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1 Introduction

An explosion in air or water instantaneously raises pressure in the medium adjacent
to the blast that compresses the medium, results in a shock wave propagating in it,
and applies an impulse load on a nearby structure. The resulting blast wave in air is
called a blast wind [1]. An underwater explosion results in many subsequent
phenomena that can cause catastrophic damage to a marine structure [2]. Early
techniques of damaging a ship used underwater mines and torpedoes that exploded
upon contacting the ship. However, by the end of the First World War, the effec-
tiveness of a non-contact explosion in damaging a marine vessel was realized.

Rayleigh [3] studied cavitation in a gas bubble formed in an underwater explo-
sion. Subsequently, Cole [4] characterized an underwater explosion and its interac-
tion with marine structures. Taylor [5] studied the interaction of a blast wave from an
underwater explosion with a wedge-type structure and a monolithic plate. Keil [2]
discussed, in detail, the response of surface ships and submarines to underwater
blasts that included the severity of damage to various components. Since then,
experimental, analytical and computational research in underwater explosions has
significantly advanced that has considered using composite laminates and sandwich
structures to reduce the ship weight. Here, we first review some works on underwater
explosion including gas bubble characteristics, shock wave propagation, cavitation
phenomenon, and structural deformations, and then describe modeling and simula-
tion of structural damage caused by shock loads.
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2 Loads Produced by Underwater Explosions

During the Second World War, the efficiency of a non-contact underwater explosion
in disabling ships was realized thus triggering extensive research in this field.

2.1 Shock Wave

An underwater explosion results in a high-pressure superheated gas bubble centered
at the explosion point. The bubble rapidly expands and creates a shock wave that
initially travels at a speed much higher than the speed of sound, c ¼ 1.5 km/s, in
water. However, the shock wave speed rapidly drops to 1.5 km/s within a distance of
10 times the charge radius [2]. The shock wave propagates radially outwards and
gets reflected from the sea free surface and the sea bottom. Rayleigh [3] character-
ized the velocity of bounding surfaces of an expanding bubble, the spherical cavity
formed after an explosion, and the pressure in the bubble and on the surrounding
fluid that was assumed to be incompressible. Deformations of the surrounding water
are studied in [4] wherein it is stipulated that the exponential decay in time of the
pressure, P, in the shock wave is given by

P ¼ P0e
�t=θ, ð1aÞ

P0 ¼ K1
W1=3

Rh

� �A1

, ð1bÞ

θ ¼ K2 W1=3
� � W1=3

Rh

� �A2

ð1cÞ

Here P0 is the peak pressure at the explosion point, θ the decay constant,W the mass
of the charge in kg, Rh the distance in meters of the point of interest (stand-off
distance) from the explosion center, and K1, K2, A1 and A2 are constants. Values of
these constants determined by Cole [4] from the test data for four explosives are
listed in Table 1. Using these values, the pressure histories of the shock wave at Rh¼
50 m are exhibited in Fig. 1. We note that for Rh< (10 times the charge radius)
Eq. (1) considerably under-predicts P [6]. When the shock wave passes a fixed

Table 1 Values of constants
in Eqs. (1b, 1c) for four
explosives [4]

Explosive type TNT HBX – 1 PETN Nuclear

K1 52.12 53.31 56.21 1.06�104

K2 1.18 1.144 1.194 1.13

A1 0.0895 0.092 0.084 3.627

A2 -0.185 -0.247 -0.257 -0.22
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location in the liquid, particles there start flowing in the shock wave propagation
direction at velocity u(t) given by

P tð Þ ¼ ρcu tð Þ ð2Þ

where ρ is the mass density of water. Keil [2] has suggested that due to the shock
wave being spherical, Eq. (2) should be modified to

u tð Þ ¼ P tð Þ
ρc

þ 1
ρRh

ðt
0
P tð Þdt ð3Þ

In Eq. (3), the first and the second terms, respectively, correspond to a planar and
a spherical flow. In close proximity of the explosion, the second term significantly
affects the particle velocity.

The total energy, because of the pressure and the particles velocity, associated
with the shock wave is given by [4]
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Fig. 1 For four explosives, time histories of the shock wave pressure at a stand-off distance of 50 m
from the blast site
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Esh ¼ 1
ρc

ð1
0
P2 tð Þdt, ð4aÞ

Esh ¼ 1
ρc

P2
0θ ð4bÞ

where we have substituted for P(t) from Eq. (1).
Besides the pressure and the energy of a shock wave, its capacity to induce

damage is measured by the total impulse of the wave. The impulse of a shock wave
acting on a unit area at a point until time t can be expressed as

I ¼
ðt
0
P tð Þdt ¼ P0θ ð5Þ

where we have used Eq. (1).

2.2 The Gas Bubble

After emission of the initial high pressure from the gas bubble in the form of a shock
wave, the pressure in the gas remains higher than the surrounding hydrostatic
pressure. Thus the bubble expands. However, due to inertia effects, the expansion
does not stop at the equilibrium pressure and the bubble keeps expanding until the
hydrostatic pressure exceeds the pressure of the gas in the bubble [7]. This contracts
the bubble until its radius becomes the minimum. The bubble continues to oscillate
around the equilibrium radius for many cycles; e.g., see Fig. 2. When the bubble
reaches the minimum radius, a pressure pulse in the form of an aftershock, with the
peak pressure of about 10–15% of the primary shock wave, is released.

Rmax ¼ 3:3
W
Z

� �1=3

, ð6aÞ

Fig. 2 Pulsation of gas
bubble in an underwater
explosion [4]
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T ¼ 2:08
W1=3

Z5=6
ð6bÞ

In Eq. (6), Z ¼ D + 10 is the total static pressure head at the explosion site, and
D the depth of the explosion site in meters. Due to buoyancy force, the gas bubble
migrates upwards towards the free surface. The migration rate reaches the maxi-
mum when the bubble radius reaches the minimum. For a TNT explosion, Reid [7]
postulated the empirical expression (7), derived from test data, for the first migra-
tion, mf, from the explosion location to the place where the bubble radius reaches
the first minimum.

mf ¼ 12:2
Z

W1=3 ð7Þ

The migration distance from the first minimum to the second minimum is usually
one-half of the distance calculated from Eq. (7). The bubble migration can cause
extensive damage to ships in the migration path. The characteristic features of a gas
bubble are summarized in Fig. 3.

Fig. 3 Characteristics of a
gas bubble at different times
[4]
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2.3 Reflection of the Shock Wave from the Sea Surface
and the Sea Bed

The reflection of a shock wave from the sea surface and the sea bed is schematically
represented in Fig. 4. The wave reflected from the sea surface (bed) is tensile
(compressive). When the wave reflected from the sea bed (surface) interacts with
the primary shock wave, it adds (subtracts) to the pressure of the primary wave.
When the pressure temporarily becomes zero, the phenomenon is called surface
cut-off. Keil’s [2] empirical relation between the surface cut-off time, tzero, and the
position of the point is given by Eq. (8).

tzero ¼ 0:122Dd
Rh

,ms ð8Þ

In Eq. (8), d is the depth of the point, Rh the horizontal stand-off distance of the point
from the blast location with d and Rh measured in meters.

When an explosion occurs at the sea bottom, the bubble develops as a hemisphere
[4], and migrates along with the regular pulsation phenomenon [9].

Fig. 4 Schematic representation of shock wave reflections [8]
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2.4 Cavitation

Water cannot sustain tensile stresses. The bulk and the hull cavitation, respec-
tively, ensue when stresses in a volume of water become tensile due to the
interaction between the incident shock wave and that reflected from the sea
surface or a structure. The bulk cavitation that is more likely to occur for an
underwater explosion near the sea surface has been studied by Cole [4] and
Snay [9]. Costanzo and Gordon [10] have calculated the extent and the duration
of the cavitation process. The eventual closing of the cavitated region results in
a water hammer and a pressure pulse called cavitation pulse [7]. The bulk
cavitation occurring at the sea surface due to an underwater explosion is shown
in Fig. 5.

A shock wave impinging upon a deformable ship hull accelerates the hull
particles. When particles’ velocities exceed the transient velocity of the adja-
cent volume of water, tensile tractions act on the water volume and ensue
cavitation. This phenomenon is called hull cavitation, the maximum velocity of
the hull is called the kick-off velocity [7], and has been studied by Cole [4] and
Taylor [5].

Fig. 5 Bulk cavitation at the sea surface from an underwater explosion [4]
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3 Response of Ships to an Underwater Explosion

Toward the end of the 2nd World War, it was realized that an underwater explosion
can destroy ships. Keil [2] has discussed the response of ships based on experimental
observations. Depending upon where an explosion occurs, they are classified as
contact and non-contact type with the former (latter) having the explosion location
adjacent (away) to either the ship hull or the ship bottom. In the former, either
torpedoes or mines were used to tear open a 30–50 feet diameter hole on the ship
exterior depending on the explosion type and size. The explosion also ruptures the
ship bulkheads and the blast fragments heavily damage the machinery close to the
explosion. Nurick and Martin [11, 12] have reviewed the literature on deformations
of plates under loads typical of a contact explosion. Weirzbicki and Nurick [13] have
experimentally and theoretically investigated deformations of plates under a local-
ized impulsive loading. Assuming that the plate can be modeled as a membrane
comprised of a perfectly plastic material and is deformed into a part of a sphere of
radius ρ, we have [13]

2ρ� δð Þδ ¼ R2 ð9Þ

where δ is the maximum depth, and R the radius of the deformed plate along the
undeformed surface; e.g., see Fig. 6. Cole [4] found R by equating the work, W, to
the input energy, Ein, from the shock wave [14]. That is,

W ¼ σytpΔA, ð10aÞ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηEin

πtpσyεf

r
, ð10bÞ

Ein ¼ WETNTEqTNTJ ð10cÞ

where η is the fraction of the Ein used to deform the plate, (Edef ¼ Einη), tp the plate
thickness, σy the yield stress of the plate material, εf the fracture strain, ETNT the
energy content of the TNT, ETNT the TNT equivalent of the explosive used, and J the
energy conversion factor. Rajendran and Lee [15] have reviewed contact explosion
problems.

Figure 7 schematically shows characteristic dimensions associated with a
non-contact underwater explosion for which the damage is mainly due to a shock

t

ρ

δ

Fig. 6 Schematic
representation of the
deformation of a circular
plate subjected to a contact
explosion [14]
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wave, bubble pulsation, bubble migration and cavitation. The impact of a shock
wave on a ship hull requires analyzing fluid-structure interaction (FSI) between the
water volume and the hull which can be simulated as an assembly of flat and curved
plates.

One measure of the intensity of the shock wave at the hull is the Hull Shock
Factor, HSF, [7], is given by

HSF ¼ Wn
eq

Rh
ð11Þ

whereWeq is the mass of the explosive used equivalent to the TNT and the parameter
n, determined experimentally, depends on the explosive used and the explosion
conditions. When the position of the explosion is measured with respect to the ship
keel, the Keel Shock Factor, KSF, [7] for a shock wave making angle θ (see Fig. 7)
with the horizontal line is defined as

KSF ¼ HSF
1þ sin θ

2

� �
ð12Þ

For explosions close to the ship hull, the damage is localized due to the spherical
wave front that generally tears open a large hole similar to the damage caused by a
contact explosion. For explosions at large stand-off distances, the incident shock
wave is approximately planar, and deformations of different parts of the ship is
generally dissimilar.

3.1 Fluid Structure Interaction of Monolithic Plates

Early works on studying the fluid-structure interaction (FSI) include those of Cole
[4], Taylor [5] and Kennard [16]. When a traveling pressure pulse hits a ship hull, the

Fig. 7 Schematic
representation of a
non-contact underwater
explosion
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pulse is reflected back with some modifications caused due to the accelerating and
deforming plate of the hull [6]. It is assumed that the plate is of infinite area based on
the time scale of interaction of the pulse with the plate. For the incident pressure
given by Eq. (1), the reflected wave pressure can be written as [4, 5]

Pr ¼ P0φ tð Þ ð13Þ

The total force acting on the plate is the sum of that due to the incident and the
reflected pressure pulses. Assuming no separation between the water and the solid, at
the water-plate interface the normal traction and the normal velocity must be
continuous. However, the tangential velocity can be discontinuous for water
modeled as inviscid. The plate deformations depend on support conditions at its
rear surface and edges.

In the first approximation, the plate is modeled as a point, and its motion
described by,

m€uþ c _uþ ku ¼ Pnet ð14Þ

where m is the mass of the plate per unit area, a superimposed dot denotes the time
derivative, c the damping coefficient, k the plate stiffness, Pnet the net force per unit
area, and u the plate displacement in the direction of the pressure pulse. The initial
conditions are

u 0ð Þ ¼ _u 0ð Þ ¼ 0 ð15Þ

The solution of differential Eq. (14) provides the plate displacement and the velocity
histories.

For an air backed plate (ABP), shown schematically in Fig. 8, the right face of the
plate is subjected to air and does not resist motion. Using continuity conditions at the
water-plate interface, the total pressure acting on the plate is found to be [4, 5]

PABP
net ¼ 2P0e

�t=θ � ρc _u ð16Þ

Fig. 8 Schematic
representation of an
air/water backed monolithic
plate
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where ρ is the mass density of water, and c is the sound speed in the plate. For the
pressure pulse hitting a stationary rigid wall, _u¼ 0.

Substitution of the total pressure from Eq. (16) into Eq. (14) and using initial
conditions described by Eq. (15) gives the following for the plate displacement and
velocity [5, 17].

ua ¼ 2P0θ
mψ ψ � 1ð Þ ψ � 1ð Þ þ e� ψ=θð Þt � ψe�t=θ

h i
, ð17aÞ

va ¼ _ua ¼ 2P0θ
m 1� ψð Þ e�ψ t=θ � e�t=θ

� �
ð17bÞ

The dimensionless quantity, ψ ¼ ρcθ/m, is called the FSI parameter of an ABP.
Substitution from Eq. (17) into Eq. (16) results in

PABP
net ¼ 2P0e

�t=θ � 2P0ψ
ðψ � 1Þ ðe

�t=θ � e�ψ t=θÞ ð18Þ

Recalling that the hull cavitation begins when the net pressure equals zero, the
cavitation inception time, tABPc , is [5, 17].

tABPc ¼ θ
lnψ
ψ � 1

ð19Þ

Another parameter of interest is the fraction of the maximum momentum transferred
to the plate that occurs at the cavitation inception time when the plate has the
maximum velocity. Thus, the plate maximum momentum, Ip, is given by

IP ¼ ζABPI0, ζ
ABP ¼ ψψ=1�ψ ð20Þ

where the free pulse momentum, I0, is given by Eq. (5).
For a water backed plate (WBP), the water at the back of the plate exerts pressure

on it and decreases the net force on the plate. The problem has been studied by Keil
[2]. Proceeding in the same way as for the ABP, we get

uw ¼ 2P0θ
mϕ ϕ� 1ð Þ ϕ� 1ð Þ þ e� ϕ=θtð Þ � ϕe�t=θ

h i
, ð21aÞ

vw ¼ _uw ¼ 2P0θ
m 1� ϕð Þ e�ϕt=θ � e�t=θ

� �
ð21bÞ

where ϕ ¼ 2ψ ¼ 2ρcθ/m is the FSI parameter for a WBP. Results for a WBP can be
obtained from those for an ABP with ψ replaced by ϕ; e.g., see Liu and Young
[18]. In Figs. 9 and 10, we have plotted time histories of the plate displacement, the
plate velocity and the cavitation time for an ABP and aWBP. The characteristics of a
WBP are important when designing liquid holding tanks close to a ship hull. When a
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shock wave hits the outer wall of a tank, a part of the shock wave is transferred to the
fluid inside the tank to generate another shock wave that can severely damage the
internal wall. One way to avoid this is to not completely fill the tank that allows the
shock wave energy to be converted to a free surface wave [7].
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3.2 Fluid Structure Interaction of Composite and Sandwich
Plates

Mouritz [19, 20] has experimentally studied the impact of glass fiber reinforced
polymer (GRP) laminates including their fatigue behavior under increasing shock
loads. The tests used large explosive charges at short stand-off distances for both
ABP and WBP, and stitched and unstitched GRP laminates. He found that the
damage caused to both stitched and unstitched laminates was similar. However,
the damage and delamination in stitched laminates was less than that in unstitched
specimens. At low (high) shock factors, the damage to Kevlar stitching threads was
minimal (extensive).

Thick laminates respond differently to a shock wave than thin ones [21]. Morais
et al. [22] experimentally studied the effect of the laminate thickness by dropping a
weight on a clamped laminate. Gellert et al. [23] also experimentally studied
the effect of the laminate thickness on its response to a shock wave. Several works
[24–28] present experimental studies on the response of laminate plates to pressure
pulses and delineate the effect on composites’ deformations of fiber length, fiber/
matrix interface and ply stacking sequence. Mouritz et al. [29] have reviewed
composite structures used in ships and submarines.

Sandwich structures have a distinct advantage over monolithic plates in with-
standing short time-duration shock wave pressure pulses [17, 30]. For the same areal
density, a sandwich structure can sustain a more intense pressure pulse than a
laminated plate. Fleck and Deshpande [17] used the relative time scales and the
associated phenomena to divide the interaction of a metallic sandwich structure with
a pressure pulse into three stages. In the first stage, the face plate hit by the shock
wave is elastically compressed. In the second stage, the core is dynamically crushed
and its initiation is marked by the cavitation inception time where the face plate
achieves the maximum velocity which can be considered equivalent to the kick-off
velocity of a monolithic plate. For an effective sandwich design, most of the incident
energy is absorbed during core crushing [31]. The final stage involves global tearing
and rupture of the face plate during which the remaining energy of the shock wave is
absorbed. Figure 11 schematically shows phenomena occurring in the three
stages [32].

Many researchers [16, 30–37] have analytically, numerically and experimentally
studied deformations of a sandwich structure under a shock wave pressure pulse. In
stage 1 of the interaction, the core stiffness resists motion of the face plate due to the
impinging pressure pulse. For a core assumed to be rigid-perfectly plastic and having
yield strength, σy, the motion of a unit area of the face plate is governed by [31]

mf €u ¼ P x, tð Þ � σy ð22Þ

under null initial conditions (cf. Eq. (15)) and the resultant pressure P(x, t) due to the
incident and the reflected waves given by
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P x, tð Þ ¼ P0 eζ þ eξ
� �� ρc _u, ζ ¼ �t=θ � x=cθ, ξ ¼ �t=θ þ x=cθ ð23Þ

Fleck and Deshpande [17] have discussed the core yield strength as a function of
the yield strength of the core material and the relative mass density of the core.

The solution of Eq. (22) under null initial conditions gives the following for the
face plate displacement and velocity [35].

u ¼ 2P0θ
mψ 1� ψð Þ 1� ψð Þ � e�ψ t=θ þ ψe�t=θ

h i
þ σyθ

2

mψ2 1� e�ψ t=θ � ψ t
θ

� �
ð24Þ

_u ¼ 2P0

mð1� ψÞ ðe
�ψ t=θ � e�t=θÞ þ σyθ

mψ
ðe�ψ t=θ � 1Þ ð25Þ

For a monolithic (sandwich) plate, the spatial dependence of the pressure is
ignored (considered) because the cavitation inception plane contacts (is away
from) the plate surface.

The cavitation occurs when the face plate velocity is the maximum and the
pressure in the fluid equals zero. By substituting from Eq. (25) into Eq. (23), we
obtain the following expression for the fluid pressure as a function of space and
time [35].

Fig. 11 Schematic representation of three stages of a blast wave-sandwich interaction [32]
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P
P0

¼ 2
1� ψ

cosh ex� ψ sinh exð Þe�et þ 2ψ
ψ � 1

� �
e�ψet�ψex � eσ ð26Þ

Here ex ¼ x=cθ,et ¼ t=θ and eσ ¼ σy=P0. The cavitation inception occurs when
P¼ 0 and ∂P=∂ex ¼ 0. Solving these equations, we get the following expressions for
the cavitation inception time, tc ¼ etcθ, and the cavitation inception plane, xc ¼ exccθ
[35]

ln
2 1þ ψð Þ sinh exceσψ

	 

¼ 1

1� ψ
ln

ψ cosh exc þ sinh exc
ψ2 � 0:5eσψ ψ � 1ð Þ

	 

� ψexc,etc

¼ ln
2 1þ ψð Þ sinh exceσψ

	 

ð27Þ

Hutchinson and Xue [31] proposed that the water layer between the cavitation
inception plane and the face plate moves with the face plate as schematically
shown in Fig. 12. The mass of the water layer adds to the mass of the face plate,
and should be considered in the momentum and the energy calculation of the face
plate. Hutchinson and Xue proposed the following empirical expression (28) for the
ratio, rw, of the added mass to the mass of the face plate for sandwich structures with
identical front and back face plates and eσ < 0:15.

rw ¼ 0:71ψeσ ð28Þ

The cavitation inception ends stage 1 of the interaction between a shock wave and
a sandwich structure. With ε and C, respectively, equaling the average crushing
strain and the core thickness, the energy, σyεC, consumed in crushing the core in
stage 2 is found from

Fig. 12 Schematic representation of the cavitation phenomenon in a blast wave interacting with a
(left) monolithic, and (b) sandwich plate
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σyεC ¼ ΔKE ¼ KEF � KEI ð29Þ

where KEF (KEI) is the kinetic energy at the end (beginning) of stage 2. KEI

equals the sum of the kinetic energy of the face plate, added water layer, the core and
the back plate. That is,

KEI ¼
I2f

2 mw þ mf

� �þ I2b
2 mc þ mf

� � ,KEF ¼ I2t
2 2mf þ mw þ mc

� � ð30Þ

In Eq. (30), If, Ib and It are, respectively, the face plate momentum, combined
momentum of the core and the back plate, and the total momentum; mw, mc and mf,
respectively, equal the mass of the added water, the core, and the face plate.
Furthermore, If ¼ mf multiplied by the face plate velocity at the instant of cavitation.
The momentum transferred to the back plate and the core, respectively, equals σytc
[31], and It¼ If + Ib. The stage 2 ends when the face plate, the deformed core and the
back plate start moving at the same velocity [17].

In stage 3, the residual kinetic energy causes global bending and shearing off of
the face plate. The approximate times of the beginning and the end of the three stages
are ([31, 32])

tI ¼ tc � t0
ln β
β � 1

, tII � IT
2σDy

, tIII � L
ffiffiffiffiffiffiffiffiffiffi
ρ=σy

q
ð31Þ

3.3 Bubble Pulsation, Bubble Migration and Cavitation

In addition to a primary shock wave, secondary shocks due to bubble pulsation and
bubble migration can significantly damage a ship. As the bubble pulsation occurs
after passing of a primary shock, secondary pulses usually affect a different region of
the ship due to its motion [7]. The severity of damage due to bubble pulsation is very
high when the bubble pulsation frequency is close to a natural frequency of the ship.
This bends a ship structure, and the associated damage is called whipping [7]. In
severe cases, the peak deflection exceeds the elastic limit causing permanent dam-
age. This is more severe for surface ships than for submarines for which the
surrounding water damps resonant vibrations. The damage caused by the bubble
migration is significant for explosions occurring under a ship.

Early works in modeling of gas dynamics include those of Gudonov [38, 39] and
van Leer [40] who studied one-dimensional (1-D) problems using, respectively, the
Lagrangian and the Eulerian schemes with the gas modeled as compressible. An
all-purpose computer code, MUSCL (monotonic upstream-centered scheme for
conservation laws), was developed to numerically study the phenomenon of gas
bubble formation from the explosion [41]. Colella [42] modified the MUSCL
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algorithm to formulate gas dynamics in a single Eulerian step instead of a remap
from the Lagrangian to the Eulerian coordinates; also see [43]. In subsequent works,
the boundary element method (BEM) was extensively used to study the bubble
dynamics and the pulsation phenomena. For example, Blake and Gibson [44, 45]
and Geers and Hunter [46, 47] studied the growth of a bubble near a free surface and
the cavitation near solid boundaries using the BEM.

Bulk cavitation occurs due to the reflection of the incident shock wave off the
water surface as a tensile wave. The cavitated zone lies just beneath the water free
surface with the upper and the lower boundaries having their centers of curvature at
the explosion point. The cavitation envelope collapses after a certain time resulting
in water hammer [7] that can produce significant strains in a surface ship positioned
close to the bulk cavitation zone. Cavitation also occurs at the fluid-plate interface
due to the reflection of the incident pressure pulse from the plate. Due to multiple
reflections of this tensile wave between the plate surface and the cavitated zone,
several pressure peaks occur at the plate resulting in spray loading [14]. Also, similar
to the closing of a cavitation envelope in bulk cavitation, the closing of the hull
cavitated region causes water hammer loading on the plate. Although the spray
loading magnitude is negligible as compared to the peak pressure, the magnitude of
water hammer is significant enough to cause noticeable damage [48].

4 Computational Modeling of Ships Deformations

Early works on mathematical modeling of the FSI include that of Bleich and Sandler
[49, 50] who modeled the fluid as bi-linear and studied 1-D wave propagation by
using the method of characteristics. Geers [51, 52] has employed the double asymp-
totic approximation (DAA) based finite element method (FEM) to analyze transient
interaction of a flexible structure and an infinite fluid by considering the acoustic
media around the structure as a membrane that covers the wet surface of the structure
[53]. A major advantage of the DAA is using parameters of the wet surface response
to eliminate the need to discretize the media surrounding the structure. Two different
DAA based models, characterized according to their computational cost, are
presented.

Other significant works on ship-underwater explosion include those of DeRuntz
et al. [54] and DeRuntz [55] who developed a numerical package, Underwater Shock
Analysis (USA), based on a fluid BEM to model the fluid in a FSI problem that did
not capture the cavitation phenomenon and required using an alternative fluid model
to prevent the fluid pressure from becoming negative. For example, DeRuntz and
Rankin [55] and Fillipa and DeRuntz [56] employed a bilinear fluid model to
accomplish this. The computational code, Cavitating Fluid Analyzer (CFA), could
treat the cavitation of the fluid. The CFA code is an acoustic fluid formulation based
volume element processor which is based on the displacement potential. Shin and
Santiago [53] coupled the USA-CFA code with NASTRAN to analyze a 2-D
problem, namely deformations of a ship cross-section, and compared results with
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and without using the cavitation model, and with and without the DAA. Shin [57]
used a coupled LSDYNA-USA code to simulate 3-D deformations of a ship exposed
to a blast wave. Solid elements included in LS-DYNA were used to model the ship,
and the fluid volume surrounding the ship was modeled using the material type
MAT_90 (MAT_ACOUSTIC) that can simulate wave propagation in an irrotational,
compressible and either linear or bilinear fluid but not negative pressures in the fluid
[55, 57]. Shin’s computed results compared well with the ship shock test data.
Figure 13 taken from [57] shows the discretization of the domain studied into FEs.
Kwon and Cunningham [58] employed the USA-DYNA software to study defor-
mations of a stiffened shell subjected to dynamic impulse loading. Newton simulated
the fluid cavitation by using the Cavitation Acoustic Finite Element (CAFE) method
[59–62], and compared results with those of Bleich and Sandler [50]. Newton’s work
was later modified by Felippa and DeRuntz [56]. Rehak et al. [63] also incorporated
the cavitation phenomenon in their FSI computational model. The CAFE algorithm
used for modeling large scale simulations is resource intensive [64]. Sprague and
Geers [65] overcame this by modifying the algorithm and named it the Cavitating
Acoustic Spectral Element (CASE) [66, 64]. The CASE and the CAFÉ, respectively,
use Legendre polynomials and “trilinear polynomials” as basis functions, and the
CASE model uses a non-conformal FE mesh for the FSI modeling.

Klaseboer et al. [66] have compared experimental findings with numerical results
for explosions close to a structure by modeling the gas bubble using the BEM and
the structure using a nonlinear FE software, PEM-CRASH™. A similar work on the
effect of the close proximity blasts on ship like structures was presented in
[67]. Huang et al. [68] numerically modeled the FSI problem using ANSYS-
AUTODYN. Mair [69] has reviewed other hydrocodes for studying the FSI
problems.

Fig. 13 Discretization of
the domain of study into
finite elements [58]
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4.1 Fluid Structure Interaction of Monolithic Plates

The response of monolithic plates to an underwater explosion has been experimen-
tally analyzed in [66, 70–73], and that due to an air blast wave in [74, 75]. Deforma-
tions of a cylindrical shell interacting with a blast wave have been studied in
[58, 76]. Taylor [5] proposed a theoretical model of a free standing rigid plate
subjected to a pressure pulse and adopted a linear acoustic model of water. He
showed that the FSI reduces the momentum transferred to the plate as compared to
that for an impact loading on a free standing plate.

The analysis of transient deformations of a plate involves solving the following
system of coupled ordinary differential equations generally under null initial condi-
tions [15].

M½ � €xf g þ C½ � _xf g þ K½ � xf g ¼ P tð Þf g, x 0ð Þ ¼ _x 0ð Þ ¼ 0 ð32Þ

HereM, C andK, respectively, represent the structural mass, the structural damping
and the structural stiffness matrix, and P(t) is the time varying load that can include
forces due to the bubble formation, migration, and collapse. The FSI can be
accounted for by suitably modifying M for the added mass of water. The
non-linear compressibility of water was considered in [77–79].

Fleck and Deshpande [17] studied the FSI of a plate by using an exponentially
decaying forcing function as employed by Taylor [5]. Using the same forcing
function, both linear and nonlinear problems were studied with the FE software
ADINA in [80]. Louca et al. [81] compared the response of imperfect and stiffened
monolithic plates with the two FE software DYNA3D and ABAQUS/Explicit.
Ramajeyathilagam and Vendhan [82] experimentally and numerically (with
DYNA3D) studied the deformation and rupture of air-backed clamped rectangular
plates. Deformations and tearing of circular plates due to blast loads, studied by
Gupta and Nagesh [80] using the FE software ANSYS, were found to correlate well
with test observations of [70, 71].

Kwon and Cunningham [58] computationally studied the response of stiffened
plates and ring stiffened cylindrical shells by using the coupled BEM and FEM code,
USA-DYNA [54, 83] that models the gas bubble and the traveling pressure pulse
from the explosion. Hammond and Grzebieta [84] also used USA-DYNA to delin-
eate the structural response of an air backed clamped square plate and found that the
computed plate displacements matched well with their own test results but compu-
tations under-predicted the plate velocity. They attributed this to ignoring hydro-
static effects of the water volume in the computational model and not having
clamped edges in the tests. Flat monolithic plates were tested in [66] using a
(4m � 4m � 4m) water tank and Detasheet explosives with DP60 detonator, and
numerically analyzed with the USA-DYNA code considering the DAA [51, 52] to
model the FSI.
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4.2 Fluid Structure Interaction of Composite Plates
and Sandwich Panels

Composite laminates have very high specific modulus and specific strength along the
fiber direction than monolithic structures but their response to impact loads is not
very encouraging [85] possibly due to several different failure modes. Hall [86] has
experimentally studied deformations of glass-reinforced polymer and foam cored
sandwich hulls. Mouritz [19, 20] experimentally studied deformations of laminated
plates subjected to impulsive loads. Abrate [85] has reviewed the work on impact
loading of sandwich structures having laminated face sheets and has discussed their
failure mechanisms. Numerical studies [89] of the FSI of a submerged stiffened
composite using USA-DYNA code showed that composite plates have better spe-
cific energy absorbing characteristics than monolithic plates. The interaction of a
composite cylinder with a blast wave was studied theoretically and computationally
using ABAQUS in [87]. Fu et al. [26] discussed the fracture resistance properties of
impact loaded short glass/carbon fiber reinforced composites.

Hassan and Batra [88–90] developed a mathematical model and a computer code
to study the damage initiation and propagation due to fiber breakage, matrix-fiber
de-bonding, matrix cracking and de-lamination in AS4/PEEK composites. They
approximated the blast wave load [89, 91] as the product of a function of spatial
coordinates and a function of time. Values of material parameters in the damage
evolution laws were found by using the test data. De Morais et al. [22] experimen-
tally studied the effect of laminate thickness on damage induced under repeated
impact loads. Espinosa et al. [27] employed contact/cohesive laws to analyze finite
3-D deformations of glass fiber reinforced polymeric laminates, and compared
computed and experimental results. Nezami et al. [92] used the Rayleigh-Ritz
method to study the response of a plate under different boundary conditions and
subjected to an explosion blast wave. LeBlanc and Shukla [93, 94] highlighted
aspects of the matrix-fiber breakage and internal de-lamination on the interaction
with low and high energy blast waves of flat and curved glass-epoxy composite
panels. Experimental findings were compared with those computed using
LS-DYNA, and displayed differences between the two using the Russel error
criteria [95].

Sandwich structures are believed to be more efficient than monolithic plates of the
same areal density in their interactions with blast waves [35]. Makinen [96] has
discussed dissimilarities in the response behavior of a monolithic plate and a
sandwich structure by studying in them the cavitation phenomenon using a 1-D
model. Deformations of sandwich structures with face and back plates made of
monolithic materials have been scrutinized in [17, 30, 31, 33–35] by using the FEM.
Liang et al. [32] and McMeeking et al. [97] discussed constitutive properties of
prismatic metallic cores, considered effects of the added layer of water between the
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cavitation zone and the face plate, and found a good correlation between the
numerical results computed with ABAQUS and theoretical results. Librescu and
Noiser [98]. and Librescu et al. [99] studied the response of flat composite panels and
sandwich plates with anisotropic composite face plates and an orthotropic core to
explosive loads. Wei et al. [100] compared test findings on multi-core sandwich
structures [101] with those computed using the FE code ABAQUS/Explicit. In
[102], the transient response of a submerged cylindrical foam core sandwich panel
subjected to shock loading was analyzed using ABAQUS and integrating fluid and
structural models. They reported the circumferential strain at different points in the
cylinder.

5 Summary of Batra’s Team Work

We summarize below some work completed in Batra’s group on structural response
to extreme loads.

5.1 Homogenization of Material Properties

Gopinath and Batra [103] have recently used three micro-mechanics approaches,
namely, the MoCs, the Fourier series analysis and the transformation field analysis,
for homogenizing material properties of a unidirectional fiber-reinforced composite
with fibers modeled as linearly elastic transversely isotropic and the matrix as a
strain-rate dependent elastic-plastic material. They [105] have also characterized the
sensitivity of responses from the three approaches with changes in a unit cell
configuration. As shown in Fig. 14, the variation of the transverse elastic modulus
versus the fiber volume fraction strongly depends upon the homogenization tech-
nique employed.
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Fig. 14 Variation of the
transverse Young’s modulus
with the fiber volume
fraction using different
homogenization techniques
[103]
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5.2 Modeling 3-D Deformations

As stated above, Batra and Hassan [91] identified damage/failure modes (fiber/
matrix debonding, fiber breakage, and matrix cracking) with internal variables,
used test data to find values of material parameters in their evolution laws, and
considered all geometric nonlinearities incorporated in the St. Venant-Kirchhoff
material. They postulated a damage surface defined in terms of the transverse normal
and the transverse shear tractions at an interface and the interfacial strengths.
Delamination ensued once the stress state at an interfacial point reached the damage
surface. Subsequently, they introduced two nodes a tiny distance apart at the
delamination point and prevented inter-penetration by connecting them with a spring
very stiff in compression but weak in tension. They developed in-house a FE based
software to analyze large 3-D transient deformations of 4-ply unidirectional fiber-
reinforced laminates and delineated the energy dissipated in each failure mode with
the blast load modeled as a spatially non-uniformly distributed pressure with the
peak value exponentially decaying in time. They simulated damage progression by
degrading the stiffness of an FE in which a constituent had failed, and reduced its
stiffness to a very small value at complete failure. By retaining such FEs in the
analysis, they considered their contributions to inertia forces. The spatial distribution
of the matrix cracking and time- histories of the debonding damage at centroids of
three different surfaces of the plate are illustrated in Fig. 15.

Whereas Batra and Hassan employed a mechanics of materials approach to
homogenize material properties of a unidirectional fiber-reinforced composite,
Batra et al. [104] used Aboudi’s method of cells (MoCs) with null tangential
tractions (e.g., see Robertson and Mall [105]) assumed at an interface between two
adjoining cells. Furthermore, they determined stresses in the fiber and the matrix
from the macro-level stresses and thus used the constituent level failure criterion but
ignored fiber/matrix debonding. They ascertained failed/damaged elements and
appropriately reduced their stiffness. The developed UMAT was implemented
in ABAQUS. Their computed results for 4 m/s impact deformations of a clamped

Fig. 15 (Left) Time histories of evolution of the debonding damage variable at centroids of the
bottom, the middle and the top surfaces, and (right) fringe plots of the matrix cracking damage
variable [91]
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fiber-reinforced laminate qualitatively agreed with the test data. Points 1 through 4 in
Fig. 16, respectively, correspond to damage initiation due to fiber compression,
matrix tension, fiber tension, and accumulation of the fiber tensile damage.

5.3 Reduced-Order Models (Third-Order Shear and Normal
Deformable Theory)

We have developed a third-order shear and normal deformable theory (TSNDT) for
plates/ shells that accounts for all geometric nonlinearities including the von Karman
nonlinearities. The plate material is assumed to be St. Venant-Kirchhoff for which
the 2nd Piola-Kirchhoff stress tensor, S, is a linear function of the Green-St. Venant
strain tensor, E. Thus the constitutive relation is objective under superimposed rigid
body rotations. Whereas S is work conjugate to E there is no stress tensor that is
work conjugate to the von Karman strain tensor. Below we briefly review the
TSNDT, and give results for a few problems.

Figure 17 depicts a schematic sketch of a laminated doubly-curved shell com-
posed of N layers of not necessarily equal thickness. Each ply is made of a
homogeneous, orthotropic and elastic material with layers perfectly bonded to
each other. We denote the total thickness and the constant two principal radii of
curvature of the shell by h, R1 and R2, respectively. We employ orthogonal curvi-
linear coordinates (x, y, z) with curves x ¼ constant and y ¼ constant representing
principal curvatures on a surface, z ¼ constant. The shell arc lengths in the x and the
y directions, respectively, equal a and b with the corresponding platform lengths lx
and ly. The position vectors of a point p are denoted by X and x with respect to the
fixed rectangular Cartesian coordinate axes in the reference and the current config-
uration, respectively, with the X3- and the x3-axes parallel to the z-axis.

The componentsGij of themetric tensor in the reference configuration are given by

Fig. 16 (Left) Sketch of the impact problem studied with the impactor shown in green, the
composite laminate in red, and the supporting steel plate in blue color; (right) contact force time
history with points of significance for the damage initiation and propagation [104]
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Gij ¼ Ai � Aj, A1 ¼ ∂X
∂x

, A2 ¼ ∂X
∂y

, A3 ¼ ∂X
∂ z

, ð33Þ

where Ai � Aj equals the inner product between vectors Ai and Aj. For orthogonal
curvilinear coordinate system, Gij is non-zero only when i ¼ j. We define ei ¼ A ið Þ

H ið Þ

(no sum on i), where H1 ¼ 1þ z
R1

� �
, H2 ¼ 1þ z

R2

� �
, H3 ¼ 1: For the TSNDT the

displacement, u ¼ x � X or (u, v,w), of a point in the shell is expressed as

d ¼ dt þ Zθdθ þ Zϕdϕ þ Zγdγ ð34Þ

where

d ¼ ½u v w�T, dt ¼ ½u0 v0 w0�T,
dθ ¼ ½θx θy θz�T, dɸ ¼ ½ɸx ɸy ɸz�T, dγ ¼ ½γx γy γz�T,
u0 ¼ uðx, y, 0, tÞ, v0 ¼ vðx, y, 0, tÞ, w0 ¼ wðx, y, 0, tÞ,
Zθ ¼ zI, Zϕ ¼ z2I, Zγ ¼ z3I, I is the identity matrix

We first find physical components of the displacement gradient, F, and then find
E ¼ 1

2 FTF� 1
� �

:We assume that the material of each layer is St. Venant-Kirchhoff

Fig. 17 Geometry and coordinate axes of a doubly-curved N-ply laminated shell
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for which the strain energy density, W, per unit reference volume, and the relation
between S and E are

W ¼ 1
2
EmnCmnαβEαβ,Cmnαβ ¼ Cαβmn ¼ Cnmαβ, Smn ¼ ∂W

∂Emn
: ð35Þ

Here C is the fourth-order elasticity tensor having 21, 9, 5 and 2 independent
components for a general anisotropic, orthotropic, transversely isotropic and isotro-
pic material, respectively. The strain energy density for the St. Venant-Kirchhoff
material reduces to that of a Hookean material if the finite strain tensor E is replaced
by the infinitesimal deformations strain tensor.

5.3.1 Effect of Curvature on Deformations of Shells

We use the linear theory valid for infinitesimal deformations to study transient
deformations of four clamped spherical sandwich shells of equal principal radii
given by R/a¼1 (plate), 5, 1 and 0.5. Each shell is comprised of a soft honeycomb
core modeled as an isotropic material with the top and the bottom face sheets made
of an orthotropic material with fibers oriented at 45� with respect to the x-axis. The
total thickness of the shell, h ¼ 22 mm, and thicknesses of the core and each face
sheet are 16 mm and 3 mm, respectively. Furthermore, the aspect ratio of the shell,
a/h ¼ 10 and a ¼ b. Values of face sheets material parameters are

E1 ¼ 251 GPa, E2 ¼ 48 GPa, E3 ¼ 7.5 GPa, G12 ¼ 13.6 GPa, G13 ¼ 12 GPa,
G23 ¼ 4.7 GPa,

ν12 ¼ 0.036, ν13 ¼ 0.25, ν23 ¼ 0.171, ρ ¼ 1600 kg/m3

and those of the core isotropic material are, Young’s modulus E ¼ E1/100 and
Poisson’s ratio ν ¼ 0.2.

In Table 2 we have listed the first ten lowest natural frequencies of free vibration
and the maximum natural frequency of the four shells. These values suggest that
each frequency increases with a decrease in R, and the fundamental mode frequency
of the shell with R/a ¼ 1 is nearly twice of that of the corresponding flat plate.

In Fig. 18 we have depicted time histories of the deflection of the core centroid, w
(a/2, b/2, 0), for the four shells having traction free bottom surface and the top
surface subjected to the pressure due to an explosive load given by

P r, tð Þ ¼ �0:0005r4 þ 0:01r3 � 0:0586r2 � 0:001r þ 1
� �

P tð Þ ð36Þ

where r is the distance in cm, from the shell top surface center, and

Response of Sandwich Structures to Blast Loads 305



P tð Þ ¼
10t=60 MPa, t � 60 μs

10e�
t�60ð Þ
30 MPa, t > 60 μs

(
ð37Þ

The spatial distribution of the load is depicted in Fig. 18 inset. A comparison of these
histories reveals that the maximum deflection decreases with an increase in the shell
curvature. We note that the pressure applied at every point on the top surface linearly
increases for the first 60 μs and then exponentially decreases becoming essentially
zero for t > 120 μs. Thus for t > 120 μs, the shells freely vibrate.

In Fig. 19 we have displayed time histories of the axial stress, σx (a/2, b/2, z), at
centroids of each face sheet and the core for the shell with R/a¼ 5. Similar results for

Table 2 Natural frequencies (Hz) of four sandwich shells [106]

Mode Plate R/a ¼ 5 R/a ¼ 1 R/a ¼ 0.5

1 3,644 3,960 7,022 8,450

2 5,826 6,093 7,383 9,889

3 6,305 6,525 8,331 10,553

4 7,946 8,281 9,475 10,630

5 8,966 9,305 10,068 12,517

6 9,214 9,632 10,450 12,986

7 10,234 10,647 11,602 13,286

8 10,981 11,533 11,660 13,736

9 11,850 11,857 12,193 14,665

10 12,252 12,860 12,560 15,524

Maximum frequency 643,872 822,912 658,275 685,535

Fig. 18 Time histories of the deflection of centroid of the core for the four sandwich shells with
R/a ¼ 1 (plate), R/a ¼ 5, R/a ¼ 1 and R/a ¼ 0.5 [106]
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the other three shells suggest that, except for the flat plate, the maximum magnitude
of the bending stress in the shell decreases with a decrease in the value of R or an
increase in the shell curvature.

5.3.2 Effect of Geometric Nonlinearities on Orthotropic Plate’s
Deformations

For the transient pressure, given by Eq. (36) with the right-hand side of Eq. (37)
replaced by P0e� t�trð Þ=θ, P0 ¼ 1 GPa, θ given by Eq. (1c), applied to the top surface
of a clamped 22 cm� 22 cm plate made of a homogeneous and orthotropic material,
we compare in Fig. 20 the centroidal deflection and the Cauchy stress σ11 at (a/2, b/2,
h/2) time histories predicted by the linear and the nonlinear theories. Both the
maximum deflection and the maximum value of σ11 from the nonlinear theory are
considerably less than those from the linear theory. The linear theory over-predicts
the peak displacement by a factor of almost 2, and the peak Cauchy stress by a factor
of 2.5. However, this is not always the case as illustrated by results for the full sine
wave beam studied in [107].

5.3.3 Stacking Sequence Optimization for Maximizing the Failure
Initiation Load [108]

The objective is to find the fiber orientation angle in each ply of a rectangular laminate
subjected to transverse loads on its top surface thatmaximizes thefirst failure load using
the Tsai-Wu failure criterion, and for this stacking sequence find the ultimate failure
load.We have numerically solved the problem by using the Nest-Site Selection (NeSS)

Fig. 19 Time histories of the axial stress, at centroid of each layer for the sandwich shell with
R/a ¼ 5 [106]
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optimization algorithm, the TSNDT, the FEM, and a one-step stress-recovery scheme
(SRS), and shown that the computed six stress components have values close to those
given by the solution of the 3-D linear elasticity equations with the FE software,
ABAQUS. The number of layers and the thickness of each layer are kept fixed. The
failure index, F, of the Tsai-Wu criterion is calculated at 36,000 points in the structure
using stress components with respect to the material principal axes. For the first failure
load to have the highest value, the fiber orientations in each ply should be such that the
maximum value, Fmax, of F for the structure has the least value. Subsequent to the
initiation of the failure at a point and the degradation of material properties there, the
structure becomes nonhomogeneous. The optimization problem is stated as follows.

Find θ ¼ {θ1, θ2, θ3, . . ., θn}, θi 2 [�90
�
, 90

�
] in 1̊ increment for i ¼ 1, . . ., n,

so that Fmax ¼ supfFðX1,X2,X3Þ, ðX1,X2,X3Þ 2 Ω ¼ ½0, a� � ½0, b� � ½� h
2
,
h
2
�}

has the least value. Here θi is the fiber orientation angle in the ith ply measured
counter clockwise from the positive X1-axis, and n equals the number of plies.
Subsequent to ascertaining the optimal stacking sequence, we perform progressive
failure analysis to find the ultimate failure load.

We analyze below the optimization problem for a 10-layer square laminate of side
a ¼ 22 cm, a/h ¼ 10, the load distribution illustrated in Fig. 18 inset, and values of
material parameters listed in Table 3.

In Table 4 we have listed the five optimal stacking sequences (corresponding to
five randomly chosen values of the initial stacking sequence) for the pressure load
given by Eq. (32) the first failure load LF (or q0) and the ultimate failure load LU. The
(LF, LU) for the [0]10, [0/90]5 and [05/905] clamped laminates, respectively, are
(12.41, 20.99), (14.67, 24.48) and (7.22, 10.28). For the three loadings studied, the
[0/90]5 laminate has the maximum LU. Values in the column “% increase” are the
relative difference between LF and LU. Laminates with non-traditional fiber orienta-
tions have higher LF and LU than those with commonly used fiber angles.

We note that (a) for a simply supported laminate, LU and LF are essentially equal
to each other, (b) the LU for a clamped plate is 32% more than that for a simply
supported laminate, (c) for clamped laminates the ratio, LU/LF, varies from 1.4 to 1.2
and depends upon the stacking sequence and the load type, and (d) the stacking
sequence for the maximum LF need not have the maximum LU.
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Fig. 20 Comparison of the (a) out of plane displacement of the plate centroid, and (b) σ11 at the
centroid of the top face from the linear and the nonlinear theories [106]
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For the two boundary conditions, we have exhibited in Fig. 21 the final plate
configurations with the failed material separately shown. The plate thickness has
been enlarged by a factor of 12 and various layers are differently colored for ease of
viewing. For a simply supported laminate, the failure initiates at the centroid of either
the top or the bottom surface and rapidly propagates radially outwards and along the
plate thickness creating a virtual hole (because elements in our work are not really
deleted but are made very weak). The laminate ultimately fails at a load very close to
the first failure load. For the clamped plate, the failure initiates at points near the
edges and propagates downwards along the thickness. Some material near the plate
vertical centroidal axis also has failed prior to the application of the ultimate load.

In Fig. 22, we have displayed the fraction of failed points and the maximum
vertical deflection (with their scales shown on the left and the right vertical axes,

Table 3 Values of material parameters for a lamina with respect to material principal axes

Elastic moduli (GPa) Shear moduli (GPa) Poisson’s ratios

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
132.5 10.8 10.8 5.7 5.7 3.4 0.24 0.24 0.49

Strength parameters (MPa)

XT XC YT YC ZT ZC R S T

1515 1697 43.8 43.8 43.8 43.8 67.6 86.9 86.9

Table 4 Optimal designs of plates for two boundary conditions with the fiber orientation angle
measured counter-clockwise from the X1-axis entries below should not be bold.

Boundary
conditions Design Stacking sequence

First
failure
load
(MPa)

Ultimate
failure
load
(MPa) % increase

Clamped

c1
[�46/43/29/79/�29/�13/�54/�79/
�27/49] 20.15 25.08 24.48

c2
[�48/27/31/�44/�32/�71/�13/3/
74/�37] 20.07 23.18 15.48

c3
[50/�24/�61/31/39/43/55/83/�49/
44] 20.18 22.85 13.25

c4
[�52/26/47/�39/�30/�22/�62/
�68/�66/44] 19.54 22.63 15.81

c5
[�50/31/68/�62/�43/�67/�12/
�79/63/�46] 20.06 22.45 11.92

Simply
supported

c1’ [29/�35/�37/13/�32/6/45/35/47/
�32]

18.96 18.96 0

c2’ [�63/46/40/�84/77/�81/�60/43/
�44/56]

18.40 18.40 0

c3’ [�32/52/83/76/81/21/42/�45/�45/
61]

18.31 18.31 0

c4’ [�24/29/46/16/�14/48/�17/�14/
�43/33]

18.02 18.02 0

c5’ [25/�36/30/�52/15/87/19/45/50/
�26]

17.59 17.59 0
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respectively) versus the peak load for the clamped plates under (a) uniform,
(b) sinusoidal, and (c) non-uniform distributed load given by Eq. (36) with
P(t) ¼ 1 applied on the top surface. Taking the rate of increase of the fraction of
failed points as an indicator of the rate of progression of failure in the laminate, it is
evident that the failure/damage propagates most (least) rapidly for the uniformly
(non-uniformly) distributed load.

5.3.4 Fluid-Structure Interaction

Qin and Batra [109] developed a hydroelastic model using a {3, 2} sandwich plate
theory (i.e., deformations of face sheets are simulated using the Kirchhoff plate
theory and for the core in-plane and transverse displacements are, respectively,
polynomials of degree 3 and 2 in the z-coordinate) and Wagner’s water impact
theory to study a slamming process. They found that considering wedge’s deforma-
tions significantly affects the slamming pressure between the water and the wedge.

Fig. 21 The final laminate configurations for (a) clamped plate c1 and (b) simply supported plate
c1’ with only the failed material depicted in Figs. (a’) and (b’) [108]
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Das and Batra [110] used the FE commercial software, LSDYNA, and the
coupled Lagrangian and Eulerian (sometimes called ALE) approach to describe
finite plane strain deformations of a hull panel. A linear relation between the Cauchy
stress tensor and the Almansi-Hamel strain tensor was employed for the hull material
and the water was modeled as an inviscid compressible fluid. The continuity of
surface tractions and the inter-penetration of water into the hull was satisfied by
using a penalty method. They delineated jet flows near the edges of a wetted hull,
and analyzed delamination induced in a sandwich composite panel. As displayed in
Fig. 23, the slamming pressure can be considered as a wave traveling along the hull
with peak value gradually decreasing as the wave propagates along the hull.

Xiao and Batra [111] analyzed finite plane strain elastic deformation of a sand-
wich panel by using a layer wise TSNDT. They numerically solved the irrotational
and isochoric flow equations by the BEM and nonlinear governing equations of the
solid by the FEM. They employed a cohesive zone model to decipher mixed mode
delamination at an interface between a face sheet and the core, and delineated effects
of hull curvature on the hydroelastic interaction. Figure 24 depicts time-histories of a
panel centroid deflection with and without considering delamination. For one of the
problems studied, the energy dissipated during delamination was quantified as 8% of
the total work done on the hull.

For water slamming problems studied above, the solid body need not be
immersed in the fluid. Qu and Batra [112] developed a numerical algorithm for
studying the interaction of inviscid and compressible flows with arbitrary shaped
moving rigid solids in which the fluid flow equations are solved on a fixed
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rectangular Cartesian grid using a 5th order weighted essentially non-oscillatory
(WENO) scheme. The continuity of pressure at the interface was enforced with a
constrained moving least-squares sharp interface method and the continuity of
normal velocities by a penalty method. The solution is advanced in time by alter-
nately using the 3rd order Runge-Kutta and the implicit Newmark integration
schemes for the fluid and the solid motion equations. They studied the lift-off of a
0.1 m diameter rigid circular cylinder of mass density 7.6 kg/m3 initially resting at
(0.15 m, 0.05 m) on the lower wall of an air filled channel. The cylinder is driven by
an incident shock wave with Mach number ¼ 3 starting at 0.08 m; e.g. see
[113, 114]. The instantaneous pressure contours at two times exhibited in Fig. 25
reveal the existence of a strong vortex below the cylinder that is probably associated
with a Kelvin-Helmholtz instability of the contact discontinuity.

Qu et al. [115] have extended the work in [112] and [113] to high speed
compressible viscous flows modeled by the Navier-Stokes equations that are
discretized using a low-diffusion flux splitting method for the inviscid fluxes and

Fig. 24 Time histories of the deflection of a straight panel centroid, and the hydroelastic pressure
distribution at two different times [111]
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conservative higher-order central differences for the viscous components. Referring
the reader to [115] for details, we have exhibited in Fig. 26 the instantaneous
pressure contours for the problem of the lifting off of an elliptic cylinder.

6 Conclusions

We have shown that a third-order shear and normal deformable plate/shell theory
coupled with a one-step stress recovery scheme provides reasonably accurate values
of the three displacement components and the six stress components. The blast/
explosion load has been approximated as the product of a function of time and a
function of the spatial coordinates. The optimal stacking sequence for a laminate that
maximizes the first failure load has plies with fiber angles quite different from those
commonly studied, and do not conform to a functionally graded laminate. The
analyses of water slamming problems suggest that the pressure on the hull surface,
modeled as a wedge, can be regarded as a traveling pressure wave with the peak
value decaying as it travels away from the keel. The hull curvature and the
hydroelastic interaction strongly influence the pressure wave. The developed
sharp-interface immersed boundary method for numerically studying the interaction
between high speed viscous flows and rigid solids can be extended to deformable
solids.
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