
Evaluation of Stencil Based Algorithm
Parallelization over System-on-Chip

FPGA Using a High Level Synthesis Tool

Luis Castano-Londono1,3(B), Cristian Alzate Anzola1, David Marquez-Viloria1,
Guillermo Gallo2, and Gustavo Osorio3

1 Department of Electronics and Telecommunication Engineering,
Instituto Tecnológico Metropolitano ITM, Medelĺın, Colombia

{luiscastano,davidmarquez}@itm.edu.co,
cristianalzate224500@correo.itm.edu.co

2 Rynova Research Group,
Rymel Company, Medelĺın, Colombia

guillermogallo@rymel.com.co
3 Department of Electrical, Electronics and Computing Engineering,

Universidad Nacional de Colombia, Manizales, Colombia
gaosorio@unal.edu.co

Abstract. Iterative stencil computations are present in many scientific
and engineering applications. The acceleration of stencil codes using par-
allel architectures has been widely studied. The parallelization of the
stencil computation on FPGA based heterogeneous architectures has
been reported with the use of traditional RTL logic design or the use
of directives in C/C++ codes on high level synthesis tools. In both
cases, it has been shown that FPGAs provide better performance per
watt compared to CPU or GPU-based systems. High level synthesis
tools are limited to the use of parallelization directives without eval-
uating other possibilities of their application based on the adaptation
of the algorithm. In this document, it is proposed a division of the
inner loop of the stencil-based code in such a way that total latency
is reduced using memory partition and pipeline directives. As a case
study is used the two-dimensional Laplace equation implemented on a
ZedBoard and an Ultra96 board using Vivado HLS. The performance is
evaluated according to the amount of inner loop divisions and the on-
chip memory partitions, in terms of the latency, power consumption, use
of FPGA resources, and speed-up.

Keywords: Stencil computation ·
Field programmable gate array (FPGA) · System-on-a-chip (SoC) ·
High-Level Synthesis (HLS)

1 Introduction

Iterative stencil computations are present in scientific and engineering applica-
tions such as: numerical integration of partial differential equations [11,18,26],
c© Springer Nature Switzerland AG 2019
J. C. Figueroa-Garćıa et al. (Eds.): WEA 2019, CCIS 1052, pp. 52–63, 2019.
https://doi.org/10.1007/978-3-030-31019-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31019-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-31019-6_5


Stencil Based Algorithm Parallelization on SoC FPGA 53

image processing [3,22], Particle-in-Cell simulation [22], graph processing [15],
among others. The acceleration of stencil codes using parallel architectures has
been widely studied [2,6,13,17,18,25–28]. One of the most important limitations
of the stencil computation is its small operational intensity [23,26], which makes
it difficult to take advantage of the supercomputers that have a large number of
processing units (microprocessors and GPUs) [23].

In the last years, FPGA based accelerators has been proposed to improve
stencil computation performance with low power consumption [5–7,10,16,21,23,
26]. FPGAs have a large number of registers, which facilitates the transfer of data
between the iterations of a computation without the need to access an external
memory. This leads to an increase in operational intensity and processing speed
[26]. In a previous work, we presented an evaluation of architectures for stencil
computation, in which it is shown that it is possible to reach execution times
similar to those of a CPU used as a reference using registers and on-chip memory
[1]. However, these architectures were experimentally tested for small mesh sizes
due to the resource limitations of the FPGA used.

FPGA accelerators are usually implemented by means of a hardware design
language (HDL) [9,10,19,26]. However, HDL designs require extensive knowl-
edge of the hardware [26]. In order to raise the level of abstraction of designs and
facilitate implementation, some High-Level Synthesis tools (HLS) has been used
as in [8,14,19,20,24,28]. The HLS tools allow to ignore some hardware details,
but often deliver solutions less efficient compared to those obtained using HDL
[19]. In these cases it is necessary to manually rewrite the code to optimize, for
example, memory access [8].

There have been attempts to improve the performance of HLS solutions. For
example, in [6], a set of design options have been explored to accommodate
a large set of constraints. Most literature works achieve high performance by
evading spatial blocking and restricting the input size. On the other hand, in
[28], spatial and temporal blocking are combined in order to avoid input size
restrictions. It is well known that one of the bottlenecks in the HLS solutions
is access to data [4,8]. In this way, it is necessary to optimize memory manage-
ment. In [8], graph theory is used in order to optimize the memory banking. In
[4], a non-uniform partition of the memory is proposed in such a way that the
number of memory banks is minimized. Loop pipelining is another key method
for optimization in HLS [13]. However, the performance level of the solutions
may not be optimal when complex memory dependencies appear. In [12–14],
loop pipelining capabilities are improved in order to handle uncertain memory
dependencies.

In this document, it is presented a strategy that attacks the HLS optimization
problem on two fronts: memory management and loop pipelining. To achieve
the task, it is proposed a method to split the mesh in such a way that total
latency is reduced using on-chip memory partitioning and pipeline directives. As
a case study is used the two-dimensional Laplace equation implemented for two
different development systems, the ZedBoard using Vivado Design Suite and the
Ultra96 board using Vivado SDx. The performance is evaluated and compared



54 L. Castano-Londono et al.

according to the amount of inner loop divisions and the memory partitions in
terms of the latency, power consumption, use of FPGA resources, and speed-up.
The rest of the document is organized as follows. In Sect. 2, it is presented the
two-dimensional Laplace equation and the approach to its numerical solution
by means of finite difference method. In Sect. 3, the details of the implemented
stencil computing system are presented. Results are presented in Sect. 4. Finally,
the conclusions are given in Sect. 5.

2 Case Study: Two-Dimensional Laplace Equation

Suppose Ω as a domain of R2 with boundary defined as ∂Ω. The partial differ-
ential equation shown in (1) is considered elliptical for all points (x, y) ∈ Ω.

∂2u

∂x2
+

∂2u

∂y2
= 0 (1)

This expression is known as two-dimensional Laplace equation and it is used
to describe the stationary temperature distribution in a two-dimensional region
given some boundary conditions. An approach to the numerical solution of this
equation is obtained using the finite difference method. The Ω region is dis-
cretized in the two dimensions x and y by defining a number of points I and J
respectively. This approach is obtained for the iteration n + 1 as in (2), consid-
ering a uniform distribution of the points in the domain of the solution.

un+1
ij =

1
4
(un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1) (2)

The implementation of this approach is known as the Jacobi algorithm. For
Dirichlet boundary conditions, it is described for a number of iterations N as
shown in Algorithm1.

Algorithm 1. Stencil for the Laplace equation using the Jacobi algorithm.
Input: initial and boundary conditions, mesh size, number of iterations
Output: temperature u(x, y) at iteration N

1 Loop 1: for n ← 0 to N − 1 do
2 Loop 1.1: for j ← 1 to J − 2 do
3 Loop 1.1.1: for i ← 1 to I − 2 do
4 un+1

i,j ← 0.25(un
i+1,j + un

i−1,j + un
i,j+1 + un

i,j−1)

5 end

6 end

7 end



Stencil Based Algorithm Parallelization on SoC FPGA 55

3 System Implementation

The implementation was performed for two different development systems, the
ZedBoard using Vivado Design Suite and the Ultra96 board using Vivado SDx. In
both cases, the Zynq processing system (PS) interacts through of AXI interface
and DMA with a custom IP created in Vivado HLS using C language for the
programmable logic (PL) section. The ARM core is the host processor where
the main application runs over a PetaLinux terminal, and the custom IP core
executes the algorithm based on the stencil scheme. This application includes
the generation of initial values and the boundary conditions which are stored in
BRAM. Then, the number of iterations is defined and the stencil computation
function is called. When the stencil algorithm execution is finished, the results
become available in the DDR3 RAM and these can be read and saved in a text
file with 15 significant digits in decimal format. The block diagram of the system
is shown in Fig. 1.

Fig. 1. Block diagram of the system implemented using Vivado Design Suite.

3.1 Baseline Architecture of the Custom IP Core

The sequential implementation of the code, defined as architecture A1, was used
as reference to compare against the performances of the parallel implementa-
tions. Given that the data arrive to the main function as a vector, the line code
for stencil operation in Algorithm1 is implemented as shown in Algorithm 2.

The maximum size that can be used for a square mesh is determined by
the amount of BRAM memory blocks in the FPGA device (BRAM Blocks).
Considering a BRAM block size of 18 Kb, the use of simple floating point format,
and that the algorithm requires two arrays to store the values of the last two
iterations, the mesh size is calculated as shown in (3).

mesh sizemax =

√
RAM Blocks × 18000

32 × 2
(3)

3.2 Parallelization

The acceleration of the algorithm execution, defined as architecture A2, was
achieved using a pipeline directive in Loop 1 of the stencil code. In addition,
some modifications are made to the stencil code implementation to reduce the
latency.



56 L. Castano-Londono et al.

Algorithm 2. Stencil computation algorithm for N iterations using vec-
tors.

Input: initial values and boundary conditions, mesh size, number of iterations (N)

Output: temperature at iteration N

1 Function stencil 2D(u[65536], v[65536]: float) is

2 Loop 1: for j ← 1 to J − 2 do

3 Loop 1.1: for i ← 1 to I − 2 do

4 v[j ∗ XI + i] ←
0.25 (u[j ∗ XI + i + 1] + u[j ∗ XI + i − 1] + u[(j + 1) ∗ XI + i] + u[(j − 1) ∗ XI + i])

5 end

6 end

7 end

8 Function Laplace 2D() : void is

9 Loop 1: for n ← 0 to N − 1 do

10 stencil 2D(u,v)

11 Loop 1.1: for j ← 1 to J − 2 do

12 Loop 1.1.1: for i ← 1 to I − 2 do

13 u[j ∗ XI + i] ← v[j ∗ XI + i]

14 end

15 end

16 end

17 end

A first approach makes the most of the Loop 1.1 of the Laplace function,
considering the transfer operations used when the vector u is updated with the
vector v to calculate a new iteration. Thus, the upper limit of the external loop
is reduced by half as shown in Algorithm 3.

Algorithm 3. Pseudocode of the stencil computation algorithm implemen-
tation reducing the number of iterations of the external loop to N/2.

Input: initial and boundary conditions, mesh size, number of iterations (N)
Output: temperature u(x, y) at iteration N

1 Function Laplace 2D() : void is
2 Loop 1: for n ← 0 to N/2 do
3 stencil 2D(u,v)
4 stencil 2D(v,u)

5 end

6 end

To improve performance, a method for splitting the mesh into three blocks
on the y axis is proposed, as shown in Fig. 2. The distribution is made so that the
number of divisions in block B2 is a power of 2, and considering that the number
of rows in blocks B1 and B3 is odd because of the rows of boundary conditions.
This distribution allows the application of the parallelization directives in such
a way that the synthesis time, the amount of resources and the latency are
reduced. The memory partition directive allows the different blocks to access the
corresponding data concurrently, which are distributed in a number of smaller
arrays defined by the partition factor. The approach, defined as architecture A3,
is described as shown in Algorithm 4.



Stencil Based Algorithm Parallelization on SoC FPGA 57

Fig. 2. Distribution of blocks for processing.

Algorithm 4. Pseudocode of the algorithm based on stencil with two-
dimensional arrangement of 256 × 256 for N iterations.

Input: initial and boundary conditions, mesh size (I × J), iterations (N), divisions of B2
(PY), rows in B1 (PYF), rows in each subdivision of B2 (PYI), rows in B1 and B2
(PYL)

Output: temperature u(x, y) at iteration N
1 Function stencil 2D(u[65536], v[65536]: float) is
2 for j ← 1 to PYF-1 do
3 # pragma pipeline
4 for i ← 1 to I − 2 do
5 s1 ← u[j ∗ XI + i + 1] + u[j ∗ XI + i − 1]
6 s2 ← u[(j + 1) ∗ XI + i] + u[(j − 1) ∗ XI + i]
7 v[j ∗ XI + i] ← 0.25 (s1 + s2) ; // Stencil for block B1

8 end

9 end
10 for j ← 1 to PY do
11 for i ← 1 to I − 2 do
12 # pragma pipeline
13 for k ← 1 to PY I − 2 do
14 s1 ← u[(j + PY F + PY ∗ k) ∗ XI + i + 1]
15 s2 ← u[(j + PY F + PY ∗ k) ∗ XI + i − 1]
16 s3 ← u[(j + PY F + PY ∗ k + 1) ∗ XI + i]
17 s4 ← u[(j + PY F + PY ∗ k − 1) ∗ XI + i]
18 v[(j + PY F + PY ∗ k) ∗ XI + i] ← 0.25 (s1 + s2 + s3 + s4) ; // Stencil

for block B2

19 end

20 end

21 end
22 for j ← 1 to PY F do
23 # pragma pipeline
24 for i ← 1 to I − 2 do
25 s1 ← u[(j + PY L) ∗ XI + i + 1] + u[(j + PY L) ∗ XI + i − 1]
26 s2 ← u[(j + PY L + 1) ∗ XI + i] + u[(j + PY L − 1) ∗ XI + i]
27 v[(j + PY L) ∗ XI + i] ← 0.25 (s1 + s2) ; // Stencil for block B3

28 end

29 end

30 end



58 L. Castano-Londono et al.

4 Results

The performance of the implemented system was evaluated according to numer-
ical results, execution times, and physical resources of FPGA. Numerical results
were obtained for different mesh sizes, from boundary conditions and initial val-
ues defined as shown in (4).

⎧⎨
⎩

uxx + uyy = 0
u = 0, ∀(x, y) ∈ Ω
u = 1, ∀(x, y) ∈ ∂Ω

(4)

Fig. 3. Latency for 4 processing blocks of the middle division according to number of
iterations and partition factor of on-chip memory.

Performances of the implemented architectures are obtained measuring exe-
cution time. The architecture A3 has several configurations, therefore, a design
space exploration is performed based on two parameters: number of subdivision
in the middle block and the memory partition factor. For this purpose, latencies
are obtained in terms of clock cycles for different combinations of both parame-
ters and the number of iterations. The latency measurements are performed for
block sizes of 4, 8, 16, 32, and 64 for the middle block, and assigning values of 2,
4, 8, 16, 32, and 64 as memory partition factor. For each combination of these
parameters the simulation is carried out for 101, 102, 103, 104, 105, y 106 itera-
tions. In Fig. 3 are shown the latencies for 4 subdivisions of B2 based on number
of iterations and memory partition factor. It is observed that the performance
improves with the increase of this last parameter. Latencies obtained are used
for the execution time calculations considering a 100 MHz clock frequency.

Table 1 show the speed-up achieved using the A3 with 4 processing blocks in
relation to the base architecture A1 and to the sequential execution on CPU. It is
observed a number of iterations from which the acceleration tends to a constant
value.



Stencil Based Algorithm Parallelization on SoC FPGA 59

Table 1. Speed-up with regards to the base architecture A1 based on number of
iterations and memory partition factor.

Factor

tA1/tA3 tCPU/tA3

2 4 8 16 32 64 2 4 8 16 32 64

N 101 20,44 33,11 49,48 65,72 78,61 87,19 0,87 1,41 2,10 2,79 3,34 3,77

102 23,78 43,15 76,27 123,73 179,63 232,24 0,84 1,53 2,70 4,37 6,35 8,21

103 24,18 44,51 80,67 135,82 206,36 279,03 0,79 1,46 2,64 4,45 6,76 9,14

104 24,22 44,65 81,14 137,16 209,48 284,77 0,79 1,45 2,63 4,45 6,79 9,24

105 24,23 44,66 81,19 137,30 209,80 285,36 0,78 1,44 2,61 4,41 6,74 9,17

106 24,23 44,66 81,19 137,31 209,83 285,42 0,78 1,44 2,62 4,42 6,76 9,19

The best performance was determined making a plot of the latency based on
the number of subdivisions in the block B2 and memory partition factor for a
number of 106 iterations, as shown in Fig. 4. The lowest latency was observed
using a combination of 4 subdivisions and memory partition factor of 64.

Fig. 4. Latency for 106 iterations based on the number of processing blocks and the
partition factor of on-chip memory.

Execution times were measured experimentally for the architectures imple-
mented on the ZedBoard and an Ultra96 board. Table 2 shows execution times
according to the number of iterations for the implemented architectures.

Table 2. Execution times in microseconds for different number of iterations with the
different architectures implemented.

Iterations ZedBoard Ultra96

A1 A2 A3(16×16) A3(4×32) A3(4×64)

100MHz

A3(4×64)

200MHz

101 158.212 16.199 3.710 2.086 1.928 993

102 1.552.677 150.163 25.259 9.008 7.011 3.561

103 15.497.303 1.489.794 240.753 78.231 57.877 29.250

104 154.943.576 14.886.115 2.395.667 770.466 566.516 286.139

105 1.549.406.305 148.849.317 23.944.818 7.692.819 5.652.881 2.854.981

106 15.494.033.580 1.488.481.343 239.436.321 76.916.319 56.516.436 28.543.256



60 L. Castano-Londono et al.

The speedup achieved for the implemented architectures calculated in rela-
tion to the baseline and the sequential implementation on CPU is shown in
Table 3.

Table 3. Speed-up achieved for the implemented architectures in relation to the
sequential implementation on CPU.

Iterations ZedBoard Ultra96

tA4/tA1 A1 A2 A3(16×16) A3(4×32) A3(4×64)

100MHz
A3(4×64)

200 MHz

101 75,85 0,04 0,43 1,86 3,31 3,59 6,96

102 172,37 0,04 0,38 2,26 6,34 8,15 16,04

103 198,10 0,03 0,35 2,20 6,76 9,14 18,08

104 201,10 0,03 0,35 2,18 6,79 9,24 18,29

105 201,41 0,03 0,35 2,17 6,74 9,17 18,16

106 201,44 0,03 0,35 2,17 6,76 9,20 18,21

The consumption of hardware resources for each architecture is shown in
Table 4.

Table 4. Hardware resources required on ZedBoard and Ultra96. The entire system
includes processing modules.

Resource ZedBoard Ultra96

A1 A2 A3(16×16) A3(4×32) A3(4×64)

100 MHz
A3(4×64)

200 MHz

LUT 5.644 25.574 16.776 34.277 64.540 64.540

Flip Flop 6.599 22.836 17.689 39.204 69.256 86.570

Slices 2.267 9.100 6407 12.415 – –

DSP48 5 17 36 97 144 144

The power consumption for the implemented architectures is shown in
Table 5.

Table 5. Power consumption for the implemented architectures. The entire system
includes processing modules.

ZedBoard Ultra96

A1 A2 A3(16×16) A3(4×32) A3(4×64)

100 MHz
A3(4×64)

200 MHz

Core Power (W) 0,297 1,005 1,037 1,535 1,349 4,989

Total Power (W) 1,87 2,592 2,617 3,599 3,539 5,341



Stencil Based Algorithm Parallelization on SoC FPGA 61

5 Conclusions

This paper presents a strategy for the implementation of algorithms based sten-
cil on SoC-FPGA using Vivado HLS, addressing the problem of optimization in
terms of memory management and parallelization of cycles. The general scheme
of the implemented architectures involves the use of an ARM Cortex-A9 micro-
processor that acts as master, on which the main application is executed. The
processor interacts through an AXI interface with an IP created in Vivado HLS,
which performs the execution of the algorithm based on stencil. The architectures
are implemented on a ZedBoard Zynq Evaluation and Development Kit under
the Vivado Design Suite environment and on an Ultra96 board using Vivado
SDx. The source code of the main application is made in C and executed under
PetaLinux on the PS using a terminal console. The communication is done using
an AXI interface and direct access to memory (DMA).

To improve performance in terms of execution time a method is proposed to
split the mesh into three parts on the y-axis. The distribution is done so that
the number of rows in block B2 is a multiple of a power of 2, considering that
blocks B1 and B3 have one row less because they include contour conditions. An
unrolling of the internal cycle is proposed so that the latency of the intermediate
cycle is reduced according to the number of subdivisions of B2. Additionally, the
on-chip memory partition is made in such a way that each subdivision can access
the corresponding data concurrently.

An exploration of the design space for the generalized architecture is per-
formed, based on the number of B2 processing subdivisions and the factor used
for the memory partition. For this, latencies are obtained in terms of clock
cycles for different combinations of both parameters and number of iterations.
It is observed that the performance improves with the increase of the memory
partition factor. It is found that the configuration that provides the best perfor-
mance and that can be implemented in the ZedBoard is with 4 divisions of B2
and 32 partitions of memory. For this configuration we obtain an acceleration of
approximately 209.83× in relation to the base architecture and 6.76× in relation
to the CPU used as reference. The power consumption with this configuration
is approximately 3.6 watts. For the Ultra96 the A3 architecture is implemented
with a configuration of 4 divisions of B2 and 64 memory partitions. In this case
an acceleration of 9.2× to 100 MHz and 18.21× to 200 MHz is achieved in relation
to the sequential execution on CPU.

Acknowledgements. This study were supported by the AE&CC research Group
COL0053581, at the Sistemas de Control y Robótica Laboratory, attached to the
Instituto Tecnológico Metropolitano. This work is part of the project “Improvement
of visual perception in humanoid robots for objects recognition in natural environ-
ments using Deep Learning” with ID P17224, co-funded by the Instituto Tecnológico
Metropolitano and Universidad de Antioquia.



62 L. Castano-Londono et al.

References

1. Castano, L., Osorio, G.: An approach to the numerical solution of one-dimensional
heat equation on SoC FPGA. Revista Cient́ıfica de Ingenieŕıa Electrónica,
Automática y Comunicaciones 38(2), 83–93 (2017). ISSN 1815–5928

2. Cattaneo, R., Natale, G., Sicignano, C., Sciuto, D., Santambrogio, M.D.: On how
to accelerate iterative stencil loops: a scalable streaming-based approach. ACM
Trans. Archit. Code Optim. (TACO) 12(4), 53 (2016)

3. Chugh, N., Vasista, V., Purini, S., Bondhugula, U.: A DSL compiler for accel-
erating image processing pipelines on FPGAs. In: 2016 International Conference
on Parallel Architecture and Compilation Techniques (PACT), pp. 327–338. IEEE
(2016)

4. Cong, J., Li, P., Xiao, B., Zhang, P.: An optimal microarchitecture for stencil
computation acceleration based on non-uniform partitioning of data reuse buffers.
In: Proceedings of the 51st Annual Design Automation Conference, pp. 1–6. ACM
(2014)

5. Deest, G., Estibals, N., Yuki, T., Derrien, S., Rajopadhye, S.: Towards scalable and
efficient FPGA stencil accelerators. In: IMPACT 2016 - 6th International Workshop
on Polyhedral Compilation Techniques, Held with HIPEAC 2016 (2016)

6. Deest, G., Yuki, T., Rajopadhye, S., Derrien, S.: One size does not fit all: imple-
mentation trade-offs for iterative stencil computations on FPGAs. In: 2017 27th
International Conference on Field Programmable Logic and Applications (FPL),
pp. 1–8. IEEE (2017)

7. Del Sozzo, E., Baghdadi, R., Amarasinghe, S., Santambrogio, M.D.: A common
backend for hardware acceleration on FPGA. In: 2017 IEEE International Confer-
ence on Computer Design (ICCD), pp. 427–430. IEEE (2017)

8. Escobedo, J., Lin, M.: Graph-theoretically optimal memory banking for stencil-
based computing kernels. In: Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 199–208. ACM (2018)

9. de Fine Licht, J., Blott, M., Hoefler, T.: Designing scalable FPGA architectures
using high-level synthesis. In: Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP 2018), vol. 53, pp.
403–404. ACM (2018)

10. Kobayashi, R., Oobata, Y., Fujita, N., Yamaguchi, Y., Boku, T.: OpenCL-ready
high speed FPGA network for reconfigurable high performance computing. In:
Proceedings of the International Conference on High Performance Computing in
Asia-Pacific Region, pp. 192–201. ACM (2018)

11. László, E., Nagy, Z., Giles, M.B., Reguly, I., Appleyard, J., Szolgay, P.: Analysis of
parallel processor architectures for the solution of the Black-Scholes PDE. In: 2015
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1977–1980.
IEEE (2015)

12. Liu, J., Bayliss, S., Constantinides, G.A.: Offline synthesis of online dependence
testing: parametric loop pipelining for HLS. In: 2015 IEEE 23rd Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 159–162. IEEE (2015)

13. Liu, J., Wickerson, J., Bayliss, S., Constantinides, G.A.: Polyhedral-baseddynamic
loop pipelining for high-level synthesis. IEEE Trans. Comput.-Aided Des. Integr.
Circ. Syst. 37, 1802–1815 (2017)



Stencil Based Algorithm Parallelization on SoC FPGA 63

14. Liu, J., Wickerson, J., Constantinides, G.A.: Loop splitting for efficient pipelin-
ing in high-level synthesis. In: 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 72–79. IEEE
(2016)

15. Mokhov, A., et al.: Language and hardware acceleration backend for graph pro-
cessing. In: 2017 Forum on Specification and Design Languages (FDL), pp. 1–7.
IEEE (2017)

16. Mondigo, A., Ueno, T., Tanaka, D., Sano, K., Yamamoto, S.: Design and scala-
bility analysis of bandwidth-compressed stream computing with multiple FPGAs.
In: 2017 12th International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), pp. 1–8. IEEE (2017)

17. Nacci, A.A., Rana, V., Bruschi, F., Sciuto, D., Beretta, I., Atienza, D.: A high-level
synthesis flow for the implementation of iterative stencil loop algorithms on FPGA
devices. In: Proceedings of the 50th Annual Design Automation Conference, p. 52.
ACM (2013)

18. Natale, G., Stramondo, G., Bressana, P., Cattaneo, R., Sciuto, D., Santambrogio,
M.D.: A polyhedral model-based framework for dataflow implementation on FPGA
devices of iterative stencil loops. In: 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–8. IEEE (2016)

19. de Oliveira, C.B., Cardoso, J.M., Marques, E.: High-level synthesis from C vs. a
DSL-based approach. In: 2014 IEEE International Parallel & Distributed Process-
ing Symposium Workshops, pp. 257–262. IEEE (2014)

20. Reagen, B., Adolf, R., Shao, Y.S., Wei, G.Y., Brooks, D.: Machsuite: benchmarks
for accelerator design and customized architectures. In: 2014 IEEE International
Symposium on Workload Characterization (IISWC), pp. 110–119. IEEE (2014)

21. Reiche, O., Özkan, M.A., Hannig, F., Teich, J., Schmid, M.: Loop parallelization
techniques for FPGA accelerator synthesis. J. Signal Process. Syst. 90(1), 3–27
(2018)

22. Sakai, R., Sugimoto, N., Miyajima, T., Fujita, N., Amano, H.: Acceleration of
full-pic simulation on a CPU-FPGA tightly coupled environment. In: 2016 IEEE
10th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSoC), pp. 8–14. IEEE (2016)

23. Sano, K., Hatsuda, Y., Yamamoto, S.: Multi-FPGA accelerator for scalable stencil
computation with constant memory bandwidth. IEEE Trans. Parallel Distrib. Syst.
25(3), 695–705 (2014)

24. Schmid, M., Reiche, O., Schmitt, C., Hannig, F., Teich, J.: Code generation for
high-level synthesis of multiresolution applications on FPGAs. arXiv preprint
arXiv:1408.4721 (2014)

25. Shao, Y.S., Reagen, B., Wei, G.Y., Brooks, D.: Aladdin: a pre-RTL, power-
performance accelerator simulator enabling large design space exploration of cus-
tomized architectures. In: ACM SIGARCH Computer Architecture News, vol. 42,
pp. 97–108. IEEE Press (2014)

26. Waidyasooriya, H.M., Takei, Y., Tatsumi, S., Hariyama, M.: Opencl-based FPGA-
platform for stencil computation and its optimization methodology. IEEE Trans.
Parallel Distrib. Syst. 28(5), 1390–1402 (2017)

27. Wang, S., Liang, Y.: A comprehensive framework for synthesizing stencil algo-
rithms on FPGAs using OpenCL model. In: 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE (2017)

28. Zohouri, H.R., Podobas, A., Matsuoka, S.: Combined spatial and temporal blocking
for high-performance stencil computation on FPGAs using OpenCL. In: Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 153–162. ACM (2018)

http://arxiv.org/abs/1408.4721

	Evaluation of Stencil Based Algorithm Parallelization over System-on-Chip FPGA Using a High Level Synthesis Tool
	1 Introduction
	2 Case Study: Two-Dimensional Laplace Equation
	3 System Implementation
	3.1 Baseline Architecture of the Custom IP Core
	3.2 Parallelization

	4 Results
	5 Conclusions
	References




