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Preface

This volume contains papers presented at UTP 2019, the 7th International Symposium
on Unifying Theories of Programming, held in Porto, Portugal, on October 8, 2019.
The event was co-located with the Third World Congress on Formal Methods Europe.
Established in 2006, the UTP symposium series aims at bringing together researchers
interested in the fundamental problem of the combination of formal notations and
theories of programming. The theories define, in various different ways, many common
notions, such as abstraction, refinement, composition, termination, feasibility, locality,
concurrency, and communication. Despite these differences, such theories may be
unified in a way that greatly facilitates their study and comparison. Moreover, such a
unification offers a means of combining different languages describing various facets
and artifacts of software development in a seamless, logically consistent, way.

This edition of the UTP symposium is in honor of Sir Tony Hoare, on the occasion
of his 85th birthday. The papers presented here were invited, and friendly refereed,
original contributions sought from the UTP community. One of the papers is from the
distinguished invited speaker Tony Hoare himself. Nine other additional papers
compose this volume, covering several aspects of Unifying Theories of Programming.

Tony’s contributions to Computer Science have been extremely influential. In what
follows we revisit some of his major lifetime achievements. A full account can be
found in the excellent biographical chapter “Insight, Inspiration and Collaboration” by
Jones and Roscoe, published in “Reflections on the Work of C.A.R. Hoare” on the
occasion of Tony’s 75th birthday in 2009, from which we borrow some biographical
information presented in the sequel.

Charles Antony Richard Hoare was born on January 11, 1934, in Colombo, Sri
Lanka. After his family returned to England, he attended the Dragon School, Oxford
and King’s School, Canterbury before going to Oxford University to obtain his highest
official academic qualification, an MA in Classical Greats (1952–1956). He studied
Latin and Greek, both the languages and their literature. This was followed by Ancient
History and Philosophy. It was philosophy that stimulated his interest in logic and the
foundations of mathematics. It also stimulated his interest in computers as a tool for
studying the philosophy of the mind, and in particular human intelligence.

Tony earned professional qualifications as an interpreter of Russian (1956–58) and
as a Statistician (1958–59). He exercised his Russian as an intern at Moscow State
University (1959–60), and on many subsequent visits to the Soviet Union (or Russia)
and to Armenia. It was in Moscow that Tony is reported to have invented Quicksort.
On his return to England in 1960 where he joined the small computer manufacturer
Elliott Brothers, he would bet his manager that his algorithm would usually run faster
than Shellsort, which Tony had been tasked with implementing for the Elliott 503. He
held the posts of Programmer, Chief Engineer, and Researcher (1960–68). He famously
led the team (including his wife Jill) that wrote one of the first ALGOL 60 compilers,
which stimulated his interest in formal language definition. His experience with



ALGOL led to advocating simplicity in language design, to “enable good ideas to be
elegantly expressed” and to “maximise the number of errors which cannot be made, or
if made, can be reliably detected at compile time.” He then led a much larger failed
project to write an operating system for the Eliott 503 Mark II, which stimulated his
life-long interest in concurrency.

After Elliott Brothers was taken over in 1968, Tony decided to leave and apply for
the Chair of Computing Science at the Queen’s University of Belfast, and to his
surprise he was appointed (1968–77). He set up the University’s first undergraduate
degree in Computer Science, at first joint with Mathematics. He selected Program
Verification as the topic for his first academic publication, and for his entire subsequent
academic research career (thirty-two years). He reckoned that Verification was a topic
not likely to be of interest to industry until after he had retired. So he would never have
to compete with more generously funded industrial research. And his prediction was
quite correct.

In 1977, Tony left Belfast with regret, to return to Oxford University as Professor of
Computation (1977–99). There he learned denotational semantics from Joe Stoy and
domain theory from Dana Scott. After two years of pure research, he set up a Master’s
degree at Oxford in Computation, and much later an undergraduate degree (at first joint
with Mathematics, then with Engineering).

Tony’s first retirement job was in Cambridge with Microsoft Research (1999–2017)
where he stimulated an International Grand Challenge Initiative in Verified Software.
Since his second retirement, he has been an unpaid visitor at Microsoft Research and an
Honorary Member of the Cambridge University Computing Laboratory.

There is no doubt that Tony’s contributions to programming have been extremely
influential. The “Axiomatic Basis” is one of the most influential papers in Computer
Science, which paved the way for reasoning entirely non-operationally about program
correctness stepwise. Just as important, the ideas presented in “Structured Programing”
have had a major impact on software design.

Concurrency has been a life-long research interest of Tony, having initially been
inspired by problems found in operating system design. The beginnings of CSP could
be seen emerging in “Parallel Programming: An Axiomatic Approach,” where Tony
approached shared variable concurrency with his monitor proposal. The first version of
“Communicating Sequential Processes,” the CACM paper from 1978, proposed an
extension of Dijkstra’s language of guarded commands with point-to-point commu-
nication. The algebra of CSP appeared with the 1985 book of the same name after years
of collaborative work with Roscoe and Brookes. CSP would be at the core of the occam
programming language, which was prominently used in the context of the transputer, a
chip created at inmos. It was used both for programming and as a medium for spec-
ification of hardware, serving as a basis for formal verification of the FPU of the
transputer, for example. Since then, other programming languages have adopted
communication primitives inspired by those of CSP.

Later in 1984, He Jifeng would join Tony in Oxford until 1998. This collaboration
led to the extremely ambitious endeavor of creating a relational framework in which a
wide range of programming languages, such as imperative, logical, and concurrent,
could be given semantics, ultimately culminating in the publication of the book Uni-
fying Theories of Programming, which is the raison d’être of the UTP symposium
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series started in 2006. Since then, several contributions have been made to incorporate
other aspects, such as: angelic nondeterminism, aspect orientation, event-driven pro-
grams, model checking, object orientation, references and pointers, probabilistic pro-
grams, real-time programs, reversible computation, synchronicity, timed reactive
programs, and transaction processing, to name a few. The UTP has also been
embedded in a variety of theorem provers, providing the modern engineer with tools
for engineering trustworthy software and systems.

More recently, Tony has revisited algebra as the central unification approach to
programming, exploring the interplay between geometrical constructions and algebraic
deductions in programming, the interactions and symmetries of space, time, and
causality in concurrency. These lie at the foundation of any truly unifying approach to
computational modeling and programming. And who, if not Tony, would have the
authority to address them?

We are very grateful to Ana Cavalcanti, Jim Woodcock, and Huibiao Zhu for
trusting us the honor of organizing the 7th UTP symposium. In doing so we have
invited authors of the highest calibre to celebrate Tony’s many lifelong contributions to
the state of the art in the UTP. We thank all the authors for their contributions, and the
Program Committee members for their excellent work in the friendly review process.
We are indebted to all the members of the Organizing Committee of the Third World
Congress of Formal Methods Europe, led by José Nuno de Oliveira. We are also
indebted to EasyChair that greatly simplified the assignment and reviewing of the
submissions as well as the production of the material for the proceedings. Finally, we
thank Springer for their cooperation in publishing the proceedings.

On his 85th birthday, we salute Tony!

October 2019 Pedro Ribeiro
Augusto Sampaio
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A Calculus of Space, Time, and Causality:
Its Algebra, Geometry, Logic

Tony Hoare1, Georg Struth2, and Jim Woodcock3(B)

1 University of Cambridge, Cambridge, UK
t-tohoar@outlook.com

2 University of Sheffield, Sheffield, UK
g.struth@sheffield.ac.uk

3 University of York, York, UK
jim.woodcock@york.ac.uk

Abstract. The calculus formalises human intuition and common sense
about space, time, and causality in the natural world. Its intention is to
assist in the design and implementation of programs, of programming
languages, and of interworking by tool chains that support rational pro-
gram development.

The theses of this paper are that Concurrent Kleene Algebra (CKA) is
the algebra of programming, that the diagrams of the Unified Modeling
Language provide its geometry, and that Unifying Theories of Program-
ming (UTP) provides its logic. These theses are illustrated by a formali-
sation of features of the first concurrent object-oriented language, Simula
67. Each level of the calculus is a conservative extension of its predeces-
sor.

We conclude the paper with an extended section on future research
directions for developing and applying UTP, CKA, and our calculus, and
on how we propose to implement our algebra, geometry, and logic.

Keywords: Concurrent Kleene Algebra (CKA) ·
Concurrent Separation Logic (CSL) ·
Calculus of Communicating Systems (CCS) ·
Communicating Sequential Processes (CSP) · Action algebra ·
Discrete euclidean geometry · Cartesian coordinates ·
Unified Modeling Language (UML) ·
Unifying Theories of Programming (UTP)

Foreword from Tony

I am deeply grateful to the organisers and attendants at this meeting of UTP
2019 in celebration of my 85th birthday. I could not ask for a better birthday
present. I hope you enjoy hearing my presentation as much as I have enjoyed
writing it with my co-authors.

Twenty years ago I had the privilege of delivering a presentation at the first
World Congress on Formal Methods, FM’99, in Toulouse [74,75]. I gave a talk
c© Springer Nature Switzerland AG 2019
P. Ribeiro and A. Sampaio (Eds.): UTP 2019, LNCS 11885, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-31038-7_1
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4 T. Hoare et al.

entitled “Theories of Programming: Top-down and Bottom-up and Meeting in
the Middle” [32]. I claimed that denotational semantics was at the top, opera-
tional semantics at the bottom, with algebraic semantics as a unifying link in
the middle. My talk today is on the same subject. At the top, discrete geomet-
ric diagrams provide the denotations, and its rules of reasoning provide both
an operational semantics (e.g., Milner’s CCS) and a verification semantics (e.g.,
O’Hearn’s CSL).

Next year is the 60th anniversary of my invention of Quicksort [29], and I
propose to retire from active personal research. This will be my farewell appear-
ance at an international conference. I have taken advantage of the opportunity
to present a sort of testament, reporting the results of the last ten years of my
research. I hope you will find some of them helpful or inspiring for your next ten
years of research into the theory and application of UTP.

* * *

1 Introduction

The purpose of this paper is to give independent descriptions of the features
of programming languages, independently of the language in which they are
embedded. It offers many examples, but does not make any recommendation on
their selection or rejection. Above all it shuns any attempt to define a complete
language. To achieve its purpose, it exploits the power of elementary algebra,
geometry, and logic.

The basic insight of the paper is that causality, space, and time have the same
meaning inside a computer as in the natural world outside it. These concepts do
not require a mathematical semantics, but they will be used to give one.

The operators of sequential composition of operands executed in the same
region of space at different intervals of time is an equal partner of concurrent
composition of operands executed in the same interval of time in disjoint regions
of space. They differ primarily in their domain of definition.

The other insight is that a program is a predicate. Each phrase of a structured
program defines exactly, and in minute detail, the set of all its traces of its
execution. Each trace records all the events that were performed, both internal
to the computer and in interaction with its environment. The execution may be
on any computer, at any time and at any place, and with any resolution of its
internal non-determinism.

Specifications are predicates that extend the range of operators available
in a programming language by including operators of the predicate calculus.
Disjunction is most useful in the design phase of development to postpone deci-
sions between design options until more information is available. Conjunction
combines requirements in the specification phase of design. In general, its imple-
mentation is indescribably inefficient for a non-deterministic program.

Choice in a program is defined by disjunction of predicates, either finite
or infinite. An internal choice introduces (demonic) non-determinism into the
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execution of programs. In making an external choice (for example, by a condi-
tional or a guarded command), the surrounding environment (either the rest of
the program or the external world) can prevent selection of one or more of the
options.

The trace is written in a subset of the same language as its program, but
avoids all forms of choice. It is pictured as an abstract syntax tree (AST): its
nodes represent component phrases of a structured program, and each leaf repre-
sents a unique execution of a basic commands of the program. Relations between
traces are defined by structural induction on their ASTs, particularly the refine-
ment relation and the function mapping each node of a trace to its leaves.

The language of traces contains only composition operators. Their events are
just the union of the events of their operands. For example ‘ ;;; ’ describes sequen-
tial execution of its operands at separate instants in time; another operator ‘ ||| ’
describes their concurrent execution at separate locations in space.

The operators are distinguished by different constraints on their implemen-
tation or on their use. For ‘ ;;; ’, the implementer of the language must ensure that
no event in the first operand has a cause in the second operand. For ‘ ||| ’ the user
of the language must ensure that the trace contains no cyclic chain of causation
between its events.

The operators of the trace calculus are lifted to sets in the usual way. The sets
are downward closed wrto the refinement order. Thus if a program describes a
trace, it also describes all the refinements of it. In any phase of development, this
is what justifies replacement of an abstract program by one of its refinements.

Other operators can be defined by stronger constraints. For example, the
CSP operator ‘→’, which separates the guard of a guarded command from its
body, requires every event in the body to have a cause in the guard, and to be
a cause of every event in the body [31]. The result of a concurrency operation
of CSP must not contain a cyclic causal chain, because that would deadlock the
implementation. For ‘|||’ in CSP and for separating conjunction in CSL, there
must be no causal link between the operands. This obviously prevents both races
and deadlocks.

General negation is an incomputable operator. It must be included in a spec-
ification language to permit simple descriptions of safety and security by negat-
ing a description of what must not happen. But it cannot be included in any
general-purpose programming language. It is therefore included in specification
languages like UTP [34], CSL [37], and Concurrent Refinement Algebra (a foun-
dation for rely/guarantee reasoning about concurrent programs) [14].

UTP is a special-purpose descriptive logic for specifying traces. It describes
primarily the causal links crossing the interfaces between the phrases of a pro-
gram, and abstracts from the internal events. Each interface is a labelling func-
tion from the links of the interface to a value that passed between from its
cause to its effect. Examples are the function that represents a region of mem-
ory shared between the left and right operand of ‘ ;;; ’, and the trace of messages
passing between concurrent operands, restricted to channels that they share.
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2 Extended Summary

2.1 The Calculus

1. An ordering relation is defined on traces by induction on its AST. Its left
operand in general requires the same or fewer real processors for execution
than the right operand.

2. It specifies a single decision step taken by a timesharing scheduler, which
implements concurrency by sequentially interleaving the threads that appear
as its operands. Details are given in [39] and [36].

3. The order is a precongruence, i.e., a preorder that makes all operands of the
program monotonic (covariant). Its symmetric closure is an equivalence rela-
tion that satisfies all the equational axioms of a CKA [37] that are expressible
without ‘+’, which means choice in CKA.

4. The algebra is lifted to sets by precongruence closure, standard for converting
a precongruence into an order [8,48]. The same lifting is used by Dedekind
to lift fractions to real numbers [9]. It is analogous to the equivalence class
construction due to Frege and used by Russell in the definition of natural
numbers.

5. Choice in a program is defined as set union. The ordering relation on traces
lifts to refinement (set inclusion) on programs.

6. Further operators can be defined on sets, both algebraically and by proof
rules; for example: iterators (e.g., the Kleene ∗), and residuals for all operators
(e.g., weakest prespecifications (/) and postspecifications (\) [33]), and fixed
points [73].

7. A claim that the calculus can be applied to programs is supported by evidence
of the large body of program proofs from either the axiomatic proof rules of
CSL or the operational rules of CCS [52]. Hoare triples and Milner transitions
are given algebraic definitions as a simple refinement in the calculus. The rules
of both CSL and CCS are then proved in the calculus. They are three-line
proofs in [36].

8. The definitions given above to triples and transitions are the same. By the
reflexivity of equality, the theories differ only in notation! Verification logic
and operational semantics have been unified in the closest possible way.

The rest of this summary has been included here only for background information.
The text summarised has been excluded from the published article for reasons not
unconnected with time and space.

2.2 Causality, Space, and Time

1. Causality denotes a familiar relation between events in the real world, and
requires no mathematical semantics. Any such semantics (such as that given
for Petri nets [62,63]) can be considered as a scientific theory applicable to
the natural world. Causality is represented graphically by drawing an arrow
from the causing event to the caused event (its effect) at its head.
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2. The essential property of causation is that no event can occur before its cause.
But they can occur at the same time.

3. The collection of arrows between the events of a trace forms a directed graph,
with events represented by points.

4. Arrows are classified as either vertical or horizontal. A vertical arrow is drawn
between the successive events that occurred at the same location in space;
events are performed by an object allocated at a given location of memory,
for example a variable or a communication port of a channel.

5. A horizontal arrow is drawn between simultaneous events, each performed by
a different object (e.g., a thread and a variable). The full set of simultaneous
actions is known as a transition [62], or as a transaction [25].

6. The graph for a trace is segmented into subgraphs, one for each node and for
each leaf of its AST. A leaf is the only occupant of its segment.

7. The graph of a sequential node is split by a horizontal cut between its
operands. The only coordinates that it cuts are vertical. A concurrent node
is split by a vertical cut, which cuts only horizontal coordinates.

8. The graph for any node of the AST is contained within a rectangular box,
whose edges are cuts. The input arrows of the box are defined as those with
only their heads in the box; and those with only tails are called its outputs.
Its internal arrows have both ends in the box.

9. Conventionally, all vertical input arrows enter the box at its top edge, and
vertical output arrows leave at the bottom edge. Horizontal input arrows
enter at the left edge and horizontal output arrows leave it at the right.

2.3 Geometry

1. For purposes of program debugging, a box can be displayed as a diagram of
discrete plane geometry. Its two axes represent time and space, and its points
represent events.

2. A vertical coordinate is a chain of arrows containing the complete history of
events performed by a single object. Examples of objects include variables,
threads, communication ports, messages.

3. A horizontal coordinate is a set of arrows connecting all its points. Each
point on it is shared by a distinct vertical coordinate. Examples include mul-
tiple assignments, communications, synchronising fences, object allocation,
and disposal.

4. Any pair of vertical or of horizontal coordinates is mutually parallel in the
sense of Euclid: they have no point in common.

5. As in Cartesian geometry, every point in a diagram is the unique element of
the intersection of a horizontal and a vertical coordinate.

6. Further examples are presented in [35] and alternatively in [54]. They are
called Sequence Diagrams in UML [59], or Message Sequence Charts in
SDL [43].

7. In a debugging tool, each error revealed by the trace should be highlighted.
The tool should also provide a means for navigating backwards from an error,
travelling along vertical and horizontal coordinates to its direct and indirect
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causes (time-travel debugging [51]); also forwards to its results whenever pos-
sible after a non-fatal error.

2.4 Logic

1. According to its standard semantics, a proposition of predicate calculus
describes all observations (aka, valuations) that satisfy it. An observation
is a total function from all syntactically possible variable identifiers to their
observed values.

2. For the predicates of CSL and of UTP, the observations are only partial
functions, whose domain (aka footprint) is the set of all free variables of the
proposition. Negation of an assertion preserves its footprint.

3. Separating conjunction in CSL describes concurrent composition of programs.
It is defined only if the footprints of its two operands are disjoint, and neither
is undefined. The footprint of a disjunction is the union of that of footprints
of its operands.

4. The footprint of a predicate in UTP is defined in terms of the box diagrams
of the trace described. For its top edge, it is the collection of unique names of
the vertical coordinates that cross a horizontal boundary of the box diagram.
For the bottom edge of the diagram, the names are annotated by a dash.

5. The value of an object observed at these edges is that which was assigned (or
left unchanged) by the event at the tail of the cut arrow.

6. In the Circus variant of UTP [61,76], a built-in variable tr stands for a record
of the history of all input-output events that are recorded from the begin-
ning of the entire trace. Each input of a message lies on the same horizontal
interface as the output of the message.

7. Alternative conventions are often more intuitive. For example, the trace can
be represented by a finite state diagram in which the nodes are annotated by
an invariant that describes the values of the variables throughout the interval
between its initial and its final horizontal coordinate.

3 The Calculus

Our terms are traces of execution of a program written in a language that
includes events (to be defined later), a constant 1, and two binary operators
of sequential composition (‘ ;;; ’) and concurrent composition (‘ ||| ’). The context-
free syntax of the terms of the calculus is:

〈term〉 ::= 1 | 〈event〉 | (((〈term〉〈operator〉〈term〉)))
〈operator〉 ::= ‘ ; ’ | ‘ ||| ’

By structural recursion we define the events of a term to be the set of events
recorded in the whole trace:

events(1) = {}
events(k) = {k} [if k is an event]
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events(p ;;; q) = events(p |||q) = events(p) + events(q)

where {k} is the singleton set containing only k , and + is disjoint union of
sets, ensuring that each event only occurs once in the abstract syntax tree. If
the operands of + are not disjoint, then the result is undefined. This fact is
expressed by the ok predicate of UTP [34], which satisfies the axioms

ok(s + t) ≡ (s ∩ t = {}) ∧ ok(s) ∧ ok(t)
ok(s) [if s is a singleton set or empty]

Let p be a term (r ;;; s) and let e be a member of events(r) and let f be a
member of events(s). Then the pair (e, f ) is said to be sequentially separated
within p. The set of pairs within p that are so separated is defined by

ssep(p) = {events(r) × events(s) | r ;;; s is a subterm of p (or p itself)}
This can also be defined axiomatically without set notation by structural
recursion:

ssep(1) = {}
ssep(p ;;; q) = ssep(p) + ssep(q) + events(p) × events(q)
ssep(p |||q) = ssep(p) + ssep(q)

A definition of concurrent separation csep(p |||q) is similar.
The structure of two terms is compared by a relation ≤ between them.1 It

means that q has a denser sequential control structure than p. For example,
p ;;; q ≤ p |||q . (Similar relations can be defined with respect to csep.)

p ≤ q =̂ ssep(p) ⊆ ssep(q) ∧ events(p) = events(q)
p ≡ q =̂ (p ≤ q) ∧ (q ≤ p)

This definition of the fundamental ordering relation is formulated in terms
of syntax. This may violate one tradition of programming language semantics:
that syntax and semantics should be totally separated. The syntactic definition
is strongly welcomed in other traditions. It gives the strongest possible model
of the calculus. Algebraists call it a word algebra, category theorists call it an
initial or free algebra, and computer scientists call it fully abstract. A proof
that CKA satisfies all these definitions is given in [47]. A concept with three
or more equivalent definitions is usually important in mathematics, for example
the axiom of choice in logic.
1 In UTP [17], refinement between pointwise relations is written as P � Q (or equiva-

lently Q ≤ P), and defined by [Q ⇒ P ]. It asserts that every behaviour of Q is also
a behaviour of P .
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3.1 The Algebra of Traces

The axioms of the calculus are just those basic axioms of CKA [37] that can be
expressed in the syntax; those involving choice (written as +), repetition (∗) and
residuation (/ and \) are omitted. They will be re-introduced shortly.

Theorem 1

1. ≤ is a preorder [reflexive and transitive]
2. If q ≤ p then p |||r ≤ p |||r and r |||q ≤ r |||p

and p ;;; r ≤ p ;;; r and r ;;; q ≤ r ;;; p
[monotonicity]

3. (p ;;; q) ;;; r ≡ p ;;;(q ;;; r) and (p |||q)|||r ≡ p |||(q |||r) [associativity]
4. p ;;;1 ≡ p ≡ 1 ;;; p and p |||1 ≡ p ≡ 1|||p [unit]
5. (p |||q) ;;;(p′ |||q ′) ≤ (p ;;; p′)|||(q ;;; q ′) [interchange]

The first two laws echo the familiar laws for equality, formulated by Euclid and
Leibniz. They permit a refinement to be used as a single-directional substitution
rule in algebraic reasoning. A standard structural induction from the second law
says that refinement is preserved when the rule is applied to any sub-term of
a given term. The third law allows redundant brackets to be omitted. And the
fourth describes the steps that reduce a term to sequential normal form, in which
all ‘ ||| ’ are eliminated.

We obtain four small interchange laws from Theorem 1.5 by substituting
units for each of the four variables.

p ;;;(r |||s) ≤ (p ;;; r)|||s q ;;;(r |||s) ≤ r |||(q ;;; s)

(p |||q) ;;; s ≤ p |||(q ;;; s) (p |||q) ;;; r ≤ (p ;;; r)|||q
Two tiny interchange laws are derived by a second such substitution in the first
line above:

p ;;; r ≤ p |||r q ;;; r ≤ r |||q

The interchange axiom models the decisions of a timesharing scheduler oper-
ating at run time or at compile time. Its purpose is to reduce the number of
actual processors needed for execution of a program below what it has explicitly
called for. In combination with the equational axioms, it may be used as a single
step in the reduction of any term of the calculus to a normal form that has no ‘ ||| ’.
The equational axioms are used first on each step to select which ‘ ;;; ’s and which
‘ ||| ’s to match to the left hand side of interchange. Different choices will result
in different eventual interleavings. Each non-trivial application of interchange
increases the membership of sseq , so the shuffling process must terminate. The
corollaries of the axiom are what finally eliminates the ‘ ||| ’s.
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3.2 Applications

The simplicity, relevance, and power of the calculus is demonstrated by its appli-
cation to two well known and widely used theories of programming, separation
logic [60,66] (which includes Hoare Logic) and Milner’s CCS [52]. The Hoare
triple {p} q {r} [30] is interpreted as saying that performance of q preceded by
p is one of the ways of implementing r : i.e., p ;;; q ≤ r . (This is a generalisation
of the original Hoare definition, which required that p and r be restricted to the
events that evaluate assertions [72], in a similar manner to weakest prespecifica-
tions [33].) From this definition, the proof rules for sequencing and concurrency
in CSL (Concurrent Separation Logic) [38]. Simpler proofs (three-liners mostly)
are given in [38].

The Milner transition is written r
p−→ q . In the small-step version of the

transition, the program p is restricted to a singleton event. This triple is inter-
preted as the statement that one of the ways of implementing r is to perform p
first, saving its continuation q for later execution. Algebraically expressed, this
is p ;;; q ≤ r , which is the same definition as the Hoare triple. By definition, the
two calculi are the same! This claim can be checked by definitional substitution,
which translates the defining axioms of each theory into those of the other. The
unification is similar to that made by Dirac, when he showed the mathematical
identity of the Schrödinger and the Heisenberg formulations of quantum theory
with his own.

3.3 The Algebra of Programs

The behaviour of a program is defined as the set of all traces that can be produced
by its execution. The operators are defined by complex product or convolution.
Let capital letters stand for sets of traces. Define the operators on the traces by

1 =̂ {1}
P ;;;Q =̂ {(p ;;; q) | p ∈ P ∧ q ∈ Q}
P |||Q =̂ {(p |||q) | p ∈ P ∧ q ∈ Q}
P � Q =̂ P ∪ Q

Nondeterministic choice is defined as set union, and its algebraic properties are
familiar from Boolean algebra: it is associative, commutative, and idempotent,
and it has the empty set as its unit. Refinement is defined by set inclusion.

Linearity of the axioms in Theorem1 ensures that the equational properties
of traces remain unchanged when they are lifted to sets of terms in the usual
way, by the results of [20]. We would also like to remove all undefined terms from
the sets. This is done by applying a familiar algebraic construction for turning a
preorder into a partial order, namely by the downward closure of the sets, with
respect to the preorder:

P ;;;Q =̂ {r | p ∈ P ∧ q ∈ Q ∧ r ∧ ok(r) ≤ p ;;; q}
P |||Q =̂ {r | p ∈ P ∧ q ∈ Q ∧ r ∧ ok(r) ≤ p |||q}
P ≤ Q =̂ P ⊆ Q
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Further operators can be defined on sets, both algebraically and by proof
rules; for example: iterators (e.g., the Kleene ∗), and residuals for all opera-
tors (e.g., weakest prespecifications (/)and postspecifications (\) [33]), and fixed
points [73]. Iteration is defined as the least fixed point of x = SKIP ∨ x ∨ x ;;; x .
An introduction to these topics is well presented by axioms and proof rules
in [64], where a complete algebraic characterisation of iteration includes the ele-
gant equation p = (p/p)∗, or equivalently p = (p \ p)∗, where p is an invariant
of the loop. Pratt proved the axiom interdeducible with the proof rules that
define either least or greatest fixed-point (depending on the order).

4 Symmetries

In the natural sciences, an experiment is designed to produce a result that all
observers of a repeated experiment will agree on, no matter when and no matter
where it is viewed from. The raw observations will obviously be different, but
agreement can be reached if the direct description of each raw observation is
automatically translatable into a description made by any observer from a dif-
ferent viewpoint at a later time. The translation algorithm is called a symmetry.

It is therefore not surprising that the laws themselves are translatable by the
same symmetry, and each translation to gives back either the same law or another
one. That gives confidence of the universal applicability of the laws throughout
space and time. It should certainly be checked by mathematical proof.

The axioms in Theorem 1 satisfy such symmetries. In the algebra, we model
time reversal symmetry by a function v that swaps the arguments of ‘ ;;; ’, space
inversion symmetry by a function h that swaps those of ‘ ||| ’, and space-time
symmetry by a function d that interchanges ‘ ;;; ’ and ‘ ||| ’:

v(p ;;; q) = v(q) ;;; v(p), v(p |||q) = v(p)|||v(q) v(1) = 1
h(p ;;; q) = h(p) ;;; h(q), h(p |||q) = h(q)|||h(p) h(1) = 1
d(p ;;; q) = d(p)|||d(q), d(p |||q) = d(p) ;;; d(q) d(1) = 1

As before, ‘ ||| ’ need not commute. All axioms in Theorem 1 are closed under these
symmetries. We explain only the interchange law, which we write as

p
q

;;;
r
s

≤ p ;;; r
q ;;; s

Applying the symmetries yields

v(r)

v(s)
;;;
v(p)

v(q)
≤ v(r) ;;; v(p)

v(s) ;;; v(q)

h(q)

h(p)
;;;
h(s)

h(r)
≤ h(q) ;;; h(s)

h(p) ;;; h(r)

d(p) ;;; d(q)

d(r) ;;; d(s)
≥ d(p)

d(r)
;;;
d(q)

d(s)

The first law holds because ssep guarantees that the left-hand and right-hand
sides of the two laws have the same points and the same arrows, which are just
reversed in direction. The second one holds by a similar argument with respect
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to csep. The third law is valid because d interchanges ssep with csep, after which
the value of ssep decreases from right to left. This explains the reversal of ≤.
Application of d to the monotonicity axioms in Theorem 1 requires this reversal
as well.

If p, q , r and s are leaves of the AST, then we can depict the nodes in both
sides of the first interchange law as the following black square.

p

q

r

s

h

d v

In the symmetric interchange laws, v then reflects the nodes in the vertical axis
bisecting the square, h in the horizontal axis, and d in the diagonal axis through
p and s. In fact, h can be generated from d and v as h = d ◦ v ◦ d and the full
symmetry group of the square—reflection in the other diagonal and rotations
by 0◦, 90◦, 180◦ and 270◦—can be generated from these two elements as well.
Interchange is therefore invariant under all eight symmetries.

In mathematics, symmetries are admired for their beauty. They arise as prop-
erties invariant under some transformation, usually the action of some group.
Yet beyond their beauty, they have practical uses too. The symmetries of inter-
change are preserved by refinement, so any conjecture that does not preserve
symmetry can be instantly rejected. Furthermore, every theorem proved auto-
matically generates seven corollaries. Exploitation of symmetries by a proof tool
can give further optimisations [13,21,41,68].

5 Future Directions

In the shortest term, the authors plan to publish a journal version of this paper
with missing sections restored. It is proposed to apply the syntactic methods of
this paper to define features like probabilistic choice and delay commands that
are found in Simula 67 [7].

An urgent development of the theory presented here is to model the layers
of abstraction that are implemented by a hierarchy of class declarations in an
object-oriented language. A layer includes all the subclasses of a class, and shares
no resources with any other layer. It is sometimes called a component or a
module. Abstraction scales: the very largest systems in worldwide use today
could never have evolved without it.

5.1 Unifying Theories of Programming

The major problem facing verification today is that many large systems are
written in a combination of languages:
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– General purpose, application-oriented (e.g., scripting, discrete-event simula-
tion, network design, security).

– Continuous control in both signal-oriented and equational styles.
– Hardware-oriented (e.g., GPU, FPGA, quantum).

How can we provide a common toolset for them all? Perhaps the algebraic meth-
ods introduced in this paper could be used to develop a semantics for existing
and future languages, with compatible links for other languages used in the same
product.

5.2 Applications of Concurrent Kleene Algebra

Kleene algebra is well known for vast simplifications and generalisations of the
proofs of some important theorems. For example, in [45], Kozen gives a com-
pletely algebraic proof in KA with tests (KAT) that a program with nested loops
can be reduced to a program with just a single loop and some auxiliary vari-
ables (a classic folk theorem), and von Wright gives a very elegant, single-page
proof of a theorem for atomicity refinement in action systems [78] that previ-
ously had taken Back many pages to accomplish [2]. Equally convincing results
for concurrent programs with CKA are so far missing. Examples would include
concurrency control or concurrency refinement laws.

KAT [45], Kleene algebras with domain [10,11], and demonic refinement alge-
bras [78] have been established as abstract semantics and verification methods
for sequential programs and linked with concrete program semantics such as rela-
tions or predicate transformers. Hayes and co-workers have recently developed
concurrent refinement algebras, which are inspired by CKA, and support rely-
guarantee style reasoning with shared-variable concurrent programs [27,28] and
CCS/CSP-style reasoning [31,52]. Similar applications in the semantics of con-
current programming languages remain to be explored. Many of the approaches
mentioned have led to verification components with interactive theorem provers,
notably with Isabelle/HOL [1,18,24]. For CKA, such components are under
development.

5.3 Implementing the Calculus

In the immediate future, we are planning that a research team at York will engage
in developing a library of theories in our theorem prover, Isabelle/UTP [17,19,
77], which is an implementation of UTP in Isabelle/HOL [58].

We hope to recruit collaboration with other centres of excellence to develop
compatible extensions of the mechanisation in other proof tools, for example
Coq [3], Lean [55], Maude [6], Agda [4], and FDR [23].

We will support the geometric presentation of the calculus using Eclipse [71],
defining the abstract graphical syntax with the Eclipse Modeling Framework
(EMF), its concrete syntax with the Graphical Modeling Framework (GMF),
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and transforming the models created with the language into Isabelle/UTP the-
ories using the Epsilon model transformation tool [44]. This will follow the app-
roach set out in [53,79], where the graphical RoboChart language [53] is man-
aged within the Eclipse-based RoboTool environment [67] and transformed to
CSP [31], Prism [46], and Isabelle/UTP [19].

5.4 Object Orientation and UTP

Object-oriented programming is the only known programming paradigm that
makes writing massive software applications reasonably manageable, maintain-
able, and scalable. The research presented in this paper uses classes and their
objects as the principal technique for abstraction. A full treatment of object ori-
entation requires additional abstraction techniques that provide encapsulation
and information hiding, supporting structuring and re-use of classes through
inheritance (perhaps including multiple inheritance), behavioural subtyping, and
polymorphism; it would permit the use of dynamic dispatch as a way of selecting
different implementations.

There is already much significant work on OO in UTP, but an elegant and
integrated treatment in UTP remains a significant ambition. Existing achieve-
ment include the following. Santos et al. [69] present a general theory of object
orientation in UTP. Naumann et al. [57] give a semantics to class hierarchies
and how to refactor them for representation independence. Cavalcanti et al. [5]
report on unifying OO classes and CSP-like processes in OhCircus, an object-
oriented extension of the UTP-based Circus multi-paradigm language [61,76],
with a formalisation of method calls and their refinement. Ramos et al. [65] give
a semantics to active classes in UML-RT, the real-time profile for UML, via a
mapping into Circus. Duran et al. [12] present a strategy for compiling classes,
inheritance, and dynamic binding, following the compilation strategy for Dijk-
stra’s guarded command language using refinement algebra in UTP [34, Chap.
6]. Silva et al. [70] present the laws of programming for object orientation with
reference semantics and Gheyi et al. [22] give a complete set of object modelling
laws for Alloy [42]. Finally, Zeyda and his colleagues [80] present a modular the-
ory of object orientation in higher-order UTP [34, Chap. 9], all mechanised in
Isabelle/UTP [17,19,77].

A huge challenge is to harmonise and extend these existing UTP theories
to provide a simple and widely accepted treatment of all the main features of
object orientation.

To test and evaluate the theory of classes, other concurrent programming
design patterns should be specified experimentally as class declarations. At each
layer, the programmer needs a way of specifying new behavioural type systems
checkable at compile time and proof systems detectable at run time. Their pur-
pose is to avoid violations of the protocols whose universal observance by user
programs is required by the design pattern. Type inference algorithms should be
specifiable within the algebra, perhaps by restricting refinement rules to Horn
clauses [40]. They can then be directly executed by exhaustive tree search. The
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same restriction is also made in functional languages, but other syntactic restric-
tions ensure determinacy, so that tree search is not necessary.

5.5 Extensions of the Calculus

Probabilistic Kleene Algebra (PKA) [49] and CKA [37] have been combined in
Concurrent Probabilistic Kleene Algebra (CPKA) to provide a unified account
of nondeterminism, probability, and concurrency, with models in probabilistic
automata, modulo probabilistic refinement simulation [50]. This is a natural
target for the extension of the algebra, geometry, and logic of our calculus.

A particular application area of great current interest is Cyber-Physical Sys-
tems (CPS). They use embedded computers and networks to compute, commu-
nicate, and control physical processes. Research in verification in this area has
to provide the techniques and tools for checking the correctness of software and
hardware platforms with respect to agreed requirements.

The notion of correctness has to be judged against runtime feedback on the
validity of assumptions about the environment, and digital twin technology is
being proposed to handle this problem [26]).2 Fitzgerald et al. [15] describe
the beginnings of a generalised theory of CPS design, with an introduction to
the formal foundations, methods, and integrated tool chains for CPS. Crucially,
models of CPS are inherently heterogeneous and require unification of different
languages, design methods, and verification techniques and their tools.

Modal Kleene Algebra (MKA) [10,11] has recently been used with ordinary
differential equations (ODEs) for the verification of hybrid systems, where dis-
crete imperative program behaviour complements continuous physical dynam-
ics [56]. Foster et al. [16] describe a generalisation of the UTP theory of reactive
processes [34, Chap. 7] using abstract trace algebra. This extends the reactive
process theory to continuous time traces, where events are replaced by piece-wise
continuous functions of physical behaviour, and this gives a model of hybrid
systems. A connection between the UTP and MKA is a long-term and very
ambitious objective.

6 Conclusion

The long-term practical goal of a theory of programming is to provide a concep-
tual framework for the design of a coherent set of practical tools for program

2 In this extension of model-based engineering, a digital twin is a virtual model of
the system, constructed from formal development artefacts and used throughout the
lifetime of the product. This pairing of the virtual and physical worlds allows analysis
of data and monitoring of systems to detect problems before they occur, prevent
downtime, develop new application opportunities, and plan immediate and long-
term behaviour using simulations. Since the virtual model captures the assumptions
made about the environment during system development, these assumptions can be
tuned to more accurately reflect reality.
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development. They should cover the features of modern general-purpose pro-
gramming languages, and also special-purpose languages and design patterns
that exploit synergy in the characteristics of particular applications, algorithms
and hardware. The tools should cover the entire life cycle of large-scale pro-
gram evolution, which starts from requirements and specifications, and contin-
ues through system architecture, program design, coding, static checking, com-
pilation, optimisation, selective verification, testing, and correction, right up to
delivery of the product. The cycle then repeats in subsequent evolution of the
delivered product. The coherence of the theory enables the various languages to
be used together in the same software architecture. The conceptual framework
should ideally be accompanied by tools which give assistance in the life cycle
of new special-purpose programming languages likely to emerge in the changing
world.

It is comforting that the conceptual framework of causality, space, and time is
the same as that of our common-sense world, and of the more advanced theories
of modern science.
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Abstract. In this paper, we discuss the role of formal semantics from a
testing perspective. Our focus is on conformance testing, where we test
if a given system-under-test conforms to an abstract description of its
intended behaviour. We show how the main semantic paradigms, namely
algebraic, denotational, and operational semantics, support a systematic
testing process and give examples from our own work on automated test-
case generation.
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1 Introduction

Is testing able to show the absence of bugs? The most prominent negative answer
was given by the late Edsger Dijkstra: “Program testing can be a very effective
way to show the presence of bugs, but it is hopelessly inadequate for showing
their absence.” [43]. Dijkstra was always motivating the need for formally veri-
fied software. Of course, in general Dijkstra is right, in the same way as Popper
was right, when he stated that we can never verify that a theory is correct by
a finite set of experiments. In principle, only refutation (falsification) is possible
[64].However, this should not lead to an over-pessimistic judgement rejecting
testing completely. This would be futile, since testing is the only way of build-
ing trust in a running system embedded in a complex environment. Testing is
needed to check our assumptions. With wrong assumptions, even formally veri-
fied software may fail.

A famous example of such a rare and subtle software bug was found in the
binary search algorithm implemented in the Java JDK 1.5 library in 2006 [38].
For large arrays the binary search method threw an exception raised by accessing
the array out of its boundaries. The fault was in the line responsible for calculat-
ing the next element in the search following the divide-and-conquer strategy: int
mid = (lo + hi) / 2;. From an algorithmic point of view this line is perfectly
fine, assuming idealised infinite integers. However, this assumption is wrong in
the case of a concrete computer with bounded integer ranges. For large lo and hi

c© Springer Nature Switzerland AG 2019
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values the sum would create an overflow leading to a negative value of variable
mid. The developer of this method reported that he actually took the algorithm
including this line from the famous book Programming Pearls [36]. The fault
resided in Sun’s Java library for nine years, before it was found. This code line
existed for two decades in the algorithm book without anybody noticing the
problem. The algorithm was even proved correct. So what was the nature of
this problem? The answer is that the fault was introduced by assuming a wrong
background theory on numbers. In the domain of mathematics the algorithm
works perfectly fine, assuming infinite integers. In the domain of Java with inte-
ger overflows it is wrong. The correctness proof relied on the wrong assumption
and therefore could not detect the problem.

This example shows that we have to keep in mind that program proof is
about proving a formula, model checking is about checking a model, but only
testing is targeting the running system in its real environment1.

Furthermore, the example shows the essential role of semantics (here, the
interpretation of integer values).

Gaudel showed that testing can be formal too [45], and even one of the most
prominent figures in computer science, Tony Hoare, has changed his view:

“I have radically changed my attitude towards program testing which I
now understand to be entirely complementary to scientific design and ver-
ification methods, and makes an equal contribution to the development of
reliable software on industrial scale.” [50]

In this paper, we go one step further and claim that systematic testing
is able to show the absence of specific faults—under certain (strong)
assumptions. In order to achieve this, we need precise fault models and sys-
tematic test-case generation methods. We argue that formal semantics is the
foundation for such advanced testing techniques. In the following, we will show
that the different semantic paradigms as presented in the Unifying Theories of
Programming (UTP) by Hoare and He [49] can support different testing pro-
cesses and give examples from our own work.

We will limit ourselves to conformance testing with the goal of determining if
a program or, generally, a system-under-test (SUT), complies with the require-
ments of a specification, technical standard, or contract. In order to automate
conformance testing, we need a formal language to express these requirements.
In order to be useful, such a specification/modelling language must

– be expressive enough in order to represent the requirements in a given domain,
– support abstraction in order to specify/model what a SUT is supposed to

compute, in contrast to how it computes, and
– be defined in a precise and unambigous semantics.

Structure. After covering, the necessary preliminaries in Sect. 2, in Sect. 3
we are going to discuss the role of a operational semantics in testing. Then, in
1 Note that even software model checking relies on specialised (non-standard) run-time

environments that may behave differently to the deployed system.
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Sect. 4 we show how a denotational semantics supports test-case generation with
SMT solving. To complete the picture, we discuss property-based testing based
on algebraic semantics in Sect. 5. Finally, we draw our conclusions in Sect. 6.

2 Preliminaries

2.1 Model-Based Testing

A prominent form of conformance testing is model-based testing. Model-based
testing is a black-box testing technique focusing on the external behaviour of
a SUT. Hence, we assume that we have no access to the internals of the SUT,
like e.g., the source code. The test stimuli are automatically generated from
an abstract model of the SUT. This test model is usually derived from the
requirements. The model serves also as a test oracle providing the verdict (pass
or fail) of a test-case execution. The models are expressed in special modelling
languages that support the abstract specification of the central properties to be
tested. A detailed introduction to model-based testing can be found in [72,73].

It would be futile to expect that one modelling language serves all needs. Sev-
eral factors influence the choice of the modelling language, including the appli-
cation domain, expressitivity and tool support. For example, we have applied
the following modelling languages in model-based testing:

1. VDM [56] for testing air-traffic communication systems [13,51,52],
2. RAISE [48] for testing data type implementations [12,42],
3. OCL [62] for testing against UML contracts [24],
4. LOTOS [53] for testing communication protocols [11,23,30,31,74],
5. NuSMV language [40] for testing automotive controllers [44],
6. Creol [55] for testing distributed object-oriented systems [14,15,46,47,66,

67],
7. Spec# [35] for testing C# programs [57],
8. Qualitative Reasoning models [59] for testing continuous systems [9],
9. Extended Action Systems [34] for testing hybrid systems [5,8,39],

10. REO [33] for testing coordinated networks of components [3,60],
11. Symbolic Labelled Transition Systems [65] for testing communication pro-

tocols [54] and embedded systems [69],
12. Timed Automata [32] for testing real-time systems [19], and finally,
13. UML state-machine diagrams for testing embedded systems [7,58].

Note that if a modelling language has no formal semantics, we need to define
one, e.g., by translation to a formal specification language, like for UML [58].

2.2 Model-Based Mutation Testing

Model-based mutation testing [2] is a special form of model-based testing where
(1) a fault is injected into a model (mutation), then (2) a test-case that triggers
this fault is generated from the model, and finally, (3) this test case is executed
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on the SUT in order to test if the modelled fault is hidden in the SUT. This
process is repeated for all faults of interest.

Figure 1 summarises the process of model-based mutation testing. Like in
classical model-based testing, the user creates a test model out of the given
requirements. A test-case generator then analyses the model and generates an
abstract test case (or a test suite). This test case is on the same abstraction
level as the test model and includes expected outputs. A test driver maps the
abstract test case to the concrete test interface of the SUT and executes the test
case. The test driver compares the expected outputs with the actual outputs of
the SUT and issues a verdict (pass or fail).

If the SUT conforms to the model, i.e. the SUT implements the model cor-
rectly, the verdict will always be pass (assuming that the tool chain generates
sound test cases). In case of non-conformance (¬ conforms), i.e. a bug exists, we
may issue a fail verdict. However, due to the incompleteness of testing, we may
miss the bug and issue a pass verdict. Dijkstra was referring to these incom-
pleteness of testing when he pointed out that testing cannot show the absence of
bugs. However, in model-based mutation testing, we can improve this situation
considerably.

In model-based mutation testing, we mutate the models automatically and
then generate an abstract test case that will cover this mutation. What this
coverage means will be defined later, when we define the conformance relation.
For now we want to point out an important difference to other testing techniques:
if a bug exists and this bug is represented by the generated mutant, then the
test case will find this bug. This important property is illustrated in Fig. 1 by
the two conformance arrows: if the SUT does not conform to the model, but
conforms to the mutant, the execution of the generated test case will result in
a fail verdict. Here we are assuming a deterministic implementation. For non-
deterministic SUTs, we have to assume a certain level of fairness and repeat the
test cases a given number of times.

The notion of conformance defines when an injected fault leads to an observ-
able failure. Hence, in order to reason about faults in testing, we need to define
the conformance relation precisely. This is only possible when we fix the seman-
tics of the modelling language. Note, the term conformance relation in testing
is the equivalent of an implementation relation in formal methods.

In the following, we will define conformance in terms of operational, deno-
tation and algebraic semantics and discuss how the different semantical styles
support test-case generation.

3 Operational Semanctics

3.1 Overview

Operational semantics is very popular in concurrency theory and model checking.
An operational semantics defines the meaning of a programming or modelling
language in terms of abstract machines. It is operational in the sense that it
explains the operational (execution) behaviour of a language. This is the oldest
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Model Mutation
Tool Model Mutant

Test Case
Generator

Abstract Test Case

SUT Test
Driver then fail

if ¬conforms

if conforms

Fig. 1. Model-based mutation testing.

form of semantics and has been applied in compiler design since the 1960s. The
virtual stack machine of Java is a prominent example of an operational semantics
assigned to a programming language. However, for theory building, usually more
abstract machines, represented as (labelled) transition systems, are used. Model
checking is performed on various kinds of automata. For reasoning purposes,
Plotkin has established the style of structured operational semantics [63]. Here
the behaviour of these transition systems is presented in the form of formal proof
rules over the abstract syntax of the language.

3.2 Conformance of Input-Output LTSs

A prominent testing theory for labelled transition systems with input and output
labels was developed by Tretmans [71]. Its conformance relation ioco is defined
as follows.

Definition 1.

SUT iocoModel =df ∀σ ∈ traces(Model) : out(SUT afterσ) ⊆ out(Model afterσ)

Here after denotes the set of reachable states after a trace σ, and out denotes
the set of all observable events in a set of states. The observable events are all
output events plus one additional quiescence event for indicating the absence of
any output.

This input-output conformance relation ioco supports non-deterministic models
(see the subset relation) as well as partial models (only traces of the Model are
tested). For input-complete models ioco is equivalent to trace-inclusion (language
inclusion).
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!flashOn

!soundOn

!soundOn!flashOn

!flashOn

!soundOff

?unlock

!flashOn

!soundOn

!soundOn

!soundOff

?unlock

pass

failpass

pass

Fig. 2. Labelled transition systems of a part of a non-deterministic model of the car
alarm system (left), a mutant (centre), and their synchronous product graph (right).

Example 1. Let us consider a car alarm system with sound and flash alarms.
The left-hand side of Fig. 2 shows the LTS semantics of switching on both kind
of alarms non-deterministically. Exclamation marks denote observable (output)
events and question marks controllable (input) events. In this model either the
flash, or the sound is switched on first. An implementer may decide for one of the
two interleavings according to ioco. He might even add additional controllable
events at any point, like the ?unlock-event in the LTS at the centre. However,
the subset relation of output events has to be respected. Therefore, it is the
!soundOff event in the mutant in the centre causing non-conformance.

3.3 Explicit Conformance Checking

The conformance between a model and its mutant can be checked by building
the synchronous product of their LTSs modulo ioco. The right-hand side of
Fig. 2 shows this product graph for our example. Product modulo ioco means
that we limit the standard product construction if the mutant has either (1)
an additional (unexpected) output event (here !soundOff ), or (2) an additional
input event (here ?unlock). In the first case, we have detected non-conformance
and add a fail state after the unexpected event. Furthermore, we add all expected
observables of the model. In the second case we stop the exploration, because
we have reached an unspecified input behaviour.

Different strategies for extracting a test case from such a product graph exist.
We can select a linear or adaptive test case, the shortest path or a random path
to a fail-state, cover each fail-state or only one. Our experiments have shown
that a combination of random and lazy shortest path strategies works well [6].
Lazy refers to the strategy of generating new test cases only, if the existing test
cases do not kill a mutant.

We have applied this explicit conformance checking technique to generate
test cases to several case studies, including testing an HTTP server [11] and
SIP servers [74] using LOTOS models, controllers [6] using UML models, and
most challenging, hybrid systems [39] using Back’s Action Systems extended with
qualitative reasoning models [9]. Our mapping from UML to an Action System is
an operational interpretation of UML state machines in terms of Action Systems,
too [6,58]. Let us have a closer look at Action Systems.
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var closed : Bool := false;
locked : Bool := false;
armed : Bool := false;
sound : Bool := false;
flash : Bool := false;

actions
Close :: ¬closed → closed := true;

Open :: closed → closed := false;

SoundOn :: armed ∧ ¬closed ∧ ¬sound → sound := true;

FlashOn :: armed ∧ ¬closed ∧ ¬flash → flash := true;
. . .

. . .
do Close

�
Open
�
SoundOn;FlashOn
�
FlashOn;SoundOn
. . .

od

Fig. 3. Action System model of the car alarm system.

3.4 Action Systems

Back’s Action Systems [34] are a kind of guarded command language for mod-
elling concurrent reactive systems. They are similar to Dijkstra’s iterative state-
ment. Originally, their semantics is defined with weakest preconditions. However,
for test-case generation, we have labelled the actions with input and output labels
and interpret them as input-output labelled transitions systems.

Example 2. Figure. 3 shows an Action System model of our car alarm system
example. First, the model variables and their initial values are declared. Next,
the actions in the form of guarded commands are listed. Note that each action is
labelled establishing the link to the LTS semantics. On the right-hand side is the
protocol layer of actions which further restricts the possible order of actions. The
standard composition operator for actions is non-deterministic choice (A�B),
however also sequential (A;B) or prioritised compositions (A//B) are possible.
The protocol layer establishes a loop that iterates while any action is enabled.
Action Systems terminate if all actions are disabled. �

For explicit conformance checking we can explore the state space of the
Action systems and construct the product graph of their LTS semantics. This
works well for event-oriented systems, like protocols or embedded controllers.
However, explicit checking does not scale well with more data-oriented models
with parameterized events. These kind of models can be explored symbolically
using symbolic execution.

3.5 Symbolic Conformance Checking

We have implemented a symbolic conformance checker that checks symbolic
input-output conformance between a model and a mutant [28]. The algorithm is
similar to the explicit conformance checking, but the exploration is realized via
symbolic execution. More concretely, it performs a bounded depth-first search for
states in which non-conformance may be observed. For this purpose, both mutant
and specification are symbolically executed in parallel, such that they synchro-
nise on observable actions, but execute internal actions independently from each
other. At each step, a conformance check is performed and if non-conformance is
detected, the trace leading to the current state and a non-conformance condition
are returned.
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In practice, several optimisations have been implemented: (1) If during search
we reach a symbolic state which has already been visited, we prune the search
tree. (2) We precompute symbolic execution graphs, which encode all executable
traces for the specification model. This information can be reused during the
conformance check and results in a performance gain, as we check conformance
for hundreds of different mutants with the same specification model. (3) As long
as the syntactic mutation has not been executed, the precomputed execution
graph of the specification model can be used for the mutant as well.

We have also shown that it is possible to extend this approach to real-time
systems [20]. In this work, we extended action systems with clock variables and
checked a timed version of input-output conformance.

4 Denotational Semantics

A denotational semantics is defined via a mapping from syntax to a semantic
domain. For example in case of imperative languages, this interpretation function
maps every statement to a theory over the observations before and after its
execution. Here, only the effects of what is computed are defined and not, like
in operational semantics, how this computation is actually realised.

In UTP [49], Hoare and He propose a predicative semantics that can be
exploited for test-case generation with constraint, SAT or SMT solvers.

4.1 Transformational Systems

Transformational systems transform inputs and a pre-state to some output and
post-state, then they terminate. Hence, the model and mutant of a transforma-
tional system can be interpreted as predicates Model(s, s′) and Mutant(s, s′)
describing their state transformations (s → s′). For such relational models, con-
formance is defined via implication in the standard way:

Definition 2 (Conformance as Implication).

Model � Mutant =df ∀s, s′ : Mutant(s, s′) ⇒ Model(s, s′)

Here conformance between a mutant and a model means that all behaviour of
the mutant is allowed by the model. Consequently, non-conformance is expressed
via the existence of a behaviour of the mutant that is not allowed by the model:

Theorem 1.

Model �� Mutant = ∃s, s′ : Mutant(s, s′) ∧ ¬Model(s, s′)

The above formula represents a constraint-satisfaction problem. Hence, a con-
straint solver or SMT solver can be used to search for an input (pre-state) s
leading to the fault.
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l :: g → B =df g ∧ B ∧ tr′ = tr ̂ [l]

l(x) :: g → B =df ∃ x : g ∧ B ∧ tr′ = tr ̂ [l(x)]

x := e =df x′ = e ∧ y′ = y ∧ ... ∧ z′ = z

g → B =df g ∧ B

B(s, s′);B(s, s′) =df ∃ s0 : B(s, s0) ∧ B(s0, s′)

B1 � B2 =df B1 ∨ B2

Fig. 4. Predicative UTP semantics of Action System.

In our early work on OCL contracts [24], we gave OCL such a denotational
semantics and developed a set-based constraint solver for test-case generation.
Similarly, the work on Spec# [57] and REO [60] is based on this kind of deno-
tational semantics of the specification languages.

We generalised this approach in our testing theory of mutation testing, where
we gave test cases a denotational semantics and related them via refinement
to models and implementations [1,16]. This enabled us to formally prove our
mutation-based test-case generation algorithms being correct.

4.2 Action Systems

Test-case generation with predicative semantics can also be applied to Action
Systems. We have given Action Systems a predicative semantics in the style of
UTP as shown in Fig. 4.

The state-changes of actions are defined via predicates relating the pre-state
of variables s and their post-state s′. Furthermore, the labels form a visible trace
of events tr that is updated to tr′ whenever an action runs through. Hence, a
guarded action’s transition relation is defined as the conjunction of its guard g,
the body of the action B and the adding of the action label l to the previously
observed trace. In case of parameters x, these are added as local variables to the
predicate. An assignment updates one variable x with the value of an expression
e and leaves the rest unchanged. Sequential composition is standard: there must
exist an intermediate state s0 that can be reached from the first body predicate
and from which the second body predicate can lead to its final state. Finally,
non-deterministic choice is defined as disjunction2.

Note that the existential quantifiers in the semantic definitions need to be
eliminated before we can apply our formula for test-case generation. The nega-
tion of the original model would turn this into a universally quantified pred-
icate which is beyond constraint solving. SMT solvers can handle universal
quantification, however, our evaluation with Z3, showed low performance and
that it is better to eliminate the existential quantifiers beforehand [17].

2 In contrast to designs in UTP, we assume termination and, therefore, avoid the
introduction of auxiliary ok variables. This is possible, since for test-case generation
the outer loop is unfolded a finite number of times.
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Action Systems are not transformational, but reactive systems. We have to
take the looping semantics into account. Therefore, we have to add a reachability
check to the non-conformance check. The reachability analysis is based on the
bounded model-checking algorithm proposed by Biere et al. [37]. The obtained
trace can be used to test, whether a system implements the original specification
or a mutant.

Definition 3 (Fault-Based Test-Case Generation). Given the transition
relations Tspec and Tmutant and a bound k, the formula

Tmutant(u, p) ∧ ¬Tspec(u, p) ∧ I(s0)∧
k−1∧

i=0

Tspec(si, si+1) ∧
k∨

i=0

si = u

is satisfiable iff there exists a trace leading to a faulty behaviour. A model of this
formula contains this trace.

The action system is translated to an SMT formula representing the step relation
T according to the semantics given in Fig. 4. We want to find an unsafe state u
where the transition relation Tmutant does not conform to the transition relation
Tspec. The formula Tmutant(u, p) ∧ ¬Tspec(u, p) finds a state u where a non con-
forming step is possible. It is unsatisfiable if the mutant conforms to the specifica-
tion. In this case it is not possible to generate a test case. The rest of the formula
states as symbolic model-checking problem whether an unsafe state is reachable
within k steps. The state variables in s0 are set equal to the values assigned dur-
ing initialisation of the Action System and the transition relation is unrolled k
times: I(s0)∧Tspec(s0, s1)∧Tspec(s1, s2)∧· · ·∧Tspec(sk−1, sk). Then it is checked
if one of the states is a non-conforming state: s0 = u ∨ s1 = u ∨ · · · ∨ sk = u.

This technique was used to generate mutation test-cases from Action Systems
with the SMT solver Z3 [21]. We also applied this bounded conformance-checking
approach to deterministic Timed Automata [19], giving Timed Automata a pred-
icative semantics.

5 Algebraic Semantics

Gaudel defined her testing theory [45] in this semantic style. An algebraic seman-
tics defines the meaning of syntax by enumerating its algebraic properties. The
properties are given in the form of equational axioms, possibly with precon-
ditions. Therefore, this style is also called axiomatic semantics. Boolean alge-
bra is an example of an algebraic semantics for Boolean expressions or circuits.
The style has been successfully applied to the definition of abstract data types
(ADTs).

Claessen and Hughes [41] showed with their tool QuickCheck how algebraic
properties can be exploited for the automated testing of programs. The idea is



32 B. K. Aichernig

best explained with a simple example: Consider the following algebraic property
that the reverse of the reverse of a list must be equal to the original list:

∀xs ∈ List[T ] : reverse(reverse(xs)) = xs

QuickCheck generates a series of random lists xs and evaluates the equation
with calls to the function reverse. Hence, QuickCheck generates random values
according to the types of the universally quantified variables. This is realised
via type-dependent generators that can be nested in order to generate test-data
for nested types. For the list in our example, the list generator would invoke a
generator for the type T in order to generate the inner elements of the list. In
addition to the default generators for the standard types, the programmer can
define custom generators.

In case the property is violated, QuickCheck reports the failing test case.
Since random tests tend to be rather complicated, QuickCheck tries to find a
simpler failing test-cases for debugging. This is known as Shrinking and the user
is able to specify the shrinking policy individually for different data types.

Due to its flexibility and scalability, this testing technique became very
popular among programmers and is known as Property-Based Testing. Today,
there are many other tools that are based on the concepts of QuickCheck, e.g.,
ScalaCheck [61] for Scala, Hypothesis3 for Python, and FsCheck4 for C# and F#.

In our own work, we have recently applied property-based testing for the load
testing of an industrial web application [27] and different open-source MQTT
brokers [26]. MQTT is a publish-subscribe IoT protocol. By combining property-
based testing with statistical model checking algorithms [25], we could estimate
the expected latencies for different user [68] and deployment scenarios [18].

6 Concluding Remarks

In this paper we wanted to highlight the relation between testing and semantics.
Testing is about finding bugs and in order to define what behaviour constitutes
a bug, we need semantics. Only with precise semantics it is possible to define
conformance and non-conformance. Furthermore, we showed how the different
semantic paradigms relate to test-case generation.

In operational semantics, a specification model is interpreted as an abstract
machine. This machine is then explored according to its operational semantics,
concretely or symbolically, in order to find an adequate test case. In model-based
mutation testing, the aim is to find a test-case that can distinguish the model
from the mutated model. This test goal is defined as non-conformance.

In denotational semantics, we interpret a specification model as a predicate
describing its possible behaviour. We can then use a constraint or SMT solver
to generate test-cases. For model-based mutation testing, we apply bounded
conformance checking.

3 https://pypi.python.org/pypi/hypothesis.
4 https://github.com/fscheck/FsCheck.

https://pypi.python.org/pypi/hypothesis
https://github.com/fscheck/FsCheck
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In algebraic semantics, an abstract property is used to test the system. Uni-
versal quantifiers are tested with random values generated from type-dependent
generators. This property-based testing style can be combined with statistical
testing methods in order to obtain stochastic guarantees.

As argued, precise semantics is the basis for any formal testing process that
is based on sound theory. Within such a testing theory we can state our assump-
tions clearly and formulate correctness guarantees provided these assumptions
hold. Within the discussed model-based mutation testing framework, we antici-
pate a set of specific faults and then generate test-cases that guarantee to detect
these specific faults. We have proved this in UTP via refinement [16]. Obviously,
we rely on several assumptions: (1) the SUT behaves according to our semantics,
(2) the faults we anticipate are representative, (3) either the system is determin-
istic or we have some statistical measure how often tests need to be performed.
Hence, the guarantees obtained via testing are conditional, but this is better
than the hopeless characterisation of Dijkstra. Once, these testing assumptions
are explicit, we can argue, reason and experiment if they hold for a given class
of systems.

We hope that we could convince the reader that serious testing needs an
understanding of semantics. From semantics, we build our testing theories, from
the testing theories we derive our algorithms and tools. This principle guides our
own research on model-based test-case generation. We are convinced that this is
not the end of the journey.

As systems become more complex, intelligent, and adaptive, we will need new
testing methods that can cope with these challenges. Currently, we are working
on learning-based testing methods that combine model-based testing and model
learning [22]. The first results are encouraging [4,10,29,70]. However, without a
good understanding of semantics in our toolbox, we would be lost.
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Abstract. Unifying theories distil common features of programming
languages and design methods by means of algebraic operators and
their laws. Several practical concerns—e.g., improvement of a program,
conformance of code with design, correctness with respect to speci-
fied requirements—are subsumed by the beautiful notion that programs
and designs are special forms of specification and their relationships
are instances of logical implication between specifications. Mathematical
development of this idea has been fruitful but limited to an impoverished
notion of specification: trace properties. Some mathematically precise
properties of programs, dubbed hyperproperties, refer to traces collec-
tively. For example, confidentiality involves knowledge of possible traces.
This article reports on both obvious and surprising results about lifting
algebras of programming to hyperproperties, especially in connection
with loops, and suggests directions for further research. The technical
results are: a compositional semantics, at the hyper level, of imperative
programs with loops, and proof that this semantics coincides with the
direct image of a standard semantics, for subset closed hyperproperties.

1 Introduction

A book has proper spelling provided that each of its sentences does. For a book
to be captivating and suspenseful—that is not a property that can be reduced
to a property of its individual sentences. Indeed, few interesting properties of a
book are simply a property of all its sentences. By contrast, many interesting
requirements of a program can be specified as so-called trace properties: there
is some property of traces (i.e., observable behaviors) which must be satisfied by
all the program’s traces.

The unruly mess of contemporary programming languages, design tools, and
approaches to formal specification has been given a scientific basis through uni-
fying theories that abstract commonalities by means of algebraic operators and
laws. Algebra abstracts from computational notions like partiality and nondeter-
minacy by means of operators that are interpreted as total functions and which
enable equational reasoning. Several practical concerns—such as improving a
program’s resource usage while not altering its observable behavior, checking
conformance of code with design architecture, checking satisfaction of require-
ments, and equivalence of two differently presented designs—are subsumed by
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the beautiful notion that programs and designs1 are just kinds of specification
and their relationships are instances of logical implication between specifications.
Transitivity of implication yields the primary relationship: the traces of a pro-
gram are included in the traces allowed by its specification. The mathematical
development of this idea has been very successful—for trace properties.

Not all requirements are trace properties. A program should be easy to
read, consistent with dictates of style, and amenable to revision for adapt-
ing to changed requirements. Some though not all such requirements may be
addressed by mathematics; e.g., parametric polymorphism is a form of mod-
ularity that facilitates revision through reuse. In this paper we are concerned
with requirements that are extensional in the sense that they pertain directly
to observable behavior. For a simple example, consider a program acting on
variables hi, lo where the initial value of hi is meant to be a secret, on which
the final value of lo must not depend. Consider this simple notion of program
behavior: a state assigns values to variables, and a trace is a pair: the initial
and final states. The requirement cannot be specified as a trace property, but
it can be specified as follows: for any two traces (σ, σ′) and (τ, τ ′), if the initial
states σ and τ have the same value for lo then so do the final states. In symbols:
σ(lo) = τ(lo) ⇒ σ′(lo) = τ ′(lo).

Some requirements involve more than two traces, e.g., “the average response
time is under a millisecond” can be made precise by averaging the response time
of each trace, over all traces, perhaps weighted by a distribution that represents
likelihood of different requests. For a non-quantitative example, consider the
requirement that a process in a distributed system should know which process
is the leader: something is known in a given execution if it is true in all pos-
sible traces that are consistent with what the process can observe of the given
execution (such as a subset of the network messages). In the security literature,
some information flow properties are defined by closure conditions on the pro-
gram’s traces, such as: for any two traces, there exists a trace with the high
(confidential) events of the first and the low (public) events of the second.

This paper explores the notion that just as a property of books is a set
of books, not necessarily defined simply in terms of their sentences, so too a
property of programs is a set of programs, not merely a set of traces. The goal
is to investigate how the algebra of programming can be adapted for reasoning
about non-trace properties. To this end, we focus on the most rudimentary notion
of trace, i.e., pre/post pairs, and rudimentary program constructs. We conjecture
that the phenomena and ideas are relevant to a range of models, perhaps even the
rich notions of trace abstracted by variations on concurrent Kleene algebra [20].

It is unfortunate that the importance of trace properties in programming
has led to well established use of the term “property” for trace property, and
recent escalation in terminology to “hyperproperty” to designate the general
notion of program property—sets of programs rather than sets of traces [9,10].
Some distinction is needed, so for clarity and succinctness we follow the crowd.

1 This paper was written with the UTP [19] community in mind, but our use of the
term “design” is informal and does not refer to the technical notion in UTP.
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The technical contribution of this paper can now be described as follows: we
give a lifting of the fixpoint semantics of loops to the “hyper level”, and show
anomalies that occur with other liftings. This enables reasoning at the hyper
level with usual fixpoint laws for loops, while retaining consistency with standard
relational semantics. Rather than working directly with sets of trace sets, our
lifting uses a simpler model, sets of state sets; this serves to illustrate the issues
and make connections with other models that may be familiar. The conceptual
contribution of the paper is to call attention to the challenge of unifying theories
of programming that encompass requirements beyond trace properties.

Outline. Section 2 describes a relational semantics of imperative programs and
defines an example program property that is not a trace property. Relational
semantics is connected, in Sect. 3, with semantics mapping sets to sets, like
forward predicate transformers. Section 4 considers semantics mapping sets of
sets to the same, this being the level at which hyperproperties are formulated.
Anomalies with obvious definitions motivate a more nuanced semantics of loops.
The main technical result of the paper is Theorem 1 in this section, connecting
the semantics of Sect. 4 with that of Sect. 3. Section 5 connects the preceding
results with the intrinsic notion of satisfaction for hyperproperties, and sketches
challenges in realizing the dream of reasoning about hyperproperties using only
refinement chains. The semantics and theorem are new, but similar to results in
prior work discussed in Sect. 6. Section 7 concludes.

2 Programs and Specifications as Binary Relations

Preliminaries. We review some standard notions, to fix notation and set the
stage. Throughout the paper we assume Σ is a nonempty set, which stands for
the set of program states, or data values, on which programs act. For any sets
A, B, let A � B denote the binary relations from A to B; that is, A � B is
℘(A × B) where ℘ means powerset. Unless otherwise mentioned, we consider
powersets, including Σ � Σ, to be ordered by inclusion (⊆).

We write A → B for the set of functions from A to B. For composition of
relations, and in particular composition of functions, we use infix symbol ; in the
forward direction. Thus for relations R,S and elements x, y we have x(R ; S)y
iff ∃z • xRz ∧ zSy. For a function f : A → B and element x ∈ A we write
application as fx and let it associate to the left. Composition with g : B → C
is written f ; g, as functions are treated as special relations, so (f ; g)x = g(fx).
The symbol ; binds tighter than ∪ and other operators.

For a relation R : A � B, the direct image 〈R〉 is a total function ℘A → ℘B
defined by y ∈ 〈R〉p iff ∃x ∈ p • xRy. It faithfully reflects ordering of relations:

R ⊆ S iff 〈R〉 
 〈S〉

where 
 means pointwise order (i.e., ϕ 
 ψ iff ∀p ∈ ℘A • ϕp ⊆ ψ p). We write
� for pointwise union, defined by (ϕ � ψ) p = ϕp ∪ ψ p. The 
-least element is
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the function λp•∅, abbreviated as ⊥. A relation can be recovered from its direct
image:

R = sglt ; 〈R〉 ; � (1)

where sglt : A → ℘A maps element a to singleton set {a} and � : ℘A � A is
the converse of the membership relation. Note that ⊥ is the direct image of the
empty relation. Direct image is functorial and distributes over union:

〈idΣ〉 = id℘Σ 〈R ; S〉 = 〈R〉 ; 〈S〉 〈R ∪ S〉 = 〈R〉 � 〈S〉

We write id for identity function on the set indicated. In fact 〈−〉 distributes over
arbitrary union, i.e., sends any union of relations to the pointwise join of their
images. Also, 〈R〉 is universally disjunctive, and (1) forms a bijection between
universally disjunctive functions ℘A → ℘B and relations A � B.

In this paper we use the term transformer for monotonic functions of type
℘A → ℘B. For ϕ : ℘A → ℘B to be monotonic is equivalent to (⊇ ;ϕ) ⊆ (ϕ ;⊇).

We write lfp for the least-fixpoint operator. For monotonic functions f : A →
A and g : B → B where A,B are sufficiently complete posets that lfp f and lfp g
exist, the fixpoint fusion rule says that for strict and continuous h : A → B,

f ; h = h ; g ⇒ h(lfp f) = lfp g (2)

Inequational forms, such as f ; h ≤ h ; g ⇒ h(lfp f) ≤ lfp g, are also important.2

Relational Semantics. The relational model suffices for reasoning about termi-
nating executions. If we write x + 2 ≤ x′ to specify a program that increases x
by at least two, we can write this simple refinement chain:

x + 2 ≤ x′ ⊇ x := x + 3 ⊕ x := x + 5 ⊇ x := x + 3

to express that the nondeterministic choice (⊕) between adding 3 or adding 5
refines the specification and is refined in turn by the first alternative. Relations
model a good range of operations including relational converse and intersection
which are not implementable in general but are useful for expressing specifica-
tions. Their algebraic laws facilitate reasoning. For example, choice is modeled
as union, so the second step is from a law of set theory: R ∪ S ⊇ R.

Equations and inequations may serve as specifications. For example, to
express that relation R is deterministic we can write R∪ ; R ⊆ id, where R∪

is the converse of R. Note that this uses two occurrences of R. Returning to the
example in the introduction, suppose R relates states with variables hi, lo. To
formulate the noninterference property that the final value of lo is indepen-
dent of the initial value of hi, it is convenient to define a relation on states that
says they have the same value for lo: define ∼̊ by σ∼̊τ iff σ(lo) = τ(lo). The
property is

∀σ, σ′, τ, τ ′ • σRσ′ ∧ τRτ ′ ∧ σ∼̊τ ⇒ σ′∼̊τ ′

2 Fusion rules, also called fixpoint transfer, can be found in many sources, e.g., [1,4].
We need the form in Theorem 3 of [12], for Kleene approximation of fixpoints.
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This is a form of determinacy. A weaker notion allows multiple outcomes for lo
but the set of possibilities should be independent from the initial value of hi.

∀σ, σ′, τ • σRσ′ ∧ σ∼̊τ ⇒ ∃τ ′ • τRτ ′ ∧ σ′∼̊τ ′

This is known as possibilistic noninterference. It can be expressed without
quantifiers, by the usual simulation inequality:

∼̊ ; R ⊆ R ; ∼̊ (3)

Another equivalent form is ∼̊ ;R ; ∼̊ = R ; ∼̊, which again uses two occurrences
of R. The algebraic formulations are attractive, but recall the beautiful idea of
correctness proof as a chain of refinements

spec ⊇ design ⊇ . . . ⊇ prog

This requires the specification to itself be a term in the algebra, rather than an
(in)equation between terms.

Before proceeding to investigate this issue, we recall the well known fact that
possibilistic noninterference is not closed under refinement of trace sets [21]. Con-
sider hi, lo ranging over bits, so we can write pairs compactly, and consider the set
of traces {(00, 00), (00, 01), (01, 00), (01, 01), (10, 10), (10, 11), (11, 10), (11, 11)} It
satisfies possibilistic noninterference, but if we remove the underlined pairs the
result does not; in fact the result copies hi to lo.

In the rest of this paper, we focus on deterministic noninterference, NI for
short. It has been advocated as a good notion for security [35] and it serves our
purposes as an example.

A Signature and Its Relational Model. To investigate how NI and other non-trace
properties may be expressed and used in refinement chains, it is convenient to
focus on a specific signature, the simple imperative language over given atoms
(ranged over by atm) and boolean expressions (ranged over by b).

c ::= atm | skip | c; c | c ⊕ c | if b then c else c | while b do c (4)

For expository purposes we refrain from decomposing the conditional and itera-
tion constructs in terms of choice (⊕) and assertions. That decomposition would
be preferred in a more thorough investigation of algebraic laws, and it is evident
in the semantic definitions to follow.

Assume that for each atm is given a relation � atm � : Σ � Σ, and for each
boolean expression b is given a coreflexive relation � b � : Σ � Σ. That is, � b �
is a subset of the identity relation idΣ on Σ. For non-atom commands c the
relational semantics � c � is defined in Fig. 1. The fixpoint for loops3 is in Σ �Σ,
ordered by ⊆ with least element ∅.
3 It is well known that loops are expressible in terms of recursion: while b do c can be

expressed as μX.(b; c; X ∪¬b) and this is the form we use in semantics. A well known
law is μX.(b; c; X ∪ ¬b) = μX.(b; c; X ∪ skip); ¬b which factors out the termination
condition.
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� skip � = idΣ

� c ; d � = � c � ; � d �
� c ⊕ d � = � c � ∪ � d �
� if b then c else d � = � b � ; � c � ∪ �¬b � ; � d �
�while b do c � = lfp F

where F : (Σ � Σ) → (Σ � Σ) is defined
FR = b ; c ; R ∪ ¬b

Fig. 1. Relational semantics � c � ∈ Σ � Σ, with � atm � assumed to be given.

Fig. 2. Transformer semantics {| c |} ∈ ℘Σ → ℘Σ.

The language goes beyond ordinary programs, in the sense that atoms are
allowed to be unboundedly nondeterministic. They are also allowed to be partial;
coreflexive atoms serve as assume and assert statements. Other ingredients are
needed for a full calculus of specifications, but here our aim is to sketch ideas
that merit elaboration in a more comprehensive theory.

3 Programs as Forward Predicate Transformers

Here is yet another way to specify NI for a relation R:

∀p ∈ ℘Σ • Agrl (p) ⇒ Agrl (〈R〉p)

where Agrl says that all elements of p agree on lo:

Agrl (p) iff ∀σ, τ • σ ∈ p ∧ τ ∈ p ⇒ σ∼̊τ

As with the preceding (in)equational formulations, like (3), this is not directly
applicable as the specification in a refinement chain, but it does hint that esca-
lating to sets of states may be helpful. Note that R occurs just once in the
condition.

Weakest-precondition predicate transformers are a good model for program-
ming algebra: Monotonic functions ℘Σ → ℘Σ can model total correctness spec-
ifications with both angelic and demonic nondeterminacy. In this paper we use
transformers to model programs in the forward direction.
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For boolean expression b we define {| b |} = 〈� b �〉 so that {| b |} is a filter: x is
in {| b |}p iff x ∈ p and b is true of x. The transformer semantics is in Fig. 2. For
loops, the fixpoint is for the aforementioned ⊥ and 
.

Linking Transformer With Relational. The transformer model may support a
richer range of operators than the relational one, but for several reasons it is
important to establish their mutual consistency on a common set of operators [18,
19]. A relation can be recovered from its direct image, see (1), so the following
is a strong link.

Proposition 1. For all c in the signature, 〈� c �〉 = {| c |}.
Proof. By induction on c.

– skip: 〈� skip �〉 = 〈idΣ〉 = id℘Σ→℘Σ = {| skip |} by definitions and 〈−〉 law.
– atm: 〈� atm �〉 = {| atm |} by definition.
– c; d: 〈� c; d �〉 = 〈� c �;� d �〉 = 〈� c �〉;〈� d �〉 = {| c |};{| d |} = {| c; d |} by definitions,

〈−〉 laws, and induction hypothesis.
– c ⊕ d: 〈� c ⊕ d �〉 = 〈� c � ∪ � d �〉 = 〈� c �〉 � 〈� d �〉 = {| c |} � {| d |} = {| c ⊕ d |} by

definitions, 〈−〉 laws, and induction hypothesis.
– if b then c else d: 〈� if b then c else d �〉 = 〈� b � ; � c � ∪ �¬b � ; � d �〉 = 〈� b �〉 ;

〈� c �〉�〈�¬b �〉;〈� d �〉 = {| b |};〈� c �〉�{|¬b |};〈� d �〉 = {| b |};{| c |}�{|¬b |};{| d |} =
{| if b then c else d |} by definitions, 〈−〉 laws, and induction hypothesis.

– while b do c: To prove 〈�while b do c �〉 = {|while b do c |}, unfold the definitions
to 〈lfp F〉 = lfp G, where F,G are defined in Figs. 1 and 2. This follows by
fixpoint fusion, taking h in (2) to be 〈−〉 so the antecedent to be proved is
∀R • 〈FR〉 = G〈R〉. Observe for any R:

〈FR〉
= def F

〈� b � ; � c � ; R ∪ �¬b �〉
= 〈−〉 distributes over ; and ∪

〈� b �〉 ; 〈� c �〉 ; 〈R〉 � 〈�¬b �〉
= def {| b |}

{| b |} ; 〈� c �〉 ; 〈R〉 � {|¬b |}
= induction hypothesis

{| b |} ; {| c |} ; 〈R〉 � {|¬b |}
= def G

G〈R〉
��

Subsets of ℘Σ → ℘Σ, such as transformers satisfying Dijkstra’s healthiness
conditions, validate stronger laws than the full set of (monotonic) transformers.
Healthiness conditions can be expressed by inequations, such as the determinacy
inequation R∪ ; R ⊆ id, and used as antecedents in algebraic laws. Care must
be taken with joins: not all subsets are closed under pointwise union. Pointwise
union does provide joins in the set of all transformers and also in the set of all
universally disjunctive transformers.
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Fig. 3. H-transformer semantics � c � ∈ ℘̆(℘Σ) → ℘̆(℘Σ).

In addition to transformers as weakest preconditions [4], another similar
model is multirelations which are attractive in maintaining a pre-to-post direc-
tion [25]. These are all limited to trace properties, though, so we proceed in a
different direction.

4 Programs as h-Transformers

Given R : A�B, the image 〈R〉 is a function and functions are relations, so the
direct image can be taken: 〈〈R〉〉 : ℘2A → ℘2B where ℘2A abbreviates ℘(℘A).
In this paper, monotonic functions of this type are called h-transformers, in
a nod to hyper terminology.

The underlying relation can be recovered by two applications of (1):

R = sglt ; sglt ; 〈〈R〉〉 ; � ; �

More to the point, a quantifier-free formulation of NI is now in reach. Recall that
we have R ∈ NI iff ∀p ∈ ℘Σ • Agrl (p) ⇒ Agrl (〈R〉p). This is equivalent to

〈〈R〉〉A ⊆ A (5)

where the set of sets A is defined by A = {p | Agrl (p)}. This is one motivation to
investigate ℘2Σ → ℘2Σ as a model, rather than ℘(Σ �Σ) which is the obvious
way to embody the idea that a program is a trace set and a property is a set of
programs.

In the following we continue to write � and 
 for the pointwise join and
pointwise order on ℘2Σ → ℘2Σ. Please note the order is defined in terms of set
inclusion at the outer layer of sets and is independent of the order on ℘Σ. Define
⊥ = 〈⊥〉 and note that ⊥∅ = ∅ and ⊥Q = {∅} for Q �= ∅.

Surprises. For semantics using h-transformers, some obvious guesses work fine
but others do not. The semantics in Fig. 3 uses operators �, 	 b 
 and ℘̆ which
will be explained in due course. For boolean expressions we simply lift by direct
image, defining � b � = 〈{| b |}〉. The same for command atoms, so the semantics
of atm is derived from the given � atm �.
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The analog of Proposition 1 is that for all c in the signature, 〈{| c |}〉 = � c �,
allowing laws valid in relational semantics to be lifted to h-transformers. Con-
sidering some cases suggests that this could be proved by induction on c:

– skip: 〈{| skip |}〉 = 〈id℘Σ〉 = � skip � by definitions and using that 〈−〉 preserves
identity.

– atm: 〈{| atm |}〉 = � atm � by definition.
– c; d: 〈{| c ; d |}〉 = 〈{| c |} ; {| d |}〉 = 〈{| c |}〉 ; 〈{| d |}〉 = � c � ; � d � = � c; d � by

definitions, distribution of 〈−〉 over ;, and putative induction hypothesis.

These calculations suggest we may succeed with this obvious guess:

� if b then c else d � = � b � ; � c � � �¬b � ; � d � (6)

The induction hypothesis would give � if b then c else d � = 〈{| b |} ;{| c |}〉� 〈{|¬b |};
{| d |}〉. On the other hand, 〈{| if b then c else d |}〉 = 〈{| b |} ; {| c |} � {|¬b |} ; {| d |}〉.
Unfortunately these are quite different because the joins are at different levels.
In general, for ϕ and ψ of type ℘Σ → ℘Σ and Q ∈ ℘2Σ we have 〈ϕ � ψ〉Q =
{ϕp∪ψ p | p ∈ Q} whereas (〈ϕ〉� 〈ψ〉)Q = {ϕp | p ∈ Q}∪{ψ p | p ∈ Q}. Indeed,
the same discrepancy would arise if we define � c ⊕ d � = � c � � � d �.

At this point one may investigate notions of “inner join”, but for expository
purposes we proceed to consider a putative definition for loops. Following the
pattern for relational and transformer semantics, an obvious guess is

�while b do c � = lfp K where KΦ = � b � ; � c � ; Φ � �¬b � (7)

Consider this program: while x < 4 do x := x + 1. We can safely assume �x < 4 �
is 〈{|x < 4 |}〉 and �x := x+1 � is 〈{|x := x+1 |}〉. As there is a single variable, we
can represent a state by its value, for example {2, 5} is a set of two states. Let us
work out �while x < 4 do x := x + 1 �{{2, 5}}. Now �while x < 4 do x := x + 1 �
is the limit of the chain Ki⊥ where Ki means i applications of K. Note that for
any Φ and i > 0,

KiΦ = (�x < 4 � ; �x := x + 1 �)i ; Φ �
(�j :: 0 ≤ j < i • (�x < 4 � ; �x := x + 1 �)j ; �¬x < 4 �)

Writing Qi for Ki⊥{{2, 5}} one can derive

Q0 = {∅}
Q1 = {∅} ∪ {{5}} = {∅, {5}}
Q2 = {∅} ∪ {∅} ∪ {{5}} = {∅, {5}}
Q3 = {∅} ∪ {∅} ∪ {{4}} ∪ {{5}} = {∅, {4}, {5}}

at which point the sequence remains fixed. As in the case of conditional (6), the
result is not consistent with the underlying semantics:

{|while x < 4 do x := x + 1 |}{2, 5} = {4, 5}
The result should be {{4, 5}} if we are to have the analog of Proposition 1.
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A plausible inner join is ⊗ defined by (Φ ⊗ Ψ)Q = {r ∪ s | ∃q ∈ Q • r ∈
Φ{q} ∧ s ∈ Ψ{q}}. This can be used to define a semantics of ⊕ as well as
semantics of conditional and loop; the resulting constructs are 
-monotonic and
enjoy other nice properties.

Indeed, using ⊗ in place of � in (7), we get K3⊥{{2, 5}} = {{4, 5}}, which
is exactly the lift of the transformer semantics. There is one serious problem: K
fails to be increasing. In particular, ⊥ �
 K⊥; for example ⊥{{2, 5}} = {∅} but
H⊥{{2, 5}} = {{5}}. While this semantics merits further study, we leave it aside
because we aim to use fixpoint fusion results that rely on Kleene approximation:
This requires ⊥ 
 K⊥ in order to have an ascending chain, and the use of ⊥ so
that 〈−〉 is strict.

A Viable Solution. Replacing singleton by powerset in the definition of ⊗, for
any h-transformers Φ, Ψ : ℘2Σ → ℘2Σ we define the inner join � by

(Φ � Ψ)Q = {r ∪ s | ∃p ∈ Q • r ∈ Φ(℘ p) ∧ s ∈ Ψ(℘ p)}

For semantics of conditionals, it is convenient to define, for boolean expression
b, this operator on h-transformers: Φ 	 b 
 Ψ = � b � ; Φ � �¬b � ; Ψ . It satisfies

(Φ 	 b 
 Ψ)Q = {r ∪ s | ∃p ∈ Q • r ∈ Φ(℘({| b |}p)) ∧ s ∈ Ψ(℘({|¬b |}p))} (8)

because � b �(℘ p) = 〈{| b |}〉(℘ p) = ℘({| b |}p)). These operators are used in Fig. 3
for semantics of conditional and loop.

It is straightforward to prove � is monotonic: Φ 
 Φ′ and Ψ 
 Ψ ′ imply
Φ � Ψ 
 Φ′ � Ψ ′. It is also straightforward to prove

〈ϕ � ψ〉 
 〈ϕ〉 � 〈ψ〉 (9)

but in general equality does not hold, so we focus on 	 − 
.

Lemma 1. For any b, 	 b 
 is monotonic: Φ 
 Φ′ and Ψ 
 Ψ ′ imply Φ	 b 
Ψ 

Φ′ 	 b 
 Ψ ′.

Proof. Keep in mind this is 
 at the outer level: Φ 
 Φ′ means ∀Q • ΦQ ⊆ Φ′
Q

(more sets, not bigger sets, if you will). This follows by monotonicity of �, or
using characterization (8) we have

r ∪ s ∈ (Φ 	 b 
 Ψ)Q iff ∃q ∈ Q • r ∈ Φ(℘({| b |}q)) ∧ s ∈ Ψ(℘({|¬b |}q))

which implies ∃q ∈ Q • r ∈ Φ′(℘({| b |}q)) ∧ s ∈ Ψ ′(℘({|¬b |}q)) by Φ 
 Φ′ and
Ψ 
 Ψ ′. ��

With � if b then c else d � defined as in Fig. 3 we have the following refinement.

Lemma 2. 〈{| if b then c else d |}〉 
 � if b then c else d � provided that 〈{| c |}〉 

� c � and 〈{| d |}〉 
 � d �.
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Proof.

〈{| if b then c else d |}〉
= semantics

〈{| b |} ; {| c |} � {|¬b |} ; {| d |}〉

 by (9)

〈{| b |} ; {| c |}〉 � 〈{|¬b |} ; {| d |}〉
= distribute 〈−〉 over ;, semantics

� b � ; 〈{| c |}〉 � �¬b � ; 〈{| d |}〉

 assumption, monotonicity

� b � ; � c � � �¬b � ; � d �
= semantics, def of 	 b 
 from �

� if b then c else d �

��
This result suggests that we might be able to prove 〈{| c |}〉 
 � c � for all c, but

that would be a weak link between the transformer and h-transformer semantics.
A stronger link can be forged as follows.

We say Q ∈ ℘2Σ is subset closed iff Q = sscQ where the subset closure
operator ssc is defined by p ∈ sscQ iff ∃q ∈ Q • p ⊆ q. For example, the set A

used in (5) is subset closed. Observe that ssc = 〈⊇〉.
Lemma 3. For transformers ϕ,ψ : ℘Σ → ℘Σ and condition b, if Q = sscQ
then 〈{| b |} ; ϕ � {|¬b |} ; ψ〉Q = (〈ϕ〉 	 b 
 〈ψ〉)Q.

Proof. For the LHS, by definitions:

〈{| b |} ; ϕ � {|¬b |} ; ψ〉Q
=

{r ∪ s | ∃q ∈ Q • r = ϕ({| b |}q) ∧ s = ψ({|¬b |}q)} (∗)

For the RHS, again by definitions:

(〈ϕ〉 	 b 
 〈ψ〉)Q
=

{r ∪ s | ∃q ∈ Q • r ∈ 〈ϕ〉(℘({| b |}q)) ∧ s ∈ 〈ψ〉(℘({|¬b |}q))}
=

{r ∪ s | ∃q ∈ Q • ∃t, u • t ⊆ {| b |}q ∧ u ⊆ {|¬b |}q ∧ r = ϕt ∧ s = ψu} (†)

Now (∗) ⊆ (†) by instantiating t := {| b |}q and u := {|¬b |}q, so LHS ⊆ RHS is
proved—as expected, given (9). If Q is subset closed, we get (†) ⊆ (∗) as follows.
Given q, t, u in (†), let q′ := t ∪ u. Then t = {| b |}q′ and u = {|¬b |}q because
{| b |} and {|¬b |} are filters. And q′ ∈ Q by subset closure. Taking q := q′ in (∗)
completes the proof of RHS ⊆ LHS. ��

Preservation of Subset Closure. In light of Lemma 3, we aim to restrict attention
to h-transformers on subset closed sets. To this end we introduce a few notations.
The subset-closed powerset operator ℘̆ is defined on powersets ℘A, by

Q ∈ ℘̆(℘A) iff Q ⊆ ℘A and Q = sscQ and Q �= ∅ (10)
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To restrict attention to h-transformers of type ℘̆(℘Σ) → ℘̆(℘Σ) we must show
that subset closure is preserved by the semantic constructs.

For any transformer ϕ, define PSCϕ iff (⊇ ; ϕ) = (ϕ ; ⊇). The acronym is
explained by the lemma to follow. By definitions, the inclusion (⊇ ;ϕ) ⊇ (ϕ ;⊇)
is equivalent to

∀q, r • ϕ q ⊇ r ⇒ ∃s • q ⊇ s ∧ ϕs = r (11)

Recall from Sect. 2 that the reverse, (⊇ ; ϕ) ⊆ (ϕ ; ⊇), is monotonicity of ϕ.

Lemma 4. PSCϕ implies 〈ϕ〉 preserves subset closure.

Proof. For any subset closed Q, 〈ϕ〉Q is subset closed because 〈⊇〉(〈ϕ〉Q) =
〈ϕ ;⊇〉Q = 〈⊇ ;ϕ〉Q = 〈ϕ〉(〈⊇〉Q) = 〈ϕ〉Q using functoriality of 〈−〉, PSCϕ, and
sscQ = Q. ��
It is straightforward to show PSC⊥. The following is a key fact, but also a
disappointment that leads us away from nondeterminacy.

Lemma 5. If R is a partial function (i.e., R∪ ; R ⊆ id) then PSC 〈R〉.
Proof. In accord with (11) we show for any q, r that r ⊆ 〈R〉q ⇒ ∃s ⊆ q•ϕs = r.
Suppose r ⊆ 〈R〉q. Let s = (〈R∪〉r) ∩ q, so for any x we have x ∈ s iff x ∈ q
and ∃y ∈ r • xRy. We have s ⊆ q and it remains to show 〈R〉s = r, which holds
because for any y

y ∈ 〈R〉s
≡ def 〈−〉

∃x • x ∈ s ∧ xRy
≡ def s

∃x • x ∈ q ∧ (∃z • z ∈ r ∧ xRz) ∧ xRy
≡ R partial function

∃x • x ∈ q ∧ y ∈ r ∧ xRy
≡ ⇐ by r ⊆ 〈R〉q and def 〈−〉

y ∈ r

Using dots to show domain and range elements, the diagram on the left is
an example R such that PSC 〈R〉 but R is not a partial function. The diagram
on the right is a relation, the image of which does not satisfy PSC .

• •
• •
• •

• •
• •
• •

As a consequence of Lemmas 4 and 5 we have the following.

Lemma 6. If R is a partial function then 〈〈R〉〉 : ℘2A → ℘2B preserves subset
closure.
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The Theorem. To prove � c � = 〈{| c |}〉, we want to identify a subset of ℘Σ → ℘Σ
satisfying two criteria. First, {|−|} can be defined within it, so in particular it is
closed under G in Fig. 2. Second, on the subset, 〈−〉 is strict and continuous into
℘̆(℘Σ) → ℘̆(℘Σ), to enable the use of fixpoint fusion. Strictness is the reason4 to
disallow the empty set in (10); it makes ⊥ (which equals 〈⊥〉) the least element,
whereas otherwise the least element would be λQ • ∅. We need the subset to be
closed under pointwise union, at least for chains, so that 〈−〉 is continuous.

Given that 〈R〉 is universally disjunctive for any R, Proposition 1 suggests
restricting to universally disjunctive transformers. Lemma 4 suggests restricting
to transformers satisfying PSC . But we were not able to show the universally
disjunctive transformers satisfying PSC are closed under limits. We proceed as
follows.

Define Domϕ = {x | ϕ{x} �= ∅} and note that Dom〈R〉 = domR where domR
is the usual domain of a relation. By a straightforward proof we have:

Lemma 7. For universally disjunctive ϕ and any r we have ϕ r = ϕ(r∩Domϕ).

Lemma 8. For universally disjunctive ϕ,ψ with Domϕ ∩ Domψ = ∅, if PSCϕ
and PSCψ then PSC (ϕ � ψ).

Proof. For any q, r with r ⊆ (ϕ � ψ)q we need to show ∃s ⊆ q • (ϕ � ψ)s = r.
First observe

r ⊆ (ϕ � ψ)q
≡ � def � �

r ⊆ ϕ q ∪ ψ q

≡ � Lemma 7 �

r ⊆ ϕ(q ∩ Domϕ) ∪ ψ(q ∩ Domψ)
⇒ � set theory, letting s = r ∩ ϕ(q ∩ Domϕ) and s′ = r ∩ ψ(q ∩ Domψ) �

r = s ∪ s′ ∧ s ⊆ ϕ(q ∩ Domϕ) ∧ s′ ⊆ ψ(q ∩ Domψ)
⇒ � using PSCϕ and PSCψ �

∃t, t′ • t ⊆ q ∩ Domϕ ∧ t′ ⊆ q ∩ Domψ ∧ ϕ t = s ∧ ψ t′ = s′ ∧ s ∪ s′ = r (∗)

We use (∗) to show that t ∪ t′ witnesses PSC (ϕ � ψ), as follows: (ϕ � ψ)(t ∪ t′) =
ϕ(t ∪ t′) ∪ ψ(t ∪ t′) = ϕt ∪ ψt′ = s ∪ s′ = r using also the definition of �, and
ϕ(t ∪ t′) = ϕ t and ψ(t ∪ t′) = ψ t′ from Lemma 7 and (∗). ��
Lemma 9. If Φ and Ψ preserve subset closure then (Φ	 b 
Ψ)Q is subset closed
(regardless of whether Q is).

Proof. Suppose q is in (Φ 	 b 
 Ψ)Q and q′ ⊆ q. So according to (8) there are
r, s, p with p ∈ Q, q = r ∪ s, r ∈ Φ(℘({| b |}p)), and s ∈ Ψ(℘({|¬b |}p)). Let
r′ = r ∩ q′ and s′ = s ∩ q′, so r′ ⊆ r and s′ ⊆ s. Because powersets are subset
closed, Φ(℘({| b |}p)) and Ψ(℘({|¬b |}p)) are subset closed, hence r′ ∈ Φ(℘({| b |}p))
and s′ ∈ Ψ(℘({|¬b |}p)). As q′ = r′ ∪ s′, we have q′ ∈ (Φ 	 b 
 Ψ)Q. ��
4 In [10], other reasons are given for using {∅} rather than ∅ as the false hyperproperty.
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It is straightforward to prove that Φ � Ψ preserves subset closure if Φ, Ψ do,
similar to the proof of Lemma 9. By contrast, Φ ⊗ Ψ does not preserve subset
closure even if Φ and Ψ do.

Next, we confirm that �−� can be defined within the monotonic functions
℘̆(℘Σ) → ℘̆(℘Σ).

Lemma 10. For all c,Q, if Q is subset closed then so is � c �Q, provided that
PSC 〈� atm �〉 for every atm.

Proof. By induction on c.

– atm: � atm � is 〈〈� atm �〉〉 so by assumption PSC 〈� atm �〉 and Lemma 4.
– skip: immediate.
– c; d: by definitions and induction hypothesis.
– c ⊕ d: by induction hypothesis and observation above about �.
– if b then c else d: by Lemma 9 and induction hypothesis.
– while b do c: Because ⊥ is least in ℘̆(℘Σ) → ℘̆(℘Σ), we have ⊥ 
 H⊥, so

using monotonicity of H we have Kleene iterates. Suppose Q is subset closed.
To show lfp HQ is subset closed, note that lfp H = Hγ

Q where γ is some
ordinal. We show that Hα

Q is subset closed, for every α up to γ, by ordinal
induction.

• H0
Q = Q which is subset closed.

• Hα+1
Q = (� c � ; Hα 	 b 
 � skip �)Q by definition of H. Now Hα preserves

subset closure by the ordinal induction hypothesis, and � c � preserves
subset closure by the main induction hypothesis. So � c � ; Hα preserves
subset closure, as does � skip �. Hence � c � ;Hα 	 b 
� skip � preserves subset
closure by Lemma 9.

• Hβ
Q = (�α<βHα)Q (for non-0 limit ordinal β), which in turn equals

∪α<β(Hα
Q) because � is pointwise. By induction, each Hα

Q is subset
closed, and closure is preserved by union, so we are done. ��

Returning to the two criteria for a subset of ℘Σ → ℘Σ, suppose � atm �
is a partial function, for all atm—in short, atoms are deterministic. If in
addition c is ⊕-free, then � c � is a partial function. Under these conditions, by
Proposition 1, {| c |} is the direct image of a partial function.

Let IPF be the subset of ℘Σ → ℘Σ that are direct images of partial functions,
i.e., IPF = {ϕ ∈ ℘Σ → ℘Σ | ∃R • ϕ = 〈R〉 and R∪ ; R ⊆ id}. Observe that
IPF is closed under G, because for ϕ ∈ IPF with ϕ = 〈R〉 we have G〈R〉 =
〈� b �〉 ; 〈� c �〉 ; 〈R〉� 〈�¬b �〉 = 〈� b � ; � c � ;R〉� 〈�¬b �〉 = 〈� b � ; � c � ;R∪ �¬b �〉 and
the union is of partial functions with disjoint domains so it is a partial function.
We have ⊥ 
 G⊥ because ⊥ is the least element in ℘Σ → ℘Σ. By Lemma 6,
when 〈−〉 is restricted to IPF, its range is included in ℘̆(℘Σ) → ℘̆(℘Σ). In IPF,
lubs of chains are given by pointwise union, so 〈−〉 is a strict and continuous
function from IPF to ℘̆(℘Σ) → ℘̆(℘Σ).

To state the theorem, we write =̇ for extensional equality on h-transformers
of type ℘̆(℘Σ) → ℘̆(℘Σ), i.e., equal results on all subset closed Q.

Theorem 1. 〈{| c |}〉 =̇ � c �, provided atoms are deterministic and c is ⊕-free.
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Proof. By induction on c. For the cases of skip, atoms, and ; the arguments
preceding (6) are still valid. For conditional, observe

〈{| if b then c else d |}〉
=̇ semantics

〈{| b |} ; {| c |} � {|¬b |} ; {| d |}〉
=̇ Lemma 3

〈{| c |}〉 	 b 
 〈{| d |}〉
=̇ induction hypothesis

� c � 	 b 
 � d �
=̇ semantics

� if b then c else d �

Finally, the loop:

〈{|while b do c |}〉
=̇ semantics

〈lfp G〉
=̇ fixpoint fusion, see below

lfp H
=̇ semantics

�while b do c �

The antecedent for fusion is ∀ϕ • 〈Gϕ〉 = H〈ϕ〉 and it holds because for any ϕ:

〈Gϕ〉
=̇ def G

〈{| b |} ; {| c |} ; ϕ � {|¬b |}〉
=̇ skip law

〈{| b |} ; {| c |} ; ϕ � {|¬b |} ; {| skip |}〉
=̇ Lemma 3

〈{| c |} ; ϕ〉 	 b 
 〈{| skip |}〉
=̇ 〈−〉 distributes over ;

〈{| c |}〉 ; 〈ϕ〉 	 b 
 〈{| skip |}〉
=̇ induction hypothesis

� c � ; 〈ϕ〉 	 b 
 � skip �
=̇ def H

H〈ϕ〉

5 Specifications and Refinement

We wish to conceive of specifications as miraculous programs that can achieve
by refusing to do, can choose the best angelically, and can compute the uncom-
putable. We wish to establish rigorous connections between programs and speci-
fications, perhaps by deriving a program that can be automatically compiled for
execution, perhaps by deriving a specification that can be inspected to deter-
mine the usefulness or trustworthiness of the program. A good theory may enable
automatic derivation in one direction or the other, but should also account for ad
hoc construction of proofs. Simple reasons should be expressed simply, so alge-
braic laws and transitive refinement chains are important. In this inconclusive
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section, we return to the general notion of hyperproperty and consider how the
h-transformer semantics sheds light on refinement for hyperproperties. Initially
we leave aside the signature/semantics notations.

Let R : Σ � Σ be considered as a program, and H be a hyperproperty, that
is, H is a set of programs. Formally: H ∈ ℘(Σ�Σ). For R to satisfy H means, by
definition, that R ∈ H. The example of possibilistic noninterference shows that
in general trace refinement is unsound: R ∈ H does not follow from S ∈ H and
S ⊇ R. It does follow in the case that H is subset closed. Given that ℘(Σ � Σ)
is a huge space, one may hope that specifications of practice interest may lie in
relatively tame subsets. Let us focus on subset closed hyperproperties, for which
one form of chain looks like

H � S ⊇ . . . ⊇ T ⊇ R (12)

Although this is a sound way to prove R ∈ H, it does not seem sufficient, at least
for examples like NI which require some degree of determinacy. The problem is
that for intermediate steps of trace refinement it is helpful to use nondeterminacy
for the sake of abstraction and underspecification, so finding suitable S and T
may be difficult. One approach to this problem is to use a more nuanced notion of
refinement, that preserves a hyperproperty of interest. For confidentiality, Banks
and Jacob explore this approach in the setting of UTP [6].

Another form of chain looks like

H ⊇ S ⊇ . . . ⊇ T � R (13)

where most intermediate terms are at the hyper level, i.e., S and T are, like H,
elements of ℘(Σ � Σ). The chain is a sound way to prove R ∈ H, even if H

is not subset closed. But in what way are the intermediates S,T, . . . expressed,
and by what reasoning are the containments established? What is the relevant
algebra, beyond elementary set theory?

The development in Sect. 4 is meant to suggest a third form of chain:

. . . � S � . . . � T � 〈〈R〉〉 (14)

Here the intermediate terms are of type ℘̆(℘Σ) → ℘̆(℘Σ) and 
 is the pointwise
ordering (used already in Sect. 4). The good news is that if the intermediate
terms are expressed using program notations, they may be amenable to familiar
laws such as those of Kleene algebra with tests [23,38], for which relations are a
standard model. A corollary of Theorem 1 is that the laws hold for deterministic
terms expressed in the signature (4). To make this claim precise one might
spell out the healthiness conditions of elements in the range of �−�, but more
interesting would be to extend the language with specification constructs, using
(in)equational conditions like R∪ ; R ⊆ id as antecedents in conditional laws of
healthy fragments. We leave this aside in order to focus on a gap in our story so
far.

The third form of chain is displayed with ellipses on the left because we
lack an account of specifications! Our leading example, NI, is defined as a set of
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relations, whereas in (14) the displayed chain needs the specification, say Ψ , to
have type ℘̆(℘Σ) → ℘̆(℘Σ). The closest we have come is the characterization
R ∈ NI iff 〈〈R〉〉A ⊆ A, see (5). But this is a set containment, whereas we seek
Ψ with R ∈ NI iff Ψ � 〈〈R〉〉. In the rest of this section we sketch two ways to
proceed.

On the face of it, Ψ � 〈〈R〉〉 seems problematic because � is an ordering
on functions. Given a particular set p ∈ ℘Σ with Agrl p, a noninterfering R
makes specific choice of value for lo whereas specification Ψ should allow any
value for lo provided that the choice does not depend on the initial value for hi.
One possibility is to escalate further and allow the specification to be a relation
℘̆(℘Σ) � ℘̆(℘Σ). To define such a relation, first lift the predicate Agrl on sets
to the filter ̂Agrl : ℘(℘Σ) � ℘(℘Σ) defined by

̂Agrl Q = {p ∈ Q | Agrl p}

Note that A = ̂Agrl (℘Σ). More to the point, ̂Agrl Q = Q just if each p ∈ Q

satisfies Agrl . Now define NI, as a relation NI : ℘̆(℘Σ) � ℘̆(℘Σ), by

PNIQ iff ̂Agrl P = P ⇒ ̂Agrl Q = Q

This achieves the following: R ∈ NI iff NI ⊇ 〈〈R〉〉. But this inclusion does not
compose transitively with � in the third form of chain, so we proceed no further
in this direction.

The second way to proceed can be described using a variation on the h-
transformer semantics of Sect. 4. It will lead us back to the second form of chain,
(13), in particular for NI as H. The idea resembles UTP models of reactive pro-
cesses [19, Chap. 8], in which an event history is related to its possible extension.
Here we use just pre-post traces, as follows. Let Trc = Σ ×Σ. Consider a seman-
tics {|−|}′ such that {| c |}′ has type ℘Trc → ℘Trc. Instead of transforming an
initial state to a final one (or rather, state set as in {|−|}), an initial trace (σ, τ)
is mapped to traces (σ, υ) for υ with τ� c �υ. The semantics {|−|}′ is not difficult
to define (or see [3, sect. 2]). The upshot is that for S ∈ ℘Trc, the trace set
{| c |}′S is the relation S ; � c �. In particular, let init be idΣ , viewed as an element
of ℘Trc. We get {| c |}′init = � c �, the relation denoted by c. Lifting, we obtain
a semantics �−�′, at the level ℘2Trc → ℘2Trc, such that � c �′{init} contains
� c �. (In light of Theorem 1 and the discussion preceding it, we do not expect
� c �′{init} to be just the singleton {� c �}, as {init} is not subset closed.) This
suggests a chain of the form NI ⊇ . . . ⊇ Ψ(ssc {init}) ⊇ � c �′(ssc {init})� � c �
which proves that � c � satisfies NI—and which may be derived from a subsidiary
chain of refinements like Ψ � � c �′ as in the third form of chain, independent of
the argument ssc {init}.

This approach has been explored in the setting of abstract interpretation,
where the intermediate terms are obtained as a computable approximation of
a given program’s semantics. To sketch the the idea we first review abstract
interpretation for trace properties. Mathematically, abstract interpretation is
very close to data refinement, where intermediate steps involve changes of data
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representation. For example, the state space Σ of R : Σ�Σ would be connected
with another, say Δ, by a coupling relation ρ : Δ � Σ subject to a simulation
condition such as S ; ρ ⊇ ρ ; R, recall (3). With a functional coupling, the
connection could be ρ(〈S〉Δ) � 〈R〉(ρΔ).

Let T ∈ Σ � Σ be a trace set intended as a trace property specification. In
terms of the trace-computing semantics {|−|}′ above, c satisfies T provided that
T ⊇ {| c |}′init. It can be proved by the following chain, ingredients of which are
to be explained.

T ⊇ γ({| c |}� a) ⊇ {| c |}′(γ a) ⊇ {| c |}′init

Here γ : A → ℘Trc is like ρ above, mapping some convenient domain A to traces.
The element a ∈ A is supposed to be an approximation of the initial traces, i.e.,
γ a ⊇ init. Thus the containment {| c |}′(γ a) ⊇ {| c |}′init is by monotonicity of
semantics. The next containment, γ({| c |}�a) ⊇ {| c |}′(γa), involves an “abstract”
semantics {| c |}� : A → A. Indeed, the containment is the soundness requirement
for such semantics. What remains is the containment T ⊇ γ({| c |}� a) which needs
to be checked somehow. Typically, γ is part of a Galois connection, i.e., it has
a lower adjoint α : ℘Trc → A and the latter check is equivalent to αT ≥ {| c |}� a
where ≥ is the order on A. Ideally it is amenable to automation, but that is
beside the point.

The point is to escalate this story to the hyper level, in a chain of this form:

H ⊇ γ(� c �� a) ⊇ � c �′(γ a) ⊇ � c �′(ssc {init}) � {| c |}′init

Now γ has type A → ℘2Trc. Again, the abstract semantics should be sound—
condition γ(� c �� a) ⊇ � c �′(γ a)—now with respect to a set-of-trace-set semantics
�−�′ that corresponds to our Fig. 3. The element a ∈ A now approximates the
set ssc {init} and � c �′(γ a) ⊇ � c �′(ssc {init}) is by monotonicity. The step H ⊇
γ(� c �� a) may again be checked at the abstract level as αH ≥ � c �� a. Of course
H is a hyperproperty so the goal is to prove the program is an element of H.
This follows provided that � c �′(ssc {init}) � {| c |}′init, a connection like our
Theorem 1 except for moving from ℘Σ to ℘Trc.

6 Related Work

The use of algebra in unifying theories of programming has been explored
in many works including the book that led to the UTP meetings [19,20,37].
Methodologically oriented works include the books by Morgan [28] and by Bird
and de Moor [8].

The term hyperproperty was introduced by Clarkson and Schneider who
among other things mention that refinement at the level of trace properties is
admissible for proving subset closed hyperproperties [10]. They point out that
the topological classification of trace properties, i.e., safety and liveness, corre-
sponds to similar notions dubbed hypersafety and hyperliveness. Subset closed
hyperproperties strictly subsume hypersafety. As it happens, NI is in the class
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called 2-safety that specifies a property as holding for every pair of traces. For
fixed k, one can encode k-safety by a product program, each trace of which repre-
sents k traces of the original. Some interesting requirements, such as quantitative
information flow, are not in k-safety for any k.

Epistemic logic is the topic of a textbook [16] and has been explored in
the security literature [5]. Mantel considers a range of security properties via
closure operators [24]. The limited usefulness of trace refinement for proving NI
even for deterministic programs, as in the chain (12), is discussed by Assaf and
Pasqua [3,27]. The formulation of possibilistic noninterference as ∼̊;R;∼̊ = R;∼̊
is due to Joshi and Leino [22] and resembles the formulation of Roscoe et al. [35].

The textbook of Back and von Wright [4] explores predicate transformer
semantics and refinement calculus. The use of sglt and � in (1) is part of the
extensive algebra connecting predicate transformers and relations using categor-
ical notions [14]. Upward closed sets of predicates play an important role in that
algebra [33], which should be explored in connection with the present investi-
gation and its potential application to higher order programs. The extension
of functional programming calculus to imperative refinement is one setting in
which strong laws (Cartesian closure) for a well-behaved subset are expressed as
implications with inequational antecedents [32,34]. These works use backward
predicate transformers in order to model general specifications and in particu-
lar the combination of angelic and demonic nondeterminacy. Alternative models
with similar aims can be found in Martin et al. [25] and Morris et al. [31].

A primary precursor to this paper is the dissertion work of Assaf, which
targets refinement chains in the style of abstract interpretation [11,13]. Assaf’s
work [3] introduced a set-of-sets lifted semantics from which our h-transformer
semantics is adapted. In keeping with the focus on static analysis, Assaf shows
the lifted semantics is an approximation of the underlying one.5 Assaf derives an
abstraction � c �� for dependency from � c � (for every c), by calculation, follow-
ing Cousot [11] and similar to data refinement by calculation [17,30]. For this
purpose and others, it is essential that loops be interpreted by fixpoint at the
level of sets-of-sets, so standard fixpoint reasoning is applicable, as opposed to
using 〈{|while b do c |}〉 which is not a fixed point per se. In fact Assaf derives
two abstract semantics � c ��: one for dependency (NI) and one that computes
cardinality of low-variation, for quantitative information flow properties. The
cardinality abstraction is not in k-safety for any k.

Pasqua and Mastroeni have aims similar to Assaf et al., and investigate
several variations on set-of-set semantics of loops [27]. Our example in Sect. 4 is
adapted from their work, which uses examples to suggest that Assaf’s definition
(called “mixed” in [27]) is preferable. They also point out that, for subset closed

5 Assaf et al. use fixpoint fusion in the inequational form mentioned following (2), to
prove soundness of the derived abstract semantics. Their inequational result corre-
sponding to our Theorem is proved, in the loop case, using explicit induction on
approximation chains. See the proof of Theorem 1 in [3].
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hyperproperties, these variations are precise in the sense of our Theorem 1,
strengthening the inequation in Assaf et al.6

A peculiarity of these works is the treatment of conditionals. Assaf et al.
take the equation � if b then c else d � = 〈{| if b then c else d |}〉 as the definition
of � if b then c else d �, but this makes the definition of �−� non-compositional
and thus the inductive proofs a little sketchy. We do not discern an explicit
definition in [27], but do find remarks like this: “The definition of the collecting
hypersemantics is just the additive lift. . . for every statement, except for the
while case.” As a description of fact, it is true for subset closed hyperproperties
(see our Theorem 1). But it is unsuitable as a definition. We show that a proper
definition is possible.

Non-compositionality for sequence and conditional seems difficult to reconcile
with proofs by induction on program structure. It also results in anomalies, e.g.,
the formulation in Assaf et al. means that in case c is a loop, the semantics of c is
different from the semantics of if true then c else skip. The obscurity is rectified
when the semantics is restricted to subset closed sets, as spelled out in detail
in an unpublished note [15], confirming remarks by Pasqua and Mastroeni [26]
elaborated in [27] and in the thesis of Pasqua.

Although similar to results in the preceding work, our results are novel in a
couple of ways. Our semantics is for a language with nondeterminacy, unlike
theirs. Of course, nondeterministic programs typically fail to satisfy NI and
related properties, and our theorem is restricted to deterministic programs. A
minor difference is that they formulate loop semantics in a standard form men-
tioned in Footnote 3 that asserts the negated guard following the fixpoint rather
than as part of it. Those works use semantics mapping traces to traces (or sets
of sets thereof), like our {|−|}′ and �−�′, said to be needed in order to express
dependency. We have shown that states-to-states is sufficient to exhibit both
the anomaly and its resolution. It suffices for specifications of the form (5) and
may facilitate further investigation owing to its similarity to many variations on
relational and transformer semantics.

Apropos NI, the formulation (5) is robust in the sense that it generalizes to
more nuanced notions of dependency: 〈〈R〉〉P ⊆ Q where P expresses agreement
on some projections of the input (e.g., agreement on whether a password guess is
correct, or agreement on some aggregate value derived from a sensitive database)
and Q expresses agreement on the observable output values. Such policies are
the subject of [36].

Banks and Jacob [6] formalize general confidentiality policies in UTP and
introduce a family of confidentiality preserving refinement relations. The ideas
are developed further in subsequent work where confidentiality-violating refine-
ments are represented as miracles [7] and knowledge is explicitly represented
by sets encoding alternate executions, an idea that has appeared in other
guises [2,29].

6 Displayed formula {{| c |}T | T ∈ T} ⊆ � c �T following Theorem 1 of [3].
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7 Conclusion

We have given what, to the best of our knowledge, is the first compositional
definition of semantics at the hyper level. Moreover, we proved that it is the lift of
a standard semantics when restricted to subset closed hyperproperties. The latter
is a “forward collecting semantics” in the terminology of abstract interpretation.
The new semantics includes nondeterministic constructs, although the lifting
equivalence is only proved for the deterministic fragment.

Although deterministic noninterference is a motivating example, there are
other interesting hyperproperties such as quantitative information flow that can
be expressed in subset closed form and which are meaningful for nondetermin-
istic programs. This is one motivation for further investigation including the
following questions. • Restricting to subset closed hyperproperties is sufficient
to make possible a compositional fixpoint semantics at the hyper level that accu-
rately represents the underlying semantics—is it necessary? • The h-transformer
semantics allows nondeterministic choice and nondeterministic atoms that sat-
isfy PSC (in light of Lemma 10), and in fact the definitions can be used for a
semantics in ℘(℘Σ) → ℘(℘Σ), into which ℘̆(℘Σ) → ℘̆(℘Σ) embeds nicely owing
to joins being pointwise— but what exactly is the significance of determinacy? •
Are disjunctive transformers satisfying PSC closed under join? What is a good
characterization of transformers that are images of relations?

A person not familiar with unifying theories of programming may wonder
whether programs are specifications. Indeed, the author was once criticized by
a famous computer scientist who objected to refinement calculi on the grounds
that underspecification and nondeterminacy are distinct notions that ought not
be confused—though years later he published a soundness proof for a program
logic, in which that confusion is exploited to good effect. A positive answer to
the question can be justified by embedding programs in a larger space of spec-
ifications, in a way that faithfully reflects a given semantics of programs. Our
theorem is a result of this kind. The larger space makes it possible to express
important requirements such as noninterference. However, we do not put for-
ward a compelling notion of specification that encompasses hyperproperties and
supports a notion of refinement analogous to existing notions for trace proper-
ties. Rather, we hope the paper inspires or annoys the reader enough to provoke
further research.
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Abstract. We study the semantics of recursion for computations that
make strict progress. The underlying unified computation model has an
abstract notion of progress, which instantiates in ways such as longer
traces, passing of real time, or counting the number of steps. Recursion
is given by least fixpoints in a unified approximation order. Other time-
based models define the semantics of recursion by greatest fixpoints in
the implication order. We give sufficient criteria for when least fixpoints
in the approximation order coincide with greatest fixpoints in the impli-
cation order.

1 Introduction

A recursive computation has the form x = f(x), where the function f specifies
what happens in one unfolding step of the recursion in terms of x, which captures
recursive invocations. For example, unfolding the loop while b do a results in the
recursion while b do a = if b then a; while b do a else skip. Hence while b do a is a
solution of the equation x = if b then a; x else skip using a suitable semantics for
the conditional. Solutions of the equation x = f(x) are fixpoints of the function
f . It is therefore not surprising that fixpoints have been widely used to define
the semantics of recursive computations [4,5,12,16,32,37,39].

In general, a function may have several fixpoints. For example, every x is a fix-
point of the identity function. The corresponding recursion equation x = x may
seem contrived, but it gives the semantics of the endless loop while true do skip
since if true then skip; x else skip = skip; x = x in many computation models.
In this and similar cases, the question arises which fixpoint to choose as the
semantics of recursion. Different computation models give different answers.

A common solution is to define an order on the computations and choose the
least or greatest fixpoint in this order. Two orders are relevant for computation
models: the implication order and the approximation order [5]. Conceptually
they serve different purposes. The implication order establishes when a program
implements a specification and is typically concerned with the amount of non-
determinism exhibited by computations. The approximation order deals with the
semantics of recursion; successive unfoldings of a recursion yield better approxi-
mations to its semantics, which emerges as the limit. Confusion sometimes occurs
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because in some computation models the approximation order happens to coin-
cide with the implication order or its converse (the refinement order). For exam-
ple, in the Unifying Theories of Programming (UTP) recursion is defined by
least fixpoints in the refinement order [28]. In general, however, a better approx-
imation is not tied to either a decrease or an increase in non-determinism.

Justification of a particular choice of fixpoints for a proposed computation
model is usually left implicit (though explicit connections have sometimes been
made [8]). Specifically, we note that apparently different choices are made for
computation models with different notions of progress. A dedicated approxima-
tion order (different from implication) has been used in Boolean-time models,
which are models that distinguish between termination and non-termination but
do not have a finer notion of elapsing time [4,5]. Greatest fixpoints with respect
to implication have been used in models that measure time using natural num-
bers or real numbers [24].

The aim of this paper is to provide additional confidence that the choices of
fixpoints made for several computation models make sense. To this end, we study
the relationship between the greatest fixpoint in the implication order and the
least fixpoint in the approximation order. We do this in a unified computation
model that supports an abstract notion of progress, developed in previous work
[21]. Computations in this model are sequential and may be non-deterministic;
single executions may be finite, aborting, incomplete or infinite. Progress can be
measured in terms of Boolean-time, abstract time, real time, traces and other
instances. The model supports a unified approximation order in addition to the
implication order. It can therefore be used to investigate how extremal fixpoints
in these orders are connected.

We give sufficient conditions for when least fixpoints in the approximation
order coincide with greatest fixpoints in the implication order. We interpret these
conditions for various notions of progress. The findings of this paper can be
summarised as follows. The availability of real time in the model is not sufficient
for the fixpoints to coincide even if strict progress is assumed, that is, if time
cannot stand still. However, the two studied fixpoints coincide if a uniform lower
bound can be given for the progress made in each unfolding of the recursion.

Knowing circumstances in which the implication order can be used to define
recursion is helpful since it is arguably simpler than the approximation order.
Moreover the implication order is fundamental for reasoning about the correct-
ness of computations, so a direct connection with the approximation order facil-
itates this task.

Section 2 describes the setup for our study including basic algebraic struc-
tures and the unified computation model. The following sections comprise new
results, which form the contributions of this paper. We outline the overall strat-
egy in Sect. 3. Section 4 contains results that can be derived algebraically, based
on complete lattices, semirings and an iteration operation. In particular, we
prove upper bounds for greatest fixpoints in the implication order by captur-
ing the excess over corresponding least fixpoints in the same order. Section 5
contains results that are specific to the unified computation model referring to
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various notions of progress. In particular, we give further bounds on the excess
so that the greatest fixpoint in the implication order coincides with the least
fixpoint in the approximation order. We discuss what the conditions that enable
these bounds mean for different kinds of progress.

2 Basic Definitions

This section presents the algebraic structures and the unified computation model
used in the remainder of the paper. The discussion is based on [21].

2.1 Algebraic Structures

A bounded distributive lattice is an algebraic structure (S,�,�,⊥,�) with the
following axioms:

x � (y � z) = (x � y) � z x � (y � z) = (x � y) � z

x � y = y � x x � y = y � x

x � x = x x � x = x

⊥ � x = x � � x = x

x � (y � z) = (x � y) � (x � z) x � (y � z) = (x � y) � (x � z)
x � (x � y) = x x � (x � y) = x

The lattice order x � y ⇔ x � y = y ⇔ x � y = x has least element ⊥, greatest
element �, least upper bound operation � and greatest lower bound operation
�. The operations � and � are �-isotone.

A bounded distributive lattice S is MID-complete if each A ⊆ S has a meet�
A with the following axioms, including meet-infinite distributivity (MID):

∀a ∈ A :
�

A � a (∀a ∈ A : x � a) ⇒ x � �
A x � �

A =
�

a∈A x � a

We use
�

a∈A f(a) =
�{f(a) | a ∈ A} and similar abbreviations.

An idempotent semiring without a right annihilator is an algebraic structure
(S,�, ·,⊥, 1) with the following axioms:

x � (y � z) = (x � y) � z x · (y · z) = (x · y) · z x · (y � z) = (x · y) � (x · z)
x � y = y � x 1 · x = x (x � y) · z = (x · z) � (y · z)
x � x = x x · 1 = x ⊥ · x = ⊥
⊥ � x = x

Note that x · ⊥ = ⊥ is not an axiom. The operation · is �-isotone. We assume
the operation · has higher precedence than � and � and abbreviate x · y as xy.
Powers in semirings are defined by x0 = 1 and xi+1 = xxi for x ∈ S and i ∈ N.
It follows that xi+1 = xix.
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A lattice-ordered semiring is an algebraic structure (S,�, ·,�,⊥, 1,�) such
that (S,�,�,⊥,�) is a bounded distributive lattice and (S,�, ·,⊥, 1) is an idem-
potent semiring without a right annihilator.

A lattice-ordered itering adds to a lattice-ordered semiring a unary operation
◦ with higher precedence than · and satisfying the sumstar and productstar
equations of [7] and two simulation axioms [17]:

(x � y)◦ = (x◦y)◦x◦ zx � yy◦z � w ⇒ zx◦ � y◦(z � wx◦)
(xy)◦ = 1 � x(yx)◦y xz � zy◦ � w ⇒ x◦z � (z � x◦w)y◦

The operation ◦ is �-isotone. Moreover the unfold property x◦ = 1 � xx◦ and
the related sumstar property (x � y)◦ = x◦(yx◦)◦ follow. The itering opera-
tion generalises the Kleene star but has many other instances, for example, in
omega algebras [6] and demonic refinement algebras [40]. In order to cover these
instances, the simulation axioms of iterings generalise simpler simulation prop-
erties zx � yz ⇒ zx◦ � y◦z and xz � zy ⇒ x◦z � zy◦ suggested in [7] for
Kleene algebras [31] and with applications in program transformation and data
refinement [3,6].

In many computation models, the operation � represents non-deterministic
choice, the operation · sequential composition, the operation � conjunction, ⊥
the computation with no executions, 1 the computation that does not change
the state, � the computation with all executions, and � the implication order.

In particular, UTP designs [28] form instances of the above algebras, as
do prescriptions, extended designs, conscriptions, extended conscriptions and
other variants of designs discussed in the literature [10,11,18,23]. Further works
modelling computations based on lattices, semirings and related algebras include
[2,3,6,22,29,31,33,36,40].

A (binary, homogeneous) relation R : A ↔ A on a set A = ∅ is a set R ⊆
A × A. Important constants are the empty relation O = ∅, the identity relation
I = {(x, x) | x ∈ A} and the universal relation T = A × A. The composition of
relations Q and R is defined by Q · R = {(x, z) | ∃y : (x, y) ∈ Q ∧ (y, z) ∈ R}.
Relations on A form a lattice-ordered semiring (2A×A,∪, ·,∩,O, I,T), which is
MID-complete and satisfies right annihilation QO = O. See [35] for further details
about relations.

These definitions generalise to heterogeneous relations R : A ↔ B, which
are sets R ⊆ A × B where A and B may differ. Heterogeneous relations form
categories and their operations apply to arguments of suitable types [14,34].

Let S be a set partially ordered by � and let f : S → S. Provided they exist,
the �-least and �-greatest fixpoints of f are denoted by μf and νf , respectively:

f(μf) = μf f(x) = x ⇒ μf � x

f(νf) = νf f(x) = x ⇒ νf � x

For functions f, g : S → S such that g is �-isotone and the involved fixpoints
exist, the two rolling properties μ(g ◦ f) = g(μ(f ◦ g)) and ν(g ◦ f) = g(ν(f ◦ g))
follow [1,9]. If S is a complete lattice and f is �-isotone, both μf and νf exist
by Tarski’s fixpoint theorem [38].



66 W. Guttmann

2.2 A Unified Model for Computations with Progress

We discuss a model that represents computations by four relations and describes
different notions of progress in a uniform way. Computations are sequential and
may be non-deterministic; a computation comprises single executions, each of
which may be finite, aborting, incomplete or infinite. We explain this model to
the extent necessary for this paper; for further details and related work see [21].

The state space A of a computation is partitioned into two sets Afin and A∞
comprising the finite and infinite parts. The following are examples of such a
separation, where D is the set of values that program variables can take:

Afin A∞ model
D {∞} Boolean time; computation terminates or does not terminate
D × N {∞} abstract time; steps are counted
D × R {∞} real time; a clock is used
D+ Dω traces; finite and infinite sequences over D

Behavioural aspects of computations are modelled by relations on the state
space. Two relations F : Afin ↔ Afin and F∞ : Afin ↔ A∞ describe finite progress
and progress from the finite to the infinite. We assume that F is a preorder, that
is, I ⊆ F = F2, and that the related transitivity property FF∞ = F∞ holds. For
the above examples, these constants are:

F : Afin ↔ Afin Afin F∞ : Afin ↔ A∞ A∞ model
T D T {∞} Boolean time
{((v, t), (v′, t′)) | t ≤ t′} D × N T {∞} abstract time
{((v, t), (v′, t′)) | t ≤ t′} D × R T {∞} real time
� D+ � Dω traces

Traces use the prefix relation � on finite and infinite sequences.
In a computation, four relations N , P , Q and R are used to describe dif-

ferent kinds of execution. The relation R represents the finite executions, which
terminate successfully. The relation P represents executions that abort due to
an error. The relation N represents incomplete executions, which are unpro-
ductive and used in approximation. The relation Q represents actually infinite
executions.

Formally, a computation (N |P |Q|R) comprises relations N,P,R : Afin ↔ Afin

and Q : Afin ↔ A∞ satisfying the progress requirements N,P,R ⊆ F and Q ⊆ F∞
and the closure requirements NF ⊆ N and NF∞ ⊆ Q. It is defined by the
following matrix:

(N |P |Q|R) =

⎛
⎜⎜⎝

I O O O
O I O O
O O I O
N P Q R

⎞
⎟⎟⎠

In the trace model, the progress requirements correspond to UTP’s healthiness
condition R1, which specifies that traces can only get longer [28]. More details
about this and the progress and closure requirements are given in [21].
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The matrix definition of a computation helps to derive basic operations,
which elaborate as follows.

– Non-deterministic choice is the componentwise union of the matrices:

(N1|P1|Q1|R1) � (N2|P2|Q2|R2) = (N1 ∪ N2|P1 ∪ P2|Q1 ∪ Q2|R1 ∪ R2)

– Sequential composition is given by the matrix product, where union and rela-
tional composition replace addition and multiplication:

(N1|P1|Q1|R1) · (N2|P2|Q2|R2) = (N1 ∪ R1N2|P1 ∪ R1P2|Q1 ∪ R1Q2|R1R2)

– Conjunction is the componentwise intersection of the matrices:

(N1|P1|Q1|R1) � (N2|P2|Q2|R2) = (N1 ∩ N2|P1 ∩ P2|Q1 ∩ Q2|R1 ∩ R2)

– The implication order is the componentwise set inclusion order:

(N1|P1|Q1|R1) � (N2|P2|Q2|R2) ⇔ N1 ⊆ N2 ∧P1 ⊆ P2 ∧Q1 ⊆ Q2 ∧R1 ⊆ R2

– The computation with no executions is

⊥ = (O|O|O|O)

– The computation that does not change the state is

1 = (O|O|O|I)
– The computation with all executions is

� = (F|F|F∞|F)

– The computation with all incomplete and infinite executions is

L = (F|O|F∞|O)

– The approximation order is:

(N1|P1|Q1|R1) �� (N2|P2|Q2|R2) ⇔ N2 ⊆ N1 ∧ P1 ⊆ P2 ⊆ P1 ∪ N1 ∧
Q2 ⊆ Q1 ∧ R1 ⊆ R2 ⊆ R1 ∪ N1

With these operations, the set S of computations forms a lattice-ordered semiring
(S,�, ·,�,⊥, 1,�), which has the lattice order � and is MID-complete. This can
be extended to a lattice-ordered itering; details including the definition of ◦ for
computations are given in [21].

As usual, the implication order reflects the amount of non-determinism of
computations and the notion of a computation refining another if the former
contains a subset of the executions of the latter. The four subset relationships
N1 ⊆ N2 and P1 ⊆ P2 and Q1 ⊆ Q2 and R1 ⊆ R2 state this for the four kinds
of execution represented in our model.
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The above approximation order has been derived in [21] using algebraic tech-
niques. Intuitively it states that a more precise approximation can add finite and
aborting executions (P1 ⊆ P2 ∧ R1 ⊆ R2) provided they extend incomplete exe-
cutions (P2 ⊆ P1 ∪ N1 ∧ R2 ⊆ R1 ∪ N1), and can remove only incomplete and
infinite executions (N2 ⊆ N1 ∧ Q2 ⊆ Q1).

Let S be the computations in our model and let f : S → S. Provided it
exists, the ��-least fixpoint of f is denoted by κf :

f(κf) = κf f(x) = x ⇒ κf �� x

The following result is a consequence of [21, Theorems 2 and 4]. Item 4 uses
the abbreviation c(x) = n(L)� � x and the operation n, which elaborates to
n(N |P |Q|R) = (O|O|Q|N) in our computation model.

Proposition 1. Let S be the computations in our model.

1. The relation �� is a partial order with least element L.
2. The operations � and · and ◦ are ��-isotone.

Let f : S → S be �- and ��-isotone. Then the following are equivalent:

3. κf exists and κf = (νf � L) � μf .
4. c(νf) � (νf � L) � μf � n(νf)�.

Items 1 and 2 state basic properties of the approximation order and oper-
ations used for defining program constructs. The equivalence of items 3 and 4
gives a condition for the existence of κf in terms of μf and νf and reduces calcu-
lation of κf to that of μf and νf . This is already helpful as μf and νf are based
on the implication order and therefore often easier to obtain than κf directly.
In the following we aim to establish an even closer connection, namely κf = νf ,
under suitable conditions.

3 Overall Strategy

In the remainder of this paper we further study how the ��-least fixpoint κf and
the �-greatest fixpoint νf of a function f are related when f represents compu-
tations with progress. We will give sufficient conditions for κf = νf . Corollary
11 will establish this equality by using Proposition 1. To this end, we will derive
conditions under which νf � μf � L.

To establish νf � μf �L, the main idea is to bound the excess of νf over μf by
a meet of the form

�
ai for suitable elements ai. That is, we prove νf � μf ��

ai

and
�

ai � L. Corollary 10 will show the latter. The former is established by the
general Theorem 3 and a series of specialisations in Corollaries 4, 5 and 7. The
specialisations instantiate ai = bi� for a suitable element b.

While our unified computation model supports a notion of progress, we still
need a way to study different kinds of progress and to ensure a given computation
actually makes progress. The idea for this is to separate the two concerns of
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progress and computation, which is based on having a separate time variable
as described in [25–27]. To achieve this separation algebraically, we split the
function f representing a recursion into a composition f = g ◦ h. Here, the
function h represents the computation done in the body of a recursion (without
further recursive invocations) and the function g represents the progress made
by this computation.

By imposing different conditions on the function g we can ensure actual
progress and study different kinds of progress; this is shown in Theorem 9
and subsequently discussed in Sect. 5. Theorem 6 shows that the function h
can represent computations carried out by programs constructed from choice,
sequence, iteration and similar constructs. Specifically, we will consider the func-
tion f(x) = a · h(x), where progress is modelled by a suitable element a that
satisfies a � b and is sequentially composed with the computation h(x).

The development is split into two sections. We first cover results that can be
derived algebraically in Sect. 4. In Sect. 5 we look closer into the computation
model to discuss progress.

4 Connecting Fixpoints Algebraically

In this section we derive general results relating the �-least and �-greatest
fixpoints of a function in the algebraic setting of Sect. 2.1.

We start with a simple upper bound for �-greatest fixpoints. Kleene’s recur-
sion theorem gives the representation νf =

�
i∈N f i(�) if the function f satisfies

certain continuity requirements [9,30,32]. It is evident from previous proofs that
one of the two inequalities comprising this equation only needs that f is �-
isotone.

Lemma 2. Let S be a complete lattice. Let f : S → S be �-isotone. Then
νf � �

i∈N f i(�).

Proof. The claim follows if νf � f i(�) for each i ∈ N. We show this by induction
over i. The base case i = 0 follows since νf � �. The inductive case follows since
for i ∈ N we have

νf = f(νf) � f(f i(�)) = f i+1(�)

using that f is �-isotone. ��
Next comes a general result that relates νf and μf by capturing the excess of

f i(�) over μf in the element ai. It also splits the function f into a composition
g ◦ h where an application of h does not increase the excess and an application
of g may increase the excess from ai to ai+1. When we apply this result later,
the component g will represent the progress of the computation.

Theorem 3. Let S be a MID-complete lattice. Let g : S → S distribute over
� and let h : S → S be �-isotone. Let ai ∈ S such that g(ai) � ai+1 for each
i ∈ N. Assume h(�) � a0 and h(ai � x) � ai � h(x) for each i ≥ 1 and x ∈ S.
Consider f = g ◦ h. Then νf � μf � �

i≥1 ai.
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Proof. We show by induction over i that f i(�) � ai � μf for each i ≥ 1. The
base case i = 1 follows by

f(�) = g(h(�)) � g(a0) � a1 � a1 � μf

using that g is �-isotone since it distributes over �. The inductive case follows
since for i ≥ 1 we have

f i+1(�) = f(f i(�)) = g(h(f i(�))) � g(h(ai � μf)) � g(ai � h(μf))
= g(ai) � g(h(μf)) � ai+1 � f(μf) = ai+1 � μf

using the assumption h(ai � x) � ai � h(x) with x = μf . The overall claim then
follows by

νf � �
i∈N f i(�) � �

i≥1 f i(�) � �
i≥1(ai � μf) = μf � �

i≥1 ai

using Lemma 2. ��
The following corollaries specialise the previous result. We first instantiate

the excess to ai = bic for suitable elements b and c, and the function g to
sequential composition of an element a such that a � b. The latter condition
guarantees that an application of g increases the excess from ai to at most ai+1.

The intuition is that b captures progress made by the body of the recursion
(without further invocations). Hence bic represents progress up to the ith unfold-
ing of the recursion where c contains potential progress by further unfoldings.

Like b, the element a captures progress of the computation. Distinguishing
a and b in the following results makes it possible later to establish h(bic � x) �
bic � h(x), which separates the progress part bic from the remainder of the
computation h(x). Setting a = b would work in many models, but in trace
models the element a represents specific progress that does not commute with
other parts of the computation, so cannot be separated this way. However, we
are able to choose an upper bound b on the progress that does commute and
therefore can be collected separately. This will be demonstrated in more detail
in Sect. 5.

Corollary 4. Let S be a MID-complete lattice-ordered semiring. Let h : S → S
be �-isotone. Let a, b, c ∈ S such that a � b and h(�) � c and h(bic �x) � bic �
h(x) for each i ≥ 1 and x ∈ S. Consider f(x) = a·h(x). Then νf � μf��

i≥1 bic.

Proof. Let g(x) = ax and ai = bic for each i ∈ N. Then g distributes over � and
h(�) � c = a0 and

g(ai) = g(bic) = abic � bbic = bi+1c = ai+1

for each i ∈ N. Moreover h(ai � x) � ai � h(x) for each i ≥ 1 and x ∈ S. Finally
f = g ◦ h. Thus the claim follows by Theorem 3. ��

We next instantiate c = �, which simplifies the statement of the previous
result and is sufficient for the development in this paper. The intuition for setting
c = � is to make no assumptions in the ith unfolding of the recursion about
progress that may happen in further recursive invocations.



Connecting Fixpoints of Computations with Strict Progress 71

Corollary 5. Let S be a MID-complete lattice-ordered semiring. Let h : S → S
be �-isotone. Let a, b ∈ S such that a � b and h(bi� � x) � bi� � h(x) for each
i ≥ 1 and x ∈ S. Consider f(x) = a · h(x). Then νf � μf � �

i≥1 bi�.

Proof. Let c = �. Then h(�) � c and h(bic � x) � bic � h(x) for each i ≥ 1 and
x ∈ S. Thus the claim follows by Corollary 4. ��

The elements bi� for i ≥ 1 form a chain since bi+1� = bib� � bi�.
We still need to ensure that an application of h does not increase the excess,

that is, h(ai � x) � ai � h(x) in Theorem 3. The next result gives sufficient
conditions for an element ai to satisfy this property.

The ideas underlying the conditions aix � ai and xai � ai�x⊥ are as follows.
The element ai = bi� represents the progress bi made by the first i unfoldings
of the recursion followed by arbitrary behaviour � in further unfoldings. The
composition aix makes another computation x at the end, but this does not add
anything new to the arbitrary behaviour � already available at the end of the
ith unfolding, which results in aix � ai.

In contrast, the composition xai makes another computation x at the start,
which can have an overall effect. Observe that among the executions contained
in x, only the finite ones will reach the computation ai. The infinite, aborting
and incomplete executions of x absorb any subsequent computation and are
contained in x⊥. The element b is chosen to capture progress in a general way
so that the finite executions of x commute with it. Hence this part of x can be
postponed all the way until after the ith unfolding, where again it adds nothing
new to the arbitrary behaviour �. All executions together are therefore contained
as per xai � ai � x⊥.

Theorem 6. Let S be a lattice-ordered itering. Let h : S → S such that h(x)
is constructed from the parameter x, arbitrary constants and the operations �,
�, · and ◦. Let c ∈ S such that cx � c and xc � c � x⊥ for each x ∈ S. Then
h(c � x) � c � h(x) for each x ∈ S.

Proof. We prove the claim by induction over the structure of the expression
defining h. The base case h(x) = x follows by

h(c � x) = c � x = c � h(x)

The base case h(x) = d for a constant d ∈ S follows by

h(c � x) = d � c � d = c � h(x)

The inductive case h(x) = f(x) � g(x) follows by

h(c � x) = f(c � x) � g(c � x) � c � f(x) � c � g(x) = c � f(x) � g(x) = c � h(x)

The inductive case h(x) = f(x) � g(x) follows by

h(c�x) = f(c�x)�g(c�x) � (c�f(x))�(c�g(x)) = c�(f(x)�g(x)) = c�h(x)
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The inductive case h(x) = f(x)g(x) follows by

h(c � x) = f(c � x)g(c � x) � (c � f(x))(c � g(x))
= c(c � g(x)) � f(x)c � f(x)g(x)
� c � c � f(x)⊥ � f(x)g(x) = c � f(x)g(x) = c � h(x)

using the assumption cy � c with y = c � g(x) and the assumption zc � c � z⊥
with z = f(x).

The inductive case h(x) = f(x)◦ follows by

h(c � x) = f(c � x)◦ � (c � f(x))◦ = f(x)◦(c · f(x)◦)◦ � f(x)◦c◦

= f(x)◦(1 � cc◦) � f(x)◦(1 � c) = f(x)◦ � f(x)◦c
� f(x)◦ � c � f(x)◦⊥ = c � f(x)◦ = c � h(x)

using sumstar and unfold properties of ◦, the assumption cy � c with y = f(x)◦

and with y = c◦ and the assumption zc � c � z⊥ with z = f(x)◦. ��
This means that the results of this section apply to any recursion whose

characteristic function h is composed of constants, �, �, · and ◦. In particular,
the body of the recursion can use sequential compositions, conditionals and
while-loops, the semantics of which are based on �, · and ◦.

The following result combines Corollary 5 and Theorem 6. It provides the
interface to the model-based discussion in Sect. 5.

Corollary 7. Let S be a MID-complete lattice-ordered itering. Let h : S → S
such that h(x) is constructed from the parameter x, arbitrary constants and the
operations �, �, · and ◦. Let a, b ∈ S such that a � b and xbi� � bi� � x⊥ for
each i ≥ 1 and x ∈ S. Consider f(x) = a · h(x). Then νf � μf � �

i≥1 bi�.

Proof. We apply Theorem 6 with c = bi� for each i ≥ 1. For this, first observe
that cx = bi�x � bi� = c for each x ∈ S since �x � � and composition is
�-isotone. Second, xc � c � x⊥ for each x ∈ S by the assumption of the present
corollary. Hence h(c�x) � c�h(x) for each x ∈ S by Theorem 6. Moreover, the
function h is �-isotone since it is composed of �-isotone constructs. Thus the
claim follows by Corollary 5. ��

We conclude this section with the following version of Theorem 3, which
applies to functions of the form f ′ = h ◦ g instead of f = g ◦ h. Other than this
swap, the assumptions and conclusions of the two theorems are the same. The
proof is by rolling fixpoints.

Theorem 8. Let S be a MID-complete lattice. Let g : S → S distribute over
� and let h : S → S be �-isotone. Let ai ∈ S such that g(ai) � ai+1 for each
i ∈ N. Assume h(�) � a0 and h(ai � x) � ai � h(x) for each i ≥ 1 and x ∈ S.
Consider f ′ = h ◦ g. Then νf ′ � μf ′ � �

i≥1 ai.
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Proof. Let f = g ◦ h. Then νf ′ = ν(h ◦ g) = h(ν(g ◦ h)) = h(νf) by the rolling
property of ν. Similarly μf ′ = h(μf) by the rolling property of μ. Moreover for
each i ≥ 1 we obtain

h(μf � �
j≥1 aj) � h(μf � ai) � ai � h(μf)

using the assumption h(ai � x) � ai � h(x) with x = μf . Hence

νf ′ = h(νf) � h(μf � �
j≥1 aj) � �

i≥1(ai � h(μf)) = h(μf) � �
i≥1 ai

= μf ′ � �
i≥1 ai

using Theorem 3. ��

5 Connecting Fixpoints of Computations with Progress

In this section we work in the more detailed setting of the computation model
presented in Sect. 2.2. This allows us to discuss progress more precisely.

In order to apply Corollary 7 we need to choose b such that xbi� � bi��x⊥
for each x ∈ S and i ≥ 1. As the following result shows, this condition holds for
each computation b = (O|O|O|B) such that FB ⊆ BF.

Because we have separated the progress part from the actual computation
in the recursion, we can now focus solely on the progress part. The intuition is
that b is a general computation which captures a finite amount of progress. In
particular, b does not contain any incomplete, aborting or infinite executions,
which gives the form (O|O|O|B) for a relation B. Typically B will affect only the
part of the state representing progress (such as a clock or a trace). The relation
F describes an arbitrary amount of finite progress and allows arbitrary changes
to the remaining part of the state. In most instances discussed below, B and F
actually commute, but this is not necessary for the following result.

Theorem 9. Let S be the computations in our model. Let b = (O|O|O|B) for a
relation B ⊆ F with FB ⊆ BF. Then xbi� � bi��x⊥ for each x ∈ S and i ≥ 1.

Proof. We first prove bi = (O|O|O|Bi) for each i ≥ 1 by induction over i. The
base case i = 1 follows immediately. The inductive case i ≥ 1 holds by

bi+1 = bbi = (O|O|O|B)(O|O|O|Bi) = (O|O|O|BBi) = (O|O|O|Bi+1)

Hence for each i ≥ 1 we have

bi� = (O|O|O|Bi)(F|F|F∞|F) = (BiF|BiF|BiF∞|BiF)

We next prove that FB ⊆ BF implies FBi ⊆ BiF for each i ≥ 0 by induction
over i. The base case i = 0 follows by

FB0 = FI = F = IF = B0F
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The inductive case i ≥ 0 follows by

FBi+1 = FBiB ⊆ BiFB ⊆ BiBF = Bi+1F

Thus for arbitrary x = (N |P |Q|R) ∈ S and i ≥ 1 we obtain

xbi� = (N |P |Q|R)(BiF|BiF|BiF∞|BiF)

� (N |P |Q|F)(BiF|BiF|BiF∞|BiF)

= (N ∪ FBiF|P ∪ FBiF|Q ∪ FBiF∞|FBiF)

� (N ∪ BiFF|P ∪ BiFF|Q ∪ BiFF∞|BiFF)

= (N ∪ BiF|P ∪ BiF|Q ∪ BiF∞|BiF)

= (BiF|BiF|BiF∞|BiF) ∪ (N |P |Q|O)

= (BiF|BiF|BiF∞|BiF) ∪ (N ∪ RO|P ∪ RO|Q ∪ RO|RO)

= (BiF|BiF|BiF∞|BiF) ∪ (N |P |Q|R)(O|O|O|O)

= bi� � x⊥
using the progress requirement R ⊆ F and FBi ⊆ BiF. ��

We next consider if the expression
�

i≥1 bi�, which appears in Corollary 7,
can be bounded by L. The following result gives a sufficient criterion based on
the intersection B′ =

⋂
i≥1 BiF.

Corollary 10. Let S be the computations in our model. Let h : S → S such that
h(x) is constructed from the parameter x, arbitrary constants and the operations
�, �, · and ◦. Let a � b = (O|O|O|B) for a relation B ⊆ F with FB ⊆ BF and⋂

i≥1 BiF = O. Consider f(x) = a · h(x). Then νf � μf � L.

Proof. By Corollary 7 and Theorem 9 we obtain νf � μf � �
i≥1 bi�. From this

the claim follows by
�

i≥1 bi� =
�

i≥1(B
iF|BiF|BiF∞|BiF) � �

i≥1(B
iF|BiF|F∞|BiF)

= (
⋂

i≥1 BiF|⋂i≥1 BiF|⋂i≥1 F∞|⋂i≥1 BiF) = (O|O|F∞|O) � L

using that BiF∞ ⊆ F∞ by the progress requirement on that component. ��
The value of B′ depends on the kind of progress represented by the com-

putation model. We discuss several examples. We first consider examples which
satisfy a = b and then examples where a = (O|O|O|A) for A ⊂ B.

In the Boolean-time model, F = T holds, so the assumption FB ⊆ BF is
equivalent to TB ⊆ BT, which implies TBT ⊆ BTT = BT. By the Tarski
property of relations [35], either B = O or TBT = T, in which case BT = T
follows. If B = O, we have a = b = ⊥ and therefore f(x) = ⊥, whence Corollary
10 is vacuous. If BT = T, we have BiT = T for each i ≥ 1 by induction, so
B′ =

⋂
i≥1 BiT =

⋂
i≥1 T = T = O, whence Corollary 10 does not apply. The

notion of progress in the Boolean-time model is too coarse for this result.
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The abstract-time model counts steps and here F = {((v, t), (v′, t′)) | t ≤ t′}
specifies that the counter, which is a natural number, does not decrease. To
achieve strict progress, we consider

B = {((v, t), (v, t′)) | t′ − t > 0} = {((v, t), (v, t′)) | t′ − t ≥ 1}
specifying that the state remains unchanged but the counter must increase. It
follows that

FB = BF = {((v, t), (v′, t′)) | t′ − t ≥ 1}
specifying that the counter must increase. Moreover,

Bi = {((v, t), (v, t′)) | t′ − t ≥ i}
for each i ≥ 1 by induction, specifying that the state remains unchanged and
the counter increases by at least i. Hence

BiF = {((v, t), (v′, t′)) | t′ − t ≥ i}
for each i ≥ 1, specifying that the counter increases by at least i. Therefore
B′ =

⋂
i≥1 BiF = O since any finite difference t′ − t will be exceeded after

sufficiently many steps. Thus Corollary 10 applies.
In the real-time model we again have F = {((v, t), (v′, t′)) | t ≤ t′}, but the

previous argument fails. Specifically, strict progress using

B = {((v, t), (v, t′)) | t′ − t > 0}
implies that

FB = BF = {((v, t), (v′, t′)) | t′ − t > 0}
and B2 = B, whence Bi = B for each i ≥ 1 by induction. Hence BiF = BF for
each i ≥ 1. It follows that B′ = BF = O, so Corollary 10 does not apply. More
precisely, we obtain only

�
i≥1 bi� � (BF|BF|F∞|BF), which is not below L.

However, if strict progress means at least c units of time pass for an arbitrary
c > 0, that is,

B = {((v, t), (v, t′)) | t′ − t ≥ c}
we obtain

Bi = {((v, t), (v, t′)) | t′ − t ≥ ic}
for each i ≥ 1 by induction. Moreover,

FB = BF = {((v, t), (v′, t′)) | t′ − t ≥ c}
and

BiF = {((v, t), (v′, t′)) | t′ − t ≥ ic}
reflecting that at least ic units of time pass after i steps. In this case, we obtain
B′ =

⋂
i≥1 BiF = O again, whence Corollary 10 applies.

So, in the real-time model the argument fails because there is no lower bound
on the progress in each step. A particular instance of this is the Zeno effect where
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each step takes half the time of the preceding step. The argument works if we
assume a uniform lower bound for all steps.

We remark that it is also possible to specify an upper bound on the amount
of progress. One way to see this is to consider for an arbitrary d ≥ c the relation

A = {((v, t), (v, t′)) | d ≥ t′ − t ≥ c}

whence A ⊂ B, and use the previous argument for B. This includes the case
c = d where the amount of progress in each step is exactly specified.

In the trace model, F = � is the prefix relation on traces. We can achieve
strict progress, for example, by

A = {(tr , tr ′) | tr ′ = tr ++ [last(tr)]}

which appends to the sequence tr its last element. Hence A ⊂ B for the strict prefix
relation B = ≺, which specifies that the trace gets longer by at least one element.
It follows that FB = B = BF. Moreover Bi specifies that the trace gets longer by
at least i elements. It follows that BiF = Bi. Thus B′ =

⋂
i≥1 Bi = O since any

finite length will be exceeded after sufficiently many steps. Therefore Corollary 10
applies.

The previous example also demonstrates why Corollaries 4, 5, 7 and 10 dis-
tinguish between a and b. Namely, to apply these results if a = b we would need
the condition FA ⊆ AF, which does not hold in this case. This is because F
may extend the trace in an arbitrary way while A appends a specific element.
However, A refines the more general B, which commutes with F.

We finally use Corollary 10 to connect least fixpoints in the approximation
order with greatest fixpoints in the implication order.

Corollary 11. Let S be the computations in our model. Let h : S → S such that
h(x) is constructed from the parameter x, arbitrary constants and the operations
�, · and ◦. Let a � b = (O|O|O|B) for a relation B ⊆ F with FB ⊆ BF and⋂

i≥1 BiF = O. Consider f(x) = a · h(x). Then κf exists and κf = νf .

Proof. By item 2 of Proposition 1, the functions f and h are ��-isotone. We show
the condition in item 4 of Proposition 1. By Corollary 10, we have νf � μf � L.
Hence

c(νf) = n(L)� � νf � νf = νf � (μf � L) = (νf � μf) � (νf � L)
= (νf � L) � μf � (νf � L) � μf � n(νf)�

By item 3 of Proposition 1, it follows that κf exists and κf = (νf �L)�μf . Hence
κf = νf using the previous calculation. ��

The assumptions of Corollary 11 are the same as those of Corollary 10 except
the operation � cannot be used in the construction of h, since it is not ��-isotone.
The discussion following Corollary 10 applies in the same way.
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6 Conclusion

In this paper we have studied when least fixpoints in the approximation order
coincide with greatest fixpoints in the implication order. To achieve this, we sep-
arately captured the progress part of a recursive computation, an idea rooted
in the time variables of [25–27]. The separation was achieved using algebraic
means in a setting based on lattices and semirings, which unifies many compu-
tation models. We were then able to focus on the elements representing progress
in a suitable unified computation model. This allowed us to state conditions
under which the studied fixpoints coincide and to discuss the meaning of these
conditions for various kinds of progress.

Two anonymous referees asked about necessary conditions for κf = νf . Since
Corollary 11 makes several assumptions, this question can be considered in many
different ways. We briefly discuss a negative answer leaving further investigation
to future work.

Section 5 shows that the assumption
⋂

i≥1 BiF = O of Corollary 11 fails if
there is no lower bound for the progress B made by the body of the recursion
in the real-time model. But even then, if the body of the recursion f(x) makes
arbitrary finite progress followed by an error (without a recursive invocation of
x), the characteristic function f is constant and therefore has a unique fixpoint.
Hence κf exists and κf = νf in this case.

We finally mention connections to a number of related works, which can also
be explored further.

The semantics of iteration in a timed computation model (an extension of
UTP designs by a time variable) is defined in [24] by inserting a statement that
increments the clock before the tail-recursive call. This can be seen as an instance
of separating the progress part of a computation. Inserting before the recursive
call corresponds to the pattern of Theorem 8.

Corollary 11 relies on the property κf = (νf � L) � μf of the ��-least fixpoint
of f . This property holds not only in the computation model discussed in this
paper, but in a number of other relational, matrix-based and multirelational
computation models [19,20].

The implication and approximation orders are related to the truth and know-
ledge/information orders used in the bilattice approach to the semantics of logic
programs [13,15].

Acknowledgement. I thank the anonymous referees for their helpful comments.
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Abstract. We outline a probabilistic denotational semantics for the
RoboChart language, a diagrammatic, domain-specific notation for
describing robotic controllers with their hardware platforms and operat-
ing environments. We do this using a powerful (but perhaps not so well
known) semantic technique: He, Morgan, and McIver’s weakest comple-
tion semantics, which is based on Hoare and He’s Unifying Theories
of Programming. In this approach, we do the following: (1) start with
the standard semantics for a nondeterministic programming language;
(2) propose a new probabilistic semantic domain; (3) propose a forgetful
function from the probabilistic semantic domain to the standard semantic
domain; (4) use the converse of the forgetful function to embed the stan-
dard semantic domain in the probabilistic semantic domain; (5) demon-
strate that this embedding preserves program structure; (6) define the
probabilistic choice operator. Weakest completion semantics guides the
semantic definition of new languages by building on existing semantics
and, in this case, tackling a notoriously thorny issue: the relationship
between demonic and probabilistic choice. Consistency ensures that pro-
gramming intuitions, development techniques, and proof methods can
be carried over from the standard language to the probabilistic one. We
largely follow He et al., our contribution being an explication of the tech-
nique with meticulous proofs suitable for mechanisation in Isabelle/UTP.

Keywords: RoboChart language · Robotic controllers · Statecharts ·
Probabilistic semantics · Relational calculus ·
Unifying Theories of Programming (UTP) ·
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1 Introduction

Modern robotics simulators enable fast prototyping of robots, using a virtual
simulation environment as a software creation and design tool. They provide
realistic, computer gaming-style, 3-D rendering of robots and environments with

c© Springer Nature Switzerland AG 2019
P. Ribeiro and A. Sampaio (Eds.): UTP 2019, LNCS 11885, pp. 80–105, 2019.
https://doi.org/10.1007/978-3-030-31038-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31038-7_5&domain=pdf
http://orcid.org/0000-0001-7955-2702
http://orcid.org/0000-0002-0831-1976
http://orcid.org/0000-0002-9889-9514
http://orcid.org/0000-0003-4416-8123
https://doi.org/10.1007/978-3-030-31038-7_5


Probabilistic Semantics for RoboChart 81

physics engines to animate their movements authentically in automatically gen-
erated movies. Examples of such simulators include the Virtual Robot Experi-
mentation Platform (V-REP) [54] and Webots [56].

One drawback of using these simulators as part of a principled development
process is a lack of tool interoperability, with each simulator depending on a
customised programming language or API. As a result of this, there are few
possibilities for reuse of specifications and algorithms, and software development
starts at a low-level with few abstractions. A notable exception to this is the
Robot Modeling Language, RobotML [7], which targets the design of robotic
applications, their simulation, and their deployment to multiple target execution
platforms. The motivation for RobotML is to encourage a more abstract design
process with explicit architectures, but there is no support for formal methods
for verifying properties of these designs and architectures.

The RoboStar programme is developing a framework for modelling and sim-
ulating mobile and autonomous robots [49].1 An early product of the research
is the RoboChart language, a graphical domain-specific notation with a code
generator that automatically produces mathematical models [40,41,48] in the
notations of Communicating Sequential Processes (CSP) [52]. This enables the
analysis of structural properties of RoboCharts: freedom from deadlock, livelock,
and nondeterminism; it also supports the verification of more general untimed
and timed properties by refinement checking [51]. RoboChart has an associated
Eclipse-based development support environment, RoboTool [39], that enables
graphical modelling and automatic generation of CSP scripts, and is integrates
CSP’s refinement model checker FDR4 [9].

RoboCalc’s RoboSim language [4] provides a second graphical notation for
developing simulations. A novel feature of RoboSim is the ability to verify simu-
lations against their abstract RoboChart models. This ensures that the combina-
tion of models, simulations, deployed controllers, and hardware platforms refine
the properties verified and validated by analysis and simulation. RoboChart and
RoboSim support real time, discrete, continuous, and probabilistic properties;
we consider only discrete probabilistic semantics in this paper. Our probabilistic
models are essentially Markov Decision Processes (MDPs).

RoboChart and RoboSim have strong mathematical foundations, but they are
also practical for industrial-strength robotic software engineering. This requires
that they be attractive to practising engineers, but with additional powers to
enable formal verification. The state of the art in industry is to use modelling
techniques to specify the behaviours of robot controllers, but not the robotic hard-
ware platform or the operating environment. Even at their most advanced, cur-
rent industrial techniques use only simple state machines without formal seman-
tics [3,7,47,55]. Any abstract descriptions that are used guide simulation devel-
opment, but without any relationship between abstract descriptions and imple-
mented code. There is often a so-called “reality gap” between the state machine
and simulation on the one hand, and the hardware platform on the other, and ad
hoc adjustments must be made to get the robot working. It is for this reason that

1 The RoboStar programme includes a number of individual projects, including Robo-
Calc, which is developing a calculus of software engineering for robotic controllers.
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we have developed RoboChart with high-fidelity modelling capabilities, includ-
ing continuous time and probabilism [41].2 There is little motivation to keep the
abstract state machine in line with these changes.

RoboChart has a probabilistic choice operator, but this cannot be supported
by the translation into CSP, because the standard semantics and tools are not
probabilistic. This paper presents an approach to developing a suitable imper-
ative, reactive, probabilistic semantics for RoboChart. The method chosen to
develop this semantics is the weakest completion semantics [24] approach based
on Unifying Theories of Programming [31]. In this paper, we consider a seman-
tics for the imperative action language for RoboChart. Elsewhere, we consider
the use of this semantics to produce a sound translation from diagrams to math-
ematics, suitable for analysis by verification tools [10].

Our contribution is an explication of the weakest completion approach: a
detailed analysis of this principle for developing semantics, enabling future appli-
cation to RoboChart [41], a complex language with events, timed primitives, rich
data types, a concurrency model based on synchronous and asynchronous com-
munications, and shared variables. The inspiration for our work is precisely that
of He, Morgan, and McIver [24]; but it is not straightforward to take their infor-
mal proof outlines and use them directly in a mechanical theorem prover: they
are inspirational, but essentially informal. We present an abbreviation of our
proof due to space limitations, but our proof steps are based on explicit axioms,
lemmas, theorems, and inferences.

This paper has the following structure. In Sect. 2, we describe a few elements
of the RoboChart language. In Sect. 3, we give an overview of Unifying Theo-
ries of Programming. In Sect. 4, we provide an interlude, where we discuss two
predicate transformers: weakest preconditions and weakest prespecifications. In
Sect. 5, we describe the technique of weakest completion semantics. In Sect. 6, we
present a nondeterministic probabilistic programming language and its semantic
domain. In Sect. 7, we describe the semantics of probabilistic choice and discuss
how to combine distributions. In Sect. 8, we provide a detailed example: embed-
ding nondeterministic choice in the probabilistic domain. In Sect. 9, we discuss
related work on formalising probabilistic RoboCharts. Finally, in Sect. 10, we
draw some conclusions from this research in progress and discuss future work.

2 RoboChart

We model robot controllers using RoboChart [41], a UML profile [44]. RoboChart
models are Statecharts, a diagrammatic notation for defining behaviour [22].
State machines are part of the fabric of computing, recognisable in many
forms (including, for example, Mealy and Moore automata [37]) and they are
widely accepted in the embedded-software industry as a design notation. Stat-
echarts [22] extend these familiar diagrams with two features: hierarchy and
2 The difficulty of transferring simulated experience into the real world, often called

the “reality gap” [32], is a subtle but important discrepancy between reality and sim-
ulation that prevents simulated robotic experience from directly enabling effective
real-world performance [2].
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orthogonal regions. Hierarchy is provided by allowing states themselves to con-
tain state machines, where control flow resides in exactly one state: the so-
called OR-decomposition of behaviour; orthogonal regions provide a comple-
mentary AND-decomposition, where control-flow can simultaneously reside in
one position in each orthogonal region, fully independently. This parallel decom-
position can lead to a reduction in complexity (the “conjunction as composi-
tion” paradigm [63]). RoboChart inherits both features: it has hierarchical state
machines (which encourage modularity and reuse) and parallelism, arising for
components defined by several state machines and for composite states, including
durative actions.

In RoboChart, the behaviour of a robot is characterised by a state, in which
it may execute a particular operation and react to events from its environment.
RoboChart includes structures for describing robotic platforms and their con-
trollers, with CSP-style synchronous communication between controllers and
asynchronous communication between controllers and their hardware. It has
constructs to specify time properties: budgets and deadlines for operations and
events. Here, we consider only the probabilistic aspects of RoboChart. We iso-
late a language subset of flat nondeterministic state machines with a probabilistic
choice node.

RoboTool [39] provides a graphical editor for RoboChart models and auto-
matically generates mathematical definitions in CSP that precisely define their
behaviour. RoboTool is closely coupled with the FDR model checker [9] to anal-
yse these definitions.

We present two RoboChart models to illustrate the language. The first model
is part of the controller for a tele-operated robot used to search an arena for
evidence of a harmful chemical, using the receptor density algorithm [28]. The
RoboChart is depicted in Fig. 1, which is from a RoboTool session. The robot
controller uses a sensor to detect changes in the chemical composition of air over
time. It reacts to gas anomalies depending on their nature and composition: with
a yellow or a red light, a siren, and a flag to mark the location. The hardware
includes a robot body, wheels, and motor, a main processor to detect gas and
accept movement commands from an operator, and a microcontroller to manage
the light, siren, and flag.

Our second example is part of the controller for a foraging robot [57] (the
corresponding RoboChart model and the results of its analysis are available
online [50]).3 The robot has an idealised randomising device with two states that
are equally likely to occur; the device generates an outcome from a flip event in
every time step.4 The robot uses the device to decide whether to terminate or to

3 The Statechart in this example is originally due to Jansen [34], but has been rein-
terpreted here as a robotics example.

4 The semantics in this paper does not capture the real-time behaviour of RoboChart;
however, every transition in an MDP takes unit time. When we develop the real-
time probabilistic model, these two notions of time will be complementary, allowing
events to be simultaneous with respect to the real-time clock, but ordered at the
MDP level: super-dense time.
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Fig. 1. Signalling state machine for Chemical Detector Robot (taken from [40]).

continue a particular activity (here, foraging for energy). The robot may choose
to ignore the outcome of the device. Finally, the robot considers only a limited
number of times whether to continue foraging. We call this number N and leave
it loosely defined. Our simple modelling objective is to explore different values
for N that give us a high probability of terminating.

We specify the behaviour of the device as a RoboChart model in Fig. 2. One
possibility in the FORAGE state is for the flip event to occur and the robot to
remain in the FORAGE state; this models the robot ignoring the randomising
device. The other possibility is available only if the number of choices has not
been exhausted (flips < N ). In this case, the robot controller proceeds to a
probabilistic choice between two equally likely alternatives. One alternative is
to move into the STOP state, which it signals with the stop event; the other
alternative is to return to the FORAGE state, signalling this with the forage event.
In both cases, the controller keeps track of the number of choices made. Note
that, if in the FORAGE state flips < N , then the behaviour is nondeterministic:
the robot controller might take either alternative. In the STOP state, only the
flip event is possible, with a self-loop acting as a sink. A well-formed MDP must
be free from deadlock (every state must have at least one outgoing transition),
and anyway, this transition is needed because of the requirement that flip must
occur in every time step, even when the controller has terminated.

Analysis of the generated model using Prism [35] shows that the model is
deadlock free, but that the STOP state is not always possible (the minimum
probability of finally reaching STOP is zero) because the model could stay in
the FORAGE state forever. Additionally, using experiment for N ranging from 1
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Fig. 2. RoboChart model of a foraging robot.

to 20, we can obtain the probability of finally reaching STOP, as shown in Fig. 3.
For N ≥ 6 the device will terminate with probability greater than 0.98.

3 Unifying Theories of Programming

There are tutorial introductions to UTP’s theory of designs [59,60], CSP [6], and
the use of Galois connections to link these theories [61]. UTP embodies Hehner’s
predicative semantic paradigm [25–27], where programs are predicates [29]: a
program is identified with its meaning as a predicate, expressed pointwise. The-
ories describe the meaning of a computation as a relation between a before-state
and an after-state, and these relations form complete lattices ordered by refine-
ment. Several basic UTP theories are relevant to this paper.

1. A relational theory of a nondeterministic programming language (basically,
Dijkstra’s guarded command language (GCL)) supports reasoning about par-
tial correctness [31, Chap. 2].

2. A theory of designs, pre- and postcondition pairs, and an associated version
of GCL supports reasoning about total correctness [31, Chap. 3].

3. A theory of reactive processes with communication and concurrency [31,
Chap. 8].

4. A theory of CSP, essentially a predicative version of CSP’s failures-divergences
semantics [31, Chap. 8].
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Fig. 3. Model checking experiment for foraging robot.

5. Circus, a combination of CSP and Z [45,46].

UTP has been used in a wide variety of applications, from specifying and reason-
ing about difficult program features [23], to specifying the semantic interfaces in
a cyber-physical systems tool chain [12,36].

A core concept is the embedding of the pre- and postconditions of designs
in other semantic domains. For example, the theory of reactive designs [6] is
an embedding of designs in the theory of reactive processes, which brings the
familiar techniques of assertional reasoning and design calculi to reactive pro-
gramming, allowing the creation of a reactive Hoare logic and a reactive weakest
precondition calculus.

Unification in UTP is in three dimensions:

1. Programming paradigms: comparing and combining different language fea-
tures in a coherent way.

2. Levels of abstraction: refining different design concepts.
3. Methods of presentation: moving between denotational, algebraic, and oper-

ational semantics.

There are four principal mechanisms for unification:

1. Subset embeddings, e.g., total and partial correctness (designs and rela-
tions) [58].

2. Weakest completion semantics, e.g., probabilistic and standard programs, as
explained in Sect. 5.

3. Galois connections, e.g., imperative programs and reactive processes [5,58].
4. Parametrised theories, e.g., reactive processes and hybrid processes [15].

We have implemented UTP in the Isabelle/HOL theorem prover [42]. The
resulting proof tool is Isabelle/UTP [13,16–19]. Our research aim is a sound auto-
mated theorem prover, built in Isabelle/UTP, for diagrammatic descriptions of
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reactive, timed, probabilistic controllers for robotics and autonomous systems.
We note that it is not straightforward to take the informal proof outlines in [24]
and use them directly in a mechanical theorem prover. In this paper, our objec-
tive is to explicate the weakest completion semantic technique and in doing so,
to explore how to mechanise it.

4 Weakest Preconditions and Prespecifications

In this section, we review Dijkstra’s weakest precondition predicate trans-
former [8] and its generalisation, the weakest prespecification [30].

A typical stage in program development is to prove that a program meets
its specification. Schematically, this is a problem in three variables: the program
and its specification, which is a precondition and a postcondition. The weakest
precondition calculus fixes two of these variables, the program and the postcon-
dition, and calculates the third, the precondition, as an extreme value.

[P ⇒ s ⇒ q ′ ]
= [ s ⇒ P ⇒ q ′ ]
= [ s ⇒ ∀ v ′ • P ⇒ q ′ ]
= [ s ⇒ ¬ ∃ v ′ • P ∧ ¬ q ′ ]
= [ s ⇒ ¬ ∃ v0 • P [v0/v ′] ∧ ¬ q0 ]
= [ s ⇒ ¬ (P ; ¬ q) ]

(This derivation is a small variation on that in [31, Chap. 2].) UTP’s relational
calculus is alphabetised: names are an important part of the meaning. Where
we think that it might help, we have emphasised which names occur in each
predicate by using parameters. This also streamlines substitution.

Formally, given program P and postcondition q , the problem is to find the
weakest precondition s (in terms of P and q) such that P refines (s ⇒ q ′). P
refines S , written P � S , just in case ∀ v , v ′ • P ⇒ S , where v and v ′ denote the
before and after states. In UTP, universal closure over an alphabet is abbreviated
by brackets, so refinement is defined as [P ⇒ S ].

So the predicate ¬ (P ; ¬ q) is the weakest precondition for execution of P
to guarantee postcondition q (written as P wp q). Here, P ; Q is the relational
composition of P and Q , [31, Chap. 2] defined by P(s, t ′) ; Q(t , u ′) = ∃ t0 •
P(s, t0) ∧ Q(t0, u ′). Our minor generalisation accounts for its use with non-
homogeneous relations later in the paper. Note that there is a modality here,
between necessity and possibility. Compare the definition of weakest precondition
with its dual, the conjugate weakest precondition [62]: P wp q = ¬ (P wp ¬ q).

P wp q
= ¬ (P wp ¬ q)
= ¬ ¬ (P ; ¬ ¬ q)
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= P ; q
= ∃ v ′ • P ∧ q ′

During the derivation of weakest precondition, we see that (P wp q) = ∀ v ′ •
P ⇒ q ′. This has universal force: every final state v ′ of the program P must
satisfy q . Its conjugate has existential force: some execution of P satisfies q .

Now we move on to a generalisation of weakest precondition: the weakest
prespecification. First, we define relational converse P˘(s, t ′) = P(s ′, t). For
example, the converse of an assignment is calculated as follows:

(x := x + 1)˘
= (x ′ = x + 1)˘
= (x = x ′ + 1)
= (x ′ = x − 1)
= x := x − 1

Weakest prespecifications generalise weakest preconditions from conditions
to relations: given specifications Y and K , find the weakest specification X (in
terms of Y and K ), such that Y is refined by X ; K . We proceed in a similar
way to our previous calculation for the weakest precondition: first, isolate X on
the stronger side of the refinement relation, so that we can conclude we have a
weakest solution; then rewrite the other side of the relation so that we can use the
definition of sequential composition. Our derivation is (as far as we know) novel
in the literature. There is a strong analogy between the weakest precondition
and weakest prespecification predicate transformers; see Appendix A for further
motivation.

X ; K � Y
= { law of refinement: (P ; Q � R) = (P [x0/x ′] ∧ Q [x0/x ] � R) }

X [s0/s ′] ∧ K [s0/s] � Y
= { law of refinement: (P ∧ Q � R) = (P � Q ⇒ R) }

X [s0/s ′] � K [s0/s] ⇒ Y
= { change of variables: s0, s ′ �→ s ′, s0 }

X � K [s ′, s0/s, s ′] ⇒ Y [s0/s ′]
= { propositional calculus: contraposition }

X � ¬ Y [s0/s ′] ⇒ ¬ K [s ′, s0/s, s ′]
= { definition of converse }

X � ¬ Y [s0/s ′] ⇒ ¬ K˘[s0/s]
= { predicate calculus: narrow scope of s0 }

X � ∀ s0 • ¬ Y [s0/s ′] ⇒ ¬ K˘[s0/s]
= { predicate calculus: De Morgan }

X � ¬ ∃ s0 • ¬ Y [s0/s ′] ∧ K˘[s0/s]
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= {definition sequential composition }
X � ¬ (¬ Y ; K˘)

So, X must be at least as strong as ¬ (¬ Y ; K˘). We read this as “The weakest
prespecification of K through Y ”, and denote it by Y /K (the weak inverse of
the function λX • X ; K ). The weakest prespecification forms one adjoint of
a Galois connection, with sequential composition as the other adjoint; that is:
(X ; K � Y ) = (X � Y /K ). We give an example of calculating a leading
assignment: we want to implement the assignment x := 2 as the sequential
composition (X ; x := x + 1). That is, X is the weakest prespecification of
x := x + 1 through x := 2.

x := 2/x := x + 1
= ¬ (¬ x := 2 ; (x := x + 1)˘)
= ¬ (x ′ 
= 2 ; (x ′ = x + 1)˘)
= ¬ (x ′ 
= 2 ; x = x ′ + 1)
= ¬ (∃ x0 • x0 
= 2 ∧ x0 = x ′ + 1)
= ¬ (x ′ + 1 
= 2)
= x ′ = 1
= x := 1

5 Weakest Completion Semantics

We now turn to weakest completion semantics [24], where we lift standard designs
to probabilistic designs. Our objective is to give semantics to a nondeterministic
probabilistic programming language that is consistent with a similar standard
programming language: the only difference being the presence or absence of a
probabilistic choice operator. Consistency is important to make sure that pro-
gramming intuitions, development techniques, and proof methods can be carried
over, as far as possible, from the standard language to the probabilistic one.

One way to achieve consistency is to extend the standard semantics to the
probabilistic one in a controlled way. He et al.’s work [24] develops a semantic
method to extend theories of programming automatically, as far as possible.
Their method is to make only a few explicit assumptions and then generate a
semantics by following a set of principles. They have applied their technique
to two semantics for the nondeterministic programming language: a relational
semantics and a predicate-transformer one.

He et al. propose the following procedure:

1. Start from the semantics for the nondeterministic programming language.
2. Propose a probabilistic semantic domain.
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3. Propose a mapping from the probabilistic semantics to the standard semantics
to relate computations of probabilistic programs to computations of standard
programs.

4. Use this mapping to induce automatically an embedding of programs over
the standard semantics: the technique is to consider the weakest completion
of a sub-commuting diagram expressing refinement, rather than equality.

5. Determine its defining algebraic characteristics of the new language.

6 Probabilistic Programs

Our standard and our probabilistic programming languages have identical syn-
tax, except that the latter has the addition of a probabilistic choice operator:
P ⊕r Q . This is a choice between P with probability r , and Q with probability
1 − r . The syntax of this language is given in

P :: = ⊥ abort
| II skip
| x := e assignment
| P � b � Q conditional
| P  Q nondeterminism
| P ⊕r Q probabilism
| P ; Q sequence
| μX • P(X ) recursion

This nondeterministic probabilistic language is a suitable target for probabilis-
tic RoboChart [10]. The semantic domain for the language without probabilistic
choice is the UTP theory of designs. This theory allows the boolean observation
of a program starting (ok) and of it terminating (ok ′). A design with precon-
dition p(s) and postcondition R(s, s ′) is a pair of predicates (p(s) � R(s, s ′)),
which is defined as the single relation ok ∧ p(s) ⇒ ok ′ ∧ R(s, s ′). This is a
statement of total correctness: if the program is started in a state satisfying its
precondition, then it will terminate and when it does, its postcondition will be
satisfied. The vectors of variables s, s ′ : S represent the initial and final states of
ordinary program variables, which are modelled as mappings from the names of
program variables to their values. The UTP semantics for this nondeterministic
programming language is well known [31, Chap. 3].

⊥ = (false � true)

II = (true � s ′ = s)

x := e = (true � s ′ = s[e/x ])

P  Q = P ∨ Q

P � b � Q = (b ∧ P) ∨ (¬ b ∧ Q)

P ; Q = ∃ ok0, s0 • P [ok0, s0/ok ′, s ′] ∧ Q [ok0, s0/ok , s]

μX • P(X ) =
�{X | X � P(X ) }
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Next, we consider the probabilistic semantic domain. Let the state space be S .
Let the set of probabilistic distributions over S be the set of total functions to
probabilities: PROB = S → [0, 1]. The probabilities in a discrete distribution
f sum to 1: (

∑
s : S • f (s)) = 1, for f ∈ PROB .

A probabilistic design is defined as p � Q , where the alphabet of p is {s}
and the alphabet of Q is {s, prob′}, for s ∈ S and prob′ ∈ PROB .

The relationship between standard and probabilistic programs is most easily
understood as an abstraction from the probabilistic semantic domain: a mapping
ρ that forgets the probabilities and replaces them by possibilities. We define ρ as
a design with a non-homogeneous alphabet: {ok , prob, ok ′, s ′}, where ok and ok ′

design observations about initiation and termination, prob : PROB is a discrete
probability distribution, and s ′ : S .

ρ =̂ (true � prob(s ′) > 0)

This non-homogeneous design is a forgetful function: the probability of arriving
in state s ′ is prob(s ′); this is replaced by the possibility of arriving in that state:
prob(s ′) > 0.

Note now that P ; ρ is a standard design if P is a probabilistic design.
Using this idea, for probabilistic design P and standard design D , we con-

struct the following sub-commuting diagram

S PROB

S

P

D ρ

where P ; ρ � D . This is an inequality in three variables, two of which we
already know: D and ρ. So, we calculate P using the weakest prespecification of
D wrt ρ. The result is the weakest probabilistic design related to the standard
design D . We introduce the following definition: for any standard design D ,
define K(D) =̂ D/ρ as its embedding in the probabilistic world.

We need to prove that this embedding really does produce probabilis-
tic designs, which we do in the following theorem. For any subset X of S ,
define f (X ) =

∑
s : X • f (s), for any probability distribution function

f . Furthermore, for any relation R with alphabet {s, s ′} (both in S ), define
f (R) = f ({ s ′ | R }).5 If X and Y are disjoint sets then

(f (X ∪ Y ) = 1) = (f (X ) = 1 − f (Y ))
5 Note that if f is a probability distribution function, then lifting f from states to a

relation on states results in an alphabetised definition: f (R) has s as a free variable (s ′

is bound by the set comprehension). If we now fix s, then we get the probability sum
for the image of s through R. Note that prob′(R) is also an alphabetised expression,
this time with alphabet {s, prob′}. Thus prob′(R) = 1, which we encounter next, is
a suitable candidate for the postcondition of a probabilistic design.
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A corollary is that

(f (R) = 1) = (f (¬ R) = 0)

Theorem 1 (Embedded standard designs are probabilistic designs).

K(p(s) � R(s, s ′)) = (p(s) � prob′(R) = 1)

Proof. Start by simplifying the definition of K by pushing the weakest prespeci-
fication operator into the postcondition. Note that the law we use requires that
the design is H3 healthy [31, Chap. 3]: its precondition must not mention any
variables from the after-state.6 This assumption is discharged here. Our account
of this law is novel, but we do not present it in this paper.

K(p � R)
= { definition of K }

(p � R)/(true � prob(s ′) > 0)

=
{

weakest design prespecification,
P � R is H3 implies (P � Q)/(true � R) = (P � Q/R)

}

p � R/(prob(s ′) > 0)

Now show that R/(prob(s ′) > 0) = (prob′(R) = 1)

R/(prob(s ′) > 0)
= { definition weakest prespecification }

¬ (¬ R ; (prob(s ′) > 0)̆ )
= { converse }

¬ (¬ R ; prob′(s) > 0)
= { definition sequential composition }

¬ (∃ s0 • ¬ R[s0/s ′] ∧ prob′(s0) > 0)
= { predicate calculus }

∀ s ′ • ¬ R ⇒ prob′(s ′) = 0
= { property of lifted probability distribution function }

prob′(¬ R) = 0

6 This subclass of specification contracts is sometimes known as “normal” designs [14,
21]. The theory of reactive designs [6], mentioned on page 7, is not an embedding
of normal designs, since a reactive design can mention the after-value of the trace
variable in its precondition. To see this, consider the precondition in the reactive
design for the CSP process a → CHAOS . This process can diverge, but only after
an a-event. The process’s precondition records the circumstances under which the
process will not diverge: ¬ tr � 〈a〉 ≤ tr ′. In words: “Don’t press the a button, or
else we crash!”.
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= {property of lifted probability distribution function }
prob′(R) = 1

Our next task is to prove that the embedding is a homomorphism on the
structure of standard programs. As a result, most of the algebraic laws that hold
in the standard semantic framework remain valid in the probabilistic model. We
give two example cases in the proof of the homomorphism: the embedding of
assignment (here) and nondeterminism (in Sect. 8).

Lemma 1 (Embedded assignment).

K(x := e) = (true � prob′(s[e/x ]) = 1)

Proof.

K(x := e)
= { semantics of standard assignment }

K(true � s ′ = s[e/x ])
= { theorem 1 }

true � prob′(s ′ = s[e/x ]) = 1
= { function lifted to relation: prob(R(s, s ′)) = prob({ s ′ | R(s, s ′) } }

true � prob′({ s ′ | s ′ = s[e/x ] }) = 1
= { function lifted to set: prob(X ) =

∑
s : X • prob(s) }

true � (
∑

s : { s ′ | s ′ = s[e/x ] } • prob′(s)) = 1
= { set one-point rule: { x | x = e } = {e} }

true � (
∑

s : {s[e/x ]} • prob′(s)) = 1
= { singleton sum: (

∑
x : {e}) = e }

true � prob′(s[e/x ]) = 1

In the next section, we consider how to combine probability distributions in
order to support probabilistic and nondeterministic choice operators.

7 Probabilistic Choice and Combining Distributions

We start with a motivating example of combining probability distributions:
expressing multiway probabilistic choice as a combination of binary probabilistic
choices. This leads us to propose a semantics for probabilistic choice in the spirit
of UTP’s parallel-by-merge operator. We consider how to decompose a proba-
bility distribution into two distributions combined by probabilistic choice. This
leads to two projection functions, one for each operand. We conclude the section
with three lemmas that will be used in the case for nondeterministic choice in
the proof of K being a homomorphism. These lemmas provide witnesses for the
decomposition required.
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Consider a multiway probabilistic choice, as found in the Reactive Modules
formalism, [1] used by the probabilistic model checker Prism [35]:

α : (s := 0) + (1 − (α + β)) : (s := 1) + β : (s := 2)

Here, each assignment is labelled by a probability and these probabilities sum
to 1. How can we express this using binary probabilistic choice? One simple
solution uses two operators:

(s := 0 ⊕α/(1−β) s := 1) ⊕1−β s := 2

To show that this is a solution, note that the assignment s := 0 is chosen with
probability (1 − β) × (α/(1 − β)) = α; s := 2 is chosen with probability β; and
s := 1 must be chosen with the remaining probability, which is 1 − (α + β). A
slightly more complicated solution uses three operators:

(s := 0 ⊕α+β s := 1) ⊕α/(α+β) (s := 1 ⊕1−(α+β) s := 2)

Analysing probabilities once more gives us (α/(α + β)) × (α + β) for s := 0;
(1 − (α/(α + β))) × (α + β) for s := 2; and 1 − (α + β) for s := 1. Simple
arithmetic proves that we got this right.

These examples show how distributions are combined as we move the binary
operator to its multi-way cousin. In the first example, we are combining the
following two distributions:7

0.prob = {(s = 0) �→ α/(1 − β), (s = 1) �→ 1 − (α/(1 − β))}
1.prob = {(s = 2) �→ 1}

and we are combining them in the ratio given by the outermost choice operator:
1 − β:

prob′

= (1 − β) × 0.prob + (1 − (1 − β)) × 1.prob

= (1 − β) × 0.prob + β × 1.prob

= (1 − β) × {(s = 0) �→ α/(1 − β), (s = 1) �→ 1 − (α/(1 − β))}
+ β × {(s = 2) �→ 1}

= {(s = 0) �→ (1 − β) × (α/(1 − β)), (s = 1) �→ (1 − β) × (1 − (α/(1 − β)))}
+ {(s = 2) �→ β × 1}

= {(s = 0) �→ α, (s = 1) �→ 1 − (α + β), (s = 2) �→ β}

To formalise this, define the merge of two distributions, 0.prob and 1.prob, to
form distribution prob′ as: Mr = (prob′ = r × 0.prob + (1 − r) × 1.prob), for

7 The notation 0.prob and 1.prob come from the separating simulation operator in
UTP’s parallel-by-merge [31, Sect. 7.2], which is being used here to combine proba-
bility distributions.
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some probability ratio r . We use this in the definition of an operator inspired by
UTP’s parallel-by-merge [31, Chap. 7] to combine the probability distributions
described by two postconditions:

P(prob′) ‖Mr
Q(prob′) = P(0.prob′) ∧ Q(1.prob′) ; Mr

This operator may be applied equally well to a design, rather than an individual
postcondition, without any confusion.

With this operator, we now have a semantics for probabilistic choice:

P ⊕r Q = P ‖Mr
Q

The meaning of probabilistic choice is clearly compositional: if we have the
meaning of P and Q , then we can find the meaning of P ⊕r Q . But we can also
think about the decomposition of a probabilistic program into the probabilistic
choice between two subprograms. Suppose that we have two sets of states A
and B , such that A ∪ B = S and a probabilistic ratio 0 < r < 1 (to ensure
1/r and 1/(1 − r) are well defined).8 In this case we can unravel the merge of
two distributions if 0.prob(A) = 1 and 1.prob(B) = 1. To do this, we define the
projections.9

F(prob′,A,B , r) = (1/r) × ((A \ B) � prob′) + ((A ∩ B) � prob′)
G(prob′,A,B , r) = (1/(1 − r)) × ((B \ A) � prob′) + ((A ∩ B) � prob′)

For F(prob′,A,B , r) to be a distribution, we need its domain to sum to unity;
that is, F(prob′,A,B , r)(A) = 1. These projections satisfy our merge predicate,
and in that sense provide a joint witness.

Lemma 2 (Merge witnesses). For 0 < r < 1, F(prob′,A,B , r)(A) = 1, and
G(prob′,A,B , r)(B) = 1,

Mr [F(prob′,A,B , r),G(prob′,A,B , r)/0.prob, 1.prob]

Proof.

Mr [F(prob′,A,B , r), G(prob′,A,B , r)/0.prob, 1.prob]

= { definition of Mr }(
prob′ = r × 0.prob + (1 − r) × 1.prob

)[F(prob′,A,B , r)/0.prob
G(prob′,A,B , r)/1.prob

]

= { substitution }
prob′ = r × F(prob′,A,B , r) + (1 − r) × G(prob′,A,B , r)

= { definitions of F and G }
8 This case analysis is present in [24], although its purpose is not explained there).
9 The expression S � R is Z’s domain restriction operator [53, p. 98]: the domain

restriction S � R of a relation R to a set S relates x to y if and only if R relates x
to y and x is a member of S .
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prob′ = r × ((1/r) × ((A \ B) � prob′) + ((A ∩ B) � prob′))
+(1 − r) × ((1/(1 − r)) × ((B \ A) � prob′) + ((A ∩ B) � prob′))

= { function scaling: x × (f + g) = x × f + x × g , arithmetic }
prob′ = ((A \ B) � prob′) + r × ((A ∩ B) � prob′)

+((B \ A) � prob′) + (1 − r) × ((A ∩ B) � prob′)

= { function scaling: (x + y) × f = x × f + y × f , arithmetic }
prob′ = ((A \ B) � prob′) + ((A ∩ B) � prob′) + ((B \ A) � prob′)

= { function addition: X ∩ Y = ∅ ⇒ (X ∪ Y ) � f = (X � f ) + (Y � f ) }
prob′ = ((A \ B) ∪ (A ∩ B) ∪ (B \ A)) � prob′

= { assumption: A ∪ B = S }
true

Now we state two lemmas that ensure that our two projections are probability
distributions that sum to unity.

Lemma 3 (Total witness 1). Let p(A \ B) = α and p(A ∩ B) = 1 − (α + β);
then

F(p,A,B , α/(α + β))(A) = 1

Proof.

F(p,A,B , α/(α + β))(A)
= { definition F }

((1/(α/(α + β))) × ((A \ B) � p) + (A ∩ B) � p)(A)
= { arithmetic, function scaling: (f + g)(X ) = f (X ) + g(X ) }

((α + β)/α) × (A \ B) � p(A) + (A ∩ B) � p(A)
= { functions: X ⊆ Y ⇒ X � f (Y ) = f (X ) }

((α + β)/α) × p(A \ B) + p(A ∩ B)
= { assumptions: p(A \ B) = α and p(A ∩ B) = 1 − (α + β) }

((α + β)/α) × α + 1 − (α + β)
= { arithmetic }

α + β + 1 − α − β

= { arithmetic }
1

Lemma 4 (Total witness 2). Let p(B \ A) = β and p(A ∩ B) = 1 − (α + β);
then

G(p,A,B , α/(α + β))(B) = 1

Proof. Similar to Lemma 3.

The main result that we want to present in this paper is stated and proved in
the next section.
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8 Nondeterministic Choice

In this section, we prove the case for nondeterministic choice in the homomor-
phism theorem. Nondeterministic choice can be used in the top-down develop-
ment of a program to abstract from detail, including specific details of a prob-
abilistic choice. So K should distribute through nondeterministic choice in the
following way:

K(D0  D1) = ∃ r : [0, 1] • (K(D0) ‖Mr
K(D1) )

Refinement to a particular probabilistic choice ⊕α would then follow by strength-
ening the result, choosing α for r . In this section, we prove one half of this result,
omitting the other half only because we lack space.

The next lemma simplifies the embedding of nondeterministic choice.

Lemma 5 (Embedded nondeterministic choice).

K((p0 � Q0)  (p1 � Q1)) = (p0 ∧ p1 � prob′(Q0 ∨ Q1) = 1)

Proof.

K((p0 � Q0)  (p1 � Q1))

=
{

designs closed under nondeterministic choice:
((p0 � Q0)  (p1 � Q1)) = (p0 ∧ p1 � Q0 ∨ Q1)

}

K(p0 ∧ p1 � Q0 ∨ Q1)
= {definition of K: K(p � Q) = (p � prob′(Q) = 1) }

p0 ∧ p1 � prob′(Q0 ∨ Q1) = 1

Now we show half of our result: that the embedding is a weakening homo-
morphism for nondeterministic choice. This means that as K distributes through
nondeterminism, it produces a weaker predicate.

Theorem 2 (Nondeterminism embedding weakening).

K((p0 � Q0)  (p1 � Q1)) � ∃ r : [0, 1] • (K(p0 � Q0) ‖Mr
K(p1 � Q1) )

Proof.

K((p0 � Q0)  (p1 � Q1))

=
{

lemma 5: embedded nondeterministic choice:
K((p0 � Q0)  (p1 � Q1)) = p0 ∧ p1 � prob′(Q0 ∨ Q1) = 1

}

p0 ∧ p1 � prob′(Q0 ∨ Q1) = 1

⇒
{

α := p(Q0 \ Q1) ∧ β := p(Q1 \ Q0) ⇒ p(Q0 ∩ Q1) = 1 − (α + β)
lemma 3: total witness 1, lemma 4: total witness 2

}
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p0 ∧ p1 � F(prob′,Q0,Q1, α/(α + β))(Q0) = 1
∧ G(prob′,Q0,Q1, α/(α + β))(Q1) = 1

= { lemma 2: merge witnesses }
p0 ∧ p1 � F(prob′,Q0,Q1, α/(α + β))(Q0) = 1

∧ G(prob′,Q0,Q1, α/(α + β))(Q1) = 1

∧ Mα/(α+β)

[F(prob′,A,B , α/(α + β))/0.prob
G(prob′,A,B , α/(α + β))/1.prob

]

=
{

existential introduction: r := α/(α + β),
0.prob0 := F(prob′,A,B , r), 1.prob0 := G(prob′,A,B , r)

}

p0 ∧ p1 � ∃ r : [0, 1]; 0.prob0, 1.prob0 : PROB •
0.prob0(Q0) = 1 ∧ 1.prob0(Q1) = 1
∧ Mr [0.prob0, 1.prob0/0.prob, 1.prob]

= { sequential composition }
∃ r : [0, 1] • (p0 ∧ p1 � 0.prob′(Q0) = 1 ∧ 1.prob(Q1) = 1 ; Mr )

= { definition merge operator }
∃ r : [0, 1] • (p0 � prob′(Q0) = 1) ‖Mr

(p1 � prob′(Q1) = 1)

= { definition K }
∃ r : [0, 1] • (K(p0 � Q0) ‖Mr

K(p1 � Q1))

We omit the (easier) proof that the embedding is a strengthening homomorphism
for nondeterministic choice: as K distributes through nondeterminism we obtain
a stronger predicate.

This concludes our presentation of the semantics for the nondeterminis-
tic probabilistic programming language that serves as the textual version of
RoboChart diagrams with discrete probabilistic behaviour. We have described
the semantic domain and an embedding function from standard programs to
probabilistic ones. We have shown just two cases for the proof that the embed-
ding is a homomorphism. This has guided the definition of individual program
operators. For example, we have

K(D0  D1) = K(D0) ∨ K(D1) ∨ ∨
0<r<1(K(D0) ‖Mr

K(D1))

This definition is supported by Theorem2 and a matching proof for the strength-
ening homomorphism (omitted in this paper). The proof identified the need for
the two special cases in the semantics of nondeterminism: r = 0 and r = 1.

9 Related Work

Jansen et al. propose a probabilistic extension to UML [33,34]. They add to
UML’s basic Statecharts a probabilistic choice node whose out-edges are anno-
tated with probabilities. They identify interferences between Statechart tran-
sition priorities and the order of resolving nondeterministic and probabilistic
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choice. Verification is performed using the Prism probabilistic model checker,
with the probabilistic logic PCTL specifying properties over Statecharts. They
describe the operational semantics of step execution. This is then embedded in
a finite Markov Decision Process specified as a probabilistic Kripke system.

Nokovic and Sekerinski [43] propose pCharts, another variation on State-
charts, but extended with timed transitions, probabilistic transitions, costs and
rewards, and state invariants. They present a translation scheme from untimed
pCharts to Markov Decision Processes (MDPs), from timed pCharts to proba-
bilistic timed automata (PTA), and from pCharts to executable C code. Every-
thing is implemented in the pState tool. MDPs are used to verify probabilistic
and nondeterministic behaviour. PTAs are used to verify additional real-time
constraints, such as the maximum or minimum probability of reaching a state
within a given time and the maximum expected time to reach that state (its
deadline). pCharts can be augmented with quantitative information for costs
and rewards for both transitions and states: priced PTAs. This permits analysis
of the maximum or minimum expected time before a transition takes place, or
the number of expected steps to reach a particular state. Translation rules deal
with hierarchy and orthogonality.

Both Jansen’s and Nokovic’s work is similar to He et al.’s [24], and therefore
ours, in constructing a conservative extension of standard Statecharts. Both of
them go further in dealing with hierarchy and orthogonality. This differs from our
work in several ways. We focus on producing a semantics that can be combined
with other UTP theories. Both Jansen and Nokovic focus on model checking,
and therefore have a closed-world assumption and restrict variables to bound
integers. We are interested in both model checking and theorem proving.

In 2004, Goldsmith reported an experiment [20] to extend the input language
for FDR2 to accept a probabilistic choice construct with added functionality, to
produce models suitable for analysis by Prism [35]. Goldsmith describes some
encouraging results, but also warns about various drawbacks in the work: the loss
of regularity in code emitted from FDR2 that would lead to Prism exploiting
symmetries in its model checking; and that the transformation scheme does not
support CSP’s full failures-divergences model. The probabilistic functionality in
FDR2 was lost when development moved to FDR3 in 2012 and remained lost
with the move to FDR4 in 2017.

Mota et al. [10] rediscovered the functionality in FDR2 (as well as legacy
copies of the tool) in their work on analysing probability in RoboChart. They
define the semantics of the RoboChart probabilistic choice operator in terms of
CSP’s probabilistic operator. They show how this augmented CSP semantics for
RoboChart can be translated into the Prism’s Reactive Modules input language
to check stochastic properties of RoboChart.

Zhao et al. [65] describe mapping rules between UML state diagrams and
probabilistic Kripke structure semantics. They present an asynchronous paral-
lel language based on discrete time Markov chains. Non-functional properties of
systems specified using PCTL, with verification provided by the Prism model
checker. Interactive theorem proving is also supported and linked to experi-
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mental results. Interestingly, the mapping rules are provided as a bidirectional
transformation.

Zhang et al. [64] address the formal verification of dynamic behaviour of UML
diagrams. They automatically verify UML state machine models by translating
UML models to the input language of the PAT model checker in such a way as
to be transparent for users. They can check safety and liveness properties with
fairness assumptions using the PAT model checker [38].

10 Conclusions and Future Work

We have presented an overview of our ongoing work in giving a probabilistic
semantics to RoboChart. We have concentrated on the imperative, sequential
action language for RoboChart, using the weakest completion semantics app-
roach. The result is a programming theory that can now be combined with
other programming paradigms, using UTP’s unification techniques explained in
Sect. 3. The next step for us is to lift the current semantics into UTP’s reactive
theory to produce a theory of reactive probabilistic designs.

We have explicated the weakest completion approach, showing how proof out-
lines in [24] can be turned into near formal proofs suitable for implementation
in a theorem prover. In doing this, we spent a surprising amount of time under-
standing the structure of He et al.’s proof, especially the nondeterminism case
for the proof that the embedding function K is a homomorphism. This led us to
investigate the weakest prespecification operator for the design theory in some
detail, coming up with what we believe to be a novel derivation of the operator
that echoes Hoare and He’s derivation of the weakest precondition operator [31].
We observe that a law quoted in the proof of this case in [24] requires a side
condition that the design to which it is applied satisfies the H3 healthiness con-
dition [31, Chap. 3]. This is the case in the proof where it is used, but it does
raise an interesting question for our lifting the current semantics to the reactive
world. We found a small number of inconsistencies in the proof outlines, but
these have not affected the validity of the lemmas and theorems in [24].

Our future work consists of the following:

1. Complete the rest of the proof that K is a homomorphism (essentially, the
Kleisli lifting needed for sequential composition).

2. Implement our proofs in the Isabelle/UTP theorem prover [19].10
3. Lift the semantics to the reactive theory.
4. Use our semantics to verify the soundness of a translation from RoboChart

to Reactive Modules, so that Prism can be used to analyse probabilistic
RoboCharts.

5. Tackle a range of different examples using both model checking and theorem
proving to challenge our work. We have in our sights various probabilistic
robotic control algorithms.

10 We have already begun work on the mechanisation of the proofs in Isabelle/UTP.
Early indications show that the meticulous detail in the hand-written proofs is very
helpful in the mechanisation.
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Examples include verifying robot localisation algorithms, such as the Random
Sample Consensus algorithm Ransac that is frequently used in robotic con-
trol [11]; providing bounds for the battery life required for coverage using ran-
dom walks and arena-mapping techniques by autonomous robotic cleaners and
searchers; and verifying learning algorithms for robots in uncertain environ-
ments.
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A Connecting Weakest Preconditions and
Prespecifications

Weakest preconditions and prespecifications each arise as the weakest solution of
an inequality in three variables. Both have a conjunction on the implementation
side. The inequality for the weakest precondition in stated as P � s ⇒ q , but this
is equivalent to s ∧ P � q (1). The inequality for the weakest prespecification
is stated as X ; K � Y , but this is equivalent to X [v0/v ′] ∧ K [v0/v ] � Y (2).
The two inequalities have the same essential structure. Hoare & He go further
and note as a conjecture that the two predicate transformers are almost identical
when the first argument mentions only dashed variables: r ′/K = (K wp r)′.
The conjecture is easily proved.

r ′/K
= {dashing a condition: c′ = c[v ′/v ] }

r [v ′/v ]/K
= {definition of weakest prespecification }

¬ (¬ r [v ′/v ] ; K˘)
= {definition of relational converse }

¬ (¬ r [v ′/v ] ; K [v ′, v/v , v ′]))
= {definition of sequential composition }

¬ ∃ v0 • ¬ r [v0/v ] ∧ K [v ′, v0/v , v ′])
= {propositional calculus }
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¬ ∃ v0 • K [v ′, v0/v , v ′] ∧ ¬ r [v0/v ])
= { dashing a relation: R′ = R[v ′/v ] }

¬ (∃ v0 • K [v , v0/v , v ′] ∧ ¬ r [v0/v ])′

= { definition of relational converse }
¬ (K ; ¬ r)′

= { definition weakest precondition }
(K wp r)′

This result means that the weakest prespecification subsumes the weakest pre-
condition and so could be used to give its definition: K wp r =̂ (r ′/K )[v/v ′].
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Abstract. The efficient design of safety-critical embedded systems involves, at
least, the three modelling aspects common to all cyber-physical systems (CPSs):
functionalities, physics and architectures. Existing modelling formalisms cannot
provide strong support to take all of these three dimensions into account uni-
formly, e.g., AADL is a precise formalism for modelling architecture and pro-
totyping hardware platforms, but it is weak for modelling physical and software
behaviours and their interaction. By contrast, Simulink/Stateflow is strong for
modelling physical and software behaviour and their interaction, but weak for
modelling architecture and hardware platforms. To address this issue, we consider
the combination of AADL and Simulink/Stateflow, two widely used graphical
modelling formalisms for CPS design in industry. This combination provides a
unified graphical co-modelling formalism supporting the design of CPSs from all
three software, hardware and physics perspectives uniformly. This paper focuses
on the required concepts to combine them, and outlines how to verify and sim-
ulate a system model defined using the combined graphical views of its con-
stituents, by considering the case study of an Isollete System.

Keywords: AADL · Simulink/Stateflow · Co-simulation ·
Code generation · Analysis

1 Introduction

Cyber-physical systems (CPSs), networked embedded systems (e.g., IoT, sensor net-
works), exploit computing units to monitor and control physical processes via wired or
wireless communication. CPSs are omnipresent, from high-speed train control systems,
power and control grids, automated plants and factories, transportations, to ground,
sea, air and space. Most CPSs are entrusted with mission- and safety-critical tasks.
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Therefore, the efficient and verified development of safe and reliable embedded sys-
tems is a priority mandated by many standards, yet a notoriously difficult and challeng-
ing domain.

As to standards, model-based design (MBD) has become a predominant develop-
ment approach in the embedded system industry. In the MBD methodology, the devel-
opment of a system starts with a model, based on which extensive analysis and verifi-
cation are conducted, so that errors can be identified and corrected as early as possible,
and ideally before the system is implemented or built. Subsequently, abstract system-
level models are refined to semantically more concrete models and to source code, by
model-transformation.

The merits of MBD hence include at least the following:

– Complexity becomes tractable and controllable, thanks to system level abstraction.
– Errors can be identified and corrected at the very early stages of system design.
– Correctness and reliability can be guaranteed by refinement.
– Developers can fully reuse existing components and/or systems, to improve devel-
opment efficiency even more.

Unsurprisingly, available formalisms and environments for CPS design are numer-
ous, e.g., hybrid automata [8], Hybrid CSP (HCSP) [22,44], dynamic differential
logic [33], hybrid Event-B [10,11], Ptolemy [34], Metropolis [9], Crescendo [21],
C2E2 [18], etc. in academia; Simulink/Stateflow [1,2], Modelica [39], SCADE [3],
Labview, etc., in industry; UML, SysML [4], MARTE [38] and so on, for MBD.
Because of the tight coupling of hardware, software, and physics in CPS design, one
has to model a complex CPS from the perspectives of functionality (software), phys-
icality (physical environment and hardware platform), and architecture uniformly, but
unfortunately, most of existing modelling techniques do not support all of these three
aspects well and uniformly.

For instance, the Architectural Analysis & Design Language (AADL) [20] is an
architectural-centric model-based language developed by SAE International. It features
strong capabilities to describe the architecture of a system due to the pragmatic (and
practice-inspired) effectiveness of combining software and hardware component mod-
els. Meanwhile, it also supports the formal description of discrete behaviour using its
BLESS Annex. Thanks to its succinct syntax, effective functionality and facilitated
extensibility (by annexes i.e. plugins), AADL has been widely exploited in various
embedded system domains, e.g., avionics, automotive. However, the core of the AADL
only supports modelling of embedded system hardware structures and abstraction of its
relevant discrete behaviour relevant to verification. It does not support the description
of the continuous physical processes to be controlled by the embedded system and its
combination with software, although some attempts have been made [6,7].

By contrast, Simulink [1] is the de facto standard toolbox that has demonstrated
strong capabilities for model-based analysis and design of signal processing systems.
It contains a large palette of functional blocks and supports their composition by
continuous-time synchronous data-flow, as well as an intuitive graphical modelling lan-
guage reminiscent of circuit diagrams. It is thus appealing to practitioners and engi-
neers for whom it is designed. Moreover, Stateflow [2] is a toolbox adding facilities for
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modelling and simulating reactive systems by means of hierarchical statecharts, extend-
ing Simulink’s scope to event-driven and hybrid forms of embedded control.

However, Simulink/Stateflow can hardly model system architectures and hardware
platforms. To address this issue, we complement Simulink with AADL to provide a uni-
fied graphical modelling formalism to support all the three perspectives of CPS design
uniformly. An overview of the combination is given in Fig. 1. For each CPS system
to be modelled, it will be characterized from three different layers: architecture layer,
software layer and physical layer. The modelling process is sketched as follows:

Fig. 1. An overview of the combination of AADL and Simulink

System architecture and hardware platform: are given as AADL components in the
architecture layer.

Software behaviour: is modelled either as AADL components or Simulink/Stateflow
diagrams in the software layer.

Physical processes and its interaction with software: are modelled as Simulink/S-
tateflow diagrams in the physical layer.

Type classifier for Simulink/Stateflow diagrams: are generated as AADL compo-
nents in the architecture layer. Given a Simulink/Stateflow diagram, a type classifier
abstracts away the implementation details, and instead, defines the port declarations
and the constraints for the behavior. The AADL abstract type classifier will be com-
bined with the other AADL components to form the whole system in the architecture
layer.
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First, we translate Simulink/Stateflow diagrams into HCSP to obtain a formalisation
of their port declarations [42,46,47]. Second, we use Daikon [19], or invariant genera-
tion [28] or, possibly, compositional proof tactics [30] to associate type classifiers with
formal contracts.

Simulation of the whole graphical model, defined by the combination of AADL and
Simulink views, amounts to coordinating code generated by both AADL and Simulink
model simulators through effective port communications. Verification of the combined
models is performed by translation to HCSP [14,27,41,47]. Similar to the translation
from Simulink/Stateflow to HCSP and the inverse [42,46,47], the correctness of the
translation can be guaranteed using Unifying Theories of Programming (UTP) [15,42].

Contribution. In this paper, we propose a unified graphical framework using AADL
and Simulink/Stateflow to model, simulate and verify cyber-physical systems. This
framework depicts a methodology to design and simulate CPSs in a unified graphical
environment while supporting formal verification of its functional, physical and struc-
tural artifacts uniformly using HCSP. Our graphical framework consists of AADL, its
BLESS Annex and Simulink/Stateflow. It is implemented by a simulation environment
called AADLSim, which integrates a set of tools, including an automatic translator
from AADL into C, and a simulation engine combining AADL and Simulink/Stateflow
models. To demonstrate the above framework and tool, the case study of an Isolette
System is provided.

Paper Organization. The rest of the paper is organized as follows. Section 2 provides an
overview of AADL, Simulink/Stateflow, and the notion of design by contract. Section 3
presents the Isollete case study, which will be used as a running example throughout the
paper. Section 4 depicts our combined framework composed of AADL and Simulink/
Stateflow, especially how to compute the type classifiers and define the contracts for
Simulink/Stateflow diagrams. Section 5 presents in detail how to implement the co-
modelling and co-simulation in the unified framework. Section 6 gives the related work
and Sect. 7 concludes this paper and discusses some future work.

2 Preliminaries

In this section, we first provide an overview of the AADL standard, by highlighting its
structure and BLESS Annex, then introduce Simulink/Stateflow and its most relevant
features. Finally, we briefly introduce the notion of design by contract.

2.1 AADL

AADL provides means to specify both the application software and the execution hard-
ware of an embedded system, and supports textual, graphical and XMLMetadata Inter-
change (XMI) specification formats. Components with type and implementation clas-
sifiers are instantiated and connected together to structure the system architecture. The
AADL core language constructs are categorised into application software, execution
platform and composite components. A system component represents a composite entity
containing software, execution platform and system components.
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Components and Connections. The execution platform category represents computa-
tion and communication resources including processor, memory, bus and device com-
ponents. A processor component represents the hardware and software responsible for
scheduling and executing task threads. Properties can be assigned to a processor com-
ponent to specify scheduling policies, high-level operating system services and commu-
nication protocols. A memory component is used to represent storage entities for data
and code. A device component can model a physical entity in the external environment:
a plant or the software simulation of the plant. It can also be used as an interactive com-
ponent like sensor or actuator. A bus component represents the physical connections
among execution platform components.

The application software category includes process, data, subprogram, thread, and
thread group components. A process component represents the protected address space,
which is bound to a memory component. A data component can be used to abstract data
type, local data or parameter of a subprogram. A subprogram models executable code
that is called, with parameters, by thread and other subprograms. Thread is the only
schedulable component with execution semantics to model system execution behav-
ior. A thread represents sequential flow of the execution and the associated semantic
automation describes life cycle of the thread.

A component type declaration defines interface elements and may contain features.
Features comprise data, event and event data ports to transmit and receive data, control,
and data/control respectively. Port communication is typed and directional. An in port
receives data/control and an out port sends data/control while an in out port can send and
receive data/control. Communication is realized through connections between ports,
parameters and access to shared data.

BLESS Annex. The Behavior Language for Embedded System with Software
(BLESS) is a standardised annex independent of the core AADL language. BLESS
extends AADL with the ability of specifying behaviour of component interfaces, pro-
viding formal semantics for AADL behavioural descriptions and automatically gener-
ating verification conditions to be proven. BLESS models state machines using guards
and actions to give precise specifications of discrete hardware/software behaviours.
BLESS also introduces assert and invariant sections in AADL to specify assertions
and predicates that behavioural models must satisfy.

We refer to AADL standard document AS5506-B [36] for further details.

2.2 Simulink/Stateflow

Simulink is an environment for model-based design of dynamical systems, and has
become a de facto standard in the embedded systems industry. It provides an extensive
library of pre-defined blocks for building and managing block diagrams, and also a
rich set of fixed-step and variable-step solvers for simulating dynamical systems. It also
provides features such as subsystems for building large systems in a hierarchical way.
Stateflow is a toolbox adding facilities for modelling and simulating reactive systems by
means of hierarchical statecharts. It extends Simulink scope to event-driven and hybrid
forms of embedded control.
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A Simulink model contains a set of blocks, subsystems, and wires, where blocks and
subsystems cooperate by dataflow through the connecting wires. An elementary block
receives input signals and computes output signals according to user-defined parameters
altering its functionality. One typical parameter is sample time, which defines how fre-
quently the computation is performed. Blocks are classified into two types: continuous
blocks with sample time 0, and discrete blocks with positive sample time. For contin-
uous blocks, the continuous state changes over time continuously, e.g. the position or
the speed of a moving car. It is usually represented by an ordinary differential equation
(ODE). Simulink provides an amount of ODE solvers for solving ODEs based on the
numerical integration methods.

Stateflow offers the modelling capabilities of statecharts for reactive systems. It
can be defined as Simulink blocks, fed with Simulink inputs and producing Simulink
outputs. A stateflow diagram is composed of transitions, states and junctions. Each tran-
sition connects a source state to a destination state. It is labelled with E[C]{cAct}/tAct,
where E is an event, C is the condition, cAct the condition action, and tAct the transi-
tion action. The event E triggers the transition to take place, provided that the condition
C is true. As soon as C evaluates to true, the action cAct will be executed immediately,
while tAct will be left pending and put in a queue first, and will be executed until a valid
transition path is completed. A state is labelled by three optional types of actions: entry
action, during action, and exit action.

Stateflow supports to construct flow charts using connective junctions and transi-
tions, which can be used between states to specify decision logics to form transition
networks. The Stateflow states can be composed to form hierarchical diagrams: Or dia-
gram, for which the states are mutually exclusive and only one state becomes active at
a time, and And diagram, for which the states are parallel and all of them become active
simultaneously.

Being based on a large palette of individually simple function blocks and their com-
position by continuous-time synchronous dataflow as well as the modelling capabili-
ties of statecharts for reactive systems, Simulink/Stateflow offers an intuitive graphi-
cal modelling language of CPSs for practicing engineers. Ordinary users can quickly
build the model’s framework by connecting the corresponding graphical modules and
defining interfaces. Therefore, it is convenient and efficient to design and analyse the
components using Simulink/Stateflow for co-simulation.

2.3 Design by Contract

Design by contract (DbC) is an engineering methodology whereby system designers
should define semantically founded, precise and verifiable interface specifications for
hardware and software components. These specifications extend the ordinary notion of
abstract data type with logical properties describing the pre-conditions, post-conditions
and invariants of a software function or of a hardware block.

The term design-by-contract is due to Bertrand Meyer in connection with the defini-
tion of the Eiffel programming language and his book Object-Oriented Software Con-
struction [31]. It is rooted in Hoare logic, where the contract (A,G) of a program P
naturally corresponds to the provable assertion C � {A}P{G} in some logical context
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C. Contracts have been algebraically meta-theorized by Benveniste et al. [13], system-
atically applied to model-based design frameworks like BIP [12].

Recently, [30] extended the reach of design-by-contract to the case of modularly
verifying hybrid system models by the introduction of contracts in a compositional
design methodology for Differential dynamical Logic (ddL) [33]. In this context, and
by contrast, the contract of a given model Γ � [α]φ consists of the evolution domain H
of the specification α, as assumption, and differential invariant φ, as guarantee.

3 Isollete System: A Running Example

In this section, we introduce the Isolette System which we use as a running example.
Isolette is an infant incubator described by the Federal Aviation Administration (FAA)
in the Requirement Engineering Management Handbook (REMH) [26]. This example
is concise but rich enough to contain both discrete control behaviour and continuous
plants, as a classical hybrid system [7]. We will first introduce the system and then the
design requirements.

3.1 Isollete System

The isollete example has been widely used to explain the detailed behaviour of AADL-
based development and new annexes, such as the BLESS Annex and the Error Model
Annex [17]. The isollete system is used to maintain the temperature of the isollete box,
a physical environment, within a desired range that is beneficial to an infant.

Figure 3 depicts the AADL graphical model of the isollete system. The architecture
of the system includes a processor, a bus, a sensor, an actuator, a controller, and a
controlled process with internal threads. The software level defines the implementation
of the controller, which obtains the temperature inside the box through the sensor, then
computes an appropriate command to control the temperature through the actuator to
switch on or off the heater combined with the isollete box. The physical layer defines
the continuous behavior of the plant, i.e. the isollete box.

The continuous evolution of temperature depends on the current status of the actua-
tor. If the heater is on, the temperature will increase, otherwise decrease. According to
the specification in the Section A.5.1.3 of the REMH [26], when the isolette is properly
switched on, the temperature of the heater will change at a rate of no more than 1 ◦F
per minute. Based on this specification, the temperature of the isollete box (denoted by
c) and the temperature of the heater (denoted by q) are formally modelled by the ODEs
(1) below. ⎧

⎨

⎩

ċ = −0.026 · (c − q)
q̇ = 1 if heater is on
q̇ = −1 if heater is off

(1)

The constant 0.026 stands for the thermal conductivity. When the controller commands
the actuator to switch the heater on, the rise in temperature q will result in c going up. In
this specification, we assume that the room temperature outside the box to be constant
at 73 ◦F, although its variations could also be modelled.
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Fig. 2. AADL graphical model of isolette system

3.2 Requirements

Referring to environmental assumptions provided in the REMH, the following safety
should be satisfied.

– Safety: The temperature inside the isollete box should be kept in between 97 ◦F and
100 ◦F, i.e., 97 ◦F≤ c ≤ 100 ◦F.

Moreover, considering the uncertainties from initial states, sensor errors, disturbance of
dynamics, and numerical error caused by floating-point calculation, etc., it is required
that:

– Stability and Robustness: The inside temperature c will be finally steered towards
the valid range after some time.

At this point, it is obviously hard to specify this physical model using AADL and
its annexes alone, notwithstanding its interaction with the digital controller, hence the
question mark in Fig. 2 needs a complementary hybrid annex.

4 Combination of AADL and Simulink/Stateflow

The combination of AADL and Simulink/Stateflow aims at providing a unified graphi-
cal co-modelling formalism for CPSs, with which software, physical environment and
execution hardware of a CPS can be modelled in a uniform framework. Section 4.1
presents a general explanation of the combined framework, Sects. 4.2 and 4.3 define the
type classifiers for given Simulink/Stateflow diagrams, including the port declarations
and contracts, respectively.
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4.1 General Framework

As shown in Fig. 1, we describe the high-level architecture of the proposed unified
graphical framework together with the connection among the three different physical,
hardware and software layers. The architecture layer, described as AADL system com-
posite components, specifies the types of hardware and software components, and (part
of) their implementation (an abstraction of their actual implementation), as well as their
composition. It usually consists of a central processor unit classifier with several sub-
component devices (like sensor, controller, and actuator etc.). Each of these classifiers
has its own type and implementation. For software functionality and physical processes,
the architecture layer usually needs their abstractions, i.e., the type classifiers of these
software and physical components. The type classifier of a component declares the set
of input and output ports, specifies the contract of its behaviour, that are accessible
from outside. By contrast, the implementation classifier of a component binds its type
classifier with a concrete implementation in the software and physical layers.

Our framework provides two methods to describe the type classifier of a given
Simulink/Stateflow model. The first one is to derive a type classifier, which is satis-
fied by the Simulink/Stateflow diagram, directly from its behaviour; see Sect. 4.2; the
other is to define a contract in the style of an assume/guarantee pair, and then prove the
given Simulink/Stateflow diagram satisfying this contract; see Sect. 4.3.

In the software layer, software components are defined by their functionality, which
can be done using either AADL or Simulink/Stateflow. In AADL, the functionality is
defined by processes, and in each process, one or more threads may exist to describe
specific controlling behaviours. The BLESS Annex can further be employed to spec-
ify the behavior of the system precisely. In order to establish a stable communication
between different processes, a port declaration must be defined. The AADL implemen-
tation in this layer binds to the corresponding software and hardware components in the
architecture layer.

In the physical layer, the continuous behaviour of physical processes is implemented
as Simulink/Stateflow diagrams. In order to integrate the Simulink/Stateflow diagrams
for implementing software or physical processes into the architectural layer, we need to
define a type classifier for each Simulink/Stateflow diagram so that it can be assembled
with other abstract components to form the architecture of the whole system at the
architecture layer. We will explain the details of this process in the rest of this section.

Example 1. Now we can build a complete graphical model of the Isollete system with
the combination as shown in Fig. 3, in which the Simulink/Stateflow diagram is given
as Fig. 4.

Figure 4 implements the ODEs defined in (1). It receives the heat command from the
actuator, depending on which the heater temperature q is implemented by an integrator
block. The other integrator block computes the temperature c for the isollete box, which
will be sent back to the sensor of the controller. This implementation will be abstracted
as a AADL type classifier, to fill the definition of the isollete box in the physical layer
in Fig. 3.
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Fig. 3. AADL graphical model of isolette system

Fig. 4. Simulink model of isollete box

Simulation. To simulate the graphical model with the combination of AADL and
Simulink, we propose a cross-layer co-simulation framework, in which the hardware
platform, control software, and physical dynamics in the designed CPS can be taken
into account uniformly. We will explain the details of such specification in Sect. 5.

Verification. To further verify a graphical model given by the AADL-Simulink combi-
nation, we translate it into HCSP, which is an extension of CSP introducing differential
equations to model the continuous evolution of the plant and three types of interrupts to
model the interaction between continuous and discrete behaviours [22,44]. The formal
verification of HCSP can be done along the lines of our previous work [14,27,41,45].
Moreover, the correctness of the translation from Simulink/Stateflow to HCSP can be
strictly proved using higher-order UTP [15], which extends the classic Unifying Theo-
ries of Programming (UTP) [23] to hybrid systems by introducing higher-order quan-
tifications and differential relations. The technical details of this part will be reported in
another paper.
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4.2 Computing Type Classifier for Simulink/Stateflow Diagrams

As we explained above, when combining Simulink/Stateflow with AADL, we need
to provide an abstraction for each Simulink/Stateflow diagram, i.e., its type classifier,
so that it can be assembled with other components to form the whole system at the
architecture layer, while the diagram itself will be used as the implementation classifier
of the component. Normally, the type classifier of a component consists of two parts:
port declaration and constraints.

The port declaration declares a set of ports used to input and output data between
the component and other ones. However, Simulink diagrams can be hierarchical, and
hence its external ports can sometimes not be extracted directly. For example, consider
the triggered subsystems in a Simulink diagram, they do not have any input and output
ports, but are triggered by events. Therefore, we need to analyse the whole system in
detail in order to obtain all external ports, particular, event ports. Moreover, this often
gets worse when Stateflow models are additionally considered.

To address this problem, we exploit the tool Sim2HCSP, a component in our toolkit
MARS [14], which can translate a Simulink/Stateflow diagram into a formal HCSP
process. By applying Sim2HCSP, all external ports of a Simulink/Stateflow diagram
can now be translated, and exposed, by a set of channels in the corresponding HCSP
model, which is stored in a separate file. In the case of the Simulink diagram in Fig. 4,
we can for instance obtain the following port declaration:

heatCommand?q; · · · ;boxTemp!c
from which the abstract type for babybox can be defined correspondingly:

abstract babybox
features

heatCommand: in data port;
boxTemp: out data port;

end babybox;

The reminder of the specification defines the contract of the component. It speci-
fies the properties that should be satisfied by any execution of the component. In this
paper, we adopt two approaches to generate the constraints for a given Simulink/S-
tateflow diagram. The first one uses Daikon [19]. The basic idea is to simulate the
given Simulink/Stateflow diagram, and then run Daikon to generate a candidate invari-
ant which is satisfied by all simulation runs. The more simulations are performed the
more refined the generated invariant becomes. For example, considering the Simulink
diagram in Fig. 4, by applying Daikon, we can obtain the following type classifier:

assert
<<TIME: :(t >= 0.1)>>
<<HEAT_T: :

((1.35107*10**15)*t-(1.35107*10**15)*q+9.862881*10**16=0)>>
<<H_VAR: :

((2.111*10**13)*q-(2.111*10**13)*orig(q)+1.056*10**12=0)>>
<<TEMP_VAR: :

((2.463*10**11)*c-(2.744*10**11)*orig(c)+2.055*10**12=0)>>
invariant

<<TIME() and H_VAR() and H_VAR() and TEMP_VAR()>>
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Alternatively, we can generate invariants directly from the Simulink/Stateflow dia-
gram, or the translated HCSP process, by using techniques for invariant generation for
hybrid systems, e.g., [28]. Consider again the Simulink diagram in Fig. 4. By using
invariant generation, we can instead obtain the following type classifier:

assert
<<L_LIMIT: : ((q-c)*e**(-0.026*t)+q*(c-97)<=0)>>
<<H_LIMIT: : ((q-c)*e**(-0.026*t)+q*(100-c)>=0)>>

invariant
<<L_LIMIT() and H_LIMIT()>>

The efficiency of the first approach is much higher, but the generated invariant
(approximation) can only be linear. Moreover, it may not become an actual invariant,
even by conducting enough runs to refine it. By contrast, the second approach can gen-
erate more expressive and semantically correct invariants, but the efficiency is normally
very low. Improving the efficiency of invariant generation for hybrid systems is still a
challenging problem.

4.3 Defining Type Classifier as Contracts

Our goal is to exploit the HCSP model provided by Sim2HCSP [14] to support modu-
lar, component-wise analysis and verification of system models combined from archi-
tectures described in AADL and hybrid systems in Simulink/Stateflow.

For HCSP models, our definition of contracts will naturally follow along the lines
proposed by Lunel et al. for differential dynamic logic [29,30]. In that context, the
contract of a specification α is defined by a pair (A,G) of properties.A, the assumption,
is a formula defining the evolution domain of α and G, the guarantee, is a formula
stating its differential invariant.

An alternative approach is to use the Hybrid Hoare Logic of HCSP [27,40].
In the HHL, the contract of an HCSP process P can be defined by the term
{Pre}P {Post;HF}, where Pre,Post represent the pre- and post-conditions of P using
first-order logic and HF its history formula using the duration calculus. This not only
allows to express properties upon start and finish but also real-time and continuous
invariants on the execution of P , resulting in an undoubtedly more expressive frame-
work, however probably challenging for proof automation.

In either approaches, it is hence tempting to investigate an adaptation of the compo-
sition theorem proposed in [30] to the HCSP framework, as it provides a methodology
to automate the proof of a system contract, e.g. (A1 ∧A2, G1 ∧G2), from the (possibly
tedious) proofs that its components, e.g. C1,2 satisfy the differential invariant G1,2 in
the evolution domains A1,2, respectively.

This theorem is obtained using the parallel composition defined in [30, Def. 7],
which amounts to decomposing the components Ci =̂ disci ∪ cont∗

i into discrete and
continuous specifications disci and conti, and recompose them as:

C1 ⊗ C2 =̂ (disc1 ∪ disc2 ∪ (cont1, cont2)∗)

Assuming proof trees Γi � [Ci]Gi, stating that the Gis are invariants of the components
Cis in contexts Γi, for all i = 1, 2, and assuming non-interference of the definitions
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between the Cis nor with the guarantees of the Gjs (i �= j), [30, Th. 2] exhibits the
derivation of a contract for the composed components: Γi=1,2 � [⊗i=1,2Ci](∧i=1,2Gi),
yielding an automated proof tactic.

This model of compositional contracts can be employed to implement Sangiovanni-
Vincentelli’s “meet in the middle” design methodology [37] to mitigate software, hard-
ware and physics constraints at system architecture level. In the case of the isolette, for
instance, it can be used to verify the safety requirement of the isollette in nominal mode,
Sect. 3.2 (i.e. after an initialization period) by cross-validating the differential invariant
of the physical model with the (adequate) operations of its controller on the sensors and
actuators, all four expressed by separate logical contracts. A use case of this method
with KeymaeraX, concerning the well-known controlled water-tank problem, is given
in Lunel’s PhD Thesis [29].

5 Co-modelling and Co-simulation

This section details the implementation of the unified framework introduced in Sub-
sect. 4.1 for designing and analyzing CPSs. The design flow of the framework is shown
in Fig. 5. It consists of three stages: co-modelling, model translation, and co-simulation.

Fig. 5. Co-modelling and co-simulation of AADL and Simulink/Stateflow

In the co-modelling stage, designers can exploit the toolkit OSATE/AADL andMat-
lab/Simulink/Stateflow to model different parts of systems. Port definitions are required
in each of the separate parts in order to establish the connection between AADL and
Simulink/Stateflow models. Then, in the model translation stage, in order to integrate
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the two separate models and analyse them as a whole, we translate both the AADL
and Simulink/Stateflow models into C code. For AADL, we developed a toolkit named
AADL2C Translator, a novel code generation plugin to parse the AADL standard textual
file and translate it into C code. Auto generation of C code from Matlab/Simulink/S-
tateflow models is done directly by using the Real Time Workshop (RTW) toolbox of
Matlab. In the co-simulation stage, the translated C code from AADL and Simulink will
be combined at first by performing integration and parameter configuration. After that,
the generated model code will be compiled by a C compiler, with the co-simulation
results produced. The co-simulation results provide a feedback for engineers to analyse
and revise their original designs in the modelling stage. All three stages are introduced
in detail in the subsequent subsections.

5.1 Co-modelling in AADL and Simulink/Stateflow

AADL Modelling. The OSATE platform provides two different approaches for engi-
neers to build AADL models: graphical models and textual code. To exploit the internal
mechanism of AADL, we choose the textual form to build our system. With the BLESS
Annex, AADL is also able to specify the discrete behaviour of components. AADL
adopts a top-down pattern to build a system: a system classifier is defined at the begin-
ning, and then all its hardware and software subcomponents are declared in system
implementation. For the Isollete example, the type classifier and implementation for the
whole system shown in Fig. 3 are given as follows:

system isollete
end isollete;
system implementation isollete.impl

subcomponents
heatCPU: processor heatCPU;
heatSW: process heatSW.impl;
babybox: abstract babybox.impl;

connections
cnx1: port heatSW.heatCommand -> babybox.heatCommand;
cnx2: port babybox.boxTemp -> heatSW.boxTemp;

properties
......

end isollete.impl;

The heatCPU element defines the central processor. The heatSW element, the
central process for specifying the functionality of the sensor, the actuator and the con-
troller. The babybox stands for the isollete box. In the connections section, the ports of
heatSW and the ports of babybox are connected, for transferring the heat command
(representing the off or on status of the controlled variable) and the box temperature
respectively. The properties section stipulates a binding relationship between the soft-
ware and hardware subcomponents. We omit the details of it here. The behaviours of
the sensor, actuator and the controller are implemented as threads in AADL.



A Unified Graphical Modelling Formalism for CPSs 123

In particular, the model of the controller is defined as follows:

thread controller
features

measuredTemp: in data port;
diff: out data port;

end controller;
thread implementation controller.impl

properties
Dispatch_Protocol => Periodic;
Priority => 10;
Deadline => 20ms;
Period => 20ms;

annex BLESS {**
invariant <<true>>
variables: gain ;
states s : initial complete final state;
transition t : s -[on dispatch]-> s
{ gain := 10;

if(measuredTemp > 100) diff := gain*(measuredTemp - 100);
elsif(measuredTemp < 97) diff :=gain*(measuredTemp - 97);
else diff :=0; end if; };

**};
end controller.impl;

The controller receives the measured temperature of the isollete box from the sensor
via the input port measuredTemp, and sends the difference between the temperature
and the threshold to the actuator via output port diff. As defined in the implementa-
tion, the controller is executed periodically every 20ms, with the deadline and priority
defined; Its functionality is defined using the BLESS Annex. The local variable gain
defines the gain coefficient for computing the difference, and the transition system of the
controller includes one state and one transition, which computes the difference diff
depending on the measured temperature. After receiving the value of diff, the actuator
will decide whether to turn on or off the heat.

Simulink/Stateflow Modelling. We use Simulink/Stateflow to model the continuous
behaviour of the CPS under design. For the Isollete box, we need to model the con-
tinuous behaviour defined by the ODE (1). The Simulink diagram has been given in
Fig. 4.

Combination of Models. After building the models separately in AADL and
Simulink/Stateflow, we combine them to form the whole system. Our approach is to
define abstract components in AADL and connect each of them to the corresponding
Simulink/Stateflow models. For each abstract component, the type classifier declares
all the ports connecting AADL and Simulink/Stateflow models, and the constraints for
the actual behaviour. The abstract AADL type classifier of the isollete box is given in
Sect. 4.2.
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5.2 Model Translation to C

Translating the AADL Model. The translation from AADL to C is the most cru-
cial part in the unified framework. It uses a collection of mapping rules from AADL
concepts to C implemented by the compiler AADL2C Translator. Figure 6 illustrates
the model translation flow from AADL to C. A graphical model only describes the
high-level architecture, while a textual model includes the details such as the functional
behaviours.

Fig. 6. An example illustrating the model translation flow from AADL to C

The compiler AADL2C Translator receives a source file as input and automati-
cally generates the corresponding C code. According to the AADL grammar, a model
is usually composed of several components, each with two parts: type declaration
and implementation. The AADL2C Translator creates a struct object for each type
declaration, e.g..system, process, thread, etc., and defines a collection of properties
of the corresponding type classifiers. The implementation classifier is translated into
individual sub-functions, associated with relevant type classifiers and specific names.
Especially, for a thread implementation, two extra functions are specified for thread
scheduling: create thread() and thread scheduling(). The create thread() function adds
a thread to a thread queue for dispatch, while thread scheduling() is designed to exe-
cute threads according to the scheduling protocol specified in the AADL model, e.g.,
Rate-Monotonic Scheduling (RMS), Highest Priority First (HPF), etc.

In order to implement the port communications between different components effi-
ciently, an additional Global Port Data Management (GPDM) unit is introduced in the
target C code. The GPDM will store all of the output ports as global variables, with
names of the form componentType componentName outputPortName. In each simula-
tion cycle, the values of these variables will be updated once.

Translating Simulink/Stateflow Model. Matlab provides an automatic code gener-
ation tool that helps to translate Simulink/Stateflow models into C code. It greatly
improves the quality and efficiency of development and simulation. To apply the code
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generation tool provided byMatlab, we need to set some configuration parameters, such
as the model solver, the format of the generated code, etc.

Co-simulation requests a starting point of program execution so that we specify a
main method as an interface to connect the C code generated from Simulink/Stateflow
model with the C code interface generated from AADL model.

5.3 Co-simulation

Now all the different parts of the system, including hardware components, application
softwares and physical processes modelled in AADL and Simulink/Stateflow, have been
translated into C code separately. In the co-simulation stage, we need to integrated all
the separate C code files by defining the communication between them. The communi-
cation of distributed parts is implemented through the GPDM block mentioned above,
which can be regarded as a global data memory storing all the data interfaces (external
in/out ports) information of each component, such as AADL thread components and
Simulink/Stateflow models. Local variables inside components are not considered by
the GPDM block.

After the C code files are integrated, the simulation of the whole system can be per-
formed. At the beginning of the simulation, we need to set some configuration param-
eters, including the global simulation clock, the periodical simulation clock, the initial
values of the system variables, and so on.

Simulation Results of Isollete. For the Isollete case study, we check whether it fulfils
the requirements mentioned in Sect. 3.2 by simulation. We first translate the AADL and
Simulink model of the Isollete to C code, then consider two cases by setting different
initial values for the variables. In the first case, both the temperature inside isollete box
and heat actuator are initially set as 73 ◦F, same as the general room temperature. In the
second case, the initial temperature inside the isollete box is set as 115 ◦F (higher than
the maximum safety temperature), and the temperature for the heat actuator is still set as
73 ◦F. For both of them, the simulation period is set to 0.1 s, and the simulation time is
set to 300 s. Figures 7(a) and 7(b) show the simulation results for the two cases respec-
tively, where the blue solid curve and yellow dashed curve represent the trajectories for
continuous variables c (for box temperature) and q (for heat temperature) respectively.
The simulation results show that, under the control of heat actuator, the temperature
inside the isollete box will finally reach a stable state, within the safety range between
97 ◦F and 100 ◦F. The requirement defined in Sect. 3.2 is satisfied.

6 Related Work

AADL provides the notion of annex to support extensions to its core language. The
key standardized annexes include the Behaviour Annex (BA) which extends AADL
with the ability of defining component behaviour via state machines, and the BLESS
Annex [25], which improves the state transition formalism by introducing assertions for
supporting contract-based specifications. The simulation and analysis of AADL models
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Fig. 7. Results of co-simulation from different initial stages

have also been explored a great deal. ADeS is a simulation tool that considers the envi-
ronment in which the system evolves. AADL Inspector, produced by the Ellidiss com-
pany, is a powerful software that encompasses various features including schedulability
analysis and dynamic simulation. There have also been some works on translation of
AADL to other languages for analysis and simulation, e.g. AADL to BIP [16], AADL
to Sync [24], AADL to Maude [32] and so on. However, most of them focus on the
discrete-time behaviours.

There have been some works on the extension of AADL for hybrid systems. [43]
models hybrid systems with AADL based on networks of timed automata, and uses the
model checker UPPAAL for property analysis. [35] discusses a sublanguage extension
to AADL to describe continuous behaviour, but it has difficulty in modelling complex
continuous behaviour expressed with differential equations. In [5], a Hybrid Annex is
presented, which is much more expressive in its ability to specify hybrid systems, yet it
lacks relevant tools for further simulation and analysis of the hybrid models.

Compared with the above mentioned works, our proposed AADLSim frame-
work coalesces AADL with Simulink for modelling of both discrete and continuous
behaviours, and the flexible interaction between them. Moreover, it also provides exten-
sive support for the analysis and simulation of the combined models through translating
them into the same target language.

7 Conclusion and Future Work

In this paper, we propose an unified graphical co-modelling and co-simulation frame-
work for the design of cyber-physical systems. This proposed framework combines
AADL and Simulink/Stateflow with which the gap between discrete control and con-
tinuous plant can be filled. The combined models are translated into C code for further
analysis by co-simulation. Throughout the paper, we clarify the main concepts of the
framework, outline the specific co-simulation flow and the verification process of the
combined models. An Isollete system case study is provided to illustrate the framework.

For future work, we will investigate the translation of the combination into HCSP,
a formal modelling language encoding hybrid system dynamics by means of an exten-
sion of CSP. Formal verification of HCSP is supported by an interactive Hybrid Hoare
Logic prover based on Isabelle/HOL. As a consequence, the combined AADL and
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Simulink/Stateflow models can be verified. To make sure that the generated HCSP
model is correct, the consistency between observational behaviours of the models at
AADL and Simulink/Stateflow, and HCSP must be guaranteed in a rigorous way. This
question, however, is known to be difficult, due to the inherent complexity of hybrid
systems. To solve this problem, we consider to define the semantics of all the sepa-
rate models in higher-order UTP [15], which extends the classic Unifying Theories of
Programming (UTP) [23] to hybrid systems by introducing higher-order quantifications
and differential relations. Moreover, we need to show that the domain of hybrid designs
proposed in [15] together with the operations over hybrid designs forms a complete
partial order (CPO), therefore can be used as a semantic domain.
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Abstract. We describe our UTP theory of hybrid relations, which
extends the relational calculus with continuous variables and differen-
tial equations. This enables the use of UTP in modelling and verification
of hybrid systems, supported by our mechanisation in Isabelle/UTP. The
hybrid relational calculus is built upon the same foundation as the UTP’s
theory of reactive processes, which is accomplished through a generalised
trace algebra and a model of piecewise-continuous functions. From this
foundation, we give semantics to hybrid programs, including ordinary
differential equations and preemption, and show how the theory can be
used to reason about sequential hybrid systems.

1 Introduction

Cyber-Physical Systems (CPSs) use computation to monitor and control real-
world phenomena, employing sensors and actuators. Autonomous mobile robots,
for example, implement their goals by sensing the environment, updating an
internal model of the real-world, using the model to plan and make decisions,
and finally actuating. A common way of modelling, simulating, and verifying
CPSs is with the use of a hybrid dynamical systems modelling language, such
as Simulink1, Modelica2, hybrid programs3 [1], and Hybrid CSP [2,3] (HCSP).
Here, a system model is decomposed into two parts: (1) a digital controller, which
is described used traditional programming constructs; and (2) a continuously
evolving environment, which is described using differential equations.

Languages like Simulink and Modelica are used commercially for developing
CPSs, since they are largely diagrammatic in nature and can be used to pro-
duce executable code. Typically, however, such tools support only simulation
and testing, which limit their effectiveness for verification. On the other hand,
tools like KeYmaera X [4] and HHL Prover [5] support rigorous formal verifi-
cation, for differential dynamic logic [1] (dL) and HCSP [2,3], respectively, that
can prove properties of the entire state space symbolically. However, the latter
tools are hard to apply for non-academics, and there is need for greater inte-
gration with the commercial tools [6]. A precondition of this is that there are

1 Simulink: https://uk.mathworks.com/products/simulink.html.
2 Modelica Language: https://www.modelica.org/modelicalanguage.
3 The modelling notation of differential dynamic logic (dL).
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unified semantic foundations for hybrid systems that acknowledge both similari-
ties and differences between the languages, and integrated mechanised reasoning
to support comprehensive automated formal verification.

The goal of this paper is to make first steps towards this foundation with
a mechanised UTP theory for hybrid systems. UTP [7] is concerned with
establishing formal links between languages based on heterogeneous computa-
tional paradigms, and therefore it is wholly appropriate to apply it to study
of hybrid computational models. Our contributions are: (1) a UTP theory that
incorporates a piecewise continuous timed trace model, building on our pre-
vious theory of generalised reactive relations [8]; (2) denotational semantics
for a simple imperative language for hybrid programs, inspired by dL and
HCSP; and (3) mechanised reasoning support in our UTP theorem prover,
Isabelle/UTP [9–12]. Our hybrid theory represents a substantial overhaul of
our previous results [13,14] by unifying it with our generalised UTP theory of
reactive processes [8].

Most theorems and definitions in the paper are accompanied by a small
Isabelle icon ( ). In the electronic version, each icon is hyperlinked to the cor-
responding mechanised artefact in our Isabelle/UTP GitHub repository4. This,
we hope, will convince the reader of the level of rigour employed in this work.

Our paper is structured as follows. Section 2 gives an overview of our hybrid
program notation. Section 3 gives an overview of Isabelle/UTP, and how it is used
to model programs. Section 4 presents our foundational UTP theory of gener-
alised reactive processes. Section 5 describes a model for piecewise continuous
timed traces, which is the basis for modelling continuous state spaces and vari-
ables. Section 6 gives a comprehensive exposition of the UTP theory of hybrid
relations. Section 7 illustrates a small verification example in Isabelle/UTP.
Section 8 concludes and discusses our results.

2 Hybrid Systems and Programs

In this section, we briefly introduce the key concepts of hybrid systems and
programs, to the set the technical work that follows in context.

Hybrid systems exhibit both continuous flows and discrete jumps in the val-
ues of their variables [3,15]. Typically, a hybrid system evolves according to
a differential equation, until some condition is satisfied, at which point a dis-
crete jump occurs. For example, in the classic bouncing ball example, the ball is
dropped and falls until it impacts the floor. During flight, the height above the
ground, h, and velocity, v, change continuously. However, once the ball impacts
the floor, the velocity is instantaneously inverted and it begins to travel upwards.

In this paper, we model such systems with a form of hybrid program:

Definition 2.1 (Hybrid Programs).

H ::= ?b | x := v | 〈 ẋ(t) • f (t, x) 〉 | H ; H | H � H | H∗ | H � 〈b | c〉 | · · ·
4 Isabelle/UTP repository: https://github.com/isabelle-utp/utp-main.

https://github.com/isabelle-utp/utp-main
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where x is a name, t is a time variable, b and c are predicates, v is an
expression.

As is common in UTP, the syntax can be further extended, which is the reason for
the ellipsis. The simple language contains a mixture of constructs adapted from
dL hybrid programs and HCSP. As usual, programs can be composed sequen-
tially (P ; Q) and nondeterministically (P � Q). As in dL, we can also define
tests, ?b, which execute when assumption b is satisfied, and assignment x := v.
Hybrid programs can be iterative, which is expressed by the Kleene star P∗ .

We characterise ordinary differential equations (ODEs), 〈 ẋ(t) • f (t, x) 〉,
which express that the derivative of the variable vector x is given by f . Its
behaviour is to evolve the variables, without terminating, according to a solution
x(t), such that ẋ(t) = f (t, x(t)). For example, we can model a real-time clock by
creating a distinguished continuous variable called time, such that ˙time(t) = 1.

Finally, P � 〈b | c〉 allows preemption of a continuous evolution. Evolution
of P may continue whilst b, a condition on the continuous variables, is invariant,
and can terminate once c becomes true. The reason for having both b and c is to
allow nondeterminism around when an evolution is preempted. Such nondeter-
minism exists in languages like Modelica, where discrete jumps are implemented
using “zero-crossing detection”, such that a function goes from positive to neg-
ative or vice-versa. This is subject to numerical imprecision, and thus the point
at which the event occurs is effectively nondeterministic.

To illustrate hybrid programs, we formalise the bouncing ball example below:

Example 2.2 (Bouncing Ball as a Hybrid Program).

BBall � h := 2.0 ; v := 0 ;⎛
⎝

〈
(ḣ(t), v̇(t)) • (v, −9.81)

〉
� 〈h ≥ 0 | v ≤ 0 ∧ h < ε〉 ;

v := −0.8 · v

⎞
⎠

∗

Initially, the height of the ball is 2 m, and the velocity is 0. Then, the main body
of the system begins, by first evolving h and v according to a system of ODEs.
The ODEs state that the derivative of h is v, and the derivative of v is −9.81, the
standard gravity constant. Evolution continues whilst h ≥ 0: the ball is above
the ground, which gives a bound on the evolution. Once h falls below a constant
ε > 0, a small number which characterises numerical imprecision, and assuming
v ≤ 0 (flight is downwards), then the evolution can terminate. At this point, v
is discontinuously inverted and a damping factor of .8 is applied. Through the
Kleene star, the system is permitted to iterate zero or more times.

In the remainder of this paper, we show how such hybrid programs can be
mechanically supported with our UTP theory of hybrid relations.

3 Isabelle/UTP

Isabelle/UTP [10,11] is a mechanisation of UTP in Isabelle/HOL, along with the
main results from the UTP book [7] and related publications [16,17]. It provides
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an implementation of the alphabetised relational calculus, a model of imper-
ative programs, a large library of algebraic laws, and several automated proof
tactics. It mechanically supports the following activities: (1) development of UTP
theories for languages of various computational paradigms; (2) construction of
denotational semantics for said languages; and (3) creation of proof strategies to
support automated verification tools using UTP theories. Aside from UTP, our
mechanisation also draws heavily on the work of Back and von Wright [18].

For the imperative program model, Isabelle/UTP supports several calculi,
including Hoare logic, weakest (liberal) precondition, and structural operational
semantics. These axiomatic semantics are defined denotationally, and the associ-
ated laws proved as theorems. Linking theorems can also show correspondences
between different semantic presentations. For example, it is well known that

{ b }P { c } = (b ⇒ P wlp c)

is a theorem of Hoare calculus and weakest liberal preconditions [7,19]. Such a
result can be harnessed to recast a verification theorem into a different form,
which is potentially easier to prove. For each verification calculus, Isabelle/UTP
also provides proof tactics, including deductive reasoning for Hoare logic, and
equational reduction for wlp. The output of these tactics is a set of verification
conditions (VCs), to which Isabelle’s automated proof strategies can be applied.

A main objective in implementing Isabelle/UTP has been to harness the
power of Isabelle’s automated reasoning. Consequently, Isabelle/UTP follows in
the tradition of shallow embeddings [20–22] in reusing as much as possible of the
Isabelle technical infrastructure, such as its type system, parser, term language,
and meta-logic, in defining the relational calculus. However, this objective must
be reconciled with the need to provide a sufficiently expressive relation model to
allow expression of UTP theories and the associated laws. The crucial artifact
to get right here is the mechanisation of UTP variables and alphabets.

In Isabelle/UTP, state spaces are modelled as Isabelle types, and programs
are parametric in their state space. Assuming a suitable state space Σ, a rela-
tional program is effectively modelled as a subset of P(Σ ×Σ), and an expression
of type τ can be modelled as functions Σ → τ . This is consistent with most
other works on verification using Isabelle/HOL [20,23], and allows us to obtain
the UTP relational operators easily, such as disjunction (P ∨ Q), relational com-
position (P ; Q), tests (?b), and refinement (P � Q). However, this does not in
itself provide us with a variable model. Rather than modelling these syntactically
using names, we treat them as algebraic objects called lenses [11,18,24]:

Definition 3.1. A lens is a quadruple 〈V | S | get : S → V | put : S → V → S〉,
where V and S are non-empty sets called the view and source, respectively, and
get and put are total functions, such that the following equations hold:

get (put s v) = v put (put s v′) v = put s v put s (get s) = s

We write V =⇒ S to denote the type of lenses with source type S and view type
V, and subscript get and put with the name of a particular lens.

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/utp/utp_wlp.thy#L75
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Each variable x : τ in UTP is modelled using a lens τ =⇒ Σ, for some suitable
state space type, and each getx/putx pair is used to query and update its value.
The main advantage of this algebraic encoding is that we obtain an abstract rep-
resentation that unifies several state space representations. We also note that a
very similar concept to lenses exists in Back’s refinement calculus [18, Chapter 5],
which substantially predates the work on lenses [24].

With lenses, expressions can modelled as functions on the Σ; for example:

�x > (y + z)/2� = (λ s : Σ • getx s > (gety s + getz s)/2)

In this way, each operator at the expression level corresponds to a point-wise
lifting of the corresponding operator through the state s at the function level.

With lenses, we can also generically characterise several variable properties:
1. independence, x �� y—x and y refer to disjoint views of Σ;
2. inclusion partial order, x  y—the view of y contains the view of x;
3. equivalence, x ≈ y—the lenses x and y refer to identical views.

All of these properties reduce to properties of the corresponding get and put
functions; for example independence is essentially commutativity of putx and
puty. They allow us to effectively characterise meta-logic properties of variables,
which are normally characteristic of a deep embedding.

Variable updates are described using substitutions σ : Σ → Σ, which are
total functions on the state space, and allow us to describe assignments, variables
contexts, and substitutions. The most basic substitution is the identity function,
id , which effectively maps every variable to its present value. A substitution can
be updated using the operator σ(x �→ e), which associates x with an expression
e over Σ. Then, we use the notation [x1 �→ e1, · · · , xn �→ en] as a shorthand for
id(x1 �→ e1 · · · xn �→ en), which is a simultaneous substitution for n variables.
Substitution update obeys several algebraic laws:
Theorem 3.2. If x and y are lenses, then the following identities hold:

σ(x �→ x) = σ (3.2.1)
σ(x �→ e, y �→ f ) = σ(y �→ f , x �→ e) if x �� y (3.2.2)
σ(x �→ e, y �→ f ) = σ(y �→ f ) if x  y (3.2.3)

(3.2.1) shows that a trivial update is ineffectual. (3.2.2) shows that two maplets
may be commuted if the lenses are independent. (3.2.3) shows that a maplet for
x is overridden by one assigning y when x  y, and thus also when x ≈ y.

Substitutions can be applied to expressions using σ † e, which replaces all the
variables in e with those assigned in σ. This is similar to syntactic substitution,
with e[v/x] = [x �→ v] † e, and obeys similar laws, but it is a semantic operator
that composes σ with e (both are functions).

We also use substitutions to construct assignments, using Back’s generalised
operator [18]: 〈σ〉. This operator recasts the function σ as a relation. A sin-
gleton assignment, x := v, can be denoted using 〈x �→ v〉, and a simultaneous
assignment by 〈x1 �→ v1, x2 �→ v2, · · ·〉. We can prove several familiar assignment
laws:
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Theorem 3.3 (Assignment Laws).

〈σ〉 ; 〈ρ〉 = 〈ρ ◦ σ〉 (3.3.1)

x := x = 〈id〉 (3.3.2)

x := e ; y := f = y := f ; x := e x �� y, x 
 f , y 
 e (3.3.3)

x := e ; x := f = x := f [e/x] (3.3.4)

The first law is a homomorphism law for assignments. The other laws are corol-
laries of it and the laws of Theorem 3.2. The third law, showing that assignments
commute, requires an extra side condition that f does not mention x, and e does
not mention y. These are both formulated using a semantic operator called unre-
striction, x 
 f , which means that f does not depend on the state space region
characterised by x for its valuation, and is denoted using the lens operators [10].

Thus we have demonstrated the ubiquity of lenses in capturing the UTP rela-
tional calculus. In the next section we describe of theory of generalised reactive
processes that is the foundation of the hybrid relational calculus. Later, we show
how lenses are used to characterise continuous variables.

4 Trace Algebra and Generalised Reactive Relations

In this section, we describe our theory of generalised reactive relations. This
UTP theory provides the foundation for our theory of hybrid relations using
an abstract trace model. This, in particular, can be instantiated with piecewise
continuous functions, which are often used to semantically capture the behaviour
of hybrid systems [3,15].

The UTP theory of reactive processes [7,16] provides a generic foundation for
trace-based reactive languages. Originally the trace model was fixed to discrete
sequences, to support the semantic models of CSP and ACP [7]. In previous
work [8], we generalised this theory to characterise traces abstractly with a trace
algebra. We characterise traces with a set T and two operators: concatenation
̂ : T → T → T , and the empty trace ε : T , which obey the following axioms [8].

Definition 4.1. A trace algebra (T , ̂, ε) satisfies the following axioms:

x ̂(y ̂ z) = (x ̂ y) ̂ z (TA1)
ε ̂ x = x ̂ ε = x (TA2)

x ̂ y = x ̂ z ⇒ y = z (TA3)
x ̂ z = y ̂ z ⇒ x = y (TA4)

x ̂ y = ε ⇒ x = ε (TA5)

TA5 ensures that every trace is positive (x ≥ 0); its lefthand dual is a theorem
of these axioms. An example model is formed by finite sequences, 〈a, b, · · · , z〉,
that is (seqA, �, 〈〉) forms a trace algebra, where � is concatenation. Using the
trace algebra operators, we can define trace prefix (x ≤ y), which partially orders
traces, and trace difference (x − y), which removes a prefix y from x [8].

https://github.com/isabelle-utp/utp-main/blob/90ec1d65d63e91a69fbfeeafe69bd7d67f753a47/theories/reactive/Trace_Algebra.thy
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From these algebraic foundations, we reconstruct the complete UTP theory of
reactive processes [7,16], including its healthiness conditions and associated laws,
in particular those for sequential and parallel composition [8]. For our version of
the theory, the alphabet includes the following observational variables:

1. ok, ok ′ : B – to indicate whether there is divergence;
2. wait,wait ′ : B – to indicate whether a process is intermediate;
3. tr , tr ′ : T – to represent the trace, using a suitable trace algebra;
4. st, st ′ : Σ – to represent the state, for some non-empty state space Σ.

We then define the following reactive healthiness conditions [7,16]:

Definition 4.2 (Reactive Relations Healthiness Conditions).

R1(P) � P ∧ tr ≤ tr ′

R2(P) � P[〈〉, tr ′ − tr/tr , tr ′]� tr ≤ tr ′ �P

RR(P) � (∃(ok, ok ′,wait,wait ′) • R1(R2(P)))

RC(P) � R1(RR(P) ; tr ′ ≤ tr)

tt � (tr ′ − tr)

The main healthiness conditions are RR, which describes reactive relations, and
RC , which describes a subset of RR called reactive conditions. For our purposes,
a reactive relation is, intuitively, a relation that refers to the initial and final
values of state variables (x and x ′, where x  st), and a special variable tt, that
denotes a trace contribution. Technically, tt is an expression that denotes the
difference tr ′ − tr , whose well-formedness is ensured by the commuting reactive
healthiness conditions R1 and R2 . This is reflected by the following theorem:

Theorem 4.3. If P is RR healthy then P = (∃ t • P[ε, t/tr , tr ′] ∧ tr ′ = tr ̂ t)

Any observation of a reactive relation P characterises a trace extension t which
can be observed using tt. Reactive relations are closed under most relational
operators; the exceptions are the universal relation (true), complement (¬), and
implication (⇒). These all require imposition of R1 , and so we recast them as
truer, ¬r , and ⇒r, respectively. Reactive relations form several algebras, includ-
ing (1) a Boolean algebra [25], (2) a complete lattice [25], and (3) a Kleene
algebra [26], which allows us to reason about iterative reactive programs (P∗).

The generalised assignment operator, 〈σ〉, is not in general healthy as it
permits assignment of any variable, including ok, wait, and tr , which can violate
RR. Consequently, we recast the operator 〈σ〉r, where σ : Σ → Σ operates on
the program state in st only. It obeys analogous laws to those in Theorem 3.3.

The second main healthiness condition in Definition 4.2, RC , characterises
reactive conditions. A reactive condition is a reactive relation which (1) does not
refer the final value of the state variables (st ′), and (2) characterises a set of traces
that is prefix closed. Reactive conditions are analogous to relational conditions,
which refer to the initial state only, but can refer to both tr and tr ′, provided that
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Fig. 1. Piecewise continuous timed traces

tt is prefix closed. For example, if we apply RC to the non prefix-closed relation
tr ′ = tr � 〈a〉, then we obtain R1(tr ′ ≤ tr � 〈a〉) = R1(tt ∈ {〈〉, 〈a〉}), which is
prefix closed. The intuition is that when a reactive condition is satisfied, it should
also be satisfied by any prefix of the trace. Reactive conditions are particularly
useful to characterise assumptions in our theory of reactive contracts [25], which
extends reactive relations with assume/guarantee reasoning (see Sect. 6.5).

We have outlined our theory of reactive relations. In the next section we
construct a trace algebra model that allows us to specialise to hybrid relations.

5 Continuous State and Timed Traces

In this section we describe how continuous state is modelled using a timed trace
model, which characterises piecewise continuous trajectories [15]. Our model
refines our previous work [8] by requiring that each continuous segment also
converges, ensuring that its final value can be obtained. This requirement is
always satisfied by, for example, linear ODEs. The state space (Σ) of a hybrid
system consists of discrete variables, which exhibit only jumps at certain instants,
and continuous variables, which change constantly with respect to time. Conse-
quently, we subdivide the state space Σ into a discrete state space (Σd) and a
continuous state space (Σc), both of which are non-empty, and then Σ � Σd×Σc.

We require that Σc, minimally, forms a topological (Hausdorff) space, so that
we can describe limits of a function over Σc. A special case is when Σc = R

n, for
some n : N, that is a Euclidean state space. We impose no additional constraints
on Σd which characterises variables that only exhibit discontinuous changes.

We now define our model of timed traces, which refines our previous model [8]
by adding a convergence requirement:
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Definition 5.1 (Timed Traces).

TTΣc �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : R≥0 �→ Σc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ t : R≥0 • dom(f ) = [0, t) ∧
⎛
⎜⎜⎜⎜⎜⎝
t > 0 ⇒ ∃ I : Rosq •

⎛
⎜⎜⎜⎜⎜⎝

ran(I ) ⊆ [0, t] ∧
{0, t} ⊆ ran(I ) ∧
∀n∈ [0, #I − 2]

•
(
f cont-on [In, In+1)
∧ f has-limit In+1

)

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where Rosq � {x : seqR | ∀n < #x − 1 • xn < xn+1}
f cont-on A � ∀ t ∈ A • lim

x↓t
f (x) = f (t)

f has-limit k � (∃ l : R • lim
x↑k

f (x) = l)

A timed trace is a partial function from positive real numbers (R≥0) to the
continuous state space, Σc, that satisfies certain constraints. Firstly, we require
that the domain is a right open interval from 0 to some positive real t. Secondly, if
t is non-zero, we require that the function is composed of a sequence of continuous
segments, each of which converges to a limit. The intuition is sketched in Fig. 1
for a state space with a single variable x. There are three continuous segments,
with domains [0, t0), [t0, t1), and [t1, �), where � is the end of timed trace. At each
segment end point, such as t0 and t1, the trajectory may make a discontinuous
jump, following the standard piecewise continuous trajectory model [15].

We specify this in Definition 5.1 by requiring that there is a strictly ordered
sequence of real numbers I , that give the start and end point of each segment.
Rosq is the subset of finite real sequences such that for every index n in the
sequence less than its length minus one (#x − 1), xn < xn+1. I must contain at
least 0 and t, such that at least one segment is present, and only values between
these two extremes. The timed trace f is required to be continuous on each
interval [In, In+1), and convergent to a limit at In+1. The operator f cont-on A
specifies that f is continuous on the range given by A, by requiring that, each
point t ∈ A, the limit of f (x) as x approaches t from above equals f (t). We use the
upper limit as the lower limit may be different, for example at the discontinuous
jumps t0 and t1 in Fig. 1. The operator f has-limit k requires that there is a limit
point l such that f converges toward l as it approaches k from below. Due, to
discontinuity, the value at k may be different.

From this model, we can now introduce the core operators on timed traces,
which we previously defined in [8], inspired by [27]. We reproduce them here for
completeness and because our timed trace model has further constraints.

Definition 5.2 (Timed-trace Operators).

f � n =̂ λ x • f (x − n)
end(f ) =̂ min(R≥0 \ dom(f ))

ε =̂ ∅
f ̂ g =̂ f ∪ (g � end(f ))

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/dynamics/Timed_Traces.thy#L84
https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/dynamics/Timed_Traces.thy#L853
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Function f � n shifts the indices of a partial function f : R≥0 �→ A to the right
by n : R≥0. The operator end(f ) gives the end time of a trace f : TTΣc by taking
the infimum of the real numbers excluding the domain of f . The empty trace ε
is the empty function. Finally, f ̂ g shifts the domain of g to start at the end of
f , and takes the union. From these definitions, we prove the following theorem.

Theorem 5.3. For any Σc, (TTΣc , ̂, ε) forms a trace algebra.

This model is the foundation for hybrid relations, which we now describe.

6 Hybrid Relations

In this section we describe our hybrid relational calculus, which specialises our
theory of reactive relations with our timed trace model. We use this to give a
denotational semantics to the hybrid programming language described in Sect. 2,
including continuous variables, continuous specifications, and systems of ordi-
nary differential equations (ODEs). A preliminary presentation of the materials
in this section can be found in a previous technical report [28].

6.1 Continuous Variables

A hybrid relation is a specialised reactive relation where the underlying trace
model is (TTΣc , ̂, ε), with tr , tr ′ : TTΣc and st, st ′ : Σd×Σc. Intuitively, a hybrid
relation describes a set of trajectories that characterise the possible behaviours
of the continuous variables. The trace contribution (tt) refers to a particular
evolution of the continuous state space, Σc. We introduce the syntax � � end(tt),
which refers to the length of the present evolution in a hybrid relation [29].

As outlined in Sect. 4, our theory provides us with the operators of an imper-
ative programming language. Consequently, we do not redefine them here, but
reuse their existing definitions and laws. This is a key contribution of our app-
roach – we need now only consider the specialised continuous evolution operators.

The hybrid state in st consists of the discrete and continuous state. We intro-
duce independent lenses d : Σd =⇒ Σ and c : Σc =⇒ Σ for these subregions,
respectively, which are the first and second projections. We introduce the syntax
s:x to project the part of state space s described by lens x, and then refer to
discrete-state variables using d :x and continuous-state variables using c:y.

Continuous variables are modelled as projections from the state space, Σc,
over time. We likewise use lenses to model these projections, so that each variable
x identifies a region of Σc, such as x : R =⇒ Σc. The source type of each lens,
that is the type of data it refers to, is not limited to R but can be any topological
space. A trajectory variable expression, x̃(t), can then be defined as follows:

Definition 6.1 (Trajectory Variables). x̃(t) � tt(t):x

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/dynamics/Timed_Traces.thy#L935
https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L213
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A trajectory variable, x̃, is a function that obtains the continuous state space
from the timed trace, recorded in tt, at time t : R≥0, and then projects the cor-
responding region using lens x. Here, t denotes time relative to the start of an
evolution, and not absolute time, a property imposed by healthiness condition
R2 . Absolute time should instead be modelled as a distinguished continuous
variable (cf. Sect. 2). It is also important to distinguish these trajectory vari-
ables, which are functions on the timed trace, from state variables, that is
the valuation of the continuous variables at the start or end of a computation,
characterised by st. These quantities are related, but are not identical. The value
of x̃(t) is not a priori the same as the corresponding variable c:x ′, for example,
because the former is part of tt, but the latter is part of st, and st �� tt. Later
in this section, we will introduce coupling invariants to link these quantities.

Next, we describe instant relations, which lift relational predicates on the
continuous state to hybrid relations:

Definition 6.2 (Instant Relations). P @ t � [c ′ �→ tt(t)] †P

An instant predicate expression, P @ t, lifts primed continuous state variables,
referred to in P, to continuous trajectory variables. P is a relation over the
discrete and continuous state variables, that is a subset of P(Σ × Σ).

To exemplify, the expression (x ′ > 7.5) @ t is equivalent to x̃(t) > 7.5, that
is, the predicate that asserts that continuous state variable x is greater than
7.5 at time t. Instant relations can also refer to the initial values of continuous
variables: primed variables (x ′) are used to denote the valuation of x at t, whereas
its unprimed variant (x) simply refers to the initial value. Thus, the relation
(x > x ′) @ t is equivalent to x̃(t) > x — the value of x in the trajectory at
time t is greater than it was initially. Effectively P is a relation between initial
values of continuous variables, alternatively written as x0, and the valuation of
the variables at t. The definition of P @ t simply substitutes the valuation of the
continuous state variable c ′ for tt(t): the trajectory state at t.

We next define an interval operator, inspired by Duration Calculus [29,30]:

Definition 6.3 (Interval). dur [P(t)] � R1 (∀ τ ∈ [0, �) • P(τ)@ τ)

An interval specification dur [P(t)] states that such a relation P holds over the
entire evolution of the trajectory. Here, P is also parametrised by the current time
t, which allows continuous variables to also depend on time. Technically, t : R≥0
is distinguished variable that is often used in continuous time predicates. We
can obtain a Duration Calculus style specification operator with �p� � dur [p′],
where p is a predicate on undashed variables only that does not mention t. This
simplified operator states that the invariant p holds over the evolution.

The definition of dur [P(t)] states that P holds at every instant τ between
0 and �, and additionally enforces R1 to ensure only healthy timed traces are
permitted. The construction is automatically R2 since it only refers to tt and
not tr or tr ′ explicitly. Thus, since neither ok nor wait are mentioned, dur [P(τ)]
is an RR healthy reactive relation. Moreover, it is also RC healthy, since the set

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L356
https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L447
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of timed traces specified is prefix-closed. The derived duration operator has the
following laws, adapted from Duration Calculus, as theorems:

Theorem 6.4 (Interval Laws).

�p ∧ q� = (�p� ∧ �q�)
�p ∨ q� � (�p� ∨ �q�)

�p� ; �p� = �p�

�false� = (tr ′ = tr)
�true� = truer

6.2 Continuous Function Evolution

The operators defined so far only permit specification of trajectory variables. In
order to link these to continuous state variables so that, for instance, we can
assign continuous variables, we define two coupling invariant operators.

Definition 6.5 (Continuous Coupling Invariants).

llx � R1 (c:x = x̃(0)) rlx � R1
(
c:x ′ = lim

t↑�
x̃(t)

)

The first coupling invariant, llx , links together the initial value of continuous
state variable x with the corresponding trajectory variable at time 0. The second,
rlx , links the final value of continuous state variable x (that is, x ′) with the limit
of the corresponding trajectory variable as it approaches the duration of the
evolution (�) from the left. By Definition 5.1, we know that the latter limit must
exist, since our timed traces are piecewise convergent.

The asymmetry of the two invariants is important. Whilst the trajectory
explicitly defines a value at time 0, as invoked by ll , it does not define one at
� since the domain is the right-open interval [0, �). The final value exists, how-
ever, because the timed trace converges to a limit. However, when sequentially
composing hybrid relations, and thus composing the two trajectories, a discrete
jump is permitted so that the value at t and the left limit at t need not be the
same. Both llx and rlx are healthy reactive relations.

We can now define operators for continuous function evolution:

Definition 6.6 (Function Evolution).

x̃(t) ← f (t) � (dur [x ′ = f (t)] ∧ � > 0)

x̃(t) ←
≤d

f (t) � (x̃(t) ← f (t) ∧ � ≤ d)

x̃(t) ←
[s,d]

f (t) �
(
x̃(t) ← f (t) ∧ � ∈ [s, d] ∧ d′ = d ∧ rlv

)

where x : Rn =⇒ Σc, f : R≥0 → R
n, and d : R≥0.

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L615
https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L472
https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L757
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Here, v is a special variable that denotes the entirety of the state space. The first
operator, x̃(t) ← f (t), states that the trajectory variable x evolves according to
continuous function f in n variables. We require that such an evolution have
non-zero duration, as otherwise the function’s behaviour cannot be observed.
Lens x can consist of several continuous variables, and thus a function evolution
can be used to encode a system of simultaneous algebraic equations, as present,
for example, in Modelica. It is also worth noting that other continuous variables
not mentioned in such a statement are unconstrained and thus behave nonde-
terministically. This is an important feature of the model as it allows the use of
nondeterminism to model concurrency of parallel hybrid processes.

We exemplify the semantics of function evolution with the calculation below:

Example 6.7 (Evolution Calculation).

ṽ(t) ← v − 9.81 · t
= (dur [v′ = v − 9.81 · t] ∧ � > 0)
= (R1(∀ t ∈ [0, �) • ṽ(t) = v − 9.81 · t) ∧ � > 0)
= (tr ≤ tr ′ ∧ (∀ t ∈ [0, �) • tt(t):v = v − 9.81 · t) ∧ � > 0)

The evolution is first mapped to a duration with the equation v′ = v − 9.81 · t,
meaning that v is assigned the initial value of v minus 9.81 · t, at each instant. In
the second and third steps, the interval operator is expanded to a predicate that
assigns a value to ṽ over the whole duration. Ultimately, this continuous variable
is simply a reference to tt, which shows how the semantics builds on generalised
reactive relations. Function evolution also admits the following valuable theorem:

Theorem 6.8. c:y := v ; x̃(t) ← f (t) = x̃(t) ← (f (t))[v/y]

This law shows the effect of pushing a leading assignment to y into a function
evolution. Any instance of y in the continuous function expression f (t) is replaced
by v. This allows evaluation of any expressions that depend upon the initial state.

The second operator in Definition 6.6, x̃(t) ←≤d f (t), is the same as the
above, but adds the requirement that the duration be at most d. The third
and final operator, x̃(t) ←[s,d] f (t), states that the evolution terminates non-
deterministically in the interval s ≤ t ≤ d. This operator explicitly terminates
the function’s evolution and thus additionally states that all discrete variables
should remain the same as they were at the start, and applies coupling invariant
rlv to set the final state of all continuous variables. All the function evolution
operators in Definition 6.6 form healthy reactive relations.

6.3 Preemption of Evolution

We next define the preemption operator:

Definition 6.9. P � 〈b | c〉 � (P ∧ dur [b] ∧ � > 0 ∧ rlv ∧ c′ ∧ d ′ = d)

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L804
https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L854
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The preemption operator (P � 〈b | c〉) states that P evolves for some non-zero
duration, while condition b holds. At some undetermined point, c should become
true finally, and at this point the operator can terminate. This yields final values
for all variables, obtained using the right limit, and requires that all discrete
variables remain unchanged over the evolution.

Intuitively, the first condition, b, is similar to the invariants present in hybrid
automata [31]. Evolution of P can continue while b remains true, which is ensured
by conjunction with the interval specification dur [b]. On the other hand, evolu-
tion of P can terminate whenever the final continuous state satisfies c. Since b
and c can overlap there is potential nondeterminism as to when P terminates,
which is necessary when handling numerical imprecision. In the special case that
b = (¬c), there is at most one instant at which P terminates, leading to a precise
and purely deterministic preemption. If c never becomes true then this operator
evaluates to false, that is, a non-terminating reactive relation.

We give an important theorem regarding termination of a function evolution:

Theorem 6.10. We assume that f is a continuous function on the domain [0, l],
where l > k and k > 0, and the following conditions hold:

1. b is satisfied for all instants t ∈ [0, l): ∀ t ∈ [0, l) • b[f (t)/x ′];
2. b becomes false at l: ¬b[f (l)/x ′];
3. c is not satisfied for all instants t ∈ [0, k): ∀ t ∈ [0, k) • ¬c[f (t)/x ′];
4. c becomes true at k and stays true until l: ∀ t ∈ [k, l) • c[f (t)/x ′].

Then the following equality holds:

(x̃(t) ← f (t) � 〈b | c〉) =
(
x̃(t) ←

[k..l]
f (t)

)

This theorem shows the conditions under which a function evolution, with a
given invariant and preemption condition, will terminate. The first two assump-
tions ensure that the invariant b is true initially, and remains true until l. The
remaining two assumptions state that c was not true for some period, until k
at which point it becomes true and stays true until l. This being the case, the
preemption will occur nondeterministically at some point between k and l. A
special case is when k = l, in which case there is precisely one instant when this
occurs. This theorem is useful in languages like Modelica where the evolution of
a differential equation can be halted when a specific condition is reached.

6.4 Derivatives and Ordinary Differential Equations

The ability to express derivatives of continuous variables is central to hybrid
system modelling. In the hybrid relational calculus we introduce the notation
x has-der f (t) which states that the derivative of continuous variable x is deter-
mined by expression f , which is parametrised over time t. This is equivalent to
the usual calculus notation ẋ(t) = f (t, x). For example, we can write constraints
like x has-der 2 · x, which states that x is changing at the rate of 2 · x.

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hyrel.thy#L1111
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A system of ODEs, ẋ(t) = f (t, x(t)), specifies a family of continuous solution
functions, x : R≥0 → R

n, that specify the value for the n variables at each
instant. The system is defined by function f : R≥0 × R

n → R
n that gives the

derivative of each variable at time t, and depends on the initial value, that is
x(t). A solution is any function x that changes at the rate specified by f .

Naturally, when animating or verifying a system, a single solution is normally
desired. For this, it is necessary to construct an initial value problem (IVP) that
supplements the system of ODEs with initial values for all continuous variables.
Then the Picard-Lindelöf theorem [32] can be applied to show that, provided f
is Lipschitz continuous, a unique solution exists to the initial value problem [33].
Lipschitz continuity essentially limits the rate at which a continuous function
can change. We now describe our operator for systems of ODEs:

Definition 6.11. 〈 ẋ(t) • f (t, x) 〉 � (llx ∧ x has-der (f (t)(x)))

The operator takes two parameters: x : Rn =⇒ Σc, which is a lens projecting a
vector of reals from the continuous state; and f , the ODE specification function
described above. The definition applies the initial value coupling invariant, and
asserts that lens x has the derivative given by the characteristic ODE function f .
It does not apply the final state coupling invariant, rl , as a system of ODEs only
produces a final value when it is preempted. Usually, though not necessarily,
ODEs are guarded by the � 〈b | c〉 operator. Every operator of which the ODE
operator is composed is R1 and R2 , and thus it is a healthy reactive relation.

In order to solve differential equations, it is necessary to set up an IVP. The
following theorem shows how a solution may be used to transform an ODE to
symbolic solution function evolution.

Theorem 6.12. If, for any v : Rn and l > 0, g(v) is the unique solution to f on
the interval [0, l], and g(v)(0) = v then

〈 ẋ(t) • f (t, x) 〉 = x̃(t) ← g(x)(t)

This theorem allows us to transform a differential equation into a solution func-
tion evolution. It has some subtleties that require further explanation. Function
g : Rn → R → R

n is the solution function, but it depends on the initial value for
variables which is why it has two inputs. This allows us to abstract from IVPs
when symbolically solving an ODE. Thus, we require that for any given initial
valuation of the continuous state v, g(v) is the unique solution to f . Moreover,
we require that the function’s value at time 0 be the initial value we have sup-
plied; a kind of sanity check for the function. If all these conditions are satisfied
then the ODE can be rewritten to x̃(t) ← g(x, t). The x on the right hand side
of the arrow is the initial value of x, as usual for the relational calculus. Thus,
the solution function is fully described when an initial value is supplied by a
preceding assignment, for example by use of Theorem 6.8.

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_differential.thy#L136
https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_differential.thy#L233
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In terms of showing that a function is a unique solution, it suffices to show
that the function is a solution and then to exhibit an appropriate Lipschitz
constant. In Isabelle/HOL the former of these two can be accomplished through
a tactic we have written called ode-cert that certifies a solution to an ODE by
applying derivative introduction rules.

To exemplify, we give the following calculation of the first step of Example 2.2:

Example 6.13. (ODE Calculation).

h, v := 2, 0 ;
〈
(ḣ(t), v̇(t)) • (v, −g)

〉

= h, v := 2, 0 ;
(
h(t)
v(t)

)
←

(
v · t − g · t2/2 + h

v − g · t

)
(6.12)

=
(
h(t)
v(t)

)
←

(
0 · t − g · t2/2 + 2

0 − g · t

)
(6.8)

We first obtain the unique solution to the ODEs, which can be done using
a typical computer algebra tool like Mathematica, and then rewrite this to a
function evolution. We also push forward the assignment using Theorem 6.8 to
set initial values for continuous variables.

6.5 Hybrid Reactive Contracts

Whilst hybrid relations can be used to model programs, they do not allow us
to distinguish terminating, non-terminating, and divergent behaviours5. Specif-
ically, a dynamically evolving ODE, 〈 ẋ(t) • f (t) 〉 can continue indefinitely. In
spite of this, it does not satisfy the following theorem [2]:

〈 ẋ(t, x) • f (t) 〉 ; P = 〈 ẋ(t, x) • f (t) 〉

For example, if P is an assignment, x := v, then the results of it are observable in
such a composition. This is the reason that we often place ODEs in the context
of a preemption operator6, which correctly handles termination. This issue is
analogous to the well-known problem with basic relational model of programs,
which motivated the UTP theory of designs [7,34].

Our solution, similarly, is to introduce a UTP theory of reactive contrac-
tual specifications, and use the ok and wait observational variables to distin-
guish divergent and intermediate observations. This approach captures non-
termination in reactive systems in a way that avoids complex reasoning asso-
ciated with infinite traces. In previous work [25,26,35] we developed a UTP
theory of generalised reactive designs, building on our theory of reactive rela-
tions [8] (Sect. 4) and prior work with Circus [16,17]. We use this to develop a

5 A concept capturing erroneous behaviours such as unproductive non-termination.
6 This is also true of dL hybrid programs, which are modelled similarly.
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contract notation, and a method for automatically calculating the semantics of
reactive programs for the purpose of verification [26]. As for designs, our reactive
contracts also support refinement with assume/guarantee style reasoning [36,37].
It allows a unified set of laws for a diverse set of languages, including CSP [7],
Circus [17], timed extensions [38], and of course our hybrid relations.

A reactive contract, [P1 −| P2 | P3 ], consists of three reactive relations that
specify the (1) assumption, P1, and (2) guarantee for intermediate observations,
P2, and terminating observations, P3. Assumption P1 is a reactive condition
(Definition 4.2): it can refer only the initial state (st) and trace (tt), and the
characterised set of traces must be prefix closed. If the assumption of a contract
is violated, then the result is the most nondeterministic reactive designs, called
Chaos � [ false −| false | false ], which corresponds to divergent behaviour. P2
characterises the intermediate or waiting observations of the reactive program;
consequently it is a reactive relation that, like P1, refers only to st and tt. P3
characterises terminating observations, and so can refer to st, tt, and also st ′.

We can now lift our ODE operator so that it is correctly non-terminating:

Definition 6.14. 〈〈 ẋ(t) • f (t, x) 〉〉 � [ truer −| 〈 ẋ(t) • f (t, x) 〉 | false ]

The assumption of the lifted ODE is true, since there is no divergent behaviour.
The terminating guarantee is false, since this is a non-terminating operator. The
intermediate guarantee is simply our hybrid relational ODE operator, so that
evolutions of the ODE are flagged as intermediate observations. Then, we can
use the following contract theorems for reasoning about compositions [25,26]:

Theorem 6.15 (Reactive Design Laws).

[P1 −| P2 | P3 ] ; [ truer −| Q2 | Q3 ] = [P1 −| P2 ∨ P3 ; Q2 | P3 ; Q3 ] (6.15.1)

Chaos � [P1 −| P2 | P3 ] = Chaos (6.15.2)

[P1 −| P2 | false ] ; [Q1 −| Q2 | Q3 ] = [P1 −| P2 | false ] (6.15.3)

Chaos ; [P1 −| P2 | P3 ] = Chaos (6.15.4)

[ false −| P2 | P3 ] = Chaos (6.15.5)

(6.15.1) is the basic law for sequential composition7. When composing contracts
in the sequence, an intermediate observation is either an intermediate observa-
tion of the first contract (P2), or a terminating observation of the first, followed
by an intermediate observation of the second (P3 ; Q2). A terminating obser-
vation requires that both contracts can terminate P3 ; Q3. (6.15.2) show that

7 For brevity, we present a simplified law where the second assumption is truer.

https://github.com/isabelle-utp/utp-main/blob/90ec1d65d63e91a69fbfeeafe69bd7d67f753a47/theories/rea_designs/utp_rdes_triples.thy#L983
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Chaos is indeed the most nondeterministic reactive contract. The remaining laws
are essentially corollaries of (6.15.1). Of particular interest for ODEs is (6.15.3),
which has the following law as a consequence:

Theorem 6.16. 〈〈 ẋ(t) • f (t) 〉〉 ; P = 〈〈 ẋ(t) • f (t) 〉〉

Similar results can be achieved for the function evolution operators.
A further advantage of hybrid reactive contracts is to encode assumptions

about continuous variables outside of the system’s control (e.g. monitored vari-
ables). Assumptions can, for example, be specified using the interval operator
of Definition 6.3, since this constructs reactive conditions. For example, we can
specify a division block for the control law languages of Modelica or Simulink:

Example 6.17. Div(x, y, z) � [ �y �= 0� −| �z = x/y� | false ]

We encode a division block with two inputs, x and y, and a single output z.
These are all modelled as lenses into the continuous state (R =⇒ Σc), that
correspond to connections in a block diagram, and are given as parameters.
The intuition here is that every wire in a control law diagram is modelled as
a lens. The divison block is a non-terminating hybrid process that in every
intermediate state requires that the continuous variable z take the value of x/y.
The assumption requires that y �= 0, to ensure that division by zero cannot occur.
Using a pattern like this, we can give semantics to a large number of blocks in
the Simulink and Modelica block libraries8. This allows us to use hybrid reactive
designs to reason about control law diagrams.

7 Mechanisation and Example

The hybrid relational calculus, and the theorems described in Sect. 6 are mech-
anised in Isabelle/UTP. For this, we employ Isabelle’s implementation of multi-
variate analysis [39], including its symbolic real numbers, Euclidean spaces, lim-
its, and derivatives. We also utilise Immler’s library for ODEs and IVPs [33,40],
which allows us to certify that a function is the solution to a system of ODEs.

In order to exemplify the use of the mechanisation, we describe part of a tram
model, which is part of a previous industrial case study [14]. We reproduce it here
for the purposes of illustration, with adaptation for our new hybrid relational
model. We focus on the situation when the tram is slowing due to an approaching
red signal, and formalise this using variables for acceleration acc, velocity vel,
and track position pos. We note that normal-deceleration below is negative and
determines the rate at which the tram reduces its speed as the brakes are applied.

8 See https://build.openmodelica.org/Documentation/Modelica.Blocks.html.

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/utp_hrd.thy#L195
https://build.openmodelica.org/Documentation/Modelica.Blocks.html
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Definition 7.1 (Braking Tram in Hybrid Relational Calculus).

BrakingTrain �

⎛
⎜⎜⎜⎜⎝

acc, vel, pos := normal-deceleration,max-speed, 0 ;〈 ⎛
⎝

˙acc
˙vel
˙pos

⎞
⎠ •

⎛
⎝

0
˙acc
˙vel

⎞
⎠

〉
� 〈vel > 0 | vel ≤ 0〉 ;

acc := 0

⎞
⎟⎟⎟⎟⎠

We assign initial values to the continuous variables, and then evolve them until
the velocity reaches 0. In this instance, we do not allow non-determinism here,
but record the precise instant that the velocity is 0. Thus, the evolution invari-
ant is vel > 0, and the preemption condition is vel ≤ 0. After this, we set the
acceleration to 0, so that the tram halts and does not start moving backwards.
Though this model is highly idealised, a more realistic model, which, for exam-
ple, introduces pertubations into the acceleration due to external influences like
weather, can be described by adding periodic preemption conditions and non-
deterministic assignments to corresponding variables.

This example is encoded in Isabelle/UTP, as shown in Fig. 2, where the
preemption operator has the syntax P inv b untilh c. We also mechanise a proof
that the train stops before the end of the track, that is,

Theorem 7.2. (accl ′ = 0 ∧ dur [pos < 44]) � BrakingTrain

holds, where 44m is the track length. The specification to the left states that, for
all possible evolutions, the final value of the acceleration is 0 and pos is always
less than 44. This should then be refined by our hybrid relation, BrakingTrain.
For the sake of brevity, we elide details of the proof in Isabelle, other than the
first four steps. The proof proceeds as follows:

1. Solve the ODE to obtain a function evolution statement (Theorem 6.12);
2. Use the assigned values to obtain the initial conditions (Theorem 6.8);
3. Calculate the time at which the velocity reaches zero (Theorem 6.10);
4. Finally, prove that the position at every earlier instant is less than 44 m.

The final step requires that we solve a polynomial inequality:

(104/25) · t − (7/10) · t2 < 44

which includes the position derivative solution. In Isabelle, this can be done
using the approximate tactic [41], which applies floating-point computation.

https://github.com/isabelle-utp/utp-main/blob/9a9859056312c9346e298869d99dc5134390bf29/hybrid/examples/utp_trains.thy#L115
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Fig. 2. The braking tram in Isabelle/UTP

8 Conclusions and Discussion

We have described our UTP theory of hybrid relations that specialises reactive
relations with a continuous timed trace model. A key result is the unification
of hybrid models [1,2,13] and reactive programs [26], through our generalised
theories of reactive relations and reactive designs. In a parallel development, we
have used the generalised theory to mechanise a semantics and verification tool
for Circus [17,26] (and thus CSP [42]), and our hybrid theory shares many of the
laws, such as those in Theorem 6.15. This, we believe, shows the immense and
practical value of unification. Our theory can also be used as a foundation for
automated verification tools for hybrid programs in Isabelle/UTP [10], and we
plan to apply it to verification of Modelica dynamical models, by extending our
previous semantics [13] that used an early version of our UTP hybrid theory.

The two most related works are differential dynamic logic [1,4] (dL), and
HCSP [2,3,5], both of which have substantially influenced our direction.

Our model is more expressive than standard dL hybrid programs, since we
encode an explicit trajectory, whilst dL encodes the initial/intermediate value
pairs for each variable in a binary relation. This allows us to separate ODEs
from preemption, which in dL are combined in a single operator, {x ′ = θ & b},
where b is the boundary condition. This can be useful when constructing systems
by composition of continuous and discrete components, where b is not known a
priori. An explicit trace model is also a prerequisite for modelling networks of
communicating hybrid systems [2]. There is also a dL extension called dTL2 [43]
that also employs an explicit trajectory and is similar to our model.

Proof support in dL’s tool, KeYmaera X [4], is clearly far more advanced than
our implementation in Isabelle/UTP. Nevertheless, we are currently working on
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implementing dL in Isabelle/UTP9, based on a recent implementation of dL in
Isabelle/HOL [44], and hope to report on this soon. This will allow to formally
link the two theories, and also extensions like [43], via Galois connections, and
harness the differential induction reasoning technique.

HCSP [2,3] models communicating hybrid systems using CSP-style process
algebraic operators. There are two main denotational semantic models, the orig-
inal one by He [2], which employs a UTP-style relational calculus, and a later
one by Zhou [3], that employs Duration Calculus [29,30]. Our model is compa-
rable to, though less expressive than [2]—since [2] models a more sophisticated
form of trajectory based on super-dense time [15,45]—and is likely of equiva-
lent expressivity with [3]. The semantics and algebraic laws in [2] are a strong
inspiration for our work, and we believe that [2] is very similar to our reactive
designs. For super-dense time [15,45], the trajectory has type R≥0 × N �→ Σc –
the time domain is extended with a natural number that allows state changes
that are “simultaneous-but-ordered”. This is, arguably, needed to allow CSP-
style events that are often interpreted to take a zero time duration. We hope
in the future to explore whether such a trajectory model forms a trace alge-
bra [8], so that our reactive designs hierarchy can be reused. Moreover, we will
also explore weakening the trace algebra to support infinite traces which are at
present forbidden.

In conclusion, the UTP approach has been an invaluable tool in this develop-
ment. Whilst several hybrid computational theories exist, there are links between
them, which UTP theories allow us to explore. Moreover, UTP allows us to link
to theories that at first sight seem unrelated, such as Circus [17], as our reac-
tive design theory shows. Our overarching message is this: the UTP works—it
can capture languages of differing and heterogeneous paradigms and use the
associated theories to develop and integrate verification tools. As Hoare and He
reflected in the first chapter of the UTP book, when considering all the tools
and artefacts that software engineering research is producing:

“...to ensure that [analysis] tools may be safely used in combination, it is
essential that these [underlying] theories be unified...” [7, page 21]

We believe that our hierarchy of theories and verification tools in Isabelle/UTP
is evidence that UTP supports a practical approach for integration of formal
analysis tools [46]. As systems become more complex in nature, as is the case
with cyber-physical systems and autonomous robots, there is an even greater
need to consider integration of heterogeneous computational paradigms [6]. The
UTP allows us to approach one of the grand challenges for software engineering:
integration of formal methods [6,46,47] for assurance of large-scale systems.

Acknowledgments. This work is funded by the CyPhyAssure project (CyPhyAssure:
https://www.cs.york.ac.uk/circus/CyPhyAssure/), EPSRC grant EP/S001190/1. We
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9 Differential dynamic logic in Isabelle/UTP .
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Hybrid Relations in Isabelle/UTP 151

References

1. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41, 143–189 (2008)

2. He, J.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind:
Essays in Honour of C. A. R. Hoare, pp. 171–189. Prentice Hall, Upper Saddle
River (1994)

3. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020972

4. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
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Abstract. Algebras have always played a critical role in Unifying The-
ories of Programming, especially in their role in providing the “laws”
of programming. The algebraic laws form a triad with two other forms,
namely operational and denotational semantics. In this paper we demon-
strate that algebras are not just for providing external laws for reasoning
about programs. In addition, they can be very beneficial for assisting in
the development of theoretical models, most notably denotational seman-
tics. We refer to the algebras used to develop a denotational model as
“inner algebras”, while the resulting algebraic semantics we consider to
be an “outer algebra”. In this paper we present a number of inner alge-
bras that arose in the development of a fully compositional denotational
semantics, called UTCP, for shared-state concurrency. We explore how
these algebras helped to develop (and debug!) the theory, and discuss
how they may assist in the ultimate aim of exposing the outer algebra of
UTCP, which we expect to be very similar to Concurrent Kleene Algebra.

Keywords: Unifying Theories of Programming · Inner algebras ·
Outer algebras · Shared-variable concurrency ·
Concurrent Kleene Algebras

1 Introduction

The work reported here has been inspired by the “Views” paper [9], which
describes how a range of approaches to reasoning about shared-variable con-
currency can be mapped down onto instantiations of commutative semi-groups
and monoids. The paper introduced a simple language of syntactic commands,
and used it as a baseline to connect a wide variety of formal approaches to
concurrency. Approaches covered in [9] include various Separation logics [8],
type-theories, Owicki-Gries [20], and Rely-Guarantee [17], among others. Our
intention in developing a UTP semantics of this command language is to be able
to use it as a foundation on which to build UTP theories of the above approaches
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that will be easy to link together. In effect we hope to use the results of the Views
paper as a conceptual architecture to organise our work.

Work we did developing a denotational semantics called “Unifying Theory of
Concurrent Programs” (UTCP), for the Views command language, using near-
homogeneous relations [6], exposed the need for well-defined semantic building
blocks, with very well defined properties. Validating the theory as it was devel-
oped required a lot of test calculations, to uncover its final form, to such an extent
that a rapid “prototyping” calculator was developed to assist in this endeavour
[5]. This calculator depended crucially on having well-defined laws and algebras
for the semantic building blocks. We use the adjective “inner” to refer to these,
and the term “outer” applies to the top-level laws and algebras of the language
that is under study.

Most investigations into the relationship between algebraic, and denotational
or operational semantics for a language focus on how they relate at the top-level
(e.g., [25,26]). In this paper, we focus mainly on those small inner algebras that
are very helpful in producing a denotational semantics, against which an (outer)
algebraic semantics may be compared.

We next present background material in Sect. 2 on the Views command lan-
guage, and other approaches to the semantics of shared-state concurrency. In
Sect. 3 we give a high level overview of the architecture of UTCP, explaining
why we have the inner algebras that we do. In Sect. 4 we explore the inner alge-
bra and laws of UTCP, which we then follow up on in Sect. 5 with discussion of
the state of the outer theory. In Sect. 6 we look at related work, with an emphasis
on those in which there is clear evidence of these inner algebras or laws. Finally,
we conclude (Sect. 7).

2 Background

2.1 View Command Language

The baseline command language from the Views paper assumes an abstract
notion of shared state s, and a notion of atomic actions a that non-
deterministically modify s. The language syntax then takes atomic commands
augmented with skip as a building block and introduces operators for sequenc-
ing (; ;), choice (+), parallel composition (‖) and iteration (∗), where all choices
are non-deterministic [9]:

C ::= 〈a〉 | skip | C ;; C | C + C | C ‖ C | C∗

An operational semantics is then defined based on the notion of interleaving
of atomic actions. Our notation differs slightly from that in [9] in that we write
“〈a〉” and “;;” instead of “a” and “;” respectively, for reasons explained in Sect. 3.

2.2 Denotational Semantics

The UTP theory of concurrent programs (UTCP), whose algebras we discuss
here, gives a denotational semantics to the command language above [6]. Deno-
tational semantics of shared variable concurrency are not new, with notable work
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in this area having been done by de Boer [1] and Brookes [2]. This resulted in
semantics based on the notion of transition traces (TT), which are sequences of
state-pairs. A state pair (sa, sb) denotes the occurrence of some atomic action
that transformed state sa into state sb. A transition trace is a sequence of such
pairs, with no requirement for the second state of one pair to match the first
state of the next. So, if si for i ∈ 1 . . . 4 denotes four different states, then
〈(s1, s2), (s3, s4)〉 is valid. It states that the command to which it refers first
altered s1 to s2, and then something else in the environment ran, changing the
state to s3 along the way, so that when the command resumed to perform its
second atomic action, it saw s3, which it duly converted to s4. This is basically
how the interference of the environment is modelled. The denotational semantics
of a command is a set of such traces, with three important healthiness conditions
that describe closures:

– Stuttering: for any trace 〈. . . , (s1, s2), (s3, s4), . . .〉
there is also a trace 〈. . . , (s1, s2), (s, s)(s3, s4), . . .〉 for arbitrary s.

– Mumbling: for any trace 〈. . . , (s1, s2), (s3, s4), . . .〉 where s2 = s3
then there is also a trace 〈. . . , (s1, s4), . . .〉.

– Interference: for any trace 〈. . . , (s1, s2), (s3, s4), . . .〉
there is also a trace 〈. . . , (s1, s2), (s5, s6)(s3, s4), . . .〉 for arbitrary s5 and s6.

So the semantics is a set of transition traces closed by adding every possible
stuttering action, all possible mumblings, and all possible interference by any
possible environment. With the exception of the semantics of a single atomic
action, these are all infinitely large sets of traces. These closed sets are fine, when
their purpose is to prove that the desired algebraic laws hold for the language
under consideration. There is a UTP treatment of Views by van Staden [23] in
which he makes use of finite transition traces within an operational calculus.

Another interesting approach to a denotational semantics for shared state
concurrency was that reported by Lamport [18]. It is based on the use of temporal
logic along with five key ideas, some his, some from others:

1. Being able to identify “who” performs an action.
2. Statement assertions true only if true of every program containing that state-

ment.
3. Being able to transform an assertion about a statement into one about a

larger statement that contains it.
4. Defining relations between control points as aliasing relations among vari-

ables.
5. Allowing stuttering actions, to facilitate decomposing atomic actions.

The UTCP theory we describe here was developed before Lamport’s work was
discovered, but it is interesting to note how our semantics required the re-
discovery of concepts analogous to some of the ideas above.

2.3 UTP Action Semantics

A UTP semantics for parallel programming (UTPP) was developed by Woodcock
and Hughes [24], that considered a language that required all atomic actions, and
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some instances of composite commands to have unique labels. They mapped the
language into an action system, where every atomic command became a guarded
action, with the guard asserting that the action’s label was “enabled”, this being
modelled by it being present in a global label-set ls. Each guarded action, when
enabled, would perform its atomic state-change, remove its enabling label from
ls and then add in labels to enable other guarded actions. In effect, the global
label set was used to manage flow of control. This theory has the following
observations:

s, s′ : State (1)

ls, ls′ : P Lbl (2)

An atomic action, described as a relation a : State ↔ State with label go,
followed by some “after-label” next (say) would exhibit the following behaviour:

go ∈ ls ∧ a ∧ ls′ = (ls \ {go}) ∪ {next} (3)

An action-system is a loop that makes a non-deterministic choice, on each iter-
ation, of one of the currently enabled actions to run. The chosen action will
change the state, disable itself, and enable something else.

3 Approach

Our goal for a UTP semantics was to obtain one that was not only compo-
sitional (denotational), but was also “local”, in the sense that the semantics
would only talk about the behaviour of the command under consideration, with-
out being required to also explicitly mention all possible interference. This goal
was inspired by the success of separation logic at being able to scale to automat-
ically check very large codebases for pointer errors [21]. A key enabler of that
success is that separation logic allows the reasoner to focus on the few pointers
actually being manipulated by a program, rather than having to consider (or
quantify over) all possible heaps.

We now present a high-level overview of how UTCP is structured, using a
simple running example, where a, b and c are arbitrary atomic actions:

(〈a〉 ;; 〈b〉) ‖ 〈c〉 (4)

The occurrence of action c will be non-deterministically interleaved with those of
a and b. Action a will occur before action b. The three possible action sequences
(traces) we might observe, assuming no outside interference, are:

a; b; c a; c; b c; a; b

Here we have represented the sequences using sequential composition (;) which
is typically defined in UTP, using O to stand for all observation variables, as:

P ;Q =̂ ∃Om • P [Om/O′] ∧ Q[Om/O]
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outin a

Fig. 1. Atomic action 〈a〉.

outin

P[g1::/g]
lg1

lg2

lg1:

lg2:
Q[g2::/g]

Fig. 2. Parallel composition P ‖ Q.

This then raises the question of why we use ;; in our command syntax for sequenc-
ing. The simple reason is that ;; is not sequential composition as defined in Eq. 5,
because that definition not only requires the starting state of Q to be the ending
state of P , but it also implies that no interference can occur between the end of
P and the start of Q. In our example, an execution of 〈c〉 can come between 〈a〉
and 〈b〉. In effect, in any programming language that admits concurrent threads
and shared variables, the semantics of sequencing (;;) is not sequential compo-
sition as defined above. Instead, it is a form of “loose” sequencing in that its
first component must terminate before the second can start, but it places no
constraints on how the state might be altered in between.

3.1 Labels and Generators

We provide a semantics based on shared-state s and control-flow label-sets ls,
in a fashion similar to Eq. 3. This explains why we use 〈a〉 to denote the atomic
command that performs atomic state-change a, as the latter modifies only s,
while the former modifies both s and ls. Unlike UTPP, we do not have explicit
labels in our command syntax, but instead we allow the semantic rules to gen-
erate appropriate unique labels, in a very controlled fashion.

We assume that two label-valued observation variables are associated with
every command (atomic or composite), called in and out. The command starts
executing when the label that is the value of in is put into the global label set
ls. As the command executes, label in will be removed from ls, and eventually,
as the command terminates, label out will appear in ls′. The simplest instance
of this is an atomic action, represented symbolically in Fig. 1, with a simplified
version of its behaviour shown in Eq. 5.

in ∈ ls ∧ a ∧ ls′ = (ls \ {in}) ∪ {out} (5)

The term above is quite complex, so we introduce a the following shorthand,
where E and N are label-sets, and a is an atomic action:

A(E|a|N) =̂ E ⊆ ls ∧ a ∧ ls′ = (ls \ E) ∪ N (6)

We typically write E or N by listing the labels, without full set-notation, writing
A(in|a|out) rather than A({in}|a|{out}).

In order to give semantics to composite commands, we need to utilise a
way to generate labels that guarantees their uniqueness. We require two ways
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to use any given generator G : Gen: one that generates a label and a new
generator (new : Gen → Lbl × Gen), while the other splits a generator into two
(split : Gen → Gen×Gen). We frequently wish to single out one or other of the
components of the result pairs of both the above functions, and so have defined
a very compact shorthand notation.

G ∈ Gen ::= g the “root” generator
| G: generator after label produced from G
| G1 first generator from split of G
| G2 second generator from split of G

L ∈ Lbl ::= �G label produced by generator G

So, for example, �g:2 is shorthand for:

(fst ◦ new ◦ snd ◦ split ◦ snd ◦ new)(g)

Here Gen is an unusual expression language in that it has only one variable g, and
three postfix operators, :, 1, and 2. Even more unusual is the label expression
language Lbl, which consists solely of the application of prefix function � to a
generator, to get the label it generates. Given a generator G we can (i) get a
new label and generator: G → (�G, G:), or (ii) split a generator: G → (G1, G2).

3.2 Semantics with Generators

The way we use generators in our semantics is to introduce a new observation
variable g that denotes a label generator that is available. The intuition behind
its use is that a composite construct will use g to generate labels for its own use,
and split it and pass the resulting generators into its subcomponents. Passing
generator G into sub-component P is simply achieved using substitution: P [G/g].
In general, a composite may also need to add some control-flow actions, which
modify ls, but do not alter s. These perform an identity action (ii) on state:

ii =̂ s′ = s (7)

Let us now consider sequencing 〈a〉 and 〈b〉. In effect, we want to arrange it so
that the out label of 〈a〉 is the same as the in label of 〈b〉. We do this by taking
generator g, and applying the prefix � operator to obtain label �g, which then
is substituted appropriately. We then take the disjunction of the two modified
atomic actions, which treats both actions as being part of a non-deterministic
choice, as is done in UTPP [24].

〈a〉[�g/out] ∨ 〈b〉[�g/in] (8)

= A(in|a|out)[�g/out] ∨ A(in|b|out)[�g/in] (9)

= A(in|a|�g) ∨ A(�g|b|out) (10)

This is not the full picture as there are healthiness conditions to be applied, and
one of them is decidedly non-trivial in its effects. These will be presented and
discussed later.
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Now, consider putting 〈c〉 in parallel with 〈a〉 ;; 〈b〉. We show the general case
for arbitrary commands P and Q in Fig. 2. In effect we split a generator, denoted
by g into two (g1, g2), generate two labels from each to replace the in and out
of P and Q and then add two special control-flow actions. The first replaces
the in label for the parallel construct as a whole, by the two generated in-labels
(lg1, lg2). The second replaces the two generated out-labels (lg1:, lg2:) by the out
label of the whole construct. In essence, given P and Q to be put into parallel,
we make use 1 of the following disjunction of two control actions and the two
components with appropriate label and generator substitutions:

A(in|ii|lg1, lg2)
∨ P [g1::, lg1, lg1:/g, in, out]
∨ Q[g2::, lg2, lg2:/g, in, out]
∨ A(lg1:, lg2:|ii|out)

In our running example, P would be our semantics for 〈a〉 ;; 〈b〉 and Q would be
〈c〉. The latter, after substitution, would appear as A(lg2|c|lg2). The former will
contain A(lg1|a|�g1::) and A(�g1::|b|lg1:), as well as extra components introduced
by the healthiness conditions.

3.3 Static and Dynamic Observables

In summary, in addition to observables s, s′, ls, ls′, we have added in, out, and
g. However, this new trio of variables is quite distinct in character, in that they
are used within composites to put sub-components into context, by performing
substitutions on generators and labels. This contextualisation is static, in that
it depends on the structure of the program, and it does not change over time.
By contrast, observables like s and ls are dynamic: they track observables whose
values change over time. This distinction is key to making the semantics work.

We now proceed to define sequential composition in our theory in the stan-
dard way, provided that we only reference dynamic variables:

P ;Q =̂ ∃sm, lsm • P [sm, lsm/s′, ls′] ∧ Q[sm, lsm/s, ls] (11)

We can also introduce our notion of Skip (II ) which is an identity for sequential
composition:

II =̂ s′ = s ∧ ls′ = ls (12)

No mention is made in either of the above definitions of in, out, or g — these
are static, and have no dashed counterparts.

We can now present a complete definition of the alphabet of UTCP predi-
cates:

s, s′ : State ls, ls′ : PLbl in, out : Lbl g : Gen

1 We have to apply healthiness conditions as well, discussed later.
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3.4 Wheels-within-Wheels

Another point to note is that our semantics converts any command into a large
disjunction (non-deterministic choice) of atomic and control-flow actions, which
precisely correspond to the guarded actions produced in the UTPP semantics
[24]. In UTPP, a predicate transformer (run) is applied to the disjunction which
initialises the ls and then iterates until/if a distinguished termination label
appears in it, generating all possible complete execution traces. This disjunction,
produced by both UTPP and UTCP, is static, and in UTPP, run effectively pro-
duces the dynamic behaviour. In UTCP, we wanted the predicates generated at
every level to capture both static structure, and dynamic behaviour. The intu-
ition was to find a way to “run” at every level in a command program. Each
atomic action would be trying to spin continually, awakening when its in label
appeared in the label set ls. We need a healthiness condition, to ensure that
atomic actions within iterations “stay alive”, which basically says the possible
behaviour of a command is logically equivalent to making a non-deterministic
choice to iterate it zero or more times This healthiness condition has to be applied
to the semantics of every command, atomic and composite, leading us to call it
“Wheels within Wheels” (WwW). Getting the definition of WwW right was a
major challenge, that drove the development of the rapid-prototype calculator
reported in [5]. The key was that we needed to iterate P ∨ II , which effectively
means adding in the possibility of a stuttering step everywhere, leading to the
following definition:

P 0 =̂ II (13)

P i+1 =̂ P ; P i (14)

WwW(P ) =̂
∨

i∈N

P i (15)

One key observation here is that with UTCP we need fairly ubiquitous stutter-
ing, just as found in the other compositional theories discussed earlier. Another
somewhat striking observation is that we produce a potentially infinite disjunc-
tion of P sequentially composed with itself multiple times! This presents quite
a challenge for the use of this semantics, and was a key motivation for the UTP
Calculator development [5], but it is key to making things work. Given iteration-
free programs, the number of iterations actually required is bounded.

Importantly, for a healthiness condition, WwW is indeed both idempotent
and monotonic:

P � Q =⇒ WwW(P ) � WwW(Q) (16)

WwW(WwW(P )) = WwW(P ) (17)

3.5 Label Healthiness

We also need some healthiness conditions on labels, generators, and the global
label-set ls. One, “Disjoint labels” (DL), requires that in �= out, and neither in
nor out appear in labs(g). We introduce more shorthand, using {L1|L2| . . . |Ln}
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for L1�L2�· · ·�Ln, and using G as a shorthand for labs(g) in a context where a
label-set is expected rather than a generator. This allows us to write the disjoint
label condition as {in|g|out}. This is a static invariant that needs to be satisfied
by all healthy P :

DL(P ) =̂ P ∧ {in|g|out} (18)

Another, “Label Exclusivity” (LE), requires that labels in, out can never occur
together in ls, and also never when any member of labs(g) is present. Again, we
introduce a shorthand [L1|L2| . . . |Ln] which asserts for any two different Li and
Lj , that Li ∩ ls �= ∅ =⇒ Lj ∩ ls = ∅. We also use [L1|L2| . . . |Ln]′ to denote
the above assertion with ls replaced by ls′ throughout. This is now a dynamic
invariant that needs to be satisfied by all healthy P :

LE(P ) =̂ P ∧ [in|g|out] ∧ [in|g|out]′ (19)

Both DL and LE are clearly idempotent and monotonic w.r.t refinement.
We can now define a top-level healthiness condition called W:

W(P ) =̂ DL(LE(WwW(P ))) (20)

So our full definitions of 〈a〉 and P ‖ Q, and the other constructs, for com-
pleteness, can now be shown in Fig. 3.

〈a〉 =̂ W( A(in|a|out) ) (21)

skip =̂ 〈ii〉 (22)

P ;; Q =̂ W(P [g:1, �g/g, out] ∨ Q[g:2, �g/g, in]) (23)

P ‖ Q =̂ W( A(in|ii|�g1, �g2) ∨
P [g1::, �g1, �g1:/g, in, out] ∨
Q[g2::, �g2, �g2:/g, in, out] ∨
A(�g1:, �g2:|ii|out) ) (24)

P + Q =̂ W( A(in|ii|�g1) ∨ A(in|ii|�g2) ∨
P [g1::/g] ∨ Q[g2::/g] ∨
A(�g1:|ii|out) ∨ A(�g2:|ii|out) ) (25)

P ∗ =̂ W( A(in|ii|�g) ∨
A(�g|ii|�g:) ∨
A(�g|ii|out) ∨
P [g::, �g:, �g/g, in, out] ) (26)

Fig. 3. Command semantics in UTCP

In the following sections, we look at in more detail to uncover the laws and
algebras that underpin the semantics just described.
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4 Inner Algebras

Here we present some of the algebras and laws that characterise the underlying
semantic domains of UTCP.

4.1 Labels and Generators

We need to be sure that however we implement, or model, label generation, that
we are sure that unique labels are produced. We can give a minimal specification
by positing a function labs that takes a generator as input, and returns the set
of all labels it could possibly generate, and then requiring that: (i) any label
produced from a call to new can never occur in the modified generator returned
by that call, and (ii) the two generators produced by split have disjoint label-sets:

labs : Gen → P Lbl (27)

�G /∈ labs(G:) (28)

labs(G1) ∩ labs(G2) = ∅ (29)

There is a simple way to model/interpret such generators and labels that auto-
matically satisfies the above requirements, plus the following stricter one (� is
disjoint union):

labs(G) = {�G} � labs(G:) � labs(G1) � labs(G2) (30)

We simply take labels and generators to be generator expressions themselves,
interpreted as strings starting with ‘g’ and followed by zero or more ‘:’, ‘1’, and
‘2’. The � operator returns the generator string as the label. The :, 1, and 2 oper-
ators append ‘:’, ‘1’, and ‘2’ respectively to the end of the generator string2. The
advantages of this are two-fold. First, it’s simple to describe (and implement, if
needed), compared to trying to produce labels as natural numbers (say), that
satisfy the requirements above. In particular, there is no need to have a central
pool of already generated labels that can be accessed by all the generators that
result from new and splits. Secondly, this interpretation of labels as sequences
of symbols that basically record how they were generated from some ‘root’ gen-
erator g, gives us a very easy way to support some of the ideas of Lamport
[18], (notably 1, 3, and 4, on p3). Given a top-level command P that mentions
atomic action A(�G|a|�G:), then G, as a string, identifies the path from the top-
level down to that atomic action, so answering the “who” question (idea 1).

Performing a substitution of Ga for g in Gb (Gb[Ga/g]) is equivalent to gener-
ator string concatenation, resulting in Gab. Given two generator strings Gp and
Gq associated with commands P and Q say, we can answer questions such as: (i)
is P a sub-component of Q (Gq a prefix of Gp)? or (ii) do P and Q have a parent
component in common, other than the top-level (Gp and Gq have a common

2 A form of Herbrand interpretation!.



Inner & Outer Algebras 167

prefix)? A key point to understand about the semantics is that the way sub-
stitutions for g, in and out are used maintains this simple relationship between
components and sub-components, which makes it easy to facilitate Lamport’s
idea 3.

4.2 Ground Expressions

The distinction between the dynamic observables (s, s′, ls, ls′) and the static
ones (in, out, g) is crucial. In particular, the relationship between substitution
and sequential composition is key. Consider applying a substitution σ to the
results of a sequential composition of P and Q. On what circumstances should
substitution distribute in through such a composition?

(P ;Q)σ =? Pσ;Qσ

If σ involves dynamic observations, then this should clearly not hold. However,
all the substitutions in our semantics are used to modify labels in a systematic
way down through a sub-component. So if σ only involves static observations,
then we do want this distributive property.

Another is issue is our use of the healthiness condition WwW in our seman-
tics. This effectively replaces P by a nondeterministic iteration of P ∨ II , which
performs an arbitrary number (zero or more) of sequential compositions. We
want certain predicates, and substitutions, to distribute through WwW.

To this end, we first define the notion of a ground term, as one that only refers
to the static observables g, in, and out. A notable example from our semantics
is the invariant {in|g|out} associated with the DL healthiness condition.

Ground predicates K distribute freely through semantic sequential composi-
tion:

K ∧ (P ; Q) = (K ∧ P ) ; Q (31)

= P ; (K ∧ Q) (32)

= (K ∧ P ) ; (K ∧ Q) (33)

These are all an easy consequence of the way in which we defined sequential
composition to only involve the dynamic observables. We also note that sequen-
tial composition is idempotent on ground predicates, which clearly indicates that
the observables in, out, and g, are truly unchanging.

K ; K = K (34)

Finally, we can show that ground predicates K freely distribute in and out of
WwW:

K ∧ WwW(P ) = WwW(K ∧ P ) (35)
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A ground substitution γ is one where the target variables are static, and all
the replacement terms (G, I,O) are ground. Such a substitution will have the
following most general form:

γ = [G, I,O/g, in, out] (36)

A key property of ground substitutions is that they distribute through sequential
composition (and also have no effect on II ):

(P ; Q)γ = Pγ ; Qγ (37)

II γ = II (38)

They also distribute into the label-set healthiness conditions.

{L1| . . . |Ln}γ = {L1γ| . . . |Lnγ} (39)
[L1| . . . |Ln]γ = [L1γ| . . . |Lnγ] (40)

We also have the result that the composition of two ground substitutions is itself
ground:

[G1, I1, O1/g, in, out]γ2 = [G1γ2, I1γ2, O1γ2/g, in, out] (41)

4.3 Sound Substitutions

Consider the ground substitution [g, �g, �g/g, in, out] applied to the label disjoint-
edness assertion {in|g|out}. We obtain the result {�g|g|�g}, which violates the
DL healthiness condition. To prevent this we need the notion of a sound substi-
tution ς, which is a ground substitution where the three replacement expressions
themselves collectively satisfy DL:

ς = [G, I,O/g, in, out] where {I|G|O} (42)

We note that soundness is also preserved by substitution composition, and also
that every substitution used in the semantics is sound.

The disjoint-label healthiness condition predicate is ground, so DL dis-
tributes through sequential composition

DL(P ; Q) = DL(P ) ; DL(Q) (43)

The label exclusivity invariant mentions dynamic observables ls and ls′, so we
only get a weaker form of distributivity:

LE(P ) ; LE(Q) = LE(LE(P ) ; LE(Q)) (44)

= LE(P ; LE(Q)) (45)
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4.4 Actions

The core of the UTCP semantics is the notion of a labelled atomic action
A(E|a|N). It is enabled when E ⊆ ls, and if “chosen” to execute, performs a
state change s → s′ that is consistent with the relation a. The semantics of any
command reduces to a tree of disjunctions of these, wrapped in the healthiness
conditions at every level. The effect of WwW is to perform lots of sequential
compositions of these with themselves. What is of considerable importance, con-
sequently, is how labelled atomic actions interact with sequential composition.

We start by considering an action composed with itself:

A(E|a|N) ; A(E|a|N) = E ⊆ N ∧ A(E|a2|N) (46)

All atomic actions in the semantics use labelled actions that satisfy DL, in which
case we have E∩N = ∅. For these actions the above self-composition yields false.
If we consider the full semantics for 〈a〉:

DL(LE(WwW(A(in|a|out))))

then the computation of A(in|a|out)2 required by WwW is false, because
we have invariant {in|g|out}, and so are all the subsequent compositions. So
WwW(A(in|a|out)) becomes II ∨ A(in|a|out), giving the result:

〈a〉 = {in|g|out} ∧ [in|g|out] ∧ (II ∨ A(in|a|out))

Unfortunately, our labelled atomic actions are not closed under sequential
composition, except under certain conditions, the most notable being when the
two actions have no labels in common. In most cases however, we have to intro-
duce an extended form, that differentiates between the enabling labels (E) and
those then removed (R). Our basic labelled action is then defined setting R = E.

X(E|a|R|A) =̂ E ⊆ ls ∧ a ∧ ls′ = (ls\R) ∪ A (47)

A(E|a|N) = X(E|a|E|N) (48)

We can calculate that the composition of two extended actions is an extended
action, provided the label-sets involved satisfy certain conditions that basically
ensure that the second action is enabled after the first one runs.

X(E1|a|R1|A1);X(E2|b|R2|A2)
= E2 ∩ (R1\A1) = ∅

∧ X(E1 ∪ (E2\A1) | a ;s b | R1 ∪ R2 | (A1\R2) ∪ A2) (49)

Here we introduce sequential composition restricted to s and s′:

a ;s b =̂ ∃sm • a[sm/s′] ∧ b[sm/s], (50)

ii ;s a = a = a ;s ii (51)
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The result for composing two original atomic actions to produce an extended
one is then easily obtained .

A(E1|a|N1) ; A(E2|b|N2)
= E2 ∩ (E1\N1) = ∅

∧ X(E1 ∪ (E2\N1) | a ;s b | E1 ∪ E2 | (N1\E2) ∪ N2) (52)

We finish actions by noting that ground substitutions distribute into their
labels:

A(E|a|N)γ = A(Eγ|a|Nγ) 〈〈·A-gamma-subs·〉〉

X(E|a|R|A)γ = X(Eγ|a|Rγ|Aγ)

4.5 Invariants

Healthiness conditions DL and LE introduce invariants such as {in|g|out},
[in|g|out] and/or [in|g|out]′. The execution of an atomic action cannot alter
the truth of the first one, but it can effect the other two. We require atomic
action commands, including control-flow actions, to preserve the LE invariant.
For basic atomic actions, this is straightforward, and we can show it holds under
any sound substitution ς, which covers all the uses of atomic actions as sub-
components of composite commands.

{in|g|out}ς ∧ [in|g|out]ς ∧ A(in|a|out)ς =⇒ [in|g|out]′ς (53)

Finally, given extended actions X1 and X2, we have a law about how they
interact with law invariants (I1 and I2) :

(I1 ∧ X1) ; (I2 ∧ X2) = I1 ∧ I2[(ls\R1) ∪ A1/ls] ∧ (X1 ; X2) (54)

= I12 ∧ (X1 ; X2) (55)

where Iij = Ii ∧ Ij [(ls\Ri) ∪ Ai/ls] (56)

Given that invariants are preserved, as a result of careful theory construction,
we might ask if they can be dropped to simplify matters, especially LE whose
distributivity is limited. Unfortunately, we can’t omit them, as they are very
useful when doing calculations. It turns out that every instance of X(. . . ) that
is left over, can be converted back into an equivalent instance of A(. . . ), because
the invariant gives extra information to allow this simplification. A canonical
example of this is X(L1|a|L1, L2|L3) given invariant [L1|L2| . . . ]. The action
is enabled if L1 ⊆ ls, removes L1 and L2 from ls, and adds in L3. However
the invariant forbids L2 from being in ls when this action is enabled, so the
removal of L2 is superfluous. So when enabled, the above action is equivalent to
X(L1|a|L1|L3), which is the same as A(L1|a|L3), by Eq. 48.
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5 Outer Algebras

The notion of Concurrent Kleene Algebra (CKA) (A,+, ∗, ; , ∗©, ;©, 0, 1) is being
put forward as a baseline for the semantics of all programming languages [16],
and is defined as a bi-Kleene algebra over concurrent monoid (A, ∗, ; , 1,≤). In
that paper, a following rough correspondence between CKA operators and those
of CSP are given: + is non-deterministic choice, ; is sequential composition, ∗ is
some form of parallelism, ≤ is refinement, 1 is SKIP, 0 is miracle, and the circled
operators are iterated parallel and sequential composition.

The command language does not have all of those operators, and so we cannot
claim that its semantics forms a CKA. If we define

skip =̂ 〈ii〉 (57)

P � Q =̂ P = P + Q (58)

then we can posit the following laws:

skip ;; P = P

P ;; skip = P

P ;; (Q ;; R) = (P ;; Q) ;; R

P ‖ Q = Q ‖ P

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R

P + P = P

P + Q = Q + P

P + (Q + R) = (P + Q) + R

P + Q � P

P � Q ≡ (P + Q) = Q

P ∗ = skip + P ;; P ∗

P1 ;; (P2 ‖ P3) � (P1 ;; P2) ‖ P3

P1 ;; P2 � P1 ‖ P2

Here we discuss how we might proceed to prove that these laws are a consequence
of our semantics. The best approach is to explore simple examples of the above
laws using atomic actions. We will consider the follow three in order, chosen to
reveal key issues we have to tackle.

outin

lg1

lg2

lg1:

lg2:

a

b

Fig. 4. 〈a〉 ‖ 〈b〉

outin

lg1

lg2

lg1:

lg2:

b

a

Fig. 5. 〈b〉 ‖ 〈a〉.
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in
a b

lg out
c

lg:2

Fig. 6. 〈a〉 ;; (〈b〉 ;; 〈c〉).

in
a b

lg out
c

lg:1

Fig. 7. (〈a〉 ;; 〈b〉) ;; 〈c〉.

outin

lg1

lg2

lg1:

lg2:

a

a

Fig. 8. 〈a〉 + 〈a〉.

outin a

Fig. 9. 〈a〉.

〈a〉 ‖ 〈b〉 = 〈b〉 ‖ 〈a〉 (59)

〈a〉 ;; (〈b〉 ;; 〈c〉) = (〈a〉 ;; 〈b〉) ;; 〈c〉 (60)

〈a〉 + 〈a〉 = 〈a〉 (61)

The semantics of parallel can be pictured as per Fig. 2 on p5. The instantiation
of this for both sides of the parallel commutativity law example (Eq. 59) are
shown in Figs. 4 and 5. We can see that the only difference is that the �gNx

labels have been swapped around. This suggests that we should either ignore
the particular labels and just look at the structure, of perhaps assume that any
bijective mapping of labels has no effect on behaviour.

When we consider the associativity of sequencing (Eq. 60), the two sides are
shown in Figs. 6 and 7. Again there is an obvious one-to-one mapping from labels
that makes them equivalent.

Things get more complicated when we compare the diagrams (Figs. 8 and 9)
for the third example, the idempotence of choice (Eq. 61). This requires more
thought: only one of the atomic actions in the lefthand side will run. Unlike
the parallel example, where the “production” of both �g1 and �g2 result from the
consumption of in, here we have have two distinct “edges” from label in, so once
in is in ls, both edges are enabled, but only one is chosen non-deterministically,
so either �g1 or �g2 are enabled, but not both. As in will be removed from ls,
so there is no immediate chance of the other option being enabled. What we
have to realise is that control-flow actions are important but from an external
observer’s perspective, as long as they are well-behaved, the precise details do
not matter. In effect this means that our notion of similarity of these graphs
needs to be based on a form of bijection-like relation between non-empty sets of
labels, where sets being related may not have the same size. The bijection-like
aspect would arise in that if L1 and L2 are related, then none of the elements of
either set may occur in any other pair of related sets. In this example we would
propose the relation:

{({in, �g1, �g2}, {in}), ({�g1:, �g2:, out}, {out})}
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The upshot of all of this, is that one possible plan to prove the laws has two
steps: the first is to show that the laws always induce pairs of graphs like the
above related by some relational bijection. The second is to show that these
graphs induce the behaviour that results from calculating with the semantics.

There is another alternative to be considered: the UTCP semantics define
predicates, but their structure is very graph-like. We can view the labelled nodes
as vertices of the graph, and labelled actions as action-labelled edges connecting
a set of “input” vertices to a set of “output” vertices. We can imagine a vertex
coloured black or white to indicate if its label is present in ls. With this graph
interpretation of the denotational semantics (predicate) rules, we should be able
to produce an operational semantics. This may provide an alternative route to
proving the laws.

6 Related Work

The most obvious use of inner algebras in UTP can be found in those theo-
ries, usually of concurrency, that make use of trace observations. We can find
these in the UTP book, for example the definition of the trace merge operator
[15, Definition 8.19, p. 203]. We also see a variant of it used in Circus [19]. It
is particulary notable in any work adding time to traces, such as Circus-time
[22], “slotted”-Circus [7,13,14], and recent work on trace algebras being used for
hybrid semantics [10]. A particularly interesting example of inner algebras and
laws, comes from work mechanising UTP in Isabelle/HOL [12]. In this, the tradi-
tional pre/post divide becomes a pre/peri/post divide, in which the behaviours
when waiting for an external event are captured as distinct peri-conditions [11].
Certain idioms commonly used when defining pre-, peri-, and post-conditions are
abstracted out and shown to obey useful laws. These prove to be very valuable
for high speed automated proof.

7 Conclusions

While describing work to develop and validate a denotational semantics for the
command language in UTP, we have discovered the value of algebra as a tool to
help develop such theories. This has been driven by the need to manage the com-
plexity inherent in the underlying semantic domains. It is particularly helpful
when the area has conceptual difficulties, and you need healthiness conditions,
such as WwW, that are highly counter-intuitive. The need for some automation
to help assess emerging theories drove the development of the “UTP calculator”
described in [5]. What became very clear from that work is that good alge-
bra design leads to very effective and fast calculation, with a lot of scope for
automation. The calculator can have been considered a stop-gap measure, but
has inspired a complete re-design of the Saoith́ın/UTP2 theorem prover, orig-
inally described in [3,4]. This new version, being developed at https://github.
com/andrewbutterfield/reasonEq will support both proof and calculation, with
scope for considerable automation.

https://github.com/andrewbutterfield/reasonEq
https://github.com/andrewbutterfield/reasonEq
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Abstract. An algebra for rely/guarantee concurrency has been con-
structed via a hierarchy of algebraic theories starting from basic theories
like lattices through to theories of synchronous behaviour of atomic steps
and a theory to support localisation. The algebra is supported by a model
based on Aczel traces. We examine the role of these theories in develop-
ing a mechanised theory for deriving concurrent programs and outline
some of the challenges remaining.
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Synchronous parallel · Localisation

1 Introduction

This paper overviews the design decisions made in developing a refinement alge-
bra for concurrent programs and then outlines some issues that remain. The con-
current refinement algebra that we have developed supports the rely/guarantee
style of reasoning about concurrent programs [24–26] but we would like to think
it is more general than that. Our design principles are to

– focus on algebraic properties in order to facilitate reasoning and theory reuse,
– use a small number of primitive operators and commands from which more

complex constructs are built,
– utilise the principle of separation of concerns whenever possible, and
– provide mechanisations of the theories (in Isabelle/HOL).

The aim of this paper is to discuss the major role algebra has played in the
development of the overall theory. Our approach is

– based on a refinement calculus style in which specifications are first class
objects [2,31,33,37] – see Sect. 2,

– follows Kozen’s [27] approach in Kleene Algebra with Tests (KAT) in utilising
a sub-algebra of tests, in our case instantaneous tests – see Sect. 3,
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– handles assertions, such as preconditions, as well as non-terminating processes
(total correctness) and, as in the refinement calculus, a failed assertion allows
any behaviour [38] (abort in Dijkstra’s terminology [9,10]) – see Sect. 4,

– introduces parallel composition via its algebraic properties [13] – see Sect. 5,
– introduces a sub-algebra of atomic steps and utilises a synchronous algebra

to handle parallel composition and both weak and strong conjunction [14,17]
– see Sect. 6,

– introduces Morgan-style specification commands [32] that are defined in terms
of our primitives – see Sect. 7,

– handles rely conditions as assumptions in a manner similar to preconditions
[17] – see Sect. 8,

– introduced a weak conjunction operator “�” [13] in order to allow com-
mands to be conjoined but that respects assumptions by not masking aborting
behaviour (i.e. c � abort = abort) – see Sect. 9,

– handles issues like finite stuttering and mumbling [4,11] by utilising specifi-
cations that if they admit an implementation c, admit any program that is
equivalent to c modulo finite stuttering and mumbling – see Sect. 10,

– the basic parallel operator has no fairness assumptions but our algebra is rich
enough to define a fair parallel operator in terms of a basic parallel operator
[15] – see Sect. 11, and

– handles local variables via primitive localisation operators that operate on
commands in the same way that existential quantification acts on predicates
[12,28] – see Sect. 12.

While Hoare and He’s Unifying Theories of Programming [22] provides a
unifying (relational) semantic model for theories of programming, we see alge-
braic theories as unifying in the sense that the one abstract algebraic theory may
have multiple instantiations. In that sense our work corresponds more closely to
the Laws of Programming approach [21]. Properties that hold in the abstract
algebra are usually simpler to prove in the algebra, and can then be reused in
each instantiation. This reuse is supported in the Isabelle/HOL theorem prover,
making mechanisation simpler.

The remainder of the paper discusses each of the aspects listed above before
turning to some remaining challenges for the approach in Sect. 13.

2 Concurrent Refinement Algebra

At the base of our theory we utilise a complete distributive lattice of commands,
C, in a manner similar to theories of sequential refinement calculus [3]. This
allows one to represent refinement as the lattice order (i.e. c � d means c is
refined (or implemented) by d) and non-determinism as lattice meet operator
c � d that allows the behaviour of either c or d . The command abort is the
bottom of the lattice and the top of the lattice, �, is the everywhere infeasible
command (sometimes called “magic”).

The lattice is extended with a sequential composition operator “;” that is
associative (1) and has as its identity the null command nil (2).1 The command
1 In algebraic terms it forms a monoid with identity nil.
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abort is a left annihilator of sequential composition (3) and sequential com-
position distributes from the right over an arbitrary non-deterministic choice
(4) and from the left over a non-empty choice (5). We assume unary operators
have the highest precedence, followed by sequential composition and that non-
deterministic choice has the lowest precedence; we use explicit parentheses to
resolve all other precedence issues.

(c1 ; c2) ; c3 = c1 ; (c2 ; c3) (1)
c ; nil = c = nil ; c (2)

abort ; c = abort (3)

(
�

c∈C

c) ; d =
�

c∈C

(c ; d) (4)

c ; (
�

d∈D

d) =
�

d∈D

(c ; d) if D �= ∅ (5)

In (5), D is required to be non-empty because
�

∅ = � and because we require
abort to be an annihilator from the left (3) as in the sequential refinement
calculus,

abort ;
�

d∈∅

d = abort �= � =
�

d∈∅

(abort ; d).

The lattice allows one to define least and greatest fixed points which can be
used to define recursive programs and iteration operators, such as finite iteration
zero or more times, c�, possibly infinite iteration zero or more times, cω, and
infinite iteration c∞. Following the approach taken by von Wright [38], these
operators are defined in terms of least (μ) and greatest (ν) fixed points.

c� =̂ νx · (c ; x � nil) (6)

cω =̂ μ x · (c ; x � nil) (7)

c∞ =̂ μ x · (c ; x ) (8)

Iteration operators satisfy a range of well known properties, for example, the
following.

c� = c ; c� � nil = c� ; c � nil (9)
cω = c ; cω � nil (10)

(c � d)� = c� ; (d ; c�)� (11)
(c � d)ω = cω ; (d ; cω)ω (12)

Our development utilises the algebraic properties of the lattice, fixed points
and iteration operators following the work of Cohen [5] and von Wright [38].
While a number of algebraic approaches (e.g. Kleene algebra [27]) only handle
partial correctness, in order to handle non-terminating loops and infinite recur-
sion, we take a total correctness approach.
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3 Tests

Within his Kleene Algebra with Tests (KAT) Kozen [27] encoded tests as a
Boolean sub-algebra of commands. This allowed Kozen to construct conditional
and loop constructs in terms of the language primitives,

if b then c else d =̂ b ; c � b ; d (13)

while b do c =̂ (b ; c)� ; b (14)

where b is a test and c and d are commands, and b is the negation of the test b.
The while loop is defined in terms of the iteration operator c�, which does not
model non-terminating loops. This differs the approach used by von Wright [38]
that uses (b ; c)ω ; b instead and hence can handle total correctness. Because our
primitives include least fixed points, the loop can also be defined directly as a
least fixed point in terms of a conditional command (13).

while b do c =̂ μ x · (if b then c ; x else nil) (15)

Tests (T ) are a subset of commands that forms a complete Boolean algebra.
For modelling programming language conditionals on a state space Σ, a test
corresponds to a set of states for which the test succeeds. Hence we define a
one-to-one map τ from sets of states to tests, that maps a set of states p ⊆ Σ
to the test τ(p). The mapping preserves the Boolean algebra structure of tests
and hence is a homomorphism. Because tests form a Boolean algebra, one can
reuse the rich theory of lemmas for Boolean algebra provided in the standard
theories of Isabelle/HOL to reason about tests. Our tests are instantaneous and
hence the true test τ(Σ) is the identity of sequential composition nil.

4 Assertions

In Hoare logic [19] preconditions represent assumptions about the initial state
of the program. If the precondition does not hold, any behaviour is allowed, and
in a total correctness approach that includes non-termination. The refinement
calculus includes the command assert t that aborts if the test t does not hold
but otherwise does nothing [38]. It can be used to encode a precondition at
the start of a specification, but as it is a command, it can also be used as
an intermediate assertion. Because our language includes the abort command,
following von Wright [38], assert t can be defined as follows, in which t is the
negation of the test t .

assert t =̂ t ; abort � nil (16)

= t ; abort � t (17)
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Because abort is a left annihilator, a command such as (assert t ; x := 2) does
not guarantee that the final value of x is 2 when t does not hold initially, even if
its implementation terminates. Some approaches are not rich enough to encode
such a property. For example, using a relational algebra in which programs are
represented as binary relations between states, the most chaotic command is
the universal relation, and when that is combined with the relation representing
x := 2 it does not give the universal relation but a relation that guarantees
the final value of x is 2. (If the state space is extended with an additional
bottom state representing an aborted state, then an abort command that is a
left annihilator can be defined in that extended relational model.)

In the sequential case, non-termination is often conflated with a failing pre-
condition, i.e. the precondition defines the termination set of the program. When
dealing with concurrent processes it is best to keep these two concepts separate
because a valid behaviour of a command may be non-termination. For example,
a command monitoring a nuclear reactor that, when the reactor becomes unsafe,
drops its safety rods and terminates, has valid (and desirable) non-terminating
behaviour. Our approach distinguishes between abort and the non-aborting
iteration of a command forever, e.g. while true do something .

The assertion command is based on the abstract set of tests. For modelling
state-based programs tests are the image of the mapping τ . Hence we define an
abbreviation {p} for the assertions formed from tests of the form τ(p).

{p} =̂ assert τ(p) (18)

5 Parallel

The parallel composition of two commands c ‖ d is introduced via its basic
algebraic properties [13]. It is associative (19), commutative (20) and has iden-
tity skip (21).2 Note that our algebra does not assume that the identities of
sequential composition (nil) and parallel composition (skip) are the same. The
motivation for this is that in Sect. 6 we take a synchronous view of parallel com-
position rather than an interleaving view; if an interleaving view is taken nil
and skip can be identified. By not identifying them in the basic algebra either
interpretation is allowed. Parallel composition is abort strict (22) and distributes
over non-empty non-deterministic choices (23).

(c1 ‖ c2) ‖ c3 = c1 ‖ (c2 ‖ c3) (19)
c1 ‖ c2 = c2 ‖ c1 (20)

c ‖ skip = c (21)
c ‖ abort = abort (22)

(
�

c∈C

c) ‖ d =
�

c∈C

(c ‖ d) if C �= ∅ (23)

2 In algebraic terms it forms a commutative monoid with identity skip.
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When a new operator is introduced one needs to define how it interacts with other
operators, for example, (23) shows parallel’s interaction with non-deterministic
choice. Parallel does not distribute over sequential composition but it does satisfy
a weak interchange axiom (24).

(c1 ; c2) ‖ (d1 ; d2) � (c1 ‖ d1) ; (c2 ‖ d2) (24)

It is common to equate the identities of sequential and parallel composition,
i.e. assume nil = skip. In Concurrent Kleene Algebra (CKA) [23] nil and skip
are equated and hence one can deduce two further laws from (24) by taking c1,
respectively c2, to be the common identity.

c2 ‖ (d1 ; d2) � d1 ; (c2 ‖ d2) (25)
c1 ‖ (d1 ; d2) � (c1 ‖ d1) ; d2 (26)

We do not make such an assumption here and hence do not have these two
laws. The reason we do not equate nil and skip is that we use a synchronous
interpretation of the parallel operator (see Sect. 6), which allows us to encode
rely conditions as commands in the language (see Sect. 8).

6 Atomic Steps and Synchronous Operators

The approach we have taken to extending the above algebra to support the rely
and guarantee conditions of Jones [24–26] is motivated by the approach used by
Aczel [1,8] that provides a semantics for rely/guarantee concurrency in terms of
traces that distinguish atomic program (direct) and environment (interference)
steps. From here on we use the term step to mean atomic step exclusively. For
two processes c and d running in parallel, a program step of c is an environment
step of d , a program step of d is an environment step of c, and an environment
step of the whole parallel composition c ‖ d , i.e. a step of some additional process
running in parallel with both c and d , is an environment step of both c and d .

Our initial approach matched Aczel’s closely with explicit program and envi-
ronment steps [14] but we later realised that there was a more abstract atomic
steps algebraic structure underlying that. That structure resembles Milner’s Syn-
chronous CCS (SCCS) [29,30] and Synchronous Kleene Algebra (SKA) [35], both
of which model concurrency by explicit synchronisation of steps of processes and
include a “delay” step, called ε here, which synchronises with any step, a, of its
environment, that is, ε ‖ a = a. The approach to adding atomic steps, A, is to
view them as a subset of commands (C), similar to the way in which tests (T )
are embedded as a subset of commands. The algebraic structure we impose on
this subset is that, like tests, it forms a complete Boolean algebra, where the
Boolean algebra inherits its lattice operators from the command lattice opera-
tors and adds a negation operator, !a, on steps. The greatest step command is
� and the least step command is α, the step command that allows any atomic
step behaviour (see Sect. 6.2 for more details). The negation of step a, !a, can
perform any step other than those allowed by a. It differs from the negation
operator for tests, t , because the infeasible command � is both an atomic step
command and a test, but !� = α while � = nil.
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6.1 Abstract Synchronisation Operator

We abstract from the parallel operator and consider the properties of synchronis-
ing operators in general. The parallel operator is a synchronising operator, but
so is the lattice join operator �, the dual of �, and in Sect. 9 we see yet another
synchronising operator (�). It turns out we can define the behaviour of each of
these operators by stating that each is an instance of an abstract synchronising
operator “⊗” and then separately defining the behaviour of each operator on
pairs of atomic steps [17].

The abstract synchronising operator is associative, commutative and dis-
tributes over non-empty non-deterministic choices, as for parallel composition
(19), (20), (23). While parallel has identity skip (21), the other instances of
the synchronisation operator have different identities, and while parallel is abort
strict (22), the lattice join (�) is not, so equivalents of (21) and (22) are not
assumed for the abstract synchronisation operator (⊗). The additional axioms
to handle atomic steps show how its behaviour unfolds one step at a time. If the
two processes start with steps a and b, respectively, and continue with behaviour
described by commands c and d , respectively, the atomic steps must first syn-
chronise, a ⊗ b, and then their subsequent behaviours synchronise, c ⊗ d , i.e.
(27). If the nil process, that cannot make any step at all, is synchronised with
a process that must first perform atomic step a, the result is the infeasible pro-
gram � (28). Two nil processes synchronise to give nil (29). For these axioms,
a and b are atomic step commands while c and d are arbitrary commands.

a ; c ⊗ b ; d = (a ⊗ b) ; (c ⊗ d) (27)
a ; c ⊗ nil = � (28)
nil ⊗ nil = nil (29)

Axiom (28) ensures that two processes terminate together (via (29)) or both
have infinite behaviours that synchronise all steps. If axiom (28) is replaced by
the axiom

a ; c ⊗ nil = a ; c

that allows early termination of one component of the synchronisation. Using
an early termination form of synchronisation operator for parallel composition
does not support rely/guarantee reasoning about concurrency because once a
process in a parallel composition terminates early, its rely condition is no longer
applicable, and hence the remaining process is free to break the rely condition
from that point on.

From axioms (27–29), one can deduce properties about iterations of atomic
steps, such as the following for fixed and finite iteration [17], in which ci repre-
sents the fixed iteration of the command c exactly i times, for i ∈ N.

ai ⊗ bi = (a ⊗ b)i (30)
a� ⊗ b� = (a ⊗ b)� (31)

a� ; c ⊗ b� ; d = (a ⊗ b)� ; ((c ⊗ b� ; d) � (a� ; c ⊗ d)) (32)
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To handle infinite iteration, a∞, we add an additional continuity property that
effectively gives us the following axiom.

a∞ ⊗ b∞ = (a ⊗ b)∞ (33)

This is needed to deduce the properties equivalent to (30–32) for possibly infinite
iterations:

aω ⊗ bω = (a ⊗ b)ω (34)
aω ; c ⊗ bω ; d = (a ⊗ b)ω ; ((c ⊗ bω ; d) � (aω ; c ⊗ d)) (35)

One can develop quite a rich algebra from just these basic axioms. Not only is
it applicable to the theory we are developing for rely/guarantee concurrency, it
also applies to Milner’s SCCS [29,30].

6.2 Parallel as a Synchronisation Operator

To instantiate the synchronous algebra for parallel, one needs to define the
behaviour of parallel for steps. For rely/guarantee concurrency we need to be
more explicit about the structure of atomic steps. The command ε allows any
step by its environment and its complement in the Boolean atomic step algebra
π =̂ ! ε corresponds to a non-deterministic choice over all possible program steps.
The possible effect of a program or environment step on the state space of the
program can be represented by a binary relation, r , between states. We therefore
define two injective homomorphisms, π and ε, to map the Boolean algebra of
binary relations on states to the sets of program and environment steps, respec-
tively. For example, for relation r , π(r) is the atomic step that can perform any
program step from state σ to state σ′ provided that (σ, σ′) ∈ r . Because π and
ε are homomorphisms, they preserve the Boolean algebraic structure of binary
relations and hence both sets of program steps and sets of environment steps
also form Boolean algebras.

Note that π = π(univ) and ε = ε(univ), where univ is the universal binary
relation on states; π and ε are in a bold font to distinguish them from the
homomorphisms π and ε. Any atomic step command a can be defined in the
form π(r1) � ε(r2), for some relations r1 and r2. Atomic step commands form a
lattice that shares � as its top element and has α =̂ π � ε as its least element.

The following axioms define the behaviour of parallel on atomic steps.

π(r1) ‖ ε(r2) = π(r1 ∩ r2) (36)

ε(r1) ‖ ε(r2) = ε(r1 ∩ r2) (37)

π(r1) ‖ π(r2) = � (38)

Note that in our algebra two program steps cannot synchronise (i.e. their parallel
combination is the infeasible command �), unlike in process algebras like SCCS,
which instantiates ⊗ in a different manner. Because ε is the identity of parallel
for a single step, εω is the identity of parallel for an arbitrary command, i.e.
skip = εω.
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7 Encoding Specification Commands

A Morgan-style specification command,
[

p, q
]

, that terminates in a state satis-
fying q provided p holds in the initial state [32], can be encoded in our theory,
but first we need to define an encoding of termination. The command term that
only performs a finite number of program steps is defined as follows.

term =̂ α� ; εω (39)

Although it allows only a finite number of program steps, it does not preclude
the process being preempted by its environment forever and hence may at any
stage switch to the behaviour εω, which allows only environment steps, possibly
forever. Ruling out preemption by the environment can be handled by introduc-
ing fairness (see Sect. 11). A command c is terminating if it refines term, (i.e.
if term � c).

A command representing a Morgan-style pre-post specification [32] can then
be encoded as follows: if the precondition p holds in the initial state, it only
performs a finite number of program steps and terminates in a state satisfying
q .3

[

p, q
]

=̂ {p} ; term ; τ(q) (40)

8 Encoding Guarantee and Rely Conditions

In the context of rely/guarantee concurrency, a guarantee condition g , a binary
relation on states, can be encoded as the command guar g that only allows
program steps satisfying g but does not restrict environment steps at all.

guar g =̂ (π(g) � ε)ω (41)

It is a refinement to strengthen a guarantee because π(g1) � π(g2), if g2 ⊆ g1.

guar g1 � guar g2 if g2 ⊆ g1 (42)

Section 9 shows how to combine this command with rely conditions and pre/post
specifications.

Rely conditions are assumptions about the behaviour of the steps taken by
the environment of a process. In order to define a rely condition, we first define
a more abstract assumption command that allows any step refining a but aborts
after any other step, i.e. one refining !a.

assume a =̂ !a ; abort � α (43)

= !a ; abort � a (44)

Note the similarity to the definition of assert (16).
3 For this version q is a set of states; a more general version where q is a binary relation

between states can also be defined.
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Again one can derive a number of properties of assumptions and, in partic-
ular, their iteration, for example, the following lemma.

Lemma 1 (iterate-assumption). For any atomic step command, a,

(assume a)ω = αω ; (!a ; abort � nil). (45)

Proof. We start by expanding the definition of an assumption (43).

(!a ; abort � α)ω

= αω ; (!a ; abort)ω by (12) and abort annihilates
= αω ; (!a ; abort ; (!a ; abort)ω � nil) unfolding by (10)
= αω ; (!a ; abort � nil) as abort annihilates

�

A rely condition r , a binary relation on states, can be encoded as a command
that aborts if the environment of the command performs a step not satisfying
r ; it allows any environment steps satisfying r or any program steps.

rely r =̂ (assume (ε(r) � π))ω (46)

Noting that !(ε(r) � π) = ε(r), this can be rewritten using (43) as

rely r = (ε(r) ; abort � α)ω (47)

or applying (45) to (46) gives the following.

rely r = αω ; (ε(r) ; abort � nil) (48)

Weakening a rely condition is a refinement because if r1 ⊆ r2 then ε(r1) � ε(r2).

rely r1 � rely r2 if r1 ⊆ r2 (49)

Because relies and guarantees are defined in terms of our atomic step algebra
we can prove properties like the following lemma using properties of atomic
steps.

Lemma 2 (rely-parallel-guar). For any binary relation r,

(rely r) = (rely r) ‖ (guar r). (50)
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Proof. The main property needed is (35).

(rely r) ‖ (guar r)
= αω ; (ε(r) ; abort � nil) ‖ (π(r) � ε)ω ; nil by (48) and (41)
= (α ‖ (π(r) � ε))ω;

(((ε(r) ; abort � nil) ‖ (π(r) � ε)ω) �
(αω ; (ε(r) ; abort � nil) ‖ nil))

by (35)

= αω;
((ε(r) ; abort � nil) ‖ ((π(r) � ε) ; (π(r) � ε)ω � nil) �
((α ; αω � nil) ; (ε(r) ; abort � nil) ‖ nil))

by (36–38), (10)

= αω ; ((ε(r) ‖ (π(r) � ε)) ; (abort ‖ (π(r) � ε)ω) �
(ε(r) ; abort ‖ nil) �
(nil ‖ (π(r) � ε) ; (π(r) � ε)ω) �
(nil ‖ nil) �
(α ; αω ; (ε(r) ; abort � nil) ‖ nil))

by (23) and (27)

= αω ; (ε(r) ; abort � � � � � nil � �) by (22), (28–29)
= rely r by (48)

�

Property (50) is the foundation of the parallel introduction law for
rely/guarantee concurrency Law 3 in Sect. 9.

9 Conjoining Specifications but Respecting Assumptions

Above we have introduced rely and guarantee commands, but we need a
way to combine them with specification commands to produce a complete
rely/guarantee specification. The lattice join operator � can be interpreted as a
strong form of conjunction (i.e. intersection of trace sets in a trace-based seman-
tic model). It is too strong for use in combining rely, guarantee and specification
commands because, although it enforces the commitments of all of these, it does
not adequately combine their assumptions. In both specifications and rely con-
ditions, assumption violations are represented by aborting behaviour, which can
be masked by the lattice join, for which c � abort = c, because abort is the
least element of the lattice. For example, the conjunction of a guarantee with a
rely command, (guar g) � (rely r), simplifies to (guar g): in this example, the
assumption specified by the rely command is masked by the guarantee command
which can never abort.

What is required is a weak conjunction operator, �, that behaves like strong
conjunction for non-aborting steps but aborts if either of its arguments aborts,
i.e. it is abort strict:

c � abort = abort. (51)
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Weak conjunction is a synchronising operator (Sect. 6.1) and hence it is asso-
ciative and commutative, distributes over non-empty non-deterministic choices,
and satisfies the synchronisation axioms (27), (28), (29) and (33). It is also idem-
potent, i.e.

c � c = c (52)

and hence weak conjunction forms a semi-lattice of commands with identity
chaos (see below). Weak conjunction satisfies the following interchange axioms
with sequential and parallel composition.

(c1 ; c2) � (d1 ; d2) � (c1 � d1) ; (c2 � d2) (53)
(c1 ‖ c2) � (d1 ‖ d2) � (c1 � d1) ‖ (c2 � d2) (54)

We define weak conjunction for pairs of atomic steps as follows.

π(r1) � π(r2) = π(r1 ∩ r2) (55)

ε(r1) � ε(r2) = ε(r1 ∩ r2) (56)

π(r1) � ε(r2) = � (57)

These definitions coincide with those for the lattice join (�) because atomic step
commands are non-aborting. As a result α (= π � ε) is the atomic step identity
of weak conjunction, (i.e. a�α = a for any atomic step command a), and hence

chaos =̂ αω (58)

is the identity of weak conjunction, (i.e. c � chaos = c for any command c);
chaos allows any non-aborting behaviour.

Given weak conjunction, a command c satisfies a rely/guarantee specification
with precondition p, postcondition q , rely condition r and guarantee condition
g , if

(rely r) � (guar g) �
[

p, q
]

� c. (59)

This specifies that starting from a state satisfying p, in a context in which all
environment steps satisfy r , the command c terminates in a state satisfying q
and every program step made by c satisfies g . If at any point the environment
makes a step not satisfying r , from that point on the specification no longer
needs to be satisfied: the program steps no longer need to satisfy the guarantee
g ; termination is no longer guaranteed; and, even if the program terminates, the
final state need not satisfy q . This approach follows that outlined by Jones [6] but
differs from Concurrent Kleene Algebra [23], which requires the implementation
satisfies the guarantee regardless.

One consequence of our approach is that we are able to give an algebraic
proof of the parallel introduction law [17].
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Law 3 (parallel-introduction). If c � term = c and d � term = d and
c ‖ term = c and d ‖ term = d, then

(rely r) � c � d � ((rely r ∪ r1) � (guar r2) � c) ‖ ((rely r ∪ r2) � (guar r1) � d).

Proof. The proof of this law uses Lemma 2 (rely-parallel-guar) to introduce
parallel, in combination with applications of the interchange property between
weak conjunction and parallel (54). First we show,

(rely r) � c � ((rely r) � c) ‖ ((guar r) � term) (60)

as follows.

(rely r) � c = ((rely r) ‖ (guar r)) � (c ‖ term) by (50) and assumption
� ((rely r) � c) ‖ ((guar r) � term) by (54)

Property (60) is used twice in the following proof of the law.

(rely r) � c � d
� (rely r ∪ r1) � c � (rely r ∪ r2) � d by (52) and (49)
� (((rely r ∪ r1) � c) ‖ ((guar r ∪ r1) � term)) �

(((guar r ∪ r2) � term) ‖ ((rely r ∪ r2) � d)) applying (60) twice
� ((rely r ∪ r1) � c � (guar r ∪ r2) � term) ‖

((guar r ∪ r1) � term � (rely r ∪ r2) � d) by (54)
� ((rely r ∪ r1) � (guar r2) � c) ‖

((rely r ∪ r2) � (guar r1) � d) by (42) and assumption

�

Because
[

p, q1 ∩ q2
]

=
[

p, q1
]

�
[

p, q2
]

and specification commands satisfy
the proviso conditions in Law 3, this law can be applied to refine a specification
to a parallel composition.

10 Stuttering and Mumbling

Above, both tests and atomic steps have been treated as subsets of commands,
where both subsets form Boolean algebras. In relational algebra approaches, it
is common to identify tests as the subset of relations, each of which is a subset of
the identity relation, i.e. a test that the state is in a set of states p is represented
by the relation p� id, in which id is the identity relation on states and p�r is the
restriction of the relation r so that its domain is contained in p. One approach
(considered but not taken) was to identify tests with a subset of atomic program
steps, i.e. a test that the state is in a set of states p could be represented by the
command π(p � id). One consequence of this is that the conditional command
if ∅ then c else nil would be encoded as

π(∅ � id) ; c � π(∅ � id) ; nil = � ; c � π(id) = π(id)
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That is, this conditional is defined to take a stuttering step, π(id). That would
appear to rule out the optimisation of implementing this conditional by nil. The
usual approach to handle this issue in program semantics is to consider programs
equivalent if their sets of traces are equivalent modulo finite stuttering, i.e. if all
finite contiguous sequences of stuttering steps are removed from every trace,
the sets of traces of the programs are the same. While this is straightforward
to specify in a trace semantics, it is problematic to express it as more abstract
algebraic properties of programs.

The approach we have taken is to treat tests as instantaneous commands that
either succeed or fail and hence the set of test commands is essentially disjoint
from the set of atomic step commands—they do have one element in common,
τ(∅) = π(∅) = ε(∅) = �. To handle the instantaneous nature of tests we need
additional axioms that show how tests and atomic steps combine. For program
steps these axioms are,

τ(p) ; π(r) = π(p � r) (61)

π(r � p) ; τ(p) = π(r � p) (62)

where r � p is the restriction of the relation r so that its range is contained in
the set of states p.

Our specification command
[

p, q
]

implicitly allows for finite stuttering in the
sense that if c and d are semantically equivalent modulo finite stuttering then
c refines a specification

[

p, q
]

if and only if d refines
[

p, q
]

. In our approach c
and d are not necessarily equal, but they do both refine the same specification.
This is similar to the situation in sequential refinement where, although Quick
Sort and Merge Sort both refine a suitable specification of sorting, they are not
equivalent programs (neither refines the other) because Merge Sort is a stable
sort but Quick Sort is not.

A second form of specification is 〈p, q〉. It performs an update that satisfies
q atomically, provided the state before the update satisfies the precondition p.
It allows finite stuttering steps before and after the update. The finite stuttering
is represented by the command idle (63) that performs only a finite number of
program steps that do change the state, (i.e. each program step it executes satis-
fies the identity relation, id, between its before and after states). The command
opt(q) performs the update q in a single atomic program step, π(q), but if the
before state σ is such that (σ, σ) ∈ q , q is satisfied by doing no step at all and
hence the definition of opt(q) allows a test for this case as an alternative. That
allows optimisations like replacing an atomic update that does not change the
state by a test (e.g. opt(id) = π(id) � τ({σ | (σ, σ) ∈ id}) = π(id) � nil � nil).

idle =̂ (guar id) � term (63)

opt(q) =̂ π(q) � τ({σ | (σ, σ) ∈ q}) (64)

〈p, q〉 = idle ;{p} ; opt(q) ; idle (65)
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Note that in (65) the precondition must hold in the state immediately before
the update. The idle commands before and after the optional update explicitly
allow finite stuttering.

As well as specifications implicitly allowing for finite stuttering, our encodings
of programming language commands and expression evaluation explicitly allow
for finite stuttering. This allows one to consider transformations between pro-
gramming language commands that are finite stuttering equivalent. The main
advantage of this approach is that we are able handle finite stuttering alge-
braically and do not have to resort to the semantic model to handle refinement
proofs reliant on finite stuttering equivalence.

Another equivalence used in trace semantics is mumbling equivalence [4],
whereby a program with a trace containing two consecutive program steps
(π(r1) ; π(r2)) also admits a trace with these two steps replaced by a single
program step π(r1 o

9 r2), where “o
9” is relational composition. Again, while this

is straightforward to represent in a trace semantics, it is problematic to express
it as algebraic properties of programs. Again, in our approach a specification
[

p, q
]

that admits an implementation that uses the two steps also admits an
implementation that uses just one (combined) step.

The major advantage of treating finite stuttering and mumbling in the way
we do is that it we can reason algebraically about the properties of commands,
rather than having to prove properties in the semantic model whenever prop-
erties dependent on finite stuttering or mumbling arise. Our approach is more
abstract because all properties shown to hold for an algebra, hold for any seman-
tic model of the algebra.

11 Fairness

Our parallel operator has no fairness assumption but because we can explicitly
refer to environment steps, we can encode a form of fairness that corresponds
to minimal progress (i.e. if a process is always able to do a program step, it will
eventually perform that step) within our algebra as a command, fair, that never
allows its environment to perform an infinite number of steps in a row [15].

fair =̂ (ε� ; π)ω ; ε� (66)

Weak conjoining fair with a command c, i.e. c�fair, denotes the fair execution of
c and hence we may reason algebraically about the fair execution of c in isolation
without concerning ourselves with a parallel process or a fair parallel operator.
This gives a separation of concerns of fairness and parallel. For example, fair
execution of term (39) only executes a finite number of steps.

term � fair = (εω ; π)� ; εω � (ε� ; π)ω ; ε�

= (ε� ; π)� ; ε�

= (ε � π)� by (11)
= α�
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Hence if term � c then α� = term � fair � c � fair, i.e. fair execution of c
only performs a finite number of steps.

A fair parallel operator can be defined using our existing parallel operator
by requiring each operand of parallel to be fairly executed. The properties of
fair parallel can then be derived from the existing parallel operator algebraically
(see [15] for details).

12 Localisation

Like other programming constructs, local variable scopes can be defined in terms
of more primitive operators and commands. The primitive operator at the core
of local variable reasoning is the localisation operator (∃x ) that takes a variable
x from a finite set of variables V and a command c, and effectively removes all
restrictions on the variable x (but not on the other variables). It can be thought
of as generalisation of the existential quantification operator of predicate calculus
to an operator applicable to commands.

Given a state space Σ =̂ V → S , and a variable x ∈ V , we say that states
σ and σ′ are equivalent except for variable x , written σ ≈x σ′, when they have
identical values for all variables other than x , i.e, (∀ y ∈ V−{x} · σ(y) = σ′(y)).
Given a set of states p over the state space Σ, we then have that the set of states
(∃ x · p) contains state σ if and only if there exists a σ′ ∈ p such that σ ≈x σ′.

A similar quantification operator (∃x ) can be defined over commands, whose
observable effect on the state space can be represented by sequences of states.
The notation for equivalence except for a variable x extends point-wise to (pos-
sibly infinite) sequences of states, i.e. for sequences s, s ′ ∈ seqΣ we have s ≈x s ′

iff sequence s and s ′ are of the same length and for all indices i in the sequences
si ≈x s ′

i . We then specify that ∃x c can produce sequence of states s if and only
if there exists a sequence of states s ′ produced by c satisfying s ≈x s ′.

For tests, which are a lifting of sets of states to commands, the localisa-
tion operator is homomorphic to existential quantification on sets of states, i.e.
∃x τ(p) = τ(∃x p). Arbitrary commands generalise this.

First-order equational logic, with its notion of variables and quantifications,
have been given an algebraic characterisation in Henkin, Monk and Tarski’s
cylindric algebras [18]. The similarities shared between the primitive locali-
sation operator on commands (∃x ) and existential quantification in predicate
logic, means that their theory of cylindric algebras can be generalised to apply
to program reasoning. This allows for a greater reuse of existing mathematical
theories than would be possible had we decided to axiomatise a local variable
scope command directly. Axioms for localisations include elegant properties such
as ∃x c � c, which describes the fact that localisation introduces nondetermin-
ism, commutativity property ∃x ∃y c = ∃y ∃x c, and distributivity properties
∃x (c � d) = ∃x c � ∃x d (like distribution of existential over disjunction in logic)
and ∃x (c ‖ (∃x d)) = ∃x c ‖ ∃x d (like distribution of existential over conjunction
in logic), etc. It follows that ∃x c � ∃x d , if c � d . The localisation operator (∃x )
extends to finite sets of variables in the obvious way, e.g. ∃{x ,y} c = ∃x ∃y c.
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The inclusion of a localisation operator enriches the algebra with the extra
expressivity required to reason about frames. Given that id is the identity relation
on states, for any finite set of variables Y we have that π(∃Y id) is the atomic
program step that can only modify variables in Y . Conjoining a command c
with the guarantee guar(∃Y id) then limits the frame of the command c to be
Y , and so we define

Y :c =̂ guar(∃Y id) � c

to be the command c constrained so that its program steps can only modify
variables in finite variable-set Y . For variable x we write x for the complement
of x in the entire set of variables V . In this way we have that x :c limits command
c so that its program steps cannot change x .

The axiomatisation of the localisation operator is arguably simpler than that
of a local variable scope, especially in the context of shared memory concurrency,
where interference must be accounted for. The command (local x • c) performs c
within the local variable scope of x . When c is executed within the local variable
scope of x , variable x is not subject to interference from the environment. This
is enforced by conjoining c with the command demand idx , where idx is the
identity relation on just x (i.e. idx = ∃x id) and for a relation r ,

demand r =̂ (π � ε(r))ω.

Command demand idx therefore constrains the environment steps of c to not
change x , in a manner similar to the way a guarantee command constrains
program steps. Outside of the local variable scope (local x • c), another variable
with the same name as x is also defined, however the non-local occurrence of x is
not modified by the program steps taken by (local x • c), and it is unconstrained
by the environment steps taken by (local x • c). The behaviour of (local x • c)
is thus defined to be

(local x • c) =̂ x : (∃x (c � demand idx )).

The localisation on the command with the scope, c � demand idx , removes all
constraints on variable x , and the frame x then limits the behaviour of the
program steps so that they cannot change non-local x .

Properties of local variable scopes are derivable from the more elementary
properties of localisations and the other primitive operators. For example, we
have the following monotonicity property and variable introduction rule, in which
“x ,Y ” as a frame abbreviates {x} ∪ Y .

(local x • c) � (local x • d) if c � d
Y :c = (local x • x ,Y :c) if c = ∃x c and x �∈ Y

Having the capability to reuse variable names simplifies reasoning about
recursive procedure calls. Also, this treatment of localisations avoids having to
introduce and remove variables from the state space, which is awkward when
defining interleavings of program and environment steps, which may have differ-
ent local variable declarations.
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13 Some Remaining Challenges

Progress Properties. Handling progress within the concurrent refinement
algebra is one of the remaining challenges. We are able to encode interval tem-
poral logic (ITL) [34] properties of sequences of states as commands using the
following scheme adapted from [7], in which an ITL formula f is encoded as a
command I(f ), the execution of which can generate all possible sequences of
states satisfying f . For an ITL formula consisting of a state predicate p, p must
hold in the initial state and any behaviour is permitted after that (i.e. chaos).
A formula f holds in the next state, �f , if it holds after performing any sin-
gle step. A formula f holds in some state eventually, �f , if it holds after some
finite number of steps. A formula f holds for all states, �f , if it holds initially
and then �f holds in the next state, which we represent here as a least fixed
point. Conjunction and disjunction of ITL formulae map to weak conjunction
and non-deterministic choice, respectively.

ITL formula f Encoding I(f )
p τ(p) ; chaos�f α ; I(f )

�f α� ; I(f )
�f μ x · (I(f ) � (α ; x � nil))

f1 ∧ f1 I(f1) � I(f2)
f1 ∨ f1 I(f1) � I(f2)

One use of temporal logic is to specify that a command c implements a
specification s provided c is executed in a context that satisfies a temporal logic
formula f . That can be expressed as

s � c � I(f )

that is, if c is restricted to executions that satisfy the temporal logic formula f , it
implements s. The use of weak conjunction here (rather than strong conjunction)
ensures that any aborting behaviour of c is not masked by the non-aborting
encoding of ITL formulae. Temporal logic restrictions are commonly needed to
show termination, for example, a dequeue operation that waits for the queue to
be non-empty only terminates if eventually the queue is non-empty. Research on
incorporating temporal logic assumptions to show termination for rely/guarantee
concurrency is in its early stages.

Exclusive Access to Resources. Hoare introduced a command of the form
with x do c to represent execution of the command c with the process having
exclusive access to the resource x [20]. For example, a resource may be a shared
variable x 4 and the with command effectively locks x for the duration of c. This
command can be viewed as a specification of the desirable atomicity behaviour

4 More generally it can be a set of variables.
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for x and may be implemented using locks or other mechanisms to ensure mutual
exclusion. It has an interesting interaction with rely and guarantee conditions in
that it strengthens the rely within c to include the fact that x is not changed by
the environment—normally relies can only be weakened (49)—and it weakens
any guarantee on x to only need to hold end-to-end over c, rather than for every
program step of c—normally guarantees can only be strengthened (42); see [16]
for more details. Our research on refining concurrent programs has focused on
the challenge of refining specifications to non-blocking algorithms and hence has
not needed the abstraction of exclusive access to a resource, but research on
incorporating such an abstraction is important for a comprehensive theory.

Data Refinement. Data refinement allows operations to be specified on an
abstract data structure, (e.g. a bounded queue), but implemented using a more
concrete data structure, (e.g. a circular buffer with read and write indices), with
the two representations being linked by a coupling invariant. Morgan [32] uses
an approach to data refinement that first augments the abstract operations with
the concrete data structure, then refines the operations to utilise the concrete
structure rather than the abstract structure (making use of the coupling invariant
to accomplish this), and finally when the abstract structure is essentially an
auxiliary variable, it may be eliminated. In the context of concurrency, the same
general approach can be used but it needs to be adapted to handle the more
general nature of commands in the concurrent refinement algebra.

14 Conclusions

Our theory focuses on the algebraic properties of operations on a set of com-
mands (C) which includes subsets representing instantaneous tests (T ) and
atomic steps (A). It builds on standard mathematical and computing algebraic
theories as follows:

complete distributive lattice: commands C form a lattice with meet � and
join �, least element abort and greatest element �;

fixed points: least (μ) and greatest (ν) fixed points allow one to define iterations
and recursion;

monoids: C with sequential composition and identity nil forms a monoid, and
C with parallel composition and identity skip forms a commutative monoid;

semi-lattice: C with weak conjunction (�) and identity chaos forms a bounded
semi-lattice;

Boolean algebra: sets of states (P Σ), binary relations (P(Σ × Σ)), tests (T ),
atomic steps (A), the set of all program step commands of the form π(r), and
the set of all environment step commands of the form ε(r), all form Boolean
algebras;

synchronous algebra: the operators parallel composition (‖), weak conjunc-
tion (�) and the lattice join (�) all form synchronous algebras over the set of
commands C with atomic step commands A;
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cylindric algebras: cylindric algebras can be defined over sets of states, binary
relations, tests, atomic steps and commands to give a (generalised) notion of
existential quantification for each of these.

As one can see we have been able to make extensive reuse of these algebras and
their rich arrays of properties and that affords a simpler path to mechanisation
of proofs in the theory. The hierarchy of theories has been progressively mech-
anised in the Isabelle/HOL interactive theorem prover. The hierarchy has been
organised so that lemmas are proven at the level of the hierarchy that contains
(just) the necessary definitions and properties; that affords greater opportunity
of theory reuse.

The algebras separate out the properties of the individual operators but of
course we also need to define how the operators interact with one another. All the
operators (“;”, “‖”, “�”, and “∃x”) distribute over non-empty non-deterministic
choices and hence each of these operators is monotonic in its arguments. Combi-
nations of operators like sequential and parallel composition do not have general
distributive laws, rather they have weak interchange laws (24). Weak conjunction
affords weak interchange laws with both sequential (53) and parallel composition
(54).

Our theory has been successful to the extent that we have been able to
encode all of the standard rely/guarantee refinement laws of Jones, in the process
generalising many of the laws in the manner in which they handle expressions,
including conditions. Our extensions include an atomic specification command,
〈p, q〉, that allows one to specify operations on a data structure that must appear
to be atomic, and explicit handling of local variables. The latter is seen as our
path to handling data refinement.

Schellhorn et al. have developed a rely/guarantee theory RGITL encoded
in interval temporal logic [36]. Because we can encode interval temporal logic
within our theory, it is at least as expressive as RGITL. However, the encoding of
rely/guarantee in RGITL strictly alternates between environment and program
steps, and thus a single environment step in RGITL corresponds to zero or more
environment steps in our approach, and hence a rely condition in RGITL is the
reflexive, transitive closure of the rely condition used here. Any finite sequence
of environment steps in our approach (ε�) is represented by a single step within
RGITL, and hence our approach can make more fine-grained distinctions.
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Abstract. The mCWQ calculus was recently proposed for describing
the features of local broadcast and mobility in Mobile Ad Hoc Networks
(MANETs), focusing on the quality of wireless communications. In this
paper, we investigate the denotational semantics for mCWQ calculus,
whose behaviour is composed of the behaviours of subnetworks. A trace
variable tr is introduced to record the communications among wireless
nodes as well as the time points when the communications happen. A
set of algebraic laws, especially the laws about the communications with
quality binders, are also explored based on the formalized model.

1 Introduction

To cater for the need for rapid development of Cyber Physical Systems (CPS)
[11], Mobile Ad Hoc Networks (MANETs) [2,4] have drawn a great deal of
attention recently, from both industry and academia. The interesting features
of MANETs are local broadcast, node mobility and time consumption. In the
literature, many research efforts are devoted to define a formal calculus and rig-
orous methodological foundations for modeling and reasoning about MANETs,
focusing on these features, for example [5,7,13,14]. All of these calculi assume
that communications in MANETs are reliable. However, deployment constraints
and node movement of MANETs lead to a highly dynamical topology with wire-
less links to be broken, which may result in abnormalities and thus decrease the
communication quality of service provided by the system. Therefore, it is of sig-
nificant importance to ensure that wireless nodes in MANETs can still behave in
a reasonable manner (e.g., continue to operate in a meaningful way) even though
they are in an unreliable communication network due to node movement.

mCWQ calculus (Integrating a Calculus with Mobility and Quality for Wire-
less Networks) [21] was recently proposed based on our previous work [20,22]. It
combines wireless local broadcast together with a quality predicate to enforce a
robustness consideration on MANETs, and provide default values to make node
behaviours reasonable. The topological structure is considered at the network
level, incorporating time and mobility functions to capture the dynamic changes
in the topology. Furthermore, a labeled transition semantics is developed to
c© Springer Nature Switzerland AG 2019
P. Ribeiro and A. Sampaio (Eds.): UTP 2019, LNCS 11885, pp. 198–216, 2019.
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enable transitions, in which nodes may communicate with each other, change
their mobility patterns (e.g., mobility function and timeout) or delay for some
time units. However, the denotational semantics and algebraic laws of mCWQ
calculus are not taken into consideration in [21].

Hoare and He advocate three different styles of mathematical representations,
including operational semantics [17], denotational semantics [23] and algebraic
semantics [9] in their Unifying Theories of Programming (UTP) [8]. Denota-
tional semantics provides mathematical meanings to programs, while algebraic
semantics fits well with symbolic calculation of parameters and structures of
an optimal design. As far as we know, operational semantics is the commonly
adopted semantics in reasoning about networks [10,12], whereas there are fewer
researches on applying denotational semantics and algebraic semantics in net-
works. Providing these two semantics for networks may give a better and pre-
cise understanding of MANETs from mathematical perspective, and guide us to
investigate more interesting properties of the networks, which create the moti-
vation of this paper.

In this paper, we propose the denotational semantics for mCWQ calculus
and deduce some interesting properties of the MANET system. In our semantic
model, we give an observation tuple and introduce a variable tr to record the
communications among nodes. Based on the formalized denotational semantics,
we also investigate a set of algebraic laws, especially focusing on the communi-
cation between sender and receiver with binders.

The remainder of this paper is organized as follows. A review of the mCWQ
calculus, including its syntax and mobility model, is given in Sect. 2. We inves-
tigate the semantic model of mCWQ calculus and healthiness conditions that a
program should satisfy in Sect. 3, while in this section we also explore the denota-
tional semantics of mCWQ calculus using the UTP approach. Section 4 presents
some interesting algebraic laws of MANETs, especially focusing on the parallel
expansion laws between sender and receiver with binders. Section 5 concludes
the paper and presents the future work.

2 Review of the mCWQ Calculus

mCWQ calculus [21] was recently proposed for modeling and reasoning about
MANETs and its applications. It uses quality predicates and default values to
ensure that sensor nodes can behave in a reasonable manner (e.g., by using
approximate values to continue their work when the ideal behavior of a node
fails) even though they are in an unreliable communication network caused by
node movement. In this section, we briefly review the syntax and mobility model
of the mCWQ calculus.

The calculus is presented via a two-level syntax, including process level and
network level, presented in Table 1. We employ P to range over the set of pro-
cesses, N the set of nodes, Val the set of values, Var the set of variables and
C the set of channels. We use the set In to denote node identities (or names),
where n1, n2, ... range over In. In order to decide whether a node is inside the
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transmission range of another, we define a distance function D, which takes two
locations as inputs and returns the distance between these two locations. The
transmission radius of a node is defined as a partial function Rad : In×C ↪→ R+

0 ,
taking a node identity and a channel name as parameters to calculate the radius
of this node when it uses some channel to broadcast messages.

Processes. A process can be an inert process nil or an action prefixing Act.P .
The process P1||P2 means that two processes run in parallel inside one node. A
process can perform three kinds of actions: c!v, σ and b. The action c!v denotes
broadcasting a value v ∈ Val via channel c ∈ C. In reality, broadcasting also
uses a channel as wireless radio frequency to send messages, thus we write the
broadcast channel c explicitly. Besides, as one novelty of mCWQ calculus, a time
delay σ ∈ R+ is incorporated in the process level so that movement patterns
can be given through a general mobility model depending on the time elapse.

Table 1. The Syntax of mCWQ

Processes:
P ::= nil | Act.P | P ||P | case e of some(x) : P else P
Act ::= c!v | σ | b b ::= c?x | &q(b, ..., b)

Networks: Function:
N ::= 0 | n[P ]fT | N ||N F ::= D(

−→
l ,

−→
l )

Another important and interesting thing in mCWQ calculus is the binder b,
which is used to specify that a process can continue if the quality predicate is
satisfied. The binder is first proposed in the Quality Calculus [15]. In the simplest
case, it is a corresponding reception of a broadcasting action, represented as
c?x, which receives a value via channel c and binds it to the variable x ∈ Var .
A complex binder is in the form of &q(b1, ..., bn), where n is the total number
of inputs and q is a quality predicate to be satisfied, indicating to continue
the process when sufficient inputs have been received. The quality predicate
q ∈ {∀,∃,m/n} and the meanings of these three notations are as follows:

• ∀: all inputs are required, e.g., &∀(c1?x1, c2?x2, c3?x3) requires three suf-
ficient inputs and it has the same effect as &q(c1?x1, c2?x2, c3?x3) if
q(r1, r2, r3) amounts to r1 ∧ r2 ∧ r3.

• ∃: at least one input is required, e.g., &∃(c1?x1, c2?x2, c3?x3) requires one suf-
ficient input to continue and it has the same effect as &q(c1?x1, c2?x2, c3?x3)
if q(r1, r2, r3) amounts to r1 ∨ r2 ∨ r3.

• m/n: m sufficient inputs of all n inputs are required to be received, e.g.,
&2/3(c1?x1, c2?x2, c3?x3) requires at least two sufficient inputs from channels.

Moreover, nested binders are also allowed, such as &∀(&∃(c1?x1, c2?x2), c3?x3),
which represents that input must be received both over the channel c3 and
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over either the channel c1 or c2. However, it is possible that some variables in
the binder do not get proper values, due to the corresponding inputs having
not occurred. Therefore, we use expression e to represent optional data, which
includes expressions some(·) and none. The expression some(·) represents the
presence of some data and none the absence of data. Because we are not sure
which variable has actually received values at some time, there comes a construct
case e of some(x) : P1 else P2 in the process part. It is used to check whether an
expression e can evaluate to some data or not. If it does, then we bind it to x
and continue with P1; otherwise, we continue with P2.

Networks. Networks are collections of nodes running in parallel with the form
of N1||N2, each of which is inductively defined by parallel composition of an
empty network 0 and a wireless node written as n[P ]fT . Each node is assigned
a unique identity n ∈ In, and runs some process P with a mobility function f
and its timeout T . We use E to represent the movement trajectory models of
node mobility, which allows nodes to move in a global area A within a global
time t ∈ R+. Each node has an entity mobility function f : R+ → A, thus the
location at time t of each node is decided by f(t). Each mobility function has
a timeout T ∈ R+ ∪ {∞, 
}. Here, T ∈ R+ means that the mobility function
will be updated by a new one at time t = T , T = ∞ represents that the current
mobility function will never be changed, and T = 
 denotes that the mobility
function will be changed at any time.

E(˜li, ti) = {(f, T ) | f(t) = ˜li + υ̃ · (t − ti), where υ̃ ∈ V, T ∈ R+, t ∈ [ti, T ]}

A new mobility function and its timeout will be selected nondeterministically
by the mobility model E , which takes a pair (˜li, ti) as input and returns a set of
pairs (f, T ) of follow-up mobility functions with their timeouts. ˜li stands for the
current location of a node (represented by a vector1), ti for the current time.
Here, υ̃ is the speed which is a constant in a pre-defined speed set V .

3 Denotational Semantics

In this section, we develop a denotational semantics for mCWQ calculus. This
theory is an extension of reactive processes [6,19].

Alphabet with Observational Variables. We introduce two variables
−→

st
and

−→
st into our semantics to indicate the initial state and the final state of

the network during the current observation, where st ∈ {terminate,wait}. A
network program has two execution states:

• terminate state: A process may complete all its executing actions and termi-
nate successfully.

−→
st = terminate denotes that the predecessor of the process

has terminated successfully and the current process can take the control,
while

−→
st = terminate means the current process terminates successfully.

1 We use the notation ·̃ to represent a vector, and leave the notation −→· to denote a
final variable in semantics model (e.g., a final state is denoted as

−→
st).
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• wait state: A process is waiting for taking the control from its environment.−→
st = wait indicates the predecessor of the process is waiting, thus the current
process cannot be scheduled, while

−→
st = wait represents that the current

process is waiting, thus, the next process cannot be activated.

The observation of the mCWQ calculus can be represented by a tuple:
(

−−→
time,

−−→
time,

−→
st,

−→
st,

−→
tr ,

−→
tr ,

−→F ,
−→F ,

−→T ,
−→T ) where,

• ←−−
time and

−−→
time are start point and end point of a time interval over which

the observation is recorded. We use δ(time) to stand for the length of the
time interval, which is considered as a non-negative integer: δ(time) =df

(
−−→
time − ←−−

time)
• ←−

tr denotes the initial trace and
−→
tr represents the final trace of a program.

Thus,
−→
tr−←−

tr stands for the sequence of snapshots contributed by the program
and the environment during the time interval.

The behavior of the network is described in terms of a trace of snapshots.
A snapshot in the trace variable is expressed by a pair (t, evt) where t indicates
the time when the event happens; evt denotes the event. We use the projection
to select the component of the snapshots:

π1((t, evt)) =df t π2((t, evt)) =df evt

Besides, F represents the mobility function and T denotes the correspond-
ing timeout for some node n. The mobility function F takes the network node
identifier as the input and returns the current mobility function the node n uses,
such as f1 or fn. For simplicity, we omit its parameter in our semantic mod-
els. Specifically, we use to represent the initial mobility function with the
corresponding timeout and

−→F denotes the final mobility function with its
corresponding timeout

−→T .

Healthiness Conditions. We use N to identify a network program in mCWQ,
which must satisfy the following healthiness conditions. (H1) declares that the
variable tr cannot be shortened because it is used to record the execution trace
of a program, and the end point of a time interval cannot be less than the start
point.

(H1) N = N ∧ Inv(tr, time)

where Inv(tr, time) =df
−→

tr � −→
tr ∧ −−→

time ≤ −−→
time. We use the notation � to

illustrate that
−→

tr is a prefix of
−→
tr .

Besides, as we mentioned earlier, a network program may in the state of
waiting, such as a network node is waiting for receiving messages from others or
a node is executing a delay action. If a network program N is asked to start in a
waiting state of its pre-program, then the state, trace, mobility function and the
corresponding timeout of N remain unchanged; i.e., it satisfies the healthiness
condition (H2).

(H2) N = Π � (
−→

st = wait) � N
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where Π =df (
−→
st =

−→
st) ∧ (

−→
tr =

−→
tr) ∧ (

−→F =
−→F ) ∧ (

−→T =
−→T ) ∧ (

−−→
time =

−−→
time) and

N1 � b � N2 =df b ∧ N1 ∨ ¬b ∧ N2. The definition of H-function can be given as
below:

H(X) =df Π � ←−
st = wait � (X ∧ Inv(tr, time))

From the definition of H-function, we can see that H(X) satisfies both the
healthiness conditions (H1) and (H2). This function is able to be used in defining
the denotational semantics for the mCWQ calculus.

3.1 Basic Commands

Firstly, we give the denotational semantics for the basic commands, including
broadcast, receiving, delay and receiving with binder, in mCWQ calculus as
follows. We use the notation beh to represent the network behaviour. In Defi-
nition 1, we give the network behaviour of a node who is executing a broadcast
output action. Note that, the action prefixing inside a node can be converted into
the sequential operation between network behaviours of actions and processes.
Thus, we use the notation � to represent the sequential operation between net-
work behaviours, which has the same meaning as the one used between processes
in traditional calculi [8].

Definition 1 (Broadcast).

beh(n[c!v.P ]fT ) =df beh(Bro(n, f, T, c, v)) � beh(n[P ]FT )
beh(Bro(n, f, T, c, v)) =df

H
(−→

st = terminate ∧ δ(time) = 0 ∧ −→F =
−→F ∧ −→T =

−→T ∧
−→F = f ∧ −→T = T ∧ −→

tr =
−→

tr ̂〈(−−→
time, n[c, f, T ].v)〉

)

We use beh(Bro(n, f, T, c, v)) to stand for the network behaviour of the
broadcasting action. Broadcasting action does not consume time, thus the inter-
val of the observation time equals to 0. The execution state of the whole program
is terminate and this action will not affect the mobility function and the corre-
sponding timeout of the node. After the execution, the trace of the node will be
added with a new snapshot 〈(−−→

time, n[c, f, T ].v)〉. Here,
−−→
time stands for the time

of the action happening, while n[c, f, T ].v represents the corresponding event,
that is the node n broadcasts a message v via channel c using mobility function
f . We use notation t1̂t2 to denote the concatenation of traces t1 and t2.

In Definition 2, we discuss about the corresponding receive action. We sup-
pose the mobility function that node n currently uses is f1 and its corresponding
timeout is T1. The process c?x.P represents that if the node receives a message
from a sender via the channel c, the whole process will behave as P ; other-
wise, it will remain in a waiting state. We assume that there exists a message
value m, which has the type that can be accepted via channel c. The nota-
tion beh(BRecv(n, f1, T1, c,m)) is used to represent the network behaviour of
receiving. After a successful receive event, the value of free variable x in P will
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be replaced by the value of the message m, denoted as P{m/x}. Note that,
waiting for receiving messages accompanies with time consuming. In mCWQ
calculus, because we take node mobility into consideration, it is possible for a
node to change its mobility function and timeout when it waits for receiving
messages. Therefore, after receiving, its mobility function may not be the same
as the initial one f1.

Definition 2 (Receive).

beh(n[c?x.P ]f1T1
) =df ∃m ∈ Val ∧ m ∈ Type(c) •

(

beh(BRecv(n, f1, T1, c,m)) � beh(n[P{m/x}]FT )
)

beh(BRecv(n, f1, T1, c,m)) =df

H

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−→
st = terminate ∧ δ(time) ≥ 0 ∧ ∃n′, f ′, T ′•
⎛

⎜

⎜

⎝

−→F =
−→F ∧ −→T =

−→T ∧ −→F = f1 ∧ −→T = T1 ∧

D(
−→F (

−−→
time), f ′(

−−→
time)) ≤ Rad(n′, c) ∧

−→
tr =

−→
tr ̂〈(−−→

time, n′[c, f ′, T ′].m)〉

⎞

⎟

⎟

⎠

� (
−−→
time ≤ −→T ) �

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∃f1, . . . , fn, T1, . . . , Tn,∀i ∈ {1, . . . , n − 1}•

Ti ∈ [
−−→

time,
−−→
time] ∧ −→F = f1 ∧ −→T = T1 ∧ −→F = fn ∧ −→T = Tn ∧

D(
−→F (

−−→
time), f ′(

−−→
time)) ≤ Rad(n′, c) ∧

(fi+1, Ti+1) ∈ E(f(Ti), Ti) ∧ −→
tr =

−→
tr ̂〈(−−→

time, n′[c, f ′, T ′].m)〉

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∨−→
st = wait ∧ δ(time) ≥ 0 ∧ −→

tr =
−→

tr ∧
(−→F =

−→F ∧ −→T =
−→T ∧ −→F = f1 ∧ −→T = T1

)

� (
−−→
time ≤ −→T ) �

⎛

⎜

⎜

⎝

∃f1, . . . , fn, T1, . . . , Tn,∀i ∈ {1, . . . , n − 1}•

Ti ∈ [
−−→

time,
−−→
time] ∧ −→F = f1 ∧ −→T = T1 ∧

−→F = fn ∧ −→T = Tn ∧ (fi+1, Ti+1) ∈ E(f(Ti), Ti)

⎞

⎟

⎟

⎠

⎞
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⎟

⎟

⎟
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⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The network behaviours can be considered into two branches: (1) the node
succeeds in receiving messages from a sender within the observation interval; (2)
the node is always in the waiting state within the observation interval. For the
first branch, the final execution state is terminate and the length of the time
interval should not be negative. We suppose that the sender has an identifier
n′, mobility function f ′ and timeout T ′. According to whether the end point of
the observation interval is larger than the timeout point of the current mobility
function of the node, the first branch can also be divided into two cases. If the
end point of the observation interval (or the execution time point of the receiving
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action) is smaller than the timeout point of the initial mobility function, which
means that the node does not change its mobility function before the receiving
action happens, then the mobility function and the timeout keep unchanged. A
snapshot 〈(−−→

time, n′[c, f ′, T ′].m)〉, including the instant
−−→
time at which the event

n′[c, f ′, T ′].m occurs and the event, is added in the end of the original trace.
Note that, if the node can receive a message successfully, it means that this
node is inside the transmission area of the sender, which can be restricted by
the condition D(

−→F (
−−→
time), f ′(

−−→
time)) ≤ Rad(n′, c).

Definition 3 (Delay).

beh(n[σ.P ]f1T1
) =df beh(Delay(n, f1, T1, σ)) � beh(n[P ]FT )

beh(Delay(n, f1, T1, σ)) =df

H

⎛
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⎜

⎜
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−→
st = terminate ∧ δ(time) = σ ∧
⎛
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⎜
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⎜

⎝

(−−→
time <

−→T ∧ −→
tr =

−→
tr ∧ −→F =

−→F ∧ −→T =
−→T ∧

−→F = f1 ∧ −→T = T1

)

∨
⎛
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⎜

⎝

−−→
time ≥ −→T ∧ −→

tr =
−→

tr ∧
∃f1, . . . , fn, T1, . . . , Tn,∀i ∈ {1, . . . , n − 1}•

Ti ∈ [
−−→

time,
−−→
time] ∧ −→F = f1 ∧ −→T = T1 ∧

−→F = fn ∧ −→T = Tn ∧ (fi+1, Ti+1) ∈ E(f(Ti), Ti)
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∨−→
st = wait ∧ δ(time) < σ ∧
⎛
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⎝

−−→
time <

−→T ∧ −→
tr =

−→
tr ∧

−→F =
−→F ∧ −→T =

−→T ∧ −→F = f1 ∧ −→T = T1

⎞

⎠

∨
⎛
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⎜

⎜

⎜

⎜

⎝

−−→
time ≥ −→T ∧ −→

tr =
−→

tr ∧
∃f1, . . . , fn, T1, . . . , Tn,∀i ∈ {1, . . . , n − 1}•

Ti ∈ [
−−→

time,
−−→
time] ∧ −→F = f1 ∧ −→T = T1 ∧

−→F = fn ∧ −→T = Tn ∧ (fi+1, Ti+1) ∈ E(f(Ti), Ti)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

However, if the end point of the observation interval (or the execution time
point of the receiving action) is larger than the timeout point of the initial mobil-
ity function of the node, it means that the mobility function of the node has
already changed before the receiving action happens. We assume that the node
changes its mobility function n − 1 times from the starting point of the obser-
vation until the receiving action happens. Then, there must exist two sequences
f1, ..., fn and T1, ..., Tn representing the mobility function sequence and the time-
out sequence, respectively. For any i ∈ {1, ..., n−1}, the elements in the sequences
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satisfy the conditions of Ti ∈ [
−−→

time,
−−→
time] and (fi+1, Ti+1) ∈ E(f(Ti), Ti). We

can see that the initial mobility function the node uses is f1 and its timeout
is T1; while the final mobility function the node uses at the end point of the
observation interval is fn and the corresponding timeout is Tn. Also, a snap-
shot

−→
tr =

−→
tr̂〈(−−→

time, n′[c, f ′, T ′].m)〉 is added in the end of the trace, and the
distance restriction D(

−→F (
−−→
time), f ′(

−−→
time)) ≤ Rad(n′, c) is satisfied.

For the second branch, the final execution state is wait and the length of
the observation interval is still not negative. The trace of the network behaviour
remains unchanged. We omit the explanations of this branch due to it being
similar to the first one.

In Definition 3, we give the network behaviour of the delay action. We still
suppose that the initial mobility function of node n is f1 and the corresponding
timeout is T1. The executed process inside the node is σ.P , representing that
after σ time units, the whole process inside the node behaves as P . Here, we use
the notation beh(Delay(n, f1, T1, σ)) to stand for the network behaviour of a
node that executes a delay action.

The network behaviour of delay action can also be considered into two cases:
(1) the observation time interval equals to the delay time units, which means that
the node finishes executing the delay action within the observation time interval;
(2) the observation time interval is less than the required delay time units, that
is the node still needs to delay more time units except the time interval of the
observation.

In the first case, the final state of the network behaviour of the node is
terminate and the node has already delayed for σ time units. During these σ

time units, if the node doesn’t change its mobility function (i.e.,
−−→
time <

−→T ),
then the trace of this node keeps unchanged as well as its mobility function
and the corresponding timeout. Otherwise, this node may change its mobility
function greater than or equal to one time and there may exist two sequences
f1, . . . , fn and T1, . . . , Tn for mobility function sequence and corresponding time-
out sequence, respectively. Whereas, the trace of the node remains unchanged.

For the second case, due to the time interval of the observation is less than
the required delay time units, thus the final state of the program is wait, which
means that it still needs to wait for more time units. In this case, the trace of
the node is still unchanged. Similar with the first case, whether the mobility
function of the node will change or not depends on the comparison of the end
point of the observation and the corresponding timeout of the initial mobility
function the node uses.

Definition 4 (Receive with Binder).

beh(n[&q(b1, ..., bn).P ]fT ) =df beh(QRecv(n, q, f, T, b1, ..., bn)) � beh(n[P ]FT )

beh(QRecv(n, q, f, T, b1, ..., bn)) =df

(

∃ −→
st1, . . . ,

−→
stn,

−→
st1, . . . ,

−→
stn,

−→
tr1, . . . ,

−→
trn,

−→
tr1, . . . ,

−→
trn,∀ i ∈ {1, . . . , n} •

−→
tri =

−→
tr ∧ −→

sti =
−→

st ∧ behi[
−→

sti,
−→
sti,

−→
tri,

−→
tri/

−→
st,

−→
st,

−→
tr ,

−→
tr ] ∧ QMerge(q)

)
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Definition 5 (Predicate for Binder).

QMerge(q)
df
=
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st = terminate ∧
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∧
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tr2 − −→

tr) ⊕ . . . ⊕ (
−→
trn − −→

tr) • −→
tr =

−→
tr ̂ω

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∨
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q = m/n ∧
⎛

⎜

⎜

⎝

∃ j1, ..., jm ∈ {1, ..., n} ∧ j1 
= ... 
= jm •
−−→
stj1 = terminate ∧ ... ∧ −−→

stjm = terminate ∧
∧

i∈({1,...,n}−{j1,...,jm})
−→
sti ∈ {wait, terminate} ⇒ −→

st = terminate

⎞

⎟

⎟

⎠

∧

⎛

⎜

⎜

⎝

∃ j1, ..., jk ∈ {1, . . . , n} ∧ j1 
= . . . 
= jk ∧ 0 ≤ k < m •
−−→
stj1 ∈ {wait, terminate} ∧ ... ∧ −−→

stjk ∈ {wait, terminate} ∧
∧

i∈({1,...,n}−{j1,...,jk})
−→
sti = wait ⇒ −→

st = wait

⎞

⎟

⎟

⎠

∧ ∃ ω ∈ (
−→
tr1 − −→

tr) ⊕ (
−→
tr2 − −→

tr) ⊕ . . . ⊕ (
−→
trn − −→

tr) • −→
tr =

−→
tr ̂ω

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We will define the network behaviour of a node who executes receiving with
a binder b in Definitions 4 and 5. According to the syntax of mCWQ calculus in
Table 1, the binder b is used to describe that a node can execute the continuous
process after some sufficient receiving actions are executed (or we can say that
the quality predicate q in the binder b is satisfied). The binder b is composed of
a simple receiving action and a complex receiving action with quality predicate,
whose definition is given as follows:

b ::= c?x | &q(b1, ..., bn)

We have already given the network behaviour of the simple receiving action
c?x in Definition 2. For the complex binder with the form of &q(b1, ..., bn), n
is the total number of required inputs and q stands for a quality predicate to
be satisfied, indicating to continue the process when sufficient inputs have been
received. Here, we use the notation beh(QRecv(n, q, f, T, b1, ..., bn)) to repre-
sent the network behaviour of a node who executes receiving with the complex
binders. The binder b in &q(b1, ..., bn) can either be a simple receiving action c?x
or a complex receiving action &q(b1, ..., bn) as well, and so we will deal with its
network behaviour in two cases.
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For the first case, we suppose all the binders b in &q(b1, ..., bn) are of the form
of the simple receiving actions. In this case, we can define the network behaviour
of &q(b1, ..., bn) depending on the network behaviour of receiving action given in
Definition 2 and we will write beh(BRecv(n, f1, T1, c,m)) as beh1, . . . ,behn

for simplicity. The quality predicate in the complex binder has three possible
values, that is q ∈ {∀,∃,m/n} and the corresponding meanings of these three
notations are all inputs are required to be executed, at least one input is required
to be executed and m sufficient inputs of all n inputs are required to be executed,
respectively. We give the definition for the first case in Definition 4, in which the
initial trace and final trace of all receiving actions are the same, and the corre-
sponding network behaviours for these actions are denoted as beh1, . . . ,behn.
The predicate QMerge(q) is used to merge the different traces produced by each
binder according to different value of the quality predicate q. The definition of
this predicate can be found in Definition 5.

According to the different values of q, the predicate QMerge(q) has three
cases to be discussed in the denotational semantics. The descriptions of these
three cases can be found below.

• When the quality predicate q equals ∀: All the inputs are required to be
executed before the whole process to be continue. Thus, the final state
of the complex binder will be terminate only if the final states (i.e.,−→
st1, . . . ,

−→
stn) of the network behaviours of all the required input actions (i.e.,

beh1, . . . ,behn) are terminate. If there is at least one input action whose
final state of the network behaviour is wait , then the final state of this com-
plex binder should be wait .

• When the quality predicate q equals ∃: At least one input is required to
be executed before the whole process can continue. Thus, the final state of
the complex binder will be terminate if there is at least one required input,
whose final state of the network behaviour (e.g., behi) is terminate. If the
final states of the network behaviours of all these required input are wait ,
then the final state of this complex binder should be wait .

• When the quality predicate q equals m/n: There are n inputs in total and
at least m inputs are required before the whole process to be continue.
Thus, the final state of the complex binder will be terminate if there are
at least m required inputs, whose final state of the network behaviours (e.g.,
behj1 , . . . ,behjm , where j1 �=, . . . , �= jm) is terminate. If the amount of the
inputs, whose final state of the network behaviour is terminate, is less than
m of the total number n, then the final state of this complex receiving action
should be wait .

We use the operator ⊕ to merge the traces produced by the network behaviours
of n receiving actions, denoted as tr1 ⊕ tr2 ⊕ . . . ⊕ trn. Merging rules for the
operator ⊕ are given in AppendixA.

As mentioned above, we discuss the first case of the network behaviour of the
receiving action with binders, that is the binders b in this action are all composed
of simple receiving action. Another case of the network behaviour of this action
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takes nested receiving actions in b into consideration. On one hand, we have
already defined the network behaviour of the first case of the receiving action
with binders using beh(QRecv(n, q, f, T, b1, ..., bn)) in Definition 4; on the other
hand, receiving actions with nested binders can finally be expanded into sim-
ple receiving actions, thus, we use a recursive definition to define the network
behaviour of the second case depending on Definition 4 and use qbehi to repre-
sent behi(QRecv(n, q, f, T, b1, ..., bn)) for simplicity. Then, the definition for the
second case can be given by using qbeh1, ...,qbehn to replace beh1, ...,behn

from Definition 4 and others remain unchanged.

3.2 Parallel Composition

In this section, we will give the semantics for the parallel composition of processes
and networks. Here, P and Q represent two processes and P ||Q stands for the
parallel composition between two processes executed inside one network node.
The network behaviour of this operation can be regarded as the parallel compo-
sition between the network behaviour of process P and the network behaviour
of process Q, and we need to merge the traces produced by each of these two
network behaviours. Details of the definition for process parallel composition can
be found in Definition 6.

Definition 6 (Parallel Composition on Processes).

beh(n[P ||Q]fT ) =df beh(n[P ]fT )||beh(n[Q]fT )

where, F ||G =df

⎛

⎜

⎜

⎝

∃ −→
st1,

−→
st1,

−→
st2,

−→
st2,

−→
tr1,

−→
tr1,

−→
tr2,

−→
tr2 • −→

tr1 =
−→

tr2 =
−→

tr ∧ −→
st1 =

−→
st2 =

−→
st ∧

F [
−→

st1,
−→
st1,

−→
tr1,

−→
tr1/

−→
st,

−→
st,

−→
tr ,

−→
tr ] ∧

G[
−→

st2,
−→
st2,

−→
tr2,

−→
tr2/

−→
st,

−→
st,

−→
tr ,

−→
tr ] ∧ Merge

⎞

⎟

⎟

⎠

This definition is given based on parallel-by-merge [3,8]. The predicates in the
last two lines stand for the individual behaviours produced by F and G, respec-
tively. The last predicate Merge is used to merge the individual executed traces
produced by two parallel branches according to the communication between
them. The definition of the predicate Merge is shown below, which is similar to
the merge predicates for CSP and Circus in [1,16,18].

Definition 7 (Predicate for Parallel Composition on Processes).

Merge =df
⎛

⎜

⎜

⎜

⎜

⎜

⎝

−→
st1 = terminate ∧ −→

st2 = terminate ⇒ −→
st = terminate ∧

−→
st1 = wait ∧ −→

st2 ∈ {terminate, wait} ⇒ −→
st = wait ∧

−→
st2 = wait ∧ −→

st1 ∈ {terminate, wait} ⇒ −→
st = wait ∧

∃u ∈ (
−→
tr1 − −→

tr) | (
−→
tr2 − −→

tr) • −→
tr =

−→
tr ̂u

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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As shown in Definition 6, the final state of the parallel composition of F
and G is decided by these two components. Only when the state of both these
two components are terminate, the final state of the parallel composition is
terminate; otherwise, if the state of any one component is wait , then the state
of the parallel composition should be wait . The rules for merging the individual
traces, which are used to describe the communication behaviours of the parallel
composition, produced by components are given in Definition 8.

Definition 8 (Merging Rules for Traces).

tr1 | tr2 =df

1. ε | ε = {ε}
2. ε | 〈(t, evt)〉̂s = {〈(t, evt)〉̂s}
3. 〈(t, evt)〉̂s | ε = ε | 〈(t, evt)〉̂s

4. 〈(t1, evt1)〉̂s | 〈(t2, evt2)〉̂u =
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈(t1, evt1)〉̂(s | 〈(t2, evt2)〉̂u) if t1 < t2,
〈(t2, evt2)〉̂(〈(t1, evt1)〉̂s | u) if t1 > t2,
〈(t1, evt1)〉̂(s | u) if t1 = t2 ∧ evt1 = evt2,
〈(t1, evt1)〉̂(s | 〈(t2, evt2)〉̂u) ∪ 〈(t2, evt2)〉̂(〈(t1, evt1)〉̂s | u)

if t1 = t2 ∧ evt1 �= evt2.

Merge result of two non-empty traces is according to their executed time.
The first case describes that the executed time of the first snapshot of trace s
is earlier than the executed time of the first snapshot of trace u, thus we should
put the first snapshot of trace s into the trace of parallel composition; otherwise,
if the executed time of the first snapshot of trace u is earlier than the executed
time of the first snapshot of trace s, then we should put the first snapshot of
trace u into the trace of parallel composition, which is shown in the second
case. Besides, if the executed time of the first snapshot of trace s equals to the
executed time of the first snapshot of trace u, then the order between these two
snapshots should be decided according to whether the communication event is
the same or not. Case three and case four represent that the communication
events are the same and not, respectively. If the events are the same, then any
one of these two snapshots can be added into the result trace; otherwise, both
of these two snapshots should be added into the result trace.

Definition 9 (Parallel Composition on Networks).

beh(M ||N) =df beh(M)||beh(N)

Finally, we give the semantics for the parallel composition of two networks.
From Definition 9, we can see that the network behaviour of the parallel compo-
sition of networks can be transformed into the parallel composition of network
behaviours of each network. Because the behaviour of a network is composed of
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network behaviours of each network nodes and we have already given the defini-
tions of network behaviours of nodes in Subsect. 3.1, thus we omit the semantic
details about the parallel composition of networks here. Note that, the denota-
tional semantics for other processes can be found in AppendixB.

4 Algebraic Properties

Our work towards the formalization of mCWQ calculus for MANETs aims to
deduce its interesting properties, which are usually expressed using algebraic laws
and equations [9]. In this section, we explore a set of algebraic laws for mCWQ
calculus, focusing on the set of parallel expansion laws for communications with
binders. We use the notation → to represent that a possible first action may be
executed in the algebraic laws.

(Par-1-1) Let N1 = n1[ci!vi.P1]
f1
T1

N2 = n2[&∀(c1?x1, ..., ci?xi, ..., ck?xk).P2]
f2
T2

N3 = N1||N2, where D(f1(t), f2(t)) ≤ Rad(n1, ci).

Then N3 = ci.vi → (n1[P1]
f1
T1

||n2[&∀(c1?x1, ..., ck?xk).P2{vi/xi}]f2T2
)

In the law (Par-1-1), a node n1 who is executing an output process, at
some time t (t ≤ T1), succeeds in broadcasting the message vi over chan-
nel ci and continues to execute the process P1. Its location can be compute
using its current mobility function f1 as f1(t). All the other nodes executing an
input process within the communication area of n1, checked by the condition of
D(f1(t), f2(t)) ≤ Rad(n1, ci), are able to receive that message. Suppose that one
node n2 is executing a receiving action with a binder whose quality predicate
is ∀ at the location f2(t), which asks that all these k variables should receive
messages before continuing to execute the process P2. Thus, after receiving the
message vi via channel ci, the quality predicate ∀ will be kept until the other
k−1 messages are received. Note that, we use c.v to stand for the communication
event and P2{vi/xi} represents replacing xi in the process P2 by the message
value vi.

(Par-1-2) Let N1 = n1[ci!vi.P1]
f1
T1

N2 = n2[&∀(c1?x1, ..., ci?xi, ..., ck?xk).P2]
f2
T2

N3 = N1||N2, where D(f1(t), f2(t)) > Rad(n1, ci).

Then N3 = ci!vi → (n1[P1]
f1
T1

||n2[&∀(c1?x1, ..., ci?xi, ..., ck?xk).P2]
f2
T2

)

Comparing with (Par-1-1), the law in (Par-1-2) describes that a node n1 who
is executing an output process, at some time t (t ≤ T1), succeeds in broadcasting
the message vi over channel ci and continues to execute the process P1, whereas
all the other nodes executing an receiving action out of the communication area
of n1, checked by the condition of D(f1(t), f2(t)) > Rad(n1, ci), cannot receive
that message and will keep their original processes unchanged. Thus, the first
action of the parallel composition is ci!vi.

Similarly, we will give the algebraic laws for the parallel composition between
a sender and a receiver with binder, whose quality predicate is ∃ or m/k, respec-
tively. Each parallel composition law should be divided into two cases, like
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(Par-1-1) and (Par-1-2) based on whether the receiver is in the transmission
area of the sender or not. However, due to the space limitation, we omit the case
that the receiver is outside the transmission area of the sender in the following
laws. The general idea for these cases is, like (Par-1-2), executing the broadcast
action and remaining the processes inside the receiver unchanged.

(Par-2) Let N1 = n1[ci!vi.P1]
f1
T1

N2 = n2[&∃(c1?x1, ..., ci?xi, ..., ck?xk).P2]
f2
T2

N3 = N1||N2, where D(f1(t), f2(t)) ≤ Rad(n1, ci).

Then N3 = ci.vi → (n1[P1]
f1
T1

||n2[P2{vi/xi}]f2T2
)

The law (Par-2) describes the communication between the sender and the
receiver with the quality predicate ∃ which requests that at least one variable
should receive a message from the sender. After receiving the message vi via
channel ci from the sender n1, the quality predicate in the node n2 is satisfied
and it will continue to execute the following process P2, using the message value
vi to replace the variable xi. Similar with the law (Par-1-1), the sender n1 will
execute the following process P1.
(Par-3) Let N1 = n1[ci!vi.P1]

f1
T1

N2 = n2[&m/k(c1?x1, ..., ci?xi, ..., ck?xk).P2]
f2
T2

N3 = N1||N2, where D(f1(t), f2(t)) ≤ Rad(n1, ci). Then we have:

N3 =

{

ci.vi → (n1[P1]
f1
T1

||n2[&(m−1)/k(c1?x1, ..., ck?xk).P2{vi/xi}]f2T2
) if m > 1,

ci.vi → (n1[P1]
f1
T1

||n2[P2{vi/xi}]f2T2
) if m = 1.

There is another quality predicate m/k that can be used in the receiving
action with binder. It requires that at least m of k variables should receive
messages so that the whole process can continue to execute the following process.
In the law (Par-3), we take two cases into consideration: m = 1 and m > 1. Here,
m = 1 means that only one variable is requested to receive messages, which has
the same effect as the quality predicate equaling to ∃; otherwise, after receiving
the message vi via channel ci, there are still m − 1 of k variables waiting for
receiving messages from other senders.

5 Conclusion and Future Work

mCWQ calculus is motivated by the issue of wireless communication quality
caused by node movements in MANETs. In this paper, we investigated the deno-
tational semantics of mCWQ to provide a better understanding of MANETs,
which also helped us to find more interesting properties of networks from math-
ematical perspective. Based on the UTP theory, the semantics of the whole
network are expressed as basic commands, processes and parallel composition.
We used an observation tuple and a trace variable tr to record the communica-
tions among wireless nodes as well as the time point when the communication
happened. Besides, we also provided a set of algebraic laws related to the wireless
communications with quality binders.
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In the future, we will propose the guarded choice for mCWQ calculus and
investigate more interesting properties based on it. Furthermore, exploring the
linking theories between different semantics of mCWQ calculus is also interesting
to be investigated.
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A Additional Definitions for Receiving with Binder

Definition 10 (Merging Rules for the Operator ⊕).

1. If each of n traces is ε, then tr1 ⊕ tr2 ⊕ . . . ⊕ trn =df {ε}
2. If n − 1 of n traces equal to ε and one of n trace is not ε, denoted as

〈(t, evt)〉̂s, then tr1 ⊕ tr2 ⊕ . . . ⊕ trn =df {〈(t, evt)〉̂s}
3. If l of n traces equal to ε, whose indexes can be represented as

i1, . . . , il, and k of n traces are not ε with indexes j1, . . . , jk, denoted as
〈(tj1 , evtj1)〉̂sj1 , . . . , 〈(tjk , evtjk)〉̂sjk , where l ≥ 0 and n = k + l, then
tr1 ⊕ tr2 ⊕ . . . ⊕ trn =df

�1(̂first (〈(tj1 , evtj1)〉, . . . , 〈(tjk , evtjk)〉))̂( ⊕
cond

〈(tj , evtj)〉̂sj ⊕ sji)

where i = �2(̂first (〈(tj1 , evtj1)〉, . . . , 〈(tjk , evtjk)〉)) and
cond = ∀j ∈ ({j1, . . . , jk} − {ji})

From Definition 10, we can see that: (1) If all of these n traces are empty
(represented by ε), the merge result of these traces is a singleton empty trace;
(2) If n − 1 of these n traces are empty trace and only one trace is non-empty
trace, the merge result of these n traces is a set containing that non-empty trace;
(3) If there are l (l ≥ 0) traces that are empty traces and k (k ≥ 2) traces that
are non-empty traces, the merge result of these traces is given by a recursive
function ̂first depending on the execution time of each trace. The definition of
this recursive function can be found in Definition 11.

Definition 11 (Function for Searching the Earliest Executed Snap-
shot).

̂first (〈(t1, evt1)〉, . . . , 〈(tn, evtn)〉) =df
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(〈(t1, evt1)〉, 1)
if π1(�1(〈(t1, evt1)〉, 1)) ≤ π1(�1(̂first (〈(t2, evt2)〉, . . . , 〈(tn, evtn)〉))),

̂first (〈(t2, evt2)〉, . . . , 〈(tn, evtn)〉)

if π1(�1(〈(t1, evt1)〉, 1)) > π1(�1(̂first (〈(t2, evt2)〉, . . . , 〈(tn, evtn)〉))).
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We give the explanations for notations �1 and �2 used in Definition 10 and
Definition 11 before describing the recursive function ̂first. Both of these two
notations are used on a data pair, which is composed of the trace snapshot and
the index of this snapshot in the parameter list of the function ̂first. Notation
�1 denotes selecting the first component from the data pair, that is the trace
snapshot; while notation �2 stands for selecting the second component from the
data pair, that is the index of the trace in the parameter list of function ̂first.
Note that, notations �1 and �2 do a selection on the data pair, while notations
π1 and π2 also do the selection, but on the snapshot of trace.

Recursive function ̂first takes n trace snapshots as its parameters and returns
one data pair composed of the trace snapshot and its index, whose executing time
is earliest among all trace snapshots. Firstly, the function ̂first uses �1 to get the
first trace snapshot from its parameter list, then π1 is used to get the executing
time t1 from this trace snapshot. Similarly, we apply the recursive function ̂first
again on the remaining parameter list without the first trace snapshot, and use
�1 and π1 to obtain the executing time of the trace snapshot who is the earliest
to be executed. If the earliest executing time of the remaining trace snapshots is
not earlier than t1, then the function ̂first returns the first trace snapshot of the
parameter list and its corresponding index 1; otherwise, this function returns a
pair of trace snapshot and its index, whose executing time is earliest, from the
remaining n − 1 trace snapshots.

B Denotational Semantics for other Processes

In this section, we will describe the semantics for processes, including the inert
process nil and case construction, as follows.

Since the execution of a nil process does not consume time, the interval of
the observation time for its network behaviour equals to 0, and the execution
state of the whole process is terminate. The execution trace, mobility function
and its corresponding timeout are kept unchanged.

Definition 12 (Inert Process).

beh(n[nil.P ]fT ) =df

H
(−→

st = terminate ∧ −→
tr =

−→
tr ∧ δ(time) = 0 ∧

−→F =
−→F ∧ −→T =

−→T ∧ −→F = f ∧ −→T = T

)

� beh(n[P ]FT )

In Definition 13, we give the denotational semantics for case construction.
This operation is used to detect whether the receiving variable has already
received values from channels, which is depending on the evaluation of the
expression e. If the evaluation result equals to some data, then this data will
be assigned to a data variable y and we can use y to replace the expression e in
all free occurrences of e in process P . The network behaviour will behave like
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the behaviour of process P . Whereas, if the evaluation of the expression e equals
to none, then the network behaviour will behave like the behaviour of process
Q.

Definition 13 (case Construction).

beh(n[case e of y : P else Q]fT ) =df (B([|e|] = some(v)) ∧ beh(n[P{e/y}]fT ))
∨

(B([|e|] = none) ∧ beh(n[Q]fT ))

Here, B is a boolean function, whose definition is given in Definition 14.

Definition 14. Given a boolean expression Bexp, the boolean function B will
return the truth value of the boolean expression, whose definition is : B : Bexp →
Boolean.

B(true) = true
B(false) = false

B(exp1 = exp2) =

{

true [|exp1|] = [|exp2|],
false [|exp1|] �= [|exp2|].
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5. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 295–315. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28869-2 15

6. Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying Theories of time with
generalised reactive processes. Inf. Process. Lett. 135, 47–52 (2018)

7. Godskesen, J.C.: A calculus for mobile Ad Hoc networks. In: Murphy, A.L., Vitek,
J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-72794-1 8

8. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, Upper
Saddle River (1998)

9. Hoare, T.: Laws of programming: the algebraic unification of theories of concur-
rency. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 1–6.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 1

https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1007/11889229_6
https://doi.org/10.1007/11889229_6
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1007/978-3-540-72794-1_8
https://doi.org/10.1007/978-3-662-44584-6_1


216 X. Wu et al.

10. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless sys-
tems. Theor. Comput. Sci. 411(19), 1928–1948 (2010)

11. Lee, E.A.: Architectural support for cyber-physical systems. In: Proceedings og
12th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2015, pp. 14–18 (2015)

12. Merro, M.: An observational theory for mobile Ad Hoc networks (full version). Inf.
Comput. 207(2), 194–208 (2009)

13. Merro, M., Sibilio, E.: A timed calculus for wireless systems. In: Arbab, F., Sirjani,
M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 228–243. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11623-0 13

14. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

15. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
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