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1 Introduction

Sandwich construction is a structural concept that results in a very stiff but light-
weight structure. In addition, these structures normally possess a high-energy
absorption capability. These attributes are achieved due to the existence of a
relatively soft and lightweight core, typically made out of polymeric or metallic
foam or honeycomb. The core is between two stiff metallic or composite thin face
sheets, which provide the stiffness. As a result, sandwich structures have found
applications in aerospace vehicles, including satellites, helicopter and fixed-wing
aircraft components, as well as naval vehicles, wind turbines and civil infrastructure.
The initial studies on sandwich panels were done by neglecting the transverse
deformation of the core (see the textbooks [1–3]). The core of a sandwich structure
was considered as infinitely rigid in the thickness direction and only its shear stresses
could be taken into account while the in-plane stresses were neglected as a result of
its low rigidity in this direction relative to that of the face sheets. Plantema [1] and
Allen [2] well summarized the work done in the 1960s. The earliest models are
called the classical (no transverse shear of the core) or first order shear deformation
(FOSD) theory (transverse shear of the core included). These models are based on
the Euler-Bernoulli (classical) or Timoshenko beam (first order shear) theories.
These assumptions could potentially be quite inaccurate esp. for dynamic loading;
in particular, sudden loading experiments conducted byWang et al. [4] showed large
amounts of core compression. Consideration of the core compressibility implies that
the displacements of the upper and lower face sheets may not be identical.

The first theory to consider the core compressibility is the High Order Sandwich
Panel Theory (HSAPT) formulated by Frostig et al. [5] in the 1990s; in this theory,
the resulting shear strain in the core is constant and the resulting transverse normal
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strain in the core is linear in the transverse coordinate, as a result of the assumption
that the in-plane rigidity of the core is negligible. In the 2000s Hohe et al. [6]
proposed a model for sandwich plates by assuming the transverse normal strain to be
constant along the transverse coordinate, while the shearing strains were assumed to
be linear in the transverse coordinate.

The accuracy of any of these models can be readily assessed if corresponding
elasticity solutions exists. To this extent, for a three dimensional sandwich plate
consisting of orthotropic material, static elasticity solutions were developed by
Vlasov [7] for isotropic plates and by Pagano [8] for a restricted case of material
sandwich combination. And these solutions were extended to cover all possible
orthotropic face sheet and core combinations of a sandwich beam/wide plate by
Kardomateas and Phan [9] and for a plate of arbitrary aspect ratio by Kardomateas
[10]. Regarding the blast loading case, a sandwich beam/wide plate elasto-dynamic
solution was developed by Kardomateas et al. [11]. The latter work was extended to
the three-dimensional elasticity sandwich plate of arbitrary aspect ratio case by
Kardomateas et al. [12]. Besides flat panels, an elasticity solution was developed
by Kardomateas et al. [13] for the geometry of curved sandwich beams/panels.
Regarding buckling, an elasticity solution for the global buckling of a sandwich
beam/wide plate was presented by Kardomateas [14] and for the case of wrinkling of
a sandwich beam/wide, a corresponding elasticity solution was presented by
Kardomateas in [15].

The Extended High Order Sandwich Panel theory (EHSAPT) was introduced in
2012 by Phan et al. [16], and is a theory that allows for the transverse shear
distribution in the core to acquire the proper distribution as the core stiffness
increases as a result of non-negligible in-plane stresses in the core; thus it is valid
for weak or stiff cores. This theory is an extension of the high-order sandwich panel
theory [5]; its novelty is that it allows for three generalized coordinates in the core
(the axial and transverse displacements at the centroid of the core, and the rotation at
the centroid of the core) instead of just one (mid-point transverse displacement)
commonly adopted in other available theories. The theory was formulated for a
sandwich panel with a general layout. The major assumptions of the theory are as
follows: (1) the face sheets satisfy the Euler-Bernoulli assumptions, and their
thicknesses are small compared with the overall thickness of the sandwich section;
they can be made of different materials and can have different thicknesses; they
undergo large displacements with moderate rotations; (2) the core is compressible in
the transverse and axial directions (transverse displacement is 2nd order in the
transverse coordinate (z) and axial displacement is 3rd order in z); it has in-plane,
transverse and shear rigidities; and it undergoes large displacements but with
kinematic relations of small deformations due to its low in-plane rigidity as com-
pared with that of the face sheets; and (3) the face sheets and core are perfectly
bonded at their interfaces. Subsequently, the dynamic version of the Extended High-
Order Sandwich Panel Theory was formulated in its full nonlinear version [17]. A
simply supported sandwich beam subjected to a sinusoidal distributed blast load on
the top face was studied and the results were compared to the dynamic elasticity
solution in [11]; it was shown that the EHSAPT is very accurate and can capture the
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complex dynamic phenomena observed during the initial, transient phase of blast
loading.

The EHSAPT was applied to the problem of global buckling of a sandwich wide
plate/beam in [18]. Three different solution approaches were presented to investigate
the effect of simplifying the loading case: (a) axial load applied exclusively to the
face sheets and the geometric nonlinearities in the core are neglected (linear core);
(b) uniform axial strain applied through the entire thickness and, again, linear core;
and (c) uniform axial strain applied through the entire thickness but now the
geometric nonlinearities in the core are included (non-linear core). The results
were also compared with these from a benchmark elasticity solution [14] and,
furthermore, from the simple sandwich buckling formula of Allen (thick faces
version) [2] and the High Order Sandwich Panel Theory [5]. It was found that all
three theories are close to the elasticity solution for “soft” cores with core over face
modulus ratio less than 0.001. However, for the more “moderate” cores, i.e. with
core over face modulus above 0.001, the theories diverge from each other, with the
EHSAPT being the most accurate, i.e. the closest to elasticity.

A similar study was conducted on the wrinkling problem [19] and the results
were, again, compared to the ones from a benchmark elasticity solution [15]. In
addition, edgewise compression experiments were conducted on Glass Face/Nomex
Honeycomb Core specimens and the ensuing wrinkling point was compared with the
theoretical predictions. A comparison was also made with earlier edgewise com-
pression experiments on Aluminum face/Granulated-cork core reported in literature.
Other wrinkling formulas that were included in the comparison are: the Hoff-
Mautner [20], and the High-Order Sandwich Panel Theory (HSAPT) [5]. In all
cases the EHSAPT was the closest to both the Elasticity predictions and the
experimental data. The HSAPT was in significant error for the relatively thinner
faces. The large discrepancy between HSPAT and EHSAPT for very low ratios of
face over total thickness (when the beam is most susceptible to wrinkling), and the
associated smaller discrepancy for higher such ratios (when the beam tends to buckle
globally), indicates that including the axial rigidity of the core (as in EHSAPT) is
very important for wrinkling.

Recently, a linear finite element was formulated based on the EHSAPT [21]. It
was proven that the finite element version of the EHSAPT constitutes a very
powerful analytical tool for sandwich panels. Furthermore, the effects of geometric
non-linearities were studied in detail in [22]. A critical assessment of including the
various nonlinear terms in the faces and the core was conducted. The nonlinear
buckling response of sandwich panels was subsequently studied [23]. It was shown
that the axial rigidity of the core has a pronounced effect on both the critical load and
the buckling mode. The corresponding non-linear post-buckling response was stud-
ied in [24]. It was found that due to the interaction between faces and core, localized
effects may be easily initiated by imperfections after the sandwich structure has
buckled globally. Furthermore, this could destabilize the post-buckling response. It
was also found that the axial rigidity of the core, although it is very small compared
to that of the faces, has a significant effect on the post-buckling response. This
underscores the need to include it, as is done in the formulation of the EHSAPT.
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Finally, the EHSAPT was also extended recently to the geometry of a curved
panel [25]. Two distinct core displacement fields were proposed and investigated.
One is a logarithmic (it includes terms that are linear, inverse, and logarithmic
functions of the radial coordinate). The other is a polynomial (it consists of second
and third order polynomials of the radial coordinate) and it is an extension of the
corresponding field for the flat panel. The relative merits of these two approaches
were assessed by comparing the results to an elasticity solution [13]. It was shown
that the logarithmic formulation is more accurate than the polynomial especially for
the stiffer cores and for curved panels of smaller radius.

In this review article, we present the basic premises, the formulation, and a
series of accuracy studies for the Extended High Order Sandwich Panel Theory
(EHSAPT).

2 Formulation of the Extended High Order Sandwich Panel
Theory

Let us consider a sandwich panel of length a with a core of thickness 2c and top and
bottom face sheet thicknesses ft and fb, respectively (Fig. 1). A Cartesian coordinate
system (x,y,z) is defined at one end of the beam and its origin is placed at the middle
of the core. Only loading in the x-z plane is considered to act on the beam which
solely causes displacements in the x and z directions designated by u and w,
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Fig. 1 Definition of the geometry and the loading
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respectively. The superscripts t, b, and c shall refer to the top face sheet, bottom face
sheet, and core, respectively. We should also note that in our formulation the
rigidities and all applied loadings are per unit width.

The displacement field of the top and bottom face sheets are assumed to satisfy
the Euler-Bernoulli assumptions: Therefore, the displacement field for the top face,
c � z � c + ft, is:

wt x, zð Þ ¼ wt
0 xð Þ; ut x, zð Þ ¼ ut0 xð Þ � z� c� f t

2

� �
wt
0,x xð Þ, ð1aÞ

and for the bottom face, �(c + fb) � z � �c:

wb x, zð Þ ¼ wb
0 xð Þ; ub x, zð Þ ¼ ub0 xð Þ � zþ cþ f b

2

� �
wb
0,x xð Þ, ð1bÞ

In these relations, the sub script 0 refers to the centroid (middle surface).
The only nonzero strain in the faces is the axial strain, which in the general

nonlinear case (necessary, for example, for buckling) is:

εt,bxx x, zð Þ ¼ ut,b,x x, zð Þ þ 1
2

wt,b
0,x xð Þ� �2

, ð1cÞ

If a linear analysis is pursued, the second (squared) term in (1c) is neglected.
While the face sheets can change their length only longitudinally, the core can

change its height and length. The displacement fields considered for the core are of
the form:

wc x, zð Þ ¼ wc
0 xð Þ þ zwc

1 xð Þ þ z2wc
2 xð Þ, ð2aÞ

uc x, zð Þ ¼ uc0 xð Þ þ zϕc
0 xð Þ þ z2uc2 xð Þ þ z3uc3 xð Þ, ð2bÞ

where w0
c and u0

c are the transverse and in-plane displacements, respectively, ϕ0
c is

the slope at the centroid of the core, while w1
c, w2

c, and u2
c, u3

c, are transverse and
in-plane unknown functions to be determined by the transverse and the in-plane
compatibility conditions applied at the upper, z ¼ c, and lower, z ¼ �c, face-core
interfaces:

wc x, cð Þ ¼ wt
0 xð Þ; uc x, cð Þ ¼ ut0 xð Þ � f t

2
wt
0,x xð Þ, ð2cÞ

wc x,�cð Þ ¼ wb
0 xð Þ; ub x,�cð Þ ¼ ub0 xð Þ þ f b

2
wb
0,x xð Þ, ð2dÞ

Hence, using the first Eqs. in (2c, d) and Eqs. (1a) and (2a) yields the following
distribution of the transverse displacement in the core:
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wc x, zð Þ ¼ � z
2c

þ z2

2c2

� �
wb
0 xð Þ þ 1� z2

c2

� �
wc
0 xð Þ þ z

2c
þ z2

2c2

� �
wt
0 xð Þ: ð3aÞ

The axial displacement of the core, uc(x,z), is determined through the fulfillment of
the continuity conditions in the in-plane direction [see second Eqs. in (2c,d)]. Hence,
after some algebraic manipulation:

uc x, zð Þ ¼ z 1� z2

c2

� �
ϕc
0 xð Þ þ z2

2c2
1� z

c

� �
ub0 xð Þ þ 1� z2

c2

� �
uc0 xð Þ

þ z2

2c2
1þ z

c

� �
ut0 xð Þ þ f bz

2

4c2
�1þ z

c

� �
wb
0,x þ

f tz
2

4c2
1þ z

c

� �
wt
0,x :

ð3bÞ

Therefore, this theory is in terms of seven generalized coordinates (unknown
functions of x): two for the top face sheet, w0

t, u0
t, two for the bottom face sheet, w0

b,
u0

b, and three for the core, w0
c, u0

c, and ϕ0
c.

The strains can be obtained from the displacements using the linear strain-
displacement relations. For the core, the transverse normal strain is:

εczz x, zð Þ ¼ ∂wc

∂z
¼ z

c2
� 1
2c

� �
wb
0 xð Þ � 2z

c2
wc
0 xð Þ þ z

c2
þ 1
2c

� �
wt
0 xð Þ, ð4aÞ

and the shear strain

γcxz x, zð Þ ¼∂uc

∂z
þ ∂wc

∂x
¼ 1� 3z2

c2

� �
ϕc
0 xð Þ þ z

c2
� 3z2

2c3

� �
ub0 xð Þ � 2z

c2
uc0 xð Þ

þ z
c2

þ 3z2

2c3

� �
ut0 xð Þ þ � cþ f bð Þ

2c2
zþ 2cþ 3f bð Þ

4c3
z2

� 	
wb
0,x

þ 1� z2

c2

� �
wc
0,x þ

cþ f tð Þ
2c2

zþ 2cþ 3f tð Þ
4c3

z2
� 	

wt
0,x :

ð4bÞ

There is also a nonzero linear axial strain in the core εxx
c ¼ ∂uc/∂x, which has the

same structure as Eq. (3b), but with the generalized function coordinates replaced by
one order higher derivative with respect to x.

In the following we use the notation 1 � x, 3 � z, and 55 � xz. We assume
orthotropic face sheets, thus the non-zero stresses for the faces are:

σt,bxx ¼ Ct,b
11ε

t,b
xx ; σt,bzz ¼ Ct,b

13ε
t,b
xx , ð5aÞ

where, in terms of the extensional (Young’s) modulus, E1
t,b, and the Poisson’s ratio

ν31
t,b, the stiffness constants for a beam are: C11

t,b ¼ E1
t,b and C13

t,b ¼ ν31
t,b E1

t,b.
Notice that the σzz

t,b does not ultimately enter into the variational equation because
the corresponding strain εzz

t,b is assumed to be zero.
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We also assume an orthotropic core with stress-strain relations:

σcxx
σczz
τcxz

2
64

3
75 ¼

Cc
11 Cc

13 0

Cc
13 Cc

33 0

0 0 Cc
55

2
64

3
75

εcxx
εczz
γcxz

2
64

3
75, ð5bÞ

where Cij
c are the stiffness constants for the core. These constants are determined

from the inverse of the compliance matrix. In particular, they are [26]

Cc
11 ¼ Ec

1

1� νc23ν
c
32


 �
C0

; Cc
13 ¼ Ec

3

νc13 � νc12ν
c
23


 �
C0

; Cc
33 ¼ Ec

3

1� νc12ν
c
21


 �
C0

, ð5cÞ

C0 ¼ 1� νc12ν
c
21 þ νc23ν

c
32 þ νc13ν

c
31


 �� νc12ν
c
23ν

c
31 þ νc21ν

c
13ν

c
32


 �
, ð5dÞ

Cc
55 ¼ Gc

31: ð5eÞ

In the following we’ll formulate the problem for the general case of dynamic loading.
If the problem is static, the time terms in the equations just need be neglected. The
governing equations and boundary conditions are derived from Hamilton’s principle:

ðt2
t1

δ U þ V � Tð Þdt ¼ 0, ð6aÞ

where U is the strain energy of the sandwich beam, V is the potential due to the
applied loading, and T is the kinetic energy. The first variation of the strain energy
per unit width of the sandwich beam is:

δU ¼
ða
0

ð�c

�c�f b

σbxxδε
b
xxdzþ

ðc
�c

σcxxδε
c
xx þ σczzδε

c
zz þ τcxzδγ

c
xz


 �
dzþ

ðcþf t

c

σtxxδε
t
xxdz

2
64

3
75 dx,

ð6bÞ

and the first variation of the external potential per unit width is:

δV ¼�
ða
0

qtδwt
0 þ qbδwb

0 þ ptδut0 þ pbδub0 þ mtδwt
0,x þ mbδwb

0,x


 �

�
ðc
�c

ncδuc þ scδwcð Þdz
2
4

3
5
a

x¼0

� Ntδut0
� �a

x¼0 � Nbδub0
� �a

x¼0 � Vtδwt
0

� �a
x¼0

� Vbδwb
0

� �a
x¼0 � Mtδwt

0,x

� �a
x¼0

� Mbδwb
0,x

� �a
x¼0

,

ð6cÞ
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where, by reference to Fig. 1, qt,b is the distributed transverse (along z) force per unit
width, pt,b is the distributed in-plane (along x) force per unit width and mt,b is the
distributed moment per unit width on the top and bottom faces. Moreover Nt,b is the
end axial force per unit width, Vt,b is the end shear force per unit width andMt, b is the
end moment per unit width at the top and bottom face sheets, at the ends x ¼ 0, a. In
addition, nc is the end axial force per unit width and sc is the end shear force per unit
width at the core, at the ends x ¼ 0, a.

In the following, we assume that nc and sc are constant. In this case,

ðc
�c

ncδucdz ¼ ncc
1
3

δub0 þ δut0

 �þ 4

3
δuc0 �

f b
6
δwb

0,x þ
f t
6
δwt

0,x

� 	
, ð6dÞ

ðc
�c

scδwcdz ¼ scc
1
3

δwb
0 þ δwt

0


 �þ 4
3
δwc

0

h i
: ð6eÞ

Of course, the theory can admit any variation of nc and sc along z; for example, a
bending moment on the core would correspond to a linear variation of ncwith respect
to z. However, for most practical purposes, loads are applied to the skins and not
the core.

The kinetic energy term is:

δT ¼
ða
0

ð�c

cþf bð Þ

ρb _ubδ _ub þ _wbδ _wb

 �

dzþ
ðc
�c

ρc _ucδ _uc þ _wcδ _wcð Þdz

2
64

þ
ðcþf t

c

ρt _utδ _ut þ _wtδ _wtð Þdz
3
5dx:

ð6fÞ

For the sandwichplatesmadeoutoforthotropicmaterials,wecan substitute thestresses in
terms of the strains from the constitutive relations, Eqs. (5a), and then the strains in terms
of the displacements and the displacement profiles, Eqs. (1–4), and finally apply the
variational principle,Eqs. (6a); thuswecanwrite a set of non-linear governingdifferential
Eqs. (D.Es) in terms of the seven unknown generalized coordinates as follows:

Top face sheet D.Es (two nonlinear):

δut0 : � 4
5
Cc
55 þ

2c2

35
Cc
11

∂2

∂x2

� �
ϕc
0 �

7
30c

Cc
55 þ

c
35

Cc
11

∂2

∂x2

� �
ub0

� 4
3c

Cc
55 þ

2c
15

Cc
11

∂2

∂x2

� �
uc0 þ

47
30c

Cc
55 � αt1

∂2

∂x2

� 	
ut0

� αb2
∂
∂x

� cf b
70

Cc
11

∂3

∂x3

� �
wb
0 þ β1

∂
∂x

� �
wc
0 þ αt3

∂
∂x

� 3cf t
35

Cc
11

∂3

∂x3

� �
wt
0

þ Dt
u ¼ pt þ Ft

u,

ð7aÞ
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where Fu
t is the nonlinear term:

Ft
u ¼ Ct

11f t w
t
0,x w

t
0,xx, ð7bÞ

and Du
t is the dynamic term:

Dt
u ¼ ρc

2c2

35
∂2ϕc

0

∂t2
þ ρc

c
35

∂2ub0
∂t2

þ ρc
2c
15

∂2uc0
∂t2

þ ρc
6c
35

þ ρt f t

� �
∂2ut0
∂t2

�ρc
cf b
70

∂3wb
0

∂x∂t2
þ ρc

3cf t
35

∂3wt
0

∂x∂t2
:

ð7cÞ

and

δwt
0 : αt4

∂
∂x

þ c2f t
35

Cc
11

∂3

∂x3

� �
ϕc
0 þ αt5

∂
∂x

þ cf t
70

Cc
11

∂3

∂x3

� �
ub0

þ αt6
∂
∂x

þ cf t
15

Cc
11

∂3

∂x3

� �
uc0 þ �αt3

∂
∂x

þ 3cf t
35

Cc
11

∂3

∂x3

� �
ut0

þ 1
6c

Cc
33 þ β2

∂2

∂x2
� cf bf t

140
Cc
11

∂4

∂x4

� �
wb
0 þ � 4

3c
Cc
33 þ αt7

∂2

∂x2

� �
wc
0

þ 7
6c

Cc
33 þ αt8

∂2

∂x2
þ αt9

∂4

∂x4

� �
wt
0 þ Dt

w ¼ qt � mt
,x þ Ft

w,

ð8aÞ

where Fw
t is the nonlinear term:

Ft
w ¼ Ct

11f t wt
0,x u

t
0,xx þ ut0,x w

t
0,xx þ

3
2

wt
0,x


 �2
wt
0,xx

h i
, ð8bÞ

and Dw
t is the dynamic term:

Dt
w ¼� ρc

f tc
2

35
∂3ϕc

0

∂x∂t2
� ρc

f tc
70

∂3ub0
∂x∂t2

� ρc
f tc
15

∂3uc0
∂x∂t2

� ρc
3f tc
35

∂3ut0
∂x∂t2

þ �ρc
c
15

∂2

∂t2
þ ρc

cf bf t
140

∂4

∂x2∂t2

� �
wb
0 þ ρc

2c
15

∂2wc
0

∂t2

þ ρc
4c
15

þ ρt f t
� � ∂2

∂t2
� ρc

3cf 2t
70

þ ρt
f 3t
12

� �
∂4

∂x2∂t2

� 	
wt
0:

ð8cÞ
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Core D.Es (three linear):

δuc0 : � 4
3c

Cc
55 þ

2c
15

Cc
11

∂2

∂x2

� �
ub0 þ

8
3c

Cc
55 �

16c
15

Cc
11

∂2

∂x2

� �
uc0

� 4
3c

Cc
55 þ

2c
15

Cc
11

∂2

∂x2

� �
ut0 þ αb6

∂
∂x

þ cf b
15

Cc
11

∂3

∂x3

� �
wb
0

� αt6
∂
∂x

þ cf t
15

Cc
11

∂3

∂x3

� �
wt
0 þ Dc

u ¼ 0,

ð9aÞ

where Du
c is the dynamic term:

Dc
u ¼ ρc

2c
15

∂2ub0
∂t2

þ 16c
15

∂2uc0
∂t2

þ 2c
15

∂2ut0
∂t2

� cf b
15

∂3wb
0

∂x∂t2
þ cf t

15
∂3wt

0

∂x∂t2

" #
: ð9bÞ

δϕc
0 :

8c
5
Cc
55 �

16c3

105
Cc
11

∂2

∂x2

� �
ϕc
0 þ

4
5
Cc
55 þ

2c2

35
Cc
11

∂2

∂x2

� �
ub0

� 4
5
Cc
55 þ

2c2

35
Cc
11

∂2

∂x2

� �
ut0 � αb4

∂
∂x

þ c2f b
35

Cc
11

∂3

∂x3

� �
wb
0 þ β3

∂
∂x

� �
wc
0

� αt4
∂
∂x

þ c2f t
35

Cc
11

∂3

∂x3

� �
wt
0 þ Dc

ϕ ¼ 0,

ð10aÞ

where Dϕ
c is the dynamic term:

Dc
ϕ ¼ ρc

16c3

105
∂2ϕc

0

∂t2
� 2c2

35
∂2ub0
∂t2

þ 2c2

35
∂2ut0
∂t2

þ f bc
2

35
∂3wb

0

∂x∂t2
þ f tc

2

35
∂3wt

0

∂x∂t2

" #
,

ð10bÞ

and

δwc
0 : � β3

∂
∂x

� �
ϕc
0 þ β1

∂
∂x

� �
ub0 � β1

∂
∂x

� �
ut0 þ � 4

3c
Cc
33 þ αb7

∂2

∂x2

� �
wb
0

þ 8
3c

Cc
33 �

16c
15

Cc
55

∂2

∂x2

� �
wc
0 þ � 4

3c
Cc
33 þ αt7

∂2

∂x2

� �
wt
0 þ Dc

w ¼ 0,

ð11aÞ
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where Dw
c is the dynamic term:

Dc
w ¼ ρc

2c
15

∂2wb
0

∂t2
þ 16c

15
∂2wc

0

∂t2
þ 2c
15

∂2wt
0

∂t2

" #
: ð11bÞ

Bottom face sheet D.Es (two nonlinear):

δub0 :
4
5
Cc
55 þ

2c2

35
Cc
11

∂2

∂x2

� �
ϕc
0 þ

47
30c

Cc
55 � αb1

∂2

∂x2

� 	
ub0

� 4
3c

Cc
55 þ

2c
15

Cc
11

∂2

∂x2

� �
uc0 �

7
30c

Cc
55 þ

c
35

Cc
11

∂2

∂x2

� �
ut0

þ �αb3
∂
∂x

þ 3cf b
35

Cc
11

∂3

∂x3

� �
wb
0 � β1

∂
∂x

� �
wc
0 þ αt2

∂
∂x

� cf t
70

Cc
11

∂3

∂x3

� �
wt
0

þ Db
u ¼ pb þ Fb

u,

ð12aÞ

where Fu
b is the nonlinear term:

Fb
u ¼ Cb

11f b w
b
0,x w

b
0,xx, ð12bÞ

and Du
b is the dynamic term:

Db
u ¼ �ρc

2c2

35
∂2ϕc

0

∂t2
þ ρc

6c
35

þ ρbf b

� �
∂2ub0
∂t2

þ ρc
2c
15

∂2uc0
∂t2

þ ρc
c
35

∂2ut0
∂t2

�ρc
3f bc
35

∂3wb
0

∂x∂t2
þ ρc

f tc
70

∂3wt
0

∂x∂t2
,

ð12cÞ

and

δwb
0 : αb4

∂
∂x

þ c2f b
35

Cc
11

∂3

∂x3

� �
ϕc
0 þ αb3

∂
∂x

� 3cf b
35

Cc
11

∂3

∂x3

� �
ub0

� αb6
∂
∂x

þ cf b
15

Cc
11

∂3

∂x3

� �
uc0 � αb5

∂
∂x

þ cf b
70

Cc
11

∂3

∂x3

� �
ut0

þ 7
6c

Cc
33 þ αb8

∂2

∂x2
þ αb9

∂4

∂x4

� �
wb
0 þ � 4

3c
Cc
33 þ αb7

∂2

∂x2

� �
wc
0

þ 1
6c

Cc
33 þ β2

∂2

∂x2
� cf bf t

140
Cc
11

∂4

∂x4

� �
wt
0 þ Db

w ¼ qb � mb
,x þ Fb

w,

ð13aÞ
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where Fw
b is the nonlinear term:

Fb
w ¼ Cb

11f b wb
0,x u

b
0,xx þ ub0,x w

b
0,xx þ

3
2

wb
0,x


 �2
wb
0,xx

h i
, ð13bÞ

and Dw
b is the dynamic term:

Db
w ¼ �ρc

f bc
2

35
∂3ϕc

0

∂x∂t2
þ ρc

3f bc
2

35
∂3ub0
∂x∂t2

þ ρc
f bc
15

∂3uc0
∂x∂t2

þ ρc
f b
70

∂3ut0
∂x∂t2

þ ρc
4c
15

þ ρbf b
� � ∂2

∂t2
� ρc

3f 2bc
70

þ ρb
f 3b
12

� �
∂4

∂x2∂t2

� 	
wb
0

þρc
2c
15

∂2wc
0

∂t2
þ ρc � c

15
∂2

∂t2
þ cf bf t

140
∂4

∂x2∂t2

� �
wt
0:

ð13cÞ

In the above expressions, the following constants are defined:

αi1 ¼
6c
35

Cc
11 þ f iC

i
11; αi2 ¼

1
30

Cc
13 þ

1
30

� 7f i
60c

� �
Cc
55, ð14aÞ

αi3 ¼ � 11
30

Cc
13 þ

19
30

þ 47f i
60c

� �
Cc
55; αi4 ¼

4c
15

Cc
13 þ

4c
15

þ 2f i
5

� �
Cc
55, ð14bÞ

αi5 ¼ �αi2; αi6 ¼
2
3
Cc
13 þ

2
3
þ 2f i

3c

� �
Cc
55; αi7 ¼ � f i

5
Cc
13 �

2c
15

þ f i
5

� �
Cc
55;

ð14cÞ

αi8 ¼
11f i
30

Cc
13 �

4c
15

þ 19f i
30

þ 47f 2i
120c

� �
Cc
55; αi9 ¼

f 3i
12

Ci
11 þ

3cf 2i
70

Cc
11, ð14dÞ

and

β1 ¼ 2
5

Cc
13 þ Cc

55


 �
; β3 ¼ 8c

15
Cc
13 þ Cc

55


 �
, ð14eÞ

β2 ¼
f b þ f t
60

Cc
13 þ

c
15

þ f b þ f t
60

� 7f bf t
120c

� �
Cc
55: ð14fÞ

The corresponding boundary conditions (B.Cs) at x ¼ 0,a, read as follows (at each
end there are nine boundary conditions, three for each face sheet and three for the
core):
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Top face sheet B.Cs (three):

(i) Either δu0
t ¼ 0 or,

2c2

35
Cc
11

∂
∂x

� �
ϕc
0 þ

c
35

Cc
11

∂
∂x

� �
ub0 þ

2c
15

Cc
11

∂
∂x

� �
uc0 þ αt1

∂
∂x

� �
ut0 �

2
5
Cc
13

� �
wc
0

þ 1
30

Cc
13 �

cf b
70

Cc
11

∂2

∂x2

� �
wb
0 þ

11
30

Cc
13 þ

3cf t
35

Cc
11

∂2

∂x2

� �
wt
0 ¼ Nt þ ncc

3
þ Bt

u,

ð15aÞ

where Nt is the end axial force per unit width at the top face and nc is the (uniformly
distributed) end axial force per unit width at the core (at the end x ¼ 0 or x ¼ a) and
Bu

t is the nonlinear term

Bt
u ¼ � f t

2
Ct
11 wt

0,x


 �2
: ð15bÞ

(ii) Either δw0
t ¼ 0 or,

� 2 2cþ 3f tð Þ
15

Cc
55 þ

c2f t
35

Cc
11

∂2

∂x2

� 	
ϕc
0 þ

2c� 7f tð Þ
60c

Cc
55 �

cf t
70

Cc
11

∂2

∂x2

� 	
ub0

� 2 cþ f tð Þ
3c

Cc
55 þ

cf t
15

Cc
11

∂2

∂x2

� 	
uc0 þ

38cþ 47f tð Þ
60c

Cc
55 �

3cf t
35

Cc
11

∂2

∂x2

� 	
ut0

þ f b
60

Cc
13 � β2

� �
∂
∂x

þ cf bf t
140

Cc
11

∂3

∂x4

� 	
wb
0 � αt7

∂
∂x

� �
wc
0

þ 11f t
60

Cc
13 � αt8

� �
∂
∂x

� αt9
∂3

∂x3

� 	
wt
0 ¼ Vt þ mt þ scc

3
þ Bt

w þ Ltw,

ð16aÞ

where Vt is the end shear force per unit width at the top face and sc is the (assumed
constant) end shear force per unit width at the core (at the end x¼ 0 or x¼ a) and Bw

t

is the nonlinear term:

Bt
w ¼ � f t

2
Ct
11w

t
0,x 2ut0,x þ wt

0,x


 �2h i
, ð16bÞ

and Lw
t is the dynamic term:

Ltw ¼ f t
420

ρc12c2
∂2ϕc

0

∂t2
þ ρc6c

∂2ub0
∂t2

þ ρc28c
∂2uc0
∂t2

þ ρc36c
∂2ut0
∂t2

�ρc3cf b
∂3wb

0

∂x∂t2
þ ρc18cf t þ ρt35f 2t

 � ∂3wt

0

∂x∂t2

2
6664

3
7775: ð16cÞ
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(iii) Either δw0,x
t ¼ 0 or,

c2f t
35

Cc
11

∂
∂x

� �
ϕc
0 þ

cf t
70

Cc
11

∂
∂x

� �
ub0 þ

cf t
15

Cc
11

∂
∂x

� �
uc0 þ

3cf t
35

Cc
11

∂
∂x

� �
ut0

þ f t
60

Cc
13 �

cf bf t
140

Cc
11

∂2

∂x2

� �
wb
0 �

f t
5
Cc
13

� �
wc
0 þ

11f t
60

Cc
13 þ αt9

∂2

∂x2

� �
wt
0

¼ Mt þ nccf t
6

,

ð17Þ

whereMt is the end moment per unit width at the top face (at the end x¼ 0 or x¼ a).

Core B.Cs (three):

(i) Either δu0
c ¼ 0 or,

2c
15

Cc
11

∂
∂x

� �
ub0 þ

16c
15

Cc
11

∂
∂x

� �
uc0 þ 2c

15
Cc
11

∂
∂x

� �
ut0

� 2
3
Cc
13 þ

cf b
15

Cc
11

∂2

∂x2

� �
wb
0 þ

2
3
Cc
13 þ

cf t
15

Cc
11

∂2

∂x2

� �
wt
0 ¼

4ncc
3

:

ð18Þ

(ii) Either δϕ0
c ¼ 0 or,

16c3

105
Cc
11

∂
∂x

� �
ϕc
0 �

2c2

35
Cc
11

∂
∂x

� �
ub0 þ 2c2

35
Cc
11

∂
∂x

� �
ut0

þ 4c
15

Cc
13 þ

c2f b
35

Cc
11

∂2

∂x2

� �
wb
0 �

8c
15

Cc
13

� �
wc
0 þ

4c
15

Cc
13 þ

c2f t
35

Cc
11

∂2

∂x2

� �
wt
0 ¼ 0:

ð19Þ

(iii) Either δw0
c ¼ 0 or,

Cc
55

8c
15

ϕc
0 �

2
5
ub0 þ

2
5
ut0 þ

2cþ 3f bð Þ
15

wb
0,x þ

16c
15

wc
0,x þ

2cþ 3f tð Þ
15

wt
0,x

� 	
¼ 4

3
scc:

ð20Þ
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Bottom face sheet B.Cs (three):

(i) Either δu0
b ¼ 0 or,

� 2c2

35
Cc
11

∂
∂x

� �
ϕc
0 þ αb1

∂
∂x

� �
ub0 þ

2c
15

Cc
11

∂
∂x

� �
uc0 þ

c
35

Cc
11

∂
∂x

� �
ut0

þ 2
3
Cc
13

� �
wc
0 �

11
30

Cc
13 þ

3cf b
35

Cc
11

∂2

∂x2

� �
wb
0

þ � 1
30

Cc
13 þ

cf t
70

Cc
11

∂2

∂x2

� �
wt
0 ¼ Nb þ ncc

3
þ Bb

u,

ð21aÞ

where Nb is the end axial force per unit width at the bottom face and Bu
b is the

nonlinear term,

Bb
u ¼ � f b

2
Cb
11 wb

0,x


 �2
: ð21bÞ

(ii) Either δw0
b ¼ 0 or,

� 2 2cþ 3f bð Þ
15

Cc
55 þ

c2f b
35

Cc
11

∂2

∂x2

� 	
ϕc
0 þ � 38c� 47f bð Þ

60c
Cc
55 þ

3cf b
35

Cc
11

∂2

∂x2

� 	
ub0

þ 2 cþ f bð Þ
3c

Cc
55 þ

cf b
15

Cc
11

∂2

∂x2

� 	
uc0 þ

�2cþ 7f bð Þ
60c

Cc
55 þ

cf b
70

Cc
11

∂2

∂x2

� 	
ut0

� αb7
∂
∂x

� �
wc
0 þ

11f b
60

Cc
13 � αb8

� �
∂
∂x

� αb9
∂3

∂x3

� 	
wb
0

þ f t
60

Cc
13 � β2

� �
∂
∂x

þ cf bf t
140

Cc
11

∂3

∂x3

� 	
wt
0 þ Lbw

¼ Vb
0 þ mb þ scc

3
þ Bb

w,

ð22aÞ

where Vb is the end shear force per unit width at bottom face and Bw
b is the nonlinear

term:

Bb
w ¼ � f b

2
Cb
11w

b
0,x 2ub0,x þ wb

0,x


 �2h i
, ð22bÞ
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and Lw
b is the dynamic term:

Lbw ¼ f b
420

ρc12c2
∂2ϕc

0

∂t2
� ρc36c

∂2ub0
∂t2

� ρc28c
∂2uc0
∂t2

� ρc6c
∂2ut0
∂t2

þ ρc18cf b þ ρb35f 2b

 � ∂3wb

0

∂x∂t2
� ρc3cf t

∂3wt
0

∂x∂t2

2
6664

3
7775 : ð22cÞ

(iii) Either δw0,x
b ¼ 0 or,

c2f b
35

Cc
11

∂
∂x

� �
ϕc
0 �

3cf b
70

Cc
11

∂
∂x

� �
ub0 �

cf b
15

Cc
11

∂
∂x

� �
uc0 �

cf b
70

Cc
11

∂
∂x

� �
ut0

� f b
5
Cc
13

� �
wc
0 þ

11f b
60

Cc
13 þ αb9

∂2

∂x2

� �
wb
0 þ

f b
60

Cc
13 �

cf bf t
140

Cc
11

∂2

∂x2

� �
wt
0

¼ Mb � nccf b
6

,

ð23Þ

where Mb is the end moment per unit width at the bottom face.
Hamilton’s principle results in 7 coupled partial differential equations, Eqs. (7a)

to (13a), four of which are nonlinear due to the consideration of nonlinear axial
strains in the face sheets. The order of the equations of motion is 18. Therefore, there
are 18 boundary conditions, 9 at each end at x ¼ 0 and x ¼ a, given by Eqs. (15a) to
(23). Notice that since the rotations of the face sheets are assumed to be the
derivative of the transverse displacement with respect to x, there exist inertial
terms Lw

t and Lw
b in the boundary conditions in equations, (16a) and (22a). The

7 unknowns of EHSAPT are: u0
t(x,t), u0

c(x,t), u0
b(x,t), ϕ0

c(x,t), w0
t(x,t), w0

c(x,t) and
w0

b(x,t).

3 Accuracy Study I: A Statically Loaded Simply Supported
Sandwich Panel

In this section we shall study the linear response of a simply supported sandwich
panel under transversely applied loading of the form:

qt xð Þ ¼ q0 sin
πx
a
: ð24aÞ

In this case, the boundary conditions for x ¼ 0, a (Fig. 1) are the three kinematic
conditions
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wt
0 ¼ wb

0 ¼ wc
0 ¼ 0: ð24bÞ

and the 6 natural boundary conditions in (15), (17), (18), (19), (21) and (23).
All these are satisfied by displacements in the form:

ut,b,c0 ¼ Ut,b,c
0 cos

πx
a
; wt,b,c

0 ¼ Wt,b,c
0 sin

πx
a

; ϕc
0 ¼ Φc

0 cos
πx
a
: ð24cÞ

We consider the linear problem, which means that the nonlinear terms Fu,w
t,b in

the governing differential Eqs and the nonlinear terms Bw
t,b in the boundary condi-

tions are neglected.
Substituting Eq. (25a) into Eq. (10–14) results in a system of seven linear

equations for the seven unknown constants U0
t, U0

c, U0
b, Φ0

c, W0
t, W0

c, and W0
b.

We shall consider sandwich configurations where the two face sheets are assumed
identical with thickness ft ¼ fb ¼ f ¼ 2 mm. The core thickness is 2c ¼ 16 mm. The
total thickness of the beam/plate is defined as htot ¼ 2f + 2c and the length of the
beam is a ¼ 20htot.

Regarding materials, the faces are made out of graphite-epoxy with moduli
(GPa): E1

f ¼ 181.0; E2
f ¼ E3

f ¼ 10.3; G23
f ¼ 5.96; G31

f ¼ G12
f ¼ 7.17 and

Poisson’s ratios: ν32f ¼ 0.40; ν31f ¼ 0.016; ν12f ¼ 0.277.
The core is made out of glass-phenolic honeycomb with moduli (GPa):

E1
c ¼ E2

c ¼ 0.032; E3
f ¼ 0.300; G23

c ¼ G31
c ¼ 0.048; G12

c ¼ 0.013 and Poisson’s
ratios: ν32c ¼ ν31c ¼ ν12c ¼ 0.25.

In the following results, the displacements are normalized with wnorm ¼ 3q0a
4/

(2π4f3E1
f) and the stresses with q0.

Plotted in Fig. 2 is the normalized displacement at the top face sheet as a function
of x. In this figure, we also show the predictions of the simple Classical beam theory,
which does not include transverse shear, as well as the First Order Shear theories; for
the latter, there are two versions: one that is based only on the core shear stiffness and
one that includes the face sheet stifnesses. In addition, we show the predictions of the
High Order sandwich panel theory [5]. This theory, which is based on an assumption
that the in-plane rigidity of the core is neglected and yields a constant shear stress
and zero axial stress in the core. Finally, we also show the predictions from a finite
element method (FEM) study [21].

From Fig. 2, we can see that both the Classical and First Order Shear (both
versions) seem to be inadequate. The Classical theory is too non-conservative and
the First Order Shear theory with face sheets included can hardly make a difference.
On the other hand, the First Order Shear theory where shear is assumed to be carried
exclusively by the core is too conservative; this clearly demonstrates the need for
higher order theories in dealing with sandwich structures. In this regard, both the
Frostig et al. [5] and the Extended High Order theories give a displacement profile
which is essentially identical to the Elasticity solution. In Fig. 2 we can also readily
observe the large effect of transverse shear, which is an important feature of
sandwich structures.
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The distribution of the axial stress in the core, σxx, as a function of z at the
midspan location, x ¼ a/2 (where the bending moment is maximum), is plotted in
Fig. 3. The Extended High Order theory predicts a stress profile practically identical
to the Elasticity. Note that the HSAPT [5] neglects the in-plane rigidity of the core,
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Fig. 3 Through-thickness distribution in the core of the axial stress, σxx, at midspan
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yielding a zero axial stress. The Classical and First Order Shear theories give
practically identical predictions but they are in appreciable error by comparison to
the Elasticity, the error increasing towards the lower end of the core (z ¼ �c). All
curves are linear. Notice also that for the Elasticity and the Extended High Order
theory there is not a symmetry with regard to the mid line (z¼ 0) unlike the Classical
and First Order Shear theories.

The through-thickness distribution of the transverse normal stress in the core, σzz,
at the midspan location, x ¼ a/2, is shown in Fig. 4. Note that the First Order Shear
theory and the Classical theory consider the core incompressible. Both high order
theories are practically coinciding with the Elasticity curve and all are nearly linear.

The transverse shear profile, τxz, is investigated in detail by considering a
sandwich construction in which both the face sheets and the core are isotropic. By
varying the moduli ratio, we can accordingly increase the shear stress range in the
core. Thus, we assume that the face sheets are made out of isotropic Aluminum
Alloy with Ef ¼ 100 GPa and the core is made out of isotropic material having a
modulus Ec such that the ratio Ef/Ec assumes the values of: 50, 5 and 2. The
Poisson’s ratios are assumed νf¼ νc¼ 0.30. Fig. 5 shows the shear stress distribution
through the thickness near the support wher the shear force is large, x¼ a/10. For the
moduli ratio of 2 the range is very large, with the maximum over minimum shear
stress ratio being about 2. On the contrary, for the moduli ratio of 50, the shear stress
range is very small, with the corresponding maximum over minimum shear stress
ratio being only about 1.04. The Extended High Order theory is capable of capturing
the shear stress profile in all cases, even the most demanding case of Ef/Ec ¼ 2, and
in all cases is very close to the Elasticity. On the contrary, a constant shear stress
assumption as is [5] would be applicable only for the large ratios of Ef/Ec.
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4 Accuracy Study II: Wrinkling of a Sandwich Panel

The EHSAPT formulation for predicting the critical wrinkling load for a simply
supported sandwich was done in [19]. The simplest way to apply the compressive
loading is for concentrated compressive loads to be applied on the top and bottom
faces such that they sum up to the total applied compressive load with the
pre-buckling axial strains being equal on the top and bottom faces. The core is
considered to have linear strains. Results in the following will be presented for this
simpler case. Another case considered was applying uniform strain loading through-
out the thickness of the panel and a nonlinear core assumption. The results from this
more complicated case of load application are not much different than the simpler
loading case. A perturbation approach was used resulting in an eigenvalue problem
formulation [19].

Tables 1 and 2 give the critical loads (normalized with the Euler load) for
symmetric sandwich beams with length ratio a/htot ¼ 5 and varying face thickness
ratios f/htot, where f¼ ft ¼ fb is the face thickness and htot ¼ 2(f + c) is the total beam
thickness.
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Fig. 5 Through-thickness distribution in the core of the transverse shear stress, τxz, at x ¼ a/10 for
the case of isotropic aluminum alloy faces and a wide range of isotropic cores
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The sandwich beam is made of isotropic face and core with Ef/Ec¼ 500 and 1000
and Poisson’s ratios νf ¼ 0.35 and νc¼ 0. These tables compare the Elasticity results
to the wrinkling predictions from EHSAPT, the HSAPT [5], and the Hoff-Mautner
(semi-empirical constant ¼ 0.5) [20]. The tables also show the mode and percent
Error with respect to Elasticity.

It can be concluded that the EHSAPT is the most accurate theory and esp. by
comparison to the HSAPT [5]. Indeed, the HSAPT is inaccurate in predicting
wrinkling loads for sandwiches with very thin faces, under-predicting the critical
load by as much as about 70% for the more moderately stiffer core configuration
with Ef /Ec ¼ 500 and f/htot ¼ 0.01. In addition, the HSAPT predicts symmetric
wrinkling modes, while the EHSAPT predicts anti-symmetric wrinkling modes,
similar to Elasticity.

5 Accuracy Study III: Blast Loading of a Simply Supported
Sandwich Panel

In this section, the dynamic response of a simply supported sandwich beam, initially
at rest, then subjected to a temporal blast load that exponentially decays in time and
has a half-sine spatial profile along the beam is studied. The applied load in kN/m
(with time t in milli-sec) is:

qt x, tð Þ ¼ q0 sin
πx
a

e�βt, ð25aÞ

Table 1 Critical Loads for Ef/Ec ¼ 500; normalized with the Euler load (no shear) A and S in the
wave numbers stand for anti-symmetric and symmetric, respectively

f/htot Elasticity (n) Hoff (n) (Error%) HSAPT (n) (Error%) EHSAPT (n) (Error%)

0.01 0.1222 (A30) 0.0631 (34) (�48.4%) 0.0370 (S24) (�69.8%) 0.1370 (A26) (þ12.1%)

0.02 0.1210 (A15) 0.0654 (17) (�45.9%) 0.0548 (S14) (�54.7%) 0.1162 (A15) (�4.0%)

0.03 0.1211 (A10) 0.0672 (11) (�44.5%) 0.0698 (S11) (�42.3%) 0.1143 (A10) (�5.6%)

0.04 0.1188 (A6) 0.0687 (9) (�42.1%) 0.0836 (S9) (�29.6%) 0.1128 (A7) (�5.0%)

0.05 0.1027 (A1) 0.0703 (7) (�31.6%) 0.0962 (S7) (�6.3%) 0.1003 (A1) (�2.3%)

Table 2 Critical Loads for Ef/Ec ¼ 1000; normalized with the Euler load (no shear) A and S in the
wave numbers stand for anti-symmetric and symmetric, respectively

f/htot Elasticity (n) Hoff (n) (Error%) HSAPT (n) (Error%) EHSAPT (n) (Error%)

0.01 0.07381 (A24) 0.04038 (27) (�45.3%) 0.02654 (S20) (�64.0%) 0.07909 (A22) (+7.2%)
0.02 0.7393 (A12) 0.04154 (13) (�43.8%) 0.03902 (S12) (�47.2%) 0.07080 (A12) (�4.2%)
0.03 0.07288 (A7) 0.04251 (9) (�41.7%) 0.04945 (S9) (�32.2%) 0.06967 (A8) (�4.4%)
0.04 0.06489 (A1) 0.04345 (7) (�33.0%) 0.05900 (S7) (�9.1%) 0.06389 (A1) (�1.5%)
0.05 0.05411 (A1) 0.04439 (5) (�18.0%) 0.05336 (A1) (�1.4%) 0.05336 (A1) (�1.4%)
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where q0¼ 510 KN/m and β¼ 1.25 milli-sec�1 which decays to less than 0.1% of its
original magnitude after 5.5 milli-sec. The above blast load parameters, as well as the
material and geometry data were taken from the experimental investigations of
Gardner et al. [27]. The faces are E-glass vinyl-ester composite: Young’s modulus
E1

c ¼ 13,600 MPa, density ρ f ¼ 1800 kg/m3, and the isotropic core is Corecell™
A300 styrene acrylonitrile (SAN) foam: Young’s modulus Ec ¼ 32 MPa,
ρc ¼ 58.5 kg/m3, Poisson’s ratio νc ¼ 0.3, and shear modulus Gc ¼ Ec/[2(1 + νc)].
The geometry of the sandwich configuration is: face thickness ft ¼ fb ¼ 5 mm, core
thickness 2c ¼ 38 mm, width b ¼ 102 mm, and span of beam a ¼ 152.4 mm.

In this case, the displacement functions that satisfy the boundary conditions
are [17]:

ut,b,c0 ¼ Ut,b,c
0 tð Þ cos πx

a
; wt,b,c

0 ¼ Wt,b,c
0 tð Þ sin πx

a
; ϕc

0 ¼ Φc
0 tð Þ cos πx

a
: ð25bÞ

Substituting (25) into (7a–13c) (neglecting the nonlinear terms but including the
dynamic terms), turns the partial differential equations of motion into linear ordinary
differential equations in time:

M½ � €U0 tð Þ� 
þ K½ � U0 tð Þf g ¼ F tð Þf g, ð25cÞ

where the 7 � 7 matrix [M] and [K] are the mass matrix containing the inertial
terms and the stiffness matrix, respectively. The vector of the unknown generalized
coordinates are

U0 tð Þf g ¼ Ub
0 tð Þ,Uc

0 tð Þ,Φc
0 tð Þ,Ut

0 tð Þ,Wb
0 tð Þ,Wc

0 tð Þ,Wt
0 tð Þ� 
T

, ð25dÞ

and the load vector

F tð Þf g ¼ e�βt 0, 0, 0, 0, 0, 0, q0f gT : ð25eÞ

The ordinary differential equations can be solved using standard numerical integra-
tion methods.

The transverse displacements w0
t, w0

c and w0
b, at the mid-span location x ¼ a/2

versus time are shown in Fig. 6. In this figure we show the results from Elasticity,
EHSAPT, and HSAPT. The two high-order sandwich panel theories are practically
on top of each other and display the same trend in behavior of the top, core, and
bottom displacements as Elasticity, i.e. that the top face travels down first, followed
by the core, then the bottom face sheet. EHSAPT and HSAPT match the mid-core
transverse displacement of Elasticity. The high order theories over estimate the
maximum displacement of the top face by a modest amount, no more than 5%.
The bottom face transverse displacements from EHSAPT and HSAPT do not exactly
follow Elasticity, but give values within less than 6% error over the time range in
Fig. 2.
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It should also be noted that the First Order Shear Deformation Theory (FOSDT)
can be very inaccurate in its prediction of transverse displacement, as shown in Sect.
3, and, of course, cannot capture the differences in the displacements of the face
sheets and the core.

Figure 7 shows the axial displacements u0
t, u0

c and u0
b, at the edge x ¼ 0 versus

time. EHSAPT and HSAPT capture the high cyclic behavior of u0
c that Elasticity

displays, with EHSAPT being closer in value to Elasticity than HSAPT. The first
peak in the core axial displacement, u0

c of EHSAPT, is 10% under Elasticity, while
the first peak in u0

c of HSAPT is 32% under Elasticity. Both high-order theories and
Elasticity predict very similar behavior with time of the top and bottom face sheet
axial displacements, u0

t and u0
b.

The shear stress at the top and bottom face/core interfaces at x ¼ 0 is shown in
Fig. 8. EHSAPT is the only theory that can show the differences in the shear stresses
at the top and bottom face/core interfaces like Elasticity, while HSAPT predicts that
the shear stress is constant throughout the thickness and seems to be about the
average value of EHSAPT and Elasticity. EHSAPT gives a minimum shear stress
(most negative shear stress) at the top and bottom face/core interface under the
minimum Elasticity values by just 0.5%.
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6 Conclusion

The extended high order sandwich beam theory is capable of including the unique
features of sandwich construction, i.e. large transverse shear and core compressibil-
ity. In this paper, the basic premises and the formulation of this theory, in both its
static and dynamic versions, is described in detail. In this theory, which is derived for
a general asymmetric construction, all displacement continuity conditions at the
interface of the core with the top and bottom face sheets are enforced. A comparison
to the elasticity solution shows that this extended high-order theory can be used with
any combinations of core and face sheets and not only the very “soft” cores that the
other high order sandwich theories demand.

Results have been presented for the case of static transverse loading of a simply
supported sandwich beam by comparison to the Elasticity, the Classical sandwich
beam theory, the First Order Shear theory and the HSAPT model [5]. The results
show that the extended high order theory is very close to the Elasticity solution in
terms of both the displacements and the transverse stress or strain, as well as axial
stress through the core, and, in addition, the shear stress distributions in the core for
core materials ranging from very soft to almost half the stiffness of the faces. In
particular, it captures the very large range of core shear stress and the nearly
parabolic profile in the cases of cores that are not “soft”.

A case study involving an exponentially decaying blast load with a spatial half-
sine profile across the top of the beam is used to compare the dynamic EHSAPT to a
Dynamic Elasticity benchmark. The case study showed that the EHSAPT captures
very well the complex behavior of the transverse and axial displacements in the faces
and the core, as well as the stresses, and in particular, the lag in the bottom versus top
displacements versus time.

In addition, the wrinkling predictions of the EHSAPT are compared with pre-
dictions from Elasticity and in all cases the EHSAPT was very close to the Elasticity
predictions. On the contrary, the HSAPT [5] was in significant error for the relatively
thinner faces. The large discrepancy between HSAPT and EHSAPT for very low
face over total thickness ratios (when the beam is most susceptible to wrinkling)
indicates that including the axial rigidity of the core (as is done in the EHSAPT) is
very important during wrinkling.
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