
1

when τ ≡
2
1.

The 2-remainder

λτ =
⎧⎨
⎩

2e(2τ +1)+1
3 e ≡

2
0

2e+1
3 e ≡

2
1

when τ ≡
2
0, and

λτ =
⎧⎨
⎩

2e(2τ−1+1)+1
3 e ≡

2
0

2e+1
3 e ≡

2
1

when τ ≡
2
1.

Analogous to Lemma1, the following lemmawill aid in identifying circuitswithin
the 3x − 1 Dynamical System.
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Lemma 5 Assume that the 3-remainder is

μτ =
⎧⎨
⎩
2 · 3τ−1 + 1 e ≡

2
0

1 e ≡
2
1

when τ ≡
2
0, and

μτ =
⎧⎨
⎩
3τ−1 + 1 e ≡

2
0

1 e ≡
2
1

when τ ≡
2
1. Moreover, assume that the 2-remainder is

λτ =
⎧⎨
⎩

2e(2τ +1)+1
3 e ≡

2
0

2e+1
3 e ≡

2
1

when τ ≡
2
0, and

λτ =
⎧⎨
⎩

2e(2τ−1+1)+1
3 e ≡

2
0

2e+1
3 e ≡

2
1

when τ ≡
2
1.

The equality μτ = λτ holds if and only if either i. e = 1 or ii. e = τ = 2.

Proof When e ≡
2
1, we require that the equality 2e+1

3 = 1 holds; consequently, we

require that e = 1 (irrespective of the parity of τ ).
When e ≡

2
0 and τ ≡

2
0, we require that the equality 2 · 3τ−1 + 1 = 2e(2τ +1)+1

3

holds. Equivalently, we require that 2 · 3τ + 3 = 2e (2τ + 1) + 1; after simplifying,
we require that 3τ +1

2e−1 = 2τ + 1. When τ ≡
2
0, the numerator on the left-hand side

9
τ
2 + 1 ≡

4
2; thus, it follows that we require that e = 2. The equality 3τ = 2τ+1 + 1

holds only when τ = 2 as per a result of Gersonides7 on harmonic numbers.
When e ≡

2
0 and τ ≡

2
1, we have μτ ≡

2
0 and λτ ≡

2
1. �

Proof (Theorem 2) We can write

μτ ≡
3τ

N
[
2e+τ−1 − 3τ

]−1 ≡
3τ

[
2e+τ−1 − (2e + 1)3τ−1

] [
2e+τ−1

]−1

≡
3τ

1 −
[[
2τ−1

]−1

31 + [
2e+τ−1

]−1

31

]
3τ−1.

7Levi Ben Gerson, 1342 AD. See [8].
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As [2u]−1
31 ≡

3
(−)u for u ∈ N, it follows that μτ ≡

3τ
1 + 3τ−1 (−)τ

[
1 + (−)e

]
. For

the 2-remainder, we begin by writing

λτ ≡
2e+τ−1

N
[
2Eτ − 3τ

]−1 ≡
2e+τ−1

[
2e+τ−1 − (2e + 1)3τ−1] [−3τ

]−1 ≡
2e+τ−1

2e [3]−1
2τ−1 + [3]−1

2e+τ−1 .

We will write [3]−1
2τ−1 = 2τ−(τ−1) mod 2+1

3 , and [3]−1
2e+τ−1 = 2e+τ−(e+τ−1) mod 2+1

3 , and we will
complete the proof by cases.

i. (e ≡
2
0, τ ≡

2
0) μτ = 2 · 3τ−1 + 1, and λτ =

[
2e
(
2τ−1+1

3

)
+ 2e+τ−1+1

3

]
mod

2e+τ−1 = 2e+τ +2e+1
3

ii. (e ≡
2
0, τ ≡

2
1) μτ = 3τ−1 + 1, and λτ =

[
2e
(
2τ +1
3

)+ 2e+τ +1
3

]
mod 2e+τ−1 =

2e+τ−1+2e+1
3 .

iii. (e ≡
2
1, τ ≡

2
0) μτ = 1, and λτ =

[
2e
(
2τ−1+1

3

)
+ 2e+τ +1

3

]
mod 2e+τ−1 = 2e+1

3 .

iv. (e ≡
2
1, τ ≡

2
1) μτ = 1, and λτ =

[
2e
(
2τ +1
3

)+ 2e+τ−1+1
3

]
mod 2e+τ−1 = 2e+1

3 .
�

Thus, under the assumption that n < 2e+τ−1, the only circuits within the 3x − 1
dynamical system are (1) and (5, 7).
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Potentially Stably Rational Del Pezzo
Surfaces over Nonclosed Fields

Yuri Tschinkel and Kaiqi Yang

1 Introduction

A geometrically rational surface S over a nonclosed field k is k-birational to either a
del Pezzo surface of degree n ∈ [1, . . . , 9] or a conic bundle (see [6]). Throughout,
we assume that S(k) �= ∅. This implies k-rationality of S when n ∈ [5, . . . , 9] or
when the number of degenerate fibers of the conic bundle is at most 3.

Let Gk be the absolute Galois group of k, it acts on exceptional curves and on
the geometric Picard group Pic(S̄) of S. The surface S is called split over k if all
exceptional curves are defined over k, and minimal if no blow-downs are possible
over k, i.e., there are no Gk-orbits consisting of pairwise disjoint exceptional curves.
A minimal del Pezzo surface of degree ≤4 over k is not rational (see, e.g., [10, The-
orem 3.3.1]). A surface S is called stably rational over k if S × P

m is birational to
P
m+2, over k. A necessary condition for stable rationality of S over k is

Condition (H1)

H1(Gk ′ ,Pic(S̄)) = 0, for all finite extensions k ′/k.

As a special case of a general conjecture of Colliot-Thélène and Sansuc one expects
that this is also sufficient:
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Conjecture 1.1 If S satisfies (H1) then S is stably rational over k.

Only one example of a minimal, and thus nonrational, but stably rational del Pezzo
surface of degree ≤4 is known at present [2, 4, 5]; in this case, the Galois group
acts via the symmetric group S3, the smallest nonabelian group (see Sect. 2 for a
description of this action). Finding another example is a major open problem. There
are however examples of minimal del Pezzo surfaces of degrees 1 ≤ n ≤ 4 and of
conic bundles with at least 4 degenerate fibers, failing (H1) and thus stable rationality
over k.

For n = 3, 2, and 1, the Galois group Gk acts on the primitive Picard group of
S (the orthogonal complement of the canonical class in Pic(S)) through the Weyl
group W (E9−n); for n = 4 and conic bundles with n + 1 degenerate fibers through
W (Dn+1). These actions have been extensively studied, in connectionwith arithmetic
applications and rationality questions, e.g., the Hasse Principle and Weak Approxi-
mation, when k is a number field (see e.g., [1, 7–9, 11, 12]).

This note is inspired by a recent result of Colliot-Thélène concerning stable ratio-
nality of geometrically rational surfaces over quasi-finite k, i.e., perfect fields with
procyclic absolute Galois groups [3]. The main result of [3] is that over such fields,
stably rational surfaces are actually rational. This follows from:

Theorem 1.2 ([3], Theorem 4.1) Let S be a surface over k, geometrically rational
with S(k) �= ∅. If S is split by a cyclic extension and is not k-rational then there exists
a finite separable extension k ′/k such that

H1(Gk ′,Pic(S̄)) �= 0.

The proof proceeds via a case-by-case analysis of actions of (conjugacy classes
of) elements of the corresponding Weyl groups, investigated in connection with the
study of the Hasse-Weil zeta function of del Pezzo surfaces. For n = 4 this is due to
[9, 11] and also follows from [7]; for n = 3 this goes back to Trepalin.

For general k, it is of interest to identify Galois actions potentially giving rise to
minimal, stably rational surfaces, i.e., those satisfying (H1). This has been done in [7]
for del Pezzo surfaces of degree 4. Our main result is a classification of the relevant
actions in degrees 3, 2, and 1. In particular, this immediately gives an alternative
proof of Theorem1.2 for del Pezzo surfaces; there are simply no cyclic groups on
the list of actions in Sects. 3 and 4.

The computation is organized as follows: the magma program produces a list
of subgroups (modulo conjugation); then, starting with small groups, computes first
cohomology groups. When it finds a group with nontrivial first cohomology, it elimi-
nates all groups containing it. In this way, the poset of subgroups is rapidly exhausted.
After that, minimality and presence of conic bundles are easily checked. The code
and lists of orbit decompositions for subgroups satisfying (H1) are available at:

cims.nyu.edu/˜tschinke/papers/yuri/18h1dp/magma/
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2 Degree 4 and 3

We use the following notation:

• Cn–cyclic group of order n
• Dn–dihedral group of order 2n
• Fn–Frobenius group of order n(n − 1)
• Sn–symmetric group of order n!

Let S be a minimal del Pezzo surface of degree 4, satisfying Condition (H1). We
recall Theorems E and F from [7]:

• If S admits a conic bundle structure then S is k-birational to

x2 − ay2 = f3(t), deg( f3) = 3,

where a = disc( f3). The Galois group of the splitting field is S3. One of the
degenerate fibers, over ∞, is defined over k, the other three, corresponding to
roots of f3, are permuted by the S3 action, the components of all singular fibers
are exchanged the Galois action of the discriminant quadratic extension. A surface
S of this type is not rational but stably rational over k.

• Assume that S does not admit a conic bundle structure over k. Let S̃ → S be a
blowup,with center in a suitable k-rational point; S̃ is a smooth (nonminimal) cubic
surface admitting a conic bundlewith 5degenerate fibers. Then S̃ is of type I1, I2, or
I3 listed in [7, Theorem 6.15]. The Galois groups of corresponding splitting fields
are S2 × S3 in the first case, a nontrivial extension of S3 by S2 in the second
case, and a nontrivial central extension ofS2 × S3 byS2 in the third case. In Case
1, there are two degenerate fibers defined over k, with nontrivial Galois action on
the components of the fibers, and three Galois conjugated degenerate fibers. In the
Cases 2 and 3, the Galois-action has two orbits on the set of degenerate fibers, of
length 2 and 3.

Our first result is:

Proposition 2.1 There are no minimal cubic surfaces satisfying Condition (H1). In
particular, a k-minimal cubic surface is not stably rational over k.

Proof Direct calculation with magma. �

3 Degree 2

In the description below we encode the Galois action on the set of exceptional curves
as follows:wewrite {vr11 , . . . , vrmm } for the decomposition into orbits,wherev j are dual
intersection graphs, enumerated below, and r j are their multiplicities. For minimal
del Pezzo surfaces of degree 2 we find unique orbit types with cardinality 4, 8, 18,
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24, 30, 42, two types of cardinality 2 and 12, and three types of cardinality 6 and
10. The occurring graphs for each orbit are symmetrical: each vertex has the same
number of outgoing edges (with multiplicities). We write

(n)[st11 , . . . , stdd ]

for a graph with n vertices, where each vertex has t j outgoing edges of multiplicity
s j (equal to the intersection number between the two exceptional curves connected
by this edge). The corresponding graphs are listed below:

– 2c := (2)[1] • − •, 2 := (2)[2] • = •
– 4 := (4)[13]
– 61 := (6)[12, 2], 62 := (6)[14], 6c = (6)[1] conic bundle
– 8 := (8)[13, 2]
– 101 := (10)[14, 2], 102 := (10)[16], 10c = (10)[1] conic bundle
– 12 := (12)[15, 2], 12c = (12)[1], conic bundle
– 14 := (14)[16, 2]
– 18 := (18)[18, 2]
– 24 := (24)[111, 2]
– 30 := (30)[114, 2]
– 42 := (42)[120, 2]

In the following propositions we list the structure of Galois groups of splitting
fields, the structure or orbits on the set of exceptional curves, and the stabilizers for
each orbit.

Proposition 3.1 Assume that S is a minimal degree 2 del Pezzo surface over k
satisfying Condition (H1). Then S either admits a conic bundle structure over k or
is one of the following types, each corresponding to a conjugacy class of subgroups
in W (E7):

dP2(1) D7: {144}, trivial stabilizer
dP2(2) F7: {14, 42}, specializes to dP2(1), when restricted to D7 ⊂ F7.
dP2(3) D15: {61, 1021, 30}, stabilizers {C5,C3, 1}.
dP2(4) C3 � F5: {61, 1022, 30}, stabilizers {D5,C6,C2}, with C2 not normal.

Below we list all possible conic bundle types. Each X admits two conic bundle
structures over k, with isomorphic Galois actions on the set of exceptional fibers of
the corresponding conic bundle. We organize by cardinalities of orbits on these sets,
and by the orbit structure on the set of exceptional curves of X .
3+3:

D6(1) S3: {2, 631, 622, 64c}, stabilizers {C3, 1, 1, 1}
D6(2) C3 � S3: {2, 621, 64c, 18}, stabilizer {C2

3,C3,C3, 1}
5+1:

D6(3) D5: {22c, 2, 1031, 102c}, stabilizer {C5,C5, 1, 1}
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D6(4) F5: {22c, 2, 101, 1022, 102c}, stabilizer {D5,D5,C2,C2,C2}; C2 is not normal

6:

D6(5) D6: {2, 61, 122, 122c}, stabilizer {C6,C2, 1, 1}.
D6(6) D6: {2, 61, 622, 12, 122c}, stabilizer {S3,C2,C2, 1, 1}.
D6(7) S4: {2, 61, 122c , 24}, stabilizer {A4,C

2
2,C2, 1}.

D6(8) S4: {42, 622, 12, 122c}, stabilizer {S3,C
2
2,C2,C2}.

D6(9) S4: {622, 8, 12, 122c}, stabilizer {C4,C3,C2,C2}.
D6(10) S2

3: {2, 12, 122c , 18}, stabilizer {C3 × S3,C3,C3,C2}.
D6(11) C2 × S4: {2, 61, 122c , 24}, stabilizer {C2 × A4,C

3
2,C

2
2,C2}, the stabilizer C2

is not normal, and this case does not reduce to D6(7), with S4-action.
D6(12) C2 × S4: {622, 8, 12, 122c}, stabilizer {D4,S3,C

2
2,C

2
2}.

D6(13) S5: {2, 122c , 30}, stabilizer {A5,D5,C
2
2}.

D6(14) S5: {1022, 12, 122c}, stabilizer {D6,D5,D5}.
Some types above are specializations of other types, by restriction to subgroups:

S2
3 C2 × S4 S5 S5 C2 × S4

(10)

����
��
��
��

�� ���
��

��
��

� (11)

�����
��
��
��

��

(13)

����
��
��
��
�

��

(14)

����
��
��
��

��

(12)

����
��
��
��
�

�� ���
��

��
��

��

(2)

���
��

��
��

� (6)

��

(5)

����
��
��
��

(7) (4) (8) (9)

��

(6)

(1) (1)

4 Degree 1

Proposition 4.1 If S is a minimal degree 1 del Pezzo surface satisfying Condition
(H1) then S is a conic bundle over k.

As Galois orbits we have unions of degenerate fibers of conic bundles (4c, 6c, 8c,
10c) and several new orbit types:

– 3 := (3)[22]
– 41 := (4)[22], 42 := (4)[12, 2], 43 = (4)[12, 3],
– 5 := (5)[12, 22].
– 63 := (6)[22, 3], 64 := (6)[13, 22]
– 103 := (10)[13, 24], 104 := (10)[14, 22, 3],
– 121 := (12)[1, 26] 122 := (12)[14, 23], 123 := (12)[12, 24, 3],
124 := (12)[18, 2], 125 := (12)[16, 22, 3]
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– 201 := (20)[12, 28, 3], 202 := (20)[18, 24], 203 := (20)[16, 26, 3], 204 := (20)
[112, 22], 205 := (20)[19, 26]

– 241 := (24)[12, 210, 3], 242 := (24)[113, 23]
– 361 := (36)[118, 25], 362 := (36)[118, 28, 3].
– 40 := (40)[118, 210, 3]
The types of occurring conic bundles are listed below, each corresponding to a con-
jugacy class of subgroups in W (E8):
1+3+3:

D7(1) S2
3: {22c, 34, 422, 623, 64c, 1242, 1223, 3621, 362},

stabilizer {C3 � S3,D6,C
2
3,S3,S3,C3,C3, 1, 1}

1+1+5:

D7(2) D10: {24c, 421, 43, 54, 1022, 102c , 2021, 2042, 2024}, stabilizer{D5,C5,C5,C
2
2,C2,C2, 1, 1, 1}.

D7(3) C2 × F5: {24c, 421, 43, 1021, 102c , 2021, 203, 2064}, stabilizer{F5,D5,D5,C
2
2,C

2
2,C2,C2,C2}.

2+5:

D7(4) C5 � C4: {421, 43, 42c, 54, 1022, 102c , 2042, 2024, 2025}, stabilizer{C5,C5,C5,C4,C2,C2, 1, 1, 1}
D7(5) F5: {421, 43, 42c, 1021, 102c , 203, 2064, 2025}, stabilizer{C5,C5,C5,C2,C2, 1, 1, 1}
D7(6) C5 � D4: {421, 43, 42c, 54, 1022, 102c , 2042, 2024, 40}, stabilizer{C10,C10,D5,D4,C

2
2,C

2
2,C2,C2, 1}

D7(7) C2 × F5: {421, 43, 42c, 1021, 102c , 203, 2064, 2025}, stabilizer{D5,D5,D5,C
2
2,C

2
2,C2,C2,C2}; the stabilizer C2 is not normal and we can-

not reduce to D7(5) = F5

D7(8) C2
2 � F5: {421, 43, 42c, 1021, 102c , 203, 2064, 40}, stabilizer{D10,D10,F5,C

3
2,C

3
2,C

2
2,C

2
2,C2}

1+6:

D7(9) (C3 � S3) � C2: {22c, 422, 622, 1221, 1244, 125, 122c , 3621, 362}, stabilizer{C3 � S3,C
2
3,S3,C3,C3,C3,C3, 1, 1}

D7(10) S3 
 C2: {222, 422, 622, 125, 122c , 241, 2422, 3621, 362}, stabilizer{S2
3,C3 × S3,D6,S3,S3,C3,C3,C2,C2}

Again, some types are specializations, by restriction to subgroups:
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C5 � D4 C2
2 � F5 S3 
 C2

(6)

�� ���
��

��
��

��
(8)

����
��
��
��
�

��

(10)

�� ���
��

��
��

��

(4) (2) (3) (7)

��

(1) (9)

(5)
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