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Abstract. The synthesis of sound fields by means of planes waves is
a widely used approach in auralization. In this paper, two methods for
rotating acoustic fields, which are represented by this propagating ker-
nel are investigated. For this, numerical simulations of acoustic fields
that satisfy the homogeneous Helmholtz equation are performed. From
this data, rotation algorithms are derived based on a spherical harmonic
transformation and vector base amplitude panning functions. The results
indicate that both methods are suitable for the generation of a rotation
operator when the sound field is represented by means of plane waves.
Nevertheless, the use of spherical harmonics leads to more accurate sound
field reconstruction as long as the number of coefficients is equal to the
number of plane waves considered in the expansion.

Keywords: Plane wave expansion · Rotation · Spherical harmonics ·
VBAP

1 Introduction

Auralization is a subject of high scientific interest due to its extensive applica-
tions in areas such as research and consultancy [1–3]. In that sense, the devel-
opment of new methods for interactive spatial sound reproduction that allows
a more realistic hearing experience is desired. Binaural reproduction can be
achieved by using headphones or loudspeakers with crosstalk cancellation [4].
Arrays of loudspeakers can be also implement to synthesize the acoustic field
based on spatial reproduction techniques such as Ambisonics or Wave Field
Synthesis [5].

A methodology commonly used to reconstruct acoustic fields that satisfy the
homogenous Helmholtz equation is based on a Plane Wave Expansion (PWE)
[6]. This mathematical representation allows for the use of multiple sound repro-
duction techniques and the generation of interactive auralizations in which the
listener can interact with the virtual space [7]. For example, translation can be
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simply achieved by the application of delays that modify the phase of the planes
waves according to the listener’s movement [8].

In terms of rotation, several methods can be implemented for a plane wave
expansion. The interpolation of Head Related Transfer Functions (HRTFs) is a
widely used methodology by the scientific community, but it is restricted only for
binaural reproduction [9]. Other approaches that enable multiple sound repro-
duction techniques are spherical harmonics [10] and Vector Base Amplitude Pan-
ning [11]. An analysis of these two last methods as rotation operators is presented
in this paper.

The paper is organized as follows: the theoretical bases of the plane wave
expansion and the derivation of the rotation operators are described in Sect. 2.
Section 3 addresses the methods and experiments. An analysis of the outcomes
is carried out in Sect. 4. Finally, in Sect. 5, the conclusions are presented.

2 Theoretical Bases

2.1 Plane Wave Expansion

A sound field that satisfy the homogenous Helmholtz equation can be described
in terms of plane waves as [7]

p(x, ω) =
∫
ŷ∈Ω

ejkx·ŷq(ŷ, ω)dΩ(ŷ), (1)

where j is the imaginary unit, k is the wavenumber, x corresponds to the eval-
uation point, ŷ is a unit vector identifying the direction of arrival of each plane
wave, q is the amplitude density function and Ω denotes a sphere of unitary
radius. This continuous distribution can be related to an infinite number of
loudspeakers that are located far from the listener’s location. Nevertheless, in
terms of implementation, the use of an infinite number of loudspeakers is not
feasible so Eq. 1 must be discretized in a finite number of L plane waves leading
to

p(x, ω) =
L∑

l=1

ejkx·ŷlq(ŷl, ω)ΔΩl, (2)

in which ΔΩ is the area attributed to each direction ŷl. A consequence of dis-
cretizing equation is the local dependency on the accuracy of the reconstructed
acoustic field. In that sense, [12] propose the following relation between the
number of plane waves, the frequency of the field and the area of accurate recon-
struction

L =
(⌈

2π
R

λ

⌉
+ 1

)2

, (3)

where �·� is the ceiling round operator, L is the number of plane waves, λ is
the wavelength and R is the radius of a sphere within which the reconstruction
is accurate. Finally, it is important to point out that the use of plane waves
as kernel of propagation imposes constrains such as the reconstruction of near
acoustic fields.
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2.2 Rotation Operators

Spherical Harmonics
The spherical harmonics are the angular component of the solution of the wave
equation when it is expressed in spherical coordinates. For an interior case, in
which there are not acoustic sources inside of the reconstructed area, the acoustic
pressure is given by [13]

p(r, ω) =
∞∑

n=0

n∑
m=−n

Anm(ω)jn(kr)Y m
n (θ, φ), (4)

where jn is the spherical Bessel function of the first kind of order n and Y m
n (θ, φ)

are the spherical harmonics defined by as

Y m
n (θ, φ) =

√
(2n + 1)

4π

(n − m)!
(n + m)!

Pm
n (cos θ)ejmφ, (5)

in which Pm
n is the Legendre associated function. The discretized plane wave

expansion, namely Eq. (2), can be described in terms of spherical harmonics
using the Jacobi-Anger expansion as [14]

∞∑
n=0

n∑
m=−n

Anm(ω)jn(kr)Y m
n (θ, φ) =

4π
L∑

l=1

ql(ω)
∞∑

n=0

jnjn(kr)
n∑

m=−n

Y m
n (θ, φ)Y m

n (θl, φl)∗dΩ(ŷl), (6)

where (·)∗ denotes the complex conjugate. Based on the orthogonality relation
of the spherical harmonics, Eq. (6) can be simplified as

Anm(ω) = 4π
L∑

l=1

∞∑
n=0

n∑
m=−n

jnql(ω)Y m
n (θl, φl)∗dΩ(ŷl). (7)

Equation (7) describes the plane wave expansion in terms of complex spherical
harmonic coefficients. Based on this representation, it is possible to implement
a sound field operator and return to the plane wave domain after the rotation
has been performed. A shifting in the azimuthal plane of φ0 can be expressed as

p(r, θ, φ − φ0, ω) =
∞∑

n=0

n∑
m=−n

Anm(ω)jn(kr)Y m
n (θ, φ − φ0). (8)

Expanding the right side of Eq. (8)

p(r, θ, φ − φ0, ω) =
∞∑

n=0

n∑
m=−n

Anm(ω)jn(kr)

√
(2n + 1)

4π

(n − m)!
(n + m)!

Pm
n (cos θ)ejmφe−jmφ0 ,(9)
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yields

p(r, θ, φ − φ0, ω) =
∞∑

n=0

n∑
m=−n

jn(kr)Y m
n (θ, φ)Aφ0nm(ω), (10)

in which
Aφ0nm(ω) = Anm(ω)e−jmφ0 . (11)

Equation (11) indicates that the rotation of the sound field in the azimuthal
plane can be performed by taking the product between the complex spherical
harmonic coefficients and a complex exponential, which argument depends on
the angle of rotation. A decoding approach can be performed to return to the
plane wave domain after the rotation has been conducted [14]. This is achieved
by truncating the spherical harmonic series, namely Eq. (7), to an order N .

Anm(ω) = 4π
L∑

l=1

N∑
n=0

n∑
m=−n

jnql(ω)Y m
n (θl, φl)∗dΩ(ŷl), (12)

for n = 0...N and |m| ≤ n. This is a finite set of linear equations that can be
solved in terms of the least squares solution by formulating an inverse problem
[14]. In order to have at least one solution, the number of spherical harmonic
coefficients (N +1)2 is required to be lower than, or equal to, the number of plane
waves, namely L ≥ (N + 1)2. Equation (12) can be written in matrix notation
as

a = Yq. (13)

The relation between the number of spherical harmonic coefficients and the
number of plane waves defines the dimensions of matrix Y. For the case of
L > (N + 1)2, the problem is overdetermined yielding a matrix that is not
squared. The solution for q is given by

q = Y†a, (14)

where (·)† indicates the Moore-Penrose pseudo-inverse (L2 Norm).

Vector Base Amplitude Panning (VBAP):
VBAP is a sound reproduction technique based on the formulation of amplitude
panning functions as vectors and vector basis. It allows the incoming direction
of a wave to be controlled over a unit sphere. For 3D sound reproduction, a
set of three loudspeakers closest to the target incoming direction are selected to
reproduce the sound. In that sense, the sound field generated by a PWE can be
rotated in the azimuthal plane by φ degrees simply by shifting the plane waves
in the opposite direction of the orientation of the listener.

p(xrotated, ω) =
L∑

l=1

ejkx·ŷ(l−φ)q(ŷ(l−φ), ω)ΔΩ(l−φ), (15)

These rotated plane waves can be recreated by using multiple sets of three dif-
ferent plane waves, whose incoming directions are restricted to the directions
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established by the original discretized plane wave expansion. This means that
for each plane wave of the PWE, a set of three planes waves must be used to
generate the rotated version. The amplitude weightings of each set of three plane
waves are estimated by means of an inverse method. The formulation to rotate
one plane wave is presented as follows (same principle applies for the remaining
plane waves) [15].

The direction of the target “rotated” plane wave direction is determined by
the unit vector ŷ = [y1, y2, y3]T . Likewise, the amplitude weightings of the three
plane waves used to generate this “rotated” plane wave are represented by the
vector q = [q1, q2, q3]T . Finally, the matrix that contains the direction of the
three selected plane waves closest to the target incoming direction is denoted
as L ∈ R

(3×3), in which the coordinates of each plane wave are determined by
each column of the matrix i.e. l1 = L(:, 1). Therefore, the following relation is
established

ŷ = Lq, (16)

whose solution for q is given by

q = L−1ŷ. (17)

In addition, the amplitude weightings are normalized based on a coherent sum-
mation in which the sum lead to unity, namely,

qnormalized =
q

q1 + q2 + q3
. (18)

3 Methods and Results

Numerical simulations have been conducted in Matlab to evaluate the per-
formance of the rotation operators. Firstly, a sound field corresponding to a
plane wave of 250 Hz coming from an elevation (θ = 90) and azimuth angles of
(φ = 45, 170) were analytically synthesized in a free field domain with dimen-
sions of 5 m × 10 m × 3 m. Samples of the sound fields were extracted by using
a cubic virtual microphone array with linear dimensions of 1.6 m and a spatial
resolution of 0.2 m (729 microphone positions). This information was used to
estimate the complex amplitude of a PWE by means of an inverse method. The
number of plane waves was chosen to be (L = 64) because it corresponds to the
number of complex spherical harmonic coefficients for an order (N = 7), which
facilitates the implementation and assessment of the rotation operators.

Figure 1 shows the comparison between the real part of the analytical (A)
and the reconstructed (B) acoustic pressure (Pa) in a cross-section of the domain
(z = 1.5 m). The black circle corresponds to the area of expected accurate recon-
struction by solving Eq. (3) for R. The results indicate that the plane wave expan-
sion is able to accurately synthesize the target acoustic field, but as expected,
only within a specify area of the domain. Good match between the area of accu-
rate reconstruction and the radius predicted by Eq. 3 was also found.
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Fig. 1. Acoustic field reconstructed by means of a plane wave expansion (L = 64).
Target field corresponds to a plane wave coming from (θ = 90) and (φ = 45).

Two cases have been evaluated. The first corresponds to the plane wave
incoming from θ = 90 and φ = 45, which is rotated by φ0 = 45◦. The second
case is the plane wave incoming from θ = 90 and φ = 170, which is rotated by
φ0 = 60◦.

3.1 Rotation by Means of Spherical Harmonics

Based on the reconstructed acoustic field illustrated in Fig. 1B, a shift of 45◦

and 60◦ in the azimuthal angle was carried out to evaluate the rotation of sound
fields using a description in terms of spherical harmonics. Figure 2 illustrates a
diagram of the implementation.

Fig. 2. Diagram of the implementation of the spherical harmonic rotation operator.
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Figures 3 and 4 show the reconstructed acoustic pressure compared to their
analytical references. (A) corresponds to the initial reference sound field, (B) is
the reconstructed sound field by the plane wave expansion, (C) is the reference
rotated sound field and (D) is the reconstructed and rotated sound field by the
implementation of a spherical harmonic transformation.

Fig. 3. Rotation of an acoustic field by means of spherical harmonics. The reference
sound field is a plane wave coming from (θ = 90) and (φ = 45). The rotation angle
corresponds to (φ0 = 45).

Fig. 4. Rotation of an acoustic field by means of spherical harmonics. The reference
sound field is a plane wave coming from (θ = 90) and (φ = 170). The rotation angle
corresponds to (φ0 = 60).

Results confirm the suitability of the spherical harmonic transformation to
rotate the acoustic field. No relevant differences were found between the acous-
tic fields of the plots (B) and (D) close to the central point of the expansion,
which indicates that rotation of the sound field using spherical harmonics does
not affect the initial accuracy achieved by discretized plane wave expansion,
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namely the radius predicted by Eq. (3). However, this statement is true only if
the number of spherical harmonic coefficients is equal to the number of plane
waves, (N + 1)2 = L. Otherwise, the area of accurate reconstruction is reduced
according to the number of spherical harmonic coefficients implemented.

3.2 Rotation by Means of VBAP

An implementation based on VBAP has been carried out to rotate the acoustic
field in the plane domain directly. Figure 5 describes the signal processing flow
of the algorithm. A comparison between rotated acoustic fields using VBAP and
their analytical references is presented in Figs. 6 and 7. Same angles implemented
for the spherical harmonic case has been considered.

Fig. 5. Diagram of the implementation of the VBAP rotation operator.

Fig. 6. Rotation by means of VBAP. The reference sound field is a plane wave coming
from (θ = 90) and (φ = 45). The rotation angle corresponds to (φ0 = 45).
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Fig. 7. Rotation of an acoustic field by means of VBAP. The reference sound field is
a plane wave coming from (θ = 90) and (φ = 170). The rotation angle corresponds to
(φ0 = 60).

The results indicate that VBAP is also a suitable approach to perform the
rotation of acoustic fields, which are described by a plane wave expansion. Nev-
ertheless, a more robust analysis is performed in the following section to compare
both approaches.

4 Metrics for Performance

In this section, a comparison of the rotation methods is conducted by means of
the spatial distribution of the energy in the plane wave expansion, the energy
required for the synthesis of the acoustic field and normalized error.

4.1 Spatial Distribution of the Energy

An analysis of the spatial distribution of the energy has been conducted to assess
whether the rotation operator affects its integrity. The PWE is discretized by
means of an “uniform” sampling so it is expected that this spatial distribution
should not change. Figures 8 and 9 show the interpolated energy density func-
tion q plotted over an unwrapped unit sphere for the two cases considered. (A)
corresponds to the initial spatial energy distribution of the PWE, (B) is the
spatial energy distribution of the PWE after rotation has been performed using
spherical harmonics and (C) is the spatial energy distribution of the PWE after
rotation has been performed using VBAP.
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Fig. 8. Spatial energy distribution. The reference sound field is a plane wave coming
from (θ = 90) and (φ = 45). The rotation angle corresponds to (φ0 = 45).

Fig. 9. Spatial energy distribution. The reference sound field is a plane wave coming
from (θ = 90) and (φ = 170). The rotation angle corresponds to (φ0 = 60).

Outcomes indicate that the energy is mainly focused on the direction in
which rotation has been performed. Nevertheless, the spatial distribution of the
energy of the PWE tends to remain unmodified in the case of the spherical
harmonic rotation operator. In contrast, for VBAP, a change in the spatial energy
distribution is found. This suggests that the relation in terms of amplitudes and
phases between the plane waves is modified yielding to a rotated, but different
synthesized sound field.

4.2 Energy Required for the Synthesis of the Rotated Sound Field

An evaluation of the total energy required by the plane wave expansion to syn-
thesize the acoustic field when rotation operators are implemented is carried out.
The total energy of the PWE is estimated from Eq. (19).

E(ω) ∼
L∑

l=1

|ql|2 (ω). (19)

Table 1 illustrates the values of energy corresponding to the PWE before and
after rotation operators are implemented. The results indicate that the energy
is similar for the spherical harmonic operator. However, the energy is lower
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when VBAP is implemented. The reason is because the reference acoustic field
corresponds to a single plane wave. This means that only 3 plane waves of the
PWE are generating the sound field for the case of VBAP. It is expected that in
more complex acoustic fields in which all the plane waves are used, the energy
gets higher.

Table 1. Energy of the plane wave expansion before and after rotation of the acoustic
field.

Frequency/method Case 1 Case 2

125 Hz 250 Hz 500 Hz 1 kHz 125 Hz 250 Hz 500 Hz 1 kHz

PWE 1.2250 1.0401 0.5476 0.0516 1.0464 0.8671 0.7204 0.0091

SH 1.0023 1.0079 0.6329 0.0605 0.9294 0.8682 0.7204 0.0094

VBAP 0.3877 0.3680 0.2553 0.0176 0.6177 0.5613 0.5070 0.0050

4.3 Normalized Error

A normalized error is implemented to compare the rotated reconstructed acoustic
field respect to the target one. This allows to evaluate if the area of accurate
reconstruction given by the PWE is affected by the rotation operators. The
normalized error is defined as:

e(x, ω) = 10 log10

[
|p(x, ω) − p̃(x, ω)|2

|p(x, ω)|2
]

, (20)

where p(x, ω) is the target acoustic pressure and p̃(x, ω) is the reconstructed
acoustic pressure. Figures 8 and 9 show the normalized errors in a cross-section
of the domain (z = 1.5 m) for both rotation algorithms. The white contour defines
the region within which the normalized error is smaller than −20 dB. Figures 10
and 11 for both approaches, spherical harmonics and VBAP, respectively.

Fig. 10. Normalized error for the spherical harmonic case. (A) is the reference sound
field (φ = 45), (B) is the rotated sound field (φ0 = 45), (C) is the reference sound field
(φ = 170) and (D) corresponds to the rotated field (φ0 = 60).
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Fig. 11. Normalized error for the VBAP case. (A) is the reference sound field (φ = 45),
(B) is the rotated sound field (φ0 = 45), (C) is the reference sound field (φ = 170) and
(D) corresponds to the rotated field (φ0 = 60).

An analysis of the acoustic errors indicates that the area of accurate recon-
struction is similar when the spherical harmonic operator is used. In contrast,
the outcomes show that the implementation of VBAP as a rotation operator
reduce the area in which the synthesis of the sound field is correct. These find-
ings suggest that a lower order of spherical harmonics is required to achieve the
same accuracy as VBAP for use as rotation operators.

5 Conclusions

Two different methodologies have been evaluated to perform the rotation of
acoustic fields based on a plane wave representation. The suitability of these
approaches extent the use of the PWE as kernel for interactive auralizations.
Applications of this method can be real-time sound field processing for video
games, listening tests, among others.

An implementation of VBAP as an interpolation tool validates the suitabil-
ity of this method to rotate sound fields in the plane wave domain. However, a
comparison with the rotation operator based on a spherical harmonic transfor-
mation reveals that the latter approach is more accurate in terms of sound field
reconstruction.

The outcomes also support that it is required to implement the spherical
harmonic rotation operator to preserve the initial accuracy given by the PWE.
However, this statement holds as the number of spherical harmonic coefficients
is equal to the number of plane waves.

References

1. Forssen, J., Hoffmann, A., Kropp, W.: Auralization model for the perceptual eval-
uation of tyre-road noise. Appl. Acoust. 132, 232–240 (2018)

2. Tenenbauma, R., Taminatoa, F., Meloa, V., Torres, J.: Auralization generated by
modeling HRIRs with artificial neural networks and its validation using articulation
tests. Appl. Acoust. 130, 260–269 (2018)



Rotation of Sound Fields 113

3. Vigeanta, M., Wanga, L., Rindel, J.: Objective and subjective evaluations of the
multi-channel auralization technique as applied to solo instrument. Appl. Acoust.
72, 311–323 (2011)

4. Møller, H.: Fundamentals of binaural technology. Appl. Acoust. 36, 171–218 (1992)
5. Daniel, J., Nicol, R., Moreau, S.: Further investigations of high order ambisonics

and wavefield synthesis for holophonic sound imaging. In: 114th Convention of
Audio Engineering Society, Amsterdam, vol. 5788, pp. 1–18 (2003)

6. Menzies, D., Al-Akaidi, M.: Nearfield binaural synthesis and ambisonics. J. Acoust.
Soc. Am. 121, 1559–1563 (2006)

7. Murillo, D., Astley, J., Fazi, F.: Low frequency interactive auralization based on a
plane wave expansion. Appl. Sci. 7, 1–22 (2017)

8. Winter, F., Schultz, F., Spors, S.: Localization properties of data-based binau-
ral synthesis including translatory head-movements. In: Proceedings of the Forum
Acusticum, Krakow, pp. 7–12 (2014)

9. Langendijk, E., Bronkhorst, A.: Fidelity of three-dimensional-sound reproduction
using a virtual auditory display. J. Acoust. Soc. Am. 107, 528–537 (2000)

10. Murillo, D., Fazi, F., Astley, J.: Spherical harmonic representation of the sound
field in a room based on finite element simulations. In: Proceedings of the 46th
Iberoamerican Congress of Acoustics, Valencia, pp. 1007–1018 (2015)

11. Pulkki, V.: Virtual sound source positioning using vector base amplitude panning.
J. Audio Eng. Soc. 45(6), 456–466 (1997)

12. Ward, D., Abhayapala, T.: Reproduction of a plane-wave sound field using an array
of loudspeakers. IEEE Trans. Audio Speech Lang. Process. 9(6), 697–707 (2001)

13. Williams, E.: Fourier Acoustics, 1st edn. Academic Press, London (1999)
14. Poletti, M.: Three-dimensional surround sound systems based on spherical har-

monics. J. Audio Eng. Soc. 53(11), 1004–1025 (2005)
15. Murillo, D.: Interactive auralization based on hybrid simulation methods and plane

wave expansion. Ph.D. thesis, Southampton University, Southampton, UK (2016)


	Rotation of Sound Fields Which Are Represented by Means of a Plane Wave Expansion
	1 Introduction
	2 Theoretical Bases
	2.1 Plane Wave Expansion
	2.2 Rotation Operators

	3 Methods and Results
	3.1 Rotation by Means of Spherical Harmonics
	3.2 Rotation by Means of VBAP

	4 Metrics for Performance
	4.1 Spatial Distribution of the Energy
	4.2 Energy Required for the Synthesis of the Rotated Sound Field
	4.3 Normalized Error

	5 Conclusions
	References




