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1 Introduction

Optical full-field measurement techniques such as speckle photography [1], speckle
interferometry [2], geometric moire [3], moire interferometry [4], digital speckle
photography (DSP) [5] and digital image correlation (DIC) [6, 7] have all been
applied to determining properties of composite materials [8]. Thanks to their sim-
plicity, DSP and DIC have become ubiquitous in recent years as the preferred tools.
However, all these full–field measurements techniques can only measure surface
displacement of the specimen. Due to material heterogeneity at different length
scales, the deformation of a composite structure is always 3D in nature. Thus, a
2D surface measurement technique can never fully reveal the failure mechanism of
composites. As a result whenever a naval composite structure is designed, a high
safety factor is often used. This adds weight and cost to the resulting structure. Thus
there is a strong need to develop a technique whereby one can probe into the interior
deformation of solids. While there already exist several stress/strain analysis tech-
niques that can probe the interior of solids (for example frozen-stress photoelasticity
[9, 10], moire [11], and embedded speckle method [12, 13]), they all require that the
specimen material be transparent, in one case even birefringent.

In recent years X-ray micro-computed tomography (CT) has become a familiar
tool in materials research. Applications of micro-CT to composite materials have
mainly been concentrated in two fields. One is for the visualization of internal
features, such as void measurement, fiber location and waviness, fiber breakage,
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interface delamination, internal damage and crack growth, etc. [14, 15]. The other
application deals with internal displacement measurement. Based on the volumetric
image capability of CT scanning, Digital Volume Correlation (DVC) technique was
proposed to assess the internal displacement fields of solid objects. Roux, et al. [16]
used DVC to evaluate the internal displacement of a solid foam. Brault, et al. [17]
performed volume kinematic measurements of laminated composite materials with
metallic particles imbedded into the specimen for the purpose of contrast enhance-
ment. Lecomte-Grosbras, et al. [18] investigated the free-edge effects in laminate
composites by using DVC. Recently we developed an effective 3D experimental
strain analysis technique called DVSP (Digital Volumetric Speckle Photography)
[19] in which we use the internal features of opaque solids as 3D volumetric
speckles. We developed an algorithm to process the CT recorded volumetric
speckles in a way similar to the algorithm we developed for the 2D digital speckle
photography technique [20, 21]. DVSP can be applied to probing the internal
deformation of almost any solid material. We have successfully applied the tech-
nique to coal [22], rock [23] and concrete [24]. In this study, we describe in detail the
theory and practice of DVSP and its application to composites. Three examples are
chosen for the demonstration: a woven composite beam under three-point bending, a
woven composite beam with a prepared slot under three-point bending and a foam
composite sandwich beam under three-point bending. Displacement and strain
distributions of many internal sections were mapped in detail.

2 Theory of Digital Volumetric Speckle Photography
(DVSP)

The CT system is used to scan the specimen before and after the application of load.
The two reconstructed digital volume images are defined as reference volume
image and deformed volume image, respectively. Both digital images are subdivided
into volumetric subsets with voxel arrays of 32 voxel � 32 voxel � 32 voxel, for
example, and ‘compared’ with the procedures schematically shown in Fig. 1.

Let h1(x, y, z) and h2(x, y, z) be gray distribution functions of a pair of generic
volumetric speckle subsets, before and after deformation, respectively, and that

h1 x, y, zð Þ ¼ h x, y, zð Þ
h2 x, y, zð Þ ¼ h x� u x, y, zð Þ, y� v x, y, zð Þ, z� w x, y, zð Þ½ � ð1Þ

where u, v and w components of the displacement vector collectively experienced
by the speckles within the subset of voxels along the x, y, and z directions, respec-
tively. A first-step 3D FFT (Fast Fourier Transform) is applied to both h1 and h2
yielding
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H1 f x, f y, f z
� � ¼ ℑ h1 x, y, zð Þf g ¼ H f x, f y, f z

� ��� �� exp jϕ f x, f y, f z
� �� �

H2 f x, f y, f z
� � ¼ ℑ h2 x, y, zð Þf g ¼ H f x, f y, f z

� ��� �� exp j ϕ f x, f y, f z
� �� 2π uf x þ vf y þ wf z

� �� �� �
ð2Þ

where H1( fx, fy, fz) is the Fourier transform spectrum of h1(x, y, z), H2( fx, fy, fz) is
the Fourier transform spectrum of h2(x, y, z), and ℑ stands for Fourier Transform.
|H( fx, fy, fz)| and ϕ( fx, fy, fz) are the spectral amplitude and phase fields, respectively.

Then, a numerical interference filter between the two 3D speckle patterns is
performed at the spectral domain, i.e.

F f x, f y, f z
� � ¼ H1 f x, f y, f z

� �
H2

� f x, f y, f z
� �

H1 f x, f y, f z
� �

H2 f x, f y, f z
� ��� ��1�α ð3Þ

in which * stands for the complex conjugate, and α is an appropriate constant
(0 � α � 1).

When α ¼ 0, Eq. (3) can be expressed as

F f x, f y, f z
� � ¼ H1 f x, f y, f z

� � exp �j ϕ f x, f y, f z
� �� 2π uf x þ vf y þ wf z

� �� �� �
H f x, f y, f z
� ��� �� ð4Þ

where
exp �j ϕ f x , f y , f zð Þ�2π uf xþvf yþwf zð Þ½ �f g

H f x, f y, f zð Þj j is essentially an inverse filter (IF).

When α ¼ 0.5, Eq. (3) can be expressed as

F f x, f y, f z
� � ¼ H1 f x, f y, f z

� �
exp �j ϕ f x, f y, f z

� �� 2π uf x þ vf y þ wf z
� �� �� � ð5Þ

where exp{�j[ϕ( fx, fy, fz) � 2π(ufx + vfy + wfz)]} is a so-called phase-only filter
(POF).
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Fig. 1 Schematics demonstrating the processing algorithm of DVSP
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When α ¼ 1, Eq. (3) can be expressed as

F f x, f y, f z
� � ¼ H1 f x, f y, f z

� �
H2

� f x, f y, f z
� � ð6Þ

where H2
�( fx, fy, fz) can be viewed as a classical matched filter (CMF). When a

correlation filter is chosen, peak sharpness and noise tolerance are the factors that
need to be considered. In the 2D digital speckle photography technique, α is 0.5, and
the algorithm is essentially a POF. The influence of CMF, POF and IF filters on the
accuracy of 2D speckle photography were analyzed and the results indicate that IF is
extremely sensitive to noise, thus cannot be used as a reliable filter. There is no
significant difference between CMF and POF filters [25]. But while the POF filter
provides somewhat more accurate estimates of the peak position, the reliability of
the CMF filter is better. In Fig. 2, normalized impulse function distributions for the
two filters are shown. It is noted that the peak impulse with POF is sharper, which
can provide a good compromise between peak sharpness and noise tolerance in the
correlation theory.

In this paper, α ¼ 0.5 is adopted. As a result, Eq. (3) can then be written as

F f x, f y, f z
� � ¼ H1 f x, f y, f z

� �
H2

� f x, f y, f z
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1 f x, f y, f z

� �
H2 f x, f y, f z

� ��� ��q

¼ H1 f x, f y, f z
� ��� �� exp j ϕ1 f x, f y, f z

� �� ϕ2 f x, f y, f z
� �� �� � ð7Þ

where ϕ1( fx, fy, fz) and ϕ2( fx, fy, fz), are the phases of H1( fx, fy, fz) and H2( fx, fy, fz),
respectively. It is seen that

ϕ1 f x, f y, f z
� �� ϕ2 f x, f y, f z

� � ¼ 2π uf x þ vf y þ wf z
� � ð8Þ

Finally, a function is obtained by performing another 3D FFT resulting in

G ξ, η, ζð Þ ¼ ℑ F f x, f y, f z
� �� � ¼ G ξ� u, η� v, ζ � wð Þ ð9Þ
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Fig. 2 Normalized impulse function distribution with different filters: (a) CMF filter; (b) POF filter
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which is an expanded impulse function located at (u, v, w). This process is carried out
for every corresponding pair of subsets. By detecting crests of all these impulse
functions, an array of displacement vectors at each and every subset is obtained.

It is well known that in 2D DSP the random error is a function of the subset size,
the speckle size, and the amount of decorrelation. It is also true in DVSP. If the
displacement between the corresponding subsets is large, the increase of
nonoverlapping area would result in an increase of decorrelation giving rise to an
enhanced random error [26]. In order to reduce the random errors, a coarse-fine
calculation process is adopted. In the coarse calculation, the first integer voxel
prediction indicates that the largest size of the subset (2p � 2p � 2p) should not
exceed the size of the region-of-interest in the reference volumetric image. And thus,
the subset with the size (2p-1 � 2p-1 � 2p-1) is used, and the corresponding subset in
the deformed volumetric image is chosen based on the first integer voxel predicted
displacement. By repeating this process, the optimal subset size is obtained for the
fine calculation. In this study, we selected 32 voxel �32 voxel �32 voxel as the
optimal size for the final calculation, and the subset shift was 5 voxels.

Because of the discrete nature of digital volume images, the displacement vectors
evaluated from the above coarse-fine calculation process are integral multiples of
one voxel. In order to obtain more accurate and sensitive characterization, a
sub-voxel investigation of the crest position is needed. To achieve this, we selected
a cubic subset with 3� 3� 3 voxels surrounding an integral voxel of the crest and a
cubic spline interpolation was employed to obtain the interpolated values among the
integral voxels in each respective dimension. After interpolation, the cubic subset
was enlarged and a new three dimensional array was generated with a size depending
on the interpolation interval. The smaller the interval and the bigger the array size
give rise to a higher interpolation accuracy. The price to pay, however, is the need for
more computational time and more memory space. In practical applications there
would be a tradeoff between the two competing needs. By detecting the positions of
peak values of the new array, displacements of subvoxel accuracy can be obtained.
The interpolation procedure is illustrated schematically in Fig. 3.

3 Strain Estimation

The internal strain tensor ε can be derived from displacement fields. Due to the
influence of unavoidable noise contained in the CT images, the displacements thus
determined contains discontinuities or noises that are not a feature of the material but
a consequence of the discrete nature of the analysis performed. The errors in local
displacements may be amplified during the strain computation process. By using the
PLS (Point Least-Squares) approach, the errors can be substantially reduced during
the process of local fitting, and the strains thus estimated will be more precise [27].

The element of PLS approach is as follows. To compute the local strain tensor of
each considered point, a regular cubic boxwith size of (2N+ 1)� (2N+ 1)� (2N+ 1)
discrete points surrounding the point of interest is selected. If the strain calculation
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window is sufficiently small, the displacement in each direction can be reasonably
assumed to be linear, and they can be mathematically expressed as

u x, y, zð Þ ¼ a0 þ a1xþ a2yþ a3z

v x, y, zð Þ ¼ b0 þ b1xþ b2yþ b3z

w x, y, zð Þ ¼ c0 þ c1xþ c2yþ c3z

ð10Þ

where x, y, z ¼ [–N, N] are the local coordinates within the strain calculation box,
u(x, y, z), v(x, y, z) and w(x, y, z) are displacements directly obtained by the DVSP
method; and ai¼0,1,2,3, bi¼0,1,2,3 and ci¼0,1,2,3 are the unknown polynomial coeffi-
cients to be determined. With the Least-squares or Multiple Regression Analysis, the
unknown coefficients can be estimated. Then, the six Cauchy strain components εx,
εy, εz, εxy, εxz and εyz at the interrogated point can be calculated as

εx ¼ ∂u
∂x

¼ a1 εxy ¼ 1
2

∂v
∂x

þ ∂u
∂y


 �
¼ 1

2
b1 þ a2ð Þ

εy ¼ ∂v
∂y

¼ b2 εyz ¼ 1
2

∂w
∂y

þ ∂v
∂z


 �
¼ 1

2
c2 þ b3ð Þ

εz ¼ ∂w
∂z

¼ c3 εxz ¼ 1
2

∂u
∂z

þ ∂w
∂x


 �
¼ 1

2
a3 þ c1ð Þ

ð11Þ
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Fig. 3 Schematics showing the interpolation procedure
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4 Experiments & Results

4.1 Experimental Setup

In this study, the main components of the industrial X-Ray computer tomography
system consist of a microfocus X-ray source from YXLON (Feinfocus 225 kV), a
X-ray detector unit (1024 pixel � 1024 pixel) from PerkinElme (XRD 0822AP 14),
and a motorized rotation stage from Newport. The X-ray has a focus with the size of
3 μm � 6 μm, a voltage range of 50–225 kV, and the tube current ranging from 0 to
1440 μA. For each scanning, 720 projections are captured and distributed at equal
angles over 360�. The entire process takes 25 min. For high quality image, more
projections can be captured. Based on these projections, the Feldkamp algorithm is
used to reconstruct a sequence of slice images, and then a volume image of the
specimen is obtained by merging these slice images together.

To test a specimen under load, we designed and built a compact loading setup that
would allow the operation of micro-tomography of a specimen under load in situ. By
using the loading setup, uniaxial compression, uniaxial tension and 3-point bending
experiments can been carried out with different rigs. The setup is enclosed within a
cell made of PMMA, which is transparent to X-ray. Mechanical loading is provided
by an electric motor with an actuator. A load sensor of 20 kN capacity and 0.002 kN
resolution, and a grating scale of 20 mm capacity and 0.001 mm resolution are used
to record the load and the displacement, respectively. The CT system and loading
setup are shown in Fig. 4.

4.2 A Woven Composite Beam Under 3-Point Bending

The specimen is made of a tri-direction fabric composite material with Advantex
SE1500 E-glass filaments and 55% epoxy resin by volume. The filament diameter is

Fig. 4 The Micro-CT
system and the loading setup
used to record the
volumetric image of the
specimen at each
loading step
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17 μm, and its density is 2.63 g/cm3. The fiber orientations are set at +45 �,
0, and �45 � with respect to the rotation axis. The density of the basic matrix is
1.08 g/cm3. When applying the DVSP algorithm to composite materials the first
issue is whether or not the Micro-CT can capture the minute interior details of the
composite material. Figure 5 shows the reconstructed volume image and three
orthogonal sections of the woven composite material based on CT slices by using
the Micro-CT system. Even though the density of the filament is more than twice that
of the matrix, the size of filament is small, and beyond the scanning resolution of the
CT system. Therefore, we cannot detect the filament from the slice image. However,
there are a lot of pores with low gray value as shown in the images. These internal
meso-structures are of sufficient details that they can be treated as 3D speckles. Thus
the algorithm of DVSP can be effectively applied.

The dimension of the beam specimen for 3-point bending is 38.8 (L) mm � 18.8
(H) mm � 9.0 (T) mm, while the span between two supports is 30.0 mm. The beam
was loaded with step-wise increments until failure appears via visual observation.
There were 11 loading steps [28]. After each loading step the specimen was scanned
by the CT system. The load-displacement curve is shown in Fig. 6(a). In each step, a
reconstructed volume image with size of 900 voxel � 250 voxel � 361 voxel was
obtained; and the voxel resolution is 45 μm� 45 μm� 45 μm. Figure 6(b) shows the
reconstructed CT image of the specimen at loading Step 1. No damage of the
material is discernable from surface inspection of the specimen up to the loading

15
(a) (b)

(c) (d) (e)

10

5

0
0 5 10

15 0 5 10 15 20

x/mm

x/mm

z/mm

z/
m
m

y/
m
m

15

10

5

0
0 5 10

15 0 5 10 15 20

x/mmz/mm

y/
m
m

15

10

5

0
0 5 10 15 20

x/mm

z/
m
m

15

10

5

0
0 5 10 15 20

z/mm
y/
m
m

15

10

5

0
0 5 10 15

Fig. 5 The woven composite material: (a) reconstructed volumetric image based on CT slices;
(b)- (e) Three orthogonal sections of the volumetric image

632 L. Mao and F.-P. Chiang



Step 10, as shown in Fig. 6(c). But micro cracks are clearly visible on the surface of
the specimen after loading Step 11 as shown in Fig. 6(d).

The volume image of Step 1 is treated as the reference volume image, and volume
images of subsequent steps (Step 2-Step 10) are “compared” to the reference volume
image via the DVSP algorithm. The coarse-fine calculation process was applied, the
final subset size was 32 voxel � 32 voxel � 32 voxel, and the subset shift was
5 voxels.

In Fig. 7, displacement fields of three transverse sections at Step 10 with
F¼ 10,500 kN are depicted. Strain fields were then calculated from the displacement
data. The size of the calculation cubic element was 31� 31� 31 points, and the shift
step was 5 points. In Fig. 8, the strain εxx, εyy, εzz and εxy of the middle longitudinal
section in Step 7, Step 9 and Step 10 are shown, respectively. It is noted that the
internal heterogeneity of the woven composite had manifested itself vividly on the
strain distributions. The distribution of the normal strain εxx indicates the periodic
distributions of the matrix and fiber, whereas the distribution of normal strain εyy
reflects the layered characteristics of the material. The distribution of the shear strain
εxy as the load increases clearly indicates where the failure would eventually occur,
as shown in in Fig. 6(d) at loading Step 11.

Fig. 6 Loading/displacement curve and reconstructed volume images: (a) the load-displacement
curve (b) the volume image of Step 1 (c) the volume image of Step 10 (d) the volume image of
Step 11
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4.3 A Woven Composite Beam With a Prepared Slot Under
3-Point Bending

The experiment of a woven composite beam with a prepared slot under 3-point
bending was conducted. The material of the beam is the same as that in Sect. 4.2. The
dimension of the specimen is 39 (L) mm� 18 (H) mm� 8.5 (T) mm, and the size of

Fig. 7 Displacement fields of the specimen at loading Step 10; (a)-(c) u, v, w fields of the whole
specimen within the cropped region; (d)-(f) u, v, w fields of the transverse section at z ¼ 2.25 mm;
(g)-(i) u, v, w fields of the transverse section at z ¼ 4.50 mm; (j)-(l) u, v, w fields of the transverse
section at z ¼ 6.75 mm
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the slot is 3.60 mm � 0.68 mm. The span between two supports is 30.0 mm. The
load was applied incrementally in 10 steps. The load-displacement curve is shown in
Fig. 9(a). The size of the reconstructed volume image in each step is 960 voxel� 260
voxel � 424 voxel, and the voxel resolution is also 45 μm � 45 μm � 45 μm.
Comparing Fig. 6(a) with Fig. 9(a), the loading capacity of the specimen with a slot
is reduced due to the weakening effect of the slot. The maximum loading of the
specimen with a slot was 8400 N, whereas that of the specimen without a slot was
11,700 N. From Figs. 6(d) and 9(d), it is noted that there is a delamination crack on
the left upper region of those two specimens. In the maximum shear strain region of
the specimen without a slot, delamination was the failure mode, whereas for the
specimen with a slot, cracking was the failure mode.

Fig. 8 Strain distribution of the middle longitudinal section at z ¼ 4.50 mm under different
loadings steps: (a)-(c) εxx at Step 7, Step 9 and Step 10, respectively; (d)-(f) εyy at Step 7, Step
9 and Step 10, respectively; (g)-(i) εzz at Step 7, Step 9 and Step 10, respectively; (j)-(l) εxy at Step
7, Step 9 and Step 10, respectively
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The volume image of Step 1 was treated as the reference volume image, and
volume image of subsequent steps (Step 2-Step 9) were “compared” to the reference
volume image using the DVSP algorithm. The coarse-fine calculation process was
applied, the final subset size was 32 voxel � 32 voxel � 32 voxel, and the subset
shift was 5 voxels.

In Fig. 10, 3D displacement fields of the specimen and three transverse sections
at Step 9 with F ¼ 7400 N are depicted. Periodic patterns in the displacement field
due to the periodic structure of the specimen are also found. Figure 11(a), 11(b)
and 11(c) show images of the region near the slot in different sections at Step 10.
Corresponding to these regions, the u and v displacement fields of Step 9 are plotted
as shown in Fig. 11(d), 11(e), 11(f), 11(g), 11(h) and 11(i), εxx and εxy strain fields of
Step 9 are plotted as shown in Fig. 11(j), 11k, 11(l), 11(m), 11(n) and 11(o). Strain
concentrations are clearly indicated in various locations. Corresponding to the zone
of cracks, there are higher strain values in εxy fields.

Fig. 9 Loading/displacement curve and reconstructed volume images: (a) load-displacement
curve; (b) volume image of Step 1; (c) volume image of Step 9; (d) volume image of Step 10
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4.4 A Woven Sandwich Beam Under 3-Point Bending

The size of the sandwich beam is 50.0 mm � 20.0 mm � 33.0 mm, the thickness of
the face sheet is 3.8 mm, and the span between two supports is 30.0 mm. The face
sheet is made of E-glass vinyl ester (EVE) composite with the fiber woven into a
quasi-isotropic layout: [0/45/90–45]s. The fibers are made of a 0.61 kg/m2 areal
density plain weave. Ashland Derakane Momentum 8084 resin are used as the
matrix material. The two face sheets are of identical layups and materials. The

Fig. 10 Displacement fields of the specimen at loading Step 9; (a) – (c) u, v, w fields of the whole
specimen; (d) – (f) u, v, w fields of the transverse section at z¼ 2.00 mm; (g) – (i) u, v, w fields of the
transverse section at z ¼ 4.25 mm; (j) – (l) u, v, w fields of the transverse section at z ¼ 6.50 mm
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core material is made of Corecell™ P600 styrene foam [29]. The whole loading
process is divided into 6 steps [30]. In each step, the specimen was CT scanned and a
volumetric image with 890 voxel � 360 voxel � 530 voxel was reconstructed, and
the physical size of a voxel is 55 μm � 55 μm � 55 μm. The volume image of the
specimen and the loading history are shown in Fig. 12.

Since the length of the beam is rather short, at the end of the loading history we
did not observe any shear crack in the foam core or along the interface of face sheet
and core. The volume image of Step 1 was designated as the reference image,
whereas the subsequent images were the deformed images. By applying the DVSP
algorithm, the displacement contours of u, v, w of the core after each incremental
loading from Step 2 to Step 5, were calculated. The core region with the size of

Fig. 11 Displacement and strain distributions of Step 9 near the slot in different sections (a)section
along z ¼ 2.00 mm of Step 10; (b) section along z ¼ 4.25 mm of Step 10; (c) section along
z ¼ 6.25 mm of Step 10; (d) u field of (a); (e) u field of (b); (f) u field of (c); (g) v field of(a); (h)
v field of (b); (i) v field of (c); (j) εxx field of (a); (k) εxx field of (b); (l) εxx field of (c); (m) εxy field of
(a); (n) εxy field of (b); (o) εxy field of (c)
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890 voxel� 360 voxel� 430 voxel was boxed in for the calculation. The coarse-fine
calculation process was applied, the final subset size was 32 voxel � 32 voxel �
32 voxel, and the subset shift was 5 voxels. The displacement contours of the core
under different loadings are depicted in Fig. 13. The first three patterns, Figs. 13(a),
13(b) and 13(c), show clearly the characteristic deformation of a short beam under
3-point bending. The distributions of u and v fields are self-explanatory. The w-field
shows a barrel-like bulging of the central part of the beam, a pattern similar to the
deformation of a short square column under compression with the movement of
both ends constrained. As the loading increases the displacement fields lose some of
the symmetry as shown in subsequent pictures in Fig. 13. This is because the
loading was not exactly symmetrical, a common occurrence in a typical testing
arrangement.

In the process of the strain calculation, the size of the calculation cubic box is
31 � 31 � 31 points, and the shift step is 5 points. Since a sandwich beam under
bending tends to fail in the form of shear failure of the core, we only calculated the
in-plane shear strain distributions, and only at loading steps 3, 4, and 5 with loads
being 1000 N, 1500 N, and 1800 N, respectively. As depicted in Fig. 14, εxy contours
of the entire core within the cropped region for the three loads are shown in
Figs.14(a), 14(b), and 14(c), respectively. Figures 14(d), 14(e), and 14(f) depict
the in-plane shear strain distributions in the plane of z ¼ 5.875 mm; Figs. 14(g),
14(h) and 14(i) depict the shear strains in the plane of z¼ 10.00 mm, and Figs. 14(j),
14(k) and 14(l) depict the shear strains in the plane of z ¼ 14.12 mm under the same
three different loadings, respectively. It is clearly seen that shear strains are localized
along two 45 degree bands fanning out from the point where the concentrated load
was applied. If the sandwich beam were longer, it is believed that failure would
probably occur along these two shears bands. From the patterns shown in Fig. 14(c),
it is reasonable to suspect that failure would probably initiate from the interior of the
foam core.
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Fig. 12 3D image and loading history: (a) Reconstructed 3D image of the specimen; (b) loading
history
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5 Discussion

5.1 The Effect of Subset Size

One of the important features of the DVSP method is the fact that the interior meso-
or microstructures of the specimen material are treated as volumetric speckles. These
structural features tend to vary from material to material and from region to region.
They don’t form ideal speckle patterns. Thus, it is important that the size of the
subset be selected judiciously when applying DVSP. As a demonstration of the size
effect of subset, we cropped a cubic block with 200 voxel � 200 voxel � 200 voxel
from each of the two volume images of the two tested materials as shown in Figs. 15
(a) and 16(a). These two images are defined as the reference volume images, whereas
the “deformed” volume images are obtained by the Fourier shifting method. For

Fig. 13 Displacement distribution of the core under different loadings: (a)-(c) u, v and w fields,
respectively, at Step 3 with loading 1000 N; (d)-(f) u, v and w fields, respectively, at Step 4 with
loading 1500 N; (g)-(i) u, v and w fields, respectively, at Step 5 with loading 1800 N
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Fig. 14 Shear strain distribution of the core under different loadings: (a)-(c) εxy field of the whole
core under loadings of 1000 N, 1500 N and 1800 N, respectively; (d)-(f) εxy fields of the
longitudinal section at z ¼ 5.875 mm under loadings of 1000 N, 1500 N and 1800 N, respectively;
(g)-(i) εxy fields of the longitudinal section at z ¼ 10 mm under loadings of 1000 N, 1500 N and
1800 N, respectively; (j)-(l) εxy fields of the longitudinal section at z¼ 14.125 mm under loadings of
1000 N, 1500 N and 1800 N, respectively
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every reference volume image, ten different “deformed” volume images with
sub-voxel rigid body translation ranging from 0.1 to 1.0 voxel, respectively, along
the z direction were obtained. In the fine calculation, the subset size with 16 voxel�16
voxel�16 voxel, 32 voxel� 32 voxel� 32 voxel and 64 voxel� 64 voxel� 64 voxel,
respectively, were used. And the subset shift is 5 voxels. The resulting mean bias errors
and the standard deviation errors of displacements are shown in Figs. 15(b), (c) and
16(b), (c), respectively. It is seen that the larger the subset size, the smaller the resulting
error. However, as the subset size increases, fewer independent measurement points can
be obtained which will influence the resolution of strain calculation [31]. It is noted that
the meso-structure of the foam core is much more uniform than that of the woven
composite, thus gives rise to better accuracies.

In the DVSP theory, the subset is assumed to be rigid. In reality there is
deformation and rotation of the material within the subset. While by increasing the
subset size results in better accuracy of DVSP, the errors caused by ignoring the
deformation and rotation of the material within the subset tend to increase too. To
estimate the effects of deformation within the subset on DVSP, we used a quadratic
displacement model test [32]. The above blocks with 200 voxel � 200 voxel �

Fig. 15 Accuracy of DVSP on the woven composite specimen: (a) a cubic volume image of the
woven composite specimen; (b) mean bias error of the displacement; (c) standard deviation of the
displacement
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200 voxel was again used as the reference volume image, whereas the “deformed”
volume image was obtained as follow: the block was given a rigid displacement of
2 voxels along the z axis, and then divided into three regions along the z axis. Region
1 (1� z < 68 voxels) has a linear displacement field with strain ε1 ¼�0.1%; Region
2 (68 � z < 134 voxels), has a quadratic displacement with strain varying from
ε1 ¼ �0.1% to ε2 ¼ 0.5%; and Region 3 (134 � z < 200 voxels) has a linear
displacement field with strain ε2¼ 0.5%. The displacement fields were calculated by
using DVSP with different subset sizes having 16 voxel �16 voxel �16 voxel,
32 voxel � 32 voxel � 32 voxel and 64 voxel � 64 voxel� 64 voxel, respectively,
and all with 5 voxels shift. The displacement and strain were calculated and are
depicted in Fig. 17. It is noted that the deformation in subset do result in noticeable
error. In Region 1 and Region 2, smaller subsets capture the solution more accu-
rately, whereas in Region 3, larger subset has better results. For all these three
regions, the optimal subset size is 32 voxel � 32 voxel � 32 voxel. In order to
reduce the influence of subset deformation, one can use the iterative least-squares
method [27], but iterative procedures tend to increase the implementation complex-
ity resulting in more computational expenses.

The deformation between the reference subset and the corresponding deformed
subset would cause the correlation coefficient to decrease. We imposed a set of
uniform deformation with strains from 0.1% to 1% with the interval 0.1% on the

Fig. 16 Accuracy of DVSP on the core of the sandwich specimen: (a) a cubic volume image of the
woven composite specimen; (b) mean bias error of the displacement; (c) standard deviation of the
displacement
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woven composite block shown in Fig. 15(a) to obtain the deformed volume images,
and calculated the correlation coefficients between the reference image and the
deformed image. The subset size was 32 voxel � 32 voxel � 32 voxel, and the
subset shift was 5 voxels. The correlation coefficient curve with strain is shown in
Fig. 18(a). The coefficient decreases in a nearly quadratic function as the strain
increases, and the standard deviation rises as the strain increases. When the strain is
1%, the coefficient is 82.2%, and the standard deviation is 0.12. In Fig. 18(b), the
curve shows that the influence of the displacement is more than one voxel on the
correlation coefficient. When the displacement is 8 voxels, one fourth of subset, the
coefficient drops 53.4%, and standard deviation to 0.11. Figures 18(c) and 18(d) are
typical 2D normalized impulse function distributions under the influence of defor-
mation and integer voxel displacement, respectively. When the signal-to-noise-ratio
decreases, it would affect the detection of the crest of the impulse functions. For the
purpose of increasing signal-to-noise-ratio, we carried out a coarse-fine calculation
process. In the coarse calculation, integer voxel displacement evaluation is more
robust with the large subset size, and strain calculation resolution can be supported in
the fine calculation with the small subset size.

Fig. 17 Calculated results of DVSP in the quadratic displacement test: (a) Exact displacement and
displacement curves of the woven composite with different subset sizes; (b) Imposed strain and
calculated strain curves of the woven composite with different subset sizes; (c) Exact displacement
and displacement curves of the core in the sandwich with different subset sizes; (d) Imposed strain
and calculated strain curves of of the core in the sandwich with different subset sizes
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5.2 Influence of Artifacts in CT Images

CT slice images are reconstructed with an appropriate mathematical algorithm from
the different angular radiographic projections. The non-uniformity of detector ele-
ments, the polychromatic nature of the X-ray, the imperfect motion of the rotation
stage, the temperature variation of the X-ray tube, and the possible rigid body motion
of the specimen will all give rise to different artifacts, such as streak, ring, and beam
hardening [33]. These artifacts will influence the measurement results. To analyze
the effects of artifacts of the micro X-ray CT system, we took two consecutive scans
of a woven composite specimen with identical settings and without moving (other
than the tomographic rotation) or deforming the sample and designated them as
Scans 1 and 2, respectively. Noise and artifacts of the system were present in the
reconstructed image of both scans. Two volumetric images with a size of
200 voxel � 200 voxel � 200 voxel were cropped from the reconstructed images.
The physical size of a voxel was 42 μm � 42 μm � 42 μm.

We defined the volumetric images of Scans 1 and 2 as the reference image and
deformed volumetric image, respectively. We then assess the influence of artifacts in

Fig. 18 Influence on correlation coefficient of the deformation and the integer voxel displacement:
(a) the curve of correlation coefficient with different strain deformation; (b) the curve of correlation
coefficient with different integer voxel displacement; (c) a 2D correlation coefficient distribution
with strain deformation influence; (d) a 2D correlation coefficient distribution with 8 voxels
displacement influence
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CT images using the DVSP algorithm with subvoxel shifting. The average measured
displacements are u ¼ 0.75 voxels, v ¼ 0.83 voxels, and w ¼ 0.69 voxels, and the
standard deviation errors are 0.12 voxels, 0.18 voxels and 0.20 voxels, respectively.
All of the measured displacements are greater than the standard deviation errors,
indicating that some motion occurred between scans due to physical perturbations in
the CT system. Because there are real noise and artifacts in the volumetric images of
Scans 1 and 2, the above results can depict the uncertainty of the algorithm in its
application.

As a more accurate alternative to fitting just rigid body movements, a least
squares fit was used to calculate rigid body translations and rotations, assuming
small angles [34], i.e.

urigid þ θzY � θyZ ffi U

vrigid � θzX þ θxZ ffi V

wrigid þ θyX � θxY ffi W

ð12Þ

where θx, θy, and θz are the rotations about the x, y, and z axes, respectively, and X, Y,
Z and U, V, W are the vectors of the x, y, z coordinates and u, v, w displacements,
respectively, for all of the correlation points. The results are shown in million. There
are rigid body translations similar to the average measured displacements values.
Thus, when compared with the volumetric image of Scan 1, the volumetric image of
Scan 2 incurred noticeable rigid body translations in all three directions but with
small rotations (Table 1).

6 Conclusion

This study describes in detail a new experimental method, called DVSP (Digital
Volumetric Speckle Photography), that is capable of probing the interior 3D defor-
mation field of composites. A woven composite beam, a woven composite beam
with a prepared slot and a sandwich composite beam are selected to demonstrate the
technique’s unique capability. DVSP takes advantage of modern industrial X-ray
CT’s capability to obtain a 3D volume image of a solid object in digital form. The
solid’s internal meso/micro structures are treated as 3D volumetric speckles. The
digitized volume image is subdivided into an array of cubic voxels of certain
predetermined size and processed using a 2-step 3D FFT algorithm. The result is a
3D array of displacement vectors, from which the strain field can be calculated using
an appropriate strain-displacement relation. Better results can be obtained with a

Table 1 Least squares fit of the displacements to the exact solution with rigid body translation and
small angle rotation

urigid vrigid wrigid θx θy θz
0.74 0.89 0.60 1.58 � 10�4 2.22 � 10�4 1.93 � 10�4
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higher power X-ray, which has a better resolution, a more rugged CT system and a
more efficient software. Even with the current state of art, we believe DVSP can
contribute significantly to the understanding of thick composite’s 3D effects and
failure mechanism.
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