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Preface

These are the proceedings of the Third International Joint Conference on Rules and
Reasoning (RuleML+RR). RuleML+RR joined the efforts of two well-established
conference series: the International Web Rule Symposia (RuleML) and the Web
Reasoning and Rule Systems (RR) conferences.

The RuleML symposia and RR conferences have been held since 2002 and 2007,
respectively. The RR conferences have been a forum for discussion and dissemination
of new results on Web reasoning and rule systems, with an emphasis on rule-based
approaches and languages. The RuleML symposia were devoted to disseminating
research, applications, languages, and standards for rule technologies, with attention to
both theoretical and practical developments, to challenging new ideas, and to industrial
applications. Building on the tradition of both, RuleML and RR, the joint conference
series RuleML+RR aims at bridging academia and industry in the field of rules, and at
fostering the cross-fertilization between the different communities focused on the
research, development, and applications of rule-based systems. RuleML+RR aims at
being the leading conference series for all subjects concerning theoretical advances,
novel technologies, and innovative applications about knowledge representation and
reasoning with rules.

To leverage these ambitions, RuleML+RR 2019 was organized as part of the
Bolzano Rules and Artificial INtelligence Summit (BRAIN 2019). This summit was
hosted by the Free University of Bozen-Bolzano at its main site in Bolzano, Italy. With
its special focus theme on “beneficial AI,” a core objective of BRAIN 2019 was to
present and discuss the latest advancements in AI and rules, and their adoption in IT
systems, towards improving key fields such as environment, health, and societies. To
this end, BRAIN 2019 brought together a range of events with related interests. In
addition to RuleML+RR, this included the 5th Global Conference on Artificial
Intelligence (GCAI 2019), the DecisionCAMP 2019, and the Reasoning Web Summer
School (RW 2019).

The RuleML+RR conference, moreover, included several subevents:

1. Doctoral Consortium, organized by Mantas Simkus (TU Wien, Austria) and Guido
Governatori (Data61, Australia). The doctoral consortium was an initiative to attract
and promote student research in rules and reasoning, with the opportunity for
students to present and discuss their ideas, and benefit from close contact with
leading experts in the field. This year, the DC was organized jointly with GCAI
2019, to favor interaction and exchange of ideas among students interested in rules
and reasoning, and students interesting in various facets of artificial intelligence.

2. International Rule Challenge, organized by Sotiris Moschoyiannis (University of
Surrey, UK) and Ahmet Soylu (Norwegian University of Science and Technology,
SINTEF, Norway). The aim of this initiative was to provide competition among
work in progress and new visionary ideas concerning innovative rule-oriented
applications, aimed at both research and industry.



3. Posters and Interaction, organized by Petros Stefaneas (National Technical Univer-
sity of Athens, Greece) and Alexander Steen (University of Luxembourg, Luxem-
bourg). The goal of this initiative was to showcase promising, preliminary research
results and implemented systems, in the form of a poster or interactive demos.

The technical program of the main track of RuleML+RR 2019 included the
presentation of ten full research papers and five short papers. These contributions were
carefully selected by the Program Committee among 26 high-quality submissions to the
event. Each paper was carefully reviewed and discussed by members of the PC. The
technical program was then enriched with the additional contributions from the
Doctoral Consortium and the Rule Challenge.

At RuleML+RR 2019 the following invited keynotes and tutorials were presented
by experts in the field:

• Keynote by Marie-Laure Mugnier (University of Montpellier, France): “Existential
Rules: a Study Through Chase Termination, FO-Rewritability and Boundedness”

• Keynote by Mike Gualtieri (VP and Principal Analyst, Forrester Research, USA):
“The Future of Enterprise AI and Digital Decisions”

• Tutorial by Monica Palmirani (University of Bologna, Italy): “LegalRuleML and
RAWE”

The keynotes were shared with GCAI 2019, consequently giving the opportunity to
the RuleML+RR 2019 audience to also attend the two GCAI keynotes by Giuseppe De
Giacomo (Sapienza Università di Roma, Italy) and Marlon Dumas (University of Tartu,
Estonia). In addition, a shared session with DecisionCAMP 2019 provided insights on
the most recent industrial trends in decision management.

The chairs sincerely thank the keynote and tutorial speakers for their contribution to
the success of the event. The chairs also thank the Program Committee members and
the additional reviewers for their hard work in the careful assessment of the submitted
papers. Further thanks go to all authors of contributed papers, in particular, for their
efforts in the preparation of their submissions and the camera-ready versions within the
established schedule. Sincere thanks are due to the chairs of the additional tracks and
subevents, namely the Doctoral Consortium, the Rule Challenge, and the Poster and
Interaction Track, and to the chairs of all co-located BRAIN 2019 events. The chairs
finally thank the entire organization team including the Publicity, Proceedings,
Sponsorship, Speaker Support, and Social Program Chairs, who actively contributed to
the organization and the success of the event.

A special thanks goes to all the sponsors of RuleML+RR 2019 and BRAIN 2019:
the Free University of Bozen-Bolzano, the Transregional Collaborative Research
Centre 248 “Foundations of Perspicuous Software Systems”, Robert Bosch GmbH, the
Artificial Intelligence Journal, oXygen, Hotel Greif, Ontopic S.r.L., and Springer.
A special thanks also goes to the publisher, Springer, for their cooperation in editing
this volume and publishing of the proceedings.

July 2019 Paul Fodor
Marco Montali

Diego Calvanese
Dumitru Roman
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The Future of Enterprise AI
and Digital Decisions

Mike Gualtieri

Forrester Research, 60 Acorn Park Drive, Cambridge, MA 02140
mgualtieri@forrester.com

Abstract. Machines are amazing learners. Humans are amazing learners. AI is
best when powered by both. AI solutions that employ both machine learning and
knowledge-engineered rules learn continuously from data whilst at the same
time are informed by wisdom and commonsense expressed in rules. Forrester
Research Vice President and Principal Analyst, Mike Gualtieri, will convey the
key trends in enterprise AI and rules/decision management; and discuss how
leading enterprises can use them in combination to build truly learning
AI-infused applications at scale.



Existential Rules: A Study Through Chase
Termination, FO-Rewritability

and Boundedness

Marie-Laure Mugnier1,2

1 University of Montpellier and LIRMM
mugnier@lirmm.fr

2 Inria, Montpellier, France

Abstract. Existential rules, also known as Datalog+, are an expressive knowl-
edge representation and reasoning language, which has been mainly investigated
in the context of ontological query answering. This talk will first review the
landscape of decidable classes of existential rules with respect to two funda-
mental problems, namely chase termination (does a given set of rules ensure that
the chase terminates for any factbase?) and FO-rewritability (does a given set of
rules ensure that any conjunctive query can be rewritten as a first-order query?).
Regarding the chase, we will specifically focus on four well-known variants: the
oblivious chase, the semi-oblivious (or skolem) chase, the restricted chase, and
the core chase. We will then study the relationships between chase termination
and FO-rewritability, which have been little investigated so far. This study leads
us to another fundamental problem, namely boundedness (does a given set of
rules ensure that the chase terminates for any factbase within a predefined
depth?). The boundedness problem was deeply investigated in the context of
datalog. It is known that boundedness and FO-rewritability are equivalent
properties for datalog rules. Such an equivalence does not hold for general
existential rules. We will provide a characterization of boundedness in terms of
chase termination and FO-rewritability for the oblivious and semi-oblivious
chase variants. Interesting questions remain open. This talk will rely on results
from the literature and joint work published at ICDT 2019 and IJCAI 2019.
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Finding New Diamonds: Temporal
Minimal-World Query Answering over

Sparse ABoxes

Stefan Borgwardt, Walter Forkel, and Alisa Kovtunova(B)

Chair for Automata Theory, Technische Universität Dresden, Dresden, Germany
{stefan.borgwardt,walter.forkel,alisa.kovtunova}@tu-dresden.de

Abstract. Lightweight temporal ontology languages have become a very
active field of research in recent years. Many real-world applications,
like processing electronic health records (EHRs), inherently contain a
temporal dimension, and require efficient reasoning algorithms. Moreover,
since medical data is not recorded on a regular basis, reasoners must deal
with sparse data with potentially large temporal gaps. In this paper, we
introduce a temporal extension of the tractable language ELH�, which
features a new class of convex diamond operators that can be used to
bridge temporal gaps. We develop a completion algorithm for our logic,
which shows that entailment remains tractable. Based on this, we develop
a minimal-world semantics for answering metric temporal conjunctive
queries with negation. We show that query answering is combined first-
order rewritable, and hence in polynomial time in data complexity.

1 Introduction

Temporal description logics (DLs) combine terminological and temporal knowl-
edge representation capabilities and have been investigated in detail in the
last decades [3,28,32]. To obtain tractable reasoning procedures, lightweight
temporal DLs have been developed [4,20]. The idea is to use temporal opera-
tors, often from the linear temporal logic LTL, inside DL axioms. For example,
−♦∃diagnosis.BrokenLeg ⊑ ∃treatment.LegCast states that after breaking a leg
one has to wear a cast. However, this basic approach cannot represent the dis-
tance of events, e.g., that the cast only has to be worn for a fixed amount of time.
Recently, metric temporal ontology languages have been investigated [7,14,21],
which allow to replace −♦ in the above axiom with ♦[−8,0], i.e., wearing the cast
is required only if the leg was broken ≤ 8 time points (e.g., weeks) ago.

Such knowledge representation capabilities are important for biomedical
applications. For example, many clinical trials contain temporal eligibility cri-
teria [16] such as: “type 1 diabetes with duration at least 12 months”1; “known
1 https://clinicaltrials.gov/ct2/show/NCT02280564.

This work was partially supported by DFG grant 389792660 as part of TRR 248 and
the DFG project BA 1122/19-1 (GOASQ).

c© Springer Nature Switzerland AG 2019
P. Fodor et al. (Eds.): RuleML+RR 2019, LNCS 11784, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-31095-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31095-0_1&domain=pdf
https://clinicaltrials.gov/ct2/show/NCT02280564
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-31095-0_1


4 S. Borgwardt et al.

history of heart disease or heart rhythm abnormalities”2; “CD4+ lymphocytes
count > 250/mm3, for at least 6 months”3; or “symptomatic recurrent parox-
ysmal atrial fibrillation (PAF) (> 2 episodes in the last 6 months)”4. Moreover,
measurements, diagnoses, and treatments in a patients’ EHR are clearly valid
only for a certain amount of time. To automatically screen patients according
to the temporal criteria above, one needs a sufficiently powerful formalism that
can reason about biomedical and temporal knowledge. This is an active area
of current research [11,16,22]. For the atemporal part, one can use existing
large biomedical ontologies that are based on lightweight (atemporal) DLs, e.g.,
SNOMED CT5, which is formulated using the DL ELH.

Since EHRs only contain information for specific points in time, it is espe-
cially important to be able to infer what happened to the patient in the mean-
time. For example, if a patient is diagnosed with a (currently) incurable disease
like Diabetes, they will still have the disease at any future point in time. Sim-
ilarly, if the EHR contains two entries of CD4Above250 four weeks apart, one
may reasonably infer that this was true for the whole four weeks. Qualitative
temporal DLs such as TEL♦

infl [20] can express the former statement by declar-
ing Diabetes as expanding via the axiom −♦Diabetes ⊑ Diabetes. We propose to
extend this logic by adding a special kind of metric temporal operators to write
cc♦4CD4Above250 ⊑ CD4Above250, making the measurement convex for a speci-
fied length of time n (e.g., 4 weeks). This means that information is interpolated
between time points of distance less than n, thereby computing a convex clo-
sure of the available information. The threshold n allows us to distinguish the
case where two mentions of CD4Above250 are years apart, and are therefore
unrelated.

The distinguishing feature of TEL♦
infl is that ♦-operators are only allowed on

the left-hand side of concept inclusions [20], which is also common for temporal
DLs based on DL-Lite [2,5]. Apart from adding convex metric temporal opera-
tors to this logic, we allow temporal roles like cc♦2hasTreatment ⊑ hasTreatment,
and deal with the problem of having large gaps in the data, e.g., in patient
records. We show that reasoning in the extended logic TELH c♦,lhs

�

remains
tractable.

Additionally, we consider the problem of answering temporal queries over
TELH c♦,lhs

�

knowledge bases. As argued in [6,12], evaluating clinical trial crite-
ria over patient records requires both negated and temporal queries, but stan-
dard certain answer semantics is not suitable to deal with negation over patient
records, which is why we adopt the minimal-world semantics from [12] for our
purposes. Our query language extends the temporal conjunctive queries from [8]
by metric temporal operators [7,21] and negation. For example, we can use
queries like ◻[−12,0](∃y.diagnosedWith(x, y)∧Diabetes(y)) to detect whether the
first criterion from above is satisfied.

2 https://clinicaltrials.gov/ct2/show/NCT02873052.
3 https://clinicaltrials.gov/ct2/show/NCT02157311.
4 https://clinicaltrials.gov/ct2/show/NCT00969735.
5 https://www.snomed.org/.

https://clinicaltrials.gov/ct2/show/NCT02873052
https://clinicaltrials.gov/ct2/show/NCT02157311
https://clinicaltrials.gov/ct2/show/NCT00969735
https://www.snomed.org/
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Using a combined rewriting approach, we show that the data complexity
of query answering is not higher than for positive atemporal queries in ELH

�

,
and also provide a tight combined complexity result of ExpSpace. Unlike most
research on temporal query answering [2,8], we do not assume that input data is
given for all time points in a certain interval, but rather at sporadic time points
with arbitrarily large gaps. The main technical difficulty is to determine which
additional time points are relevant for answering a query, and how to access
these time points without having to fill all the gaps.

Full proofs can be found in the extended version at https://tu-dresden.de/
inf/lat/papers.

2 The Lightweight Temporal Logic TELH c♦,lhs
�

We first introduce the metric LTL operators that we will use and analyze their
properties. LTL formulas are formulated over a finite set P of propositional
variables. In this section, we consider only formulas built according to the syntax
rule ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦Iϕ, where p ∈ P and I is an interval in Z. The
semantics is given by LTL-structures W = (wi)i∈Z, where wi ⊆ P . We write

W, i ⊧ p iff p ∈ wi if p ∈ P , W, i ⊧ ϕ ∧ ψ iff W, i ⊧ ϕ and W, i ⊧ ψ,

W, i ⊧♦Iϕ iff ∃k ∈ I : W, i + k ⊧ ϕ, W, i ⊧ ϕ ∨ ψ iff W, i ⊧ ϕ or W, i ⊧ ψ.

More specifically, we only consider the following derived operators, where n ≥ 1:

±♦ϕ := ♦(−∞,∞)ϕ +♦ϕ := ♦[0,∞)ϕ −♦ϕ := ♦(−∞,0]ϕ

cc♦ϕ := ♦(−∞,0]ϕ ∧♦[0,∞)ϕ cc♦nϕ :=
∨

k,m≥0
k+m=n−1

(♦[−k,0]ϕ ∧♦[0,m]ϕ) (1)

The operator +♦ is the “eventually” operator of classical LTL, and −♦, ±♦ are two
variants that refer to the past, or to both past and future, respectively. The
operator cc♦ requires that ϕ holds both in the past and in the future, thereby
distinguishing time points that lie within an interval enclosed by time points at
which ϕ holds. This can be used to express the convex closure of time points,
as described in the introduction. Finally, the operators cc♦n represent a metric
variant of cc♦, requiring that different occurrences of ϕ are at most n − 1 time
points apart, i.e., enclose an interval of length n. To study the behavior of these
operators, we consider their semantics in a more abstract way: given a set of time
points where a certain information is available (e.g., a diagnosis), described by a
propositional variable p, we consider the resulting set of time points at which �♦p
holds, where �♦ is a placeholder for one of the operators defined above (we will
similarly use •♦, †♦, ‡♦ as placeholders for different ♦-operators in the following).

Definition 1. We consider the sets Dc := { cc♦} ∪ { cc♦i | i ≥ 1}, D± = { −♦, +♦, ±♦},
and D := D± ∪ Dc of diamond operators. Each �♦ ∈ D induces a function
�♦: 2Z → 2Z with �♦(M) := {i | WM , i ⊧ �♦p} for all M ⊆ Z, with the LTL-
structure WM := (wi)i∈Z such that wi := {p} if i ∈ M , and wi :=∅ otherwise.

https://tu-dresden.de/inf/lat/papers
https://tu-dresden.de/inf/lat/papers
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We will omit the parentheses in �♦(M) for a cleaner presentation. If M is empty,
then �♦M is also empty, for any �♦ ∈ D. For any non-empty M ⊆ Z, we obtain
the following expressions, where max M may be ∞ and minM may be −∞.

±♦M = Z +♦M = (−∞,max M ] −♦M = [min M,∞) cc♦M = [min M,max M ]
cc♦1M =M cc♦nM = {i ∈ Z | ∃j, k ∈ M with j ≤ i ≤ k and k − j < n}

In this representation, the convex closure operation behind cc♦ becomes apparent.
We now list several useful properties of these functions.

Lemma 2. Using the pointwise inclusion order ⊆ on the induced functions, we
obtain the following ordered set (D, ⊆), where id2Z is the identity function on 2Z:

cc♦1id2Z
. . . cc♦n cc♦n+1

. . . cc♦
+♦

−♦
±♦⊆ ⊆ ⊆ ⊆ ⊆

⊆

⊆⊆

⊆

=

The most important property is the following, which allows us to combine
diamond operators without leaving the set D.

Lemma 3. The set D is closed under composition ◦, pointwise intersection ∩,
and pointwise union ∪, and for any �♦, •♦ ∈ D these operators can be computed
as:

�♦ ∩ •♦ = inf(D,⊆){ �♦, •♦} and •♦◦ �♦ = �♦∪ •♦ = sup(D,⊆){ �♦, •♦},

where inf(D,⊆) denotes the infimum in (D, ⊆), and sup(D,⊆) the supremum.

2.1 A New Temporal Description Logic

We define a new temporal description logic based on the operators in D. The
main differences to TEL♦

infl from [20] are that cc♦n-operators may occur in concept
and role inclusions, and ABoxes may have gaps, which require special consider-
ation during reasoning.

Syntax. Let C,R, I be disjoint sets of concept, role, and individual names,
respectively. A temporal role is of the form �♦r with �♦ ∈ D and r ∈ R. A
TELH c♦,lhs

�

concept is built using the rule C ::= A |⊺ |� | C ⊓ C | ∃r.C | �♦C,
where A ∈ C, �♦∈ D, and r is a temporal role. Such a C is an ELH

�

concept (or
atemporal concept) if it does not contain any diamond operators.

A TELH c♦,lhs
�

TBox is a finite set of concept inclusions (CIs) C ⊑ D and
role inclusions (RIs) r ⊑ s, where C is a TELH c♦,lhs

�

concept, D is an atemporal
concept, r is a temporal role, and s ∈ R. We write C ≡ D to abbreviate the
two inclusions C ⊑ D, D ⊑ C, and similarly for role inclusions. An ABox is a
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finite set of concept assertions A(a, i) and role assertions r(a, b, i), where A ∈ C,
r ∈ R, a, b ∈ I, and i ∈ Z. We denote the set of time points i ∈ Z occurring in A
by tem(A). Additionally, we assume that each time point is encoded in binary
with at most n digits. A knowledge base (KB) (or ontology) K = T ∪A consists of
a TBox T and an ABox A. In the following, we always assume a KB K = T ∪A
to be given.
Semantics. An interpretation I = (ΔI , ·I) has a domain ΔI

⊇ I and assigns to
each A ∈ C a set AI

⊆ ΔI and to each r ∈ R a binary relation rI
⊆ ΔI

× ΔI .
A temporal interpretation I = (ΔI, (Ii)i∈Z), is a collection of interpretations
Ii = (ΔI, ·Ii), i ∈ Z, over ΔI. The functions ·Ii are extended as follows.

( �♦r)Ii :=
{
(d, e) ∈ ΔI

× ΔI | i ∈ �♦{j | (d, e) ∈ rIj}
}
⊺

Ii := ΔI
�

Ii :=∅

(C ⊓D)Ii := CIi ∩ DIi (∃r.C)Ii :=
{
d ∈ ΔI | ∃e ∈ CIi : (d, e) ∈ rIi

}

( �♦C)Ii :=
{
d ∈ ΔI | i ∈ �♦{j | d ∈ CIj}

}

I is a model of (or satisfies) a concept inclusion C ⊑ D if CIi ⊆ DIi holds for all
i ∈ Z, a role inclusion r ⊑ s if rIi ⊆ sIi holds for all i ∈ Z, a concept assertion
A(a, i) if a ∈ AIi , a role assertion r(a, b, i) if (a, b) ∈ rIi , and the KB K if it
satisfies all axioms in K. This fact is denoted by I ⊧ α, where α is an axiom (i.e.,
inclusion or assertion) or a KB. An ontology K is consistent if it has a model,
and it entails α, written K ⊧ α, if all models of K satisfy α. K is inconsistent iff
K ⊧⊺⊑�, and thus we focus on deciding entailment. In ELH

�

, this is possible in
polynomial time [9].

We do not allow diamonds to occur on the right-hand side of CIs, because that
would make the logic undecidable [4]. As usual, we can simulate CIs involving
complex concepts by introducing fresh concept and role names as abbreviations.
For example, ∃ ±♦r. −♦A ⊑ B can be split into ±♦r ⊑ r′, −♦A ⊑ A′, and ∃r′.A′

⊑ B.
Hence, we can restrict ourselves w.l.o.g. to CIs in the following normal form:

�♦A ⊑ B, A1 ⊓A2 ⊑ B, �♦r ⊑ s, �♦A ⊑ ∃r.B, ∃r.A ⊑ B, (2)

where �♦∈ D, A,A1, A2, B ∈ C ∪ {�,⊺}, and r, s ∈ R.
Convex Names. When considering axioms of the form �♦A ⊑ A for A ∈ C, we
can first observe that the converse direction A ⊑ �♦A, although syntactically not
allowed, trivially holds in all interpretations. Moreover, the following implica-
tions between such equivalences follow from Lemma 2:

A ≡ ±♦A
A ≡ +♦A

A ≡ −♦A
A ≡ cc♦nA . . . A ≡ cc♦1A

Since {A ≡ +♦A,A ≡ −♦A} entails A ≡ ±♦A, it thus makes sense to consider the
unique strongest such axiom that is entailed by K (for a given A). We call A rigid
if A ≡ ±♦A is the strongest such axiom, shrinking in case of A ≡ +♦A, expanding for
A ≡ −♦A, and (n-)convex for A ≡ cc♦(n)A, i.e., whenever A is satisfied at two time
points (with distance < n), then it is also satisfied at all time points in between.
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1-convex concept names do not satisfy any special property, and are also called
flexible. We use the same terms for role names.

2.2 A Completion Algorithm

We use the completion rules in Fig. 1 to derive new axioms from K. For simplicity,
we treat ⊺ and � like concept names, and thus allow assertions of the form ⊺(a, i)
and �(a, i) here. It is clear that we cannot derive all possible entailments of
the forms �♦A ⊑ B or A(a, i), because (1) D is infinite, and (2) Z is infinite.
Moreover, there may be arbitrarily many time points between two assertions in A
(exponentially many in the size of A if we assume time points to be encoded in
binary). To deal with (1), we restrict the rule applications to the operators that
occur in K, in addition to cc♦ and ±♦, which are the only elements of D that can
be obtained via ∪, ∩, or ◦ from other ♦-operators, namely from +♦ and −♦. For (2),
we consider the set of time points tem(A) (of linear size). Additionally, consider
a maximal interval [i, j] in Z ∖ tem(A) (where i may be −∞ and j may be ∞).
To represent this interval, we choose a single representative time point k ∈ [i, j],
which is denoted by |�| := k for all � ∈ [i, j]. For consistency, the representative |i|
for any i ∈ tem(A) is defined as i itself. Moreover, for any k ∈ Z, we denote by
�k� := max{i ∈ tem(A) | i ≤ k} the maximal element of tem(A) below (or equal
to) k, which we consider to be −∞ in the case that there is no such element, and
similarly define �k	. Note that �i� = i = �i	 whenever i ∈ tem(A), and otherwise

Fig. 1. Completion rules for TELH c♦,lhs
�

knowledge bases
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�i� < i < �i	. By restricting all assertions to the finite set of representative time
points

rep(A) := {|i| | i ∈ Z} ⊃ tem(A),

we can encode infinitely many entailments in a finite set. We also define the
following abbreviations, for all A ∈ C, r ∈ R, and a, b ∈ I (K refers to the KB
after possibly already applying some completion rules):

A(a) := {i ∈ rep(A) | A(a, i) ∈ K}
r(a, b) := {i ∈ rep(A) | r(a, b, i) ∈ K}

Hence, we can write �♦A(a) in the completion rules to refer to the set of time
points at which �♦A is inferred to be satisfied by a, given only the assertions in A.

In the rules of Fig. 1, we allow to instantiate A,B,A1, A2, A3, B1 by ⊺, � or
(normalized) ELH

�

concepts from K, r, s, r1, r2, r3 by role names from K, �♦, •♦, †♦
by cc♦, ±♦ or elements of D occurring in K, a, b by individual names from K, and
i by values from rep(A), such that the resulting axioms are in normal form.
The side conditions ( •♦ ∩ †♦) ∈ D±, i ∈ �♦A(a), i ∈ �♦r(a, b) can be checked in
polynomial time. All rules also apply to axioms without diamonds since we can
treat A as cc♦1A.

If K contains all axioms in the precondition of an instantiated rule, we con-
sider the axiom in its conclusion. If it is a new assertion, we add it to K. If it
is a concept inclusion �♦A ⊑ B, we check whether K already contains a CI of
the form •♦A ⊑ B. If not, then we simply add �♦A ⊑ B to K; otherwise, and if
�♦ ∪ •♦ �= •♦, we replace •♦A ⊑ B by the new axiom ( �♦ ∪ •♦)A ⊑ B, in order to
reflect the validity of both axioms at once. RIs are handled in the same way. For
example, if we know that +♦A ⊑ B holds, and have just inferred that −♦A ⊑ B
holds as well, then ±♦A ⊑ B is a valid entailment, because ±♦ ⊆ +♦∪ −♦, and thus
whenever an element satisfies ±♦A, it must satisfy either +♦A or −♦A. In this way,
for any two concepts A,B, the KB always contains at most one axiom �♦A ⊑ B,
and similarly for roles.

Let K∗ be the KB obtained by exhaustive application of the completion rules
in Fig. 1 to K, where we assume (for technical reasons explained in the extended
version) that A2 and A3 are always applied at the same time for all i ∈ �♦A(a)
and i ∈ �♦r(a, b), respectively. This process terminates since we only produce
axioms of the form �♦A ⊑ B, �♦r ⊑ s, A(a, i), or r(a, b, i), where �♦ was already
present in the initial K or it belongs to { cc♦1, cc♦, ±♦}, i ∈ rep(A), and A,B, r, s, a, b
are from K; there are only polynomially many such axioms.

To decide whether a concept assertion D(a, i) follows from K, we then simply
look up whether D(a, |i|) belongs to K∗. For a concept inclusion �♦C ⊑ D with
C,D ∈ C, we check whether K∗ contains an inclusion of the form •♦C ⊑ D with
�♦ ⊆ •♦, which can be done in polynomial time (see Lemma 2). One can also check
entailment of role axioms in a similar way, but we omit them here for brevity.

Lemma 4. K is inconsistent iff �(a, i) ∈ K∗ for some a ∈ I and i ∈ rep(A).
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Let now K be consistent, C be a TELH c♦,lhs
�

concept, D be an ELH
�

concept,
and �♦ ∈ D. Then K ⊧ �♦C ⊑ D iff either there is †♦ ∈ D with †♦C ⊑�∈ K∗, or
there is •♦ ⊇ �♦ with •♦C ⊑ D ∈ K∗. Moreover, K ⊧ D(a, i) iff D(a, |i|) ∈ K∗.

We obtain the following result, where the lower bound follows from proposi-
tional Horn logic [23].

Theorem 5. Entailment in TELH c♦,lhs
�

is P-complete.

Example 6. Consider rheumatoid arthritis, an autoimmune disorder that cannot
be healed. In irregular intervals, it produces so-called flare ups, that cause pain
in the joints. We formalize this knowledge as follows:

RheumatoidArthritisPatient ≡ ∃diagnosedWith.RheumatoidArthritis (3)

FlareUpPatient ⊑ RheumatoidArthritisPatient (4)

−♦RheumatoidArthritisPatient ⊑ RheumatoidArthritisPatient (5)

cc♦2FlareUpPatient ⊑ FlareUpPatient (6)

We make the assumption that a flare up is 2-month convex, hence if two flare ups
are reported at most 2 months apart, we assume that they refer to the same flare
up and hence the flare up also present in between the two reports. By applying
Rule T4 from the completion algorithm to axioms (4) and (5), we can add

−♦FlareUpPatient ⊑ RheumatoidArthritisPatient

to the KB. Suppose the ABox consists of the assertions FlareUpPatient(p1, i),
i ∈ {0, 4, 5, 7}, for a patient p1. The completed ABox, denoted by A∗, is illus-
trated below, where for simplicity we omit the individual name p1.

. . . . . .F F F F

−1 0 2 4 5 6 7 8

A∗

rep(A)

A

F, R R F, R F, R F, R F, R R
. . .. . .

Here, RheumatoidArthritisPatient and FlareUpPatient are abbreviated by their
first letters, respectively. Representatives −1, 2, 6 and 8 have been introduced
and the intervals they represent are illustrated in gray.

3 Minimal-World Semantics for Metric Temporal
Conjunctive Queries with Negation

We now consider the reasoning problem of query answering, which generalizes
entailment of assertions. We develop a new temporal query language and follow
an approach from [12] to find an appropriate closed-world semantics for negation.
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Let V be a set of variables, and T := I ∪V be the set of terms. An atom
is either a concept atom of the form A(τ) or a role atom of the form r(τ, ρ),
where A ∈ C, r ∈ R and τ, ρ ⊆ T. A conjunctive query (CQ) φ(x) is a first-
order formula of the form ∃y.ψ(x,y), where ψ is a finite conjunction of atoms
over the free variables x (also called the answer variables) and the quantified
variables y. Conjunctive queries with (guarded) negation (NCQs) are constructed
by extending CQs with negated concept atoms ¬A(τ) and negated role atoms
¬r(τ, ρ) in such a way that, for any negated atom over terms τ (and ρ), the query
contains at least one positive atom over τ (and ρ) containing all the variables
of the negated atom. An NCQ is rooted if its variables are all connected via
role atoms to an answer variable (from x) or an individual name. An NCQ is
Boolean if it does not have answer variables. To determine whether I ⊧ φ holds
for an NCQ φ and an atemporal interpretation I, we use standard first-order
semantics.

We now extend the temporal CQs from [8] by metric operators [1,7,21] and
negation.

Definition 7. Metric temporal conjunctive queries with negation (MTNCQs)
are built by the grammar rule

φ ::= ψ |⊺ |� | ¬φ | φ ∧ φ | φ ∨ φ | φUIφ | φSIφ, (7)

where ψ is an NCQ, and I is an interval over N. An MTNCQ φ is
rooted/Boolean if all NCQs in it are rooted/Boolean.

Fig. 2. Semantics of (Boolean) MTNCQs for I = (ΔI, (Ii)i∈Z) and i ∈ Z.

We employ the standard semantics shown in Fig. 2. One can define the next
operator as ◯φ := ⊺U[1,1]φ, and similarly ◯−φ := ⊺S[1,1]φ. We can also express
♦Iφ := (⊺S

−(I ∩ (−∞,0])φ) ∨ (⊺UI ∩ [0,∞)φ) and ◻Iφ := ¬♦I¬φ, and hence, by (1),
the cc♦n-operators from Sect. 2. An MTCQ (or positive MTNCQ) is an MTNCQ
without negation, where we assume that the operator ◻I is nevertheless included
as part of the syntax of MTCQs.
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Example 8. Consider the criterion “Diagnosis of Rheumatoid Arthritis (RA) of
more than 6 months and less than 15 years.”6 This can be expressed as an
MTNCQ as follows:

φ(x) := ◻[−6,0]
(
∃y.diagnosedWith(x, y) ∧ RheumatoidArthritis(y)

)

∧ ¬ ◻[−180,0]

(
∃y.diagnosedWith(x, y) ∧RheumatoidArthritis(y)

)

The semantics are defined model-theoretically as usual: Let K = (T ,A) be
a TELH c♦,lhs

�

KB, φ(x) an MTNCQ, a a tuple of individual names from A,
i ∈ tem(A), and I a temporal interpretation. The pair (a, i) is an answer to
φ(x) w.r.t. I if I, i ⊧ φ(a). The set of all answers for φ w.r.t. I is denoted
ans(φ,I). The tuple (a, i) is a certain answer to φ w.r.t. K if it is an answer in
every model of K; all these tuples are collected in the set cert(φ,K).

Query answering is the decision problem of checking (a, i) ∈ cert(φ,K) when
given a, i, φ, and K = (T ,A). CQ answering over ELH

�

KBs is NP-complete in
general, and P-complete in data complexity, where the query φ and the TBox T
are not considered as part of the input [24,25,29]. However, certain answer seman-
tics for NCQ answering over ELH

�

is coNP-hard [19]. To achieve tractable
reasoning in data-oriented applications, we extend the minimal-world seman-
tics from [12], which allows for NCQ answering in polynomial time, and gives
intuitive semantics to negated query atoms.

3.1 Minimal-World Semantics for MTNCQs

Our goal is to extend the approach from [12] to find a minimal canonical model
of a TELH c♦,lhs

�

KB. Similarly to the core chase [17], the main idea is that this
model should not contain redundant elements. Particularly, the minimum nec-
essary number of anonymous objects together with the closed-world semantics
adequately represents negative knowledge about the objects; for a detailed dis-
cussion, see [12]. We consider here the sublogic TELH c♦,lhs,−

�

of TELH c♦,lhs
�

without
temporal roles �♦r, because temporal roles interfere with the minimality : by prop-
agating through time, a temporal role can easily violate the “local” minimality of
interpretations at other time points, which could lead to unintuitive answers. In
the definition of the model, we make use of entailment in TELH c♦,lhs,−

�

, which can
be checked in polynomial time. Thus, we can exclude w.l.o.g. equivalent concept
and role names. Also, for simplicity, in the following we assume w.l.o.g. that all
CIs are in the following stronger normal form (cf. (2)):

�♦A ⊑ B, A1 ⊓A2 ⊑ B, r ⊑ s, A ⊑ ∃r.B, ∃r.A ⊑ B,

i.e., ♦-operators are allowed only in CIs of the form �♦A ⊑ B. In particular,
disallowing CIs of the form �♦A ⊑ ∃r.B allows us to draw a stronger connection
to the original construction in [12]; see in particular Step 3(a) in Definition 9
below.

6 https://clinicaltrials.gov/ct2/show/NCT01198002.

https://clinicaltrials.gov/ct2/show/NCT01198002
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We need one more auxiliary definition from [12] to define the minimal tem-
poral canonical model. Given a set V of existential restrictions, we say that
∃r.A ∈ V is minimal in V if there is no other ∃s.B ∈ V such that K ⊧ s ⊑ r and
K ⊧ B ⊑ A.

Definition 9. The minimal temporal canonical model IK = (ΔIK , (Ii)i∈Z) of a
KB K = (T ,A) is obtained by the following steps.

1. Set ΔIK := I and aIi := a for all a ∈ NI and i ∈ Z.
2. For each time point i ∈ Z, define AIi := {a | K ⊧ A(a, i)} for all A ∈ C and

rIi := {(a, b) | K ⊧ r(a, b, i)} for all r ∈ R.
3. Repeat the following steps:

(a) Select an element d ∈ ΔIK that has not been selected before and, for each
i ∈ Z, let Vi := {∃r.B | d ∈ AIi , d �∈ (∃r.B)Ii , K ⊧ A ⊑ ∃r.B, A,B ∈ C}.

(b) For each ∃r.B that is minimal in some Vi, add a fresh element erB to
ΔIK . For all i ∈ Z and K ⊧ B ⊑ A, add erB to AIi .

(c) For all i ∈ Z, minimal ∃r.B in Vi, and K ⊧ r ⊑ s, add (d, erB) to sIi .

We denote by IA the result of executing only Steps 1 and 2 of this definition,
i.e., restricting IK to the named individuals. Since there are only finitely many
elements of I, C, and R that are relevant for this definition (i.e., those that
occur in K), for simplicity we often treat IA as if it had a finite object (but still
infinite time) domain.

In IK, there may exist anonymous objects that are not connected to any
named individuals in Ii and are not relevant for the satisfaction of the KB. For
this reason, in the following we consider only rooted MTNCQs, which can be
evaluated only over the parts of IK that are connected to the named individuals.
We show that IK is actually a model of K and is canonical in the usual sense that
it can be used to answer positive queries over K under certain answer semantics.

Lemma 10. Let K be a consistent TELH c♦,lhs,−
�

KB. Then IK is a model of K
and, for every rooted MTCQ φ, we have cert(φ,K) = ans(φ,IK).

Thus, the following minimal-world semantics is compatible with certain
answer semantics for positive (rooted) queries, while keeping a tractable data
complexity.

Definition 11. The set of minimal-world answers to an MTNCQ q over a con-
sistent TELH c♦,lhs,−

�

KB K is mwa(φ,K) := ans(φ,IK).

3.2 A Combined Rewriting for MTNCQs

Since the minimal canonical model IK may still be infinite, we now show that
rooted MTNCQ answering under minimal-world semantics is combined first-
order rewritable [27], i.e., to compute mwa(φ,K) we can equivalently evaluate
a rewritten query over a finite interpretation (of polynomial size). Since the
rewriting depends only on the query and the TBox, its size is irrelevant for data
complexity, and it can be evaluated in polynomial time. We proceed in two steps.
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1. We rewrite φ into a metric first-order temporal logic (MFOTL) formula φT ,
which combines first-order formulas via metric temporal operators; for details,
see [10]. This query can be evaluated over IA instead of IK. Hence, we reduce
the infinite object domain to the finite set I(K).

2. We then further rewrite φT into a three-sorted first-order formula (with
explicit variables for time points), which is then evaluated over a restric-
tion Ifin

A of IA that contains only finitely many time points (essentially those
in rep(A), although we modify them slightly).

For the first step, we rewrite a rooted MTNCQ φ by replacing each (rooted)
NCQ ψ with the first-order rewriting ψT from [12].7 The result is a special kind of
MFOTL formula φT [10], in which atemporal first-order formulas can be nested
inside MTL-operators, similarly as in MTNCQs. The semantics is based on a
satisfaction relation I, i ⊧ φT that is defined in much the same way as in Fig. 2,
the only exception being that I, i ⊧ ψT for a first-order formula ψT is defined
by Ii ⊧ ψT , using the standard first-order semantics. We can lift the atemporal
rewritability result from [12] in a straightforward way to our temporal setting.

Lemma 12. Let K = (T ,A) be a consistent TELH c♦,lhs,−
�

KB and φ be a rooted
MTNCQ. Then mwa(φ,K) = ans(φT ,IA).

For the second rewriting step, we restrict ourselves to finitely many time
points. More precisely, we consider the finite structure Ifin

A , which is obtained
from IA by restricting the set of time points to rep(A). By Lemma 4, the infor-
mation contained in this structure is already sufficient to answer atomic queries.
We extend this structure a little, by considering the two representatives i, j for
each maximal interval [i, j] in Z ∖ tem(A). In this way, we ensure that the “bor-
der” elements are always representatives for their respective intervals. The size
of the resulting structure Ifin

A is polynomial in the size of K.

Example 13. Let A = {B(a, 0), B(a, 2), C(a, 9)} and T = { −♦ cc♦3B ⊓ +♦C ⊑ A}.
Below one can see the finite structure Ifin

A over the representative time points
{−1, 0, 1, 2, 3, 8, 9, 10}, where for simplicity we omit the individual name.

. . . . . .B B C

−1 0 1 2 3 8 9 10

v v
N N

rep(A)

A

Ifin
A A, B A A, B A A

A, C . . .. . .

The rewriting from Lemma 12 can refer to time instants outside of rep(A).
However, when we want to evaluate a pure FO formula over the finite struc-
ture Ifin

A , this is not possible anymore, because the first-order quantifiers must
quantify over the domain of Ifin

A . Moreover, since the query φT can contain
metric temporal operators, we need to keep track of the distance between the
time points in tem(A). Hence, in the following we assume that Ifin

A is given as

7 Strictly speaking, ψT in [12] is a set of first-order formulas, which is however equiv-
alent to the disjunction of all these formulas.
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a first-order structure with the domain I ∪ {b1, . . . , bn} ∪ rep(A) and additional
predicates bit and sign such that bit(i, j), 1 ≤ j ≤ n, is true iff the jth bit of
the binary representation of the time stamp i is 1, and sign(i) is true iff i is
non-negative.

Thus, we now consider three-sorted first-order formulas with the three sorts I
(for objects), {b1, . . . , bn} (for bits) and rep(A) (for time stamps). We denote vari-
ables of sort rep(A) by t, t′, t′′. To simplify the presentation, we do not explicitly
denote the sort of all variables, but this is always clear from the context. Every
concept name is now accessed as a binary predicate of sort I × rep(A), e.g.,
A(a, i) refers to the fact that individual a satisfies A at time point i. Similarly,
role names correspond to ternary predicates of sort I × I × rep(A). It is clear that
the expressions t′�t and even t′−t�m for some constant m and � ∈ {≥, >, =, <, ≤}
are definable as first-order formulas using the natural order < on {1, . . . , m}.

Lemma 14. For φT there is a constant N ∈ N such that, for every subformula ψ
of φT , every maximal interval J in Z∖

⋃
{[i−N, i+N ] | i ∈ tem(A)}, all k, � ∈ J ,

and all relevant tuples a over I, we have IA, k ⊧ ψ(a) iff IA, � ⊧ ψ(a).

Hence, for evaluating subformulas of φT , it suffices to keep track of time
points up to N steps away from the elements of rep(A); this includes at least
one element from each of the intervals J mentioned in Lemma 14, since every
element of tem(A) is immediately surrounded by two elements of rep(A).

We exploit Lemma 14 in the following definition of the three-sorted first-order
formula [ψ]n(x, t) that simulates the behavior of ψ(x) at the “virtual” time point
t + n, where n ∈ [−N,N ]. Whenever we use a formula [ψ]n(x, t), we require that
t denotes a representative for t + n. Due to our assumption that each maximal
interval from Z ∖ tem(A) is represented by its endpoints (see Example 13), we
know that t is a representative for t+n iff there is no element of rep(A) between
t and t + n. We can encode this check in an auxiliary formula:

repn(t) := ¬∃ t′. (t + n ≤ t′ < t) ∨ (t < t′ ≤ t + n).

Example 15. In Example 13, 3 and 8 are representatives for the missing time
points 4–7, and we have Ifin

A ⊧ rep1(3) (with N = 1). However, for φT = ◯¬C(x),
we have IA, 3 ⊧ φT (a), but IA, 8 �⊧ φT (a), i.e., the behavior at 3 and 8 differs.
To distinguish this, we need to refer to the “virtual” time point 4 (gray circled
“v”) that is not included in Ifin

A , via the formula [¬C(x)]1(a, 3). By Lemma 14, it
is sufficient to consider 4, because this determines the behavior at 5–7.

We now define [ψ]n(x, t) recursively, for each subformula ψ of φT . If ψ is a
single rewritten NCQ, then [ψ]n(x, t) is obtained by replacing each atemporal
atom A(x) by A(x, t), and similarly for role atoms. The parameter n can be
ignored here, because we assumed that t is a representative for t + n, and hence
the time points t and t + n are interpreted in IA equally. For conjunctions, we
set [ψ1 ∧ψ2]n(x, t) := [ψ1]n(x, t)∧ [ψ2]n(x, t) and similarly for the other Boolean
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constructors. Finally, we demonstrate the translation for U-formulas (the case
of S-formulas is analogous). We define [ψ1 U[c1,c2]ψ2]n(x, t) as

∃ t′.
∨

n′∈[−N,N ]

(
(t + n + c1 ≤ t′ + n′

≤ t + n + c2) ∧ repn
′
(t′) ∧ [ψ2]n

′
(x, t′) ∧

∀t′′.
∧

n′′∈[−N,N ]

((
(t + n ≤ t′′ + n′′

< t′ + n′) ∧ repn
′′
(t′′)

)
→ [ψ1]n

′′
(x, t′′)

))
,

where c2 may be ∞, in which case the upper bound of t+n+ c2 can be removed.

Lemma 16. Let K = (T ,A) be a consistent TELH c♦,lhs,−
�

KB and φ be an
MTNCQ. Then ans([φT ]0(x, t),Ifin

A ) = ans(φT ,IA).

This lemma allows us to compute in polynomial time that patient p1
from Example 6 is an answer to φ(x) from Example 8 exactly at time point 7.
Below we summarize our tight complexity results, which by Lemma 10 also hold
for rooted MTCQs under certain answer semantics.

Theorem 17. Answering rooted MTNCQs under minimal-world semantics over
TELH c♦,lhs,−

�

KBs is ExpSpace-complete, and P-complete in data complexity.

Proof. ExpSpace-hardness is inherited from propositional MTL [1,18]. More-
over, first-order formulas over finite structures can be evaluated in PSpace [31].
Finally, the size of [φT ]0(x, t) is bounded exponentially in the size of φ
and T : each rewritten NCQ ψT may be exponentially larger than ψ, and each
[ψ1 UIψ2]n(x, t) introduces exponentially many disjuncts and conjuncts (but the
nesting depth of constructors in this formula is linear in the nesting depth
of ψ1 UIψ2).

For data complexity, hardness is inherited from atemporal EL [15]. Evaluating
FO(<, bit)-formulas is in DLogTime-uniform AC0 in data complexity [26], and
the size of our rewriting only depends on the query and the TBox. By Lemmas 12
and 16 and since Ifin

A is of size polynomial in the size of A, deciding whether a
tuple a is a minimal-world answer of an MTNCQ w.r.t. a TELH c♦,lhs,−

�

KB is
possible in P. ⊓⊔

4 Related Work and Discussion

For a general overview of temporal ontology and query languages, see [3,28].
In the presence of a single rigid role, allowing the operator +♦ on both sides of
EL CIs makes subsumption undecidable [4]. In [20], a variety of restrictions are
investigated to regain decidability. In particular, allowing the qualitative opera-
tors ±♦, −♦, +♦, cc♦ only on the left-hand side of CIs makes the logic tractable. Adding
LTL operators to concepts was also investigated in other DLs, like ALC (with-
out temporal roles) [28,32] and DL-Lite [4]. Only recently, also metric variants
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of such logics were considered [7,21,30]. There is a multitude of proposals for
(non-metric) temporal query answering for lightweight DLs [2,5,8,13,14].

We extend previous results by introducing a tractable temporal extension
of ELH

�

that allows metric temporal operators, and a metric temporal query
language. For MTNCQs under minimal-world semantics, we show that the com-
plexity of query answering does not increase from the classical case. Future work
includes representing numeric information, such as measurements and dosages
of medications, which are important for evaluating eligibility criteria of clinical
trials [11,16] and extending the set D. It seems possible to allow other diamond
operators in TELH c♦,lhs

�

axioms if they satisfy the relevant properties (see Lem-
mas 2 and 3). Currently, we are working on an optimized implementation of this
method for temporal queries over large medical ontologies such as SNOMED CT.
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Abstract. Reasoning on defeasible knowledge is a topic of interest in
the area of description logics, as it is related to the need of represent-
ing exceptional instances in knowledge bases. In this direction, in our
previous works we presented a framework for representing (contextual-
ized) OWL RL knowledge bases with a notion of justified exceptions on
defeasible axioms: reasoning in such framework is realized by a transla-
tion into ASP programs. The resulting reasoning process for OWL RL,
however, introduces a complex encoding in order to capture reasoning
on the negative information needed for reasoning on exceptions. In this
paper, we apply the justified exception approach to knowledge bases in
DL-LiteR, i.e. the language underlying OWL QL. We provide a definition
for DL-LiteR knowledge bases with defeasible axioms and study their
semantic and computational properties. The limited form of DL-LiteR
axioms allows us to formulate a simpler encoding into ASP programs,
where reasoning on negative information is managed by direct rules. The
resulting materialization method gives rise to a complete reasoning pro-
cedure for instance checking in DL-LiteR with defeasible axioms.

1 Introduction

Representing defeasible information is a topic of interest in the area of descrip-
tion logics (DLs), as it is related to the need of accommodating the presence of
exceptional instances in knowledge bases. This interest led to different propos-
als for non-monotonic features in DLs based on different notions of defeasibility,
e.g. [2,4,10,14,18]. In this direction, we presented in [6] an approach to repre-
sent defeasible information in contextualized DL knowledge bases by introduc-
ing a notion of justifiable exceptions: general defeasible axioms can be overridden
by more specific exceptional instances if their application would provably lead to
inconsistency. Reasoning in SROIQ-RL (i.e. OWL RL) knowledge bases is real-
ized by a translation to datalog, which provides a complete materialization calcu-
lus [19] for instance checking and conjunctive query (CQ) answering. While the
translation covers the full SROIQ-RL language, it needs a complex encoding to
represent reasoning on exceptions. In particular, it relies on proofs by contradic-
tion to ensure completeness in presence of negative disjunctive information.
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In this paper, we consider the case of knowledge bases with defeasible axioms
in DL-LiteR [13], which corresponds to the language underlying the OWL QL
fragment [21]. It is indeed interesting to show the applicability of our defeasible
reasoning approach to the well-known DL-Lite family: in particular, by adopting
DL-LiteR as the base logic we need to take unnamed individuals introduced by
existential formulas into account, especially for the justifications of exceptions.
Moreover, we show that due to the restricted form of its axioms, the DL-LiteR
language allows us to give a less involved datalog encoding in which reasoning
on negative information is directly encoded in datalog rules (cf. discussion on
“justification safeness” in [6]).
The contributions of this paper can be summarized as follows:

– In Sect. 3 we provide a definition of defeasible DL knowledge base (DKB)
with justified models that draws from the definition of Contextualized Knowl-
edge Repositories (CKR) [7,8,23] with defeasible axioms provided in [6]. This
allows us to concentrate on the defeasible reasoning aspects without consid-
ering the aspects related to context representation. In the case of DL-LiteR,
we focus on models in which exceptions only occur on individuals named in
the DKB (called exception-safe), and we present a condition which ensures
this property for the justified models of the DKB.

– For such exception-safe DKBs based on DL-LiteR,we provide in Sect. 4 a
translation to datalog (under answer set semantics [16]) that alters the trans-
lation in [5,6] and prove its correctness for instance checking. In particular,
the fact that reasoning on negative disjunctive information is not needed
allows us to provide a simpler translation (without the use of the involving
“test” environments mechanism of [6]).

– In Sect. 5 we provide complexity results for reasoning problems on exception-
safe DKBs based on DL-LiteR. Deciding satisfiability of such a DKB with
respect to justified models is tractable, while inference of an axiom under
cautious (i.e., certainty) semantics is co-NP-complete in general.

2 Preliminaries

Description Logics and DL-LiteR Language. We assume the common def-
initions of description logics [1] and the definition of the logic DL-LiteR [13]: we
summarize in the following the basic definitions used in this work.

A DL vocabulary Σ consists of the mutually disjoint countably infinite sets
NC of atomic concepts, NR of atomic roles, and NI of individual constants.
Complex concepts are then recursively defined as the smallest sets containing
all concepts that can be inductively constructed using the constructors of the
considered DL language. A DL-LiteR knowledge base K = 〈T ,R,A〉 consists
of: a TBox T containing general concept inclusion (GCI) axioms C � D where
C,D are concepts, of the form:

C := A | ∃R D := A | ¬C | ∃R
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where A ∈ NC and R ∈ NR;1 an RBox R containing role inclusion (RIA) axioms
S � R, reflexivity, irreflexivity, inverse and role disjointness axioms, where S,R
are roles; and an ABox A composed of assertions of the forms D(a), R(a, b),
with R ∈ NR and a, b ∈ NI.

A DL interpretation is a pair I = 〈ΔI , ·I〉 where ΔI is a non-empty set
called domain and ·I is the interpretation function which assigns denotations for
language elements: aI ∈ ΔI , for a ∈ NI; AI ⊆ ΔI , for A ∈ NC; RI ⊆ ΔI × ΔI ,
for R ∈ NR. The interpretation of non-atomic concepts and roles is defined by
the evaluation of their description logic operators (see [13] for DL-LiteR). An
interpretation I satisfies an axiom φ, denoted I |=DL φ, if it verifies the respective
semantic condition, in particular: for φ = D(a), aI ∈ DI ; for φ = R(a, b),
〈aI , bI〉 ∈ RI ; for φ = C � D, CI ⊆ DI (resp. for RIAs). I is a model of K,
denoted I |=DL K, if it satisfies all axioms of K.

Without loss of generality, we adopt the standard name assumption (SNA)
in the DL context (see [11,15] for more details). That is, we assume an infinite
subset NIS ⊆ NI of individual constants, called standard names s.t. in every
interpretation I we have (i) ΔI = NIIS = {cI | c ∈ NIS}; (ii) cI �= dI , for every
distinct c, d ∈ NIS . Thus, we may assume that ΔI = NIS and cI = c for each
c ∈ NIS . The unique name assumption (UNA) corresponds to assuming c �= d
for all constants in NI \ NIS resp. occurring in the knowledge base.

Datalog Programs and Answer Sets. We express our rules in datalog with
negation under answer sets semantics. In fact, we use here two kinds of nega-
tion2: strong (“classical”) negation ¬ and weak (default) negation not under the
interpretation of answer sets semantics [16]; the latter is in particular needed for
representing defeasibility.

A signature is a tuple 〈C,P〉 of a finite set C of constants and a finite set
P of predicates. We assume a set V of variables; the elements of C ∪ V are
terms. An atom is of the form p(t1, . . . , tn) where p ∈ P and t1, . . . , tn, are
terms. A literal l is either a positive literal p or a negative literal ¬p, where p is
an atom and ¬ is strong negation. Literals of the form p, ¬p are complementary.
We denote with ¬.l the opposite of literal l, i.e., ¬.p = ¬p and ¬.¬p = p for an
atom p. A (datalog) rule r is an expression:

a ← b1, . . . , bk, not bk+1, . . . , not bm. (1)

where a, b1, . . . , bm are literals and not is negation as failure (NAF). We denote
with Head(r) the head a of rule r and with Body(r) = {b1, . . . , bk, not bk+1, . . . ,
not bm} the body of r, respectively. A (datalog) program P is a finite set of rules.
An atom (rule etc.) is ground, if no variables occur in it. A ground substitution σ
for 〈C,P〉 is any function σ :V → C; the ground instance of an atom (rule, etc.)

1 In the following, we will use C to denote a left-side concept and D as a right-side
concept.

2 Strong negation can be easily emulated using fresh atoms and weak negation resp.
constraints. While it does not yield higher expressiveness, it is more convenient for
presentation.
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χ from σ, denoted χσ, is obtained by replacing in χ each occurrence of variable
v ∈ V with σ(v). A fact H is a ground rule r with empty body. The grounding
of a rule r, grnd(r), is the set of all ground instances of r, and the grounding of
a program P is grnd(P ) =

⋃
r∈P grnd(r).

Given a program P , the (Herbrand) universe UP of P is the set of all con-
stants occurring in P and the (Herbrand) base BP of P is the set of all the
ground literals constructable from the predicates in P and the constants in UP .
An interpretation I ⊆ BP is any satisfiable subset of BP (i.e., not containing
complementary literals); a literal l is true in I, denoted I |= l, if l ∈ I, and
l is false in I if ¬.l is true. Given a rule r ∈ grnd(P ), we say that Body(r) is
true in I, denoted I |= Body(r), if (i) I |= b for each literal b ∈ Body(r) and
(ii) I �|= b for each literal not b ∈ Body(r). A rule r is satisfied in I, denoted
I |= r, if either I |= Head(r) or I �|= Body(r). An interpretation I is a model
of P , denoted I |= P , if I |= r for each r ∈ grnd(P ); moreover, I is minimal, if
I ′ �|= P for each subset I ′ ⊂ I.

Given an interpretation I for P , the (Gelfond-Lifschitz) reduct of P w.r.t.
I, denoted by GI(P ), is the set of rules obtained from grnd(P ) by (i) removing
every rule r such that I |= l for some not l ∈ Body(r); and (ii) removing the
NAF part from the bodies of the remaining rules. Then I is an answer set of
P , if I is a minimal model of GI(P ); the minimal model is unique and exists
iff GI(P ) has some model. Moreover, if M is an answer set for P , then M is a
minimal model of P . We say that a literal a ∈ BP is a consequence of P and
write P |= a if every answer set M of P fulfills M |= a.

3 DL Knowledge Base with Justifiable Exceptions

In this paper we concentrate on reasoning on a DL knowledge base enriched
with defeasible axioms, whose syntax and interpretation are analogous to [6].
With respect to the contextual framework presented in [6], this corresponds to
reasoning inside a single local context: while this simplifies presentation of the
defeasibility aspects and the resulting reasoning method for the case of DL-LiteR,
it can be generalized to the original case of multiple local contexts.

Syntax. Given a DL language LΣ based on a DL vocabulary Σ = NCΣ ∪ NRΣ ∪
NIΣ , a defeasible axiom is any expression of the form D(α), where α ∈ LΣ .

We denote with LD
Σ the DL language extending LΣ with the set of defeasi-

ble axioms in LΣ . On the base of such language, we provide our definition of
knowledge base with defeasible axioms.

Definition 1 (defeasible knowledge base, DKB). A defeasible knowledge
base (DKB) K on a vocabulary Σ is a DL knowledge base over LD

Σ.

In the following, we tacitly consider DKBs based on DL-LiteR.

Example 1. We introduce a simple example showing the definition and inter-
pretation of a defeasible existential axiom. In the organization of a university
research department, we want to specify that “in general” department members
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need also to teach at least a course. On the other hand, PhD students, while
recognized as department members, are not allowed to hold a course. We can
represent this scenario as a DKB Kdept where:

Kdept :

⎧
⎨

⎩

D(DeptMember � ∃hasCourse),Professor � DeptMember ,
PhDStudent � DeptMember ,PhDStudent � ¬∃hasCourse,
Professor(alice), PhDStudent(bob)

⎫
⎬

⎭

Intuitively, we want to override the fact that there exists some course assigned to
the PhD student bob. On the other hand, for the individual alice no overriding
should happen and the defeasible axiom can be applied. ♦

Semantics. We can now define a model based interpretation of DKBs, in par-
ticular by providing a semantic characterization to defeasible axioms.

Similarly to the case of SROIQ-RL in [6], we can express DL-LiteR knowl-
edge bases in first-order (FO) logic, where every axiom α ∈ LΣ is translated into
an equivalent FO-sentence ∀x.φα(x) where x contains all free variables of φα

depending on the type of the axiom. The translation, depending on the axiom
types, can be defined analogously to the FO-translation presented in [6]. In the
case of existential axioms of the kind α = A � ∃R, the FO-translation φα(x) is
defined as:

A(x1) → R(x1, fα(x1)) ;

that is, we introduce a Skolem function fα(x1) which represents new “existential”
individuals. Formally, for every right existential axiom α ∈ LΣ , we define a
Skolem function fα : NI �→ E where E is a set of new individual constants not
appearing in NI. In particular, for a set of individual names N ⊆ NI, we will
write sk(N) to denote the extension of N with the set of Skolem constants for
elements in N .

After this transformation the resulting formulas φα(x) amount semantically
to Horn formulas, since left-side concepts C can be expressed by an existential
positive FO-formula, and right-side concepts D by a conjunction of Horn clauses.
The following property from [6, Section 3.2] is then preserved for DL-LiteR
knowledge bases.

Lemma 1. For a DL knowledge base K on LΣ, its FO-translation φK :=∧
α∈K∀xφα(x) is semantically equivalent to a conjunction of universal Horn

clauses.

With these considerations on the definition of FO-translation, we can now pro-
vide our definition of axiom instantiation:

Definition 2 (axiom instantiation). Given an axiom α ∈ LΣ with FO-
translation ∀x.φα(x), the instantiation of α with a tuple e of individuals in
NIΣ, written α(e), is the specialization of α to e, i.e., φα(e), depending on the
type of α.
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Note that, since we are assuming standard names, this basically means that
we can express instantiations (and exceptions) to any element of the domain
(identified by a standard name in NIΣ). We next introduce clashing assumptions
and clashing sets.

Definition 3 (clashing assumptions and sets). A clashing assumption is a
pair 〈α, e〉 s.t. α(e) is an instantiation for an axiom α ∈ LΣ. A clashing set for a
clashing assumption 〈α, e〉 is a satisfiable set S that consists of ABox assertions
over LΣ and negated ABox assertions of the forms ¬C(a) and ¬R(a, b) such
that S ∪ {α(e)} is unsatisfiable.

A clashing assumption 〈α, e〉 represents that α(e) is not satisfiable, while a
clashing set S provides an assertional “justification” for the assumption of local
overriding of α on e. We can then extend the notion of DL interpretation with
a set of clashing assumptions.

Definition 4 (CAS-interpretation). A CAS-interpretation is a structure
ICAS = 〈I, χ〉 where I = 〈ΔI , ·I〉 is a DL interpretation for Σ and χ is a
set of clashing assumptions.

By extending the notion of satisfaction with respect to CAS-interpretations, we
can disregard the application of defeasible axioms to the exceptional elements in
the sets of clashing assumptions. For convenience, we call two DL interpretations
I1 and I2 NI-congruent, if cI1 = cI2 holds for every c ∈ NI.

Definition 5 (CAS-model). Given a DKB K, a CAS-interpretation ICAS =
〈I, χ〉 is a CAS-model for K (denoted ICAS |= K), if the following holds:

(i) for every α ∈ LΣ in K, I |= α;
(ii) for every D(α) ∈ K (where α ∈ LΣ), with |x|-tuple d of elements in NIΣ

such that d /∈ {e | 〈α, e〉 ∈ χ}, we have I |= φα(d).

We say that a clashing assumption 〈α, e〉 ∈ χ is justified for a CAS model
ICAS = 〈I, χ〉, if some clashing set S = S〈α,e〉 exists such that, for every CAS-
model I ′

CAS = 〈I ′, χ〉 of K that is NI-congruent with ICAS , it holds that I ′ |=
S〈α,e〉. We then consider as DKB models only the CAS-models where all clashing
assumptions are justified.

Definition 6 (justified CAS model and DKB model). A CAS model
ICAS = 〈I, χ〉 of a DKB K is justified, if every 〈α, e〉 ∈ χ is justified. An
interpretation I is a DKB model of K (in symbols, I |= K), if K has some
justified CAS model ICAS = 〈I, χ〉.

Example 2. Reconsidering Kdept in Example 1, a CAS-model providing the
intended interpretation of defeasible axioms is ICASdept

= 〈I, χdept 〉 where
bobI �= aliceI and χdept = {〈α, bob〉} with α = DeptMember � ∃hasCourse.
The fact that this model is justified is verifiable considering that for the clashing
set S = {DeptMember(bob), ¬∃hasCourse(bob)} we have I |= S. On the other
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hand, note that a similar clashing assumption for alice is not justifiable: it is
not possible from the contents of Kdept to derive a clashing set S′ such that
S′ ∪ {α(alice)} is unsatisfiable. By Definition 5, this allows us to apply α to this
individual as expected and thus I |= ∃hasCourse(alice). ♦

DKB-models have interesting properties similar as CKR-models in [6]. An exam-
ple is non-redundancy, cf. [6, Prop. 6, minimality of justification] (the proof is
similar).

Proposition 1. Suppose ICAS = 〈I, χ〉 and I ′
CAS = 〈I ′, χ′〉 are NI-congruent

justified CAS-models of a DKB K, then χ �⊂ χ′ holds.

We are interested here in DKB-models ICAS = 〈I, χ〉 in which clashing assump-
tions 〈α, e〉 ∈ χ are only over the individuals of the knowledge base; that is,
exceptions can not be expressed on unnamed individuals introduced by existen-
tial axioms. A condition ensuring this is that no clashing set S〈α,e〉 for a defeasible
axiom α where e contains some unnamed individual (i.e., some skolem term) can
be derived from K if all defeasible axioms are turned into strict axioms (denote
this knowledge base by Ks). Formally, denote by NK the individuals occurring
in K. We say that K is exception-safe, if no clashing set S〈α,e〉 can be derived by
unfolding the axioms from Ks that contains an assertion D(e) (or R(e1, e2)) on
individuals not appearing in NK (i.e. not named in K).

Proposition 2. Let ICAS = 〈I, χ〉 be a CAS-model of DKB K and let K′ result
from K by pushing equality w.r.t. I, i.e., replace all a, b∈ NK s.t. aI = bI by
one representative. If K′ is exception-safe, then ICAS is justified only if every
〈α, e〉 ∈ χ is over NK.

Proof (Sketch). Suppose ICAS is justified and some 〈α, e〉 ∈ χ is not over NK.
Then, by definition of justification, some clashing set S for 〈α, e〉 with e outside
NK is satisfied in all CAS-models I ′

CAS of K that are NI-congruent with ICAS .
This means that S can be derived with axiom unfolding restricted by the clashing
assumptions in χ. But then S can also be derived without restrictions, and thus
from the knowledge base K′

s. However, this means that K′ is not exception-safe,
which is a contradiction. �

Table 1. Normal form for K axioms from LΣ
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Example 3 (Ex. 2 cont’d). Reconsider the CAS-model ICASdept
= 〈I, χdept 〉

where χdept = {〈α, bob〉} with bobI �= aliceI , χdept = {〈α, bob〉} and α =
DeptMember � ∃hasCourse. If we make α strict, we cannot derive a clashing set
S = {DeptMember(e), ¬∃hasCourse(e)} where e is an unnamed individual; to
derive DeptMember(e), it would require some axiom ∃R− � DeptMember where
some unnamed individual is introduced by some axiom A � ∃R; however, no
such former axioms can be derived, and thus Kdept is exception-safe. ♦

We remark that the conditions for exception-safety can be tested in polynomial
time, by non-deterministically unfolding the axioms (resolution-style, or in a
chase) to derive clashing sets in logarithmic workspace. Syntactic classes ensuring
this property can be singled out, which we omit here. In the sequel, we tacitly
assume exception safe DKBs under UNA, unless stated otherwise.

4 Datalog Translation for DL-LiteR DKB

We present a datalog translation for reasoning on DL-LiteR DKBs which refines
the translation provided in [6]. The translation provides a reasoning method
for positive instance queries w.r.t. entailment (on preferred models). An impor-
tant aspect of this translation is that, due to the form of DL-LiteR axioms,
no inference on disjunctive negative information is needed for the reasoning on
derivations of clashing sets. Thus, reasoning by contradiction using “test environ-
ments” is not needed and we can directly encode negative reasoning as rules on
negative literals: with respect to the discussion in [6], we can say that DL-LiteR
thus represents an inherently “justification safe” fragment which then allows us
to formulate such a direct datalog encoding. With respect to the interpretation
of right-hand side existential axioms, we follow the approach of [19]: for every
axiom of the kind α = A � ∃R, an auxiliary abstract individual auxα is added
in the translation to represent the class of all R-successors introduced by α.

We introduce a normal form for axioms of DL-LiteR (in Table 1) which allows
us to simplify the formulation of reasoning rules. We can provide rules to trans-
form any DL-LiteR DKB into normal form and show that the rewritten DKB is
equivalent to the original. In Table 1, we introduce new symbols A∃R to simplify
the management of existential formulas in rules for defeasible axioms: in the
normalization, we assume that, for every new symbol A∃R, axioms A∃R � ∃R,
∃R � A∃R are added to the KB.

Translation Rules Overview. We can now present the components of our dat-
alog translation for DL-LiteR based DKBs. As in the original formulation in [5,6],
which extended the encoding without defeasibility proposed in [8] (inspired by
the materialization calculus in [19]), the translation includes sets of input rules
(which encode DL axioms and signature in datalog), deduction rules (datalog
rules providing instance level inference) and output rules (that encode, in terms
of a datalog fact, the ABox assertion to be proved). The translation is composed
by the following sets of rules:
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DL-LiteR Input and Output Rules: rules in Idlr encode as datalog facts the
DL-LiteR axioms and signature of the input DKB. For example, in the case of
existential axioms,3 these are translated as A � ∃R �→ {supEx(A,R, auxα)}:
note that this rule, in the spirit of [19], introduces an auxiliary element auxα,
which intuitively represents the class of all new R-successors generated by the
axiom α. Similarly, output rules in O encode in datalog the ABox assertions to
be proved. These rules are provided in Table 2.

Table 2. DL-LiteR input, deduction and output rules

3 Note that, by the normal form above, this kind of axioms is in the form A∃R � ∃R.
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DL-LiteR Deduction Rules: rules in Pdlr (in Table 2) add deduction rules for
ABox reasoning. In the case of existential axioms, the rule (pdlr-supex) intro-
duces a new relation to the auxiliary individual as follows:

tripled(x, r, x′) ← supEx(y, r, x′), instd(x, y).

In this translation the reasoning on negative information is directly encoded by
“contrapositive” versions of the rules. For example, with respect to previous rule,
we have:

¬instd(x, y) ← supEx(y, r, w), const(x), all nrel(x, r).

where all nrel(x, r) verifies that ¬triple(x, r, y) holds for all const(y) by an
iteration over all constants.

Defeasible Axioms Input Translations: the set of input rules ID (shown in
Table 3) provides the translation of defeasible axioms D(α) in the DKB: in other
words, they are used to specify that the axiom α needs to be considered as
defeasible. For example, D(A � B) is translated to def subclass(A,B). Note
that, by the definition of the normal form, the existential axioms are “compiled
out” from defeasible axioms (i.e. defeasible existential axioms can be expressed
by using the newly added A∃R concepts).

Overriding Rules: rules for defeasible axioms provide the different conditions for
the correct interpretation of defeasibility: the overriding rules define conditions
(corresponding to clashing sets) for recognizing an exceptional instance. For
example, for axioms of the form D(A � B), the translation introduces the rule:

ovr(subClass, x, y, z) ← def subclass(y, z), instd(x, y),¬instd(x, z).

Note that in this version of the calculus, the reasoning on negative information
(of the clashing sets) is directly encoded in the deduction rules. Overriding rules
in PD are shown in Table 3.

Defeasible Application Rules: another set of rules in PD defines the defeasible
application of such axioms: intuitively, defeasible axioms are applied only to
instances that have not been recognized as exceptional. For example, the rule
(app-subc) applies a defeasible concept inclusion D(A � B):

instd(x, z) ← def subclass(y, z), instd(x, y), not ovr(subClass, x, y, z).

Defeasible application rules are provided in Table 3.

Translation Process. Given a DKB K in DL-LiteR normal form, a program
PK(K) that encodes query answering for K is obtained as:

PK(K) = Pdlr ∪ PD ∪ Idlr(K) ∪ ID(K)

Moreover, PK(K) is completed with a set of supporting facts about constants:
for every literal nom(c) or supEx(a, r, c) in PK(K), const(c) is added to PK(K).
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Table 3. Input and deduction rules for defeasible axioms

Then, given an arbitrary enumeration c0, . . . , cn s.t. each const(ci) ∈ PK(K),
the facts first(c0), last(cn) and next(ci, ci+1) with 0 ≤ i < n are added to
PK(K). Query answering K |= α is then obtained by testing whether the
(instance) query, translated to datalog by O(α), is a consequence of PK(K),
i.e., whether PK(K) |= O(α) holds.
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Correctness. The presented translation procedure provides a sound and com-
plete materialization calculus for instance checking on DL-LiteR DKBs in normal
form.

As in [6], the proof for this result can be verified by establishing a correspon-
dence between minimal justified models of K and answer sets of PK(K). Besides
the simpler structure of the final program, the proof is simplified by the direct
formulation of rules for negative reasoning. Another new aspect of the proof
in the case of DL-LiteR resides in the management of existential axioms, since
there is the need to define a correspondence between the auxiliary individuals
in the translation and the interpretation of existential axioms in the semantics:
we follow the approach of Krötzsch in [19], where, in building the correspon-
dence with justified models, auxiliary constants auxα are mapped to the class
of Skolem individuals for existential axiom α.

As in [6], in our translation we consider UNA and named models, i.e. inter-
pretations restricted to sk(NK). Thus, we can show the correctness result on
Herbrand models, that will be denoted Î(χ). Let ICAS = 〈I, χ〉 be a justified
named CAS-model. We define the set of overriding assumptions OVR(ICAS ) =
{ ovr(p(e)) | 〈α, e〉 ∈ χ, Idlr(α) = p }. Given a CAS-interpretation ICAS , we can
define a corresponding Herbrand interpretation I(ICAS ) for PK(K) by including
the following atoms in it:

(1). all facts of PK(K);
(2). instd(a,A), if I |= A(a) and ¬instd(a,A), if I |= ¬A(a);
(3). tripled(a,R, b), if I |= R(a, b) and ¬tripled(a,R, b), if I |= ¬R(a, b);
(4). tripled(a,R, auxα), if I |= ∃R(a) for α = A � ∃R;
(5). all nrel(a,R) if I |= ¬∃R(a);
(6). each ovr-literal from OVR(ICAS );

The next proposition shows that the least Herbrand model of K can be repre-
sented by the answer sets of the program PK(K).

Proposition 3. Let K be a DKB in DL-LiteR normal form. Then:

(i). for every (named) justified clashing assumption χ, the interpretation S =
I(Î(χ)) is an answer set of PK(K);

(ii). every answer set S of PK(K) is of the form S = I(Î(χ)) where χ is a
(named) justified clashing assumption for K.

Proof (Sketch). We consider S = I(Î(χ)) built as above and reason over the
reduct GS(PK(K)) of PK(K) with respect S. Basically, GS(PK(K)) contains
all ground rules from PK(K) that are not falsified by some NAF literal in S:
in particular, this excludes application rules for the axiom instances that are
recognized as overridden.

Item (i) can be proved by showing that given a justified χ, S is an answer set
for GS(PK(K)) (and thus PK(K)): the proof follows the same reasoning of the
one in [6], where the fact that I(Î(χ)) satisfies rules of the form (pdlr-supex) in
PK(K) is verified by the condition (4) on existential formulas in the construction
of the model above.
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For item (ii), we can show that from any answer set S we can build a justified
model IS for K such that S = I(Î(χ)) holds. The model can be defined similarly
to the original proof, but we need to consider auxiliary individuals in the domain
of IS , that is thus defined as: ΔIS = {c | c ∈ NIΣ} ∪ {auxα | α = A � ∃R ∈
K}. The result can then be proved by considering the effect of deduction rules
for existential axioms in GS(PK(K)): auxiliary individuals provide the domain
elements in IS needed to verify this kind of axioms. The justification of the
model follows by verifying that the new formulation of overriding rules correctly
encodes the possible clashing sets for the input defeasible axioms. �

The correctness result directly follows from Proposition 3.

Theorem 1. Let K be a DKB in DL-LiteR normal form, and let α ∈ LΣ such
that the output translation O(α) is defined. Then, K |= α iff PK(K) |= O(α).

5 Complexity of Reasoning Problems

We first consider the satisfiability problem, i.e., deciding whether a given
DL-LiteR DKB has some DKB-model. As it turns out, defeasible axioms do
not increase the complexity with respect to satisfiability of DL-LiteR, due to the
following property.

Proposition 4. Let K be a DL-LiteR DKB, and let χ0 = {〈α, e〉 | D(α) ∈ K,
e is over NK} be the clashing assumption that makes an exception to every
defeasible axiom over the individuals occurring in K. Then, K has some DKB-
model iff K has some CAS-model ICAS = 〈I, χ0〉.

Informally, the only if direction holds because any DKB-model of K is also
a CAS-model of K; as justified exceptions are only on NK and making more
exceptions does not destroy CAS-modelhood, some CAS-model with clashing
assumptions χ0 exists. Conversely, if K has some CAS-model of the form ICAS =
〈I, χ0〉, a justified CAS-model can be obtained by setting χ = χ0 and trying to
remove, one by one, each clashing assumption 〈α, e〉 from χ; this is possible,
if K has some NI-congruent model 〈I ′, χ \ {〈α, e〉}〉. After looping through all
clashing assumptions in χ0, we have that some NI-congruent model 〈I ′, χ〉 exists
that is justified.

Thus, DKB-satisfiability testing boils down to CAS-satisfiability checking,
which can be done using the datalog encoding described in the previous section.
From the particular form of that encoding, we obtain the following result.

Theorem 2. Deciding whether a given DL-LiteR DKB K has some DKB-
model is NLogSpace-complete in combined complexity and FO-rewritable in data
complexity.

To see this, the program PK(K) for K has in each rule at most one literal with
an intensional predicate in the body, i.e., a predicate that is defined by proper
rules. Thus, we have a linear datalog program with bounded predicate arity,
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for which derivability of an atom is feasible in nondeterministic logspace, as
this can be reduced to a graph reachability problem in logarithmic space. The
NLogSpace-hardness is inherited from the combined complexity of KB satisfia-
bility in DL-LiteR, which is NLogSpace-complete.

As regards data-complexity, it is well-known that instance checking and sim-
ilarly satisfiability testing for DL-LiteR are FO-rewritable [13]; this has been
shown by a reformulation algorithm, which informally unfolds the axioms α(x)
(i.e., performs resolution viewing axioms as clauses), such that deriving an
instance A(a) reduces to presence of certain assertions in the ABox. This unfold-
ing can be adorned by typing each argument x∈x of an axiom to whether it is an
individual from the DKB (type i), or an unnamed individual (type u); for exam-
ple, α(x) = A � B yields αi(x) and αu(x). The typing carries over to unfolded
axioms. In unfolding, one omits typed versions of defeasible axioms D(α(x)),
which w.l.o.g. have no existential restrictions; e.g., for D(α(x)) = D(B � C),
one omits αi(x). In this way, instance derivation (and similarly satisfiability
testing) is reduced to presence of certain ABox assertions again.

On the other hand, entailment checking is intractable: while some justified
model is constructible in polynomial time, there can be exponentially many
clashing assumptions for such models, even under UNA; finding a DKB model
that violates an axiom turns out to be difficult.

Theorem 3. Given a DKB K and an axiom α, deciding K |= α is co-NP-
complete; this holds also for data complexity and instance checking, i.e., α is of
the form A(a) for some assertion A(a).

Proof (Sketch). To refute K |= α, we can exhibit that a justified CAS-model
ICAS = 〈I, χ〉 of K named relative to sk(N) exists such that I �|= α, with
NK ⊆ N ⊆ NI \ NIS and where N includes few fresh individual names such
that I violates the instance of α for some elements e over sk(N). We can guess
clashing assumptions χ over NK, where each 〈α, e〉 ∈ χ has a unique clashing
set Sα(e), and a partial interpretation over N , and check derivability of all Sα(e)

and that the interpretation extends to a model of K in polynomial time. Thus,
we overall obtain membership of entailment in co-NP.

The co-NP-hardness can be shown by a reduction from inconsistency-tolerant
reasoning from DL-LiteR KBs under AR-semantics [20]. Given a DL-LiteR KB
K = A ∪ T with ABox A and TBox T , a repair is a maximal subset A′ ⊆ A such
that K′ = A′ ∪ T is satisfiable; an assertion α is AR-entailed by K, if K′ |= α
for every repair K′ of K. As shown by Lembo et al., deciding AR-entailment is
co-NP-hard; this continues to hold under UNA and if all assertions involve only
concept resp. role names.

Let K̂ = T ∪ {D(α) | α ∈ A}, i.e., all assertions from K are defeasible. As
easily seen, the maximal repairs A′ correspond to the justified clashing assump-
tions by χ = {〈α, e〉 | α(e) ∈ A \ A′}. Thus, K AR-entails α iff K̂ |= α, proving
co-NP-hardness.

For data complexity (without defeasible facts), we can adjust the transfor-
mation and emulate D(A(a)) by an axiom D(A′ � A): we make the assertion
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A′(a), where A′ is a fresh concept name; similarly D(R(a, b)) is emulated by
D(R′ � R) plus R′(a, b), where R′ is a fresh role name. As Lembo et al. proved
co-NP-hardness under data-complexity, the claimed result follows. �

We observe that the co-NP-hardness proof in [20] used many role restric-
tions and inverse roles; for combined complexity, co-NP-hardness of entailment
in absence of any role names can be derived from results about propositional
circumscription in [12]. In particular, [12, Theorem 16] showed that deciding
whether an atom z is a circumscriptive consequence of a positive propositional
2CNF F if all variables except z are minimized (i.e., in circumscription notation
CIRC (F ;P, ∅; {z}) |= z), is co-NP-hard;4 such an inference can be easily emu-
lated by entailment from a DKB constructed from F and z, where propositional
variables are used as concept names.

Indeed, for each clause c = x ∨ y in F , we add to K an axiom x � ¬y if
z �= x, y and an axiom x � z (resp. y � z) if z = y (resp. x = z). Furthermore, for
each variable x �= z, we add D(x(a)), where a is a fixed individual. This effects
that justified DKB-models of K correspond to the models of CIRC (F ;P, ∅; {z}),
where the minimality of exceptions in justified DKB-models emulates the min-
imality of circumscription models; thus, K |= z(a) iff CIRC (F ;P, ∅; {z}) |= z.
Similarly as above, defeasible assertions could be moved to defeasible axioms
D(c � v) with a single assertion c(a).

While this establishes co-NP-hardness of entailment for combined complex-
ity under UNA when roles are absent, the data complexity is tractable; this is
because we can consider the axioms for individuals a separately, and if the GCI
axioms are fixed only few axioms per individual exist. This is similar if role
axioms but no existential restrictions are permitted, as we can concentrate on
the pairs a, b and b, a of individuals. The questions remains how much of the
latter is possible while staying tractable.

6 Discussion and Conclusion

Related Works. The relation of the justified exception approach to nonmono-
tonic description logics was discussed in [6], where in particular an in-depth com-
parison w.r.t. typicality in DLs [18], normality [3] and overriding [2] was given. A
distinctive feature of our approach, linked to the interpretation of exception can-
didates as different clashing assumptions, is the possibility to “reason by cases”
inside the alternative justified models (cf. the discussion of the classic Nixon
Diamond example [6, Section 7.4]).

The introduction of non-monotonic features in the DL-Lite family and, more
in general, to low complexity DLs has been the subject of many works, mostly
with the goal of preserving the low complexity properties of the base logic in the
extension. For example, in [3] an in-depth study of the complexity of reasoning
with circumscription in DL-LiteR and EL was presented: the work considers

4 The models of CIRC (F ;P, ∅; {z}) are all models M of F such that no model M ′ of
F exists with M ′ \ {z} ⊂ M \ {z}.
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defeasibility on inclusion axioms C �n D; in the case of circumscription in
DL-LiteR, it is shown that by suitable syntactic restrictions instance checking
can be limited to Πp

2 . Similarly, in [17] the authors studied the complexity of the
application of their typicality approach to DL-Litec and EL⊥ in order to search
for low complexity fragments of DLs with typicality: in the case of DL-Litec

enriched with typical concept inclusions, entailment matches the Πp
2 complexity

bound from [3]. A recent work in this direction is [22], where a defeasible version
of EL⊥ was obtained, extending works on rational closure on DLs [14]: higher
typicality is modelled by extending classical canonical models of EL⊥ with mul-
tiple representatives of concepts and individuals; inference is then defined on a
canonical model of the extended domain.

Summary and Future Directions. In this paper, we considered the justified
exception approach in [6] for reasoning on DL-LiteR KBs with defeasible axioms.
We have shown that the limited language of DL-LiteR allows us to formulate a
direct datalog translation to reason on derivations for negative information in
instance checking.

Beyond instance queries, (Boolean) conjunctive queries (CQs) can be defined
similar as in [6] and the ASP encoding can be extended in order to model CQ
evaluation under cautious (certainty) semantics; the latter problem can be shown
to be Πp

2 -complete. An interesting issue is how to manage settings that allow
for exceptions on unnamed individuals (generated by existential axioms), and
to provide them with suitable semantic characterizations. Multiple auxiliary ele-
ments auxα may be necessary to enable different exceptions for unnamed indi-
viduals reached from different individuals; this remains for further investigation.
Moreover, we plan to apply and evaluate the current results on DL-LiteR in the
framework of Contextualized Knowledge Repositories with hierarchies as in [9].
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Abstract. This paper addresses the problem of constructing a policy pipeline
that enables compliance checking of business processes against regulatory obli-
gations. Towards this end, we propose an Open Digital Rights Language (ODRL)
profile that can be used to capture the semantics of both business policies in the
form of sets of required permissions and regulatory requirements in the form of
deontic concepts, and present their translation into Answer Set Programming (via
the Institutional Action Language (InstAL)) for compliance checking purposes.
The result of the compliance checking is either a positive compliance result or
an explanation pertaining to the aspects of the policy that are causing the non-
compliance. The pipeline is illustrated using two (key) fragments of the General
Data Protect Regulation, namely Articles 6 (Lawfulness of processing) and Arti-
cles 46 (Transfers subject to appropriate safeguards) and industrially-relevant use
cases that involve the specification of sets of permissions that are needed to exe-
cute business processes. The core contributions of this paper are the ODRL pro-
file, which is capable of modelling regulatory obligations and business policies,
the exercise of modelling elements of GDPR in this semantic formalism, and the
operationalisation of the model to demonstrate its capability to support personal
data processing compliance checking, and a basis for explaining why the request
is deemed compliant or not.

1 Introduction

The General Data Protection Regulation (GDPR), which came into effect in May 2018,
provides data controllers and processors with legal requirements and guidelines con-
cerning the processing and sharing of personal data. Although there are a number of self
assessment tools that can be used by companies to manually assess GDPR compliance
(cf., Information Commissioner’s Office (ICO) UK [19], Microsoft Trust Center [24],
Nymity [26]), automated compliance checking of business processes with respect to
legal obligations is highly desirable, especially when such systems are regularly updated
(e.g., maintenance and feature updates).

In order to support automated compliance checking it is necessary to encode
both GDPR requirements and business processes in a machine understandable format.
c© Springer Nature Switzerland AG 2019
P. Fodor et al. (Eds.): RuleML+RR 2019, LNCS 11784, pp. 36–51, 2019.
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Existing work in the area focuses on modelling legal requirements using semantic tech-
nologies [4–6,31]; reasoning over legal rules [2,11,29]; and reasoning over business
policies [11,18,22]. At the same time there are several semantic technology based
general policy languages, such as KAoS [9], Rei [21] and Protune [8], which could
potentially be used to model and reason over legal requirements and business policies.
However, there are no standardised mechanisms for representing policies, such that
compliance can be checked automatically.

When it comes to Web standardisation activities relating to semantic based policy
languages, the closest match is the Open Digital Rights Language (ODRL) information
model and associated vocabularies, which enables various parties to specify permis-
sions, prohibitions, and duties relating to actions performed on assets. Although ODRL
is primarily used to specify licenses, it could be adapted/extended, via the ODRL profile
mechanism, such that it is also possible to specify a broader set of policies.

Thus, in this paper, we introduce our ODRL Regulatory Compliance Profile
(ORCP), which can be used to model both regulatory requirements and sets of per-
missions required to execute a business process, and discuss how these policies can
be translated into Answer Set Programming (ASP) [17] rules such that it is possible
to automatically check compliance, identify conflicts and propose resolution strategies.
ASP is a declarative programming language with a mathematical foundation guarantee-
ing sound and completeness of the results. The translation to ASP is facilitated through
InstAL [10,23,27], a domain specific action language for modelling normative systems
and legal frameworks.

Summarising our contributions, we: (i) propose an ODRL profile, which is capable
of modelling regulatory permissions, prohibitions, obligations, and dispensations, and
permissions needed to execute business processes within a company; (ii) show how
elements of the GDPR can be modelled using this semantic formalism; (iii) demonstrate
how ASP rules based on InstAL can be used for automatic compliance checking; and
(iv) propose a mechanism to provide evidence in support of the compliance decision
and identify what is missing.

The remainder of the paper is structured as follows: Sect. 2 discusses related
work on modelling and reasoning over legal requirements. Section 3 introduces our
ODRL profile that can be used to encode both regulatory requirements and permissions
required by business processes. Section 4 demonstrates how InstAL can be used for
ODRL policy compliance checking and explanation generation. Section 5 offers some
evaluation of and reflection on our proposal. Finally, Sect. 6 concludes the paper and
identifies several open research questions.

2 Related Work

Over the years there have been several prominent works that focus specifically on mod-
elling legal requirements using semantic technologies [4–6,31]. Boer et al. [6] build
upon the MetaLex [5] eXtensible Markup Language legislation encoding mechanism,
in order to define a language and vocabularies that cater for the interchange of legal
knowledge, known as the Legal Knowledge Interchange Format (LKIF). Bartolini et al.
[4] propose an ontology that can be used to model data protection requirements, and
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demonstrates how it can be integrated into existing business workflows. Like Bartolini
et al. [4], Pandit et al. [31] focus specifically on data protection, however they demon-
strate how the European Legislation Identifier (ELI) ontology can be used to model the
GDPR as linked data. Outputs include a DCAT1 catalog containing the official text of
the GDPR and a SKOS2 ontology defining concepts related to GDPR.

In addition, there is a body of work relating to legal reasoning [2,11,18,18,22,29].
Palmirani et al. [29] and Athan et al. [2] demonstrate how LegalRuleML, an extension
of RuleML [7], can be used to specify legal norms, guidelines, and policies. Dimyadi
et al. [11] compares LegalRuleML and LKIF formalisms and highlights that one of the
primary benefits of Semantic technology based approaches is the availability of mature
reasoning engines. While, Lam and Hashmi [22] demonstrate how LegalRuleML can be
translated into defeasible logic, which allows for modelling and reasoning over business
policies. Governatori et al. [18] in turn shows how LegalRuleML together with Semantic
technologies is used for business process regulatory compliance checking.

In the early days of Semantic Web research, researchers developed general policy
languageswith formal semantics (such asKAoS [9], Rei [21] and Protune [8]), that could
potentially be used to model and reason over legal permissions, prohibitions, obliga-
tions, and dispensations. More recently, the Open Digital Rights Language, which was
primarily intended to define rights to or to limit access to digital resources (cf. [30]), has
demonstrated its potential as a general policy language. For instance, researchers have
hinted as to how it could be used to express: access policies [33]; requests, data offers
and agreements [32]; and basic regulatory policies [1]. While, Fornara and Colombetti
[12] consider how to add obligations to (an earlier version) of ODRL and subsequently
in Fornara et al. [13] how to reason over such ODRL extensions, using additional ontolo-
gies and semantic rules.

In this paper, we propose an ODRL regulatory compliance profile that can be used
to model both regulatory requirements in terms of deontic concepts (permissions, pro-
hibitions, obligations and dispensations), and business policies in the forms of sets of
permissions required to execute the policy. The ODRL policies are subsequently trans-
lated into ASP rules, which not only cater for automatic compliance checking, but also
for non compliance detection and explanation.

3 Modelling Legislative Requirements and Business Policies Using
ODRL

We start by presenting our generalised ODRL information model and subsequently
demonstrate how it can be used to encode legal requirements and permissions required
by business processes. At this stage we do not aim to be exhaustive in terms of mod-
elling, but rather our objective is to demonstrate that ODRL can be extended to cater
for the modelling of regulatory policies (in the form of nested permissions, prohibi-
tions, obligations, and dispensations) and business policies (in the form of discrete per-
missions that are needed to execute a business process). The full ODRL Regulatory

1 DCAT, https://www.w3.org/TR/vocab-dcat/.
2 SKOS, https://www.w3.org/TR/skos-reference/.

https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/skos-reference/
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Fig. 1. A generalised ODRL information model

Compliance Profile, including examples in both Turtle and JSON-LD serialisations are
available in the form of a draft specification3 and an ontology4. Our expectation is that
the ODRL Regulatory Compliance profile ontology will be extended by domain experts
with additional classes and properties to support not only the modelling of relevant arti-
cles from the GDPR but also other legislation.

3.1 Generalising the ODRL Information Model

Figure 1 provides a high level overview of a generalised ODRL information model.
Like ODRL, a Policy is composed of a Set of Rules each of which govern an
Action that is performed by Party. Given that Asset is too specific, it is replaced
by a more general Resource class, which is a superclass of Asset. As per ODRL, the
ConflictTerm class is used to specify the conflict resolution strategy.

In terms of exclusions, the Agreement and Offer policy subclasses, the Duty rule
subclass, and the duty, failure, remedy, and consequence properties are removed
in the new model, as these classes and properties were strongly motivated by use cases
relating to licensing.

3 ODRL Regulatory Compliance Profile, https://ai.wu.ac.at/policies/orcp/regulatory-model.
html.

4 ODRL Regulatory Compliance Profile Ontology, https://ai.wu.ac.at/policies/orcp/odrl
regulatory profile.ttl.

https://ai.wu.ac.at/policies/orcp/regulatory-model.html
https://ai.wu.ac.at/policies/orcp/regulatory-model.html
https://ai.wu.ac.at/policies/orcp/odrl_regulatory_profile.ttl
https://ai.wu.ac.at/policies/orcp/odrl_regulatory_profile.ttl
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From an inclusions perspective, in addition to the Permissions, Prohibitions
rule subclasses already provided for by ODRL, Obligation and Dispensation rule
subclasses are added to the profile, such that it is possible to express deontic con-
cepts needed for better modeling regulatory policies, both structurally and semanti-
cally. In addition, in order to support the modelling of nested rules, permission,
prohibition, obligation and dispensation properties have been added to the
abstract Rule class. For instance, the following text could be modelled as a permission
with a nested prohibition: “processing is necessary for the purposes of the legitimate
interests pursued by the controller or by a third party, except where such interests are
overridden by the interests or fundamental rights and freedoms of the data subject which
require protection of personal data, in particular where the data subject is a child”.

Additionally it is worth noting that the ODRL constraint functionality has been
curtailed, such that the model now contains an abstract Constraint class, which
needs to be subclassed in order to support specific constraints with well defined
semantics necessary for automated compliance checking. The current model includes
a PredicateConstraint, which is used to specify object assertions expected for a
given predicate. However, it is expected that additional Constraint subclasses (with
well defined semantics) will be added as the need arises.

3.2 The ODRL Regulatory Compliance Profile

In addition to the core classes and properties outlined in the previous section, based
on our analysis of Article 6 and Article 46 of the GDPR, the profile defines sev-
eral additional classes (e.g., LegalBasis, Purpose, and Location) and proper-
ties (e.g., legalBasis, purpose, processingLocation, recipientLocation,
organisationType, appropriateSafeguards, and dataSubjectProvisions),

1. In the absence of a decision pursuant to Article 45(3), a controller or processor may transfer personal data

to a third country or an international organisation only if the controller or processor has provided

appropriate safeguards, and on condition that enforceable data subject rights and effective legal remedies

for data subjects are available.

2. The appropriate safeguards referred to in paragraph 1 may be provided for, without requiring any specific
authorisation from a supervisory authority, by:
(a) a legally binding and enforceable instrument between public authorities or bodies;

(b) binding corporate rules in accordance with Article 47;

(c) standard data protection clauses adopted by the Commission in accordance with the examination
procedure referred to in Article 93(2);

(d) standard data protection clauses adopted by a supervisory authority and approved by the
Commission pursuant to the examination procedure referred to in Article 93(2);

(e) an approved code of conduct pursuant to Article 40 together with binding and enforceable
commitments of the controller or processor in the third country to apply the appropriate safeguards,
including as regards data subjects’ rights; or

(f) an approved certification mechanism pursuant to Article 42 together with binding and enforceable
commitments of the controller or processor in the third country to apply the appropriate safeguards,
including as regards data subjects’ rights.

Annotation key: party, resource, action, constraint

Art. 46 GDPR – Transfers subject to appropriate safeguards

Fig. 2. Paragraphs 1 and 2 excerpted from GDPR Article 46
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which are needed in order to check the compliance of business processes with said arti-
cles. The example ODRL Regulatory Compliance Profile policies (based on paragraphs
1 and 2 of Article 46 of the GDPR) presented in this paper are encoded using the Tur-
tle serialisation syntax, with the odrl prefix used to denote the ODRL ontology5 and
the orcp prefix used to denote the proposed regulatory compliance ontology6. Figure 2
depicts an extract from Article 46 of the GDPR, where colour coding is used to high-
light parties, resources, actions, and constraints that need to be modelled using our
regulatory profile. Given that the objective is to enable companies to assert that various
data subject provisions and safeguards exist, we treat each point under a paragraph as
a single resource and do not model the parties, actions and constraints relating to these
resources.

1 <http://example.com/policy:gdpr-article46> a orcp:Set ;
2 odrl:profile <http://example.com/odrl:profile:regulatory-compliance> ;
3 orcp:permission
4 [ odrl:action orcp:Transfer ;
5 orcp:data orcp:PersonalData ;
6 odrl:predicateConstraint
7 [ odrl:or (
8 [ odrl:leftOperand orcp:organisationType ;
9 odrl:operator odrl:isA ;

10 odrl:rightOperand orcp:InternationalOrganisation
11 ]
12 [ odrl:leftOperand orcp:recipientLocation ;
13 odrl:operator odrl:isA ;
14 odrl:rightOperand orcp:ThirdCountry
15 ] )
16 ] ;
17 orcp:obligation
18 [ odrl:predicateConstraint
19 [ odrl:leftOperand orcp:dataSubjectProvisions ;
20 odrl:operator odrl:isA ;
21 odrl:rightOperand orcp:EnforceableDataSubjectRights
22 ]
23 ],
24 [ odrl:predicateConstraint
25 [ odrl:leftOperand orcp:dataSubjectProvisions ;
26 odrl:operator odrl:isA ;
27 odrl:rightOperand orcp:LegalRemediesForDataSubjects
28 ]
29 ],
30 [ odrl:predicateConstraint
31 [ odrl:leftOperand orcp:appropriateSafeguards ;
32 odrl:operator odrl:isAnyOf ;
33 odrl:rightOperand ( orcp:LegallyBindingEnforceableInstrument
34 orcp:BindingCorporateRules
35 orcp:StandardDataProtectionClauses
36 orcp:ApprovedCodeOfConduct
37 orcp:ApprovedCertificateMechanism )
38 ]
39 ]
40 ] .

Listing 1. ODRL/TTL representation of paragraphs 1 and 2 of GDPR Article 46

5 <http://www.w3.org/ns/odrl/2/>.
6 <http://example.com/odrl:profile:regulatory-compliance/>.

http://www.w3.org/ns/odrl/2/
http://example.com/odrl:profile:regulatory-compliance/
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Listing 2. ODRL/TTL request for permission to transfer personal data

1 <http://example.com/policy:bp-transfer> a orcp:Set ;
2 odrl:profile <http://example.com/odrl:profile:regulatory-compliance> ;
3 orcp:permission
4 [ odrl:action orcp:Transfer ;
5 orcp:data orcp:PersonalData ;
6 orcp:responsibleParty orcp:Controller ;
7 orcp:organisationType orcp:InternationalOrganisation ;
8 orcp:sender <http://example.com/CompanyA_Ireland> ;
9 orcp:recipient <http://example.com/CompanyA_US> ;

10 orcp:recipientLocation orcp:ThirdCountry ;
11 orcp:purpose orcp:PersonalRecommendations ;
12 orcp:legalBasis orcp:Consent ;
13 odrl:dataSubjectProvisions orcp:EnforceableDataSubjectRights ;
14 odrl:dataSubjectProvisions orcp:LegalRemediesForDataSubjects
15 ] .

The ODRL Regulatory Model representation of Article 46 is presented in Listing 1
and the permission needed to execute the business process is presented in Listing 2.
More specifically, the regulatory policy presented in Listing 1 states that the Transfer
(action) of PersonalData (resource) to an InternationalOrganisation or
ThirdCountry is permitted if EnforceableDataSubject, LegalRemediesFor

DataSubjects, and appropriateSafeguards of type LegallyBindingEn

forceableInstrument, BindingCorporateRules, StandardDataProtection
Clauses, ApprovedCodeOfConduct, or ApprovedCertificateMechanism are
asserted in the company policy. While, the permission needed to execute a busi-
ness process, presented in Listing 2, states that a Controller (party) who
is an InternationalOrganisation wishes to perform a Transfer (action)
of PersonalData (resource), from CompanyA Ireland to CompanyA USA in a
ThirdCountry, for generating PersonalRecommendations, where the lawfulness
for processing is Consent. In addition the company policy asserts that the company
has EnforceableDataSubjectRights and LegalRemediesForDataSubjects in
place within the company.

4 Compliance Checking

The previous section describes and justifies the design of the ODRL policy compli-
ance profile, which provides us with a means to represent a regulatory policy – such
as fragments of GDPR – and to represent a company’s particular business process, but
it does not give the means to determine whether an implementation is compliant with
the regulatory obligation. ODRL is not written using OWL-DL or even full OWL, it is
purely RDF, and as such poses technical problems for some existing tools, for example
the standard reasoners Pellet and Hermit cannot handle ODRL out of the box, while
open-world reasoning over RDF has computational tractability issues. A practical, and
common solution, is to switch from open-world to closed-world reasoning [25], which
is the approach we take here, while also translating the ODRL policy representations
into InstAL, which is subsequently compiled into an Answer Set Program [3], so that
we may benefit from the computational capabilities of an Answer Set solver, in our case
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CLINGO [15]. We choose to use InstAL partly since it is a familiar tool for us, and partly
because InstAL has been designed as a domain specific language for representation and
reasoning about regulations, and thus offers modelling elements suitable for the task.

In the rest of this section, we provide a brief primer on InstAL, before describ-
ing how compliance check data is encoded, and how ODRL policies are translated to
InstAL. We conclude the section with an example of a data transfer compliance check,
based on the content of Listing 2, which illustrates how the model detects conflicts
between the process description and the regulatory policy.

4.1 Institutional Action Language

The Institutional Action Language (InstAL) is a domain-specific language (DSL) for
writing models in terms of events and states, which translates to Answer Set Pro-
gramming (ASP) for model evaluation under closed-world (non-monotonic) reasoning.
Model state is expressed in terms of fluents – facts that are true if present and false if
absent – which can be either inertial – true once initiated, until explicitly terminated –
or non-inertial – whose presence is the result of a condition expressed over the model
state. Inertial fluents model so-called institutional or normative facts, following the con-
cepts of deontic logic [34], namely permission/prohibition and obligation, institutional
power [20] and domain-specific facts. An InstAL specification has five kinds of rules:
(i) x generates y: x is an event (action) and y is one or more events, whose generation
can be conditional on the model state; (ii) x initiates y: x is an event and y is one or
more fluents to add to the model state, subject to a condition as above; (iii) x terminates
y: as initiates, but the fluents are deleted; (iv) x when y: x is a non-inertial fluent and y
is a condition over the model state; and (v) initially x: x is one or more fluents that shall
be part of the initial model state, again possibly subject to a condition.

4.2 Data Representation

The approach taken for the purposes of this paper is to map the ODRL representation
into three-element term fluents, reflecting the underlying RDF triples:

type Subject;
type Predicate;
type Object;
fluent triple(Subject,Predicate,Object);

which while simplistic, offers a uniform representation to which it is straightforward to
translate. Consequently, we may represent the data for a given compliance-check, such
as the transfer process description in Listing 2, as a set of triples:

triple(bp_transfer,action,transfer)
triple(bp_transfer,resource,personalData)
triple(bp_transfer,responsibleParty,controller)
triple(bp_transfer,organisationType,internationalOrganisation)
triple(bp_transfer,sender,companyA_Ireland)
triple(bp_transfer,recipient,companyA_US)
triple(bp_transfer,recipientLocation,thirdCountry)
triple(bp_transfer,purpose,personalRecommendations)
triple(bp_transfer,legalBasis,consent)
triple(bp_transfer,dataSubjectProvisions,enforceableDataSubjectRights)
triple(bp_transfer,dataSubjectProvisions,effectiveLegalRemedies)
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4.3 Policy Representation

The GDPR article fragments are represented as rules which determine the compliance
of the process description depending on the data supplied (such as that given above), by
means of non-inertial fluent (when) rules, whose left-hand side is true, if the expression
on the right-hand side is true, to determine whether permission is given or not. The
translation is driven off the tree structure of the ODRL specification, so that where an
article (such as the fragment of Article 46 in Listing 1) has several sub-terms, checking
is broken into one condition for each term:

article46_body(Process) when
article46_body_term1(Process),
article46_body_term2(Process),
article46_body_term3(Process),
article46_body_term4(Process);

and the (non-inertial) fluent article46 is true when the corresponding body is true:

noninertial fluent article46(Subject);
article46(Process) when

triple(Process,resource,personalData),
article46_body(Process);

while the process starts through the doCheck event, if the action is a transfer:

_doCheck(Process) initiates
permission(Process,article46)
if article46(Process), triple(Process,action,transfer);

_doCheck(Process) initiates
prohibition(Process,article46)
if not article46(Process), triple(Process,action,transfer);

which initiates one of the (inertial) fluents permission or prohibited, correspond-
ing to the permission on line 3 of Listing 1.

Predicates in an ODRL policy are either implied – a sequence of terms is a conjunc-
tion, so all the elements must be true (e.g. for the permission to hold as in Listing 1) – or
explicit, introduced by a predicateConstraint, whose body may be a disjunction
of terms, or a binary operator, being either isA, which tests a subclass relationship, or
isAnyOf, which tests that at least one of the right operands holds.

or: The or operator is, as expected, defined to be true when either or both its sub-terms
are true, which is achieved by defining two rules, one for each sub-term:

article46_body_term1(Process) when
article46_term1_or(Process);

article46_term1_or(Process) when
article46_organisationType(Process);

article46_term1_or(Process) when
article46_recipientLocation(Process);

In addition there are the corresponding supports and lacks fluent rules for the
explanation process (see below).

isA: There is no defined class hierarchy yet for the classes of the policy profile, so the
InstAL model currently uses equality rather than a proper implementation of isA.
Since the hierarchy would be defined in its entirety at the time of translation, the
subclass relationship can be grounded and subsequently queried according to the
needs of a given compliance request.
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isAnyOf: The isAnyOf operator is defined to be true when at least one of the right
hand sides is true. The encoding is verbose and predictable, reflecting the (tree)
structure of the source ODRL. The usage in Article 46 specifies five alternatives,
but for the purposes of illustration we here show two cases. The first two fragments
introduce the isAnyOf part of the article 46 encoding:

article46_body_term4(Process) when
article46_term4_isAnyOf(Process);

article46_term4_isAnyOf(Process) when
article46_appropriateSafeguards(Process);

This is followed by positive tests for the presence of each of the specified appropriate
safeguards (of which we list two):

article46_appropriateSafeguards(Process) when
triple(Process,appropriateSafeguards,bindingCorporateRules);

article46_appropriateSafeguards(Process) when
triple(Process,appropriateSafeguards,legallyBindingEnforceableInstrument);

4.4 Explanation Representation

The purpose of the model is firstly to establish whether the process description is
GDPR-compliant (noting the relevant article), and secondly, if not, the cause of non-
compliance. Consequently, we define the following fluents to capture such justifica-
tions:

type Article;
fluent permission(Subject,Article);
fluent prohibition(Subject,Article);
noninertial fluent supports(Subject,Article,Predicate,Object);
noninertial fluent lacks(Subject,Article,Predicate,Object);

Then, we address the matter of how the model reports the absence of data in the descrip-
tion. As can be seen below, the second term checks for the presence of enforceable data
subject rights. If this term is true, then the description supports the term:

article46_body_term2(Process) when
triple(Process,dataSubjectProvisions,enforceableDataSubjectRights);

supports(Process,article46,dataSubjectProvisions,
enforceableDataSubjectRights) when

article46_body_term2(Process),
triple(Process,dataSubjectProvisions,enforceableDataSubjectRights);

if not, the description lacks such data, and the respective non-inertial fluents become
true:

lacks(Process,article46,dataSubjectProvisions,
enforceableDataSubjectRights) when

applies(Process,article46),
not supports(Process,article46,dataSubjectProvisions,

enforceableDataSubjectRights);

Note that we check which article applies to the description in order not to report lacks
that are not relevant to the description. Similarly, we can determine whether appropriate
safeguards are supported and which are lacking (corresponding to the two cases listed
under the discussion of isAnyOf above):



46 M. De Vos et al.

supports(Process,article46,appropriateSafeguards,X) when
article46_appropriateSafeguards(Process),
triple(Process,appropriateSafeguards,X);

lacks(Process,article46,appropriateSafeguards,bindingCorporateRules) when
applies(Process,article46),
not article46_appropriateSafeguards(Process);

lacks(Process,article46,appropriateSafeguards,
legallyBindingEnforceableInstruments) when

applies(Process,article46),
not article46_appropriateSafeguards(Process);

The complete implementation is published through the InstAL repository7.

Operationalization of the Encoding. Putting the above together, we arrive at a spec-
ification for a partial model of Articles 6 and 46 of the GDPR. This model, along with
its grounding data can now be fed into the answer set solver, outputting either a confir-
mation of permission for the process description, along with the facts that support the
permission, or a prohibition, along with the facts that provide partial support and the
facts that are lacking.

4.5 Data Transfer Example

The transfer process described in ODRL in Listing 2 is represented in InstAL as listed
in the previous section (called bp transfer), identifying action, resource, responsi-
ble party, organization type, sender, recipient, recipient location, purpose, legal basis
(for the transfer) and two kinds of data subject provisions. We have taken some syn-
tactic liberties to accommodate InstAL’s constraints on the naming of terms and liter-
als, while still conveying the intention. As is conventional in logic programming lan-
guages, variables start with a capital letter, e.g. Party, while lower case are literals, e.g.
bp transfer.

Solving for this data, results in an answer set that includes the facts given below,
in which we can see that the transfer is prohibited, since it lacks any of the specified
appropriate safeguards:

prohibition(bp_transfer,article46)

supports(bp_transfer,article6,responsibleParty,controller)
supports(bp_transfer,article6,legalBasis,consent)
supports(bp_transfer,article46,organisationType,internationalOrganisation)
supports(bp_transfer,article46,dataSubjectProvisions,enforceableDataSubjectRights)
supports(bp_transfer,article46,dataSubjectProvisions,effectiveLegalRemedies)

lacks(bp_transfer,article46,appropriateSafeguards,standardProtectionClauses)
lacks(bp_transfer,article46,appropriateSafeguards,

legallyBindingEnforceableInstruments)
lacks(bp_transfer,article46,appropriateSafeguards,bindingCorporateRules)
lacks(bp_transfer,article46,appropriateSafeguards,approvedCodeOfConduct)
lacks(bp_transfer,article46,appropriateSafeguards,approvedCertificateMechanism)

7 https://github.com/instsuite/instsuite.github.io/blob/master/gdpr.ial.

https://github.com/instsuite/instsuite.github.io/blob/master/gdpr.ial
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If we add the following data to the description:

triple(bp_transfer,appropriateSafeguards,bindingCorporateRules)

and solve again, the description is compliant according to the conditions of Article 46,
thanks to the support of binding corporate rules (in addition to the same supports noted
above):

supports(bp_transfer,article46,appropriateSafeguards,bindingCorporateRules)
permission(bp_transfer,article46)

5 Evaluation

In the evaluation of what we have presented in this paper, we assess the following
aspects: (i) The adequacy of the modelling of the sample articles in ODRL; (ii) The ade-
quacy of the mapping from ODRL to InstAL; and (iii) The performance of the InstAL
model and corresponding ASP.

We start by assessing the suitability of ODRL for modelling legal requirements.
The generalised ODRL Information Model appears to be quite similar to the ODRL
Information Model, with the main changes relating to the replacement of Asset class
with the more general Resource class, the conversion of the Constraint class to
an abstract class and the inclusion of a single PredicateConstraint subclass, the
replacement of the Duty class with the Obligation class, and the inclusion of a new
Dispensation class. We deliberately excluded legal concepts from this generalised
ODRL Information Model as we believe it can serve as the foundations for other ODRL
profiles, for instance to express usage policies, social norms, and privacy policies. The
profile itself and the corresponding ontology are quite different from the original ontol-
ogy, due to the need to change the range of several classes to consider the Resource

class as opposed to the Asset class. Additionally, we were often forced to define new
vocabulary rather than reuse the existing ODRL vocabulary as the skos:definition,
where skos denotes the Simple Knowledge Organization System ontology, was too
specific/limited for our use. As for the modelling of the text of the GDPR using the pro-
posed ODRL Regulatory Compliance Profile, rather than opting for a one to one mod-
elling of the text as RDF, we chose instead to only model things that can be checked
automatically. For instance, to enable companies to attest that certain provisions and
safeguards exist, rather than actually carrying out, as part of the compliance checking
process, the verification that such things exist. Here we assume we are dealing with
companies that want to demonstrate compliance, and are using the compliance check-
ing as a form of guidance with respect to their legal obligations, or as a means to verify
that changes to business processes are still legally compliant. In this paper we assessed
the suitability of the proposed ODRL Regulatory Compliance Profile using two (key)
fragments of the General Data Protect Regulation, namely Articles 6 (Lawfulness of
processing) and Articles 46 (Transfers subject to appropriate safeguards). Considering
the extensible nature of RDF, the profile can easily be extended with additional vocab-
ulary and constraints in order to extend this work to not only include other articles of
the GDPR but also to model other legislation.

The second issue is the adequacy of the mapping from ODRL to InstAL. As illus-
trated in Sect. 4, we took a direct approach that effectively replicates the data in the



48 M. De Vos et al.

ODRL model as three element terms, while turning most of the internal nodes of the
document tree into non-inertial fluents whose value is determined by the correspond-
ing child nodes. This strategy has the benefits of (i) being able to associate supports

and lacks rules with internal nodes where it is desirable to gather data about the jus-
tification or otherwise of the compliance result (ii) making the code generation highly
localized in terms of dependence on data in the source document. The model contains
just the one action, which is used to invoke a compliance check on a given Subject,
such as bp transfer in the example. As we note in the next aspect of the discussion on
performance, the translation could be differently structured to reduce grounding costs
at the expense of verbosity and legibility. There are four other elements of the ODRL
information model for which to account, namely the different types of rules (permission,
prohibition, obligation and dispensation). The working example of Article 46 contains
only permission and obligation, so we discuss those first. The permission translates
to the inertial fluent that is initiated as a result of compliance with the article46 rule,
while the prohibition generation is an artefact of the operationalization of the com-
pliance check to indicate the reporting of compliance failure. The obligation element of
the ODRL information model provides syntactic structure and semantic annotation, to
indicate that its subterms need to be checked, aligning with the legal interpretation of the
notion of obligation, but has no actionable semantics of itself in respect of compliance
checking, hence the translation skips over obligation to process its children. The same
is effectively true for prohibition and dispensation, except that the former introduces a
negation and the latter a side-condition on the child terms of the respective nodes.

The third issue we consider is the performance of the policy model. Answer Set
Programming operates in two stages: grounding i.e. replacing variables with grounded
terms, and solving, i.e. computing the answer sets. Both have high complexity in gen-
eral that can often be tamed in practice. The solve step in this case is essentially poly-
nomial because there is only one answer set and the program is stratified (see [16] for
details). The grounding cost is, generally speaking, dependent on the number of distinct
variables appearing in each rule and the number of alternative values a given variable
might take. The encoding strategy used here is, as noted earlier, simplistic, and in con-
sequence the state space size is a function of the number of combinations arising from
the number of subject, predicate and object values, but since there is only one subject
in each case (the example identifier, e.g. bp transfer), this reduces to the product of
the number of predicate and object values. The typing used in InstAL and the smart
grounding processes used by the gringo grounder [14], reduces the search space sig-
nificantly. This could be reduced further if the predicate could carry type information
and hence define the range, restricting the values that the object might take. For exam-
ple, instead of writing triple(Subject,Predicate,Object), the predicate can be
encoded in the term: predicate(Subject,X), where X is the type denoting the set
of object values in the range of predicate, which would be quite manageable in the
context of a more sophisticated translation, although the resulting code might not be so
human legible. As it stands, the grounding (and solving) costs are negligible, but could
benefit from reconsideration given larger state spaces. Alternatively, we could consider
enhancing InstAL’s type system to support subsumption, which would allow the pre-
grounding of most rules with the abstract types. The use of ASP allows us to guarantee
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the soundness and completeness of our approach (under the assumption that the mod-
elling was correct). In other words, the system is always able to say if the business
process is compliant or not and the answer is correct with respect to the modelling.

6 Conclusion

In this paper, we introduced our ODRL Regulatory Compliance Profile, which can
be used to model both regulatory requirements via nested permissions, prohibitions,
obligations, and dispensations, and business policies via discrete permissions that are
needed to execute a compliant business process. We subsequently demonstrated how
such policies can be translated into Answer Set Programming such that it is possible
to automatically check compliance, and provide, if necessary, a basic explanation why
compliance is not achieved.

We are currently working together with our industry partners to extend the proposed
ODRL Regulatory Compliance Profile to cater for the representation of more detailed
business policies, that specify which data are processed, for what purpose, where the
processing takes places, for how long the data will be stored, and with whom the data
is shared. Such information is needed in order to check compliance with a broader
set of Articles from the GDPR. One of the primary challenges involves bridging the
gap between very abstract legal requirements and the very detailed business policies.
Here we plan to exploit class and property hierarchies by expanding our modelling and
compliance checking to support subsumption based reasoning.

Further future work includes: (i) demonstrating how a broader set of articles can be
modelled using our ODRL Regulatory Compliance Profile and automatically translated
from ODRL policies into InstAL rules and Vice versa. (ii) providing a formal semantics
for our ODRL Regulatory Compliance Profile, and adapting both our ontology and
compliance checking to cater for legislative opening clauses that require reasoning over
multiple pieces of legislation; and (iii) exploring how the ODRL policy description
might form part of a description for a policy reasoning service [28] and thereby facilitate
(semantic) discovery and use of such services.
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Abstract. This paper studies Knowledge Bases (KBs) in PSOA RuleML
and IDP, aligning, interoperating, and co-executing them for a use case of
Air Traffic Control (ATC) regulations. We focus on the common core of
facts and rules in both languages, explaining basic language features. The
used knowledge sources are regulations specified in (legal) English, and
an aircraft data schema. In the modeling process, inconsistencies in both
sources were discovered. We present the discovery process utilizing both
specification languages, and highlight their unique features. We introduce
three extensions to thisATCKBcore: (1)While the currentPSOARuleML
does not distinguish the ontology separately from the instance level, IDP
does. Hence, we specify a vocabulary-enriched version of ATC KB in IDP
for knowledge validation. (2) While the current IDP uses relational mod-
eling, PSOA additionally supports graph modeling. Hence, we specify a
relationally interoperable graph version of ATC KB in PSOA. (3) The KB
is extended to include optimization criteria to allow the determination of
an optimal sequence of more than two aircraft.

Keywords: PSOA RuleML · IDP · Interoperation · Knowledge Base ·
Alignment · Co-execution · Regulations · Air Traffic Control

1 Introduction

Contributing to cross-fertilizations between, e.g., the Semantic Technologies and
Decision Management Communities,1 in this paper we use the Positional-Slotted
1 For specific references see http://blog.ruleml.org/post/132677817-decisioncamp-

and-ruleml-rr-will-meet-again-in-luxembourg.
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Object-Applicative (PSOA) RuleML version of the ATC KB [14]2 as a starting
point for an IDP (Imperative/Declarative Programming) version, and explore
the consequences for both. We compare Knowledge Bases (KBs) in IDP and
PSOA RuleML to find how modeling the same knowledge in two languages can
help us to improve our specification and to achieve an architecture that com-
bines the best of both systems. Based on Air Traffic Control (ATC) regulations
and data obtained from [6], the PSOA specification was created. From it, we
derive the IDP KB and we study the similarities and differences between both
specifications. In the first step, we try to align both systems by choosing similar
ways of modeling from different possibilities. In doing this, we discovered that
there were not only inconsistencies in the source aircraft characteristics data as
discussed in [14], but also in one of the regulations. In the second step, we inves-
tigate how both systems can be interoperated by translating pieces of knowledge
from one source to the other. In the third step, the co-execution of both systems
is examined allowing us to validate results from both systems. The resulting
KBs were then expanded: an optimization logic was formalized in IDP, while a
perspectival graph version of the KB was created in PSOA. As the systems can
be co-executed, an architecture in which the strength of each system is exploited
can be envisaged.

Examples of ATC regulations formalization are [13] and [15]. The former pre-
sented an overview of a method for formal requirements capture and validation,
in the domain of oceanic ATC. The obtained model focused on conflict prediction,
while being compliant to the regulations governing aircraft separation in oceanic
airspace. The presented examples are expressed in many-sorted first-order logic
or in the Prolog notation, and include rules about conflict prediction and aircraft
separation. Supplementary, the model was validated by automated processes, for-
mal reasoning, and domain experts. [15] focuses on capturing ATC regulations
valid in the airport area. The authors formalized the separation minima man-
dated by International Civil Aviation Organization (ICAO), Federal Aviation
Administration (FAA), and FAA’s “RECAT” regulations in POSL RuleML. It
formed the foundations for further expansion that focuses on cases of conditional
reduced separation minima. It was the basis for the development of [14], a PSOA
RuleML version of ATC KB that in turn, served as the basis for this paper.

The paper is structured as follows. In the next section we introduce IDP
and PSOA. Then the use case of ATC regulations is introduced in Sect. 3. The
aligned KBs are presented in Sect. 4, while Sect. 5 discusses the interoperation
and co-execution of the two systems and compares their results. Section 6 dis-
cusses inconsistencies found within the regulations, which is followed by the pre-
sentation of KBs’ extensions in Sect. 7. Section 8 provides some final conclusions
and directions for future work.

2 Knowledge Formalization and Reasoning

In this section we introduce the two specification languages, IDP and PSOA
RuleML.
2 See the PSOA ATC KB sources at http://users.ntua.gr/mitsikas/ATC KB/.

http://users.ntua.gr/mitsikas/ATC_KB/
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2.1 IDP and the Knowledge Base Paradigm

The IDP system [3] adheres to the Knowledge Base Paradigm (KBP): it stresses
the distinction between domain knowledge an sich, and the different ways in
which this knowledge can be put into use [18]. The domain knowledge is for-
malized and centralized in a KB, which collects not only simple knowledge (e.g.,
data in a database), but also complex knowledge, such as definitions, implica-
tions, propositions, etc. One of the advantages of this separation of concerns of
knowledge versus problem solving, is the high maintainability of the KB because
it only contains descriptive information on the domain. Another advantage is the
flexibility to use this KB in different – often unforeseen – use cases.

The IDP system allows KBs to be written in the IDP language, which is
based on typed first-order logic, enriched with features such as aggregates and
inductive definitions. A KB typically consists of three kinds of components. A
vocabulary describes the logical symbols (types, constants, functions and predi-
cates) that are used to formulate the domain knowledge. It represents the ontol-
ogy of the domain. A structure for a vocabulary provides an interpretation for
each of the symbols of this vocabulary. Finally, a theory contains the actual
domain knowledge, represented as a set of formulas. A formula can be either a
classical first-order logic (FO) formula, or a rule-based (inductive) definition. For
instance, a theory can contain as a formula the following inductive definition of
the transitive closure T of a graph G:{

∀x y : T (x, y) ← G(x, y).
∀x y : T (x, y) ← ∃z : T (x, z) ∧ T (z, y).

}

The rules in such a definition are built using the definitional implication symbol
←, which is to be distinguished from the material implication of classical logic,
the latter denoted as ⇐ in IDP. The formal semantics of such a definition is given
by its well-founded model, because this coincides with the expected semantics
of an inductive definition [4]. The semantics of the FO formulas in a theory is
simply given by the standard satisfaction relation |= of classical logic.

The IDP system allows a number of different inference tasks to be performed on
a KB. The most common is that of Model Expansion (MX): for a given vocabulary
V , and theory T and structure S for some subvocabulary V ′ ⊆ V , MX constructs
a structure S′ for the entire vocabulary V that extends S (i.e., σS = σS′

for all
symbols σ ∈ V ′) and that is a model of T (i.e., S′ |= T ). Another useful inference
task is that of Optimization, which selects the most optimal structure (according
to some provided criterion) among all the possible model expansions of a given S
w.r.t. T . The optimality criterion is provided in the form of a term t which must be
minimized, i.e., the solution is the model expansion S′ for which the value of tS

′
of

the term t in the structure S′ is minimal.

2.2 PSOA RuleML for Graph-Relational Knowledge

PSOA RuleML generalizes RIF-BLD and POSL RuleML by a homogeneous
integration of table-like relationships and graph-like frames into positional-
slotted object-applicative (psoa) terms. The initially used single-dependent-tuple
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independent-slot special case of psoa terms, oidless or oidful, has these forms [2,20]
(where n ≥ 0 and k ≥ 0, of which we focus on either n = 0 for – oidless – frameships
and – oidful – framepoints or k = 0 for – oidless – relationships):

Oidless : f(t1 . . . tn p1->v1 . . . pk->vk) (1)
Oidful :o#f(t1 . . . tn p1->v1 . . . pk->vk) (2)

While (2) starts with an Object IDentifier (OID) o via a membership, o # f, of o
in f (acting as a class), both (1) and (2) apply a function or predicate f (acting
as a relator) to a tuple of arguments t1 . . . tn and to a bag of slots pj->vj,
j = 1, . . . , k, each pairing a slot name (attribute) pj with a slot filler (value) vj.

For example, in ATC KB, the term :be9l#:Aircraft(:mtow->9300.0)
is a single-slot framepoint atom, while :AircraftIcaoCategory(:a388
icao:Super) is a binary relationship. Both are ground atoms, i.e. variableless.

Variables in PSOA are ‘?’-prefixed names, e.g. ?x. The most common atomic
formulas are psoa atoms in the form of (1) or (2). Compound formulas can
be constructed using the Horn-like subset of first-order logic. A PSOA KB
then consists of clauses that are ground facts and non-ground rules: while facts
are – ground – psoa atoms, rules are defined – within Forall wrappers – using a
Prolog-like conclusion :- condition syntax, where conclusion can be a psoa atom
and condition can be a psoa atom or an And-prefixed conjunction of psoa atoms.

The reference implementation for deduction in PSOA RuleML is the open-
source framework system PSOATransRun, currently in Version 1.4.23.

3 Air Traffic Control Regulations

Collision prevention in ATC is realized by ensuring a minimum distance between
aircraft, a concept also called separation minimum. Separation of aircraft serves
an additional role, which is the avoidance of wake turbulence. The separation min-
imum is defined for aircraft pairs depending on theirwake turbulence category.The
currentFAAand ICAOregulations categorize aircraft according to theirmaximum
takeoff weight/mass (MTOW/MTOM). MTOW/MTOM represent the wake tur-
bulence of the leading aircraft, as well as how much a following aircraft is affected
by the wake turbulence of the leader. Both agencies are in the process of a wake tur-
bulence recategorization (RECAT), which recategorizes aircraft in six categories,
taking into account the wingspan as an additional parameter.

For example, ICAO discerns four categories: Light (MTOM of 7000 kg or
less), Medium (MTOM of greater than 7000 kg, but less than 136000 kg), Heavy
(MTOM of 136000 kg or greater), and Super (a separate designation that currently
only refers to the Airbus A380 with MTOM 575000 kg) [11,12]. The associated
separation minima for flights under Instrument Flight Rules (IFR)4 are defined
in Table 15. The Minimum Radar Separation (MRS), is 3 NM or 2.5 NM depend-
ing on operational conditions unrelated to wake turbulence (e.g. visibility) [12].
3 http://psoa.ruleml.org/transrun/1.4.2/local/.
4 Separation minima for flights on Visual Flight Rules (VFR) are time-based [8,11].
5 The minima set out at Table 1 shall be applied when e.g. both aircraft are using the

same runway, or parallel runways separated by less than 760 m (2 500 ft) [11].

http://psoa.ruleml.org/transrun/1.4.2/local/
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Table 1. Current ICAO weight categories and associated separation minima [12]

ICAO separation standards (nautical miles (NM))

Follower

Super Heavy Medium Light

Leader Super MRS 6 7 8

Heavy MRS 4 5 6

Medium MRS MRS MRS 5

Light MRS MRS MRS MRS

4 Alignment

KB languages should be able to represent objects, facts, and relations in the
knowledge domain. If two KBs are developed for the same knowledge domain, it
is expected that they express the same information. Hence, it should be possible
to align both. In this section we will discuss the way certain parts of knowledge
are represented in both languages.

4.1 Common Core of the KBs

We performed an alignment for all PSOA and IDP constructs used in the ATC
KBs. Typical parts of this PSOA-IDP alignment are shown below (aircraft-
characterizing facts were obtained from [6]):
% PSOA KB fragment (from

% users.ntua.gr/mitsikas/

% ATC KB/atc kb-v201906.psoa)

Forall ?a ?w (

:AircraftIcaoCategory (?a icao:Light) :-

And(?a#: Aircraft (:mtom ->?w)

math:lessEq (?w 7000)) )

Forall ?a ?w (

:AircraftIcaoCategory (?a icao:Medium) :-

And(?a#: Aircraft (:mtom ->?w)

math:greaterThan (?w 7000)

math:lessThan (?w 136000)) )

Forall ?a ?w (

:AircraftIcaoCategory (?a icao:Heavy) :-

And(?a#: Aircraft (:mtom ->?w)

math:greaterEq(?w 136000)

not:Naf(: AircraftIcaoCategory (?a icao:Super))

)

)

:AircraftIcaoCategory (: a388 icao:Super)

:AircraftIcaoCategory (: a38f icao:Super)

%% ICAO Separation example

Forall ?l ?f (

:icaoSeparation (:leader ->?l

// IDP KB fragment (from

// gitlab.com/mderyck/atc-kb-idp/)

vocabulary V {

type Mtom isa int

type Aircraft isa string

MTOM(Aircraft ,Mtom)

... }

theory T:V{

!a[Aircraft] w[Mtom]:

AircraftIcaoCategory(a, Light) <=

MTOM(a,w)

& w =< 7000.

!a[Aircraft] w[Mtom]:

AircraftIcaoCategory(a, Medium) <=

MTOM(a,w)

& 7000 < w

& w < 136000.

!a[Aircraft] w[Mtom]:

AircraftIcaoCategory(a, Heavy) <=

MTOM(a,w)

& 136000 =< w

& a ~= a388

& a ~= a38f.

AircraftIcaoCategory (" a388", Super).

AircraftIcaoCategory (" a38f", Super).

// ICAO Separation Example

!l[Leader],f[Follower ]:

http://users.ntua.gr/mitsikas/ATC_KB/atc_kb-v201906.psoa
http://users.ntua.gr/mitsikas/ATC_KB/atc_kb-v201906.psoa
https://gitlab.com/mderyck/atc-kb-idp/
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:follower ->?f

:miles ->8) :-

And(: AircraftIcaoCategory (?l icao:Super)

:AircraftIcaoCategory (?f icao:Light))

)

%% Sample Aircraft Facts %%

:be9l#: Aircraft (:mtom - >4218.41

:mtow - >9300.0

:wingspan - >45.92

:appSpeed - >100.0)

:a388#: Aircraft (:mtom - >575000.0

:mtow - >1267658.0

:wingspan - >261.65

:appSpeed - >145.0)

IcaoSeparation(l, f) = 8 <=

AircraftIcaoCategory(l, Super)

& AircraftIcaoCategory(f, Light).

}

structure S1 : V {

// specific value assignments:

Leader = {a388}

Follower = {be91}

...

// aircraft data

MTOM = {be9l , 4218; a388 , 575000}

MTOW = {be9l , 9300; a388 , 1267658}

WingSpan = {be9l , 45; a388 , 261}

AppSpeed = {be9l , 100; a388 , 145}

}

Vocabulary. In IDP the types/sorts that will be used in the knowledge base
need to be explicitly declared in the vocabulary. It binds the use of types in
relations that are appropriate for it. When instances of a type are (correctly)
used in IDP, the types can be derived by the system, based on the place in
which they occur. In PSOA there is no separate signature declaration.

Using the KBs. For the alignment we created specifications that are classically
equivalent, in the sense that they both have the same class of possible worlds:
an interpretation (called a structure in IDP) W satisfies the PSOA fragment P
if and only if it satisfies the IDP fragment I: W |= P ⇔ W |= I.

As written above, both PSOA and IDP represent the categorization of aircraft
as a set of implications: the :- symbol of PSOA and the <= symbol of IDP both
denote the material implication of classical first-order logic. In other words, an
interpretation W is a model of an implication F:- G in PSOA, or of F <= G in
IDP, if and only if G holds in W or F is false in W . Accordingly, the class of
models of the above IDP/PSOA specification is quite large, since every superset
of a model is again a model; e.g., there are models in which the same aircraft
belongs to all four categories at the same time.

The existence of these “extra” models is not a problem for PSOA, since this
system uses the KB by means of the inference task of query answering, which
looks for properties that hold in all models of the specification.

The IDP system offers the same inference task, allowing the above IDP spec-
ification to be used in precisely the same way (and, because of the equivalence
of the two specifications, producing identical results). However, this is not an
idiomatic use of IDP: IDP adheres to the KBP, which emphasizes that the same
KB should be usable by different inference tasks. To guarantee that different
inference tasks produce correct results, it is crucial that the KB is constructed
in such a way that its models correspond one-to-one to possible worlds in reality.
The above specification obviously does not have this property and therefore pro-
duces correct results only when the inference task of query answering is applied
to it. When applying, e.g., the inference task of model expansion, we will obtain
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erroneous results, in which an aircraft is assigned some category even though
it does not satisfy the condition for belonging to this category (such as :be91
belonging to the category Heavy).

The more idiomatic way of representing the above knowledge in IDP is by
means of a definition, replacing each of the material implications <= by IDP’s
definitional implication symbol <-. Such a definitional implication entails the
material implication (i.e., if F <- G then also F <= G), but in addition, it also
implies that F can only be true if there is at least one rule of the form F <- G
such that G is true. As mentioned above, such a set of definitional implications
is interpreted under the well-founded semantics. Since the above specification is
not recursive, this means that it is equivalent to its Clark’s completion. In other
words, it states that an aircraft belongs to a certain category if and only if it
satisfied the corresponding condition. Therefore, the definitional IDP specifica-
tion only has a single model, in which each aircraft is assigned a single category,
namely that whose condition it satisfies. This specification is therefore consider-
ably stronger than the PSOA specification. However, when we apply either model
expansion (compute a single model) or query answering (compute facts that are
true in all models—but there is only one model in this case) to the definitional
IDP specification, we still obtain precisely the same answers as when we query
the PSOA specification.

Expressing Relations. In the aligned KBs above, the purpose is to establish
the relation between an aircraft and the ICAO regulation. In Sect. 6 we discuss
the modeling choice that was made earlier to use aircraft type as an identifier,
and the challenges put forward by this. In this part we assume that an aircraft
can only be assigned to one category, as this is the case for every specific aircraft.

In both modeling languages, it is possible to employ relations in different
ways, of which we chose a compatible subset for our KBs:
PSOA allows very general atoms [2], but here uses the single-dependent-tuple
independent-slot special case of psoa terms (cf. Section 2.2). Specializing further,
we need atoms that are oidful-slotted (framepoints) for the KB facts, oidless-
tupled (relationships) for the aircraft categorization, and oidless-slotted (frame-
ships) for the separation. A dependent-slotted version is discussed in Sect. 7.2.

IDP allows relations (which can be true or false) and functions (that have
exactly one image). A 0-ary relation is a Boolean, a 0-ary function is a con-
stant. Both also have unary and n-ary variants. A function is a special rela-
tion, in the sense that a function f(x) = y could also be written as a rela-
tion r(x,y), with the additional constraint that each argument x needs to
have exactly one image y. As an aircraft can only belong to one category, the
use of function represents the actual domain knowledge in the most appropri-
ate way: AircraftIcaoCategory(Aircraft):Category. Alternatively, a rela-
tion can also be used, which is closer to the modeling in PSOA. The rela-
tion is expressed as: AircraftIcaoCategory(Aircraft, Category). A separate
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constraint can be formulated to express that an aircraft may belong to only one
category: ∀a[Aircraft] : #c : AircraftIcaoCategory(a, c) = 1.

Exceptions to the Regulations. ICAO regulations identify two specific
types of aircraft—a388 and a38f—as belonging to the category super, even
though their weight would normally put them in the category heavy. These
two aircraft can be seen as exceptions to the general rule that aircraft with
a weight over 136000 are “heavy”. In the above IDP specification, we have
represented these exceptions by excluding these two aircraft from the rule
for “heavy” by name. Obviously, this is a poor representation, because it
requires us to update both the rule for “heavy” and the rule for “super” if
more aircraft are added to the “super” category6. In PSOA, we have an
appealing alternative in the use of negation as failure (naf): we can write
not:Naf(:AircraftIcaoCategory(?a icao:Super)) in the body of the rule
for “heavy”. This atom will hold for any aircraft for which it cannot be proven
that it belongs to super (which will be precisely all those aircraft that are not
enumerated as being “super”).

IDP does not have negation as failure and we therefore cannot adopt the
same representation as long as we are using material implication. However,
as discussed before, the idiomatic IDP representation would be to use defi-
nitional implications instead. Under this representation, we can simply write
~AircraftIcaoCategory(a, Super) in the body of the rule for “heavy”. The ~
symbol represent simply classical negation, meaning that in any model in which
a is not “super”, it will be “heavy”. Because we make use of definitional implica-
tions, there is only one model, in which a388 and a38f are the only two aircraft
that are “super”, and therefore this representation is correct. We therefore see
that the combination of material implication with negation as failure in PSOA is
functionally identical (though not formally equivalent, since the former has many
more models than the latter) to the combination of definitional implementation
with classical negation in IDP.

Comparing to [14], the newest PSOA version presented here does not need
the workaround of the extra slot SpecialCase, as PSOATransRun now supports
negation as failure.

5 Interoperation and Co-execution

Many of the commonalities and differences between the PSOA and IDP have
been discussed in the previous section. In this section, we examine how both
systems interoperate and co-execute.

6 In the ATC domain the regulations are stable and new types of aircraft e.g. in
the Super category are not currently in active development. Therefore, we do not
consider this a major problem.
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5.1 Syntactic Translation for Interoperation

PSOA is a rule-based system, whereas IDP is a generic constraint-based system
(with rules as a special form of constraints). Their interoperation is only appli-
cable to facts and rules. Also because of this, IDP features different reasoning
tasks. This means that it might be more advantageous to go beyond the lit-
eral translation of the PSOA KB, to find the appropriate notation useful for all
inferences.

Proceeding from the aligned KBs from Sect. 4.1, a partial translation can be
realized:

Atoms: For relationships, there is a direct PSOA-IDP tuple correspondence.
For framepoints, a slot name (e.g., :mtom) in PSOA is reflected by a binary
relation (e.g., MTOM) in IDP, with the OID as the first argument and the
filler as the second argument (the predicate name is already part of IDP’s
vocabulary declaration). For frameships, n-1 slots in PSOA can map to the
argument tuple of a function in IDP, and 1 slot to its returned value.

Symbols: Some symbols can be directly translated from one language to the
other, e.g. quantifiers (Forall ↔ ∀, Exists ↔ ∃) and implication (: − ↔ ⇐).

Operators: PSOA uses prefix operators, while IDP uses infix operators (And
vs. &, Or vs. |). Externals and libraries in PSOA are also prefixed, while in
IDP are infixed (e.g., the comparison math:lessEq vs. =<).

Rules: These are wrapped into Forall/∀ quantifiers, and built on atoms, possibly
within an And/&, for both PSOA (: −) and IDP (⇐).

The interoperation between PSOA RuleML and IDP provides a link between
the Semantic Technologies Community (e.g., N3 [1]) and the Decision Manage-
ment Community (e.g., OMG DMN [16]). For example, it enables the interoper-
ation path N3→PSOA↔IDP←DMN (for the link N3Basic→PSOA see [19] and
for the link IDP←DMN see [5]7).

5.2 Semantics-Preserving Co-execution

After having performed several experiments with the PSOA version developed
from [14], we have also experimented with the new IDP version of the same KB.

For the common core of the KBs presented in Sect. 4.1 (assuming only two
aircraft and omitting the namespaces to conserve space), the answers of PSOA
queries are in accordance with the IDP least model, as shown below:

7 The IDP language typically offers more expressivity than DMN decision tables. Cur-
rent work focuses on an extension to DMN to strengthen the link IDP→DMN.
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% PSOA queries

:AircraftIcaoCategory (?a ?c)

Answer(s):

?a= <...# be9l ?c= <...#Light >

?a= <...# a388 ?c= <...#Super >

:icaoSeparation (:leader ->:a388

:follower ->:be9l

:miles ->?d)

Answer(s):

?d=8

// IDP least model

structure : V {

Leader = { "a388" }

Follower = { "be9l" }

...

AircraftIcaoCategory = { "be9l", Light;

"a388", Super}

...

IcaoSeparation = { "a388","be9l"->8 }

}

In this example, as in all consistent cases (see Sect. 6), PSOA and IDP provide
semantically compatible results. In general, PSOA/IDP co-execution benefits
both systems for the following reasons:

1. We have compared and cross-validated the results from both systems. The
inconsistencies that were discovered in the original regulations, using both
systems, have been described in Sect. 6.

2. The top-down processing (backward-reasoning) of PSOATransRun is comple-
mentary to the bottom-up processing (forward-reasoning) of the IDP system.
Since the ATC KB’s required logical expressiveness is on the level of Datalog
(function-free Horn logic), both methods are applicable, although there is the
expected speed/memory trade-off.

3. Each system can be used for a task it is best suited to. For example, decimal-
preserving numeric calculations are currently not supported by IDP, but are
available in PSOA. Therefore, calculations involving decimal numbers are
handled by PSOA. On the other hand, as discussed in Sect. 7.1, IDP uses
constraint solving for efficiently optimizing a landing queue.

6 Inconsistencies Within Regulations

The process of aligning and co-executing several KBs does not only serve a the-
oretical purpose. These steps are especially useful in the construction of the
KB. The detection of inconsistencies is an example of the added value of our
approach. The KB validation for both PSOA and IDP aims to ensure the com-
pleteness (i.e. all aircraft will be categorized) and consistency (i.e. all individual
aircraft are categorized in exactly one category for each applicable regulation).
It serves a two-fold purpose. First, to ensure that the KB is in accordance with
the regulations. Second, to ensure that the regulations and the source dataset
are complete and consistent.

The PSOA KB in [14] considers that an aircraft is represented by its ICAO
type designator and assigns the latter as an oid. This design choice, while effi-
cient when the KB is used as a computational tool where individual aircraft
would be handled by a front-end framework, can lead to problems in stand-
alone execution: as a specific aircraft type can be assigned in more that one
category due to variations (see e.g., [10]), an aircraft oid can be categorized in
two different categories, as demonstrated by the following PSOA RuleML query:
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And(: AircraftIcaoCategory (?a ?X) :AircraftIcaoCategory (?a ?Y)
External(isopl:generic_not_eq (?X ?Y)))

Answer(s):
?a= <...#b350 > ?X= <...#Light > ?Y= <...#Medium >
?a= <...#c207 > ?X= <...#Light > ?Y= <...#Medium >

As explained in [14], the first result is a case where variants of the same type can
be categorized in different categories, while the second result is an inconsistency
of the source dataset.

Additional validation of the regulations can be realized by using PSOA
RuleML or IDP. In [7], the categorization for categories D and F according
to RECAT regulations is defined:

Category D. Aircraft capable of MTOW of less than 300,000 lb and wingspan
greater than 125 ft and less than or equal to 175 ft; or aircraft with wingspan
greater than 90 ft and less than or equal to 125 ft.

Category F. Aircraft capable of MTOW of less than 41,000 lb and wingspan
less than or equal to 125 ft, or aircraft capable of MTOW less than 15,500 lb
regardless of wingspan, or a powered sailplane.

According to the above, any aircraft capable of MTOW of less than 41,000 lb with
wingspan greater than 90 ft and less than or equal to 125 ft would be categorized
in both D and F categories. This inconsistency was discovered by both PSOA
and IDP. In PSOA, appropriate non-ground queries can identify the problem, as
shown below:

And(: AircraftRecatCategory(?a ?X) :AircraftRecatCategory(?a ?Y)
External(isopl:generic_not_eq (?X ?Y)))

Answer(s):
?a= <...#dc3 > ?X= <...#D> ?Y= <...#F>
?a= <...#dhc4 > ...

In [14] the problem was not identified, as such non-ground queries were not
possible to construct due to lack of the generic not eq built-in before PSOA-
TransRun Version 1.4.1.

A later revision of the regulations attempted to correct the above problem
and can be seen in [9,10]:

Category D. Aircraft capable of MTOW of less than 300,000 lb and wingspan
greater than 125 ft and less than or equal to 175 ft; or aircraft capable of a
MTOW greater than 41,000 lb with a wingspan greater than 90 ft and less
than or equal to 125 ft.

This definition leads to an incompleteness for aircraft capable of MTOW of
exactly 41,000 lb with wingspan greater than 90 ft and less than or equal to
125 ft. While an aircraft with the above characteristics did not exist in the KB,
the discovery of the incompleteness was made by PSOA by adding witness air-
craft representing corner cases.

The behavior of the IDP system for these different inconsistencies depends
on the modeling choice that have been made. In general, the more accurate
the domain knowledge is represented, the more likely the system will behave as
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expected with inconsistencies. In this example, the appropriate way to model the
categorization, would be to use a function IcaoAircraftCategory(Aircraft):
Category and the definitional implication that was already discussed in Sect. 4.
The definition assumes a closed world: a definition contains a set of sufficient and
necessary conditions. In practice this means that no model can be found and an
unsatisfiable message will be shown if not every case is defined, independent
of the presence of an aircraft of 41,000 lb. It will act likewise if overlapping
categories have been defined. It can be tedious to find the exact inconsistency in
a theory. Specific inferences can be used to help identify the exact problem (e.g.
explainunsat and printunsatcore). If we move away from the ideal model, e.g.
by defining categories as separate definitions, using the if and only if operator,
the missing definition will only be discovered if an aircraft of 41,000 lb is present
in the database. Finally, the last way to model the categorization, is the use of
material implication. If no category is explicitly assigned to aircraft of 41,000 lb,
any category may be assigned. This is the most dangerous situation, as a random
category will be assigned.

While both PSOA and IDP helped to identify the above inconsistency and
incompleteness in the regulations, this was through different mechanisms: PSOA
RuleML needs the construction of an appropriate query and an example in the
KB (a “witness”). If the domain knowledge is appropriately modeled in IDP,
inconsistencies or incompleteness will be found without such a witness. Thus,
using both approaches to model safety-critical use cases, can benefit the final
KB and can also help to identify such problems in safety-critical regulations.

7 Extensions of the KB

Both KBs are easily expandable, for example if new categories are added in the
existing regulations, or if other regulations (e.g. RECAT) should be included
in the same KB. Because of the strong typing of IDP, this does however ask
attention to avoid overloading. If other regulations use the same category names,
an additional letter or a prefix should be added in IDP to discern between the
Heavy category of one regulation-set versus the Heavy category of the other
regulations. The use of prefixes to handle different ICAO-FAA categories with
the same name is also recommended in PSOA.

7.1 Optimization of Landing Order

As described in Sect. 2.1 IDP supports a variety of inferences that can be applied
on the KB. An example of an application of this is the calculation of an optimal
landing order of a number of given aircraft. There are multiple ways to define
the optimal landing order. Typically this is either a time-based optimum (to
minimize the time between consecutive aircraft landings) or a distance-based
optimum. In the latter case, the purpose is to minimize the total separation
distance for a series of aircraft, based on the pairwise separation minima. As we
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already formalized the pairwise calculation of the separation minimum, we will
optimize the distance based metric.

An approach queue is constructed from a subset of aircraft, e.g.; Waiting1 =

a319; Waiting2 = a388; Waiting3 = b788; Waiting4 = be9l. The pairwise sepa-
ration minima that are calculated with the main program are considered to
be given for the example, e.g.; the pair leader a319 with follower a388 has
3 NM as separation minimum. We now want to come up with an order of
aircraft: Leader, Follower1, Follower2, and Follower3; that minimizes the sum
of the consecutive separation minima. A term totalseparation is created:
sum{ac : Leader = ac|Follower1 = ac|Follower2 = ac|Follower3 = ac| :
Separation(ac,Next(ac))}.

With the inference Minimise a term, in this case totalseparation, is min-
imized. A random order of aircraft could be: Leader be9l; Follower1 b788; Fol-
lower2 a319; Follower3 a388. The total separation minimum, which is calculated
as the sum of consecutive separation minima is 11NM. After minimization, the
combination is Leader be9l; Follower1 a319; Follower2 b788; Follower3 a388
with a separation minimum of 9.

7.2 Dependent-Slot ATC KB Version

PSOA RuleML explicitly specifies for each descriptor (tuple, slot) whether it is to
be interpreted dependent on (under the perspective of) the predicate in whose
scope it occurs. This dependency dimension refines the design space between
oidless atoms with a single dependent tuple (relationships) and oidful atoms with
only independent slots (framepoints): it also permits atoms with independent
tuples and atoms with dependent slots, the latter denoted by “+>” (instead
of “->” for independent slots, e.g. used in Sect. 4.1). This supports advanced
data and knowledge representation where, for the same OID, a slot name can
have different fillers depending on a predicate [2].

For the disambiguation of multi-valued slots, the ATC KB was enriched into
a dependent-slot graph version. Examples of dependent-slot KB facts are shown
below (the slot denoting the wake turbulence category, wtc, has two fillers,
icao:Super vs. faa:Super, disambiguated, for :a388 and :a38f, by the two
perspective-providing predicates, IcaoRegulated vs. FaaRegulated[8]:

%% ICAO Wake Turbulence Categories , Super %%
:a388#: IcaoRegulated(wtc+>icao:Super)
:a38f#: IcaoRegulated(wtc+>icao:Super)

%% FAA Wake Turbulence Categories , Super %%
:a388#: FaaRegulated(wtc+>faa:Super)
:a38f#: FaaRegulated(wtc+>faa:Super)
:a225#: FaaRegulated(wtc+>faa:Super)

Interoperation between such dependence-enriched PSOA KB and IDP KB would
require a dependence-to-independence reduction [2].
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8 Conclusions and Future Work

In this paper, we presented the specification in IDP and PSOA of an Air Traf-
fic Control use case. We discussed the alignment of both specifications and the
implications of modeling choices that are involved in this. We demonstrated that
a partial interoperation is possible for facts and rules. During the process of con-
structing and aligning the KBs, some inconsistencies in the original regulations
were discovered. The discovery process was different for both systems, which
points to their respective unique features and to their internal functioning. It
also demonstrates the added value of combining two separate systems to formal-
ize the same knowledge. As the systems can be co-executed, the advantages of
each system can be exploited from within a combined application. Examples of
this are the introduction of optimization, which is only efficient in the constraint-
based system IDP, and the disambiguation of slots via their dependence, which
is only possible in the graph-based system PSOA RuleML.

Future work includes the round-trippable translation between increasing sub-
sets of the two languages. An application can be created in which both systems
are connected through an API. Based on the PSOA/IDP cross-fertilization, both
systems can be further developed, e.g. by support for a separated vocabulary in
PSOA RuleML and for graph modeling in IDP. PSOA and IDP could be aligned
for constructs used in additional KBs, ultimately defining the complete inter-
section of PSOA and IDP constructs. Conversely, additional languages could be
aligned for formalizing the ATC KB, ultimately making ATC KB a standard use
case. Future extensions to regulations could be easily incorporated into the exist-
ing KBs. ATC KB could become a shared resource of a multi-agent environment
founded on [17].
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Abstract. The Operating Room Scheduling (ORS) problem is the task
of assigning patients to operating rooms, taking into account different
specialties, lengths and priority scores of each planned surgery, oper-
ating room session durations, and the availability of beds for the entire
length of stay both in the Intensive Care Unit and in the wards. A proper
solution to the ORS problem is of utmost importance for the quality of
the health-care and the satisfaction of patients in hospital environments.
In this paper we present an improved solution to the problem based
on Answer Set Programming (ASP) that, differently from a recent one,
takes explictly into account beds management. Results of an experimen-
tal analysis, conducted on benchmarks with realistic sizes and parame-
ters, show that ASP is a suitable solving methodology for solving also
such improved problem version.

1 Introduction

The Operating Room Scheduling (ORS) [1,8,25,26] problem is the task of assign-
ing patients to operating rooms, taking into account different specialties, surgery
durations, and the availability of beds for the entire length of stay (LOS) both
in the Intensive Care Unit (ICU) and in the wards. Given that patients may
have priorities, the solution has to find an accommodation for the patients with
highest priorities, and then to the other with lower priorities, if space is still avail-
able, at the same time taking into proper account beds availability. Recently, a
solution based on Answer Set Programming (ASP) [10,11,21,22,27] was pro-
posed and proved to be effective for solving ORS problems [15]. Nonetheless,
such solution does not take into account beds management. In most modern
hospitals, very long surgical waiting list are present and often worsened, if not
altogether caused, by inefficiencies in operating room planning, and the avail-
ability of beds in the wards and, if necessary, in the Intensive Care Unit (ICU)
for each patient for the entire duration of their stay, is a very important factor
for such inefficiencies.
c© Springer Nature Switzerland AG 2019
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In this paper we thus propose an improved solution based on ASP that takes
explictly into account beds management. In such solution, problem specifica-
tions related to beds management are modularly added as ASP rules to the
previous encoding of the basic version of the problem where beds management
was not considered, and then efficient ASP solvers are used to solve the result-
ing ASP program. We have then generated ORS benchmarks with realistic sizes
and parameters inspired by those of small-medium Italian hospitals, and run an
experimental analysis on such benchmarks using the ASP solver clingo [19].
Benchmarks have been organized in two scenarios: a first scenario is characterized
by an abundance of available beds, so that the constraining resource becomes
the OR time, while for the second scenario the number of beds is the constrained
resource. Overall, results show that ASP is a suitable solving methodology for
ORS also when beds management is taken into account, on both scenario, given
that our solution is able to utilize efficiently whichever resource is more con-
strained; moreover, this is obtained in short timings in line with the needs of the
application.

To summarize, the main contributions of this paper are the following:

• We provide an ASP encoding for solving the complete ORS problem (Sects. 4
and 5).

• We run an experimental analysis assessing the good performance of our ASP
solution (Sect. 6).

• We analyze related literature (Sect. 7), with focus on beds management.

The paper is completed by Sect. 2, which contains needed preliminaries about
ASP, by an informal description of the ORS problem in Sect. 3, and by conclu-
sions and possible topics for future research in Sect. 8.

2 Background on ASP

Answer Set Programming (ASP) [11] is a programming paradigm developed in
the field of nonmonotonic reasoning and logic programming. In this section we
overview the language of ASP. More detailed descriptions and a more formal
account of ASP, including the features of the language employed in this paper,
can be found in [11,13]. Hereafter, we assume the reader is familiar with logic
programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with uppercase letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a variable or a constant. A
standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and
t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.
A ground set is a set of pairs of the form 〈consts :conj〉, where consts is a list of
constants and conj is a conjunction of ground standard atoms. A symbolic set
is a set specified syntactically as {Terms1 : Conj1; · · · ;Termst : Conjt}, where
t > 0, and for all i ∈ [1, t], each Termsi is a list of terms such that |Termsi| =
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k > 0, and each Conji is a conjunction of standard atoms. A set term is either a
symbolic set or a ground set. Intuitively, a set term {X :a(X, c), p(X);Y :b(Y,m)}
stands for the union of two sets: the first one contains the X-values making the
conjunction a(X, c), p(X) true, and the second one contains the Y -values making
the conjunction b(Y,m) true. An aggregate function is of the form f(S), where
S is a set term, and f is an aggregate function symbol. Basically, aggregate
functions map multisets of constants to a constant. The most common functions
implemented in ASP systems are the following:

• #count , number of terms;
• #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate function,
≺ ∈ {<,≤, >,≥, �=,=} is a comparison operator, and T is a term called guard.
An aggregate atom f(S) ≺ T is ground if T is a constant and S is a ground
set. An atom is either a standard atom or an aggregate atom. A rule r has the
following form:

a1 ∨ . . . ∨ an : − b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are stan-
dard atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation
not a. The disjunction a1 ∨ . . . ∨ an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules, where a rule r is safe if
the following conditions hold: (i) for each global variable X of r there is a pos-
itive standard atom � in the body of r such that X appears in �; and (ii) each
local variable of r appearing in a symbolic set {Terms :Conj} also appears in a
positive atom in Conj .

A weak constraint [12] ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l]

where w and l are the weight and level of ω, respectively. (Intuitively, [w@l] is
read “as weight w at level l”, where weight is the “cost” of violating the condition
in the body of w, whereas levels can be specified for defining a priority among
preference criteria). An ASP program with weak constraints is Π = 〈P,W 〉,
where P is a program and W is a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground
if no variables appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the
Herbrand base BP of P are defined as usual. The ground instantiation GP of
P is the set of all the ground instances of rules of P that can be obtained by
substituting variables with constants from UP .
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An interpretation I for P is a subset I of BP . A ground literal � (resp.,
not �) is true w.r.t. I if � ∈ I (resp., � �∈ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) with respect to I satisfies
the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a
ground program GP and an interpretation I, the reduct [17] of GP w.r.t. I is the
subset GI

P of GP obtained by deleting from GP the rules in which a body literal
is false w.r.t. I. An interpretation I for P is an answer set (or stable model) for
P if I is a minimal model (under subset inclusion) of GI

P (i.e., I is a minimal
model for GI

P ) [17].
Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π

extends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the
instantiation of Π; a constraint ω ∈ GW is violated by an interpretation I if all
the literals in ω are true w.r.t. I. An optimum answer set for Π is an answer set
of GP that minimizes the sum of the weights of the violated weak constraints in
GW in a prioritized way.

Syntactic Shortcuts. In the following, we also use choice rules of the form {p},
where p is an atom. Choice rules can be viewed as a syntactic shortcut for the
rule p∨p′, where p′ is a fresh new atom not appearing elsewhere in the program,
meaning that the atom p can be chosen as true.

3 Problem Description

In this section we provide an informal description of the ORS problem and its
requirements.

As we already said in the introduction, most modern hospitals are charac-
terized by a very long surgical waiting list, often worsened, if not altogether
caused, by inefficiencies in operating room planning. A very important factor
is represented by the availability of beds in the wards and, if necessary, in the
Intensive Care Unit for each patient for the entire duration of their stay.

This means that hospital planners have to balance the need to use the OR
time with the maximum efficiency with an often reduced beds availability.

In this paper, the elements of the waiting list are called registrations. Each
registration links a particular surgical procedure, with a predicted surgery dura-
tion and length of stay in the ward and in the ICU, to a patient.

The overall goal of the ORS problem is to assign the maximum number of
registrations to the operating rooms (ORs), taking into account the availability
of beds in the associated wards and in the ICU. This approach entails that the
resource optimized is the one, between the OR time and the beds, that represents
the bottleneck in the particular scenario analyzed.

As first requirement of the ORS problem, the assignments must guarantee
that the sum of the predicted duration of surgeries assigned to a particular OR
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session does not exceed the length of the session itself: this is referred in the
following as surgery requirement. Moreover, registrations are not all equal: they
can be related to different medical conditions and can be in the waiting list for
different periods of time. These two factors are unified in one concept: prior-
ity. Registrations are classified according to three different priority categories,
namely P1, P2 and P3. The first one gathers either very urgent registrations or
the ones that have been in the waiting list for a long period of time; it is required
that these registrations are all assigned to an OR. Then, the registrations of the
other two categories are assigned to the top of the ORs capacity, prioritizing the
P2 over the P3 ones (minimization).

Regarding the bed management part of the problem, we have to ensure that
a registration can be assigned to an OR only if there is a bed available for
the patient for the entire LOS. In particular, we have considered the situation
where each specialty is related to a ward with a variable number of available
beds exclusively dedicated to the patients associated to the specialty. This is
referred in the following as ward bed requirement. The ICU is a particular type
of ward that is accessible to patients from any specialty. However, only a small
percentage of patients is expected to need to stay in the ICU. This requirement
will be referred as the ICU bed requirement. Obviously, during their stay in the
ICU, the patient does not occupy a bed in the specialty’s ward.

In our model, a patient’s LOS has been subdivided in the following phases:

• a LOS in the ward before surgery, in case the admission is programmed a day
(or more) before the surgery takes place;

• the LOS after surgery, which can be further subdivided into the ICU LOS
and the following ward LOS.

The encoding described in Sects. 4 and 5 supports the generation of an opti-
mized schedule of the surgeries either in the case where the bottleneck is repre-
sented by the OR time or by the beds availability.

4 ASP Encoding for the Basic ORS Problem

Starting from the specifications in the previous section, in this section the
scheduling problem, limited to the assignments of the registrations to the ORs,
is described in the ASP language, in particular following the input language of
clingo.

4.1 OR scheduling

Data Model. The input data is specified by means of the following atoms:

• Instances of registration(R,P,SU,LOS,SP,ICU,A) represent the registrations,
characterized by an id (R), a priority score (P ), a surgery duration (SU) in
minutes, the overall length of stay both in the ward and the ICU after the
surgery (LOS) in days, the id of the specialty (SP ) it belongs to, a length
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{x(R,P,O, S,D)} :– registration(R,P, , , SP, , ),mss(O,S, SP,D). (r1)

:– x(R,P,O, S1, ), x(R,P,O, S2, ), S1! = S2. (r2)

:– x(R,P,O1, , ), x(R,P,O2, , ), O1! = O2. (r3)

surgery(R,SU,O, S) :– x(R, ,O, S, ), registration(R, , SU, , , , ). (r4)

:– x( , , O, S, ), duration(N,O, S),

#sum{SU,R : surgery(R,SU,O, S)} > N (r5)

:– N = totRegsP1 − #count{R : x(R, 1, , , )}, N > 0. (r6)

:∼ N = totRegsP2 − #count{R : x(R, 2, , , )}. [N@3] (r7)

:∼ N = totRegsP3 − #count{R : x(R, 3, , , )}. [N@2] (r8)

Fig. 1. ASP encoding of the ORS problem, excluding the bed management

of stay in the ICU (ICU) in days, and finally a parameter representing the
number of days in advance (A) the patient is admitted to the ward before
the surgery. It must be noted that the variables LOS, ICU and A become
relevant for the beds management (see Sect. 5).

• Instances of mss(O,S,SP,D) link each operating room (O) to a session (S) for
each specialty and planning day (D) as established by the hospital Master
Surgical Schedule (MSS).

• The OR sessions are represented by the instances of the predicate dura-
tion(N,O,S), where N is the session duration.

The output is an assignment represented by atoms of the form x(R,P,O,S,D),
where the intuitive meaning is that the registration R with priority P is assigned
to the OR O during the session S and the day D.

Encoding. The related encoding is shown in Fig. 1, and is described in the
following. Rule (r1) guesses an assignment for the registrations to an OR in a
given day and session among the ones permitted by the MSS for the particular
specialty the registration belongs to.

The same registration should not be assigned more than once, in different
OR or sessions. This is assured by the constraints (r2) and (r3). Note that in our
setting there is no requirement that every registration must actually be assigned.

Surgery requirement. With rules (r4) and (r5), we impose that the total length
of surgery durations assigned to a session is less than or equal to the session
duration.

Minimization. We remind that we want to be sure that every registration having
priority 1 is assigned, then we assign as much as possible of the others, giving
precedence to registrations having priority 2 over those having priority 3. This
is accomplished through constraint (r6) for priority 1 and the weak constraints
(r7) and (r8) for priority 2 and 3, respectively, where totRegsP1, totRegsP2 and
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totRegsP3 are constants representing the total number of registrations having
priority 1, 2 and 3, respectively.

Minimizing the number of unassigned registrations could cause an implicit
preference towards the assignments of the registrations with shorter surgery
durations. To avoid this effect, one can consider to minimize the idle time, how-
ever this is in general slower from a computational point of view and often
unnecessary, since the preference towards shorter surgeries is already mitigated
by our three-tiered priority schema.

5 ASP Encoding for ORS with Beds Management

This section is devoted to the beds management task of the ORS problem; the
ASP rules and data model described here are added to those presented in the
previous section.

5.1 OR scheduling with beds

Data Model. In order to deal with the beds management for the wards and
the ICU, the data model outlined in Sect. 4.1 must be supplemented to include
data about the availability of beds in each day of the planning and for each ward
associated to the specialties and the ICU.

Instances of beds(SP,AV,D) represent the number of available beds (AV ) for
the beds associated to the specialty SP in the day D. The ICU is represented
by giving the value 0 to SP .

Encoding. The related encoding is shown in Fig. 2, and is described in the
following. Rule (r9) assigns a bed in the ward to each registration assigned to an
OR, for the days before the surgery. Rule (r10) assigns a ward bed for the period
after the patient was dismissed from the ICU and transferred to the ward. Rule
(r11) assigns a bed in the ICU.

Ward Bed Requirement. Rule (r12) ensures that the number of patients occupy-
ing a bed in each ward for each day is never larger than the number of available
beds.

ICU bed requirement. Finally, rule (r13) performs a similar check as the one in
rule (r12), but for the ICU.

Remark. We note that, given that the MSS is fixed, our problem and encoding
can be decomposed by considering each specialty separately in case the beds
are not a constrained resource, as will be the case for one of our scenario. We
decided not to use this property because (i) this is the description of a practical
application that is expected to be extended over time and to correctly work
even if the problem becomes non-decomposable, e.g. a (simple but significant)
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stay(R,D − A..D − 1, SP ) :– registration(R, , , LOS, SP, , A),

x(R, , , ,D), A > 0. (r9)

stay(R,D + ICU..D + LOS − 1, SP ) :– registration(R, , , LOS, SP, ICU, ),

x(R, , , ,D), LOS > ICU. (r10)

stayICU (R,D..ICU +D − 1) :– registration(R, , , , , ICU, ),

x(R, , , ,D), ICU > 0. (r11)

:– #count{R : stay(R,D, SP )} > AV,

SP > 0, beds(SP,AV,D). (r12)

:– #count{R : stayICU (R,D)} > AV,

beds(0, AV,D). (r13)

Fig. 2. ASP encoding of the bed management portion of the ORS problem

Table 1. Beds availability for each specialty and in each day in scenario A.

Specialty Monday Tuesday Wednesday Thursday Friday

0 (ICU) 40 40 40 40 40

1 80 80 80 80 80

2 58 58 58 58 58

3 65 65 65 65 65

4 57 57 57 57 57

5 40 40 40 40 40

extension in which a room is shared among specialties brings to a problem which
is not anymore decomposable in all cases, and (ii) it is not applicable to all of
our scenarios. Additionaly, even not considering this property at the level of
encoding, the experimental analysis that we will present is already satisfying for
our use case.

6 Experimental Results

In this section we report about the results of an empirical analysis of the ORS
problem. Data have been randomly generated but having parameters and sizes
inspired by real data. Both experiments were run on a Intel Core i7-7500U
CPU @ 2.70GHz with 7.6 GB of physical RAM. The ASP system used was
clingo [18], version 5.5.2.

6.1 ORS Benchmarks

The final encoding employed in our analysis is composed by the ASP rules
(r1), . . . , (r13). The test cases we have assembled are based on the requirements
of a typical small-medium size Italian hospital, with five surgical specialties to be
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Table 2. Beds availability for each specialty and in each day in scenario B.

Specialty Monday Tuesday Wednesday Thursday Friday

0 (ICU) 4 4 5 5 6

1 20 30 40 45 50

2 10 15 23 30 35

3 10 14 21 30 35

4 8 10 14 16 18

5 10 14 20 23 25

Table 3. Parameters for the random generation of the scheduler input.

Specialty Reg. ORs Surgery
duration
(min) mean
(std)

LOS (d)
mean (std)

ICU % ICU LOS
(d) mean
(std)

LOS (d)
before
surgery

1 80 3 124 (59.52) 7.91 (2) 10 1 (1) 1

2 70 2 99 (17.82) 9.81 (2) 10 1 (1) 1

3 70 2 134 (25.46) 11.06 (3) 10 1 (1) 1

4 60 1 95 (19.95) 6.36 (1) 10 1 (1) 0

5 70 2 105 (30.45) 2.48 (1) 10 1 (1) 0

Total 350 10

managed over the widely used 5-days planning period. Two different scenarios
were assembled. The first one (scenario A) is characterized by an abundance of
available beds, so that the constraining resource becomes the OR time. For the
second one (scenario B), we severely reduced the number of beds, in order to
test the encoding in a situation with plenty of OR time but few available beds.
Each scenario was tested 10 times with different randomly generated inputs. The
characteristics of the tests are the following:

• 2 different benchmarks, comprising a planning period of 5 working days, and
different numbers of available beds, as reported in Tables 1 and 2 for scenario
A and B, respectively;

• 10 ORs, unevenly distributed among the specialties;
• 5 h long morning and afternoon sessions for each OR, summing up to a total

of 500 h of ORs available time for the 2 benchmarks;
• 350 generated registrations, from which the scheduler will draw the assign-

ments. In this way, we simulate the common situation where a hospital man-
ager takes an ordered, w.r.t. priorities, waiting list and tries to assign as many
elements as possible to each OR.
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Table 4. Scheduling results for the scenario A benchmark.

Assigned registrations OR time
efficiency

Bed occupation
efficiency

Priority 1 Priority 2 Priority 3 Total

62/62 132/150 72/138 266/350 96.6% 52.0%

72/72 128/145 64/133 264/350 95.6% 51.0%

71/71 132/132 69/147 272/350 96.7% 53.0%

66/66 138/142 57/142 261/350 96.2% 50.7%

79/79 119/130 67/141 265/350 96.0% 51.9%

67/67 131/131 66/152 264/350 96.6% 53.8%

66/66 121/132 69/152 256/350 96.0% 49.8%

69/69 130/135 68/146 267/350 96.8% 51.6%

60/60 139/153 59/137 258/350 96.0% 50.8%

68/68 138/142 57/139 263/350 95.2% 51.3%

Table 5. Scheduling results for the scenario B benchmark.

Assigned registrations OR time
efficiency

Bed occupation
efficiency

Priority 1 Priority 2 Priority 3 Total

62/62 106/150 13/138 181/350 66.3% 92.7%

72/72 77/145 43/133 192/350 67.5% 94.2%

71/71 80/132 38/147 189/350 68.2% 96.1%

66/66 81/142 41/142 188/350 71.4% 93.4%

79/79 90/130 20/141 189/350 69.0% 94.1%

67/67 95/131 25/152 187/350 66.5% 93.9%

66/66 92/132 30/152 188/350 71.8% 94.1%

69/69 84/135 36/146 189/350 68.7% 92.7%

60/60 91/153 34/137 185/350 69.7% 94.1%

68/68 82/142 35/139 185/350 69.3% 95.1%

The surgery durations have been generated assuming a normal distribution,
while the priorities have been generated from a uneven distribution of three pos-
sible values (with weights respectively of 0.20, 0.40 and 0.40 for registrations
having priority 1, 2 and 3, respectively). The lengths of stay (total LOS after
surgery and ICU LOS) have been generated using a truncated normal distribu-
tion, in order to avoid values less than 1. In particular for the ICU, only a small
percentage of patients have been generated with a predicted LOS while the large
majority do not need to pass through the ICU and their value for the ICU LOS
is fixed to 0. Finally, since the LOS after surgery includes both the LOS in the
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wards and in the ICU, the value generated for the ICU LOS must be less than
or equal to the total LOS after surgery. The parameters of the test have been
summed up in Table 3. In particular, for each specialty (1 to 5), we reported the
number of registrations generated, the number of ORs assigned to the specialty,
the mean duration of surgeries with its standard deviation, the mean LOS after
the surgery with its standard deviation, the percentage of patients that need
to stay in the ICU, the mean LOS in the ICU with its standard deviation and,
finally, the LOS before the surgery (i.e. the number of days, constant for each
specialty, the patient is admitted before the planned surgery is executed).

6.2 Results

Results of the experiments are reported for scenario A in Table 4 and for scenario
B in Table 5, respectively. A time limit of 60 seconds was given in view of a
practical use of the program, each scenario was run 10 times with different input
registrations. For each of the 10 runs executed, the tables report in the first
three columns the number of the assigned registrations out of the generated
ones for each priority, and in the remaining two columns a measure of the total
time occupied by the assigned registrations as a percentage of the total OR time
available (indicated as OR time Efficiency in the Table) and the ratio between
the beds occupied after the planning to the available ones before the planning
(labeled as Bed Occupation Efficiency in the tables). As a general observation,
these results show that our solution is able to utilize efficiently whichever resource
is more constrained: scenario A runs manage to reach a very high efficiency, over
95%, in the use of OR time, while scenario B achieves an efficiency of bed
occupation between 92% and 95%. Note that to better be able to confront the
results, for each run the bed configurations of the two scenarios were applied
to the same generated registrations. Taking into consideration a practical use of
this solution, the user would be able to individuate and quantify the resources
that are more constraining and take the appropriate actions. This means that
the solution can also be used to test and evaluate “what if” scenarios.

Finally, in Fig. 3 we (partially) present the results achieved on one instance
(i.e., the first instance of Tables 4 and 5) with 350 registrations for 5 days. Each
bar represents the total number of available beds for specialty 1, as reported in
Table 1 for the plot at the top and Table 2 for the bottom one, for each day of
the week, from Monday through Friday. The colored part of the bars indicates
the amount of occupied beds while the gray part the beds left unoccupied by
our planning.

7 Related Work

In this section we review related literature, organized into two paragraphs.
The first paragraph is devoted to outlining different techniques for solving the
ORS problem, with focus on the inclusion of beds management, while in the
second paragraph we report about other scheduling problems where ASP has
been employed.
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Fig. 3. Example of bed occupation of the ward corresponding to specialty 1 for 5 days
scheduling. The plot on the top corresponds to the first instance of scenario A, while
the one on the bottom to the first instance of scenario B.

Solving ORS Problems. Aringhieri et al. [8] addressed the joint OR planning
(MSS) and scheduling problem, described as the allocation of OR time blocks to
specialties together with the subsets of patients to be scheduled within each time
block over a one week planning horizon. They developed a 0–1 linear program-
ming formulation of the problem and used a two-level meta-heuristic to solve it.
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Its effectiveness was demonstrated through numerical experiments carried out
on a set of instances based on real data and resulted, for benchmarks of 80–100
assigned registrations, in a 95–98% average OR utilization rate, for a number
of ORs ranging from 4 to 8. The execution times were around 30–40 seconds.
In [25], the same authors introduced a hybrid two-phase optimization algorithm
which exploits neighborhood search techniques combined with Monte Carlo sim-
ulation, in order to solve the joint advance and allocation scheduling problem,
taking into account the inherent uncertainty of surgery durations. In both the
previous works, the authors solve the beds management problem limited to week-
end beds, while assuming that each specialty has its own post-surgery beds from
Monday to Friday with no availability restriction. In [9], some of the previous
authors face the beds management problem for all the days of the week, with
the aim to level the post-surgery ward bed occupancies during the days, using a
Variable Neighbourhood Search approach.

Other relevant approaches are: Abedini et al. [1], that developed a bin packing
model with a multi-step approach and a priority-type-duration rule; Molina-
Pariente et al. [26], that tackled the problem of assigning an intervention date
and an operating room to a set of surgeries on the waiting list, minimizing access
time for patients with diverse clinical priority values; and Zhang et al. [29], that
addressed the problem of OR planning with different demands from both elective
patients and non-elective ones, with priorities in accordance with urgency levels
and waiting times. However, beds management is not considered in this last
three mentioned approaches.

ASP in Scheduling Problems. We already mentioned in the introduction
that ASP has been already successfully used for solving hard combinatorial and
application problems in several research areas. Concerning scheduling problems
other than ORS, ASP encodings were proposed for the following problems: Incre-
mental Scheduling Problem [14,20], where the goal is to assign jobs to devices
such that their executions do not overlap one another; Team Building Prob-
lem [28], where the goal is to allocate the available personnel of a seaport for
serving the incoming ships; and Nurse Scheduling Problem [2,3,16], where the
goal is to create a scheduling for nurses working in hospital units. Other relevant
problems are Interdependent Scheduling Games [5], which requires interdepen-
dent services among players, that control only a limited number of services and
schedule independently, the Conference Paper Assignment Problem [7], which
deals with the problem of assigning reviewers in the PC to submitted conference
papers, and the Stable Roommates Problem [6], which is a modified version of
the well-known Stable Marriage Problem.

8 Conclusions

In this paper we have employed ASP for solving to the ORS problem with
beds management, given ASP has already proved to be a viable tool for solving
scheduling problems due to the readability of the encoding, and availability of



80 C. Dodaro et al.

efficient solvers. Specifications of the problem are modularly expressed as rules
in the ASP encoding, and ASP solver clingo has been used. We finally pre-
sented the results of an experimental analysis on ORS benchmarks with realistic
sizes and parameters on two scenario, that reveal that our solution is able to
utilize efficiently whichever resource is more constrained, being either the OR
time or the beds. Moreover, for the planning length of 5 days usually used in
small-medium Italian hospitals, this is obtained in short timings in line with
the needs of the application. Future work includes the design and analysis of a
re-scheduling solution, in case the off-line solution proposed in this paper can
not be fully implemented for circumstances such as canceled registrations, and
the evaluation of heuristics and optimization techniques (see, e.g., [4,23,24]) for
further improving the effectiveness of our solution.
All materials presented in this work, including benchmarks, encodings and
results, can be found at: http://www.star.dist.unige.it/∼marco/RuleMLRR19/
material.zip.
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Abstract. In this paper, we present EASE (Enabling hardware Asser-
tion Synthesis from English) which translates hardware design specifica-
tions written in English to a formal assertion language. Existing natu-
ral language processing (NLP) tools for hardware verification utilize the
vocabulary and grammar of a few specification documents only. Hence,
they lack the ability to provide linguistic variations in parsing and writing
natural language assertions. The grammar used in EASE does not follow
a strict English syntax for writing design specifications. Our grammar
incorporates dependency rules for syntactic categories which are coupled
with semantic category dependencies that allow users to specify the same
design specification using different word sequences in a sentence. Our
NLP engine consists of interleaving operations of semantic and syntactic
analyses to understand the input sentences and map differently worded
sentences with the same meaning to the same logical form. Moreover,
our approach also provides semantically driven suggestions for sentences
that are not understood by the system. EASE has been tested on nat-
ural language requirements extracted from memory controller, UART
and AMBA AXI protocol specification documents. The system has been
tested for imperative, declarative and conditional types of specifications.
The results show that the proposed approach can handle a more diverse
set of linguistic variations than existing methods.

Keywords: Natural Language Processing · Hardware verification ·
Natural language programming

1 Introduction

Automation of design verification from natural language specifications has the
advantage of reducing design life cycle, design errors and identification of inco-
herent specifications in an early design stage [1]. Motivated by these advantages,
various approaches have been proposed [2–6] to automate design verification by
generating assertions from its available natural language specifications.

A template-based approach to automatically generate assertions has been
proposed in [2], in which natural language assertions are categorized based on
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their syntactic and semantic structures and then mapped to a System Verilog
Assertion (SVA) template. However, such an approach is not fully automated
and require the assistance of a verification engineer in the creation of these tem-
plates. In [3], translation rules are manually extracted from properties defined
in specification documents to automatically generate a formal model. In addi-
tion, it also synthesized LTL formulas from natural language requirements when
sufficient information about design variables are available.

In [4,5], an attribute grammar is constructed which represents vocabulary
and linguistic variations of the corpus containing assertions written in English.
A parser based on this grammar enables the generation of formal assertions from
natural language properties specified in the corpus. However, a new grammar
has to be constructed manually for another design specification document with
a different writing style. The work in [6], aims to alleviate the manual creation
of the grammar by automatically learning the grammar using a training set of
natural language assertions and their corresponding formal representations.

All of the above grammar based approaches require low-level design asser-
tions as input from the specification document. System requirements in these
documents describe high-level design behavior and include charts, diagrams and
tables [1]. Moreover, for a complex System on chip (SoC) design, each module
may have a separate specification document. Consequently, it becomes difficult
to specify the overall design properties in a specification document for a design
that span multiple design blocks. Because of this, we may not even find design
properties in the specification document for a complex SoC design [7], which
may result in a lack of data for the creation of grammar and translation rules.

In the absence of design properties in specification documents, an engineer
has to understand the design intent from the corresponding high level specifi-
cations and then write it in a formal assertion language. Manually writing such
formal assertions for complex designs can be error-prone and time-consuming.

Natural language based automation can relieve the user from manually writ-
ing executable assertions from specifications. However, as mentioned earlier,
specifications are either in the form of high level description in tables, charts
or written in unrestricted natural language which are imprecise, ambiguous and
incomplete [8,9]. Hence, it is not possible to automatically parse these specifica-
tions and accurately translate them to a formal language. Our research objec-
tive is to design a tool that can assist the user in writing and parsing design
specifications unambiguously at the beginning stage of the design. These design
specifications can then be parsed to create executable specifications which can
be used to automatically verify the design.

Recently, Controlled Natural Language (CNL) tools have been developed
that translate English sentences to executable code [10]. In [11], a CNL frame-
work is proposed to translate specifications written in natural language to a
formal verification language. However, their architecture perform syntactic and
semantic analysis separately and hence unable to use the partial semantic under-
standing for disambiguation of natural language specification. Moreover, their
CNL gives suggestion only when it detects ambiguity in the specification after
completely parsing the sentence.
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We propose an architecture called EASE which stands for Enabling hardware
Assertion Synthesis from English. EASE guides users in writing design specifi-
cations in English that can be automatically processed by the system and trans-
lated to a formal language. Our objective is to minimize restrictions on sequence
of categories in a CNL grammar so that the user can express his ideas more
freely and get the maximum benefits from natural language based automation.
In order to achieve this objective, we have created a grammar based on syntac-
tic and semantic dependencies instead of a grammar with sequential structure of
English categories. Another purpose for creating such a grammar was to create
parse trees with dependency links that are more suited for Natural Language
Understanding (NLU) tasks [12]. We propose a joint syntactic-semantic parsing
of dependency trees at run-time to understand any partially written sentence
and provide suggestion to user on completing this sentence. Moreover, our inter-
leaving syntactic and semantic analysis is incremental in nature and also con-
siders context to understand the written sentence. This approach creates the
same semantic expression for a design intent written with a different sequence
of words.

Our contributions can be summarized as follows:

– EASE is independent of grammar and linguistic variations of a specification
document which is contrary to earlier approaches that are mostly document
specific. We introduce semantic categories of hardware verification domain to
reduce ambiguity in parsing a specification written in unrestricted English.
Semantic categories in our grammar assists in disambiguation of semantic
roles for various words in the input sentence.

– A dependency grammar allows flexibility in writing a sentence with differ-
ent word orders. However, a dependency grammar with only dependency
links does not contain explicit semantic interpretation of syntactic rules. To
improve semantic interpretation of sentences we propose a joint syntactic
and semantic analysis using dynamic programming in our natural language
parsing stage. Such an analysis ensures that any partially written sentence
is correctly understood and also assists in providing suggestions to user on
completing a partially written sentence.

– Our natural language understanding analysis is an incremental algorithm and
considers the context with which a word is written/parsed while assigning
semantic expressions to a complete sentence. This contextual based under-
standing enables the mapping of the same semantic expression to sentences
with the same meaning but written with different word order.

– We provide semantically driven suggestions to the user in completing the sen-
tence. This suggestion framework has the capability of giving feedback to the
user on sentences that are semantically wrong even if they are syntactically
correct.

The rest of the paper is organized as follows: In Sect. 2, we will describe EASE
and its components. In Sect. 3, we will discuss our experimental evaluation and
results. Finally, in Sect. 4, we present our Conclusion.
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2 EASE Architecture

The architecture of EASE is illustrated in Fig. 1. An overview of our framework
is as follows: Our approach dynamically updates the semantic expressions of
the sentence based on words written (or parsed) thus far. In the beginning, a
word is pre-processed to ensure that it complies with the input requirements.
After pre-processing, each word is tagged by syntactic and semantic categories
that are defined in our grammar. We create an initial clause relationship tree
(CRT), and each input word is appropriately placed in the CRT. The CRT is
created to understand complex English sentences containing connecting words
like coordinating conjunction and conditional words. This CRT is updated based
on every incoming words. Updating the CRT involves several sub-tasks, as shown
in Fig. 1. First, we dynamically detect a clause and place it in a leaf node of the
CRT. Then, a dependency parse tree for this clause is created and stored in
the CRT. Semantic contribution of each incoming word in a dependency tree
is computed, and the overall semantic expression of a clause is updated. The
process of updating the CRT, dependency parse trees, and semantic expressions
continues until the last word is processed in a design specification. The overall
meaning of the sentence is understood by the collective analysis of the semantic
expressions of all the clauses. Finally, the formal representation that is generated
from the CRT can be translated to any of the hardware verification languages
like System Verilog Assertion (SVA) or Property Specification Language (PSL).
SVA or PSL based assertion can be used to verify the hardware design. In the
subsequent subsections, detail of these stages is presented.

Domain Knowledge

Dependency Parse tree
Create/Update

of each clause

Create/Update

Semantic Expression

Dependency Parse Tree

of

Input Word CRT

Create/Update
After Parsing all 

words of a sentence

Generate Formal 
Representation of 

CRT

Grammar

Use Domain 
Knowledge

Use Grammar

in creating edges
of Parse tree

in a CRT

Pre−Processing and

Tagging input word

in a CRT
Split parsed Sentence

After

Fig. 1. EASE Architecture dynamically analyse each input word and generates a formal
representation of design specification.

2.1 Dependency Grammar and Lexicon

The categories in our grammar are commonly used in writing hardware verifi-
cation functions. Figure 2(a), shows a fragment of semantic classes available in
our grammar. These categories are grouped under syntactic categories. Based
on syntactic information of these categories, we have defined their dependency
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relations with other syntactic classes like verbs, prepositions, and coordinate
conjunctions. A small set of words belonging to these categories are shown in
Fig. 2(b).

A fragment of our dependency grammar is shown in Fig. 2(c). In Fig. 2(c),
the verbs are shown to be dependent on a dummy node ‘root’. The main verbs
are the action words, for example ‘set’, ‘de-assert’ and ‘change’. The predicate-
argument structure in dependency parse trees may not be explicit for some
syntactic constructions like coordinate conjunctions and prepositional phrases.
We attempt to capture even these semantic relationships by adding semantic
information to our dependency grammar. Figure 2(d) shows a fragment of our
rule-based semantic information, which creates a direct relationship between
semantic categories.

root

main verb

value_word

clock_cycle

main verb, linking verb, modal verb

signal, register, value, prep

consec, delay, prep

signal, register, clock_cycle, value_word, data_word

(a)

Rel

Delay

Consec

 Noun NumAdj Category Lexicon

greater, lower, equal ,..

data, number of bits ,...

cd cycle, same cycle ,...

(b)

Rel

Data_word

Clock_cycleValue_word

Clock_cycle

Data_word

Signal Value

Data

(a)

Rel

Delay

Consec

 Noun NumAdj Category Lexicon

greater, lower, equal ,..

data, number of bits ,...

cd cycle, same cycle ,...

(b)

Rel

Data_word

Clock_cycleValue_word

Clock_cycle

Data_word

Signal Value

Data

(d)

[of,in,*]

[of,on,*]

[than,to]

Data_word

Rel

Value_word

Register

Value

Signal

Connector Sem_edge

data_is

data_of

rel_obj

Direc

Same

Same

Same

Data Data_word Reverse

Same

consec_clockClock_cycle

[of,*]

Category 2

[of,in,*]

[of,on,*]

[than,to]

Data_word

Rel

Value_word

Register

Value

Signal

Connector Sem_edge

data_is

data_of

rel_obj

Direc

Same

Same

Same

Data Data_word Reverse

Same

consec_clockConsec Clock_cycle[for,*]

[of,*]

Category 1 Category 2Category 1

Consec [for,*]

fo_eulav fo_eulav

(c)

Head Dependents

Fig. 2. (a) A fragment of semantic categories grouped under syntactic categories to
extract dependency information. (b) An example set of vocabulary that also contains
multi-word expressions. (c) A fragment of our dependency grammar where we defined
dependencies between semantic and syntactic categories. (d) A fragment of our seman-
tic tuples in our grammar to create semantic edges.

2.2 Clause Relationship Tree

The purpose of the CRT is to create a logical representation of the input sentence
in the form of a tree where the semantic expression of clauses is connected by
conditional words or by coordinating conjunctions. As illustrated in Fig. 3, the
CRT is a binary tree. All the leaf nodes in this tree are clauses, and non-leaf nodes
are words which connect these clauses in a sentence. The structure of a clause
and list of head-words are shown in Fig. 3. The CRT is updated dynamically
based on the input word received for processing.

A partial sentence is split into clauses and stored in leaf nodes of CRT only if a
head-word separates these clauses. The dependency parse tree and corresponding
semantic expression of a clause are also stored in the leaf node of the CRT. The
semantic expressions of all the clauses are combined to generate an executable
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H1

H2

H3

CL CL

CL DR FR

FR DR FRDR

CL = Clause

DR = Dependency Root

{H1,H2,H3} −> Head nodes

FR = Formal Representation

Clause structure = Noun + Verb

Head = {‘if’,‘then’,‘when’,‘and’,‘or’,‘after’,...}

Fig. 3. A clause relationship tree with 3 types of data stored in a leaf node. The head
node words are sentence connectors or conditional words as mentioned in Head list.

assertion. Figure 4 illustrates the creation and reconfiguration of the CRT based
on the words received from the input sentence. The figure also shows that we
create the dependency parse trees of the clauses taken from the leaf nodes of
this CRT.

If

register fcr[7:6] is set to 02

register fcr[7:6]

If

root register fcr[7:6]

and

If

Sentence Processed Dependency TreesUpdating CRT and 

If No Clause Detected

If register fcr[7:6]

If

If register fcr[7:6] is set to 02 tes 20otsi]6:7[rcfretsiger

tes 20otsi]6:7[rcfretsiger

root

register fcr[7:6]
is set to 02

number of bits 

is less than 4 bytes

is less than 4 bytes

If register fcr[7:6] is set to 02 and number of bits in register Rec is less than 4 bytes then the value of

in register Rec
If register fcr[7:6] is set to 02

bytes

and number of bits in register

Rec is less than 4

aregister iir[3:1] can never be 010.

b

root

root

register Recinnumber of bits 

Fig. 4. (a) An example design specification for which CRT creation is shown. (b)Figure
shows the creation and update performed in a CRT. Also each leaf node of CRT is
parsed to create dependency parse trees.

2.3 Syntactic-Semantic Parsing

In our EASE architecture, syntactic and semantic parsing are coupled in a com-
plementary fashion to disambiguate any clarity issues in the English sentence.
The parsing process begins from the current leaf node of CRT where a new
word is received from the user. The syntactic edges in our parse tree assist in
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understanding the semantics of the parse tree. At the same time, partial seman-
tic expressions of a parse tree assist in the creation of syntactic edges when
dependency relations are not apparent from the dependency grammar. In this
architecture, we can perform syntactic disambiguation based on semantic under-
standing of words at run-time. For example, we use the semantic understanding
to resolve the ambiguity in the creation of syntactic dependency links for prepo-
sitional phrase attachment. In Fig. 5, node ‘occur’ is connected to the preposition
‘within’ instead of connecting node ‘command active’ to this preposition. Such a
connection was made because of the disambiguation based on the partial seman-
tic expression created on the node ‘occur’ where ‘command active’ is considered
as an ‘occur when after’ parameter. According to the rules, we would have con-
nected ‘command active’ to ‘within’ if ‘command active’ had a semantic role of
‘occur what’.

command active

occur

cannot

after

2 clock cycles

withincommand active

neg
subj

pobj
prep when_after

prep

Command Active cannot occur after command active within 2 clock cycles.Sentence

SE occur(occur_what:active,neg:1,occur_when_after:activePartial SE

Fig. 5. Preposition phrase attachment based on partial semantic understanding.

Our algorithm learns the semantic expression of a head-node in a depen-
dency parse tree based on the syntactic connection of head-node with semantic
expressions of its child nodes. This incremental understanding process continues
till the root node of the parse tree and also considers the context in which a
word is used in the sentence. In the following subsection, we will provide details
of our Semantic Expression (SE) structure and joint syntactic-semantic parsing
algorithm.

2.3.1 Semantic Expressions
The Semantics of the sentences is represented in the form of Semantic Expressions
(SE) in our framework. These SEs are analogous to frame semantics used in NLP.
In our approach, we define an SE as a set of parameters where each parameter is
a placeholder for either a function or an argument of a function. For example, the
phrase ‘assigning a 1 to a register’ describe a Value function where ‘register’ and
‘1’ are arguments. These SE’s are created based on the syntactic and semantic
relations that exist between words in a dependency parse tree.

Figure 6a, illustrates a Value SE with three parameters, namely, value of,
value is and value when. Also, in this figure, we have shown the type of values
that can be assigned to value of and value when parameters. As shown in this
figure, value of can be assigned nodes of category type ‘Signal’ or ‘Register’.
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Value Value_of Value_is Value_when

Delay_clk Min_delay Max_delay
[Signal/Regsiter category nodes]

[Value/Clock_cycle category nodes] [Value/Clock_cycle category nodes]

(a)

par(value_is) : cat(value) & edge(same)

par(value_of) : (cat(register) | cat(signal)) & edge(value_of)

exp(delay_clock) : par(min_delay) & par(max_delay)

cat(clock_cycle) : cd cycle | same cycle | next cycle 

par(min_delay) : (cat(value) | cat(clock_cycle)) & edge(delay)

exp(value) : par(value_of) & par(value_is) & par(value_when)

(b)

Fig. 6. (a) For a ‘Value’ semantic expression, we have shown how ‘Value of’ and
‘Value when’ parameter can be filled. (b) This figure shows rules that are defined to fill
Value SE and delay clock SE. In this figure, keyword ‘exp’ means semantic expression,
‘par’ is a slot in expression, and ‘cat’ is the category of a word that can fill a parameter.

Whereas, the Value when parameter can take another SE named Delay clk as
its value.

A fragment of our rules used to fill Value SE is shown in Fig. 6b. In this figure,
we have shown a set of rules that creates SE based on the edges between words
in a dependency parse tree. For example, the parameter(value of) is assigned
either a signal or a register category node, and the edge between the SE and this
node should be value of.

Algorithm 1. Syntactic-Semantic Parser
1: procedure Parse(CRT leaf node data)
2: Push data to buffer, Push root to stack � Initializing Buffer and Stack
3: while Buffer is not empty do
4: move dict ← find move(buffer,stack)
5: if move dict = ‘shift’ then
6: stack.append(buffer top) , buffer.remove(buffer top)
7: end if
8: if move dict = ‘reduce’ then
9: stack.remove(stack top)

10: end if
11: if move dict = ‘left arc’ then
12: apply arc(head = buffer top , child = stack top)
13: traverse with semantic update(buffer top,‘down’)
14: end if
15: if move dict = ‘right arc’ then
16: apply arc(head = stack top , child = buffer top)
17: traverse with semantic update(buffer top,‘up’)
18: end if
19: end while
20: end procedure
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2.3.2 Algorithm
For each edge created in our parse tree, we compute the semantic influence of
this edge on the overall semantics of the parse tree. Such an approach allow us to
detect an error in the input sentence at run-time when the semantics understood
from the new word is not compatible with the existing semantics of the parse
tree. We adopted such an approach to avoid the necessity to parse the input
sentence according to the strict English syntax to detect ambiguity.

We maintain a list of semantic expressions at each node, which represents the
meaning contributed by this node and its child nodes. In a parse tree, the leaf
node consists of all possible semantic expressions which can be inferred based
on the word in this leaf node. While parsing from a leaf node to the root node
in a parse tree, we select semantic expressions at each node that describes the
context in which this node and its child-node word is being used. In this process,
the ambiguity in understanding the input sentence is detected if we are left with
multiple SE’s at the root node. Then according to the available SE’s at the root
node, we provide an example sentence to the user for each these SE’s. This helps
in explaining to the user on how to express these SE’s correctly in an English
sentence.

occur command subj

assign delay_clk when_after assign(when_after: delay_clk)

Connecting EdgeHead SE

rel(rel_obj: value SE)

occur(occur_what: command SE)

rel value

Child SE

rel_obj

Semantic Update

Fig. 7. Rules for creating semantic expressions for a head node from its child nodes
semantic expressions based on the semantic edge connecting these nodes.

Algorithm 1 presents our Syntactic-Semantic parser. A list of words from a
leaf node of CRT is passed as input to the parser. This algorithm is based on
the shift-reduce dependency parsing algorithm of [13]. We added steps to update
semantics in this algorithm whenever we are creating an edge in our parse tree,
as shown in line 13 and 17 of Algorithm 1. A new head of parse tree is formed
on the creation of a left arc. SE of the new head is created based on its child
node SE’s by traversing in a downward direction from the head node to its child
nodes, as shown in line 13 of Algorithm 1. Similarly, for the creation of the right
arc, we will traverse the parse tree from the new word added as a child node. We
continue to propagate the effects of this child node semantics to the root node
of the parse tree, as shown in Algorithm 2 from line 9–13. In this algorithm, we
update the SE of nodes based on its child node SE’s using the rules. Figure 7
shows only a fragment of these rules. In this figure, the column ‘Connecting edge’
is a semantic edge that is inferred based on connecting syntactic edge or a series
of syntactic edges for a long range semantic dependency. Figure 8 illustrates the
working of our syntactic-semantic parser.
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Algorithm 2. Traversal with Semantic update
1: procedure traverse with semantic update(node,direc)
2: if node == root then � root is a dummy node
3: return
4: end if
5: if direc == ‘down’ then
6: For all child nodes of node
7: Update SE node(node,child node)
8: end if
9: if direc == ‘up’ then

10: head node ← node.dep head � head of the node in dependency tree
11: Update SE node(head node,node)
12: traverse with semantic update(head node,‘up’)
13: end if
14: end procedure

2.4 Suggestion Generation

Suggestion mechanism relies on the partial semantic understanding to generate
additional text to complete the sentence. Our syntactic-semantic parser ensures
that at every stage of parsing, we will have a list of partial semantic expressions
that could be inferred from the group words written by the user. This list of
partial semantic expressions is filtered down to a specific semantic expression
when the user completes the sentence. Earlier work done in the area of grammar
based CNL authoring tools like [14], lacks the ability to consider semantics while
giving suggestions based on the partially written sentence. Hence, the previous
work cannot give feedback to the user for a syntactically correct partial sentence
that is semantically wrong.

We propose a semantically driven suggestion framework by utilizing the list
of SE’s for partial sentence created in the syntactic-semantic parser stage. A
fragment of our rules to generate suggestions is shown in Fig. 9. Suggestions are
generated after a ‘triggered word’ is detected by the system. Triggered words
comprise of prepositions, linking verbs(lv), modal verbs, main verb and con-
ditional words like if-then, when. In this figure, the column ‘Partial sentence
Meaning’ represents the semantic expression that is understood from the par-
tially written sentence that appears before the trigger word. As shown in the
Fig. 9, a combination of the meaning based on the SE and the trigger word is
used to generate suggestions for completing the sentence. The column ‘Sugges-
tions’ in this figure consist of categories like ‘AW’ which refers to ‘action words’
and lexicon like ‘set’ that belongs to this category. The SE’s in the ‘Suggestion’
column indicates the intent of the suggestions. The sentence structure of the
suggestion is generated by mapping these SE’s to the sentence template tuned
according to the parameters in these SE’s.
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Fig. 8. Words in a clause are processed one after the other. A syntactic parsing is
followed by semantic parsing on partial parse trees to generate semantic expression of
the clause.

3 Evaluation

EASE was implemented in Python. The grammar had three syntactic categories
(verb, prepositions, conjunction) and 12 semantic categories for the hardware
verification domain. We extracted a total of 80 assertions for memory controller
design [16] and UART architecture [15]. We followed the industry standard prac-
tices as given in [17] for writing assertions. We wrote these assertions according
to our vocabulary and grammar to test our algorithm. The assertions were trans-
lated to CRTs which represent the logical forms of these assertions. These CRTs
were then translated to SVA based on the underlying rules. A sample of the
sentences that we tested are as follows:

1. if signal sel n[3] is de-asserted and signal oe n falls from 1 to 0 then after 16
clock cycles and before 900 cycles signal oe n rises from 0 to 1.

2. Signal AWREADY is asserted within 5 clock cycles after signal AWVALID
being asserted.

3. if signal sel n[3] is de-asserted and signal oe n falls from 1 to 0 then only after
15 clock cycles signal oe n rises from 0 to 1.

4. if signal sel n[2] and signal oe n are low and signal we n is high then after 1
clock cycle register addr data should be stable and in the same clock cycle
data in register Acc should be available.
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5. If command active is initiated then command read or command write cannot
occur within 3 cycles. If command active is initiated then command read or
command write must be issued within 10 clocks.

6. signal ads should not be asserted for consecutive 2 clocks.

value_is)
SE Value(value_of,

value_is)
SE Value(value_of,

Triggered word Suggestions

SE count(count_of)

SE value(value_of)

SE value(empty)

Partial Sentence
Meaning

SE value(value_of,value_is) | SE rel(rel_of,rel_is,rel_obj) | ....

<rel(greater | lower)> than <data> | <data> | <data> on <system func.>

<AW(set | assigned)> ‘a’ <value> | <rel(greater | lower) than <value>

<AW(set)> for < register | signal> | <value> for <register> | ...

SE value( when : <specific_clk>) | SE value() | ....SE Value(value_of,
value_is,

conj (and)

prep (after)

conditional words

lv | modal

lv | modal

lv | modal

value_when)

SE value( when: <specific clock>) | <specific_clock> | .....

Fig. 9. Rules for generating suggestions based on Semantic Expressions (SE). We have
used | to denote that any one of the element will suffice.

The above sentences demonstrate the ability of EASE in handling various
features of hardware verification assertions. For example, the first specification
shows that various operations ranging from ‘de-assertions’, ’transition’ and clock
events can be handled in a single sentence. The second sentence illustrates a
conditional assertion without using explicit conditional words like ‘if-then’ or
‘when’. Sentence 3 is a safety property where an event should not happen before
15 clock cycles. Sentence 6 is an example of an imperative specification.

In terms of varying the way the spec is written, the following variations of
the earlier sentences were also successfully translated to the corresponding SVA
logic. These sentences have the same semantic but were written in different word
and/or phrase order:

(a) If command read is issued then command write can occur only after 3 clocks.
(b) Command write cannot occur after command read before 3 clocks.
(c) Command write should be executed only after 3 clocks when command read

is issued.

We then evaluated EASE on assertions that are available in specification
documents [18]. A list of design variables were first added in the vocabulary
and were treated as nouns subsequently. We have compared EASE with previ-
ous approaches in Table 1. The work in [4] and [6] cannot handle multi-line and
sequential specifications. Sequential specifications are assertions that span mul-
tiple clock cycles. The column ‘Architectures’ indicates the underlying hardware
architectures for which assertions were automatically generated from specifica-
tions. The last column shows some example sentences that cannot be handled
by the previous work. For example, the work in [6] did not show the translation
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of specifications of AMBA AXI protocol that span multiple clock cycles. Such
specification is shown by sentence 2 in above given sample sentences. Our app-
roach is different from [11] since we are using syntactic-semantic parser which
assists in providing suggestions to complete the sentence.

Table 1. Comparison with previous works on Hardware Assertions Synthesis.

Paper Feedback Sequential
specs

Architectures Multi-line
tested

Which
sentences
could not
handle

[4] No No AMBA AXI3 No 1, 2, 3, 4

[6] No No AMBA AXI3, AMBA
AXI4

No 2

This work Auto-
completion

Yes Memory controller,
UART, AMBA AXI3

Yes -

We also evaluated the proposed suggestion mechanism and ambiguity detec-
tion on specifications. Figure 10 illustrates how the suggestion mechanism
responded to a partial sentence based on SEs. Consider the first example of sugges-
tion when the word is ‘value’. The system assigns a partial semantics of ‘SE value’
to the word ‘value’. When the system detects the word ‘of’, it checks the partial
semantics of the written sentence. Two suggestions templates are displayed based
on the combination of the anticipated SE and the trigger word. The suggestion
shows the category of words and the lexicon that user can use in completing the
sentence. Although the suggestions are not the complete list of possibilities, they
are useful to help the users avoid potential syntax and semantic errors.

value <register> is <value>

<register> should be set

Partial sentence 
written

number of bits in register Acc

of

should be less than <data>

<data>

SE value (empty) 

SE count (count_of:Acc)

Suggestion generatedTriggered word Explanation 

When ‘value’ is written, system detects it
as SE value(empty) since it indicates 
value expression without any parameters
and based on rules generates suggestions

based on next word ‘should be’

suggestions are generated.

Similarly, system detects SE count and 

Fig. 10. Suggestion mechanism responds with some small set of possible categories and
lexicon that can be used to complete the sentence.

In Fig. 11, the mechanism for the detection of ambiguity is tested for the
sentence: ‘Command active to command active cannot come within 3 clocks’.
When the user writes the phrase ‘Command active to command active’, the
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understanding algorithm halts as it is unable to propagate the SE of command
active to the root of the partial sentence which is the Noun ‘command active’ in
this case. An error message is displayed and explains the incompatibility of the
SEs connected by the preposition ‘to’ and suggests the use of a connector like
‘after’ which can connect the two SEs. We have broadly classified three types
of errors that we have encountered in our framework. The first type of error
appears when we do not find at least one pair of design variable and verb in
a clause. Identifying a set of design variables and verb is crucial to splitting
the sentence into clauses and hence in the overall analysis of the sentence. The
second type of errors occurs when some words of the input sentence are left
floating in the parse tree without any head or child nodes. This error occurs due
to the unavailability of syntactic or semantic dependency rules in our grammar.
The third type of error appears when we detect semantic expressions connected
by ambiguous words which we did not anticipate while creating the SE update
rules. Overcoming these errors is a continuous process and can be achieved when
we take sentences from different users which give us the needed data to create
rules for efficient working of EASE.

Command active to command active

root
Ambiguity detection since unable to propagate 

SE of command active to root word

cannot come within 3 clocks

SE occur(occur_what:active,

SE occur(occur_what:active)

Fig. 11. Ambiguity detection is based on the compatibility check between SE’s. SE’s
in this figure could not be combined due to the ambiguous nature of preposition ‘to’
used to connect two commands.

In terms of limitations, we are currently unable to create an SVA for high level
design functions which required additional information about design variables.
For example in AMBA AXI document [18], a sentence like ‘A sequence of locked
transaction must use a single ID’ cannot be mapped to an SVA without knowing
the name of signals or storage elements involved in this assertion.

4 Conclusion

We have presented the architecture of EASE to generate formal assertions auto-
matically from design specifications. The framework was first evaluated on spec-
ifications that we wrote according to the vocabulary and grammar of EASE.
EASE was also tested on existing specifications taken from the spec documents.
A syntactic-semantic parser enabled understanding of sentences based on depen-
dency grammar. Moreover, partial semantic analysis also assisted in provid-
ing suggestions to the user in writing specifications. In the future, we would
like to add a reasoning framework which can detect inconsistencies in a list of
specifications.
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Abstract. Ontologies can represent a significant asset of domain-
specific information systems, written predominantly using the object-
oriented paradigm. However, to be able to work with ontological data
in this paradigm, a mapping must ensure transformation between the
ontology and the object world. While many software libraries provide
such a mapping, they lack standardization or formal guarantees of its
semantics. In this paper, we provide a formalism for mapping ontologies
between description logics and F-logic, a formal language for representing
structural aspects of object-oriented programming languages. This for-
malism allows to precisely specify the semantics of the object-ontological
mapping and thus ensure a predictable shape and behavior of the object
model.

Keywords: Object-ontological mapping · SROIQ · F-logic

1 Introduction

The object-oriented paradigm (OOP) has been a dominant software develop-
ment technique in the past two decades, mainly due to its ability to represent
the underlying domains in a natural and understandable way [4]. Ontologies, on
the other hand, can significantly increase the capabilities of information systems,
especially due to their formal semantics (in this paper, we consider description
logic (DL) [2] as the language backing the formal semantics of ontologies), ele-
ments with shared meaning and global identification, and inference enabled by
expressive languages. Yet, to be able to fully embrace the benefits of ontolo-
gies in OOP, a mapping is needed to transform data between the two worlds.
Many software libraries provide such functionality, however, without sufficient
guarantees as to the semantics of the mapping.

One differentiating aspect between an object model and a DL ontology1 is
the open world assumption of the latter – DL ontologies assume incomplete

1 In the sequel, we consider mapping of DL ontology specifications since the most
widespread ontology-related standards (e.g., OWL) and relevant tools are based on
the description logic formalism.
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knowledge of the domain. However, most domain-specific information systems
assume data completeness and thus, if a fact cannot be derived from the existing
data, it is considered false. To overcome this mismatch, integrity constraints can
be used to place restrictions on the knowledge base. Consider a simple vocabulary
management system which needs to keep track of authors of the vocabularies. In
description logics, this is represented by placing existential quantification on the
vocabulary records. Unfortunately, this merely ensures that some author exists
for each vocabulary. But they may remain unknown which is hardly sufficient
for ensuring integrity of data created by the system. Integrity constraints can be
used to enforce that a known author is explicitly assigned to each record.

Thus, the goal of this paper is to provide a formalism for object-ontological
mapping (OOM) moderated by integrity constraints. We chose F-logic as a vessel
for this formalism. The main reasons are that it is a logic-based language, it has
been used to describe ontologies and it is specifically designed to represent the
structural aspects of object-oriented languages. Its syntax allows to concisely
represent the most common constructs needed by object-oriented domain models
– class hierarchies, local restrictions on property value types, possible cardinality
restrictions and individual assertions.

1.1 Running Example

We shall use the following example DL ontology throughout this paper to illus-
trate the mapping. T represents the ontology schema, A are the actual data
and IC are integrity constraints placed on the ontology. All the corresponding
notions will be explained in Sect. 2.

In the example, we declare an asset and specify that it has to have an author
and it may have a last editor. This generic ontology is restricted by integrity
constraints for a system working with vocabularies, which are kinds of assets.
The constraints specify the same cardinalities of both author and last editor as
T , but require their values to be users of the system.

T = {Asset �=1author.�, Asset ��1lastEditor.�,

V ocabulary � Asset, author � editor, lastEditor � editor}
A = {User(Tom), User(Sarah), V ocabulary(MetropolitanP lan)}

IC = {V ocabulary � ∀author.User, V ocabulary �=1author.User,

V ocabulary � ∀lastEditor.User, V ocabulary ��1lastEditor.User}

Figure 1 then illustrates how the resulting integrity constraints-based application
model may look like in terms of a UML class diagram.

The paper is structured as follows: Sect. 2 provides the necessary theoretical
background, Sect. 3 presents the object-ontological mapping, while Sect. 4 intro-
duces the mapping of integrity constraints. Section 5 discusses related work and
Sect. 6 concludes the paper.
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Fig. 1. UML class diagram of a model based on the running example ICs.

2 Background

This section presents the most important notions of the description logic
SROIQ, application of integrity constraints to ontologies, and F-logic.

2.1 SROIQ

SROIQ [15] is an expressive description logic (DL), i.e., a decidable sub-
language of the first order logic (FOL), used to describe ontologies. Each SROIQ
ontology O is comprised of a terminology (TBox and RBox), which describes
the schema of the ontology, and a set of individual assertions representing actual
data (ABox)2. TBox consists of a concept hierarchy where concepts can be either
atomic or concept descriptions of the following forms: ¬C, C�D, C�D, �nR.C,
� nR.C, ∃R.Self , {a}, ∀R.C, ∃R.C, where C, D are concepts, R is a role, n
is a non-negative integer and a is an individual. RBox consists of a hierarchy
of roles and axioms stating their properties, for instance, Sym(R) denoting a
symmetric role, or Dis(R,Q) denoting disjoint roles. The schema also contains
built-in concepts �, ⊥ and a built-in universal role RU .

Individual assertions are of the form C(a), R(a, b), a = b and a 	= b, where
a and b are individuals, C is a concept and R is a role. The set NC represents
concept names, NR role names, and NI denotes the set of individual names.

The semantics of a SROIQ ontology O is given by an interpretation I =
(ΔI , ·I), where ΔI is the domain of the interpretation and ·I is the interpretation
function. This function assigns to every atomic concept A a set AI ⊆ ΔI , to
every atomic role R a binary relation RI ⊆ ΔI × ΔI and to every individual
an element of ΔI . �I is ΔI , ⊥I is the empty set ∅ and RI

U is ΔI × ΔI . I is
a model of an ontology O consisting of a TBox T , an RBox R, and an ABox
A (I |= O = T ∪ R ∪ A) if it satisfies all the axioms in O. A set of axioms
Θ logically entails an axiom θ (Θ |= θ) if and only if all models of Θ are also
models of θ. Concrete rules for interpretation of concept descriptions and axioms
are described in [15] and we omit them here for the lack of space.

2.2 Integrity Constraints

The intention of integrity constraints (ICs) in the area of application access to
DL ontologies is mostly to restrict the open-world nature of (a portion of) an
2 SROIQ allows expressing individual assertions using TBox axioms with nominals.

However, ABox assertions provide a natural, easy to read syntax which we will use
throughout this paper.
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ontology. While OWL does allow to express certain constraints, its expressive-
ness in this regard is limited. For example, a DL ontology might require that
every asset must have a unique author (Asset �= 1author.�). If an asset v
does not have one, the reasoner will infer an anonymous individual for the sake
of ontology consistency. However, a vocabulary management system requires a
stronger condition to be satisfied – every vocabulary (a special kind of asset)
must have a known author of type user. Such a constraint cannot be enforced in
OWL with standard semantics. However, there are approaches which allow this
type of restrictions. [10] introduces Minimal Knowledge and Negation as Fail-
ure logics, while [25] uses minimal Herbrand models. [29] points out that these
approaches can lead to counterintuitive results and presents an alternative solu-
tion. A more recent effort in [27] discusses the flaws of all of the aforementioned
solutions and proposes the use of DBox-based completely specified concepts and
roles. However, not even this approach is immune to debatable results. Consider
the following example:

T = {Employee � Person, F light � ∃hasPassenger.Person}
A = {Flight(c), F light(d)}

DB = {Person(a), Employee(b), hasPassenger(c, a), hasPassenger(d, b)}

We put hasPassenger, Person and Employee into the DBox, so that no unex-
pected instances are generated. However, this will cause an IC violation, because
Person(b) will be inferred for a completely specified concept Person. The app-
roach of Tao et al. [29] does not suffer from such issues, because, while it does
work only with named individuals, it does not prevent inference of types/roles.
We will be using it for this work as we consider it the most suitable for OOM.

2.3 F-logic

F-logic [1,17,18] is a formalism rooted in FOL which can be used to describe
structural aspects of object-oriented or frame-based languages. It has model-
theoretic semantics and a sound and complete proof theory. In the discussion of
F-logic syntax, we use the revised version of [1] and w.l.o.g. omit the distinction
between inheritable and non-inheritable methods. We use a restricted variant of
F-logic, which is suitable for mapping of DL, but does not contain, for instance,
methods with arbitrary arity (we use only attributes – parameterless methods).
We use sorted F-logic, so that (atomic) classes are disjoint from individuals and
methods (much like classes, individuals and properties are disjoint in DL).

F-logic Syntax. The alphabet of an F-logic language L consists of

– A set of object constructors F = C ∪R∪E ∪A, where C is a set of class names
(0-ary function symbols), R is a set of methods (0-ary function symbols), E is
a set of instances (0-ary function symbols), and A is a set of function symbols
(it essentially allows us to parameterize concept constructors, as will be seen
in Sect. 3). C, R, E , and A are mutually disjoint,
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– A set of predicate symbols P,
– An infinite set of variables V,
– Auxiliary symbols like (, ), [, ], → etc.,
– Logical connectives and quantifiers ∧, ∨, ¬, ∀, ∃.

An id-term is a first-order term composed of an object constructor and vari-
ables. A variable-free object constructor is called a ground id-term and the set
of all ground id-terms is denoted U(F). Formulas in F-logic can be either molec-
ular formulas, or complex formulas consisting of other formulas connected using
logical connectives and quantifiers. Molecular formulas can be:

1. Is-a assertions of the form A::B or o :A, where o, A, B are id-terms,
2. Object molecules of the form O[ a ‘;’ separated list of method expressions].

Where method expressions can be:

– data expressions of the form m → v, where m and v are id-terms (v is the
attribute value),

– Signature expressions of the form m ⇒ (T1, ..., Tn), where n ≥ 1 and m and
Ti are id-terms (Ti are the return types).

In short, data expressions represent attribute values, whereas signature expres-
sions represent their return types.

F-logic Semantics. Semantics of F-logic is specified using F-structures. Before
we define an F-structure, we need several additional notions.

For a pair of sets U , V , Total(U, V ) denotes the set of all total functions
from U to V . Similarly, Partial(U, V ) denotes the set of all partial functions
from U to V . We use P(U) to express the power set of U . P↑(U) is the set of all
upward-closed subsets of U . A set V ⊆ U is upward closed if for v ∈ V , u ∈ U ,
v ≺U u implies u ∈ V , where ≺U is an irreflexive partial order on U (see below).
PartialAM≺U

(U,P↑(U)) denotes the set of all partial anti-monotonic functions
from U to P↑(U). A function f is partial anti-monotonic if for vectors u,v ∈ Uk,
v ≺U u, if f(u) is defined, then f(v) is also defined and f(u) ⊆ f(v).

An F-structure is then a tuple I = 〈U,≺U ,∈U , IF , IP , I→, I⇒〉, where:

– U is the domain of I consisting of disjoint subdomains UE , UC , UR, UA,
– ≺U is an irreflexive partial order on UC∪A – the subclass relationship,3

– ∈U is a binary relationship on UE × UC∪A – instance membership in classes,
– IF : F →

⋃∞
k=0 Total(Uk, U) is a mapping which represents function symbols

from F by functions from Uk to U . For k = 0, IF (f) can be identified with
an element of U . IF maps names to their respective subdomains, e.g., class
names from C to UC ,

– IP(p) ⊆ Un for any n-ary predicate symbol p ∈ P,
– I→ : UR → Partial(UE ,P(UE)),
– I⇒ : UR → PartialAM≺U

(UC∪A∪E ,P↑(UC∪A)).

3 UC∪A is an abbreviation for UC ∪ UA.
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Remarks. The use of upward-closed sets is important for class hierarchies – it
means that along with each class, the set also contains all its superclasses. The
relationship between I→ and I⇒ is such that I⇒ defines the target (range) type
of an attribute, whereas I→ defines particular values.

A variable assignment ν is a mapping from the set of variables, V, to the
domain U , which extends to id-terms as follows: ν(d) = IF (d) if d ∈ F has
arity 0 and ν(f(..., t, ...)) = IF (f)(..., ν(t), ...). Intuitively, given an F-structure I
and a variable assignment ν, a molecule t[...] is true under I w.r.t. to ν, written
I �ν t[...], iff the object ν(t) has the properties defined by the F-molecule. For
example, I �ν (O::P ) iff ν(O) �U ν(P ). For attributes, this means that there
exist functions interpreting them and they have the right return values (types),
e.g., I �ν q[m → v] iff I→(ν(m))(ν(q)) is defined and contains ν(v). An object
molecule is a conjunction of method expressions. Precise definitions of logical
implication in F-logic can be found in [18], Sec. 5.2. Satisfaction of complex
formulas is defined in the usual first-order sense. An F-logic theory S logically
implies an axiom α (S �ν α) iff all models of S are also models of α. Since we
will be working with closed formulas only, we can omit the variable assignment
identifier. Instead, we shall denote F-logic semantic implication by |=F to dis-
tinguish it from DL entailment. We omit discussion of properties of F-structures
here due to the lack of space. Nevertheless, since these properties do affect the
formalization, the reader should refer to [18], Sec. 7, if necessary.

Queries. An F-logic query Q is a molecule. The set of answers to Q w.r.t. a set
of formulas P is the smallest set of molecules that:

– contains all instances of Q (variable assignments for all variables in Q) that
are found in the model of P ,

– is closed under |=F (see [18], Sec. 12.1.2).

3 Mapping

We begin by introducing the mapping of concept descriptions and ontological
axioms. We then show that it preserves entailment in both directions.

The mapping is inspired by [3], but supports a more expressive DL. The use
of sorted F-logic and proofs of entailment equivalence are based on [6]. While
the version provided here is for SROIQ, the latest version of F-logic supports
also datatypes [1], so it could be easily extended to SROIQ(D). Table 1 shows
mapping of concept descriptions. Similar to [3], several new function symbols
are introduced – Not, AtLeast, AtMost, HasSelf , Nom, All, Some ∈ A –
that allow us to represent SROIQ concept constructs which cannot be directly
mapped to F-logic. For instance, � nR.C does not correspond to [RR ⇒{n:∗} CC ]
because the SROIQ version admits also R-fillers of other types than C, whereas
the F-logic signature expression would require all RR-fillers to belong to CC .
Also, signature expressions cannot be used to infer the type of values of the
corresponding data expressions. The relationship between signature and data
expressions becomes relevant under the well-typing conditions. For each of the
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new function symbols, we specify a condition on the underlying F-structures to
ensure correct semantics w.r.t. their SROIQ counterparts.

Table 1. Mapping of concept descriptions. By default, all variables are universally
quantified over E . XC (XR) represents a concept (method) name, i.e., a function symbol
from C (R). AtMost is defined analogously to AtLeast and corresponds to � nR.C.

SROIQ F-logic F-logic Semantics

A AC
¬C Not(CC) I |=F x :Not(CC) iff IF (x) /∈U IF (CC)

C � D CC and DC
C � D CC or DC

� nR.C AtLeast(n,RR, CC) I |=F x :AtLeast(n,RR, CC) iff

∃y1...yn ∈ UE s.t. yi ∈ I→(IF (RR))(IF (x))

∧yi ∈U IF (CC), for ¬(yi = yj)

∃R.Self HasSelf(RR) I |=F x :HasSelf(RR) iff IF (x) ∈ I→(IF (RR))(IF (x))

{a} Nom(aE) I |=F x :Nom(aE) iff IF (x) = IF (aE)

∀R.C All(RR, CC) I |=F x :All(RR, CC) iff

∀y ∈ UE s.t. y ∈ I→(IF (RR))(IF (x)) ⇒ y ∈U IF (CC)

∃R.C Some(RR, CC) I |=F x :Some(RR, CC) iff

∃y ∈ UE s.t. y ∈ I→(IF (RR))(IF (x)) ∧ y ∈U IF (CC)

SROIQ top (bottom) concept � (⊥) is mapped to F-logic concept �C (⊥C)
for which it must hold ∀x ∈ UE , x ∈U IF (�C) (∀x ∈ UE , x /∈U IF (⊥C)).
Similarly, SROIQ universal role RU is mapped to an F-logic method MR such
that ∀x, y ∈ UE , y ∈ I→(IF (MR))(x).

TBox and RBox axiom mapping is shown in Table 2. We make use of F-logic
predicates and define conditions under which they are true.

ABox individual assertions are mapped straightforwardly, C(a) as an is-a
assertion aE : CC , R(a, b) as a data expression aE [RR → bE ] and (in)equality
a = b (a 	= b) as aE = bE (¬(aE = bE)).

Running Example. To illustrate the mapping, we revisit the running example.
A corresponding F-logic ontology looks as follows:

T F = {AssetC::Some(authorR,�C), AssetC::AtMost(1, authorR,�C),
AssetC::AtMost(1, lastEditorR,�C), V ocabulary::Asset,

subPropertyOfP(authorR, editorR),
subPropertyOfP(lastEditorR, editorR)}

AF = {TomE :UserC , SarahE :UserC ,MetropolitanP lanE :V ocabularyC}
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Table 2. Mapping of TBox and RBox axioms. RBox axioms are mapped to predicates,
for which we provide satisfaction conditions on the F-structure I. ⇒ outside F-molecules
represents regular logical implication. Variables are universally quantified over UE .

SROIQ F-logic Condition on I

C 
 D CC ::DD IF (CC) �U IF (DC)

R 
 S subPropertyOfP(RR, SR) y ∈ I→(IF (RR))(x) ⇒ y ∈ I→(IF (SR))(x)

Sym(R) SymP(RR) y ∈ I→(IF (RR))(x) ⇒ x ∈ I→(IF (SR))(y)

Asy(R) AsyP(RR) y ∈ I→(IF (RR))(x) ⇒ x /∈ I→(IF (SR))(y)

Tra(R) TraP(RR) y ∈ I→(IF (RR))(x) ∧ z ∈ I→(IF (RR))(y) ⇒
z ∈ I→(IF (RR))(x)

Ref(R) RefP(RR) x ∈ I→(IF (RR))(x)

Irr(R) IrrP(RR) x /∈ I→(IF (RR))(x)

Dis(R,S) DisP(RR, SR) y /∈ I→(IF (RR))(x) ∨ y /∈ I→(IF (SR))(x)

Now we have to show that the mapping preservers entailment. First, we
show that a formula θ is satisfiable in a SROIQ language LDL if and only if a
corresponding formula θF is satisfiable in a corresponding F-logic language LF .

Lemma 1. Let θ be a formula in LDL and θF a corresponding F-logic formula
in an F-logic language LF . Then θ is satisfiable in some interpretation I of LDL

if and only if θF is satisfiable in some F-structure I of LF .

Proof (Sketch). The lemma is proven by showing how an F-structure I can
be constructed for a SROIQ interpretation I and vice versa. The interpre-
tation correspondence is shown for RBox and TBox axioms, ABox axioms
are internalized using TBox. The full proof can be found in the technical
report [23]. ��

The lemma allows us to show that entailment is preserved by the mapping.

Theorem 1. Let Θ and ΘF be corresponding theories in LDL and LF . For any
formula θ in LDL holds:

Θ |= θ iff ΘF |=F θF ,

where |=F represents F-logic entailment.

Proof. The proof relies on Lemma 1 and the fact that entailment checking can
be reduced to satisfiability checking. ��

4 Mapping Integrity Constraints

Integrity constraint mapping between SROIQ and F-logic consists of two parts:
(1) IC semantics with a closed-world view of the data; (2) means of their valida-
tion. Integrity constraint mapping is important because, while data are mapped
using the ABox mapping shown above, the application object model is based on
ICs.
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4.1 Integrity Constraint Semantics

IC semantics allows to impose a closed-world view on a portion of the knowledge
base K affected by the integrity constraints. We follow the approach of Tao
et al. [29] and define an augmented F-structure IIC with IC semantics. This
approach has the advantage of not introducing additional syntactic constructs
and giving the IC axioms a natural, easy-to-understand meaning. The semantics
uses the notion of minimal equality models (ModME) to support a weak form
of unique name assumption. The original definition of ModME from [29] can be
carried over to F-logic as follows:

Consider a knowledge base KF and let EI be the set of equality relations
satisfied by I, i.e., EI = {〈a, b〉 | a, b ∈ E s.t. I |=F IF (a) = IF (b)}. A relation
I ≺F

= J, where I and J are F-structures, holds iff:

– ∀C ∈ C ∪ A, if I |=F a :C, then J |=F a :C,
– ∀R ∈ R, if I |=F a[R → b], then J |=F a[R → b],
– EI ⊂ EJ.

ModF
ME(KF ) is then defined as ModF

ME(KF ) = {I | I is a model of KF s.t.
�J EJ ≺F

= EI}.
The augmented F-structure with IC semantics is a tuple IIC = 〈U , ≺IC

U ,
∈IC

U , IF , IIC
P , IIC

→ , I⇒〉, where:

– ≺IC
U = {〈IF (x), IF )(y)〉 | x, y ∈ C s.t. ∀J ∈ ModF

ME(KF ),J |=F IF (x) ≺U

IF (y)}
– ∈IC

U = {〈IF (x), IF (y)〉 | x ∈ E , y ∈ C ∪ A s.t. ∀J ∈ ModF
ME(KF ),J |=F

IF (x) ∈U IF (y)}
– IF (y) ∈ IIC

→ (IF (z))(IF (x)) iff x, y ∈ E , z ∈ R ∧ ∀J ∈ ModF
ME(KF ),J |=F

IF (y) ∈ IIC
→ (IF (z))(IF (x))

– IIC
P (p) = {〈IF (y1), ..., IF (yn)〉 | yi ∈ F s.t. ∀J ∈ ModF

ME(KF ),J |=F

〈IF (y1), ..., IF (yn)〉 ∈ IIC
P (p)}, where n is the arity of p,

– And the other parts of IIC are the same as in a regular F-structure.

Based on IIC , we can now define the IC semantics of concept descriptions.
This is done in Table 3. One modification is the switch from All(RR, CC) to
a signature expression [RR ⇒ CC ]. This can be done thanks to the notion of
typing, which requires data expressions to correspond to a signature expression
declaring their types, e.g., for a signature CC [RR ⇒ DC ], typing requires d from
c :CC [RR → d] to be of type DC . Typing is an optional, non-monotonic part of
F-logic. We utilize it for IC declaration for its nice, succinct, frame-based syntax.
IC semantics of axioms should follow trivially from definitions in Table 3.

Running Example. Reviewing our running example, the biggest change is the
use of method signatures with cardinality constraints. This significantly reduces
the verbosity of the ICs and makes them arguable easier to understand.

ICF ={V ocabularyC [authorR ⇒{1:1} UserC ; lastEditorC ⇒{0:1} UserC ]}
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Table 3. Integrity constraint semantics of F-logic concept descriptions. The right hand
column specifies a condition under which an individual x is an instance of the concept
specified in the left hand column under the IC semantics.

Concept IIC |=F x :Concept iff

Not(CC) x ∈ E ∧ IF (x) /∈IC
U IF (CC)

CC and DC x ∈ E ∧ IF (x) ∈IC
U IF (CC) ∧ IF (x) ∈IC

U IF (DC)

CC or DC x ∈ E ∧ IF (x) ∈IC
U IF (CC) ∨ IF (x) ∈IC

U IF (DC)

AtLeast(n,RR, CC) x ∈ E ∧ ∃y1, ...yn ∈ E s.t. IF (yi) ∈ IIC→ (IF (RR))(IF (x))

∧IF (yi) ∈IC
U IF (CC) ∧ ¬(IF (yi) = IF (yj))

HasSelf(RR) x ∈ E ∧ IF (x) ∈ IIC→ (IF (RR))(IF (x))

Nom(aE) x ∈ E ∧ IF (x) = IF (aE)

[RR ⇒ DC ] IIC is a typed F-structure [18] (Sec. 13)

Some(RR, CC) x ∈ E ∧ ∃y ∈ E s.t. IF (y) ∈ IIC→ (IF (RR))(IF (x))

∧IF (y) ∈IC
U IF (CC)

4.2 Integrity Constraint Validation

Now that one is able to define integrity constraints for an ontology, it is necessary
to be able to validate them as well. IC semantics is a convenient construct,
but because no corresponding implementation exists, it is impractical. Thus,
integrity constraint validation in F-logic utilizes the built-in possibility to execute
queries over the underlying ontology. F-logic is a full-fledged logic programming
language, so it allows to define rules and pose queries to the knowledge base.

Since ICs represent a close-world view of the ontology, negation as failure
(NAF) is necessary to be able to represent it in the queries. Like most logic pro-
gramming languages [24], we introduce the NAF operator not, whose semantics
is KF |= not(α) iff KF 	 |= α, where α is an F-formula.

We now show how the IC axioms can be translated into F-logic queries with
not. The rationale is that if the knowledge base entails the query, there is an
IC violation. We again follow the line of reasoning of [29], which introduces
two operators for translating integrity constraints to validation queries: TC for
concepts and T for axioms. Their definitions are in Tables 4 and 5, respectively.

The universal role restriction concept comes with a little twist. Instead of rep-
resenting a standalone concept, a corresponding signature expression is attached
to the target concept, i.e., instead of mapping a GCI axiom C � ∀R.D, we have
directly CC [RR ⇒ DC ]. A validation query is created by verifying that data
expressions of all instances of CC comply with the signature expression, i.e.,
TC(x[RR ⇒ DC ]). This can be also seen in the running example below.

Running Example. Since a signature expression with cardinality constraints is
essentially a combination of multiple concept descriptions, it results in multiple
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Table 4. Integrity constraint validation transformation rules for concepts. CA is an
atomic class name.

Concept TC

TC(x :CA) x :CA

TC(x :Not(C)) not(x :TC(C))

TC(x : (C1 and C2)) x :TC(C1) ∧ x :TC(C2)

TC(x : (C1 or C2)) x :TC(C1) ∨ x :TC(C2)

TC(x :AtLeast(n,R,C))
∧

1≤i≤n x[R → yi] ∧ yi :TC(C)
∧

1≤i≤j≤n not(yi = yj)

TC(x :HasSelf(R)) x[R → x]

TC(x :Nom(a)) x = a

TC(x[R ⇒ C]) x[R → y] ⇒ y :TC(C)

TC(x :Some(R,C)) x[R → y] ∧ y :TC(C)

Table 5. Integrity constraint validation transformation rules for axioms. Ci is a con-
cept, Ri is a role and x, yi are variables.

Axiom T
T (C1 ::C2) TC(x :C1) ∧ not(TC(x :C2))

T (subPropertyOfP(R1, R2)) x[R1 → y] ∧ not(x[R2 → y])

T (SymP(R)) x[R → y] ∧ not(y[R → x])

T (AsyP(R)) x[R → y] ∧ y[R → x]

T (TraP(R)) x[R → y] ∧ y[R → z] ∧ not(x[R → z])

T (RefP(R)) not(x[R → x])

T (IrrP(R)) x[R → x]

T (DisP(R1, R2)) x[R1 → y] ∧ x[R2 → y]

validation queries. The queries below can be executed in F-logic implementa-
tions with not, e.g., FLORA-2.4 The constraints are violated by the lack of an
explicit author of MetropolitanP lan, manifested in the second query. Assert-
ing an author, e.g., MetropolitanP lanE [authorR → TomE ], would fix the IC
violation.

T = {x :V ocabulary ∧ x[authorR → y] ∧ not(y :UserC),
x :V ocabularyC ∧ not(x[authorR → y] ∧ y :UserC),

x :V ocabularyC ∧ x[authorR → {y1, y2}]
∧

1≤i≤2

yi :UserC ∧ not(y1 = y2)

x :V ocabulary ∧ x[lastEditorR → y] ∧ not(y :UserC),

x :V ocabularyC ∧ x[lastEditorR → {y1, y2}]
∧

1≤i≤2

yi :UserC ∧ not(y1 = y2)}

4 http://flora.sourceforge.net/, accessed 2019-04-10.

http://flora.sourceforge.net/
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Finally, we have to show that the validation queries faithfully represent the IC
semantics, i.e., that validation queries generated from IC axioms return results
whenever any of the IC axioms are violated by the knowledge base.

Theorem 2. Consider a knowledge base K, a set of integrity constraint axioms
IC and a set of IC validation queries Q, constructed by applying the translation
operator T on each IC axiom α in IC. If K violates any of the IC axioms in IC,
then ∃ q ∈ Q such that K |=F q.

Proof (Sketch). The proof shows for RBox and TBox GCI integrity constraint
axioms that if there is a model which violates an IC axiom, it satisfies the
corresponding IC validation query. Thus, integrity constraint checking can be
reduced to query answering in F-logic. A full proof can be again found in the
technical report [23]. ��

5 Related Work

This section reviews works concerning application access to DL ontologies, pro-
vides a comparison of approaches to mapping between description logics and
F-logic and discusses methods of closed-world reasoning in DL ontologies.

5.1 Application Access to Ontologies

There exists a number of application libraries which provide programmatic access
to ontologies. They can be roughly divided into two groups [21]:

Domain-independent APIs. Jena [8], OWL API [14], or RDF4J [5] are low-
level libraries which represent ontological data on axiom level.

Domain-specific APIs. ActiveRDF [26], Empire [13], and KOMMA [30],
allow the application to access ontological data in a frame-based manner.5

Libraries of type 1 are suitable for generic applications like ontology editors
or vocabulary explorers, but their use in domain-specific applications is cum-
bersome, because they require a lot of boilerplate code to allow dealing with
higher-level business objects. Libraries of type 2 employ some kind of object-
ontological mapping (sometimes also called object-triple mapping), so that they
map ontological concepts to programming language reference types, properties
to attributes etc. The problem with these libraries is that they often do not take
into account the open-world nature of ontologies. They do not deal with inferred
knowledge (an inferred assertion cannot be directly removed), and the mapping is
done without any formal basis. These libraries rarely support knowledge outside
the mapped object model and tend to have issues with individual identity. For
instance, given an OWL ontology O = {V ocabulary � Asset, V ocabulary(a)},
Empire, when asked to retrieve a twice - as an Asset and as a V ocabulary, will
return two different objects. The consequences of such behavior can be anywhere
between overwriting updates and deletion of an object that is being used.
5 A detailed comparison of these libraries can be found in [22].
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5.2 Mapping Between Description Logics and F-logic

The relationship between description logics and F-logic can be approached from
different directions. One, which has been investigated in [12] or [16], enriches a
DL knowledge base with (F-logic) rules to provide additional or more efficient
inferences ([12] considers logic programming languages in general).

The other direction tries to develop a mapping between the two languages.
[7] exploits the fact that DLs are a subset of the first order logic and maps
them to the FOL flavor of F-logic, i.e., concepts to unary predicates and roles
to binary predicates. On the other hand, Balaban [3] attempts to map DL con-
structs to F-logic frames. However, his article deals only with less expressive DLs
(ALC). Close to our approach is also the work of de Bruijn and Heymans [6]
which maps SHIQ to F-logic by first translating it to predicate-based FOL
and then mapping it to F-logic. Compared to Balaban, our mapping deals with
more expressive languages and considers the mapping of integrity constraints.
de Bruijn and Heymans’ work presents, in our opinion, a less readable, although
arguably more straightforward, approach to the mapping. The authors of F-logic
themselves discuss its potential as ontology-modeling language in [17,31]. In [17],
they provide an example of an ontology for describing Web services.

5.3 Closed-World Reasoning

Application of integrity constraints to DL ontologies, as discussed in Sect. 2.2, is
closely related to (local) closed-world reasoning. Significant amount of work has
been done in this area in connection with rule-based languages. They often split
the knowledge base into a DL-based OWA part and a rule-based CWA part with
stable [9,11] or well-founded [9,19] model semantics.

Another approach similar to [27] is based on grounded circumscription where
selected concepts and roles are closed and minimized, i.e., they contain only the
minimum necessary known individuals [28].

6 Conclusions

We have introduced a novel formalism for object-ontological mapping based on
the description logic SROIQ and F-logic. The formalism maps both a DL ontol-
ogy and integrity constraints which provide a closed-world view of (a portion of)
the ontology. We have shown that the mapping preserves entailment and pre-
sented means of validating the integrity constraints. As has been shown in [20],
integrity constraints represent the basis of the contract between an ontology and
an object model and are used to define the object model.

However, the presented work is just the first step. The mapping represents
a static structure of the model and the data. The next step should be defining
operations over the data in terms of the formalism. With such definitions, onto-
logical operations like data retrieval or modifications would have predictable and
well defined results.
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Another step is the actual translation of the F-logic intermediate model into
an object model in a mainstream object-oriented programming language like
Java. Finally, the operations need to be implemented according to the definitions.

Acknowledgment. This work was supported by grant No. SGS19/110/OHK3/2T/13
Efficient Vocabularies Management Using Ontologies of the Czech Technical University
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Abstract. Approximation fixpoint theory (AFT) provides an algebraic
framework for the study of fixpoints of operators on bilattices and has
found its applications in characterizing semantics for various types of
logic programs and nonmonotonic languages. In this paper, we show one
more application of this kind: the alternating fixpoint operator by Knorr
et al. [8] for the study of well-founded semantics for hybrid MKNF knowl-
edge bases is in fact an approximator of AFT in disguise, which, thanks
to the power of abstraction of AFT, characterizes not only the well-
founded semantics but also two-valued as well as three-valued semantics
for hybrid MKNF knowledge bases. Furthermore, we show an improved
approximator for these knowledge bases, of which the least stable fixpoint
is information richer than the one formulated from Knorr et al.’s con-
struction. This leads to an improved computation for the well-founded
semantics.

1 Introduction

AFT is a framework for the study of semantics of nonmonotonic logics based
on operators and their fixpoints [6]. Under this theory, the semantics of a logic
theory is defined in terms of respective stable fixpoints of an approximator on a
bilattice. The approach is highly general as it only depends on mild conditions on
approximators, and highly abstract as well since the semantics is given in terms
of an algebraic structure. As different approximators may represent different
structural intuitions, AFT provides an elegant way to treat semantics uniformly
and allows to explore alternatives by different approximators. A major advantage
is that we can understand some properties of a semantics even without a concrete
approximator. For example, the well-founded fixpoint approximates all other
fixpoints, and mathematically, this property holds for all approximators.

AFT has been applied in the study of the semantics of logic programs with
aggregates [13] and disjunctive HEX programs [1]. Vennekens et al. [17] used
AFT in a modularity study for a number of nonmonotonic logics, and by apply-
ing AFT, Strass [14] showed that many semantics from Dung’s argumentation
c© Springer Nature Switzerland AG 2019
P. Fodor et al. (Eds.): RuleML+RR 2019, LNCS 11784, pp. 113–127, 2019.
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frameworks and abstract dialectical frameworks can be obtained rather directly.
More recently, AFT has been applied to study database revision by characteriz-
ing the semantics for active integrity constraints [3].

In this paper, we add one more application to the above collection for hybrid
MKNF. Recall that hybrid MKNF (minimal knowledge and negation as failure)
was proposed by Motik and Rosati [12] for integrating nonmonotonic rules with
description logics (DLs). A hybrid MKNF knowledge base K consists of two
components, K = (O,P), where O is a DL knowledge base, which corresponds
to a decidable first-order theory, and P is a collection of MKNF rules based
on the stable model semantics. In [8], Knorr et al. formulated a three-valued
extension of MKNF and defined three-valued MKNF models where the least
one is called the well-founded MKNF model. An alternating fixpoint operator
was then formulated for the computation of the well-founded MKNF model for
(nondisjunctive) hybrid MKNF knowledge bases. In this paper, our primary goal
is to show that this alternating fixpoint operator is in fact an approximator of
AFT. Due to the abstract power of AFT, it follows that Knorr et al.’s alternat-
ing fixpoint operator provides a uniform characterization of all semantics based
on various kinds of three-valued MKNF models, including two-valued MKNF
models of [12].

As shown in [8,10], not all hybrid MKNF knowledge bases possess a well-
founded MKNF model, and in general, deciding the existence of a well-founded
MKNF model is intractable [10]. On the other hand, we also know that alternat-
ing fixpoint construction provides a tractable means to compute the well-founded
MKNF model for a subset of hybrid MKNF knowledge bases. A question then
is whether this subset can be enlarged. In this paper, we answer this question
positively by formulating a more precise approximator.

The paper is organized as follows. The next section introduces approximation
fixpoint theory; in particular, we give a relaxation of the original definition of
approximators in order to accommodate inconsistency. Section 3 gives a review of
three-valued MKNF and hybrid MKNF knowledge bases along with the under-
lying semantics. Then, in Sect. 4 we show how Knorr et al.’s alternating fixpoint
operator may be recast as an approximator and provide semantic characteri-
zations and in Sect. 5, we show an improved approximator. Section 6 is about
related work and final remarks.

2 Approximation Fixpoint Theory

Briefly, recall that a lattice 〈L,≤〉 is a partially ordered set (poset) in which every
two elements have a least upper bound (lub) and a greatest lower bound (glb).
A complete lattice is a lattice where every subset of L has a least upper bound
and a greatest lower bound. An operator O on L is monotone if for all x, y ∈ L,
x ≤ y implies O(x) ≤ O(y). The Knaster-Tarski fixpoint theory [15] tells us that
a monotone operator on a complete lattice has fixpoints and a least fixpoint
(denoted lfp(O)).

Given a complete lattice 〈L,≤〉, AFT deals with the structure 〈L2,≤p〉, which
is the induced (product) bilattice, where ≤p is called the precision order and
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defined as: for all x, y, x′, y′ ∈ L, (x, y) ≤p (x′, y′) if x ≤ x′ and y′ ≤ y. The ≤p

ordering is a complete lattice ordering on L2.
We define two projection functions for pairs: (x, y)1 = x and (x, y)2 = y.

A pair (x, y) ∈ L2 is consistent if x ≤ y, inconsistent otherwise, and exact if
x = y. A consistent pair (x, y) in L defines an interval, denoted [x, y], which
is identified by the set {z | x ≤ z ≤ y}. We therefore also use an interval to
denote the corresponding set. A consistent pair (x, y) in L can be seen as an
approximation of every z ∈ L such that z ∈ [x, y]. In this sense, the precision
order ≤p corresponds to the precision of approximation, while an exact pair
approximates the only element in it. We denote by Lc the set of consistent pairs
in L2.

AFT studies fixpoints of operators O on L through operators approximating
O. An approximator is a ≤p-monotone operator on L2. We denote by Appx(L2)
the set of all approximators on L2. An approximator for O has the additional
property that A(x, x) = (O(x), O(x)), for all x ∈ L. Since (L2,≤p) is a com-
plete lattice, an approximator A has a least fixpoint, which is called Kripke-
Kleene fixpoint of A. Our main interest in this paper is in stable fixpoints of A,
which are the fixpoints of a stable revision operator StA : L2 → L2, defined
as: StA(u, v) = (lfp(A(·, v)1), lfp(A(u, ·)2)), where A(·, v)1 and A(u, ·)2 are the
component operators on L.

AFT was first developed for consistent approximations, where an approxi-
mator is consistent if it maps consistent pairs to consistent pairs and has the
property that A(x, x)1 = A(x, x)2, for all x ∈ L. Let us denote by Appx(Lc) the
set of all consistent approximators. Then, the notion of approximator is gener-
alized to symmetric approximators, which are ≤p-monotone operators A on L2

such that A(x, y)1 = A(y, x)2, for all x, y ∈ L. Note that a symmetric approxi-
mator is defined for all pairs in L2. It is easy to show that an operator A being
symmetric implies that A(x, x) yields an exact pair, for all x ∈ L. As remarked
in [6], this generalization is motivated by operators occurring in knowledge rep-
resentation that are symmetric. The authors also point out that it is possible
to develop a generalization of the theory without the symmetry assumption.
Apparently, such a generalization needs to relax the definition of “approximator
for O”, and let us define: A : L2 → L2 is an approximator for O if A is ≤p-
monotone and for all x ∈ L, if A(x, x) is consistent then A(x, x) = (O(x), O(x)).
That is, we make the notion of approximation for O partial - A(x, x) captures
O only when A(x, x) is consistent.1

3 Hybrid MKNF Knowledge Bases

3.1 Minimal Knowledge and Negation as Failure

The logic of minimal knowledge and negation as failure (MKNF) [9] is based on
a first-order language L (possibly with equality ≈) with two modal operators, K,
1 We can in addition require that an approximator A be consistent for at least one

exact pair. This will eliminate the undesired situation that if a ≤p-monotone operator
A is inconsistent on each exact pair, then it approximates every operator O, trivially.
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for minimal knowledge, and not, for negation as failure. In MKNF, first-order
atom is defined as usual and MKNF formulas are first-order formulas with K
and not. An MKNF formula is ground if it contains no variables. Given a first-
order formula ϕ, Kϕ is called a (modal) K-atom and notϕ called a (modal)
not-atom.

A first-order interpretation is understood as in first-order logic. The universe
of a first-order interpretation I is denoted by |I|. A first-order structure is a
nonempty set M of first-order interpretations with the universe |I| for some
fixed I ∈ M . An MKNF structure is a triple (I,M,N), where M and N are sets
of first-order interpretations with the universe |I|. We define the satisfaction
relation |= between an MKNF structure (I,M,N) and an MKNF formula F .
Then we extend the language L by object constants representing all elements of
|I| and call these constants names:

(I,M,N) |= A (A is a first-order atom) if A is true in I,
(I,M,N) |= ¬F if (I,M,N) �|= F,
(I,M,N) |= F ∧ G if (I,M,N) |= F and (I,M,N) |= G,
(I,M,N) |= ∃xF if (I,M,N) |= F [α/x] for some name α,
(I,M,N) |= KF if (J,M,N) |= F for all J ∈ M,
(I,M,N) |= notF if (J,M,N) �|= F for some J ∈ N.

The symbols �, ⊥, ∨, ∀, and ⊃ are interpreted as usual.
An MKNF interpretation M is a nonempty set of first-order interpretations

over the universe |I| for some I ∈ M . In MKNF, a notion called standard name
assumption is imposed on top of MKNF to avoid unintended behaviors [12].
This requires an interpretation to be a Herbrand interpretation with a countably
infinite number of additional constants, and the predicate ≈ to be a congruence
relation. Intuitively, given the assumption that each individual in the universe
of an interpretation is denoted by a constant and the countability it implies, the
standard name assumption becomes a convenient normalized representation of
interpretations since each interpretation is isomorphic to the quotient (w.r.t. ≈)
of a Herbrand interpretation and each quotient of a Herbrand interpretation is
an interpretation.

An MKNF interpretation M satisfies an MKNF formula F , written
M |=MKNF F , if (I,M,M) |= F for each I ∈ M .

Following [8], a three-valued MKNF structure, (I,M,N ), consists of a first-
order interpretation, I, and two pairs, M = 〈M,M1〉 and N = 〈N,N1〉, of sets of
first-order interpretations, where M1 ⊆ M and N1 ⊆ N . From 〈M,M1〉, we can
identify three truth values for modal K-atoms in the following way: Kϕ is true
w.r.t. 〈M,M1〉 if ϕ is true in all interpretations in M ; it is false if it is false in at
least one interpretation in M1; and it is undefined otherwise. For not-atoms, a
symmetric treatment w.r.t. 〈N,N1〉 is adopted. Let {t,u, f} be the set of truth
values true, undefined, and false with the order f < u < t, and let the operator
max (resp. min) choose the greatest (resp. the least) element with respect to
this ordering. Table 1 shows three-valued evaluation of MKNF formulas (where
F [t/x] denotes the formula obtained from F by replacing all free occurrences of
the variable x with term t).
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A (three-valued) MKNF interpretation pair (M,N) consists of two MKNF
interpretations, M and N , with ∅ ⊂ N ⊆ M . An MKNF interpretation pair
satisfies an MKNF formula ϕ, denoted (M,N) |= ϕ, iff (I, 〈M,N〉, 〈M,N〉)(ϕ) =
t for each I ∈ M . If M = N , the MKNF interpretation pair is called total. If
there exists an MKNF interpretation pair satisfying a formula ϕ, then ϕ is said
to be consistent; otherwise ϕ is inconsistent. If ϕ is a first-order formula, we also
say that ϕ is satisfiable when ϕ is consistent.

Table 1. Evaluation in three-valued MKNF structure

(I, M, N )(P (t1, . . . , tn)) =

{
t iff (tI

1, . . . , t
I
n) ∈ P I

f iff (tI
1, . . . , t

I
n) �∈ P I

(I, M, N )(¬ϕ) =

⎧⎪⎨
⎪⎩
t iff (I, M, N )(ϕ) = f

u iff (I, M, N )(ϕ) = u

f iff (I, M, N )(ϕ) = t

(I, M, N )(ϕ1 ∧ ϕ2) = min{(I, M, N )(ϕ1), (I, M, N )(ϕ2)}

(I, M, N )(ϕ1 ⊃ ϕ2) =

{
t iff (I, M, N )(ϕ2) ≥ (I, M, N )(ϕ1)

f otherwise

(I, M, N )(∃x : ϕ) = max{(I, M, N )(ϕ[nα/x])|α ∈ Δ}

(I, M, N )(Kϕ) =

⎧⎪⎨
⎪⎩
t iff (J, 〈M, M1〉, N )(ϕ) = t for all J ∈ M

f iff (J, 〈M, M1〉, N )(ϕ) = f for some J ∈ M1

u otherwise

(I, M, N )(notϕ) =

⎧⎪⎨
⎪⎩
t iff (J, M, 〈N, N1〉)(ϕ) = f for some J ∈ N1

f iff (J, M, 〈N, N1〉)(ϕ) = t for all J ∈ N

u otherwise

An MKNF interpretation pair (M,N) is a three-valued MKNF model of an
MKNF formula ϕ if (M,N) |=ϕ and for all MKNF interpretation pairs (M ′, N ′)
with M ⊆ M ′ and N ⊆ N ′, where at least one of the inclusions is proper and
M ′ = N ′ if M = N , ∃I ′ ∈ M ′ such that (I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) �=t. As shown
by Knorr et al. [8], an MKNF interpretation pair (M,M) that is a three-valued
MKNF model of ϕ corresponds to a two-valued MKNF model M defined in [12].

MKNF interpretation pairs can be compared by an order of knowledge. Let
(M1, N1) and (M2, N2) be MKNF interpretation pairs. (M1, N1) �k (M2, N2)
iff M1 ⊆ M2 and N1 ⊇ N2. A three-valued MKNF model (M,N) of an MKNF
formula ϕ is called a well-founded MKNF model of ϕ if (M1, N1) �k (M,N) for
all three-valued MKNF models (M1, N1) of ϕ.

3.2 Hybrid MKNF Knowledge Bases

The critical issue of how to combine open and closed world reasoning is addressed
in [12] by seamlessly integrating rules with DLs. A hybrid MKNF knowledge base
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K = (O,P) consists of a decidable description logic (DL) knowledge base O, trans-
latable into first-order logic and a rule base P, which is a finite set of rules with
modal atoms. The original work on hybrid MKNF knowledge bases [11,12] defines
a two-valued semantics for such knowledge bases with disjunctive rules. In this
paper, following [8], our focus is on nondisjunctive rules as presented in [11].

An MKNF rule (or simply a rule) r is of the form: KH ← KA1, . . . ,
KAm,notB1, . . . ,notBn, where H,Ai, and Bj are function-free first-order
atoms. Given a rule r, we let hd(r) = KH, bd+(r) = {KAi | i = 1..m}, and
bd−(r) = {Bi | i = 1..n}. A rule is positive if it contains no not-atoms. When all
rules in P are positive, K = (O,P) is called positive.

For the interpretation of a hybrid MKNF knowledge base K = (O,P) in
the logic of MKNF, a transformation π(K) = Kπ(O) ∧ π(P) is performed to
transform O into a first-order formula and rules r ∈ P into a conjunction of
first-order implications to make each of them coincide syntactically with an
MKNF formula. More precisely,

π(r) = ∀x : (KH ⊂ KA1 ∧ . . . ∧ KAm ∧ notB1 ∧ . . . ∧ notBn)
π(P) =

∧
r∈P π(r), π(K) = Kπ(O) ∧ π(P)

where x is the vector of free variables in r.
Under the additional assumption of DL-safety a first-order rule base is seman-

tically equivalent to a finite ground rule base, in terms of two-valued MKNF
models [12] as well as in terms of three-valued MKNF models [8]; hence decid-
ability is guaranteed. In this paper, we assume that a given rule base is always
DL-safe, and for convenience, when we write P we assume it is already grounded.

Given a hybrid MKNF knowledge base K = (O,P), let KA(K) be the set of
all (ground) K-atoms Kφ such that either Kφ occurs in P or notφ occurs in
P. We generalize the notion of partition [8] from consistent pairs to all pairs: A
partition of KA(K) is a pair (T, P ) such that T, P ⊆ KA(K). A partition of the
form (E,E) is said to be exact.

Intuitively, given a partition (T, P ), T contains true modal K-atoms and P
contains possibly true modal K-atoms. Thus, the complement of P is the set of
false modal K-atoms and P\T the set of undefined modal K-atoms. If in addition
we have the condition T ⊆ P , then these three sets are pairwise non-overlapping,
hence (T, P ) is consistent

Partitions are closely related to MKNF interpretation pairs. It is shown in
[8,10] that an MKNF interpretation pair (M,N) induces a consistent partition
(T, P ) such that

1. Kξ ∈ T iff ∀I ∈ M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = t,
2. Kξ �∈ P iff ∀I ∈ M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = f , and
3. Kξ ∈ P\T iff ∀I ∈ M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = u.

Given a set of first-order atoms S, we define the corresponding set of K-atoms
as: K(S) = {Kφ |φ ∈ S}.

Let S be a subset of KA(K). The objective knowledge of S relevant to K is
the set of first-order formulas OBO,S = {π(O)} ∪ {ξ | Kξ ∈ S}.
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Example 1. Consider a hybrid MKNF knowledge base K = (O,P), where O =
a ∧ (b ⊃ c) ∧ ¬f and P is

Kb ← Ka. Kd ← Kc,not e. Ke ← not d. Kf ← not b.

Reasoning with K can be seen as follows: Since KO implies Ka, by the first
rule we derive Kb; then due to b ⊃ c in O we derive Kc. Thus its occurrence
in the body of the second rule is true and can be ignored. For the K-atoms Kd
and Ke appearing in the two rules in the middle, without preferring one over
the other, both can be undefined. Because both not b and Kf are false (the
latter is due to ¬f in O), the last rule is also satisfied. Now consider an MKNF
interpretation pair (M,N) = ({I | I |= O ∧ b}, {I | I |= O ∧ b ∧ d ∧ e}), which
corresponds to partition (T, P ) = ({Ka,Kb,Kc}, {Ka,Kb,Kc,Kd,Ke}). For
instance, we have that, for all I ∈ M , (I, 〈M,N〉, 〈M,N〉)(Ka) = t and
(I, 〈M,N〉, 〈M,N〉)(Kd) = u. The interpretation pair (M,N) is a three-valued
MKNF model of K; in fact, it is the well-founded MKNF model of K. ��

It is known that in general the well-founded MKNF model may not exist.

Example 2 [10]. Let us consider K = (O,P), where O = (a ⊃ h)∧ (b ⊃ ¬h) and
P consists of

Ka ← not b. Kb ← not a

Consider two partitions, ({Ka}, {Ka}) and ({Kb}, {Kb}). The corresponding
MKNF interpretation pairs turn out to be two-valued MKNF models of K. For
example, for the former the interpretation pair is (M,M), where M = {{a, h}}.
Since these two-valued MKNF models are not comparable w.r.t. undefinedness
and there are no other three-valued MKNF models of K, it follows that no well-
founded MKNF model for K exists. ��

4 Approximators for Hybrid MKNF KBs

In this section, we first show that the alternating fixpoint operator defined by
Knorr et al. [8] can be recast as an approximator of AFT, and therefore can
be applied to characterize all three-valued MKNF models automatically and
naturally. We then study an important, technical issue that arises from treat-
ing AFT for the entire domain L2 for arbitrary approximators (which may be
non-symmetric). Finally in Subsect. 5, we formulate a richer approximator for
hybrid MKNF knowledge bases and show that it can be applied to improve the
computation of well-founded MKNF model.

Throughout this section, the underlying lattice is (2KA(K),⊆) and the induced
bilattice is (2KA(K))2.

We define an operator on 2KA(K), which is to be approximated by our approx-
imators introduced shortly.
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Definition 1. Let K = (O,P) be a hybrid MKNF knowledge base. Define an
operator TK on 2KA(K) as follows:

TK(I) = {Ka ∈ KA(K) | OBO,I |= a}∪
{hd(r) | r ∈ P : bd+(r) ⊆ I, K(bd−(r)) ∩ I = ∅}

If K is a positive hybrid MKNF knowledge base, the operator TK is monotone
and has a least fixpoint. If in addition O is an empty DL knowledge base, then
TK is essentially the familiar immediate consequence operator of [16].

Knorr et al. [8] defined two kinds of transforms with consistent partitions.
For the purpose of this paper, let us allow arbitrary partitions.

Definition 2. Let K = (O,P) be a hybrid MKNF knowledge base and S ∈
2KA(K). Define two forms of reduct:

K/S = {Ka ← bd+(r) | r ∈ P : hd(r) = Ka,K(bd−(r)) ⊆ KA(K) \ S}
K//S = {Ka ← bd+(r) | r ∈ P : hd(r) = Ka,K(bd−(r)) ⊆ KA(K) \ S,

OBO,S �|= ¬a}

We call K/S MKNF transform and K//S MKNF-coherent transform.

Since in both cases of K/S and K//S the resulting rule base is positive, a
least fixpoint in each case exists. Let us define ΓK(S) = lfp(TK/S) and Γ ′

K(S) =
lfp(TK//S). Then, we can construct two sequences Pi and Ni,

P0 = ∅, . . . ,Pn+1 = ΓK(Nn), . . . ,Pω =
⋃
Pi

N0 = KA(K), . . . ,Nn+1 = Γ ′
K(Pn), . . . ,Nω =

⋂
Ni

Now let us place the construction above under AFT by formulating an
approximator.

Definition 3. Let K = (O,P) be a hybrid MKNF knowledge base. Define an
operator ΦK on (2KA(K))2 as follows: ΦK(T, P ) = (ΦK(T, P )1, ΦK(T, P )2), where

ΦK(T, P )1 = {Ka ∈ KA(K) | OBO,T |= a}∪
{hd(r) | r ∈ P : bd+(r) ⊆ T, K(bd−(r)) ∩ P = ∅}

ΦK(T, P )2 = {Ka ∈ KA(K) | OBO,P |= a} ∪
{hd(r) | r ∈ P : hd(r) = Ka, OBO,T �|= ¬a, bd+(r) ⊆ P,

K(bd−(r)) ∩ T = ∅}

Intuitively, given a pair (T, P ), the operator ΦK(·, P )1, with P fixed, com-
putes true K-atoms w.r.t. (T, P ) and operator ΦK(T, ·)2, with T fixed, computes
the K-atoms that are possibly true w.r.t. (T, P ).

Notice that the least fixpoint of the operator ΦK(·, P )1 corresponds to an
element in the sequence Pi, i.e., if P in ΦK(·, P )1 is Nn, then lfp(ΦK(·, P )1) is
Pn+1 = ΓK(Nn). Similarly for operator ΦK(T, ·)2. In this way, the ΦK operator
can be seen as a reformulation of the corresponding alternating fixpoint opera-
tor; namely, ΦK(·, P )1 simulates operator TK/P and ΦK(T, ·)2 simulates operator
TK//T .
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Proposition 1. ΦK is an approximator for TK.

Proof. Let (T1, P1) ⊆p (T2, P2). From T1 ⊆ T2 and P2 ⊆ P1, it is easy to
verify that ΦK(T1, P1)1 ⊆ ΦK(T2, P2)1 and ΦK(T2, P2)2 ⊆ ΦK(T1, P1)2 (the lat-
ter is slightly more involved but still routine to confirm). Thus ΦK(T1, P1) ⊆p

ΦK(T2, P2). Furthermore, ΦK approximates TK since whenever ΦK(I, I) is con-
sistent (even when OBO,I is unsatisfiable), ΦK(I, I) = (TK(I), TK(I)). ��

Next, we prove a property. Let us first explain the motivation. By going
beyond symmetric approximators, one subtlety arises. Recall that for any
approximator A ∈ Appx(Lc) and any (u, v) ∈ Lc, the component operator
A(u, ·)2 is internal in [u,�], so that the least fixpoint is computed from the
least element u in this domain. But when we expand the domain from [u,�]
to L, we may compute with a different least fixpoint, if the operator A is not
symmetric.

Example 3. Let L = {⊥,�} and A an identity function everywhere on L2

except that A(⊥,�) = A(⊥,⊥) = (�,�). Clearly, when restricted to Lc,
A ∈ Appx(Lc), i.e., it is ≤p-monotone, maps consistent pairs to consistent pairs,
and approximates, e.g., the identify operator O on L. But it is not symmet-
ric since A(⊥,�)1 = � and A(�,⊥)2 = ⊥. Since A ∈ Appx(Lc), accord-
ing to consistent AFT [6], A(�, ·)2 is defined on [�,�]. Since StA(�,�) =
(lfp(A(·,�)1), lfp(A(�, ·)2) = (�,�), it follows that (�,�) is a stable fixpoint.
Now consider a closely related approximator A′ ∈ Appx(L2), where for all x, y ∈
L, A′(·, y)1 = A(·, y)1 and A′(x, ·) behaves like A(x, ·) everywhere except that it
is defined on L. In this case, since StA′(�,�) = (lfp(A′(·,�)1), lfp(A′(�, ·)2) =
(�,⊥), (�,�) is not a stable fixpoint of A′. This example is not a surprise since
in general different domains may well lead to different least fixpoints.

Now consider another approximator A′′ ∈ Appx(L2) such that A′′ maps all
pairs to (�,�). It can be seen that A′′ is ≤p-monotone and (�,�) is a stable
fixpoint of A′′ in both cases where A′′(�, ·)2 is defined either as an operator on
[�,�] or an operator on L. That is, the least fixpoint of A′′(�, ·)2 is coincidental
on both domains.

As alluded to earlier, Denecker et al. [6] point out that it is possible to develop
a generalization of AFT to L2 without the symmetry assumption. We remarked
that we first need to relax the definition of approximator for exact pairs. The
above example indicates a second issue that needs to be addressed. To argue
why such a generalization is not entirely trivial, let us digress briefly and discuss
how such a generalization may be established.

In [7], a pair (u, v) ∈ L2 is said to be A-contracting if (u, v) ≤p A(u, v).2 A
pair (u, v) ∈ L2 is A-prudent if u ≤ lfp(A(·, v)1). Let us denote by Lrp the set of
A-contracting and A-prudent pairs in L2. We then need to show that, under the
generalized definition of approximator (cf. Sect. 2), 〈Lrp,≤p〉 is a chain-complete
poset that contains the least element (⊥,�).

2 In [6], A-contracting pairs were called A-reliable.
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Briefly, a chain in a poset 〈L,≤〉 is a linearly ordered subset of L. A poset
〈L,≤〉 is chain-complete if it contains a least element ⊥ and if every chain C ⊆ L
has a least upper bound in L. A complete lattice is chain-complete, but the con-
verse does not hold in general. However, the Knaster-Tarski fixpoint theory gen-
eralizes to chain-complete posets [6]: a monotone operator on a chain-complete
poset possesses fixpoints and a least fixpoin.

We can show the following theorem.

Theorem 1. Let (L,≤) be a complete lattice and A an approximator on L2.
Then, 〈Lrp,≤p〉 is a chain-complete poset that contains the least element (⊥,�).

Now back to Example 3. For operator A, since A(⊥,�) = A(⊥,⊥) = (�,�),
A(�,⊥) = (�,⊥), A(�,�) = (�,�), the pairs in Lrp are (⊥,�), (�,⊥) and
(�,�). Similarly for A′. The behaviors of A and A′ still hold, i.e., A(�, ·)2
and A′(�, ·)2 have different least fixpoints, which are computed from different
least elements of their respective domains. This shows that a straightforward
generalization of AFT to L2 may not even preserve consistent stable fixpoints.

Next, we show that this abnormal behavior does not happen to operator ΦK.

Definition 4. An approximator A ∈ Appx(L2) is said to be strong, if for each
consistent stable fixpoint (u, v) of A, lfp(A(u, ·)2), where A(u, ·) is defined on
L, coincides with lfp(A′(u, ·)2) where A′(u, ·)2 is the same operator as A(u, ·)2
except that it is defined on [u,�].

In other words, a strong approximator preserves consistent stable fixpoints.
That is, for any A ∈ Appx(L2), if Ac, i.e., A restricted to Lc, happens to be
a consistent approximator, then we want all stable fixpoints of Ac to be stable
fixpoints of A.

Proposition 2. ΦK is a strong approximator for TK.

Proof. Let K = (O,P). To show that ΦK is a strong approximator, assume (T, P )
is a consistent stable fixpoint of ΦK such that T ⊆ ΦK(T, T )2. It is not difficult
to show that ΦK(T, ·)2 is internal in [T,KA(K)]. To be a strong approxima-
tor, ΦK(T, ·)2 must be coincidental on both domains [T,KA(K)] and [∅,KA(K)]],
which we show next. To be more precise, let us denote by Φ′

K(T, ·)2 the same
operator as ΦK(T, ·)2 except that it is defined on the interval [T,KA(K)]], i.e.,
ΦK(T, ·)2 is a monotone operator on [T,KA(K)]]. Let P ′ = lfp(Φ′

K(T, ·)2). Since
(T, P ) is a consistent stable fixpoint of ΦK, i.e., T ⊆ P = lfp(ΦK(T, ·)2), at
some point of iterated construction, T is already included in some intermediate
set in the construction of lfp(ΦK(T, ·)2). Then, by an induction on the parallel
construction of the sequence generated from lfp(Φ′

K(T, ·)2) starting at T and the
sequence from lfp(ΦK(T, ·)2) starting at a point where T is already included, we
can infer P ′ ⊆ P . For the other direction, it is easy to verify by definition that
every intermediate set constructed for lfp(Φ′

K(T, ·)2) is a subset of P ′, and hence
P ⊆ P ′. Therefore, P ′ = P , and ΦK satisfies the condition of being strong. ��

Stable fixpoints of operator ΦK can be related to three-valued MKNF models
in the following way.
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Theorem 2. Let K = (O,P) be a hybrid MKNF knowledge base and (T, P ) be
a partition. Let further (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }). Then,
(M,N) is a three-valued MKNF model of K iff (T, P ) is a consistent stable
fixpoint of ΦK and OBO,lfp(ΦK(·,T )1) is satisfiable.

Note that in the formulation of approximator ΦK, stable fixpoints are parti-
tions that provide candidate interpretation pairs for three-valued MKNF models.
That the extra condition OBO,lfp(ΦK(·,T )1) is satisfiable means that, even if we
make all non-true K-atoms false for the construction of the least fixpoint, it still
does not cause contradiction with DL knowledge base O. This provides a key
insight in the semantics of hybrid MKNF knowledge bases.

Notice also that this theorem provides a naive method, based on guess-and-
verify, to compute three-valued MKNF models of a given hybrid MKNF knowl-
edge base K - guess a consistent partition (T, P ) of KA(K) and check whether
(T, P ) is a stable fixpoint of ΦK and whether OBO,lfp(ΦK(·,T )1) is satisfiable.
Observe that the complexity of this checking is polynomial if the underlying
DL is polynomial. Indeed, this theorem presents another piece of evidence that
the data complexity of determining whether a three-valued MKNF model exists
is NP-hard even when the underlying DL is polynomial. The claim was first
proved in [10] by relating three-valued MKNF models with a notion called stable
partition.

Proof (Sketch). (⇐) Let (T, P ) be a consistent stable fixpoint of ΦK and
OBO,lfp(ΦK(·,T )1) satisfiable. As a consistent stable fixpoint of ΦK, we have T ⊆ P
and (T, P ) = (lfp(ΦK(·, P )1), lfp(ΦK(T, ·)2)). Since OBO,lfp(ΦK(·,T )1) is satisfiable
and lfp(ΦK(·, T )1) ⊇ T , OBO,T is satisfiable. Next, by the definition of opera-
tor ΦK, it can be verified that lfp(ΦK(·, T )1) and lfp(ΦK(T, ·)2) coincide when
OBO,lfp(ΦK(·,T )1) is satisfiable, therefore OBO,P is also satisfiable. It follows that
the pair

(M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P })

is an MKNF interpretation pair because ∅ ⊂ N ⊆ M . Next, it is easy to show
that there is a correspondence between (T, P ) and (M,N): Kξ ∈ T iff Kξ
evaluates to t (w.r.t (M,N)); Kξ ∈ P and Kξ �∈ T iff Kξ evaluates to u;
otherwise, Kξ evaluates to f .

Then, we show that (M,N) is a three-valued MKNF model. Since OBO,T =
{π(O)} ∪ {ξ | Kξ ∈ T} and OBO,P = {π(O)} ∪ {ξ | Kξ ∈ P}, it follows
(M,N) |= π(O). For each r ∈ P with the form π(r) and Kξ = hd(r), by
definition of ΦK(T, P )1, the fixpoint construction confirms that if body+(r) ⊆ T
and K(bd−(r)) ∩ P = ∅, then Kξ ∈ T ; if body+(r) ⊆ P , K(bd−(r)) ∩ T = ∅ and
OBO,T �|= ¬ξ then Kξ ∈ P , therefore (M,N) |= π(r). As this is applied to all
rules in P, we have (M,N) |= π(K).

Next, if (M,N) is not a three-valued model of K, then there exists pair
(M ′, N ′), with M ⊆ M ′ and N ⊆ N ′ where at least one inclusion is proper such
that

(I, 〈M ′, N ′〉, 〈M,N〉)(π(O) ∧ π(P)) = t
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for any I ∈ M ′. By Definition 15 of Knorr et al. [8], there is a partition (T ′, P ′)
induced by (M ′, N ′), surely T ′ ⊆ T and P ′ ⊆ P , where at least one inclusion
is proper. If we assume T ′ � T , there exists Ka such that Ka ∈ T while
Ka �∈ T ′. Then either OBO,T |= a or ∃r with hd(r) = Ka such that bd+(r) ⊆
T, body−(r) ∩ P = ∅ by definition of ΦK(T, P )1, in either case, one can check
that (M ′, N ′) �|= π(K). Similarly, if we assume P ′ � P , (M ′, N ′) �|= π(K). That
leads to a contradiction, and thus (M,N) is a three-valued MKNF model.

(⇒) First, as shown by Knorr et al. [8], given an MKNF interpretation
(M ′, N ′), there exists a partition (X,Y ) induced by (M ′, N ′), in the sense that
(M ′, N ′) = ({I | I |= OBO,X}, {I | I |= OBO,Y }), such that Kξ ∈ X if Kξ evalu-
ates to t w.r.t. (M ′, N ′); Kξ ∈ Y if Kξ evaluates to u w.r.t. (M ′, N ′); otherwise,
Kξ evaluates to f w.r.t. (M ′, N ′).

When (M,N) is a three-valued model, the partition induced by (M,N) is just
(T, P ) such that (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }). Since (M,N)
is a three-valued model, (T, P ) is consistent. OBO,lfp(ΦK(·,T )1) should also be
satisfiable, as otherwise we derive M = N = ∅ by definition and thus (M,N)
is not even an interpretation pair. We now show that (T, P ) is a stable fixpoint
of ΦK, i.e., T = lfp(ΦK(·, P )1) and P = lfp(ΦK(T, ·)2). First, we show that
(T, P ) is a fixpoint of ΦK. By definition, we have T ⊆ ΦK(T, P )1. Now assume
T ⊂ ΦK(T, P )1, then there exists a rule r with hd(r) = Ka such that Ka can only
be derived from rules and Ka �∈ T , then Ka ∈ P\T , in this way (M,N) �|= π(r),
contradicting to the three-valued model condition and thus T = ΦK(T, P )1.
Similarly, we can show P = ΦK(T, P )2. If (T, P ) is not a stable fixpoint, by
constructing a pair (T ′, P ) such that T ′ = lfp(ΦK(·, P )1), with T ′ ⊂ T , an MKNF
interpretation pair (M ′, N) can be constructed with M ′ = {I | I |= OBO,T ′} and
M ⊂ M ′, it can be checked that (I, 〈M ′, N〉, 〈M,N〉)(π(K)) = t, for any I ∈ M ′,
in this way (M,N) is not a three-valued model, a contradiction and therefore
T = lfp(ΦK(·, P )1). Similarly, P = lfp(ΦK(T, ·)2). Therefore, (T, P ) is a stable
fixpoint of ΦK, and a consistent one. ��
Example 4. We illustrate that inconsistent stable fixpoints are now possible.
E.g., with K1 = ({¬a}, {a ← not b.}), we have the following sequence of stable
revisions reaching the unique stable fixpoint of ΦK1 :

(∅, {Ka,Kb}) ⇒ (∅, ∅) ⇒ ({Ka,Kb}, ∅)

As another example, let K2 = ({d},P) where P = {Ka ← Kd,not b., Kb ←
not a.}. There are four stable fixpoints, among which ({Kd}, {Ka,Kb,Kd})
is the least and ({Kd,Ka,Kb}, {Kd}) is an inconsistent one. Note that an
inconsistent stable fixpoint may contain consistent information - this case in
Kd.

5 A Richer Approximator for the Well-Founded
Semantics

A question arises whether richer approximators for MKNF knowledge bases exist.
For any two approximators A and B on L2, A is richer than B (or more precise
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than B, in the terminology of [6]), denoted B ≤p A, if for all (x, y) ∈ L2,
B(x, y) ≤p A(x, y).

There is a practical motivation for the question. Let (x, y) and (x′, y′) be
the least fixpoints of B and A respectively. That A is richer than B means
(x, y) ≤p (x′, y′). If A is strictly richer than B, and if (x′, y′) indeed corresponds
to the well-founded MKNF model, then (x, y) cannot possibly correspond to the
well-founded MKNF model. In this case, while (x′, y′) is iteratively computed for
A, it can only be discovered for B by guess-and-verify, as indicated in Theorem
2. We now define such a richer approximator.

Definition 5. Let K = (O,P) be a hybrid MKNF knowledge base. Define oper-
ator ΨK on(2KA(K))2 as: Given any pair (T, P ) ∈ (2KA(K))2, we define

ΨK(T, P ) = (ΦK(T, P )1, ΨK(T, P )2)

where ΨK(T, P )2 is defined by the following set

{Ka ∈ KA(K) | OBO,P |= a} ∪
{hd(r) | r ∈ P : hd(r) = Ka, OBO,T �|= ¬a, bd+(r) ⊆ P, K(bd−(r)) ∩ T = ∅,

� ∃r′ ∈ P : hd(r′) = Kb,OBO,T |= ¬b, bd+(r′) \ {Ka} ⊆ T,K(bd−(r′)) ∩ P = ∅}

Operator ΨK differs from ΦK in the second component operator, with an
extra condition for deriving hd(r) = Ka (the last line in the definition above),
which says that if for some rule r′, whose objective head is already false and
whose body excluding Ka is already true, then, since the rule must be satisfied,
Ka must be false and thus should not be derived as possibly true. Notice that
this is like embedding unit propagation into an approximator.

Proposition 3. ΨK is a strong approximator of TK, and ΦK ≤p ΨK.

Example 5. Let K = ({¬a},P), where P is

Ka ← Kb,not d. Kb ← not c. Kc ← not b.

Consider operator ΦK first. The least stable fixpoint of ΦK is (T, P ) =
(∅, {Kb,Kc}). Since OBO,lfp(ΦK(·,T )1) is unsatisfiable, according to Theorem 2,
(T, P ) does not correspond to a three-valued MKNF model. On the hand, the
least stable fixpoint of ΨK is the exact partition ({Kc}, {Kc}), which corresponds
to the well-founded MKNF model of K, (M,M), where M = {{c}}.

Of course, the same idea can be applied to define an improved alternat-
ing fixpoint construction without placing it in the context of AFT. But a
major advantage of the latter is that, due to the abstract power of AFT, the
enhanced approximator characterizes all three-valued MKNF models, including
(two-valued) MKNF models of [12].

Theorem 3. Let K = (O,P) be a hybrid MKNF knowledge base and (T, P ) be
a partition. Let further (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }). Then,
(M,N) is a three-valued MKNF model of K iff (T, P ) is a consistent stable
fixpoint of ΨK and OBO,lfp(ΨK(·,T )1) is satisfiable.
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6 Related Work and Remarks

In [8], alternating fixpoint construction was defined to address the computa-
tion of the well-founded model, and in [10], the construction was related to a
notion called stable partition. In this work, we characterize three-valued MKNF
models in terms of stable fixpoints of two appropriate approximators; thanks
to the power of abstraction of AFT, along the way we are able to improve the
construction by Knorr et al.

The only other work that treats inconsistency explicitly is [2], where in case of
inconsistency, instead of computing (lfp(A(·, v)1), lfp(A(u, ·)2)) on the respective
domains [⊥, v] and [u,�], we compute (lfp(A(·, v)1), A(u, v)) because lfp(A(u, ·)2)
may no longer be defined on [u,�]. By computing A(u, v) for the second com-
ponent of the resulting pair, we may allow unfounded elements to be included
as possibly true when inconsistency arises.

In [3], the authors remarked that inconsistencies may be derived by a set
of active integrity constraints (AIGs). Since approximators are defined on L2,
inconsistencies arising in the context of AIGs can be captured. For instance, for
the set of AICs, {¬a ⊃ −a, a ⊃ +a}, assume DB = ∅, when starting with a pair
(∅, {+a}), it is mapped to the pair ({+a}, ∅) by the approximator defined in [3].
It can be shown that this approximator is strong so that the abnormality that
happened in Example 3 does not surface.

The desire to accommodate inconsistencies in AFT has been motivated in
[5]. The precision order when applied to inconsistent pairs can be regarded as an
order that measures the “degree of inconsistency”, or “degree of doubt” [6]. If two
inconsistent pairs satisfy (x, y) ≤p (x′, y′) where y < x the latter can be viewed
as at least as inconsistent as the former. In a more general context, the notion of
inconsistency measures and the questions like “where is the inconsistency”, “how
severer it is”, and how to make changes to an inconsistency theory have been
the focus in some recent AI literature (see, e.g., [4]). A deeper understanding of
inconsistencies in the context of AFT presents an interesting future direction.
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Abstract. The Description Logic (DL) FL0 uses universal quantifica-
tion, whereas its well-known counter-part EL uses the existential one.
While for EL deciding subsumption in the presence of general TBoxes is
tractable, this is no the case for FL0. We present a novel algorithm for
solving the ExpTime-hard subsumption problem in FL0 w.r.t. general
TBoxes, which is based on the computation of so-called least functional
models. To build a such a model our algorithm treats TBox axioms as
rules that are applied to objects of the interpretation domain. This algo-
rithm is implemented in the FLower reasoner, which uses a variant of the
Rete pattern matching algorithm to find applicable rules. We present an
evaluation of FLower on a large set of TBoxes generated from real world
ontologies. The experimental results indicate that our prototype imple-
mentation of the specialised technique for FL0 leads in most cases to
a huge performance gain in comparison to the highly-optimised tableau
reasoners.

1 Introduction

The Description Logic (DL) FL0 is a minimalistic DL, since it offers only the
top concept, conjunction, and value restriction (universal quantification) as con-
structors for building complex concepts. It is the core part of one of the very first
DLs called FL− (Frame Language) introduced by Brachman and Levesque [8] for
formalising frames. Unfortunately, in presence of a TBox value restrictions and
conjunction have been identified as exactly those constructors that make the
problem of deciding the subsumption relationship between two concepts hard
[1,15]. In particular, depending on the syntactical form of the TBox the com-
plexity of deciding subsumption in FL0 takes a rollercoaster ride: it starts from
Ptime with the empty TBox [8], jumps to co-NP-completeness with acyclic
TBoxes [15], then to Pspace-completeness with cyclic definitions [12], culmi-
nates in ExpTime-completeness in presence of general TBoxes [1], and drops
back to Ptime when restricted to Horn-TBoxes [13]. This is in sharp contrast to
the robust behaviour of the popular DL EL that differs from FL0 only by using
existential restrictions instead of value restrictions. In EL, the complexity stays
in Ptime even in the presence of general TBoxes [1].
c© Springer Nature Switzerland AG 2019
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In this paper we devise a novel algorithm for deciding subsumption w.r.t.
general FL0-TBoxes, describe a first implementation of it in the new FLower
reasoner and report on an evaluation of FLower on a large collection of ontolo-
gies. There are several reasons to study subsumption algorithms for FL0. First,
for the Boolean-complete DL ALC subsumption w.r.t. TBoxes is still Exp-
Time-complete, thus its fragment FL0 hardly offers an optimal trade-off between
worst-case complexity and expressiveness. Nevertheless, the volatile complexity
of subsumption in FL0 raises the question of whether hard instances of the
subsumption problem are even likely to occur in application ontologies.

Second, most state-of-the-art ontology reasoners are built and optimised for
expressive DLs beyond ALC, as for example FaCT++1, HermiT2 or Konclude3.
Some DL reasoners such as Konclude and MORe [17] make use of specialised
algorithms for certain language fragments as part of their overall reasoning algo-
rithm. Thus an efficient subsumption algorithm for FL0 might be such a dedi-
cated procedure that can augment general ontology reasoners.

Third, dedicated methods for standard and non-standard reasoning tasks in
FL0 w.r.t. general TBoxes have been studied recently in [3–6]. Quite some of
these useful inferences rely on subsumption tests as sub-procedures and FLower
can supply a base for implementing these inferences.

FLower’s subsumption algorithm for FL0 uses a characterisation of subsump-
tion based on so-called tree-shaped least functional models [4]. For a given input
concept and TBox, this algorithm generates a sufficiently large subtree of their
least functional model by using the axioms from the TBox like rules to aug-
ment the tree. This process corresponds to deriving implicit consequences. To
ensure termination it employs a blocking mechanism. We have implemented this
algorithm in the new FLower reasoner.4

The key idea of the implementation is to use a variant of the well-known
Rete algorithm for rule application [9] adapted to the case without negation:
we translate the TBox to a Rete network and generate the tree representing
the model of the TBox by propagating the nodes through the network. More
precisely, the axioms in the TBox are applied as rules to nodes in the tree. For
example, consider the following FL0 axiom:

Animal � ∀eats.Plants � Herbivore,

which essentially says that animals that eat only plants are herbivores. If a node
in the current tree matches the left-hand side, which means it is labelled with
the name Animal and its eats-child with Plants, then we add Herbivore to its label
set. Since there are potentially many nodes and many axioms to consider, it is
critical for performance reasons to avoid reiterating over all nodes and axioms
after each change and so the key idea from the Rete algorithm is well-suited
for our task. To support this claim we have conducted an evaluation on FLower.
1 owl.man.ac.uk/factplusplus.
2 hermit-reasoner.com.
3 konclude.com.
4 https://github.com/attalos/fl0wer.
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To create a large set of challenging FL0 ontologies we have transformed the OWL
2 EL ontologies of the OWL reasoner competition [16] into FL0 by replacing exis-
tential restrictions by value restrictions. It turns out that our reasoner FLower
is in many cases able to clearly outperform highly-optimised (hyper)tableaux
reasoners like HermiT or JFact on reasoning tasks for this set of ontologies.

2 Preliminaries on FL0 and Least Functional Models

We define the DL FL0 and recall the characterisation of subsumption from [4]
based on least functional models.

Syntax. Let NC and NR be disjoint finite sets of concept names and role names,
respectively. An FL0 -concept description (concept for short) C is built according
to the following syntax rule

C ::=A | � | C � C | ∀r.C, where A ∈ NC, r ∈ NR.

� is called the top concept and ∀r.C is a value restriction. For nested value
restrictions we use the following notation: let σ = r1 · · · rm ∈ NR

∗ for some
m ≥ 0 be a word over the alphabet NR of role names. For some A ∈ NC we write
∀σ.A as an abbreviation of ∀r1. · · · ∀rm.A. The empty word ε stands for A.

A general concept inclusion (GCI) is of the form C � D, where C and D are
concepts. A TBox is a finite set of GCIs.
Semantics. An interpretation I is a pair I = (ΔI , ·I), consisting of a non-empty
set ΔI (domain of I) and an interpretation function ·I that maps every concept
name A ∈ NC to a subset of the domain AI ⊆ ΔI and every role name r ∈ NR

to a binary relation rI ⊆ ΔI × ΔI . The interpretation function is extended to
(complex) concepts as follows:

(C � D)I := CI � DI , (�)I := ΔI , and

(∀r.C)I := {d ∈ ΔI | ∀e ∈ ΔI .(d, e) ∈ rI −→ e ∈ CI}

A GCI C � D is satisfied in I, denoted by I |= C � D, iff CI ⊆ DI . I is
a model of a TBox T , denoted by I |= T , iff I satisfies all GCIs in T . The
concept C is subsumed by the concept D w.r.t. a TBox T , denoted by C �T D,
iff CI ⊆ DI is satisfied in all models of T .

Our focus is on a certain kind of tree-shaped interpretation. A functional
interpretation is a tree with domain NR

∗, where each element has exactly one
child node for each role name.

Definition 1. An interpretation I = (ΔI , ·I) is called a functional interpreta-
tion iff ΔI = NR

∗ and rI = {(σ, σr) | σ ∈ NR
∗} for all r ∈ NR. A functional

interpretation I is called functional model of a concept C w.r.t. TBox T iff
I |= T and ε ∈ CI . For two functional interpretations I and J we write

I ⊆ J iff AI ⊆ AJ for all A ∈ NC.
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The notion of a functional interpretation fixes the domain and the interpretation
of role names. Thus, a functional interpretation is uniquely determined by the
interpretation of concept names.

Definition 2. Let C be a concept and T be a TBox. The interpretation IC,T =
(NR

∗, ·IC,T ) is the functional interpretation satisfying

AIC,T = {σ ∈ NR
∗ | C �T ∀σ.A} for all A ∈ NC.

We summarize some properties of IC,T which characterize IC,T as the least
functional model of C w.r.t. T .

Theorem 1 ([2,4]). It holds that IC,T is a functional model of C w.r.t. T .
Furthermore, if J is a functional model of C w.r.t. T , then IC,T ⊆ J .

Subsumption can now be characterised as inclusion between least functional
models. It follows that C �T D iff IC,T ⊆ ID,T .

3 Subsumption Algorithm for FL0 with General TBoxes

We define a decision procedure for subsumption of two concepts w.r.t. a TBox
based on a finite representation of the least functional model obtained by “apply-
ing” GCIs. The algorithm expects input in a certain normal form. A concept is in
normal form if it is either � or a conjunction of concept names and value restric-
tions of the form ∀r.A with r ∈ NR and A ∈ NC. A GCI C � D is in normal form
if both C and D are in normal form and a TBox T is in normal form if all GCIs
in T are in normal form. By using the equivalence ∀r.(C�D) ≡ ∀r.C � ∀r.D and
via “flattening” of nested value restrictions by introducing fresh concept names
every TBox can be transformed in linear time into normal form.

In the remainder of this section T denotes a TBox in normal form. Given
two concept names A and B mentioned in T we want to decide whether A �T B
holds. The algorithm computes a finite subtree of the tree IA,T such that one can
read off the named subsumers (concept names) of A w.r.t. T at the root. The
structure that the algorithm operates on is a partial functional interpretation.
It is the same as a functional interpretation but the domain is only a finite
prefix-closed subset of NR

∗, that is, a finite tree.

Definition 3. The interpretation Y = (ΔY , ·Y) is a partial functional interpre-
tation iff ΔY ⊂ NR

∗ is a finite prefix-closed set and for all r ∈ NR it holds that
rY = {(σ, σr) | (σ, σr) ∈ ΔY × ΔY}.

The algorithm for deciding A �T B generally proceeds as follows: it starts
with a partial functional interpretation Y that just consists of

ΔY := {ε} AY := {ε} BY := ∅ for all B ∈ NC \ {A}.

In each iteration a single element of the current tree and a single GCI from T
is chosen such that the chosen element matches the left-hand side, but not the
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right-hand side of the GCI. Then minimal extensions of the tree are performed
such that the element now matches also the right-hand side. The extension affects
the domain and/or the interpretation of concept names. To ensure soundness we
guarantee that for the tree Y, the invariant Y ⊆ IA,T is always satisfied. To
ensure termination we distinguish blocked and non-blocked elements in the tree.
The algorithm terminates if for all non-blocked elements and all GCIs, a match
of the left-hand side implies a match of the right-hand side. For describing the
procedure we have to define 1. what it means that a domain element of a partial
interpretation matches a concept, 2. how to extend the tree to achieve a match
with the right-hand side, and 3. how to distinguish blocked and non-blocked
elements. For the first step we introduce the following auxiliary notions.

Definition 4. Let Y = (ΔY , ·Y) be a partial functional interpretation and D a
concept in normal form. The set of elements in ΔY that match D, denoted by
match(D,Y), is defined inductively as follows:

match(�,Y) := ΔY ;

match(A,Y) := {w ∈ ΔY | w ∈ AY} for all A ∈ NC;

match(∀r.A,Y) := {σ ∈ ΔY | there exists σr ∈ ΔY and σr ∈ AY}
for all r ∈ NR and A ∈ NC;

match(C1 � C2,Y) := match(C1,Y) ∩ match(C2,Y).

Since Y is partial functional (i.e. has at most one child per node for each role
name), it is easy to see that σ ∈ match(C,Y) implies σ ∈ CY . The converse need
not be true, as σ may have no r-child in ΔY . We define σ ∈ ΔY violates C � D
(in normal form) iff σ ∈ match(C,Y) and σ /∈ match(D,Y). Given a TBox T in
normal form and a partial functional interpretation Y we define the set of all
incomplete elements as follows

ic(Y, T ) := {σ ∈ ΔY | there is E � F ∈ T such that σ violates E � F}.

Intuitively, the elements in ic(Y, T ) are those eligible for an extension of Y
towards building a representation of the least functional model, while those in
ΔY \ ic(Y, T ) are not. As an additional filter for extensions we define a blocking
condition. First, we introduce the auxiliary notions for the blocking mechanism
consisting of the standard notion of a prefix and proper prefix and a strict total
order on (NR)∗.

Definition 5. Let σ, ρ ∈ NR
∗. We write ρ ∈ prefix(σ) iff σ = ρσ̂ for some σ̂ ∈

NR
∗. We write ρ ∈ pprefix(σ) iff ρ ∈ prefix(σ) and ρ �= σ to denote a proper prefix

of σ. Let NR = {r1, . . . , rn}, σ = ri1 · · · rik
∈ NR

∗ and ρ = rj1 · · · rj�
∈ NR

∗ be
two words with i1, . . . , ik, j1, . . . , j� ∈ {1, . . . , n}. Let ≺N denote the lexicographic
order over tuples of natural numbers. We define

σ ≺ ρ iff |σ| < |ρ| or if k = �, then (i1, . . . , ik) ≺N (j1, . . . , j�).

The blocking condition is defined by induction on ≺.
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Definition 6. Let Y = (ΔY , ·Y) be a partial functional interpretation and let
σ ∈ ΔY . By Y(σ) := {A ∈ NC | σ ∈ AY} we denote the label of σ in Y. The set
of all blocked elements in ΔY is defined as the smallest set satisfying all of the
following conditions:

1. ε is not blocked.
2. Let σ ∈ ΔY and assume for all σ′ ∈ ΔY with σ′ ≺ σ the blocking status is

already defined. The following conditions apply to σ:
(a) If there exists ω ∈ ΔY with ω ≺ σ such that Y(σ) = Y(ω) and ω is not

blocked, then σ is blocked.
(b) If there exists ρ ∈ pprefix(σ) such that ρ is blocked, then σ is blocked.

The set of all non-blocked elements in Y is denoted by nb(Y).

Next, we define what an extension step is. Such a step expands a single
non-blocked and incomplete element in a partial functional interpretation.

Definition 7. Let Y and Z be two partial functional interpretations, T a TBox
in normal form, m,n ≥ 0

α = C � (A1 � · · · � Am � ∀r1.B1 � · · · ∀rn.Bn) and α ∈ T

a GCI and σ ∈ nb(Y)∩ ic(Y, T ) a non-blocked, incomplete element in Y violating
α. Then Y expands α at σ to Z, denoted Y �σ

α Z iff Z satisfies the conditions

– ΔZ = ΔY ∪ {σr1, . . . , σrn};
– AZ

i = AY
i ∪ {σ} for all i = 1, . . . ,m;

– BZ
j = BY

j ∪ {σrj} for all j = 1, . . . , n; and
– QZ = QY for all Q ∈ NC \ ({A1, . . . Am, B1, . . . , Bn}).

A partial functional interpretation Z ′ is a T -completion of Y, written as Y�T Z ′,
iff there exists α′ ∈ T and σ′ ∈ nb(Y) ∩ ic(Y, T ) such that Y �σ′

α′ Z ′ holds.

For a given σ ∈ nb(Y)∩ ic(Y, T ) violating a GCI α ∈ T there exists a unique
Z with Y �σ

α Z. The extension of Y leading to Z is minimal such that now σ
matches the right-hand side of α in Z. Depending on the choice of σ and the
GCI there can be several T -completions of Y. Furthermore, it is guaranteed that
either nb(Y) ∩ ic(Y, T ) = ∅ or there exists a T -completion of Y.

Given the input A,B ∈ NC and T , the algorithm SUBS(A,B, T ) for checking
whether A �T B holds, computes a sequence of T -completions until it reaches
a partial functional interpretation where no non-blocked element violates any
GCI. The algorithm starts with the following partial functional interpretation:

ΔY0 := {ε}; AY0 := {ε} and BY0 := ∅ for all B ∈ NC \ {A}, (1)

and computes a sequence

Y0 �T Y1 �T · · · Y(n−1) �T Yn
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such that Yn is complete in the sense that only blocked elements can remain
incomplete, i.e. nb(Yn) ∩ ic(Yn, T ) = ∅. It answers “yes” if B ∈ Yn(ε) (or
equivalently ε ∈ BYn) and “no” otherwise.

The choice of the next T -completion is a don’t care nondeterministic choice.
For proving soundness it is sufficient to show that Yi ⊆ IA,T holds for each
partial functional interpretation reachable from Y0 via �T . By �T

∗ we denote
the reflexive transitive closure of �T .

Lemma 1. Let Y0 be as in (1), IA,T the least functional model of A w.r.t. T
and Z a partial functional interpretation satisfying Y0 �T

∗ Z. Then Z ⊆ IA,T .

Proof (sketch). The proof is straightforward by induction on the length of the
completion sequence.

As a consequence of this we get soundness of the overall procedure.

Lemma 2. Subs(A,B, T ) is sound.

Proof. If the answer is “yes”, then Subs(A,B, T ) has obtained Yn with Y0�T
∗Yn

and ε ∈ BYn . Since Yn ⊆ IA,T , it follows that ε ∈ BIA,T . From the definition of
IA,T it follows that A �T B holds.

We prove that the algorithm terminates, which means that it always reaches
a partial functional interpretation Z, where the set nb(Z, T )∩ ic(Z, T ) is empty.
Using the blocking condition, the following lemma about the length of the ele-
ments in the tree follows immediately. The length of an element σ ∈ NR

∗ is
denoted by |σ|. We have |ε| = 0 and |σ′r| = |σ′| + 1 with r ∈ NR.

Lemma 3. Let Z be a partial functional interpretation such that Y0 �T
∗ Z.

Then the set nb(Z) is prefix-closed and σ ∈ nb(Z) implies that |σ| ≤ 2|(NC)|.

Lemma 3 yields an upper bound on the depth of the trees that are the result
of a sequence of T -completions starting in the initial Y0 consisting only of ε
labelled with A. The depth of a partial functional interpretation Y = (ΔY , ·Y),
denoted by depth(Y), is the maximum length defined by

depth(Y) := max({|σ| | σ ∈ ΔY}).

Lemma 4. Let Z be a partial functional interpretation such that Y0 �T
∗ Z. It

holds that
depth(Z) ≤ 2|(NC)| + 1.

The upper bound on the depth of the tree in a T -completion sequence also
yields an upper bound on its overall size. Furthermore, we observe that Y �T Y ′

implies that Y � Y ′, i.e. a T -completion always adds something. At the same
time, each label set can at most contain

∣

∣NC

∣

∣ many names. Thus, due to the
depth bound and the upper bound on the label size there cannot be an infinite
sequence of T -completions. Hence, Subs(A,B, T ) always terminates.
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Lemma 5. Subs(A,B, T ) always terminates.

After Subs(A,B, T ) terminates, it obtains a partial functional interpretation Z
with nb(Z) ∩ ic(Z, T ) = ∅. For the completeness proof we construct a model of
T and A from Z. In particular, the construction is based on the non-blocked
elements in nb(Z). It might be the case that a non-blocked element has children
(role successors) that are blocked. To handle this situation the following lemma
is helpful. Recall that for an element σ ∈ ΔZ the label set Z(σ) is the set of all
concept names that σ satisfies in Z (see Definition 6).

Lemma 6. Let Z be a partial functional interpretation such that Y0 �T
∗ Z and

nb(Z) ∩ ic(Z, T ) = ∅. For all σ ∈ nb(Z) and all r ∈ NR it holds that

if σr ∈ ΔZ then there exists ρ ∈ nb(Z) such that Z(σr) = Z(ρ).

The construction of a model of T and A from the final partial functional
interpretation Z obtained from the run of the algorithm is based on the label
sets of the non-blocked elements. The lemma above guarantees that the label
sets of blocked children of non-blocked elements can be found in nb(Z).

Definition 8. Let Z be a partial functional interpretation such that Y0 �T
∗ Z

and nb(Z) ∩ ic(Z, T ) = ∅. We define an interpretation m(Z) as follows:

– Δm(Z) := {Z(σ) | σ ∈ nb(Z)};
– Qm(Y) := {X ∈ Δm(Y) | Q ∈ X} for all Q ∈ NC;
– rm(Y) := {(Z(σ),Z(σr)) | σ ∈ nb(Z), σr ∈ ΔZ} for all r ∈ NR.

Lemma 6 ensures that the interpretation of role names is well-defined in
m(Z). It easy to show that m(Z) is a model of T and A. As a consequence we
get completeness of Subs(A,B, T ).

Theorem 2. Subs(A,B, T ) is sound, complete and terminating.

The algorithm Subs(A,B, T ) shares properties with the completion method for
EL [1] as well as with tableau algorithms for expressive DLs [7]. Every single T -
completion step extends the label set of at least one node in the tree. Intuitively,
adding the concept name C to the label set of domain element σ corresponds to
deriving A � ∀σ.C as a consequence of T . One single run of Subs(A,B, T ) not
only decides whether A � B is entailed by T but computes all subsumers of A.
This is similar to the EL completion method and other consequence-based calculi
[18]. From tableau algorithms Subs(A,B, T ) inherits the blocking mechanism
that ensures termination.

4 A Rete-Based Matching Algorithm for FL0-Concepts

Our implementation of Subs(A,B, T ) in FLower employs a variant of the Rete
algorithm [9] to obtain candidates for each T -completion step. While the full
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Rete algorithm admits also negation, we only need the positive part. In this
section, we informally describe how this is realised—for full details see [14].

In order to compute a sequence of T -completions Y0 �T Y1 �T Y2 �T · · ·
starting from the tree Y0, one has to compute in each completion step i the
pairs (σ,C � D) ∈

(

ΔYi ∩ nb(Yi)
)

× T such that σ matches C but not D in Yi.
Thus, we can view a GCI C � D ∈ T as a rule of the form

?σ ∈ match(C,Yi) → ?σ ∈ match(D,Yi),

where ?σ ranges over the non-blocked domain elements of Yi. Since there is
potentially a large number of elements in ΔYi that has to be matched with a
large number of left-hand sides of GCIs (patterns) in the TBox in each step, we
have chosen to implement this task using the Rete matching algorithm [9]. In
each completion step the extension of the tree only affects a small number of
elements: the matching element σ itself and/or its children. This makes the Rete-
based algorithm particularly efficient in our setting because it stores matching
information across completion steps to avoid reiterating over the whole set of
pairs

(

ΔYi ∩ nb(Yi)
)

× T in each step. Only the elements with changes have to
be rematched again in each step.

As a preprocessing phase FLower compiles the TBox T in normal form into
a Rete network. In general, the network consists of three kinds of nodes: a single
root node, intermediate nodes and terminal nodes. A terminal node holds the
right-hand side of a GCI that is ready to be applied to an element. The matching
is done by passing so called tokens from the root node through the intermediate
nodes to the terminal nodes. A token is a pair of the form (σ, s) ∈ (NR

∗,NR∪{ε}).
Intuitively, the token (σ, ε) is used to check whether σ matches the concept names
at the top-level of a concept and a token of the form (σ, r) with r ∈ NR is used
to check whether σ matches value restrictions with role name r.

There are three types of intermediate nodes that process tokens arriving from
predecessor nodes in the network:

– A concept node is labelled with a concept name B ∈ NC. It sends a token
(σ, s) to all successor nodes iff σs ∈ BYi .

– A role node is labelled with an s ∈ NR ∪ {ε}. An arriving token of the form
(σ, s′) is handled as follows. If s ∈ NR, then it sends (σ, s′) to all successor
nodes iff s′ = s and if s = ε, then it sends the token (σs′, ε) to all successor
nodes.

– An inter-element node is labelled with a tuple (s1, . . . , sm) ∈ (NR ∪ {ε})m. It
stores all arriving tokens and sends a token (σ, ε) to its successor nodes once
all tokens of the form (σ, s1), . . . , (σ, sm) have arrived at this node.

The overall network is structured in layers. The root node with no incoming edges
is on top. To represent GCIs of the form � � C the root node is connected to
a terminal node with C and sends all tokens directly to this terminal node. All
other successors of the root node are concept nodes. The root node takes an
element of the form σ = ρr ∈ NR

∗ and sends the token (ρ, r) to all successor
nodes. A successor of a concept node can only be another concept node or a
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role node. A role node leads directly to an inter-element node and inter-element
nodes lead to terminal nodes.

Example 1. As an example consider a TBox that contains the following GCIs:

A2 � A4 � A5 � ∀r1.A3 � ∀r1.A4 � ∀r2.A1 � B7,

∀r2.A3 � ∀r2.A4 � B8,

∀r1.A6 � ∀r1.B9.

The corresponding Rete network is displayed in Fig. 1.

5 Implementation and Evaluation of FLower

The FLower reasoner is implemented in Java and it takes as input a general
FL0-TBox T in OWL format [10]. It implements three different reasoning tasks.

Subsumption: Given two OWL classes A and B decide whether A �T B holds.
Subsumer set: Given an OWL class A compute all classes B in T for which

A �T B holds.
Classification: Decide for all pairs of named OWL classes A and B occurring

in T whether A �T B holds.

root

A1 A2 A3 A6

A4 A4

A5

r2 ε r1 r2 r1

(ε, r1, r2)

B7 B8 ∀r1.B9

Fig. 1. Rete network for the TBox from Example 1.
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To decide subsumption FLower runs Subs(A,B, T ) but possibly stops already
in case B occurs at the root of the tree. For computing the subsumer set of
A a single complete run of Subs(A,B, T ) is sufficient, where the choice of B
is irrelevant. All subsumers of A can be found at the root of the final tree.
Classification is done by running Subs(A,B, T ) for each named class A in T
separately (again B is irrelevant). The Rete network for T is created only once
and is reused for the remaining runs of Subs(A, ∗, T ) multiple times in parallel.
To this end the information that is stored on inter-element nodes and final nodes
is stored in an external working memory.

5.1 Test Data

Since there are not enough FL0-ontologies around to yield a decently large test
suite, we had to generate such ontologies. Our goal was to create ontologies, that
are close to ontologies from applications rather than to construct purposefully
complex ones. To create ontologies with a similar structure to application ontolo-
gies, we have chosen to use FL0-variants of the OWL 2 EL [10] ontologies of the
OWL Reasoner Evaluation (ORE) competition benchmark [16]. For each ontol-
ogy from that benchmark, we essentially flipped the quantifier, i.e., replaced ∃
by ∀. We have also dropped some axioms involving role inclusions and nominals
that cannot be expressed in FL0. Additionally, ontologies containing fewer than
500 classes were discarded. This resulted in a test suite of 159 ontologies with
an average number of 54.000 classes, 5 roles and 170.000 axioms. The largest
ontology in the test suite has 981.152 classes, 50 roles and 2.513.918 axioms.

5.2 Evaluation Setup

We have tested FLower on all three reasoning tasks (subsumption, subsumer set
and classification) with the 159 ontologies from our test suite. For a comparison
of the reasoning performance of FLower with tableau-based methods we have
chosen the following three state-of-the-art tableau reasoners

– HermiT5, version 1.3.8.510,
– Openllet6, version 2.6.3, and
– JFact7, version 5.0.1.

All three reasoners implement the OWL API [11] and are written in Java. This
allows us to measure and compare the time needed for the reasoning tasks
alone—excluding the time for initialising the reasoner and for loading the ontolo-
gies using the OWL API. These two tasks can take fairly long and thus distort the
impression of the performance of solving the reasoning task. In case of FLower
the initialisation phase includes the generation of the Rete network.

5 hermit-reasoner.com.
6 github.com/Galigator/openllet.
7 jfact.sourceforge.net.

http://hermit-reasoner.com
http://github.com/Galigator/openllet
http://jfact.sourceforge.net
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As a test system we have used an Intel Core i5 7600K with 4x 3.80 GHz
and 16 GB of RAM. We have used a setup, where only the runtime of the
reasoning task is measured and not the time of loading the ontology. Java was
called with -Xmx8g to set the maximum allocation pool (heap) size to 8 GB.
While this was sufficient for JFact, HermiT and FLower, Openllet ran into some
OutOfMemory exceptions. Those runs were counted as unsuccessful for Openllet.
For each reasoning task, the time out was set to 6 min.

5.3 Evaluation Results

We have obtained the following results for the three reasoning tasks.

Subsumption. Of the 159 ontologies with one subsumption call each for a ran-
domly selected pair of classes, JFact was not able to decide the subsumption in
21 cases, Openllet in 8 cases, HermiT in 3 cases, while FLower succeeded for all
159 ontologies. In Fig. 2 the runtime for the subsumption task is displayed in
relation to the number of classes in the ontology. Note the use of a logarithmic
scale in this and the following figures. It shows that FLower performs best overall
and is close to and often better than HermiT in terms of reasoning times.
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Fig. 2. Computation times for subsumption tests of the different reasoners in relation
to ontology size.
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Subsumer Set. The task was to compute the subsumer sets of a randomly selected
class from each test ontology. This task was not solved within the given timeout of
six minutes by JFact in 37 cases, Openllet in 15 cases, HermiT in 13 cases whereas
FLower computed all again. The comparison of the runtimes is displayed in
Fig. 3. It shows that FLower exhibit an almost linear behaviour and outperforms
the other DL reasoners by at least one order of magnitude. Now, FLower is
especially efficient for this task as it computes the subsumer set of a given class
within a single run, whereas the other reasoners need to perform a classification
of the whole ontology (compare Figs. 3 and 4).
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Fig. 3. Computation times for subsumer sets of the different reasoners in relation to
ontology size.

Classification. The unsuccessful attempts to classify test ontologies within the
time limit of 6 min sum up to 36 for JFact, 15 for Openllet, 13 for HermiT
and 3 for FLower. The comparison of the runtime is displayed in Fig. 4. FLower
still has an advantage in many cases, but not as huge, as for the subsumer
set computation. This seems bit surprising, since the classification method in
FLower is based on its fast subsumer set computation. We assume that this is
mostly due to the fact that FLower implements a naive classification algorithm
that simply computes the subsumer set for each named class.
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6 Conclusions

We have presented a novel algorithm for deciding subsumption in the DL FL0

w.r.t. general TBoxes. The approach is to compute a (tree prefix of the) least
functional model for the TBox and the potential subsumee. This approach is
the basis for developing implementation friendly algorithms for other inferences
in FL0. Furthermore, reasoners for expressive DLs often incorporate reasoners
for special fragments and thus a dedicated reasoner for FL0 may be beneficial
for them. Therefore our investigation presented here can contribute to develop
a variety of DL reasoning systems.

Our new reasoner FLower implements the algorithm for computing all sub-
sumers using a variant of the Rete pattern matching algorithm. Our experimental
results with our prototype showed that the specialised techniques lead in many
cases to a huge performance gain in comparison to highly-optimised tableau rea-
soners that are designed for more expressive DLs. In particular FLower is better
in most cases than the other systems for testing a single subsumption and for
computing classification. For the computation of all subsumers for a given con-
cept FLower truly outperforms the other DL reasoners by at least one order of
magnitude. This is a remarkable results as it raises hopes that a naive method for
classification can easily be sped up by simply using massively parallel hardware.
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Abstract. In the current paper we propose a general framework for
answering queries over inconsistent DL knowledge bases. The proposed
framework considers the ICAR semantics and is based on a rewriting
algorithm that can be applied over arbitrary DLs. Since the problem of
ICAR-answering is known to be intractable for DLs other than DL-Lite,
our algorithm may not terminate. However, we were able to describe suf-
ficient termination conditions and to show that they are always satisfied
for instance queries and TBoxes expressed in the semi-acyclic-EL⊥ as
well as in DL-Litebool. Interestingly, recent results on UCQ-rewritability
and existing techniques can be used within the proposed framework,
to check if the conditions are satisfied for a given query and ontology
expressed in a DL for which the problem is in general intractable.

1 Introduction

Query answering over data that are formally described using description logic
(DL) knowledge bases (KBs) has received increasing attention in recent years.
In this setting user queries are expressed in the ontology vocabulary and their
answers reflect both the dataset (ABox) as well as the axioms specified in
the ontology (TBox). The problem has been studied extensively for consistent
datasets [11,16,21,24] as well as for datasets that contradict the ontological
axioms [5,20,25,26].

In real-world applications data may often be inconsistent w.r.t. the ontology
leading to logical contradictions. This is very likely in data integration appli-
cations where data originate from dispersed sources, or when data are gener-
ated automatically from an information extraction module. A straightforward
approach to perform query answering would be to first remove the conflicting
elements from the datasets. However, this is not always possible as the data
may reside in distributed, or access restricted data sources, or be subject to
frequent and diverse modifications. To address this issue, inconsistency-tolerant
semantics have been proposed that describe which answers are meaningful to be
returned in the presence of inconsistent data [9,18]. These semantics are typ-
ically based on the notion of the repair, that is a maximal (w.r.t. inclusion)
consistent subset of the original dataset. Examples of such semantics are the
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AR, IAR, ICAR semantics [18]. In the AR semantics queries are entailed from
all the ABox repairs, while in the IAR semantics queries answers are obtained
from the intersection of the ABox repairs. ICAR semantics consider data that
are implied from the ontology and any consistent subset of the ABox, namely
the consistent logical consequences of the TBox T and ABox A, clc(T ,A); the
queries are entailed by the intersection of the clc(T ,A) repairs.

As discussed in [18] query answering under the ICAR semantics come with a
nice property that does not hold in the case of AR and IAR semantics. Consider
two KBs K = (T ,A),K′ = (T ,A′) that differ only in that A′ includes some
assertions that can be entailed from T and any consistent subset of A. Differently
from what one would expect, if we attempt to evaluate the same query over
K and K′ using either the AR or the IAR semantics, it is possible to obtain
different results. This issue does not arise in the case of ICAR-answering because
the logical implications of the ontology and consistent subsets of the ABox are
taken into account to obtain the ICAR-answers. At the same time, in ICAR-
answering it is possible to obtain answers from facts that can only be inferred
from conflicting ABox assertions [4].

Regarding complexity both the IAR and ICAR semantics have shown to have
nice computational properties since the query evaluation problem over ontologies
expressed in the DL-Lite is in AC0 w.r.t. data complexity [18,20], while it is in
coNP for the AR semantics. However, computing answers using inconsistency-
tolerant semantics has been proved quite difficult for DLs more expressive than
DL-Lite. More precisely, Rosati [22] showed that the problem of IAR and ICAR-
answering is at least coNP-hard w.r.t. data complexity for almost all well-known
DLs from EL⊥ to SHIQ. Moreover, in the EL⊥nr fragment of EL⊥, where query
answering is tractable for the IAR semantics, the problem remains in coNP for
the ICAR semantics. Existing research results on consistent query answering
over DL ontologies [5,13,20] focus on fragments of DL-Lite. In particular, the
work presented in [13] employs the ICAR semantics and considers DL-Lite but in
the OBDA setting, where the mappings relating the ontology terms to the data
sources are also taken into account within query answering. In [26] a practical
system was proposed for the ICAR and IAR semantics that computes upper
approximations for DLs more expressive than DL-Lite. Moreover, in [25] an
algorithm for IAR-answering was proposed that can handle arbitrary DLs but
need not terminate. Despite the work presented in [26] the problem of designing
practical ICAR-answering algorithms for expressive DLs is open.

In this work we study ICAR-answering over expressive DL ontologies. More
precisely, we present a general framework for ICAR-answering that is based
on query rewriting. Our rewriting algorithm has as a starting point the one
presented in [19]. Given an input query and a DL ontology if our algorithm
terminates, it computes a datalog program, extended with negation, that can
be evaluated over the initial dataset to compute the ICAR-answers. Based on
our analysis we extend previous results [25] to describe the conditions that
ensure termination of our algorithm. The termination conditions are related
to the notion of UCQ-rewritability that has been studied quite extensively in
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DLs [1,6,15]. Consequently, we are able to provide positive results for instance
queries and ontologies expressed in semi-acyclic-EL⊥ [7] and DL-Litebool, as well
as UCQ-rewritable conjunctive queries over ontologies expressed in EL⊥nr. For
DLs and queries for which the termination conditions are not generally satisfied,
we exploit previous works [8,10,15] and provide an approach to check termina-
tion over a fixed input ontology and query. This allows us to design a framework
for ICAR-answering over expressive DLs. Finally, we have conducted a prelim-
inary evaluation of our approach. We obtained positive results showing that it
is possible to perform ICAR-answering even in the case of DLs for which the
problem is in general intractable.

2 Preliminaries

Description Logics. A DL knowledge base (KB) K consists of a TBox T ,
and an ABox A, K = T ∪ A. T and A are constructed from the countable
and pairwise disjoint sets C, R, and I of atomic concepts (unary predicates),
atomic roles (binary predicates), and individuals (constants). An ABox A is a
finite set of assertions of the form A(a) or R(a, b) where a, b ∈ I. A TBox T
is a set of DL axioms. An EL⊥ concept is inductively defined by the syntax:
C := � | ⊥ | A | C1 � C2 | ∃R.C, where A ∈ C and R ∈ R and C(i) are EL⊥
concepts. An EL⊥ TBox T is a finite set of inclusions of the form C1 � C2

with C1, C2 EL⊥ concepts. Inclusions of the form C1 � C2 � ⊥ (also written
as C1 � ¬C2) are called negative and the rest positive. DL-LiteR (or simply
DL-Lite) restricts EL⊥ by allowing concepts of the form A, and ∃R.�; R in
DL-Lite can also be the inverse of a role of the form S− and we can also have
role inclusions of the form S � R or S � ¬R for S,R roles. An ABox A is
consistent w.r.t. some TBox T if there exists a model for the KB K = T ∪ A;
otherwise it is inconsistent. The semantics of DLs can be given by a well-known
translation to First-Order Logic (FOL) [2]. Table 1 presents the translation of
EL⊥ and DL-Lite axioms to first order clauses (inverse roles have been omitted).
In the following we assume that the TBox axioms are translated into FOL.

Table 1. Translation of DL axioms into FOL

DL axiom Clause

B � A A(x) ← B(x)

A � B � ⊥ ⊥ ← A(x) ∧ B(x)

B1 � B2 � A A(x) ← B1(x) ∧ B2(x)

A � ∃R.B R(x, f(x)) ← A(x), B(f(x)) ← A(x)

∃R � A A(x) ← R(x, y)

∃R.B � A A(x) ← R(x, y) ∧ B(x)

P � R R(x, y) ← P (x, y)

P � ¬R ⊥ ← R(x, y) ∧ P (x, y)
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Datalog and Conjunctive Queries. A disjunctive datalog clause r (also called
rule) is a function-free clause of the form ∀�x, �y(ψ(�x) ← φ(�x, �y)) where φ(�x, �y) is a
conjunction of positive or negative atoms called the body of the clause and ψ(�x) is
a disjunction of positive atoms called its head. For simplicity we will omit variable
quantifiers and write ψ(�x) ← φ(�x, �y). A datalog clause is a disjunctive datalog
clause where the head contains a single atom. A Horn-clause is a datalog clause
where the body contains only positive atoms. A (disjunctive) datalog program
P is a finite set of (disjunctive) datalog clauses. We consider Herbrand models
over all constants from P. We say that a model M of P is minimal if there is
no model M′ of P such that M′ is a subset of M. A positive ground atom D(�a)
is entailed by P iff all minimal models of P contain D(�a); a negative ground
atom ¬D(�a) is entailed by P iff D(�a) is not included in the minimal models of
P. The evaluation of P over an ABox A is the set of ground atoms entailed by
the program P ∪ A.

A conjunctive query (CQ) Q is a datalog clause with head predicate Q. The
variables occurring in Q are called answer variables. A boolean query Q is a CQ
with no answer variables. An instance query is a CQ of the form Q(x) ← A(x)
(we often simply write A(x)). A UCQ is a finite set of CQs. A tuple of constants
�a is a certain answer of Q over a KB K = T ∪A if the arity of �a agrees with the
arity of Q and T ∪ A |= Q(�a), where Q(�a) denotes the Boolean query obtained
by replacing the answer variables with �a. We use cert(Q, T ∪ A) to denote all
certain answers of Q w.r.t. K = T ∪ A.

Definition 1. Let T be a TBox and Q a CQ. A datalog-rewriting (or simply
rewriting) of Q w.r.t. T is a datalog program R such that for any ABox A
consistent w.r.t. T we have T ∪ A |= Q(�a) iff R ∪ A |= Q(�a), or in case Q is
Boolean T ∪A |= Q iff R∪A |= Q. We say that a query Q is datalog-rewritable
w.r.t. T if there exists a datalog-rewriting R of Q w.r.t. T ; if R is a UCQ, then
Q is called UCQ-rewritable w.r.t. T .

Note that we will refer to a clause of the form H(�s) ←
∧

i αi ∧
∧

j ¬Bj , where
αi are positive atoms and Bj are conjunctions of positive atoms, as a datalog
clause. Indeed such a clause is equisatisfiable to a datalog program that includes
H(�s) ←

∧
i αi ∧

∧
j ¬βj and βj ← Bj , for all j, where βj are positive atoms.

Inconsistency-Tolerant Semantics. Definitions 2 and 3 recapitulate some of
the notions used in the IAR and ICAR semantics [19]. Definition 4 formalises
the notion of the rewriting under the IAR and ICAR semantics.

Definition 2. Consider a TBox T and ABox A we define the consistent logical
consequences of T , A as the set clc(T ,A) = {a | some S ⊆ A exists s.t. T ∪S |=
a and S is consistent w.r.t. T }, where we use a to denote an assertion.

Definition 3. A repair of a set of assertions S w.r.t. a TBox T is any maximal
(w.r.t. set inclusion) subset of S that is consistent w.r.t. T .
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– We use Air to denote the intersection of all repairs of A w.r.t. T . Let Q be
a CQ and let K = T ∪ A be a KB. A tuple of constants �a is called an IAR-
answer of Q over K if �a ∈ cert(Q, T ∪Air). We use certir(Q, T ∪A) to denote
the set of all IAR-answers of Q over K and we also write T ∪ A |=ir Q(�a).

– We use Aicar to denote the intersection of all repairs of clc(T ,A). Let Q be a
CQ and let K = T ∪A be a KB. A tuple of constants �a is called a ICAR-answer
of Q over K if �a ∈ cert(Q, T ∪ Aicar). We use certicar(Q, T ∪ A) to denote the
set of all ICAR-answers of Q over K and we also write T ∪ A |=icar Q(�a).

The following example illustrates a nice property of the ICAR-semantics.

Example 1. Consider the TBox T = {C(x) ← A(x),⊥ ← A(x) ∧ B(x)} and the
ABox A = {A(a), B(a)}. A has two repairs, that is {A(a)} and {B(a)}, and
hence their intersection is Air = ∅. It is not hard to verify that clc(T ,A) has two
repairs, that is {A(a), C(a)} and {B(a), C(a)} and hence Aicar = {C(a)}.

Next, consider the ABox A′ = A∪{C(a)}. Notice that A′ differs from A only
in that it contains C(a) that can be entailed from T and the assertion A(a) of
A. It holds that A′

ir = {C(a)} and A′
icar = Aicar. Interestingly, when we evaluate

the same query Q(x) ← C(x) over T ,A′ and T ,A we yield different results in
the case of the IAR-semantics but the same results for the ICAR-semantics.

Definition 4. Given a TBox and a CQ Q, an IAR-rewriting Rir of Q w.r.t. T
is a datalog program such that for every ABox A we have T ∪ A |=ir Q(�a) iff
Rir ∪A |= Q(�a). Similarly, for an ICAR-rewriting Ricr we have T ∪A |=icr Q(�a)
iff Ricr ∪ A |= Q(�a).

3 ICAR-rewriting over Expressive DLs

The problem of answering queries under the ICAR semantics was first investi-
gated in [19]. Given an input TBox and query, the proposed algorithm computes
a rewriting of the query w.r.t. the TBox that can be evaluated over any ABox
to obtain the ICAR-answers. The rewriting technique proposed in [19] works for
DL-Lite.

Example 2. Consider the DL-Lite TBox T = {C(x) ← A(x),⊥ ← A(x)∧B(x)},
the query Q = Q(x) ← C(x) and the ABox A = {A(a), B(a)} of Example 1.

In the first step, the algorithm in [19] computes the rewriting R of Q, T
under the standard semantics, R = {Q(x) ← C(x), Q(x) ← A(x)}. Then, it
extends the queries in R with the appropriate negative atoms, R′ = {Q(x) ←
C(x), Q(x) ← A(x) ∧ ¬B(x)}. The negative atoms in R′ guarantee that the
evaluation of R′ over A will only return answers from Air. Indeed, atom ¬B(x)
prevents Q(x) ← A(x) ∧ ¬B(x) from binding with A(a) which is not included
in Air. At next step, the algorithm applies the rewriting procedure (under the
standard semantics) once more on the elements of R′ (only on the positive atoms)
to obtain R′′ = R′ ∪ {Q(x) ← A(x)} that captures the assertions in clc(T ,A).
Indeed, when Q(x) ← A(x) is evaluated over A we obtain the ICAR-answer {a},
cert(R′′,A) = certicar(Q, T ∪ A). ♦
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A hybrid approach for ICAR-answering was presented in [26] that employs
a rewriting, as well as an ABox saturation procedure. More precisely, given
an input query Q, a TBox T , and an ABox A, the algorithm in [26] exploits
existing approaches [17,23] to compute the saturated ABox, that is the set of
the assertions entailed from A and the axioms of T that can be translated into
datalog. Then, it evaluates the IAR-rewriting of Q, T over the saturated A. The
algorithm supports DL-Lite and it can be used to compute upper approximations
of the ICAR-answers for more expressive DLs.

ICAR-answering over DL-Lite is FO-rewritable, and therefore in AC0 in data
complexity. However, it was shown that for more expressive DLs, consistent
query answering under the ICAR is no longer tractable; actually, it is already
coNP-hard in data complexity in EL⊥nr [22]. Identifying DLs for which ICAR-
answering is tractable is quite challenging. It was shown by Rosati [22] that
tractability of IAR-answering does not imply tractability of ICAR-answering
and the reason is the need to compute clc. Despite the theoretical studies over
the ICAR semantics [19,22], there are no algorithms for ICAR-answering over
expressive DLs.

In the following examples we attempt to employ the rewriting approach pre-
sented in [19] for an input TBox expressed in EL⊥.

Example 3. Consider the following EL⊥ TBox

T = {C(x) ← A(x) ∧ K(x)
K(x) ← B(x)
⊥ ← A(x) ∧ B(x)}

the query Q = Q(x) ← C(x) and the ABox A = {A(a), B(a)}. It is not hard
to verify that clc(T ,A) = {A(a), B(a),K(a)} and that Aicar = {K(a)}. Hence,
certicar(Q, T ∪ A) = ∅.

Firstly, we compute the IAR-rewriting of Q, T . For this purpose, we apply
the IAR-rewriting algorithm presented in [25] that takes as input an arbitrary
DL TBox. We obtain the following IAR-rewriting:

Rir = {Q(x) ← C(x) (1)
Q(x) ← A(x) ∧ K(x) ∧ ¬(A(x) ∧ B(x)) (2)
Q(x) ← A(x) ∧ B(x) ∧ ¬(A(x) ∧ B(x))} (3)

Next, in the same spirit as in [19], we apply a rewriting procedure on the
elements of Rir ignoring their negative part (we omit clause (3)):

(1) � Q(x) ← A(x) ∧ K(x) (4)
Q(x) ← A(x) ∧ B(x) (5)

(2) � Q(x) ← A(x) ∧ B(x) ∧ ¬(A(x) ∧ B(x)) (6)

Finally, we construct the set R′ = Rir ∪ {(4), (5)}.
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Notice that when Q(x) ← A(x) ∧ B(x) of R′ is evaluated over A we obtain
Q(a), but {a} is not in certicar(Q, T ,A); hence R′ is not an ICAR-rewriting.

In order to fix this issue, one could check if the clause ⊥ ← A(x) ∧ B(x)
is entailed from T to decide whether Q(x) ← A(x) ∧ B(x) is included in the
ICAR-rewriting. In particular, since T |= ⊥ ← A(x)∧B(x), any set of the form
{A(a), B(a)} is inconsistent w.r.t. T , and hence it cannot be used to infer an
assertion included in clc(T ,A). Consequently, the clause Q(x) ← A(x) ∧ B(x)
that bounds to assertions of the form {A(a), B(a)} cannot be used to yield an
ICAR-answer. In the same vein, the clause Q(x) ← A(x) ∧ K(x) should be
included in the output ICAR-rewriting since it holds that T �|= ⊥ ← A(x) ∧
K(x). By eliminating (5) from R′ we obtain the ICAR-rewriting Ricr = Rir ∪
{(4)}. ♦
Example 4. Consider the following EL⊥ TBox

T = {A(x) ← R(x, y) ∧ K(y) (7)
A(x) ← R(x, y) ∧ A(y) (8)
⊥ ← K(x) ∧ R(x, y)} (9)

query Q(x) ← A(x) and ABox A = {R(a, b),K(b), R(b, a)}.
Similarly to the previous example, we compute the IAR-rewriting of Q w.r.t.

T by applying the calculus of [25]. We obtain the following rewriting:

Rir = {Q(x) ← A(x) (10)
A(x) ← R(x, y) ∧ K(y) ∧ ¬(R(x, y) ∧ K(x)) ∧ ¬(R(y, z) ∧ K(y)) (11)
A(x) ← R(x, y) ∧ A(y) ∧ ¬(R(x, y) ∧ K(x))} (12)

Next, we apply a rewriting procedure on positive parts of the clauses in Rir.
Since we cannot further rewrite clause (11) we rewrite (10), (12) and obtain:

(10), (12) � A(x) ← R(x, y) ∧ K(y) (7)
A(x) ← R(x, y) ∧ A(y) (8)

In line with Example 4 notice that for the clauses (7), (8) in R′ it holds that
T �|= ⊥ ← R(x, y) ∧ K(y), T �|= ⊥ ← R(x, y) ∧ A(y). However, R′ = Rir ∪
{(7), (8)} is not an ICAR-rewriting. Indeed, when we evaluate (7) over A we
obtain A(a) and because of (8) we derive A(b). However, b is not an ICAR-
answer since A(b) /∈ clc(T ,A). This is because to derive A(b) we have used
{R(a, b),K(b), R(b, a)} which is inconsistent w.r.t. T . ♦

As illustrated in Example 4 in order to introduce a recursive clause of the
form A(x) ← R(x, y)∧A(y) in the ICAR-rewriting it is not sufficient to examine
if T �|= ⊥ ← R(x, y) ∧ A(y); since the concept A participates in a recursion,
there is an infinite number of negative clauses for which we should examine
if they are entailed from T . Intuitively, this is the reason for the co-NP data
complexity [22] of the ICAR-answering problem (already for the DL EL⊥nr for
which IAR-answering is in P): if the input query contains concepts involved in
some recursion (such as concept A in our example), then the number of ABox
assertions that can be used to infer an assertion in clc(T ,A) is unbounded.
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4 An ICAR-rewriting Algorithm

Based on the ideas discussed in Sect. 3 we propose an algorithm for ICAR-
rewriting over a TBox expressed in an arbitrary DL. Definition 5 describes the
notion of the negative closure that was used in [25] to obtain the IAR-rewriting.
Intuitively, the negative closure Tcn of a TBox T is a finite set of negative clauses
that can capture the negative clauses entailed from T . We use Tcn to examine
if the condition described in Example 3 holds.

Definition 5. A negative closure of a TBox T , denoted by Tcn, is a finite set
of negative clauses such that T |= ⊥ ←

∧
βi iff some ⊥ ←

∧
αi in Tcn exists

with ⊥ ←
∧

αi |= ⊥ ←
∧

βi.

Algorithm 1. ICAR-Rewriting
Input: a CQ Q and a L-TBox T

1: Compute a negative closure Tcn of T
2: Compute the IAR-rewriting Rir of Q w.r.t. T .
3: Ricr := Rir

4: for H(�s) ←
∧

i αi ∧
∧

j ¬βj ∈ Rir do
5: Compute a UCQ-rewriting Rα of Q(�s) ←

∧
i αi w.r.t. T

6: for each Q(�s) ←
∧

i α′
i ∈ Rα do

7: if for every clause C ∈ Tcn it holds C 	|= ⊥ ←
∧

i α′
i then

8: Ricr = Ricr ∪ {H(�s) ←
∧

i α′
i ∧

∧
j ¬βj}

9: end if
10: end for
11: end for
12: return Ricr

Algorithm 1 computes the IAR-rewriting Rir (line (2)) by applying the proce-
dure presented in [25]. Then, in order to build the set Ricr, it applies a rewriting
procedure on the elements of Rir by neglecting their negative part. More pre-
cisely, for the positive body atoms αi of every element in Rir, it constructs the
UCQ-rewriting of the query Q(�s) ←

∧
i αi (lines (4)–(5)). Condition in line (7)

is necessary, as explained in Sect. 3, in order to only retrieve facts from clc(T ,A)
when evaluating Ricr over A.

Example 5. Consider the following EL⊥ TBox T and query Q(x) ← A(x).

T = {A(x) ← R(x, y) ∧ B(y) (13)
B(x) ← C(x) (14)

⊥ ← B(x) ∧ K(x)} (15)

In the first step, Algorithm 1 computes the IAR-rewriting of Q:

Rir = {Q(x) ← A(x) (16)
A(x) ← R(x, y) ∧ B(y) ∧ ¬(B(y) ∧ K(y)) (17)
A(x) ← R(x, y) ∧ C(y) ∧ ¬(C(y) ∧ K(y))} (18)
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Next, by considering the clauses (16), (17), (18) in Rir it computes the UCQ-
rewriting of Q(x) ← A(x), Q(x) ← R(x, y) ∧ B(y), Q(x) ← R(x, y) ∧ C(y):

(16) � Q(x) ← R(x, y) ∧ B(y) (19)
Q(x) ← R(x, y) ∧ C(y) (20)

17 � A(x) ← R(x, y) ∧ C(y) ∧ ¬(B(y) ∧ K(y)) (21)

The negative closure of T is Tcn = {⊥ ← B(x) ∧ K(x),⊥ ← C(x) ∧ K(x)}.
Therefore, the clauses ⊥ ← R(x, y) ∧ B(y), and ⊥ ← R(x, y) ∧ C(y) are not
entailed by Tcn and condition in line (7) is satisfied. Finally, Algorithm 1 outputs
Ricr = Rir ∪ {(19), (20), (21)} that is an ICAR-rewriting of Q w.r.t. T . ♦

Theorem 1. Let T be a DL TBox and let Q be a CQ. If Q is UCQ-rewritable
w.r.t. T and there exists a negative closure Tcn of T , then Algorithm 1 terminates
and computes the ICAR-rewriting of Q w.r.t. T .

Proof. (sketch) In [25] it was shown that if there exists a negative closure of T ,
and Q is datalog rewritable, then there always exists an IAR-rewriting Rir of
Q w.r.t. T (Theorem 6). Therefore, if there exists a negative closure of T and
a UCQ-rewriting R of Q w.r.t. T , then there also exists an IAR-rewriting of Q
w.r.t. T , and Algorithm 1 terminates. To prove correctness of Algorithm 1 we
first show that Ricr ∪ A |= Q(�a) iff Rir ∪ clc(T ,A) |= Q(�a). By definition of Rir

it holds that Rir ∪ clc(T ,A) |= Q(�a) iff R ∪ clc(T ,A) |=ir Q(�a), where R is the
rewriting of Q w.r.t. T under the standard semantics. Finally, by definition of
Aicar we conclude that Ricr ∪ A |= Q(�a) iff R ∪ A |=icr Q(�a). ��

5 Positive Results for ICAR-Answering

In this section we exploit recent results on UCQ-rewritability of queries over
a range of DLs along with the ICAR-rewriting approach of Sect. 4, to provide
positive results for ICAR-answering over DLs that do not fall into the DL-Lite
fragment.

As it can be seen from the previous section Algorithm 1 need not terminate.
There are two reasons for non-termination: 1. non-existence of a negative closure
and 2. non-UCQ-rewritability of the input query.

Example 6. Consider the following EL⊥ TBox T

T = B(x) ← R(x, y) ∧ B(y) (22)
⊥ ← B(x) ∧ K(x)} (23)

and the instance query Q(x) ← K(x).
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Assume we attempt to compute Tcn. We resolve (23) with (22) to obtain
⊥ ← R(x, y) ∧ B(y) ∧ K(x); this clause can then be resolved with (22) to derive
the clause ⊥ ← R(x, y) ∧ R(y, z) ∧ B(z) ∧ K(x). Since none of the resolvents
entails the other, by definition of Tcn it must contain both. It can be seen that
once we could generate an infinite number of clauses of all of which must belong
to Tcn. ♦

Example 6 illustrates the case where there is no negative closure for a given
EL⊥ TBox T . Intuitively, the non-existence of Tcn is related to concepts in the
negative clauses of T that participate in some recursion (like concept B). Such
recursions do not occur in DL-Lite but can be met already in EL⊥ causing a blow-
up in data complexity from P to coNP [22]. In [25] a condition was presented
that can be used to check if there exists a negative closure for a given TBox
expressed in a Horn-DL. The following lemma describes this condition.

Lemma 1. Let T be a L TBox where L is a Horn-DL. Let the set of concepts
S = {Ai(x) | ⊥ ← A1(x) ∧ . . . ∧ Am(x) ∈ T }. If every instance query Q(x) ←
Ai(x) in S is UCQ-rewritable w.r.t. T and consistent ABoxes, then there exists
a negative closure Tcn of T .

In [22] the EL⊥nr fragment of EL⊥ was studied for which IAR-answering
remains tractable. Intuitively, in EL⊥nr concepts that appear in negative clauses
are not involved in recursions. Moreover, in [25] it was shown that there always
exists a negative closure for an EL⊥nr TBox. However, in the case of ICAR
semantics query answering remains intractable for the DL EL⊥nr. Roughly, this
is because the input query may contain concepts involved in some recursion and
hence there is no limit in the number of ABox assertions that can be used to
infer assertions in clc(T ,A) (see Example 4). Although the problem of ICAR-
answering of CQs over EL⊥nr TBoxes is in general intractable, for a given UCQ-
rewritable CQ we obtain the following result.

Theorem 2. Let T be a EL⊥nr TBox and let Q be a CQ that is UCQ-rewritable.
Then, on input T and Q Algorithm 1 terminates and computes an ICAR-
rewriting of Q w.r.t. T .

The authors in [7] showed that instance queries over semi-acyclic-EL⊥
TBoxes are always UCQ-rewritable. Moreover, in [25] it was shown that there
always exists a negative closure for a semi-acyclic-EL⊥ TBox. Theorem 3 follows.

Theorem 3. Let T be a semi-acyclic-EL⊥ TBox and let Q be an instance query.
Then, on input T and Q, Algorithm 1 terminates and computes an ICAR-
rewriting of Q w.r.t. T .

In [12] a goal-oriented procedure was presented that computes a datalog
rewriting of a given DL-Litebool TBox. By exploiting these results in [25] it was
shown that there always exists a negative closure for a DL-Litebool TBox. More-
over, instance query answering in DL-Litebool is known to be UCQ-rewritable [1].
Therefore, we can obtain the following positive result on ICAR-rewritability for
the non-Horn DL-Litebool.
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Theorem 4. Let T be a DL-Litebool TBox and let Q be an instance query. Then,
on input T ,Q Algorithm 1 terminates and computes an ICAR-rewriting of Q
w.r.t. T that is a datalog program.

To check if a given query is UCQ-rewritable we can exploit results in UCQ-
rewritability of queries over DLs that are not always UCQ-rewritable [6,8,15].
The authors in [8] study UCQ-rewritability of a given instance query over Horn-
DLs, like EL⊥, ELI⊥ and Horn-SHIF . These results were used to design a
practical algorithm for checking UCQ-rewritability of instance queries [15]. Sub-
sequently, the system of [15] was extended to support rooted CQs [14].

Therefore, given a TBox T expressed in a Horn-DL one can decide on the exis-
tence of a negative closure by using the system of [15] to check UCQ-rewritability
of all relevant instance queries described in Lemma 1. Moreover, the system
of [15] can be used to check UCQ-rewritability of the input query Q. If the
conditions of Theorem 1 are satisfied, Algorithm 1 can be used to obtain an
ICAR-rewriting of Q, T .

6 Evaluation

We have created a prototype system to perform a preliminary experimental eva-
luation of the proposed framework. Our system is based on the implementation
of Algorithm 1. At first step, the UCQ-rewritability of the input query Q is
examined by using the system Grind [14]. Next, our system uses the framework
implemented in [25] to decide if there exists a negative closure of the input TBox
T and if so, to compute an IAR-rewriting of Q and T . If Q is not UCQ-rewritable,
or if a negative closure cannot be computed for T , then the system reports that
it cannot output an ICAR-rewriting. Otherwise, it proceeds in computing the
ICAR-rewriting Ricr as described in lines 3–10. The whole system currently
supports ontologies expressed in EL⊥ which is the DL supported by Grind.

To generate our experimental setting we examined the ontologies ENVO,
FBbi, MOHSE, NBO, Not-Galen that were used in [14] to evaluate Grind. We
did not consider SO, as it was reported in [25] that a negative closure cannot
be constructed for this ontology; this is because concept engineered region(x)
participates in a recursion that causes Lemma 1 to fail. The ontologies ENVO
and FBbi include negative axioms. For the rest ontologies, that is MOHSE and
Not-Galen, we manually added negative axioms. For this purpose we tried to
use concepts that appear in different levels in the concept hierarchy, so that
these affect large or small parts of the ontology. Each ontology used in [14]
came with 10 handcrafted queries. Among them we used only those queries
that include concepts involved in some negative axiom and for which the Grind
system reported they are UCQ-rewritable. We have also manually constructed
test queries that each one of them contains at least one body atom that uses a
concept or role involved in a negative axiom. More precisely, for an axiom of the
form B � ¬C we have constructed queries Q(x) ← A(x) and Q(x) ← D(x) such
that T |= A � B and T |= B � D. Overall, for each ontology we used 10 test
queries that satisfy the UCQ-rewritability condition.
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Table 2. Results for computation of ICAR-rewritings.

tR |Ricr| q¬ max avg

envo

1 889 44 623 96% 7 6.5
1 025 21 171 96% 7 6.4
1 140 21 170 96% 7 6.5
1 091 21 927 96% 14 6.7
1314 22 694 96% 7 6.5
129 75 86% 4 4.0

1 441 21 932 97% 7 6.5
1 126 21 170 96% 7 6.5
2 538 21 170 96% 7 6.5
2 385 21 934 96% 7 6.5

FBbi

194 285 7% 7 4.2
148 406 5% 7 3.2
85 13 100% 13 4.1
88 29 100% 4 2.8
51 307 7% 7 4.2
72 9 100% 10 2.8
90 555 54% 7 3.5
76 295 51% 1 1.0
56 280 8% 7 4.2
90 547 53% 7 3.9

tR |Ricr| q¬ max avg

MOHSE

17 037 98 119 96% 50 1
32 213 101 646 96% 50 1
15 651 101 620 96% 2 1.1
1 049 3 511 92% 2 1.1
1 701 31 80% 50 50
1 923 3 66% 2 2.0
1 269 43 72% 50 50.0
1 314 43 51% 50 50

2 9375 98115 96% 50 21.5
34 318 98115 96% 50 21

Not-Galen

178 351 82 885 80% 6 1.0
175 581 82 885 80% 6 1.6
172 970 82 886 80% 6 1.57

36 33 36% 6 1.7
176 622 83 884 80% 6 1.0
176 102 82 886 80% 6 1.0
171 392 82 885 80% 5 1.0

32 41 51% 1 1.0
132 558 82 885 80% 6 1.0
170 489 82 885 80% 6 1.0

Our results are depicted in Table 2. Columns tR, |Rir| and q¬ present the
time to obtain the ICAR-rewriting in ms, the number of clauses in the output
rewriting, and the percentage of the clauses in the output that contain a negative
part. Finally columns max and avg present the maximum and average number
of negative atoms in the elements of the rewriting. In most cases the ICAR-
rewriting was obtained within a few seconds. In contrast, in the case of Not-Galen
the time to compute the rewriting was up to 3 min. This is because, the rewriting
procedure (described in line 5, Algorithm 1) was applied on every element of the
IAR-rewriting which was quite large for almost all test queries. One could avoid
several calls of the rewriting procedure and exploit the rewritings that have
already been constructed during the IAR-rewriting process. For example, for an
input TBox T = {A(x) ← A1(x),⊥ ← A(x) ∧ B(x)} and query Q = Q(x) ←
A(x) ∧ C(x) the IAR-rewriting is of the form Rir = {Q(x) ← A(x) ∧ C(x) ∧
¬(A(x) ∧ B(x)) ∧ ¬(A1(x) ∧ B(x)), Q(x) ← A1(x) ∧ C(x) ∧ ¬(A1(x) ∧ B(x))}
and to obtain Rir the standard rewriting R = {Q(x) ← A(x) ∧ C(x), Q(x) ←
A1(x) ∧ C(x)} must be computed. Therefore, to construct the ICAR-rewriting
one could make use of R instead of applying anew rewriting procedure on every
element of Rir. Our implementation does not involve such optimisations however
we feel that they could reduce the rewriting times.

Regarding the size of the output rewriting, one could design optimisations
to eliminate the redundant elements from the output, Ricr. For example, the
clause Q(x) ← A1(x)∧C(x)∧¬(A(x)∧B(x))∧¬(A1(x)∧B(x)) is subsumed by
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Q(x) ← A1(x) ∧ C(x) ∧ ¬(A1(x) ∧ B(x)) and hence the former can be discarded
from Ricr. Further work is required in that respect to reduce the size of Ricr.

Finally, the number of negative conjuncts in the elements of the rewriting
was quite small (up to 50). Note that the evaluation in [26] showed that triple-
store systems can handle a large number of negative atoms (even more than
one hundred). In conclusion, in most cases we have been able to obtain within
reasonable time an ICAR-rewriting for our test ontologies and queries.

Overall, our evaluation results show that we were able, in most cases, to
compute an ICAR-rewriting for the given TBoxes for which the problem is in
general intractable. Moreover, computing the ICAR-rewriting can be done rel-
atively efficiently and the number of negative atoms added in the clauses was
usually quite small.

7 Conclusions

In the current work we have studied query answering over knowledge bases where
the dataset is inconsistent with respect to the ontology. We have extended our
previous work [25] on IAR semantics to provide an algorithm that computes the
rewriting of the given query and arbitrary DL TBox for the ICAR semantics.
Provided that ICAR-answering for expressive DLs is intractable, our algorithm
may not terminate; if it terminates, it outputs an ICAR-rewriting, that is a
datalog program with negation that can be evaluated over the initial ABox.
Next, we studied the reasons for non-termination of our algorithm and developed
conditions that ensure its termination. We showed that these conditions hold for
semi-acyclic-EL⊥ and DL-Litebool. Interestingly, we can exploit recent results and
use practical systems that have already been developed, to check termination of
our algorithm for arbitrary fixed Horn-DL ontologies. Our experiments provided
encouraging results as in almost all cases we were able to compute an ICAR-
rewriting in reasonable time.

Overall, we have provided an approach for ICAR-answering over expressive
DL-ontologies for which the problem is known to be intractable. To our knowl-
edge this is the first attempt in the context of consistent query answering to
produce rewritings for arbitrary DLs. It is left open for investigation if these
rewritings could be used in other settings, e.g. to repair datasets, or to obtain
positive results in the OBDA setting with GAV mappings [3]. Further experi-
mental evaluation to examine whether the conditions apply in practice is left for
future work.
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Abstract. Neuro-symbolic integration is a current field of investigation
in which symbolic approaches are combined with deep learning ones. In
this work we start from simple non-relational knowledge that can be
extracted from text by considering the co-occurrence of entities inside
textual corpora; we show that we can easily integrate this knowledge with
Logic Tensor Networks (LTNs), a neuro-symbolic model. Using LTNs it
is possible to integrate axioms and facts with commonsense knowledge
represented in a sub-symbolic form in one single model performing well
in reasoning tasks. In spite of some current limitations, we show that
results are promising.

1 Introduction

Neuro-symbolic integration models [11,12] aim at combining properties of sym-
bolic reasoning and neural networks, to account both for data-driven learning
and high-level reasoning, two tightly related aspects of human cognition. Addi-
tional advantages of this combination can be found in a higher explainability
of learned knowledge and in the capability of softening some aspects of crisp
logic-based reasoning approaches. This integration is also connected to the com-
bination of sub-symbolic perception with high-level reasoning, a critical task in
artificial intelligence [19].

Logic Tensor Networks (LTNs) [9,24] are an example of a neuro-symbolic
model that embeds first-order fuzzy logic in a vector space. In LTNs logic con-
stants are represented as vectors and n-ary predicates are n-ary functions whose
values are real numbers in the range [0, 1]. A neural network for each predicate
learns both the representation of logic constants and the weights that character-
ize the n-ary function. Learning is based on a set of axioms.

On the other hand, computational linguistics has developed distributional
models of language that have been found cognitively plausible at a large extent
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by psychologists [18]. We believe that these models, once adapted to be easily
integrated with existing logical frameworks that combine learning and reasoning,
can provide an account for commonsense knowledge and structured inferences
that go beyond crisp reasoning approaches.

In this paper, we focus on the integration of two aspects of knowledge: (i) sub-
symbolic common sense knowledge [17] that accounts for some kind of intuitive
understanding of the world [7] and (ii) axiomatic knowledge has the one found
in knowledge bases that accounts for structured inference. As an example of how
this combination might work, imagine an agent that has access to the following
set of axioms {species(cat),mammal(tiger), bird(penguin),∀x(mammal(x) →
animal(x))}, we refer to the first three as instantiated atoms or facts and to
the latter one as universally quantified formula; this axiomatic knowledge is not
enough to infer mammal(cat). However, if the agent knows that cats and tigers
are similar to each other and both are dissimilar to penguins, she might infer
that cats are mammals too (i.e., mammal(cat)). Once the latter instantiated
atom has been inferred, the agent can make use of the axiom ∀x(mammal(x) →
animal(x)) to infer that cats are also animals (i.e., animal(cat)), bridging the
gap with more complex inferences. We believe that combining these two worlds
would bring great benefits in reasoning approaches since one requires the help
of the other.

We present a first approach towards this direction that feeds Entity Embed-
ding (EEs) generated using distributional semantics, i.e., vector-based represen-
tations of entities generated from text using Word2Vec [3], to a knowledge base
represented in LTNs. This EEs encode the similarity between entities based on
the principle that entities that share more contexts within a text corpus are
more similar to each other. Distributional semantics has been found to pro-
vide representations that are strongly correlated with associative learning [18];
we thus refer to these representations as sub-symbolic commonsense. While in
LTNs, neural representations of axioms are usually learned only from a par-
tial (structured) knowledge base, EEs are used here as representations for the
LTNs constants. In this way, LTNs will only need to learn the representation
of the predicate network. Moreover, with the use of pre-trained representations,
we can make inferences on entities that do not occur in the knowledge base as
long as we have a sub-symbolic commonsense representation of those entities.
Figure 1 shows the elements of our model that combines logical reasoning and
sub-symbolic commonsense knowledge.

In once sentence, the major contribution of this work is to show that com-
bining commonsense knowledge under the form of text-based entity embeddings
with LTNs is not only simple, but it is also promising. Our experiments explore
a limited part of a knowledge base but results show that the model is flexible
and can be useful under different settings and use-cases.

The paper is organized as follows: in Sect. 2 we summarize related work and in
Sect. 3 we outline the two main components of our model, namely the embeddings
and LTNs and we show how we can combine the strengths of both; in Sect. 4 we
develop and experiment comparing our model with some baselines; eventually
we end the paper in Sect. 5 with conclusions and future work.
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Fig. 1. We learn embeddings from text and we use LTNs to learn how to represent
predicates with the network. “dbr:” stands for the DBpedia Knowledge Graph names-
pace.

2 Related Work

While recently deep learning [13] has shown great capabilities in many different
tasks its techniques are still limited when they have to take into account the same
reasoning and knowledge transformation capabilities that symbolic approaches
show. However, symbolic artificial intelligence is constrained by computational
limits and knowledge acquisition bottlenecks. The neuro-symbolic field was intro-
duced to address the limits of both approaches by at the same time taking advan-
tage of the capabilities of each of them. In this section, we present recent works
from both the symbolic/statistical relational learning and the neuro-symbolic
fields.

Symbolic and Statistical Relational Learning Approaches. Different
symbolic/statistical relational learning approaches have been devised to treat
inference; Recently, ProbLog [8] has been proposed as a probabilistic logic pro-
gramming language that can be used to combine probability and logical infer-
ence, allowing the user to treat both probabilistic uncertainty and classical infer-
ence. Another approach to inference is the one represented by Probabilistic Soft
Logic (PSL) [1] that is a statistical relational learning model that comes from
the family of Markov Logic Networks (MLNs) [20].

Neuro-symbolic Approaches. We refer to recent surveys for discussions of dif-
ferent neuro-symbolic approaches proposed in the literature [11,12] while hereby
we cite some examples of relevant approaches. DeepProbLog [19] is, for exam-
ple, a “deep” extension of ProbLog [8], that show that it is possible to combine
the power of deep nets with the expressive capabilities of logical reasoning. On
the other hand, the Neural Theorem Prover (NTP) was introduced as an exten-
sion of the Prolog language that supports soft unification rules with the use
of similarity between embedded representations [23]. Other approaches address
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reasoning with networks [16,25] and transferability of reasoning with memory
networks [10]. Different approaches have been defined to generate sub-symbolic
representations of entities and relationships of a knowledge base [5,26] and some
of these integrate fuzzy logic in the process of learning these embedded repre-
sentations [14].

We also report that the combination between distributional semantics and
logic is not new and there is a recent line of research that is currently exploring
formal distributional semantics [4].

We propose a method to complement logical reasoning in the vector space
with sub-symbolic commonsense knowledge. We decided to focus on LTNs
because the integration of sub-symbolic knowledge is straightforward and sim-
pler to do with respect to other neuro-symbolic algorithms: LTNs gives us the
advantage representing first-order logic inside a vectors space; at the same time
we use entity embeddings to represent commonsense knowledge as the starting
vector space on which LTNs learn to do reasoning.

3 Logical Reasoning with Sub-symbolic Commonsense

3.1 Logical Reasoning with Logic Tensor Networks

LTNs [9,24] use first-order fuzzy logic and represent terms, functions, and pred-
icates in a vector space. Connectives are interpreted as binary operations over
real numbers in [0, 1]. For example, t-norms are used in place of the conjunc-
tion from classical logic (e.g., the t-norm can be interpreted as the min between
two truth values). The action of representing elements of the logic language as
elements in the vector space is referred to as grounding.

In LTNs, constants are grounded to vectors in R
n and predicates are

grounded to neural network operations which output values in [0, 1]. The neural
network learns to define the truthness of an atom P (c1, . . . , cn) as a function of
the grounding of the terms c1, . . . , cn [24]. For a predicate of arity m and for
which v1, . . . ,vm ∈ R

n are the groundings of m terms, the grounding of the
predicate is defined as G(P )(v) = σ(uT

P (tanh(vTW
[1:k]
P v + VPv + BP ))) where

v = 〈v1, . . . ,vm〉 represents the concatenation between the vectors vi, σ is the
sigmoid function, W , V , B and u are parameters to be learned by the network
while k is layer size of the tensor.

LTNs reduce the learning problem to a maximum satisfiability problem: the
task is to find groundings for terms and predicates that maximize the satis-
fiability of the formulas in the knowledge base. For example, for a grounded
formula like mammal(cat), the network updates the representation of the pred-
icate mammal (i.e., the parameters in the tensor layer) and the representation
of cat (i.e., its vector) in such a way that the degree of truth of an instantiated
atom is closer to 1. Optimization also works in place of quantified formulas (e.g.,
∀x(mammal(x) → animal(x)); In fact, the universally quantified formulas are
computed by using an aggregation operation [24] defined over a subset of the
domain space R

n. LTNs can be be used to do after-training reasoning over com-
binations of axioms on which it was not trained on (e.g., ask the truth value of
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queries like ∀x(¬mammal(x) → species(x)); this property allows us to explore
the learned knowledge base with different combinations of predicates.

3.2 Sub-symbolic Commonsense with Entity Embeddings

Sub-symbolic representations of knowledge are popular in the deep learning com-
munity. In the NLP area, pre-trained representation of words (aka, word embed-
dings [21]) based on in-text co-occurrence are used frequently to enhance the
performance on several tasks. In the same way, embeddings of entities and rela-
tionships that come from a knowledge base are becoming widely used in several
contexts [5].

We use text-based embeddings of entities [3]. This approach is grounded in
distributional semantics, originally introduced for words: similar words appear
in similar context share similar meanings [15]; the same is true for entities [3],
with two main advantages: (i) entities identifiers are not ambiguous and (ii)
entities identifiers are interpreted as logical constants. The original work [3]
presented also embeddings of ontological types, we ignore this component in
our work since in this work we interpret entity types as unary predicates in
LTNs. Starting from a text T , containing a sequence of words w1, . . . , wn we use
entity linking tools [22] to find entities and to generate an annotated text that
contains sequences of entity identifiers e1, . . . , em. The word2vec algorithm [21]
is used to learn an embedding function φ based on the co-occurrence of entity
mentions in the text φ(ei) = ei. Word2vec lets the user decide the dimension
of the embedding and a window size to define the width of the context for each
entity.

3.3 Combining Sub-symbolic Commonsense and Logical Reasoning

In our commonsense vector space, logical constants are represented by a vector
and thus we can use LTNs to learn representations for the predicates over the
commonsense vector space. Thus, we used the entity embeddings e1, . . . , em as
vectors to feed to LTNs. The truth value computed by LTNs is function not
only of the parameters of the networks but also of the text-based pre-trained
representations. While LTNs generally needs to learn the representation of vector
from scratch in our setting are already learned (sub-symbolic commonsense) and
do not need any more training.

Figure 1 shows a summary of the components of our model. We generate
distributional embeddings from text and then we use axiomatic knowledge to
learn the representations of predicates. After training we can use the model to
reason over new axioms. A good way of understanding how LTNs work is to
consider the learned predicate network as an area for which vectors have a truth
value of 1 in certain locations that decreases to values close to 0 when vectors
are distant from those locations.
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4 Experiments

The main motivation that guides this experimental section is to show the capabil-
ities of a model that combines logical reasoning and sub-symbolic commonsense
knowledge like the one defined in the previous section.

We use 100 dimensional DBpedia entity embeddings [3]; these embeddings
are generated first by using an automatic annotator (DBpedia Spotlight) and
then by using word2vec (Skip-gram) [21]. LTNs were initialized with k = 20 and
we used the fuzzy Lukasiewicz t-norm as in [24]. Code, data and architectures
to replicate our experiments are available online1.

4.1 Reference Knowledge Base

We create three small knowledge completion tasks for our experiments that are
based on a common reference knowledge base introduced in this paper2. Our
knowledge base is based on DBpedia and contains: a set of predicates P (e.g.,
mammal); a set of constants C (e.g., dbr:cat3); a set I of instantiated atoms, i.e.,
facts such as (e.g., mammal(dbr:cat)); a set Q of universally quantified formulas
that represent the dependency in the DBpedia ontology (e.g., ∀x mammal(x) →
animal(x)); the set IQ of formulas closed under the application of standard
FOL inference to the previous set I (e.g., animal(dbr:cat)); a set of negated IN

instantiated atoms that are derived as follows: all the instantiated atoms built
with predicates in P that are not in IQ and I (e.g., ¬fungus(dbr:cat)). The
reference knowledge base D is I ∪ IQ ∪ IN .

We first of all extract entities (C) from DBpedia and its ontology of the fol-
lowing classes (note that some classes are much less represented than others):
Mammal (0.38%), Fungus (0.17%), Bacteria (0.03%), Plant (0.42%). We add
the universally quantified formulas Q to derive inferences for predicates Animal,
Eukaryote and Species for each atom, and apply this axiom to generate the set
of instantiated axioms IQ. Finally, we also generate all the negative instantiated
atoms in IN (e.g., ¬fungus(dbr:cat)). Considering positive and negative instan-
tiated axioms this reference knowledge base contains 35,133 elements. We test
the following three tasks by splitting the reference knowledge base D in training
and testing:

– D1. Objective: evaluate the performance of the algorithms in a task in which
only positive atoms are given, not all the atoms can be influenced from the
axioms. As training, we have 1,400 positive atoms and we ask the models to

1 https://github.com/vinid/logical commonsense.
2 Other knowledge base exist but some are too big to be explored [5] and others can

be completed with simple axioms [6].
3 We are aware that in some cases there is a subtle difference between what can be

considered an instance and what is instead a type; cat can be for example the type
of all the instances of cats. Since this generally depends on the granularity of the
knowledge base we think that this does not affect the general applicability of the
proposed experiment.

https://github.com/vinid/logical_commonsense
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find all the other 7,077 atoms related to the entities found in the 1,400 atoms.
For example, models have to infer atoms about the instance “dbr:cat” even
if the only know that “dbr:cat” is a Species.

– D2. Objective: evaluate the performance of the algorithms in a task in which
both positive and negative atoms are given; each entity in the training set
appears also in the test set. As training, we have 7,026 atoms both positive
and negatives and as in D1 we ask the models to find other 20,890 atoms
(positive and negative).

– D3. Objective: evaluate the performance of the algorithms in a task in which
both positive and negative atoms are given, but the test set will also contain
atoms of entities not present in the training set: The models will need to rely
on the sub-symbolic commonsense vectors. As training, we have 1,756 atoms
and the models are now asked to infer the value of 33,377 atoms (positive
and negative).

Domain Theory. We define a set of universally quantified axioms to be used
by the models that contains 22 axioms. The complete list is available online and
we hereby show some of them.

– ∀x(plant(x) → eukaryote(x))
– ∀x(mammal(x) → animal(x))
– ∀x(plant(x) → ¬mammal(x))
– ∀x(fungus(x) → ¬animal(x))

Note that this set is different from the set Q: the models will not know for
example that ∀(x : animal(x) → eukaryote(x)).

Baseline. We will compare the LTNEE model (trained over atoms and univer-
sally quantified formulas to reach 0.99 satisfiability over the input knowledge
base) with the following competitors.

– Simple LTNs model not initialized with pre-trained embeddings. We use this
model to show that the use of pre-trained representation is useful.

– Probabilistic Soft Logic [1], the main competitor for the symbolic field that
will be trained on both atoms and universally quantified formulas. We use
the tool provided by the original authors with default parameters4.

– Deep Neural Network initialized with EEs trained to assign 0 or 1 to instanti-
ated atoms (note that we cannot use universally quantified formulas here), we
explored several architectures often obtaining similar results. The DNN refer-
enced in the results embeds the pre-trained representations of entities and a
one-hot representation of predicates in 20 dimensions, concatenate them and
apply another transformation to 1 dimension plus a sigmoid as non-linearity.
Validation is done on 20% of the input data. Note that DNN cannot make
use of the axioms of the domain theory.

4 https://psl.linqs.org/.

https://psl.linqs.org/
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4.2 Results

Table 1 shows the results of the different models over the different settings with
the F1 measure for each predicate. In the following sections we discuss the result
on each dataset.

Experiments on D1. In this setting we compare LTNEE with LTN and PSL.
We cannot use DNN because we are using only positive atoms. We also report
that a simple rule-based model that uses axioms to complete the knowledge
base would be able to infer only 45% of the axioms (with a 100% precision). The
LTNEE approach is the best performing one. The comparison between pure
LTN and PSL suggests that while the latter performs better their difference is
not high in this setting.

Experiments on D2. In this experiment each entity for which we require to
find other instantiated atoms appear at least one time in the training set; this
allows us to use PSL as a baseline in this setting. PSL performance is more or
less similar to the one shown for the D1 dataset, but the performance between
LTNEE and DNN is comparable. In this settings the domain theory does not
seem to provide increases in performance, but we remark that LTNs provide a
model that can be queried after training.

Experiments on D3. From this experiment it is clear that LTNEE generalizes
slightly better than the competitor, and this could be due to both the domain
theory and the fact that LTNEE trains each predicate as a separate tensor layer.
While the F1 score for many classes are comparable, the ones for Fungus and
Bacteria reached a lower score than in the previous experiment: this might be
due to the fact that the representation of elements of the class Fungus are similar
to those of the class Plant while the Bacteria class as only a few instances in this
experiment. Even if DNN and LTNEE performances are similar (as expected,
since both are neural models), we stress the fact that LTNEE can be used for
after-training logical inferences and this is a key aspect.

4.3 Examples and Limits

After training we can evaluate the truthfulness of axioms for which it was not
specifically trained on. Table 2 reports some examples. We also explored the pos-
sibilities given by a more complex example that contains KG triples with facts
nationality(Person, Country), bornIn(Person, City) and locatedIn(City, Coun-
try) with 200 training examples (for which we also defined some simple axioms
like ∀x,∀y,∀z(bornIn(x, y) ∧ locatedIn(y, z) → nationality(x, z)) during train-
ing, but not the ones we show in the Table). It is interesting how LTNs can
learn to reason on non-trivial axiomatic properties like the fact that being born
in New York makes one American. The small experiment with KG triples is
limited by the fact that the current implementation of LTNs suffers from heavy
computational requirements in the presence of predicates in combination with
quantifiers [2]. While the use of quantifiers extends the expressive power of the
model it certainly downgrades the efficiency.
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Table 1. F1 score per tested class.

D1 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.81 0.74 0.84 0.66 0.52 0.97 1.00

LTN 0.40 0.14 0.12 0.10 0.03 0.93 1.00

PSL 0.54 0.19 0.15 0.14 0.07 0.93 1.00

D2 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.91 0.86 0.91 0.86 0.63 0.99 1.00

DNN 0.93 0.82 0.93 0.87 0.54 0.99 1.00

PSL 0.56 0.20 0.20 0.17 0.10 0.88 0.98

D3 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.88 0.80 0.89 0.82 0.60 0.99 1.00

DNN 0.87 0.64 0.85 0.77 0.47 0.98 1.00

Table 2. The truth values of novel axioms.

Axiom Truth

∀x(species(x) → animal(x)) 0

∀x(eukaryote(x) → ¬bacteria(x)) 0.73

∃x(eukaryote(x) ∧ ¬plant(x)) 1

∀x, y, z(nationality(x, y) ∧ locatedIn(y, z)

→ bornIn(x, z))

0.33

∃x(nationality(x,Canada)

∧bornIn(x,Montreal))

1

∀x(bornIn(x,New Y ork)

→ nationality(x, United States))

0.88

5 Conclusions

In this paper, we have shown that the combination of sub-symoblic commonsense
representations, under the form of entity embeddings generated from text, and
logical reasoning in vector spaces is flexible and can be used to solve completion
tasks. Since LTNs are based on Neural Networks, they reach similar results while
also achieving high explainability due to the fact that they ground first-order
logic. The real advantage comes from the fact that LTNs allow us to get the best
of both the symbolic and connective worlds and to easily integrate additional
knowledge like sub-symbolic commonsense knowledge. Despite the limitations
and the simple experimental setting, the preliminary results show that the app-
roach is promising. The key point of this paper is that with the combined model
we can inject domain knowledge in a network (using LTNs) and at the same time
use pre-trained representations. Our futures steps include improving LTNs train-
ing to treat bigger knowledge bases [5], introducing commmonsense knowledge
within other frameworks and testing natural language inference tasks.
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Abstract. The DMN standard allows users to build declarative models
of their decision knowledge. The standard aims at being simple enough
to allow business users to construct these models themselves, without
help from IT staff. To this end, it combines simple decision tables with a
clear visual notation. However, for real-life applications, DMN sometimes
proves too restrictive. In this paper, we develop an extension to DMN’s
decision table notation, which allows more knowledge to be expressed,
while retaining the simplicity of DMN. We demonstrate our new notation
on a real-life case study on product design.
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1 Introduction

Recently, the Object Management Group (OMG) has developed a new standard,
the Decision Model and Notation [1], as a declarative representation for decision
knowledge. It states explicitly that [t]he primary goal of DMN is to provide a com-
mon notation that is readily understandable by all business users[...] [1, p.13].

In a recent project [2], we used DMN to model the decision process followed by
product engineers to design a specific kind of industrial component to match cus-
tomer requirements. Here, DMN’s ability to be understood by “business users”
(in this case, the product engineers) was a key advantage. The multinational
company with which we collaborate did not have a standardized product design
process. Therefore, a significant knowledge elicitation effort was required, in
which engineers from all over the world were brought together in order to define
a single design process, that could then be partially automated into a decision
support system. In these knowledge elicitation workshops, it was key to make use
of a formal notation that could be understood by both our knowledge experts
and the company’s domain experts. This helped to avoid misunderstandings,
ensured smooth communication, and allowed certain well-delineated parts of the
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decision model to be assigned as “homework” to specific experts. Moreover, the
fact that the product engineers not only understood but even helped to build
the formal model is also important for its maintenance, for which the engineers
themselves will mainly be responsible.

DMN achieves its readability by offering a visual notation (the Decision
Requirements Diagram or DRD) to decompose a big decision into smaller sub-
decisions, a visual decision table notation to model individual decisions, and the
intuitive S-FEEL language that can be used inside the decision tables.

However, the simplicity of DMN comes at a cost. While we found that this
format elegantly handled the majority of the decision processes of our case study,
a limited number of key decisions simply did not fit into the framework. In this
paper, we propose an extension to the DMN standard, which aims to make it
better suited for complex real-life situations. In [3], it was shows that DMN can
be seen as an intuitive notation for certain formulas in First-Order Logic (FO).
Following this approach, we will define the newly introduced constraint tables
by means of a transformation to FO. The main advantage of this approach is
that we can then feed this representation into a model generation system for
FO, such as IDP [4], MiniSat [5] or z3 [6], and thereby immediately obtain an
implementation of our extension.

In Sect. 2, we describe the business case that we will use as running example.
We explain the difficulties we faced when formalizing this case in DMN (Sect. 3),
followed by proposing constraint tables as an extension to DMN in Sect. 4.
Then, we discuss the semantics of DMN decision tables and the newly introduced
constraint tables (Sect. 5). Section 6 discusses how constraint tables facilitates
handling the running example. Related work is presented in the Sect. 7. Finally,
conclusions and future work are discussed in Sect. 8.

2 Running Example: Product Design

We will apply DMN and our extension to a real-life use case at a company that
manufactures highly specialized products to order. This use case is discussed
extensively in [2]. In this section, we recall a simplified version.

The task of the company’s product engineers is to design a product that
consists of two mandatory components: a body and a spring. In addition, there
may be a third component, called a wiper. The engineers are given a number of
specifications: the desired dimension of the product, the temperature range and
pressure in which it should function.

They need to determine: 1. Which type of body (closed or open) to use; 2.
What material to use for it; 3. Whether to use a normal or a thick spring.

They have to make these choices in such a way that: 1. The materials used
can cope with the given temperature range; 2. When the materials shrink due
to cold, the spring should prevent the component from falling out of the cavity
in which it is placed; 3. A wiper is included if the component is to operate in
a dirty environment. The materials have different costs, with cheaper materials
typically being weaker than more expensive ones. In general, the engineers look
for the cheapest design that will work.
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3 DMN Case

We present a DMN model that is based on the typical decision procedure followed
by the engineers. As we will show, parts of this procedure fit naturally into DMN,
while others require cumbersome work-arounds. Figure 1 shows our DRD, which
captures the general structure of the decision logic. It starts from customer
requirements at the bottom and has the decisions that must be made at the top,
with certain subdecisions in between. Each rectangle corresponds to a decision
table, which can be found in Fig. 2. The different components of such a table are
identified in Fig. 3. The (dark) green headers represent input columns, while the
(light) blue headers are output columns. As can be seen in these figures, all of
our tables use the U(nique) hit policy, which means that the conditions on the
input columns in different rows must be mutually exclusive.

Fig. 1. DRD model of application.

To design a component, the engi-
neers typically proceed as follows:

1. There are 3 relevant dimen-
sions : the outer diameter (OD) of the
component, its inner diameter (ID)
and its cross-section (CS). The cus-
tomer provides 2 of these and the
engineer computes the third (CS =
(OD − ID)/2). The corresponding
DMN table consists of three different
rows (one per dimension that might
be missing), that all contain essen-
tially the same information.

2. An initial design type is chosen, depending on the required operating con-
ditions. This decision fits well within the mold of a DMN table.

3. Based on the temperature restrictions and design type, the “best” material
is selected for the body. When representing this decision in a DMN table, we lose
the distinction between physical constraints (i.e., the fact that some materials
simply cannot cope with certain temperatures) and preferences (i.e., the fact that
some material is not chosen because a cheaper material is available). Because this
distinction is lost, is not clear how to update this table when, e.g., the price of a
certain material drops: there may be cases in which this material was originally
not chosen because it was too expensive, but we cannot discern them from cases
where the material was not chosen because it would melt.

4. The expected shrinkage is computed, based on the design type, dimensions,
temperature and selected materials. While we omit the details, the formula for
this calculation can easily be placed in the “Shrinkage Load” table.

5. Based on the selected design type, the spring strength of a standard spring
is computed. If this is enough to cope with the expected shrinkage, the standard
spring is selected. Otherwise, the engineers switch to a thick spring and recom-
pute the spring strength of the design. Since DMN does not allow to “recom-
pute” a value, the “Spring Strength” table computes both the spring strength
that the design would have with a standard spring and that with a thick spring.
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The “Spring Thickness” table then uses these two values to decide which spring
type to use. Because of this, the DRD has an edge from “Spring Strength” to
“Spring Thickness”. This is counterintuitive, because in reality it is the thick-
ness of the spring that determines the design’s spring strength, not the other
way around.

6. If, for an open design, even the thick spring does not provide enough spring
strength, the engineers’ final option is to switch to a closed design type, but since
this is an initial choice upon which all further choices are based, this means that
the engineers essentially start over the entire process from scratch. If the thick
spring’s strength does not suffice, our DMN table will fail to assign a value to
“Spring Thickness” (i.e., it will be null). This will alert the user that something
is wrong, but the backtracking step of redoing the entire design process with a
closed design is not possible in DMN. For this reason, we have implemented a
workaround in which the “Design Type” table is overly cautious: in low temper-
atures, it will always choose a closed design, even in cases when an open design
could suffice. This is sub-optimal, but avoids the possibility of failing the spring
thickness check at the end.

Fig. 2. Decision tables for component design (Color figure online)

Fig. 3. The constitutive elements of the “Wiper is used” decision table
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4 Constraint Tables

In this section, we extend DMN with constraint tables. This will allow a more
direct representation of the constraints that are relevant for constructing a design
and will thereby avoid the issues highlighted in the previous section.

A DMN decision table uniquely defines the value of its outputs. This is due
to two properties. First, while cells in an input column may contain different
kinds of S-FEEL expression, only single values can be used in output columns.
Therefore, if a row matches the input, the corresponding single value must be
assigned to the output. Second, DMN allows to designate a default value for each
output column: if no row matches the input, then the output takes on this default
value. Alternatively, when there is no default, the output is assigned the special
value null, which is typically taken to indicate an error in the specification.

Our new constraint tables change both of these properties. First, we allow the
same S-FEEL expressions that can be used in input columns to appear in output
columns as well. For instance, the Material of Body table in Fig. 4 states that if
a closed design is used, material M2 cannot be used, without specifying which of
the other materials should be used in its place. Second, the rows of a constraint
table are viewed as logical implications, in the sense that if the conditions on the
inputs are satisfied, then the conditions on the outputs must also be satisfied.
This means that if, for instance, none of the rows are applicable, the outputs
can take on an arbitrary value, as opposed to being forced to null (in constraint
tables, no default values can be assigned).

We introduce a new hit policy to identify constraint tables. We call this the
Every hit policy, denoted as E*, because it expresses that every one of these
implications must be satisfied. Consider, for intance, the Design Type table in
Fig. 4. Regardless of hit policy, this table states that if the pressure exceeds
150, the design type must be open. The effect of its E* hit policy is seen when
the pressure does not exceed 150. In this case, our constraint table imposes no
restriction on the design: an open and a closed design are both possible. The
Material of Body table combines the E∗ hit policy with the ability to use S-
FEEL expressions in the output. It states that if the design is closed, material
M2 cannot be used for the body. Again, if an open design is used, no constraints
are imposed on the body material.

5 The Semantics of DMN and Constraint Tables

Calvanese et al. express the formal semantics of decision tables in First-Order
Logic [3]. We will use this as a starting point for the semantics of constraint
tables, so we repeat some of this formalization here. For reasons of space, we
restrict attention to the fragment of DMN used in our running example.

Each column in a decision table corresponds to an FO constant, that is
mentioned in the column’s header. Each cell in the column represents a condition
that this constant may satisfy. Such a condition Q is transformed into an FO
formula ΦQ(x) in one free variable x. The easiest case is when the condition
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consists of a term T (a term is either a constant of an n-ary function applied
to n terms), which is short for the equality “= T”. In this case, ΦQ(x) is the
formula x = T . If Q is an interval [i, j], then ΦQ(x) is x ≥ i ∧ x ≤ j. If Q is a
list (C1, . . . , Cn) of constants, then ΦQ is x = C1 ∨ . . . ∨ x = Cn. Other kinds
of intervals and comparisons are defined in a similar way. Table 1 summarizes a
number of the possibilities.

Table 1. The FO translation ΦQ of different S-FEEL conditions Q.

Q – T not(T ) ≤ T (i, j] Q1, Q2

ΦQ(x) true x = T ¬ΦT x ≤ T x > i ∧ x ≤ j x = ΦQ1 ∨ x = ΦQ2

A row in a decision table corresponds to the conjunction of all these condition
formulas, applied to their respective column headers. For instance, the second
row of the “Design Type” table corresponds to:

Pressure > 100 ∧ Pressure ≤ 150 ∧ Temp ≥ −50 ∧ DesignType = Closed.

An entire table then corresponds to the disjunction of all its rows, e.g.:

(Pressure > 100 ∧ Pressure ≤ 150 ∧ Temp ≥ −50 ∧ DesignType = Closed)
∨(Pressure ≤ 100 ∧ true ∧ DesignType = Closed) ∨ . . .

In constraint tables, we represent each condition Q in a table row by the same
formula ΦQ, as shown in Table 1. The difference with decision tables lies in how
we combine these individual formulas ΦQ. In a constraint table, a row no longer
corresponds to a conjunction, but to an implication. To be more concrete, if the
first m columns of the table are inputs and the next n−m columns are output, a
row r = (Q1, . . . , Qm, Qm+1, Qn) corresponds to the implicative formula Φ⇒

H (r):
∧m

i=0 ΦQi
⇒ ∧n

i=0 ΦQm+i
.

For instance, the first row of the “Material of Body” table corresponds to the
formulas DesignType = Closed ⇒ MaterialOfBody �= M2. The semantics of
constraint table T is then defined as the conjunction

∧
r∈R Φ⇒

H (r).

6 Discussion

We discuss some features of our constraint table representation of the running
example in more detail.

Dimensions. DMN tools use decision tables in a strictly feed-forward way,
deriving outputs from inputs. By contrast, when we feed the constraint tables
into a FO model generation tool, this can use the constraint in different ways.
For instance, it can use the Dimensions table to derive eithe CS, OD or ID from
the other two.
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Fig. 4. Combination of constraint and decision tables

Design Type. The only physical design type constraint is that a closed design is
not possible for pressures larger than 150. Nevertheless, the corresponding table
in our original DMN representation (Fig. 3) also contained the temperature as
an input column. This was to avoid running into cases in which the shrinkage
cannot be addressed by simply adding a thick spring to an open design. By
contrast, our constraint representation states directly that a design type must
be chosen in accordance with the constraints expressed in the Design Type table
and the Shrinkage Load table, avoiding the need for the original work-around.

Materials. Each material has a minimum/maximum temperature, defined in
the Operating Conditions table. It states that, if a material is used, the operating
temperature should be within the allowed temperature range of that material.

7 Related Work

The limitations of DMN decision tables have been recognized before. In addition
to the S-FEEL language that we have used in this paper, the DMN standard
itself also puts forward the more general FEEL language to allow much more
complex expressions. However, FEEL is a full programming language with its
own syntax, and hence not really suitable for direct use by domain experts [1].

Also a number of DMN tools provide ways to deal with the limitations. For
instance, OpenRules allows to insert Java-snippets to express complex parts of
the logic. The advantage of this approach is that it still keeps the overall idea
of decision tables that can be maintained by business experts, while allowing
an IT-expert to code specific complex parts of the decision logic. In addition
to allowing imperative code snippets, several approaches also allow DMN to be
extended by more declarative representations. For instance, the aforementioned
OpenRules also offers an interface to a constraint solver [7], while [8] allows
DMN to be enriched with domain knowledge expressed in Description Logic.
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These papers share with ours the goal of extending DMN to be able to cope
with the complex knowledge that typically arises in real-world problems. How-
ever, they extend DMN’s decision tables with a completely separate formalism,
that is intended to be used by knowledge engineers rather than DMN approach.
By contrast, our goal in this paper is to investigate whether it is possible to allow
the more complex knowledge to also be expressed within DMN’s table format,
allowing it to be maintained by domain experts as well.

8 Conclusions and Future Work

The DMN standard is currently gaining traction in industry. It offers an easy-
to-use decision table format for representing decision logic, which allows domain
experts to write and maintain the models, without requiring interventions by IT
staff. Despite DMN’s increasing popularity, it often still lacks the expressivity
necessary to tackle real-world problems. In this paper, we have given an exam-
ple of such a real-world problem, we have presented a DMN model for it, and
discussed why this model is not really satisfactory.

Our main contribution is the extension of DMN with constraint tables. Cru-
cially, constraint tables allow complex knowledge to be expressed, while still
retaining the appealing visual and “syntax-less” representation that has made
DMN itself a success. While extending DMN in this way may make the language
harder to learn, we believe that domain experts will still be able to cope with
constraint tables in DMN. While perhaps building a model from scratch would
be more of a challenge, we are confident that, at least, if a model has initially
been built in collaboration with a knowledge engineer, the domain experts will
be able to maintain it without further help. Indeed, when looking at the con-
straint representation of our running example, we believe that the meaning of
each of these tables will be clear enough to domain experts to make this feasible.

Following [3], we have defined the semantics of constraint tables by a trans-
formation to first-order logic. The resulting formulas can be fed into a solver,
providing a working implementation. Currently, we still perform this transfor-
mation by hand, but we are working on a fully automatic implementation.
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Abstract. The aim of this study is to propose an innovative method-
ology to classify argumentative stances in a monologic argumentative
context. Particularly, the proposed approach shows that Tree Kernels
can be used in combination with traditional textual vectorization to dis-
criminate between different stances of opposition without the need of
extracting highly engineered features. This can be useful in many Argu-
ment Mining sub-tasks. In particular, this work explores the possibility
of classifying opposition stances by training multiple classifiers to reach
different degrees of granularity. Noticeably, discriminating support and
opposition stances can be particularly useful when trying to detect Argu-
ment Schemes, one of the most challenging sub-task in the Argument
Mining pipeline. In this sense, the approach can be also considered as
an attempt to classify stances of opposition that are related to specific
Argument Schemes.

Keywords: Argument Mining · Tree Kernels · Argument Schemes

1 Introduction

In many legal systems, there is an obligation to open a public review on the
bill during the legislative process or on technical-administrative guidelines. In
the information society, the attitude to open web portals for collecting opinions
and comments from citizens is very frequent and also social media have recently
been used to support participation. One of the main problems of this approach
is to lose the argumentative threads of posts and to have, conversely, a flat chat
flow. It is extremely difficult for the decision maker to recompose a discussion
with hundreds of posts, or to extract a useful map of pros and cons from the
debate. Moreover, it is difficult to recognize arguments and counter-arguments,
or fallacies like “Slippery Slope” that produces polarization and emphasizes the
discussion. This paper presents a method which is based on Argument Schemes
and uses a tree kernel approach for detecting “Slippery Slope” and other argu-
mentative stances of opposition. A use case in legal domain was considered:
a corpus of monologic texts gathered from the website of Nevada Legislature,
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specifically, from the opinions against the Senate Bill 165, which aims to regulate
Euthanasia. The paper is organized as follows: Sect. 2 introduces the main idea
of the solution and the methodology; Sect. 3 reports the state of the art and
related works; Sect. 4 describes the corpus and the annotation; Sect. 5 exposes
the experiment; Sect. 6 reports the results; the Sect. 7 presents conclusions and
future works.

2 Methodology

2.1 The Argument Mining Pipeline

The main target of Argument Mining (AM) is extracting argumentative units,
and their relations, from discourse [2,12]. A major characteristic of AM is its
multidisciplinary nature, which physiologically fosters cooperation among differ-
ent fields.

The reason why AM is prone to be multidisciplinary is that it is a combina-
tion of multifaceted problems. For the same reason, AM is often described as a
pipeline (with much research focused on one or more of the involved steps).

For the purposes of this paper, we will refer to the two-step pipeline proposed
by Cabrio and Villata [2], where the first step is the identification of arguments
and the second step is the prediction of argument relations.

There can be a further step to be undertaken in an ideal AM pipeline, just
after having detected the argumentative units and their relations (which include
not only premises and conclusions but also heterogeneous relations such as sup-
port and attack). This step is that of fitting the “map” of the argumentative
relations into a suitable Argument Scheme (e.g., argument from Example, “Slip-
pery Slope” argument, argument from Expert Opinion).

As argued in this paper, a key step towards the achievement of this complex
AM sub-task can be the creation of classifiers able to detect argumentative units
that can be specific of an Argument Scheme.

The present work describes a solution for a classification problem. In a nut-
shell, the described approach uses Tree Kernels (TKs, described in [15]) to clas-
sify stances of opposition. Some of the classes of the classification discussed in this
work are markedly related to specific Argument Schemes, which means that this
classification solution can be exploited as a way to detect Argument Schemes,
a highly complex AM sub-task. Particularly, the proposed methodology aims to
detect the famous “Slippery slope” argument and other kind of argumentative
oppositions, in a monologic context.

2.2 Tree Kernels Methods

Kernel machines are a well-known typology of classifiers, which also includes
support-vector machine (SVM). In general, a kernel can be considered as a sim-
ilarity measure capable to generating an implicit mapping of the inputs of a
vector space X into a high-dimensional space V. In other words, a kernel can be
represented as an implicit mapping ϕ : X → V.
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The kernel function k(x,x′) (where x and x′ belong to the input space X )
can be represented as an inner product in a high-dimensional space V and can
be written as follows:

k(x,x′) = 〈ϕ(x), ϕ(x′)〉V (1)

Where 〈., .〉V must be considered an inner product. Given a training dataset
composed of n examples {(xi, yi)}ni=1, where y ∈ {c1, c2} with c1 and c2 being
the two classes of a binary classification, the final classifier ŷ can be calculated
in the following way:

ŷ =
n∑

i=1

wiyik(xi,x′) (2)

Where wi are the weights learned by the trained algorithm. Finally, exploiting
what is described in Eq. 1, the Eq. 2 becomes:

ŷ =
n∑

i=1

wiyiϕ(x).ϕ(x′) (3)

As far as TKs are concerned, they are a particular group of kernel functions
specifically designed to operate on tree-structured data. In other words, a TK
can be considered a similarity measure able to evaluate the differences between
two trees.

Importantly, before selecting the appropriate TK function, there are two
important steps to follow. The first step is to select the type of tree representa-
tion. For example, in this work, sentences have been converted into a particular
kind of tree-structured representation called Grammatical Relation Centered
Tree (GRCT), which involves PoS-Tag units and lexical terms. A description of
various kind of tree representations can be found in Croce et al. [3]. The second
step is to choose what type of substructures will be involved in the calcula-
tions. In fact, since TKs calculate the similarities of tree structures by watching
at their fragments, it is crucial to establish what kind of substructures must
be considered. In this work, the above-mentioned GRCT structures have been
divided into Partial Trees (PTs) fragments, where each node is composed of any
possible sub-tree, partial or not. Noticeably, this kind of substructures are able
to provide a high generalization. The resulting TK function is called Partial Tree
Kernel (PTK) and can be described as follows [15]:

K(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

Δ(n1, n2) (4)

The above equation describes the kernel which calculates the similarity
between the trees T1 and T2, where NT1 and NT2 are their respective sets of
nodes and Δ(n1, n2) is the number of common fragments in nodes n1 and n2.
More information about fragments of trees can be found in Moschitti [15] and
Nguyen et al. [17].
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The reason for using Tree Kernels is that they can be able to classify tree-
structured data (in this case, tree-structured sentences), without the need of
extracting highly engineered features. This is possible because Tree Kernels are
able to measure the similarity among tree-sentences by watching at the frag-
ments of their tree-representations. Intuitively, tree portions can be thought as
“features” in a high dimensional space.

3 Related Works

The aim of this work is to classify argumentative opposition and facilitate Argu-
ment Scheme detection. Currently, only a few studies contribute to this part of
the AM pipeline. Feng and Hirst [4], for instance, achieved an accuracy ranging
from 63 to 91% in one-against-others classification and 80–94% in pairwise clas-
sification using a complex pipeline of classifiers. Lawrence and Reed [8] deployed
highly engineered features to achieve F-scores ranging from 0.78 to 0.91. The
present study, however, is an attempt to perform a simpler task of classifica-
tion avoiding the use of highly-engineered features while keeping a high level of
generalization. In fact, the present methodology shows that Tree Kernels can be
used not only to classify argumentative stances, but also to facilitate Argument
Scheme detection, without requiring highly-engineered features and keeping a
high degree of generalization.

TKs have already been used successfully in several NLP-related tasks (e.g.,
question answering [6], metaphor identification [7], semantic role labelling [16]).
However, the domain of AM has often preferred methodologies which resort to
highly engineered feature sets, while the applications of TKs have been relatively
limited. In spite of this, the results of these applications have been strongly
encouraging, showing the ability of TKs to perform well. Rooney et al. [18] is
one of the first studies that used TKs (in their study, they employed TKs and
Part-of-Speech tags sequences). In 2015, Lippi and Torroni [12] suggested that
TKs could be used for the detection of arguments. An year after, they presented
MARGOT, a web application tool for the automatic extraction of arguments
from text [13]. Importantly, TKs have been used in a wide range of domains.
For instance, important results have been presented in the legal domain [10,11],
while Mayer et al. [14] used TKs to analyze Clinical Trials.

The present study is among the first ones that use TKs to both classify argu-
mentative evidences (premises) and to facilitate Argument Schemes detection.
This approach is the continuation of a previous work (currently under publica-
tion [9]), which aimed at discriminating between different kinds of argumenta-
tive support (supporting evidences). These two works are an attempt to find a
working methodology to discriminate among stances of support and stances of
opposition by using Tree Kernels. Being able to classify different kinds of sup-
port and opposition is a crucial aspect when dealing with the classification of
Argument Schemes.
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4 Corpus and Annotation

The analyzed sentences have been gathered from public available data. A group
of 638 sentences has been extracted and annotated from the “Opinion Poll”
section of the official website of Nevada Legislature. More specifically, from the
opinions against the Senate Bill 165. Clearly, being informal texts, the sentences
are sometimes incomplete or segmented and mistakes are frequent, which makes
the annotation task particularly complex.

Following an empirical analysis, we tried to select groups of sentences which
could represent different types of reason for the opposition stance. Watching
at those reasons and at their similarities, we selected those groups of reasons
which had common characteristics at different levels of granularity. After this
preliminary empirical analysis, each sentence of the corpus has been annotated
by hand following the classes listed in Table 1.

This annotation scheme is designed to achieve different degrees of granularity
of classification by training multiple classifiers and grouping some of the classes
in superclasses, as described in Table 2. The classes PERSONAL EXPERIENCE
and NOT PERSONAL EXPERIENCE have not been used yet, but they could
give a contribution as soon as the process of annotation will be completed. Also
the distinction between JUDGEMENTS SIMPLE and JUDGEMENT MORAL
has not been exploited yet.

Table 1. The annotation classes with some examples.

Classes Examples

SLIPPERY SLOPE - This would turn physicians into legal
murderers

JUDGEMENT SIMPLE - This bill is terrible

JUDGEMENT MORAL - This bill is an affront to human dignity

MORAL ASSUMPTIONS - Only God should decide when a person is
supposed to die

- Being a Christian, I cannot accept this bill

- This is totally against the Hippocratic Oath!

STUDY STATISTICS - Our country already experienced 20%

increase of suicide rate

ANECDOTAL - The bible says that this is wrong

(PERSONAL EXPERIENCE) - My husband struggled a lot of years and [...]

(NOT PERSONAL EXPERIENCE) - In Oregon this bill created the chaos

OTHER/NONE All the sentences that does not belong to the
above classes

Even if the process of annotation is not yet completed, we can empirically
state that these are some of the most frequent classes that characterize the
comments against the Bill 165. Those comments which do not give any clue or
explanation for the opposition (e.g. exhortations like “Please, vote no!”) have
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Table 2. The granularity levels and the grouping options.

Granularity 1 Granularity 2 Granularity 3 Granularity 4

SLIPPERY SLOPE SLIPPERY SLOPE SLIPPERY SLOPE SLIPPERY SLOPE

OTHER/NONE TESTIMONY TESTIMONY ANECDOTAL

STUDY STATISTICS

OTHER/NONE JUDGEMENTS MORAL JUDGEMENT(sim.+mor.)

MORAL ASSUMPTIONS

OTHER/NONE OTHER/NONE

been considered in the class OTHER/NONE. The reason for this choice is that
we aim to find out how debating people explain their opposition in a monologic
environment. The focus of this annotation is why people are expressing a stance
of opposition.

5 The Experiment

The annotation process, which gathered 638 sentences so far, is still ongoing
under the supervision of experts of domain. The number of sentences grouped
by class is described in Table 3.

Table 3. Number of sentences depending on class and granularity.

Classes Gr.4 Gr.3 Gr.2 Gr.1
SLIPPERY SLOPE 82
STUDY STATISTICS 26

556

ANECDOTAL
107(PERSONAL EXPERIENCE) 133

(NOT PERSONAL EXPERIENCE)
JUDGEMENT SIMPLE

54
423

JUDGEMENT MORAL 140
MORAL ASSUMPTIONS 86
OTHER/NONE 283

After having extracted the sentences, a Grammatical Relation Centered Tree
(GRCT) representation was created for each sentence of the corpus. Further-
more, a TFIDF (term frequency-inverse document frequency) vectorization has
been applied. In this regard, we tried three different TFIDF vectorizations con-
sidering monograms, 2-grams and 3-grams, in order to assess the effects of n-
grams on the results.

In other words, the sentences of the corpus were converted into two kinds
of “representation”, with each labelled example having both a Grammatical
Relation Centered Tree and a TFIDF BoW/n-grams representation (which, in
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SYNT root

SYNT nsubj

POS DT

LEX this::d

SYNT cop

POS VBZ

LEX be::v

SYNT det

POS DT

LEX a::d

SYNT amod

POS JJ

LEX slippery::j

POS NN

LEX slope::n

SYNT punct

POS .

LEX .::.

Fig. 1. The GCRT representation for the sentence “This is a slippery slope.”

turn, can consider monograms, 2-grams and 3-grams). Figure 1 shows the GCRT
representation for the sentence “This is a slippery slope.”.

For each level of granularity, a classifier has been trained on the three different
TFIDF vectorizations (monograms, 2-grams, and 3-grams), which resulted in
twelve possible combinations.

All these classifiers were trained on the GRCT and TFIDF representations
by using KeLP [5]. This operation was performed by randomly dividing the
corpus of 638 sentences into a test set of 191 sentences and a training set of
446 sentences and by using a One-vs-All classification, which is one of the most
common approach for multi-class problems. Noticeably, KeLP allows to combine
multiple kernel functions. In this work, the classification algorithm was built as
a combination of a Linear Kernel and a Partial Tree Kernel (PTK) [15], with
the first kernel related to the TFIDF vectors and the second kernel related to
the GRCT representations. More details on kernel combinations can be found
in Shawe-Taylor and Cristianini [19].

6 Results

The scores of all the classifiers can be seen in Table 4, grouped by granularity.
Also, the mean F1 scores of a stratified baseline were added. Given the unbal-
anced distribution of classes, a stratified baseline was preferred to others, because
it reflects the natural distribution of classes in the training set.

Overall, when trying to achieve a deeper granularity, the mean F1 scores of
the classifiers decrease. More precisely, the Mean F1 scores ranges from 0.76 to
0.81 at granularity 1, from 0.76 to 0.78 at granularity 2, from 0.70 to 0.71 for
granularity 3, from 0.53 to 0.58 for granularity 4.

The classifiers showing best performances are probably those of granularity
2 and 3, since they are the most balanced in terms of number of instances.
Noticeably, monograms show better performances at granularity 1 and 2, while
2-grams and 3-grams outperform monograms at granularity 4.

While the mean F1 scores of the baseline are low especially at higher degrees
of granularity (showing that the classification attempted in this study is not
trivial), all the other classifications outperformed the stratified baseline, showing
a good ability of the proposed classifiers to solve the classification problem.
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Table 4. The F1 scores of the classifiers grouped by granularity (P = Precision, R =
Recall, F1 = F1 score). Close to the class name, the number of instances is specified.
SS = SLIPPERY SLOPE, O = OTHER, T = TESTIMONY, JM = JUDGEMENTS
AND MORAL, ST = STUDY STATISTICS, A = ANECDOTAL, MA = MORAL
ASSUMPTIONS, J = JUDGEMENTS.

Classes TK+Monograms TK+2-grams TK+3-grams Stratified baseline
P R F1 P R F1 P R F1

Granularity 1

SS (82) 0.75 0.60 0.67 0.79 0.44 0.56 0.79 0.44 0.56
O (556) 0.94 0.97 0.96 0.92 0.98 0.95 0.92 0.98 0.95

Mean F1 0.81 0.76 0.76 0.54
Granularity 2

SS (82) 0.76 0.64 0.70 0.79 0.60 0.68 0.79 0.60 0.68
T (133) 0.68 0.79 0.73 0.67 0.71 0.69 0.67 0.71 0.69
O (423) 0.92 0.90 0.91 0.89 0.92 0.90 0.89 0.92 0.90

Mean F1 0.78 0.76 0.76 0.31

Granularity 3

SS (82) 0.76 0.64 0.70 0.71 0.60 0.65 0.78 0.56 0.65
T (133) 0.67 0.85 0.75 0.65 0.82 0.73 0.67 0.82 0.74
JM (140) 0.66 0.49 0.56 0.72 0.55 0.63 0.75 0.57 0.65
O (283) 0.75 0.81 0.78 0.77 0.82 0.80 0.77 0.86 0.81

Mean F1 0.70 0.70 0.71 0.20

Granularity 4

SS (82) 0.72 0.72 0.72 0.69 0.72 0.71 0.68 0.68 0.68
A (107) 0.51 0.85 0.64 0.54 0.85 0.66 0.58 0.85 0.69
ST (26) 0.50 0.13 0.20 0.50 0.13 0.20 0.59 0.13 0.20
J (54) 0.57 0.21 0.31 0.88 0.37 0.52 0.86 0.32 0.46
MA (86) 0.62 0.46 0.53 0.75 0.54 0.63 0.75 0.54 0.63
O (283) 0.74 0.81 0.78 0.76 0.84 0.79 0.74 0.86 0.79

Mean F1 0.53 0.58 0.57 0.21

7 Conclusions and Future Work

The objective of this study is to show that the Tree Kernels (TKs) can be suc-
cessfully combined with traditional features such as TFIDF n-grams to create
classifiers able to differentiate among different kinds of argumentative stances of
opposition. This differentiation can facilitate the detection of those argumenta-
tive units that are specifically related to Argument Schemes (e.g., argument from
Expert Opinion, “Slippery Slope” argument). Since Tree Kernels can calculate
the similarity between tree-structured sentences by comparing their fragments,
this kind of classification can be performed without the need of extracting sophis-
ticated features.
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All the classifiers were created combining a Partial Tree Kernel (PTK) related
to the GCRT representations and a linear kernel related to the TFIDF BoW/n-
gram vector representations.

This kind of classification can be applied to premises to facilitate the dis-
crimination among different Argument Schemes, which is a crucial sub-task in
the Argument Mining pipeline. In the future, we will compare TKs performances
with the performances of traditional textual representation, to assess whether
and to what extent TKs outperform traditional features. Another important
future improvement involves the modelization of Argument Schemes [21] in
LegalRuleML [1] in order to manage, using the above mentioned Tree Kernels
methods, the attacks to some parts of the “Slippery Slope arguments” [20] and so
to apply defeasible legal reasoning in order to defeat some precedents in this kind
of Argument Scheme. A serialization in LegalRuleML of a “Slippery Slope” argu-
ment using constitutive and prescriptive rules could develop strategies to attack
its premises, or to attack the inferential link between premises and conclusion,
or to attack the conclusion directly by posing a counterargument against it.
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Abstract. Wide datasets are usually used for training and validating
neural networks, which can be later tuned in order to correct their final
behaviors according to a few number of test cases proposed by users. In
this paper we show how the FLOPER system developed in our research
group is able to perform this last task after coding a neural network with
a fuzzy logic language where program rules extend the classical notion
of clause by including on their bodies both fuzzy connectives (useful for
modeling activation functions of neurons) and truth degrees (associated
with weights and biases in neural networks). We present an online tool
which helps to select such operators and values in an automatic way,
accomplishing with our recent technique for tuning this kind of fuzzy
programs. Moreover, our experimental results reveal that our tool gen-
erates the choices that better fit user’s preferences in a very efficient way
and producing relevant improvements on tuned neural networks.

Keywords: Neural networks · Fuzzy logic programming · Tuning

1 Introduction

In order to deal with partial truth and reasoning with uncertainty in a natural
way, many fuzzy logic programming languages implement (extended versions
of) the resolution principle introduced by Lee [5], such as Elf-Prolog [3], Fril [1],
MALP [7] and FASILL [4]. For the last couple of languages, we have developed
the FLOPER system devoted to execute, debug, unfold and tune fuzzy programs.

In this paper we focus on the so-called multi-adjoint logic programming app-
roach MALP [7] a powerful and promising approach in the area of fuzzy logic
programming. In this framework, a program can be seen as a set of rules whose
bodies admit the presence of connectives for linking atoms and/or truth degrees
and each rule can also be annotated by a truth degree.

When specifying a MALP program, it might sometimes be difficult to assign
weights—truth degrees—to program rules, as well as to determine the right
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connectives in their bodies. In order to overcome this drawback, in [8,9] we have
recently introduced a symbolic extension of MALP programs called symbolic
multi-adjoint logic programming (sMALP). Here, we can write rules containing
symbolic truth degrees and symbolic connectives, i.e., connectives which are not
defined on its associated lattice. These sMALP programs can tuned w.r.t. a given
set of test cases, thus easing what is considered the most difficult part of the
process: the specification of the right weights and connectives for each rule.

The main goal of this paper consists in the application of our tuning technique
to fuzzy logic programs modeling neural networks (visit the online tool https://
dectau.uclm.es/fasill/sandbox?q=nn). Unlike the traditional training process
used for building and validating neural networks and other computational mod-
els, here we focus on tuning key components (weights and activation functions)
of previously trained models, in order to adjust the behavior of the final neural
networks w.r.t. a small set of test cases. It is important to note here that the
tuning process is able to guess not only weights, as training techniques also do,
but also activation functions, which are not altered at training time.

Keras [2] is a high-level, open source neural network library written in
Python. It is designed to enable the fast experimentation of deep neural net-
works in a modular, extensible and user-friendly way. In this paper we will focus
on a basic neural network architecture in order to simplify our explanations: the
MLP or multilayer perceptron [6] (see Fig. 3).

The structure of this paper is as follows. Section 2 is devoted to translate
Keras models representing fully trained neural networks to MALP programs.
Next, before applying our tuning techniques in order to correct some possible
structural deficiencies of the MLP, we show in Sect. 3 how to transform the
associated MALP program into a symbolic (sMALP) one, thus allowing us to
automatically tune its symbolic components (i.e. some random weights/biases
and activation functions) according to a set of test cases proposed by users.
Finally, in Sect. 4 we conclude by showing some lines for future work.

2 Coding Neural Networks as MALP Rules

In this section, we address the problem of translating neural networks to MALP
rules by taking into account the following guidelines:

– Activation functions: since a huge amount of activation functions have been
created during the last four decades, it is decisive to select an appropriate
subset of them for our initial prototype.

– Weights and biases: there are two essential parts of every neuron, and it is
important to choose a good data structure for representing them.

– Structure of the network: we will follow the universal representation of a multi-
layer perceptron, in which each node in one layer connects with a certain weight
to any other node in the following layer (except for nodes in the output layer).

– Lattice of truth degrees and connectives: in order to implement a fuzzy logic
program, it is necessary to define a complete lattice where all our activation
functions are modeled.

https://dectau.uclm.es/fasill/sandbox?q=nn
https://dectau.uclm.es/fasill/sandbox?q=nn
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Fig. 1. Screenshot of the input area of the FLOPER online tool.

As shown in Fig. 1, MALP always associates to each fuzzy program a lattice
of truth degrees. It consists on a set of Prolog clauses intended to define three
mandatory predicates for identifying the bottom and top elements of the lattice,
as well as for testing its members (valid truth degrees). In our particular case,
the following set of clauses is required:

bot(-infty). top(+ infty).
member (+ infty). member(-infty). member(X) :- number(X).

Moreover, it is also compulsory to define the ordering relation among truth
degrees (in particular, it suffices by testing whether the first truth degree is
less or equal than the second one, for each pair of elements) and computing the
distance between each couple of truth degrees, being this last predicate especially
important when applying our tuning techniques in the next section:

leq(_, +infty). leq(-infty , _). leq(X, Y) :- X =< Y.
distance(X,Y,Z) :- Z is abs(Y-X).

Next, the lattice is completed by adding as much definitions as needed for fuzzy
connectives (also called aggregators, which in essence are operators acting on
truth degrees) modeling activation functions in our case, as described by Prolog
clauses such as the following one referring to the softplus function:

agr_softplus (+infty ,+ infty).
agr_softplus(-infty ,-infty).
agr_softplus(X,Y) :- Y is log (1+ exp(X)).

The way in which these functions are defined is very important in order to create
a consistent lattice. So, it is necessary to define appropriate boundaries for the
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analytical formula describing each function. In this paper, we will work with ten
popular activation functions, whose analytic definitions appear in Fig. 2.

@sigmoid(x) � 1
1+e−

−

x @softplus(x) � ln(1 + ex)

@relu(x) �
{
0 if x < 0
x if x ≥ 0 @leaky relu(x) �

{
0.01x if x < 0
x if x ≥ 0

@softsign(x) � 1
1+|x| @sinusoid(x) �

{
1 if x = 0
sin(x)

x
if x �= 0

@arctan(x) � arctan(x) @tanh(x) � tanh(x)

@binary(x) �
{
1 if x > 0
0 if x ≤ 0 @identity(x) � x

Fig. 2. Standard activation functions used in neural networks.

The final step of the translation procedure simply transforms all the content
given by the intermediate data structure into MALP rules. Due to this fact, it
is not necessary to explicitly declare a rule for each neuron in input nodes, so
they will always be codified in the first hidden layer. Figure 3 shows the three
patters followed by the rules modeling the network, which need to be adapted
to the MALP syntax, as we are going to see in the following example.

Example 1. For the MLP trained with the Iris Dataset using Keras, the fourth
neuron of the hidden layer can be represented as the following MALP rule, whose
head and body are connected by the <- symbol and the names of connectives
always start by @ (note, for instance, that @prod and @add obviously refer to the
basic product and sum operators):

node_2_4(X1 , X2 , X3 , X4) <-
@relu(@add (0.0, @add(

@prod ( -0.39125273 , X1), @add(
@prod (0.4458459 , X2), @add(

@prod ( -0.31539902 , X3),
@prod ( -0.4348098 , X4)))))).

This rule models a node that receives four inputs directly from the input layer.
The activation function is ReLU, given by the aggregator @relu. The first num-
ber, that is 0.0, defines the bias of the network, and the remaining ones that
come along with each parent node are the weights for the different inputs of the
neuron. For other neurons on inner layers, the corresponding MALP rules are
quite similar to this one.

Finally, the following MALP rule (which has been shortened for readability
reasons) codes a neuron in the output layer and it represents the concrete class
under consideration, for instance, iris setosa:



194 G. Moreno et al.

iris_setosa(X1, X2 , X3 , X4) <-
@sigmoid(@add ( -0.011225972 ,

@add(@prod (1.4837127 , node_2_3(X1 ,X2 ,X3 ,X4)),
...)))))).

Here, the activation function is the sigmoid and the bias for this neuron corre-
sponds to the negative value −0.011225972.

3 Tuning Neural Networks Through Symbolic MALP
Rules

As detailed in [8,9], it is possible to transform a MALP program into a symbolic
one, called sMALP program in brief, by simply replacing truth degrees in program

X1

...

Xn

H1,1

...

H1,u

H2,1

...

H2,v

. . .

Hk,1

...

Hk,w

Y1

...

Ym

b1,1

b1,u

b2,1

b2,v

bk,1

bk,w

b1

bm

w1,(1,1)

wn,(1,u)

w(1,1),(2,1)

w(1,u),(2,v)

w(k,1),1

w(k,w),m

A) For each node H1,i (with activation function f1,i) in the first hidden layer, for
1 ≤ i ≤ u:
node1,i(X1, . . . , Xn) ← f1,i(b1,i + w1,(1,i) ∗ X1 + · · · + wn,(1,i) ∗ Xn)

B) For each node Hj,i (with activation function fj,i) in any other hidden layer, for
2 ≤ j ≤ k and 1 ≤ i ≤ q(j), where q(j) refers to the number of nodes in the hidden
layer j:
nodej,i(X1, . . . , Xn) ← fj,i(bj,i + w(j−1,1),(j,i) ∗ nodej−1,1(X1, . . . , Xn) + · · · +
w(j−1,q(j−1)),(j,i) ∗ nodej−1,q(j−1)(X1, . . . , Xn))

C) For each class Yi in the output layer (with activation function fi), for 1 ≤ i ≤ m:
classi(X1, . . . , Xn) ← fi(bi + w(k,1),i ∗ nodek,1(X1, . . . , Xn) + · · · + w(k,w),i ∗
nodek,w(X1, . . . , Xn))

Fig. 3. Rule schemes for coding a neural network.
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rules by symbolic constants with shape #identifier. In order to evaluate these pro-
grams, in [8] we have introduced a symbolic operational semantics that delays the
evaluation of symbolic expressions. Therefore, a symbolic computed answer could
now include symbolic (unknown) truth values. We have proved the correctness of
the approach, i.e., the fact that using the symbolic semantics and then replacing
the unknown values by concrete ones gives the same result than replacing these
values in the original sMALP program and, then, applying the concrete semantics
on the resulting MALP program. Moreover, we show how symbolic programs can
be used to tune a program w.r.t. a given set of test cases.

The precision of our tuning algorithm described in [8] and implemented in
[9] depends on the set of truth degrees that can be associated to the symbolic
constants in the sMALP program at tuning time (when trying to minimize the
deviation between the computed answers and the test cases). Obviously, the
larger the domain of values is, the more precise the results are (but the algorithm
is more expensive, of course). This set is expressed as a list in the Prolog clause
defining predicate members inside the lattice of truth degrees associated to the
program. In the examples we are going to see in this section, we will try to guess
the best symbolic substitutions with the following list of valid truth degrees:

members ([0.95 , 0.50, 0.25, -0.25, -0.50, -0.95]).

Our algorithm uses thresholding-based techniques and represents a much
more efficient method for tuning the fuzzy parameters of a program than repeat-
edly executing the program from scratch. The results of an experimental eval-
uation reported in [8] (using a desktop computer equipped with an i3-2310M
CPU @ 2.10 GHz and 4.00 GB RAM) considers some tuning examples dealing
with 9000 different symbolic substitutions and 11 symbolic constants, where the
problem is solved in just a few seconds.

Before illustrating some tuning examples we have worked with the MALP
program obtained after translating the Keras model associated to the neural
network seen in Example 1. As expected, we got an error of 103.82526 with
the original neural network1, which motivates us for tuning the original MALP
program after introducing symbolic constants on it (thus becoming a sMALP
program). In Fig. 4 we can see a screenshot of the online tool we have developed
for testing our tuning tool freely available at https://dectau.uclm.es/floper/nn.
In order to find the best substitution for the symbolic constants just introduced
in the sMALP program, the first step before launching the tuning process consists
of introducing a relevant set of test cases. In this paper we focus on the complete
Iris Dataset. As shown in Fig. 4, each test case adopts the following shape:

1 -> iris_setosa (5.1, 3.5, 1.4, 0.2).
0 -> iris_versicolor (5.1, 3.5, 1.4, 0.2).
0 -> iris_virginica (5.1, 3.5, 1.4, 0.2).

1 This error is a non-negative real number (zero in the best case) obtained as the
sum of the deviations of all registers in the dataset used at training time w.r.t. the
execution of the trained network with the same cases.

https://dectau.uclm.es/floper/nn
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Fig. 4. Screenshot of the FLOPER online tool after tuning a symbolic program.

This case means that an instance with parameters 5.1, 3.5, 1.4 and 0.2
always belongs to the class iris setosa, and never belongs to the groups
iris versicolor and iris virginica.

Example 2. In the MALP representation seen in Example 1, we find different
activation functions inside the same layer and, after introducing the couple of
symbolic aggregators #@s1 (in all nodes of the second layer) and #@s2 (in all
nodes of the last layer), we obtain the following sMALP code:

node_2_4(X1, X2 , X3, X4) <-
#@s1(@add (0.0, @add(

@prod ( -0.39125273 , X1), @add(
@prod (0.4458459 , X2), @add(

@prod ( -0.31539902 , X3),
@prod ( -0.4348098 , X4)))))).

iris_setosa(X1, X2 , X3 , X4) <-
#@s2(@add ( -0.011225972 , @add(

@prod (1.4837127 , node_3_2(X1 ,X2 ,X3 ,X4)),
...)))))).

Note that this sMALP program differs from the initial MALP one by the fact
that the original @relu and @sigmoid aggregators have been changed now by
the symbolic aggregators #@s1 and #@s2, respectively. Next, the tuning pro-
cess needs a few milliseconds to find the symbolic substitution {#@s1/@identity,
#@s2/@sigmoid}, as seen in Fig. 4. Once applied this substitution to the sym-
bolic program, we obtain a final MALP program whose further execution would
decrease the error to 98.16823, which means an improvement of 5.45%.
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Focusing on the second layer, note that in the tuned MLP we prefer the use
of the identity activation function instead of the original @relu aggregator. This
is due to the fact that, since some input values of the neuron can be negative,
the identity function is able to produce better results than the sigmoid one.

4 Conclusions and Future Work

In this paper we have used the FLOPER system developed in our research group
for designing a flexible application coping now with neural networks. After imple-
menting an automatic technique for translating MLP’s to the fuzzy logic lan-
guage MALP, we have seen that some (random) weights/biases and activation
functions of such neural networks can be safely tuned in order to satisfy users
expectations according their proposed test cases.

With the online tool at https://dectau.uclm.es/fasill/sandbox?q=nn, we
have just initiated a new research line in our group, where some pending task
are: manipulating neural networks beyond the simpler MLP case, dealing with
more activation functions, increasing the efficiency of the tuning method by using
SAT/SMT solvers, experimenting with other real problems and so on.
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Abstract. We consider the problem of querying key-value stores in the
presence of semantic constraints, expressed as rules on keys, whose pur-
pose is to establish a high-level view over a collection of legacy databases.
We focus on the rewriting-based approach for data access, which is
the most suitable for the key-value store setting because of the limited
expressivity of the data model employed by such systems. Our main con-
tribution is a parallel technique for rewriting and evaluating tree-shaped
queries under constraints which is able to speed up query answering. We
implemented and evaluated our parallel technique. Results show signifi-
cant performance gains compared to the baseline sequential approach.

1 Introduction

Semantic constraints are knowledge on the structure and on the domain of data
which are used in contexts such as data integration and ontology mediated query
answering to establish a unified view of a collection of a database. Constraints
allow users to better exploit their data thanks to the possibility of formulating
high-level queries, which use a vocabulary richer than that of the single sources.
In the last decade, the use of constraints in the form of ontologies has been
intensively studied in the knowledge representation domain [3,4,10]. A key factor
in the rise of the paradigm has been the reuse of off-the-shelf data management
systems as the underlying physical layer for querying data under constraints.
This resulted in a successful use of the paradigm especially on top of relational
and RDF systems [5]. However, the use of constraints to query NOSQL systems
like key-value stores (e.g., MongoDB [1], CouchDB [2]) has just begun to be
investigated [6–8]. Key-value stores are designed to support data-intensive tasks
on collections of JSON records, this last one being a language which is becoming
the new de facto standard for data exchange.

To illustrate the use of semantic constraints for querying key-value records,
consider the records in Example 1 which describe university departments. Query
Q1 selects all department records having a professor with some contact details.
Query Q2 selects all computer science departments with a director. It can be
easily seen that these two queries do not match any of the records. Indeed, Q1

asks for the key contact which is not used in both r1 and r2, while Q2 asks, on
c© Springer Nature Switzerland AG 2019
P. Fodor et al. (Eds.): RuleML+RR 2019, LNCS 11784, pp. 198–206, 2019.
https://doi.org/10.1007/978-3-030-31095-0_15
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the one hand, for the key director, which is not used in r1 and, on the other hand,
for the value “CS” for the department name, which does not match that of r2.

(r1) { dept : {
name : “CS” ,
prof : { name : “Bob” ,

mail : “bob@uni.com” } } }

(r2) { dept : {
name : “Math” ,
director : { name : “Alice” ,

phone : null } } }

(Q1) find({ dept : { prof : { contact : $exists } } })
(Q2) find({ dept : { name : “CS”, director : $exists } })

(σ1) phone → contact
(σ2) mail → contact
(σ3) director → prof
(σ4) prof → ∃director

Example 1. Data, queries, and rules.

This is where semantic constraints come into play. Indeed, although the key
contact is not used in the records, this can be seen as a high-level key generalizing
both phone and mail, as captured by rules σ1 and σ2. Therefore, by taking into
account these semantic constraints, r1 satisfies the query Q1. Moreover, since
σ3 says that the director of a department must be a professor, also r2 satisfies
Q2. Finally, σ4 says that whenever a professor is present, then a director exists.
Again, with this rule in hand, r1 would also satisfy Q2. This example outlines
how semantic constraints allow users to better exploit their data.

The two main algorithmic approaches usually considered to account for
semantic constraints during data access are materialization and query rewrit-
ing. Intuitively speaking, for constraints of the form k −→ k′, materialization
means creating a fresh copy of the value of k and then associating this copy to
the key k′. It is important to notice that, being the JSON data model based on
trees, materialization can result in exponential blowups of the data. Also, not
only it is computationally expensive to repeatedly copy subrecords, but it is also
hard to efficiently implement such mechanism on top of key-value stores whose
primitives, despite handling bulk record insertions, are not oriented towards the
update of a single record. This is exacerbated by the fact that data is voluminous.
In contrast, queries are usually small. From this perspective, it is thus interest-
ing to explore query rewriting approaches that can take into account semantic
constraints while accessing data without modifying the data sources. The idea of
query rewriting is to propagate constraints “into the query”. This process yields
a set (or a union) of rewritings whose answers over the input database is exactly
the same as the initial query on the database where materialization would have
been done. Being rewritings independent from the sources, this approach is well
suited for accessing legacy databases, in particular with read-only access rights.

The query facilities of key-value stores systems include primarily a language
for selecting records matching several conditions based on tree-shaped queries
called find() queries [1,2]. The MongoDB store also includes an expressive lan-
guage for aggregate queries which is equivalent to nested relational algebra [9].
In this work, we focus our attention on the evaluation of find() queries under
single-key constraints built on pairs of keys, as those of Example 1. It is worth
noting that NOSQL systems still lack the standardization of a common query
language and therefore of a standard syntax and semantics for queries. There-
fore, in the formal development presented in Sect. 2, we chose to abstract away
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from the conventions of existing systems and adopt a syntax for queries akin to
that of key-value records and a natural semantics based on tree-homomorphisms.

dept

name prof

name mail“CS”

“Bob”“bob@uni.com”

dept

name director

name phone“Math”

“Alice” null

dept

prof

contact

$exists

dept

name director

“CS” $exists

(r1) (r2) (Q1) (Q2)

Fig. 1. Tree representation of records and queries of Example 1

In spite of the many advantages we already mentioned it is understood that,
depending on the target language chosen for the rewritings, the query rewriting
approach can suffer from combinatorial explosions - even for rule languages with
a limited expressivity [4]. This happens as well for the key-value store languages.
This means that the rewriting set of a query to generate may be large, which
has a consequent impact on the slowing down of query answering.

To mitigate this problem, we present a novel technique for parallelizing both
the generation and the evaluation of the rewriting set of a query serving as
the basis for distributed query evaluation under constraints. Our solution is
presented in Sect. 3, and relies on a schema for encoding the possible rewritings
of a query on an integer interval. This allows us to generate equi-size partitions of
rewritings, and thus to balance the load of the parallel working units that are in
charge of generating and evaluating the queries. The experimental evaluation of
our technique reported in Sect. 4 shows a significant reduction of query rewriting
and execution time by means of parallelization.

2 Single-Key Constraints and Query Rewriting

This section is dedicated to the formalization of the setting we consider, and
follows the lines of [8]. For concision, we will focus on a simplified JSON model.
However, this is w.l.o.g, as the technique we present applies to the full language.
Data. A key-value record is a finite (non-empty) set of key-value pairs of the
form r = {(k1, v1), . . . , (kn, vn)} where all ki are distinct keys and each vi is a
value. A value is defined as i) a constant or the null value, ii) a record r, or iii) a
non-empty sequence v = [v1 . . . vn] where each vi is a constant, null, or a record.
A value v in a key-value record can be associated with a rooted labelled forest
Tv, where each tree of the forest has a root and nodes and edges can be labelled.
If v is a constant or null then Tv is a single (root) node labelled by that value.
If v is a sequence v = [v1 . . . vn] then Tv is a forest of n rooted trees T1, . . . , Tn

where Ti is the tree associated to the value vi. Finally, if v is a record, then Tv is
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as follows. Let, k be a key of v and Tk be the forest associated to the value of k.
Then Tv contains (i) all nodes and edges of each tree Tk, (ii) a root node s, and
(iii) an edge from s to sk labelled by k whenever sk is the root of a tree in Tk.
Clearly, Tv is a rooted tree whenever v is a record. In the remainder, we will see
a key-value record as its associated tree, as illustrated in Fig. 1. Note the order
of the elements of a sequence is not represented in the associated trees. Also, we
will assume a fixed way to associate a tree with a unique (representative) record.
Rules. We focus on semantic constraints we call single-keys, also studied in [6,8].
These are expressed as rules σ of the form

k −→ k′ (key inclusion) k −→ ∃k′ (mandatory key)
enabling the definition of hierarchies of keys as well as the existence of mandatory
keys. The semantics of constraints is defined on the tree associated to a record.
Next, we denote by (u,w, k) an edge from u to w labelled by k. We say that a
tree T satisfies a constraint σ: k −→ k′ if for each of its edges of the form (u,w, k)
there also exists an edge (u, z, k′) and an isomorphism ϕ from the subtree rooted
at w to that rooted at z such that ϕ(w) = z. Then, T satisfies σ: k −→ ∃k′ if for
each of its edges of the form (u,w, k) there also exists an edge (u, z, k′), whatever
the subtree rooted at z. Let Σ be a set of constraints. Then, we say that a tree T
is a model of r and Σ when (i) Tr and T have the same root, (ii) Tr is a subtree
of T , and (iii) T satisfies all constraints of Σ. For single-key constraints, it can
be easily shown that every pair (r,Σ) admits a finite model.

Queries. We consider the problem of answering find() queries that are integrated
in the facilities of popular key-value stores such as MongoDB and CouchDB [1,2].
These queries select all records satisfying some structural and value conditions,
and can be seen as Boolean queries, in that query evaluation on a record yields
an answer which is either the empty set or the record itself. A query is thus of
the form find(φ) where φ is a key-value record. Importantly, we assume that (1)
queries do not use the null value and (2) the reserved constant $exists is used to
require the existence of any value associated with a key, as illustrated by Q1 in
Example 1. As for records, queries can be associated with labelled trees. Figure 1
illustrates the tree representation of the queries of Example 1.

Then, a query find(φ) answers true on a record r if there exists a mapping h
from the nodes of Tφ to that of Tr such that (i) the root of Tφ is mapped to the
root of Tr, (ii) for every edge (u,w, k) of Tφ, (h(u), h(w), k) is an edge of Tr, and
(iii) every leaf node u of Tφ which is labelled by a constant different from $exists
is mapped to a node h(u) with the same label. Finally, with constraints, a query
find(φ) answers true on r and Σ if it answers true on all models of r and Σ.

Query Rewriting. Query rewriting is an algorithmic procedure for taking into
account a set of semantic constraints Σ that starts from a query Q and produces
a set of rewritings Rew(Q,Σ) such that, for all records r, Q answers true on r and
Σ if and only if there exists a query Q′ ∈ Rew(Q,Σ) that answers true on r.As
for rules, we define the rewriting of a query find(φ) on its associated tree Tφ.
So, find(φ) can be rewritten with σ: k → k′, if Tφ contains an edge (u,w, k′).
Similarly, find(φ) can be rewritten with σ: k → ∃k′, if Tφ has an edge (u,w, k′)



202 O. Rodriguez et al.

where w is a leaf node labelled by $exists. In both cases, the rewriting consists
at replacing the edge (u,w, k′) in Tφ with (u,w, k). Let Tφ′ be the resulting tree,
whose representative record is φ′. Then we say that find(φ′) is a direct rewriting
of find(φ) with σ. We denote by Rew(Q,Σ) the set of Q′ for which there exists a
(possibly empty) sequence of direct rewritings from Q to Q′ using the rules of Σ.
This means that Q belongs to Rew(Q,Σ). The size of Rew(Q,Σ) is bounded by
|Σ||Q|, where |Q| is the number of edges of Q. The correctness of the rewriting
algorithm can be shown by extending the proofs of [8].

regetniyarragnitirwer
(Q1

1) find( { dept : { director : { contact : $exists } } } ) 〈0, 1, 0〉 1
(Q2

1) find( { dept : { prof : { phone : $exists } } } ) 〈0, 0, 1〉 2
(Q3

1) find( { dept : { director : { phone : $exists } } } ) 〈0, 1, 1〉 3
(Q4

1) find( { dept : { prof : { mail : $exists } } } ) 〈0, 0, 2〉 4
(Q5

1) find( { dept : { director : { mail : $exists } } } ) 〈0, 1, 2〉 5

(Q1
2) find( { dept : { name : “CS” , prof : $exists } } ) 〈0, 0, 1〉 1

Fig. 2. Rewritings of the queries in Example 1 (left) and their encoding (right)

Figure 2 illustrates the rewritings of queries given in Example 1. Here, Q1
1−Q5

1

are rewritings of Q1 with σ1, σ2, σ3, while Q1
2 is a direct rewriting of Q2 with σ4.

It holds that Q4
1 selects r1, Q3

1 selects r2, and Q1
2 selects r1. Note that rules for

mandatory keys apply only on the leaves of a query that are labelled with $exists.
To see why consider the query find({dept : { director : “Alice” }}). Here, if σ4 is
used, we get find({dept : { prof : $exists }}) which is not a valid query rewriting.

3 Parallelization

We now present a parallel method that can be used to distribute both the gen-
eration and the evaluation of the rewriting set of a query to a set of independent
computing units u1, . . . , um, each being a local thread or a machine of a cluster.
Our approach relies on an interval-encoding of the rewritings. The general idea
is to establish a bijection between Rew(Q,Σ) and the integers in [0, . . . , N − 1],
where N = |Rew(Q,Σ)|. Then each of the m computing units is communicated
an interval [i, j] of size λ ≈ N/m corresponding to the subset of rewritings it
has to generate. This will result in a parallel rewriting method that enjoys the
following three properties.

(1) partitioning : no rewriting is computed twice by two distinct units
(2) load balance: the number of rewritings is equally distributed across all units
(3) bounded-communication: units receive a constant size interval information

Encoding Queries. In contrast to the general case [6,8], when considering single-
key constraints, one can exploit the fact that, the rewriting process we described
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in the previous section, yields queries that are structurally similar. This enables
a compact representation of (the edges of) a query as fixed size arrays, which we
now describe. Let find(φ) be a query. By fixing a total order on the edges of Tφ,
we can see the query as an array 〈k1, . . . , kn〉, where ki is the key labelling the
i-th edge of Tφ. Thus, to reconstruct a rewriting from an array it just suffices to
replace the i-th edge of Q with the i-th key of the array. Moreover, given that an
edge can be rewritten only in a finite number of ways, we can even use integers
to denote the possible labels of the query edges. These ideas are the basis of the
definition of an encoding function γQ,Σ which is illustrated next.

Consider the query Q1 and σ1, σ2, σ3 of Example 1 yielding rewritings Q1
1−Q5

1

as in Fig. 2. For simplicity, assume the edges of Q1 being ordered by depth. So the
edges labelled by dept, prof, and contact are indexed by 1, 2, and 3, respectively.
To begin, we represent the query Q1 with 〈0, 0, 0〉 where the value 0 at position
1, 2, and 3, of the array denote the fact that no edge is rewritten. Then, the
rewritings Q2

1, Q
4
1 can be represented by the arrays 〈0, 0, 1〉, 〈0, 0, 2〉, denoting

the fact that the edge labelled by contact has been rewritten either by phone or
mail while the rewritings Q1

1, Q
3
1, Q

5
1 can be represented by the arrays 〈0, 1, 0〉,

〈0, 1, 1〉 and 〈0, 1, 2〉 where prof is replaced by director and the edge labelled with
contact is rewritten (or not) as before. The resulting encoding function is γQ,Σ =
{(1, 0, dept), (2, 0, prof), (2, 1, director), (3, 0, contact), (3, 1, phone), (3, 2,mail)}.

It is important to notice that at this point γQ,Σ establishes a bijection from
arrays to the rewritings of a query. The next step towards our goal of mapping
rewritings to integers is to map the arrays encoding the rewritings to a sequence
of successive integers. To do so, we see an array as a number in a multiple base
(b1, . . . , bn) where each bi denotes the number of possible rewritings of the i-th
edge of Q. An array 〈c1 . . . cn〉 in the base (b1, . . . , bn) corresponds to the integer
p = c1 +c2 ∗B1 . . .+cn ∗Bn−1 with B1 = b1 and Bi = bi ∗Bi−1 for i ≥ 2. In the
example, the arrays 〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈0, 1, 1〉, 〈0, 0, 2〉, 〈0, 1, 2〉 in base
(b1, b2, b3) = (1, 2, 3) correspond to the integers in the interval [0,5], respectively.
For instance, 〈c1, c2, c3〉 = 〈0, 1, 1〉 correspond to the integer 3 as, given that
B1 = b1 = 1 and B2 = 2, we have 0+1∗B1+1∗B2 = 3. Conversely, the integer p
in base (b1, . . . , bn) corresponds to the array 〈c1, . . . , cn〉 where ci = (di mod bi)
where d1 = p and di = (di−1 ÷ bi−1) for all i ≥ 2. Of course, it must be that
0 ≤ p < Bn. The correspondence between rewritings and integers is outlined in
Fig. 2. Finally note that by using the same formula we can compute the size of
the rewriting set of a query, which is Bn, with n the number of edges of Q.

Building the Encoding Function. In the general case not only two rules σ1 and
σ2 can rewrite the same edge of the query, but also the application of σ1 can
enable that of σ2. Hence, the number of alternative keys for a single edge has
to be inferred by looking at the dependencies between the keys in Σ. In doing
so, we have to distinguish between the different types of edges of the query. For
every edge of the query labelled by k the set of possible rewritings is made of all
k′ for which there exists a sequence of rules σ1, . . . , σn of the form σi = k′

i −→ ki

such that ki = k′
i+1 for all 1 ≤ i < n, with k′

1 = k′ and kn = k. For every edge of
the query labelled by k ending on a node labelled by $exists the set of possible
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rewritings is made of all k′ for which there exists a sequence of rules this time
either of the form σi = k′

i −→ ∃ki or σi = k′
i −→ ki satisfying the same condition

as before. Note that it is possible to analyze Σ independently of any query, and
therefore compute once the possible rewritings of a key depending on the cases
described before. Then, the construction of γQ,Σ follows by fixing any total order
on the edges of TQ. The size of γQ,Σ is bounded by |Q| × |Σ|. This avoids to
communicate to the units the whole Rew(Q,Σ), whose size can be exponential.

In conclusion, the key properties achieved with our interval encoding are that
(1) we avoid a “centralized” enumeration of the rewritings (which is parallelized)
and (2) minimize communication costs by sending to each unit only a pair of
values (i, j) denoting a (possibly exponentially large) query set it has to handle.

4 Performance Evaluation

We implemented our approach in Java and parallelized query rewriting and eval-
uation by executing concurrent threads and using different cores of a machine.
Nevertheless, our approach is suitable for any shared nothing parallel framework.
For example, the threads can also be executed in the nodes of a distributed clus-
ter, if such a cluster is available. The three main modules of our tool are dedicated
to (i) the interval encoding, (ii) rewriting generation, and (iii) query evaluation.
Next, we use the term query answering for the combination of the three tasks,
which amounts to the whole task of answering queries under constraints.

We performed an experimental evaluation whose goal is to show the benefits
of parallelization when querying key-value stores under semantic constraints. We
deployed our tool on top of key-value store MongoDB version 3.6.3. Our experi-
ments are based on the XMark benchmark which is a standard testing suite for
semi-structured data [11]. XMark provides a document generator whose output
was translated to obtain JSON records complying with our setting. Precisely, we
performed our experiments on a key-value store instance created by shredding
XMark generated data in JSON records. The results reported here concern an
instance created from 100 MB XMark and split in ∼60 K records of size ∼1KB.
XMark also provides a set of queries that were translated to our setting. To test
query evaluation in the presence of constraints, we then extended the benchmark
by manually adding a set of 68 rules on top of the data. These are “specializa-
tion” rules of the form knew → kxmark where kxmark is a key of the XMark
data vocabulary and knew is a fresh key that does not appear in XMark. The
benchmark data employs a vocabulary made of 91 keys and the rules define the
specialization of 40 among them. More precisely, 20 keys have 1 specialization,
14 keys have two specializations, 5 have three specializations and 1 key has 5.
Accordingly, the generated XMark data has been modified by randomly replac-
ing one of such keys by one of its specializations thereby mimicking the fact that
datasets use more specific keys while the user asks a high-level query.

Tests were performed on an Ubuntu 18.10 64-bit system, running on a
machine that provides an Intel CoreTM i7-8650U CPU 4 cores, 16 GB of RAM,
and an Intel SSD Pro 7600p Series. Figure 3 summarises (i) the query answer-
ing time under constraints and (ii) the speed up of our parallel technique for
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10 XMark queries, by varying the number of threads. The speed-up is defined
as the ratio between the case of 1 thread (i.e., without parallelization) and the
case with n threads. As expected, our results show that the query answering
time depends on the size of the rewriting set, and the queries are thus sorted
according to this criterion. Query answering time with one thread takes up to
1.3 s for queries with less 150 rewritings (i.e., q4, q10, q1, q2) and increases to 2.8 s
for q3, which has 324 rewritings. However, by using four threads, answering time
for q3 drops to 1.3s (55% time reduction). Answering q7, which has 1296 rewrit-
ings, takes 11 s. This falls to 4.7 s by using four threads (58% time reduction).
The same can be observed for q8 and q9. More generally, our results show that
already by only using two threads, there is a 1.5x speedup (33% reduction) of
query answering time for almost all queries. This increases to a 2/2.3x speedup
(50–58% time reduction) when four threads are used. Interestingly, this is the
maximum number of concurrent physical threads of our test machine, and we
observe that when using eight virtual threads essentially no improvement can
be further remarked. Naturally, when the number of rewritings of a query is too
small, the impact of parallelization is less important. For example, as illustrated
by q4, which has only 18 rewritings, only a 1.2x speedup is achieved with four
threads. Summing up, this shows the interest of parallelization in querying key
value stores under semantic constraints.

Fig. 3. Evaluation time and speedup of our method for XMark queries on MongoDB

Conclusion. In this paper, we proposed a parallel technique for the efficient
rewriting and evaluation of tree-shaped queries under constraints based on an
interval encoding of the rewriting set of a query. We implemented our solution
and measured its performance using the XMark benchmark. The results show
significant performance gains compared to the baseline sequential approach.
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