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Abstract. The Job-shop Scheduling problem Multi-resource Resource flexi-
bility with linear routes is an extension of the classical Job-shop Scheduling
problem “JSMRFLR” where an operation needs several resources (machines)
simultaneously to be processed and each machine is selected from a given set.
Linear route indicates that an operation is exclusively performed for a job.
Publications related to this problem are really scarce and they are dedicated to
minimize makespan criterion, which aims to minimize the use of the machines.
In the modern scenery of the Operations Management, the exclusive mini-
mization of the makespan does not allow to analyze aspects of the customer
service to ensure high levels of competitiveness such as the consideration of
due-date and the importance between jobs. In this paper, we propose a general
Pareto approach to solve the JSMRFLR with regular criteria, which operates by
an efficient local search at using a fast estimation function for the criteria con-
sidering the conjunctive graph. During the search, the set of non-dominated
solutions is updated. The efficiency of our approach is illustrated on instances of
literature at performing three sets of criteria. The first set considers makespan
and maximum tardiness. In the second total flow time is added and in the third
the total tardiness. As a product of our approach, a reference of results is
proposed by future research.

Keywords: Scheduling theory -
Extension of the Job-shop scheduling problem - Regular criteria - Local search -
Pareto optimization

1 Introduction

For the Operations Management, the success of the production programming depends
on the scheduling decisions. These decisions lead to determine the sequence of
activities and the assignment of resources to optimize an objective function. In the
literature of scheduling, the highest rigor of the decisions have been focused on
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configurations derived of the classical flow-shop and Job-shop problems such as par-
allel machines, sequence dependent set up times, maintenance activities and others.
Concerning to the minimization of criteria, makespan, that is the maximum completion
time of jobs has been the most studied. Minimizing makespan does not consider
relevant aspects for the customer service like the due-date of jobs that represents the
delivery date agreed with customers and the importance between them. Therefore,
minimizing regular criteria different than the makespan leads to identify key aspects to
improve the customer service.

One of the extensions of the Job-shop problem is the Multi-resource and Resource
flexibility with linear routes. This extension was proposed by [1]. The Multi-resource
considers that an operation needs several resources simultaneously to be performed and
resource flexibility determines that a resource (machine) is chosen from a given set.
Linear route means that each operation is performed exclusively for a job. To best of
our knowledge, it is scarce the level of publications at solving this problem even
considering makespan.

This paper is oriented to improve the level of customer service and the productivity
in a more realistic industrial environment such as the Job-shop Scheduling Problem
Multi-resource Resource Flexibility with linear routes “JSMRFLR”. To reach the goal, a
fast local search algorithm that uses the properties of a conjunctive graph adapted to
regular criteria is designed to solve the JSMRFLR in Pareto manner at minimizing a
combination of regular criteria. The solutions that belong to the Pareto front are gotten
iteratively. In each iteration, a random criterion is selected and the move is determined
by an estimation function that considering the evaluation simultaneous of reversing a
critical arc (x,y) that belongs to the critical path of a job that affects a criterion and the
reassignment of x and y at maintaining the level of operations into the conjunctive graph
(maximum number of arcs from the start dummy node) between operations j and k.

During the search, the set of non-dominated solutions is updated at removing the
dominated solutions and adding of a new one if it is necessary. The proposed approach
is validated in instances of the literature proposed by [1] at solving three different sets
of criteria. In the first set, makespan and maximum tardiness are solved. The second set
adds the total flow time, and the third adds the total tardiness. As a contribution of our
experiments a benchmark of results is proposed for future research. The paper is
detailed as follows. Section 2 describes and models the problem with the considera-
tions of the front of Pareto. In Sect. 3, the algorithm that solves the problem is
described. Finally, Sect. 4 illustrates some computational experiments.

2 The Problem and Pareto Optimization

The objective of this Section is to illustrate the problem with its components and the
guidelines to obtain the Pareto front at minimizing a set of regular criteria.

2.1 Problem Description and Modeling

To describe the problem, it is necessary to consider the Job-shop Scheduling Problem
“JSP”. In the JSP, a set of n jobs J = {Jy,....J,} are processed on a set M =
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{My,....M,,} of m machines that are available. Each machine can only process one job
at a time. A job J; is obtained at performing sequentially #; operations in a fix route.
Preempting operations is not allowed. It means that an operation cannot be interrupted
once started. Each job J; has a due-date d;. The JSP Multi-resource Resource Flexibility
with linear routes “JSMRFLR” considers that an operation needs several resources
simultaneously to be performed and resource flexibility indicates that a resource may
be selected in a given set.

A model of the disjunctive graph for the Multi-resource shop scheduling with
resource flexibility considering linear and non-linear routes is proposed in [1]. This
model is used for minimizing makespan. To minimize regular criteria in the JSMRFLR,
we have added the properties of linear routes from the JSP, which were validated in [2]
and adapted for the flexible Job-shop scheduling problem in [3]. In the conjunctive
graph for minimizing regular criteria for the JSMRFLR, the n nodes ¢; that represents
the finalization of the jobs, the concept of maximum number of arcs between node 0
and an operation x (/,) and the tail from a node x to the dummy node q’)i(qi,) have been
added.

In the JSMRFLR, the disjunctive graph is noted G = (V, A, E), where V is the set
of nodes, A is the set of conjunctive arcs and E is the set of disjunctive arcs. The nodes
in E represent operations of jobs (set O), plus a dummy node O that corresponds to the
start of each job, and n dummy nodes ¢;. A contains conjunctive arcs which connect
two consecutive operations on the routing of jobs, the node O to every first operation of
each job, and the last operation of J; to a dummy node ¢;. The set E contains dis-
junctive arcs between every pair of operations assigned to the same resource. Let Ej be
the set of disjunctive arcs between pairs of operations that must be processed on &,
E = UE;.

The set of operations O has to be processed on a set of machines (resources) M. To
be processed an operation x € O requires R(x) resources simultaneously and M* is the
resource subset in which the k" resource (1 <k <R(x)) must be selected. The M*
subsets are not necessarily disjoint, for example, a resource could belong to several
subsets. To obtain a feasible schedule in the JSMRFLR, assignment and sequencing
decisions have to be made to solve the conflict in E. In each operation, the assignment
decision consists on determining which machine or resource must be selected from each
subset to perform it. However, it is mandatory to ensure of not assigning a resource
twice or more to the same operation, additionally the processing time of an operation x
(px) is determined by the maximum time of the resource where it is assigned. The
sequencing decision deals with determining a sequence of operations on each selected
resource k to minimize any regular criterion. It is important to highlight that the
sequence of operations on resources does not lead to create cycles in the conjunctive
graph. As soon as a solution is obtained, it is possible to extract information to identify
the properties to create moves which lead to improve any criterion. The arc from 0 to the
first operation of J; has a length equal to the release date r; of j;. Any remaining arc has a
length equal to the processing time of the operation from which it starts. The starting
time of x, h, = L(0,x) called head, that corresponds to the length of the longest path
from O to x. The tail from a node x to the dummy node ¢,(¢") is equal to [L(x, ¢;) — p,] if
a path exists from x to ¢; and —oo otherwise. A path from 0 to ¢; is called critical if its
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length is equal to C;, and every node x belonging to this critical path is critical according
to job J;. A critical node x for job J; satisfies ki, + p, + qi, = C;. The level [, of a node x in
G denotes the maximum number of arcs in a path from O to x. After obtaining the heads
of the nodes of the graph, the criterion of a feasible schedule represented by the selection
can be determined in O(n) from the starting times of the dummy nodes. For instance, the
makespan is obtained using the formula C,,,, = maxC;. Additionally the tardiness (T}),
T; = max (0, C; — d;). Then, the maximum tardiness is T,,; = maxT;, total tardiness (T)
is the sum of the tardiness of jobs (3"} T}) and the total flow time is the sum of the
completion time of jobs (3] C)).

2.2 Pareto Optimization

Pareto optimization aims to find a set of non-dominated solutions at optimizing a set of
criteria (often conflicting). In our case, for optimizing regular criteria, all objectives
lead to be minimized. The set of non-dominated solutions Q represents the Pareto front
and its comprehension requires to check the dominance between solutions, and the
conditions that a solution s must satisfy to be included in Q. Concerning to the
dominance between solutions, solutions A and B are considered. To determine if A
dominates to B or B is dominated by A, the following conditions must be true: (1) A is
not worse than B for all objectives, and (2) A is strictly better than B for at least one
objective. To know if a solution s must be included in Q, two conditions must be
ensured: (1) Any two solutions of Q must be non-dominated with respect to each other
and, (2) Any solution not in Q is dominated by at least one solution in Q.

The Fig. 1 helps to illustrate two non-dominated solutions of an instance with three
jobs, seven operations and six machines or resources (M, M, M3, My, M5 and M) at
minimizing makespan and maximum tardiness simultaneously. Besides, the due dates
for jobs are determined. They are d; = 6, d» = 12 and d3 = 6 (see column d;). The
solution in Fig. 1(a) aims to minimize makespan, and in the Fig. 1(b) the maximum
tardiness. The solution in the Fig. 1(a) can be used to explain some properties of the
conjunctive graph and some remarks can be extracted. The first job has two operations
(see the first route for a job). The first operation of the first job requires two resources
simultaneously (see dashed rectangle). The first resource is selected between M; and
M. If M is selected 3 is the processing time, otherwise 2. The second resource is
selected between M, and M,. In this example, M4 and M, are assigned respectively
(they are highlighted in yellow and blue color) and the processing time is 2. Note that a
resource was not assigned twice. Considering the same operation, it starts at time 0 and
finishing at time 2 (see 0/2), since the processing time is 2 (see 0 + 2 = 2). Considering
that one operation cannot start before finishing all its predecessors, the completion time
of all jobs (see column C;) and the tardiness of all jobs are calculated (see column 7;).

The solutions illustrated in the Fig. 1 are non-dominated solutions. If for example
makespan and maximum tardiness are considered, in the Fig. 1(a) the values for the
criteria are 12 and 4 respectively, and in the Fig. 1(b) these values are 14 and 2. It
means that for a decision maker without considering importance between criteria both
solutions are equivalent and they satisfy the conditions of non-dominance between
solutions.



768 A. A. Garcia-Ledén and W. F. Torres Tapia

12 o

d; T

12 2

Fig. 1. Examples of two non-dominated solutions with makespan and maximum tardiness

2.3  Quality of the Pareto Front

There is not any consensus to establish the quality of the Pareto Front. Different
approaches have been proposed (see for example [4] and [S]). However, two aspects
are mandatory to consider: convergence and diversity. Convergence implies that the set
of non-dominated solutions must be located closest to the origin of coordinates.
Diversity is related to the solutions in sparsely space to ensure that the decision maker
has several and representative trade-off solutions among conflicting criteria. To
determine the quality of the front, the set of metrics employed in [5] are analyzed. In
this case, for the convergence the hypervolume (HV), elite solutions and the Mean
Ideal Distance (MID) are measured. HV is the volume covered by the solutions of the
front and respect to the worst solution, since regular criteria are minimized. Elite
solutions are the best values of the criteria. MID is the average Euclidean distance
obtained between each non-dominated solution and the origin. Concerning to the
diversity, the maximum spread (D) and spacing (SP) are analyzed. D is the longest
diagonal of the hyper box formed by the extreme values of the criteria, and SP is the
average distance between consecutive solutions.

The Fig. 2 is an image of the results generated by our algorithm, which will be
explained in the next section at minimizing in Pareto manner makespan, maximum
tardiness and total flow time (TFT) at performing the instance mjsO7 during five
minutes from [1]. This Figure is divided in two parts. The part a represents a txt file
with the results. For example, the algorithm gets eight non-dominated solutions. Each
solution shows the value of the criteria. Additionally, the metrics are separated by
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diversity and convergence. In the part b, the eight non-dominated solutions are plotted
on a three dimensional plane.

STIIFIRAT results for Pareto optimization (a§s07)------ H i
---Schedules of the reference fronte-----ssesseenn-

tiusber of non nated solutions--8

x: 138 -
- TFT: 5899,

- TFT: 6031,

L o, i 6,000 |

- TFT: 5958. B

e o, S S

5,900 |
130

650 gor " 12
655 o 120
Cnax

640 45

max

(b)

Fig. 2. Results for the instance mjs07 at minimizing Cpays Tax and Y, C;

3 Description of the Algorithm

In Sect. 2 were defined the components of the problem JSMRFLR and the guidelines
of Pareto optimization, which are used to describe the proposed algorithm. Basically,
our algorithm is a local search process that uses the properties of the conjunctive graph,
a test of feasibility conditions, an estimation function and a procedure to update the set
of non-dominated solutions.

3.1 Feasibility Conditions and Estimation Functions

Feasibility conditions aim to check if a critical operation could be moved without
performing any transformation in the conjunctive graph. For this problem, two types of
moves are considered: reversing critical arc (x,y) and the reassignment of a critical
operation performed on resource L to resource L' between j and k. Respect to reverse
critical arcs, the conditions validated in [2] for minimizing regular criteria have been
extended to this problem. However, it is important to clarify that if several arcs connect
x and y, all arcs must be reversed, since they are critical, and x and y must belong to
different jobs.

In the reassignment, moving an operation ¢ (¢ = x or ¢ = y) between operations j
and k from resource L to L', it is necessary to check that there are no paths from
b(Vb € B) to j, and simultaneously from k to ¢(Vc € C). Here, B (resp. C) is the set
formed for all immediate successors (resp. predecessors) of ¢ without considering the
successor (resp. predecessor) linked to the resource L. To ensure it, two expressions
considering the number of arcs must be satisfied: (1) [;< minpeg{l,} and
(2) Iy > max.cc{l.}. These expressions are validated, since there is not possible to get a
path from a node u to v if [, <[,. To estimate the value of any regular criterion, the
completion time of a job must be estimated. It means to determine the completion time
of each node ¢;. To determine it, two sets of functions based on the type of move.
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Concerning to swap a critical arc, the three expressions to Ly, L, and L3 from [2] have
been extended to the JSMRFLR problem. Those expressions aim to maintain the same
values for the heads or start time for operations and the tails to nodes ¢; at reversing a
critical arc. At reassigning an operation ¢ between j and k, we want to maintain the
same conditions (heads and tails) to reach a better precision of the estimation. In this
case the condition for C;, C; from [1] and L3 from [6] have been adapted at considering
regular criteria.

3.2 Steps of the Search

The search starts with an initial solution, which is the first solution added to the set of
non-dominated solutions. Then, iteratively two steps (improvement and diversification)
according to the conditions of the graph are executed. Simultaneously the set of non-
dominated solutions is updated. In the initial solution, the jobs are sorted in increasing
way according to their due-date. Then, for the assignment and sequence of operations
on machines (resources) is solved at considering the operation in route of the order
jobs. It means that, if there exist and ordering of jobs, the assignment and sequence
decisions solve the first operation of all them, then, the second and so on. The objective
of the assignment and sequence decisions aim to obtain the lowest completion time per
operation at evaluating the capacity of machines. The initial solution is general and it
does not make any distinction between criteria.

To transform the conjunctive graph, all critical arcs that belong to the critical paths
of jobs that affect the criterion are referenced to create a move at selecting the best
neighbor. The algorithm aims to optimize a Pareto approach and iteratively a random
criterion is selected to create a move. Selecting the best neighbor implies determine the
feasibility of all moves, and then on each feasible move the evaluation of the estimation
function which were described in Sect. 3.1. To clarify the functioning of the search, let
CRT be a set of k criteria to minimize, Crt; € CRT a criterion i to minimize; besides, let
Csq be a random chosen criterion to optimize from CRT. Let CFOR C CRT be a
subset of CRT that contains the forbidden criteria, which means that in case of a
random selection of a criterion, a forbidden criterion cannot be selected. A criterion
becomes forbidden when, in the improvement step, it is selected to create a move, and
it cannot be generated.

The Fig. 3 illustrates the algorithm for the improvement step. In each iteration, a
random criterion Cg, is selected to create a move. If it is not possible to create a move
using Cg,, Cse becomes forbidden and it is added to CFOR. The search selects a new
criterion that belongs to CRT-CFOR. However, when a move is performed, all criteria
are authorized to be selected or the set CFOR is emptied. If it is not possible to create a
move, the search goes to the diversification step considering the neighborhood of the
last forbidden criterion. In this step, when a move is performed the criteria with its local
and global optimal are updated.

When, it is not possible to create a move considering the random criterion, a new
criterion is selected until the move can be performed. If an improvement move cannot
be created, the diversification step starts. It consists on performing iteratively b random
moves (b € [2, 5]) considering the last selected criterion. After that, the search returns
to the improvement phase. The set of non-dominated solutions is updated as follows.
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Algorithm __Improvement phase in local search process
1: Input: current solution
2: CFOR=0
: repeat
Csel « random(Crt; € {CRT — CFOR})
ifitis to create an improving move

3.
a
s:
6 Perform the move and generate the new
7
s

ing Csel then
on
Update the value for the k criteria

Update the set of non-dominated solutions

o Update the local optimal for the k criteria
10: Update the global optimal for the k criteria
" CFOR =0
12: else
13: Add Csel to CFOR

14: end if
15: until (CRT — CFOR = 0)
16: Go to the diversification step with Csel

Fig. 3. Algorithm for the improvement step

When a solution s is gotten, it is checked to determine its addition in Q at applying the
conditions described in Sect. 2.2. If s were added in Q, s could dominate other solu-
tions, which must be removed from Q. The set of non-dominated solutions is updated
at validating simultaneously the addition of the new solution and the elimination of the
dominated solutions.

4 Computational Experiments

To validate and evaluate the efficiency of our approach, the instances with linear
routing studied in [1] have been considered. Our algorithm was developed in Java
language. The experiments were conducted on a PC with 3.40 GHz and 8 GB RAM
for each set of criteria on each instance during ten minutes. To calculate the maximum
tardiness and the total tardiness, it is necessary to determine the due-date d; of the jobs.
They were generated by introducing a parameter f equals to 1.1, which is inspired from
[7]. d; is determined by multiplying the sum of the average processing times of
operations belong to J; by f. To determine the average processing time of an operation,
it is calculated at considering the highest processing time per subset of resources. It is
important to mention that d; was rounded to the next integer number.

The results are presented in three steps. In the first step the efficiency of makespan
criterion is evaluated at considering the best known values determined in [1]. In the
second step, the elite solutions are analyzed to determine the best combination of
criteria to optimize and finally, with the best combination of criteria the results for the
metrics of the front of Pareto are calculated.

4.1 Evaluating Makespan

Makespan criterion is the only benchmark to determine the quality of our results at
evaluating its convergence. It means the nearest distance respect to a known value. The
Table 1 illustrates the best known values (see column BKV) and the best values at
considering the three sets of criteria. Additionally, column DP(%) determines the
percentage difference between the best result and the best known value. Besides, if a
better known value is gotten, it is underlined and an asterisk is written in column
DP(%). The best makespan of our experiment are written in bold.
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Table 1. Results for the best makespan in the three sets

Instance | BKV | Set A | Set B | Set C | DP(%) Instance | BKV | Set A | Set B | Set C | DP(%)
mjs01 361 361 362 362 0.0 mjs35 265 266 269 269 04
mjs02 384 321 376 376 - mjs36 225 246 269 257 93
mjs03 378 382 379 379 0.3 mjs37 207 229 261 242 10.6
mjs04 394 404 399 399 13 mjs38 241 254 271 262 5.4
mjs05 643 680 682 682 58 mjs39 210 231 262 246 100
mjs06 585 556 573 573 * mjs40 241 241 264 242 0.0
mjs07 644 648 673 659 0.6 mjs41 218 248 276 237 8.7
mjs08 575 582 597 597 12 mjs42 250 250 282 257 0.0
mjs09 568 572 578 578 0.7 mjsd3 219 228 267 242 a1
mjs10 928 932 965 965 0.4 mjs44 258 268 324 280 3.9
mjs11 1057 | 1047 1040 1040 - mjsa5 296 333 464 456 125
mjs12 859 843 862 862 * mjs46 300 384 491 413 28.0
mjs13 827 884 902 909 6.9 mjs47 333 377 490 481 132
mjs14 946 1026 1020 1020 7.8 mjs48 327 368 469 436 12.5
mjs15 1469 | 1467 1457 1447 . mjsa9 356 390 470 466 9.6
mjs16 1312 | 1380 1352 1352 3.0 mjs50 327 430 516 472 315
mjs17 1572 1567 1582 1582 * mjs51 373 452 536 509 21.2
mjs18 1544 | 1571 1628 1601 17 mjs52 317 387 434 415 221
mjs19 1572 | 1553 1598 1566 - mjs53 353 419 546 495 18.7
mjs20 1033 | 1075 1068 1068 34 mjs54 311 407 467 454 309
mjs21 916 918 922 922 0.2 mjs55 493 797 819 819 617
mjs22 924 964 956 956 35 mjs56 508 789 873 715 40.7
mjs23 957 969 990 990 13 mjs57 500 788 973 948 57.6
mjs24 918 893 890 890 * mjs58 530 802 884 814 51.3
mjs25 1513 1541 1568 1548 1.9 mjs59 490 916 1024 881 79.8
mjs26 1481 1448 1474 1414 * mjs60 268 299 421 395 11.6
mjs27 1566 1649 1693 1602 2.3 mjs61 303 332 452 374 9.6
mjs28 1395 1530 1631 1545 9.7 mjs62 284 306 426 357 7.7
mjs29 1336 1444 1502 1455 8.1 mjs63 289 317 398 344 9.7
mjs30 218 239 247 231 6.0 mjs64 240 277 346 306 15.4
mjs31 218 250 281 281 14.7 mjs65 381 508 622 622 33.3
mjs32 219 250 266 255 14.2 mjs66 423 558 652 652 31.9
mjs33 224 241 254 246 7.6 mjs67 408 558 639 639 36.8
mjs34 213 229 238 232 7.5 mjs68 400 554 754 667 38.5

At observing the Table 1, it is possible to infer that our approach evidences a
significant performance at minimizing the makespan combined with other criteria. For
example, our approach leads to a better makespan than the best known value in nine of
68 instances (mjs02, 06, 11, 12, 15, 17, 19, 24 and 26). Besides, the best known value
is reached in three instances: mjs01, mjs40 and mjs42, since, the percentage difference
is 0.0 (see column DP). Additionally, in 16 instances the DP is less or equal than 5.0%
and in six of them is less than 1.0%. Respect to each set, SetA Performs better than SetB
and SetC in 52 instances. SetC performs better in 16 instances and SezB in eight without
a superiority level. Since, in the eight instances SetB gets the same performance than
SetC. As conclusion, at evaluating the convergence of the makespan in the consoli-
dation of the set of non-dominated solutions SezB is not efficient and the better com-
bination is the maximum tardiness.

4.2 Evaluating Maximum Tardiness and Total Flow Time

The Table 2 illustrates the elite solutions for both criteria. Again, the best value for the
criteria is written in bold. Analyzing the results for maximum tardiness, in 32 instances,
optimal solution (T, = 0) is gotten, and in 25 of them is gotten in the three sets for
the three sets. Concerning to the performance of the sets, Set A presents the best
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performance in 29 instances, Set B in 5 and Set C in 15. Respect to the total flow time,
only Sets B and C are analyzed. At observing the results, Set C leads to better results,
since, it is evidenced in 58 instances. At evaluating the performance of the three sets, it
is evident the superiority of the SezB when a bi-criteria analysis (Makespan and Tmax)
is performed. However, if some criteria are added, the best results are gotten in SerC.

Table 2. Results for the best Ty, and Y, C; in the three sets

Instance Tnax Z G Instance Tnax ZC’
SetA | SetB | SetC | SetB | SetC SetA | SetB | SetC | SetB | SetC

mjs01 19 23 19 3132 3125 mjs35 0 0 0 2382 2211
mjs02 57 53 54 3295 3329 mjs36 0 0 0 2368 2146
mjs03 14 19 17 3331 3331 mjs37 0 0 0 2291 1948
mjs04 67 65 65 3328 3306 mjs38 0 0 0 2458 2192
mjs05 112 116 119 6062 5795 mjs39 0 0 0 2273 1984
mjs06 58 70 72 5367 5267 mjs40 0 0 0 2194 1935
mjs07 123 136 128 6043 5921 mjs41 0 0 0 2460 2067
mjs08 88 89 89 5135 5226 mjs42 0 0 0 2206 2009
mjs09 76 80 80 5065 4952 mjs43 0 0 0 2011 1863
mjs10 601 608 601 8613 8437 mjs44 0 0 0 2758 2149
mjs11 695 706 690 9165 8936 mjs45 0 0 0 4331 3765
mjs12 482 498 502 7964 7674 mjs46 0 0 0 4606 3941
mjs13 530 550 545 8144 8198 mjs47 0 0 0 4491 3854
mjs14 653 647 629 9490 8939 mjs48 0 0 0 4522 3508
mjs15 928 916 885 13447 13561 mjs49 0 0 0 4274 3785
mjs16 874 855 873 12625 12825 mjs50 0 74 26 4975 4221
mjs17 1082 1064 1094 15017 15331 mjs51 2 95 50 5032 4524
mjs18 1037 1079 1041 15370 15091 mjs52 0 2 0 4034 3539
mjs19 1040 1094 1047 15281 14461 mjs53 0 103 28 5067 4518
mjs20 702 705 711 9351 9400 mjs54 0 0 0 4304 3806
mjs21 547 547 557 8036 8121 mjs55 159 166 181 7999 8036
mjs22 621 614 609 8723 8694 mjs56 116 220 59 8494 6888
mjs23 592 641 619 8892 8638 mjs57 88 308 242 9391 8895
mjs24 545 549 548 8216 7923 mjs58 108 174 121 8294 7633
mjs25 997 1033 1015 14776 14597 mjs59 240 359 163 9872 7926
mjs26 940 962 902 14485 13003 mjs60 0 0 0 3954 3655
mjs27 1113 1157 1048 15887 14675 mjs61 0 10 0 4000 3383
mjs28 998 1103 958 14936 13670 mjs62 0 0 0 3834 3226
mjs29 911 969 902 14264 13545 mjs63 0 0 0 3757 3207
mjs30 0 0 0 2228 1980 mjs64 0 0 0 3208 2823
mjs31 0 0 0 2473 2148 mjs65 0 0 0 6075 5933
mjs32 0 0 0 2492 2180 mjs66 0 18 0 6358 5949
mjs33 0 0 0 2323 2173 mjs67 [ [ 69 6124 6840
mjs34 0 0 0 2087 1995 mjs68 0 60 0 7177 6539

4.3 Results for Set A and Set C

The main conclusion of the last sub Sections is that the best results are reached for Sets
A and C. In this Section the results of the metrics are calculated and written in Tables 3
and 4, where column Sol means the number of non-dominated solutions generated by
the search. Additionally, in Table 4 the total tardiness criterion is recorded. The results
of these Tables can be used as benchmark to determine the quality of a Pareto front.
However, different combination of criteria must be performed to determine the per-
formance mainly of the makespan at trying to reduce the distance from the origin.
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Table 3. Quality metrics for Ser A

Instance Sol HV D sp MID Instance Sol HV D sP MID

mjs01 5 0.996 53.2 14.7 380.5 mjs35 1 0.997 0.0 0.0 266.0

mjs02 7 0.995 50.7 4.4 408.8 mjs36 1 0.997 0.0 0.0 246.0

mjs03 3 0.996 15.3 4.4 391.7 mjs37 1 0.998 0.0 0.0 239.0

mjs04 5 0.995 62.2 2.2 450.5 mjs38 1 0.997 0.0 0.0 271.0

mjs05 2 0.992 12.2 2.7 704.0 mjs39 1 0.998 0.0 0.0 236.0

mjs06 4 0.993 47.9 11.1 603.4 mjs40 1 0.998 0.0 0.0 241.0

mjs07 2 0.992 32.0 4.1 686.2 mjs41 1 0.997 0.0 0.0 257.0

mjs08 1 0.993 0.0 0.0 616.4 mjs42 1 0.997 0.0 0.0 250.0

mjs09 1 0.993 0.0 0.0 578.4 mjs43 1 0.997 0.0 0.0 238.0

mjs10 1 0.983 0.0 0.0 1256.7 mjs44 1 0.997 0.0 0.0 270.0

mjs11 1 0.983 0.0 0.0 1258.1 mjs45 1 0.996 0.0 0.0 372.0

mjs12 3 0.985 33.1 10.4 1061.5 mjs46 1 0.996 0.0 0.0 429.0

mjs13 1 0.986 0.0 0.0 1057.8 mjs47 1 0.997 0.0 0.0 383.0

mjs14 4 0.983 39.0 11.0 1253.0 mjs48 1 0.996 0.0 0.0 373.0

mjs15 1 0.975 0.0 0.0 1808.9 mjs49 1 0.996 0.0 0.0 430.0

mjs16 1 0.976 0.0 0.0 1741.5 mjs50 1 0.995 0.0 0.0 467.2

mjs17 1 0.97 0.0 0.0 2167.5 mjs51 2 0.994 12.0 2.6 517.9

mjs18 1 0.97 0.0 0.0 1995.2 mjs52 1 0.996 0.0 0.0 421.0

mjs19 1 0.97 0.0 0.0 2070.7 mjs53 3 0.995 17.0 2.4 466.6

mjs20 1 0.981 0.0 0.0 1374.6 mjs54 1 0.996 0.0 0.0 407.0

mjs21 1 0.985 0.0 0.0 1086.3 mjs55 2 0.990 2.8 1.4 879.9

mjs22 2 0.984 26.0 3.7 1185.2 mjs56 3 0.990 29.1 2.4 864.6

mjs23 1 0.984 0.0 0.0 1151.5 mjs57 1 0.990 0.0 0.0 904.9

mjs24 1 0.985 0.0 0.0 1097.1 mjs58 2 0.990 19.7 3.7 875.6

mjs25 1 0.974 0.0 0.0 1886.0 mjs59 1 0.990 0.0 0.0 1043.6

mjs26 1 0.974 0.0 0.0 1829.4 mjs60 1 0.997 0.0 0.0 332.0

mjs27 1 0.971 0.0 0.0 2077.0 mjs61 1 0.996 0.0 0.0 359.0

mjs28 1 0.973 0.0 0.0 1970.6 mjs62 1 0.997 0.0 0.0 342.0

mjs29 1 0.975 0.0 0.0 1801.4 mjs63 1 0.997 0.0 0.0 341.0

mjs30 1 0.997 0.0 0.0 252.0 mjs64 1 0.997 0.0 0.0 297.0

mjs31 1 0.997 0.0 0.0 255.0 mjs65 1 0.994 0.0 0.0 569.0

mjs32 1 0.997 0.0 0.0 258.0 mjs66 1 0.994 0.0 0.0 591.0

mjs33 1 0.997 0.0 0.0 253.0 mjs67 1 0.994 0.0 0.0 628.0

mjs34 1 0.997 0.0 0.0 241.0 mjs68 1 0.994 0.0 0.0 626.0

Table 4. Quality metrics for Set C

Instance | g 2 Ti | nwv D sp MID Instance | ¢4 Z Ti| wv D sp MID
mjs01 31 61 0.992 216.7 15.7 3329.3 mjs35 5 0 0.995 95.6 13.3 2284.3
mjs02 18 179 0.992 145.2 22.1 3454.3 mjs36 1 0 0.995 0.0 0.0 2201.1
mjs03 12 42 0.992 141.7 10.4 3425.1 mjs37 5 0 0.995 112.8 24.4 2115.3
mjs04 20 241 0.990 184.3 13.7 3479.5 mjs38 4 0 0.995 74.2 2.5 2293.9
mjs05 9 1022 0.984 251.4 17.3 6445.7 mjs39 3 0 0.995 110.3 42.4 2221.5
mjs06 6 434 0.987 95.6 6.9 5541.1 mjs40 2 0 0.996 34.8 4.7 1994.9
mjs07 3 882 0.985 84.9 50.0 6145.8 mjs41 3 0 0.996 34.4 5.2 2174.0
mjs08 2 534 0.987 23.8 4.4 5462.3 mjs42 2 0 0.995 20.1 3.3 2035.4
mjs09 13 399 0.987 292.3 30.7 5359.3 mjs43 1 0 0.996 0.0 0.0 1924.3
mjs10 5 5315 0.970 432.8 136.0 10433.6 mjs44 3 0 0.995 101.5 2.4 2223.4
mjs11 2 5634 0.968 35.3 5.6 10652.4 mjs45 1 0 0.991 0.0 0.0 4127.3
mjs12 9 4358 0.973 50.3 52.4 9362.4 mjs46 1 0 0.992 0.0 0.0 3962.6
mjs13 3 4887 0.972 107.0 18.9 9800.6 mjs47 3 0 0.991 48.4 19.8 4191.7
mjs14 5 5523 0.968 348.6 27.6 10798.3 mjs48 1 0 0.992 0.0 0.0 4005.8
mjs15 2 8557 0.955 97.7 9.1 16230.3 mjs49 3 0 0.991 24.4 11.8 4120.5
mjs16 1 8114 0.957 0.0 0.0 15560.4 mjs50 4 49 0.990 247.7 88.1 4419.4
mjs17 6 10904 0.950 457.8 107.4 19429.9 mjs51 2 334 0.990 51.1 6.7 4764.9
mjs18 4 9972 0.950 166.5 72.7 18246.6 mjs52 2 0 0.992 74.6 6.7 3824.0
mjs19 3 9492 0.950 355.9 197.5 17542.5 mjs53 8 113 0.990 132.5 14.4 4590.2
mjs20 3 5851 0.970 287.6 25.5 11308.6 mjs54 2 18 0.990 22,0 4,4 4262.1
mjs21 9 4980 0.971 322.9 51.2 9925.7 mjs55 1 1428 0.980 0.0 0.0 8303.3
mjs22 5 5376 0.970 612.0 77.8 10573.6 mjs56 2 251 0.985 21.3 4.1 6939.3
mjs23 2 5856 0.968 65.6 7.4 11045.3 mjs57 3 2188 0.977 109.1 23.1 9261.0
mjs24 1 4993 0.970 0.0 0.0 9763.5 mjs58 1 847 0.982 0.0 0.0 7723.8
mjs25 7 9466 0.950 290.6 36.8 17645.6 mjs59 1 1779 0.979 0.0 0.0 8686.5
mjs26 1 8306 0.956 0.0 0.0 15682.4 mjs60 1 0 0.992 0.0 0.0 3676.3
mjs27 4 10180 0.949 74.4 15.0 18405.6 mjs61 2 0 0.993 6.4 2.1 3445.6
mjs28 1 9537 0.951 0.0 0.0 17405.0 mjs62 2 0 0.993 34.0 4.9 3259.4
mjs29 6 8535 0.954 489.2 75.3 16364.6 mjs63 2 0 0.993 30.7 4.4 3273.7
mjs30 1 0 0.996 0.0 0.0 2018.3 mjs64 1 0 0.994 0.0 0.0 2839.5
mjs31 1 0 0.994 0.0 0.0 3123.1 mjs65 1 0 0.988 0.0 0.0 6119.4
mjs32 7 0 0.995 56.8 7.3 2324.8 mjs66 3 483 0.984 173.6 121.6 7116.2
mjs33 2 0 0.995 7.2 2.2 2190.1 mjs67 2 618 0.983 246.4 13.9 7346.4
mjs34 3 0 0.996 21.2 8.5 2029.2 mjs68 3 0 0.987 7.8 1.4 6576.2
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5 Conclusion

This paper illustrates a local search algorithm to solve the job shop scheduling Multi
resource Resource flexibility with linear routes at minimizing different combinations of
regular criteria in Pareto manner. We have presented results for three sets of criteria. To
best of our knowledge, there is not any reference about of this extension of the job-shop
scheduling problem to calculate regular criteria different than the makespan. The
algorithm is supported in the adaptation of estimation functions as extensions of the
classical problem and the proposition of a conjunctive graph. In its formulation, the
properties of heads, tails and levels of operations have been considered. Computational
results show the efficiency of our algorithm at getting some best known values and
better values in some instances for the makespan. Additionally optimal solutions are
gotten by the maximum tardiness and the total tardiness.

As perspective of the proposed approach, we will study two extensions. The first is
the formulation of new estimation function for non-linear route problem (for example,
in assembly process), and the second is the solution considering weighted objective
functions for improving the making decision process. This research is supported by the
project “Formulation and validation of heuristics for optimizing the customer service in
flexible configurations in the Tolima region”, identified with the code 17-465-INT,
which is financed by the Universidad de Ibagué¢ (Colombia).

References

1. Dauzére-Péres, S., Roux, W., Lasserre, J.: Multi-resource shop scheduling with resource
flexibility. Eur. J. Oper. Res. 107(2), 289-305 (1998)

2. Mati, Y., Dauzere-Péres, S., Lahlou, C.: A general approach for optimizing regular criteria in
the job-shop scheduling problem. Eur. J. Oper. Res. 212(1), 33-42 (2011)

3. Garcia-Leon, A., Dauzere-Péres, S., Mati, Y.: Minimizing regular criteria in the flexible job-
shop scheduling problem. In: 7th Multidisciplinary International Scheduling Conference:
Theory and Applications, pp. 443-456 (2015)

4. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput.
7, 117-132 (2003)

5. Garcia-Leon, A., Dauzére-Péres, S., Mati, Y.: An efficient Pareto approach for solving the
multi-objective flexible job-shop scheduling problem with regular criteria. Comput. Oper.
Res. 108, 187-200 (2019)

6. Dauzére-Péres, S., Paulli, J.: An integrated approach for modeling and solving the general
multiprocessor job-shop scheduling problem using tabu search. Ann. Oper. Res. 70, 281-306
(1997)

7. Singer, M., Pinedo, M.: A computational study of branch and bound techniques for
minimizing the total weighted tardiness in job shops. IIE Trans. 30(2), 109-118 (1998)



	A General Local Search Pareto Approach with Regular Criteria for Solving the Job-Shop Scheduling Problem Multi-resource Resource Flexibility with Linear Routes
	Abstract
	1 Introduction
	2 The Problem and Pareto Optimization
	2.1 Problem Description and Modeling
	2.2 Pareto Optimization
	2.3 Quality of the Pareto Front

	3 Description of the Algorithm
	3.1 Feasibility Conditions and Estimation Functions
	3.2 Steps of the Search

	4 Computational Experiments
	4.1 Evaluating Makespan
	4.2 Evaluating Maximum Tardiness and Total Flow Time
	4.3 Results for Set A and Set C

	5 Conclusion
	References




