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Abstract. This paper addresses the analysis the optimal power flow
(OPF) problem in alternating current (AC) radial distribution net-
works by using a new metaheuristic optimization technique known as a
sine-cosine algorithm (SCA). This combinatorial optimization approach
allows for solving the nonlinear non-convex optimization OPF problem
by using a master-slave strategy. In the master stage, the soft computing
SCA is used to define the power dispatch at each distributed genera-
tor (dimensioning problem). In the slave stage, it is used a conventional
radial power flow formulated by incidence matrices is used for evaluating
the total power losses (objective function evaluation). Two conventional
highly used distribution feeders with 33 and 69 nodes are employed for
validating the proposed master-slave approach. Simulation results are
compared with different literature methods such as genetic algorithm,
particle swarm optimization, and krill herd algorithm. All the simula-
tions are performed in MATLAB programming environment, and their
results show the effectiveness of the proposed approach in contrast to
previously reported methods.
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1 Introduction

The design of electrical networks generates nonlinear large-scale optimization
problems which imply the needed of powerful optimization techniques to address
these problems [1–5]. Typically, when the focus is to analyze electrical distribu-
tion networks for planning and operation always emerges a classical problem
denominated: optimal power flow (OPF) problem [6,7]. This corresponds to a
minimization problem that allows determining the set of voltage profiles and
power generations in electrical networks with the presence of multiple genera-
tion sources by guaranteeing classical constraints of power system analysis such
as energy balance, voltage regulation, and lines chargeability, and so on [8,9]. The
OPF for alternating current (AC) electrical networks is nonlinear non-convex and
required a combination of numerical methods such as Gauss-Seidel [10], Newton–
Raphson [11] or sweep methods (only applicable for radial grids [12,13]) with
combinatorial techniques in the continuous domain, i.e., particle-swarm opti-
mization (PSO) or optimization techniques derived from it [9,14,15].

Here, we are interested in analyzing the OPF problem for AC distribution
networks to address the problem of optimal dimensioning of distributed genera-
tion that can be obtained from fossil or renewable energy resources for reducing
the total power loss of the network. This problem has been conventionally studied
in the specialized literature embedded inside of the problem of optimal location
of the distributed generation in distribution networks [9,14,16]. To do so, the
OPF problem has been solved by using convex optimization approaches with
semidefinite and second-order cone programming [17–19], interior point meth-
ods [20], particle swarm optimization [9,21], genetic algorithms [22], tabu search
methods [23], krill herd, Firefly and bee colony algorithms [14,24,25], among
others. Unlike this extensive list of previous works in this research line, here
we propose a novel developed a sine-cosine optimization algorithm for solving
the OPF problem in AC distribution networks focused on optimal dimensioning
distributed generations. It is important to mention that this problem was pre-
viously used for solving OPF problems in power systems with mesh topologies
[15]. However, that approach does not separate the problem of generation of
the problem of power flow, which could be non-efficient for radial distribution
networks. For this reason, a variant of that approach for radial distribution net-
works is proposed by using a master-slave strategy for addressing the problem of
optimal dimensioning of distributed generation in radial distribution networks.
In the master stage, a sine-cosine algorithm (SCA) defines the power output
at each distributed generator, while in the slave stage we employ a successive
approximation method based on an admittance’s formulation for solving the
resulting power flow set of equations [26,27]. Note that our approach has ade-
quate performance when classical radial test feeders with 33 and 69 nodes are
used, showing better performance in comparison to previously reported methods
as will discussed in the results section.

The remainder of this paper is organized as follows: Sect. 2 is presented
the mathematical formulation of the optimal dimensioning of distributed gener-
ators in radial distribution networks by using a classical optimal power problem



30 M. L. Manrique et al.

formulation. Section 3 shows the proposed master-salve methodology based on a
combination of the SCA with the proposed successive approximation method for
power flow analysis in the slave stage. Section 4 shows the configuration of the
test systems as well as the simulation scenarios considered. Section 5 presents
the main conclusions and possible future works derived from this research.

2 Mathematical Modeling

Optimal location and dimensioning of distributed generations (DGs) in radial
distribution networks correspond to a mixed-integer nonlinear optimization
problem, which is non-differentiable and non-convex with many local minimums
and non-deterministic polynomial-time, i.e., complex to be solved. The mathe-
matical model that represents these problems is presented below

Objective function:

min ploss = Real
{
VTY�

LV
�
}

; (1)

where ploss is the total power losses in all the branches of the network, V ∈ C
n×1

is vector that contains all the complex voltage variables and YL ∈ C
n×n is the

admittance matrix that contain that all the admittance effects between branches
(it does not include shunt resistive connections). Note that n is the total number
of nodes of the grid.

Set of constraints:

SCG + SDG − SD = D (V) [Y�
L + Y�

N ]V�; (2)

V min ≤ |V| ≤ V max; (3)

Smin
GC ≤ |SGC | ≤ Smax

GC ; (4)

Smin
DG ≤ |SDG| ≤ Smax

DG ; (5)
Imag {SDG} = 0; (6)

where SCG ∈ C
n×1 is the vector that contain all power generations in all con-

ventional generators, i.e., slack nodes (for radial distribution system there is
only one slack node); SDG ∈ C

n×1 corresponds to the vector that contains all
power generation in all the distributed generation nodes; SD ∈ C

n×1 represents
the vector of constant power consumptions. D (V) ∈ C

n×n is a diagonal positive
definite matrix of variables that contains all the voltages of the grid. YN ∈ C

n×n

is the matrix of admittances related to shunt linear resistive loads connected to
the nodes of the grid, this matrix is positive semidefinite or null in some cases.
V min ∈ C

n×1 and V max ∈ R
n×1 are the minimum and maximum voltage bounds

allowed for all nodes of the network. Smin
GC ∈ C

n×1 and Smax
GC ∈ C

n×1 are the min-
imum and maximum power generation bounds in the slack nodes; Smin

DG ∈ C
n×1

and Smax
DG ∈ C

n×1 are the minimum and maximum power generation capabili-
ties in the distributed generators. The interpretation of the mathematical model
given from (1) to (6) is as follows:
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The objective function associated with the active power losses minimization
is given in (1) which depends exclusively of the all voltage profiles of the network.
In (2) is defined the power balance equation for all nodes of the networks, which
is the only one nonlinear non-convex set equations in the optimal power flow
model. Expression (3) defines the voltage regulation bounds of the grid; while
(4) and (5) define the minimum and maximum power bounds for conventional
and distributed generation. Finally, (6) shows that each distributed generator is
operated with unity power factor.

Note that the mathematical model that describes the optimal power flow
problem for optimal dimensioning of distributed generation in radial AC distri-
bution network is nonlinear non-convex, which implies that numerical methods,
as well as soft computing approaches, must be required to solve this problem.
Here, we present a metaheuristic alternative based on sine and cosine functions
to solve this problem by splitting it into two problems named the master problem
and slave problem. Note that the master problem corresponds to the dimension-
ing of the distributed generators, while the slave problem is the classical power
flow problem. These optimization problems will be formally presented and dis-
cussed in the following section.

3 Proposed Solution Methodology

To solve the OPF model defined from (1) to (6) a metaheuristic methodology
is required. This combinatorial optimization approach is entrusted with defining
the power output for each distributed generator in the master stage; notwith-
standing once defined all power generations, a power flow method is required to
determine all the voltage profiles, which allows the objective function evaluation.
Each one of this stage is presented below.

3.1 Master Stage: Sine-Cosine Optimization Algorithm

The SCA is a powerful metaheuristic optimization technique for addressing
continuous optimization problems [15], which is a variant of the conventional
particle-swarm optimization approaches [9]. Here we will present the main
aspects of this technique as follows.

Fitness Function. The main advantage of using combinatorial optimization
approaches is the possibility of working in the infeasible solution space to explore
some promissory regions of this space. In addition, this relaxation is possible
[15], since all the constraints are included as penalties in the objective function,
which transforms it into a fitness function [14]. In this paper for solving the OPF
problem we employs the following fitness function:

zf =

(
Real

{
VTYLV

}
+ αT

1 max (0,V − V max) − αT
1 min

(
0,V − V min

)

+αT
2 max (0, |SDG| − Smax

DG ) − αT
2 min

(
0, |SDG| − Smin

DG

)
)

(7)
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where α1 ∈ R
n×1 and α2 ∈ R

n×1 are vectors with penalty factors that allow
controlling the impact of exploring the infeasible solution space. All the compo-
nents of these vectors are positive numbers. There we select for each component
a value of 100. Note that the fitness function can be equal to the objective func-
tion (1) if the solution space is totally feasible, i.e., all the constraints (2)–(6)
must be satisfied.

It is important to mention that the capacity constraints of the conventional
generators (see (4)) are not included in the fitness function, since for radial
distribution systems the slack node is unique and it is assumed that this node
is ideal, i.e., this node has the unbounded capability. In addition, the unity
power factor requirement given by (6) is fulfilled intrinsically in the optimization
process made by the SCA, for this reason, we do not consider this restriction in
the fitness function (7).

Initial Population. The SCA is a population optimization technique that
makes evolution this population through random controlled procedure [15]. To
initialize this optimization algorithm the starting population is defined below.

P t =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1b

p21 p22 · · · p2b

...
...

. . .
...

pa1 pa2 · · · pab

⎤
⎥⎥⎥⎦ , (8)

where a represents the number of individuals considered and b is the number
of distributed generators available for dispatching into the grid. Note that P t is
the population conformation at the iteration t.

To guarantee that the generation capability at each distributed generator
satisfy the requirement defined in (4), we proposed a feasible population by
calculating each component of P t as follows.

pij = GDmin
i + r1

(
GDmax

i − GDmin
i

) ∀i = 1, 2, ..., a,∀j = 1, 2, ..., b; (9)

where ij represents the row i and column j in the matrix of the initial population
and r1 is a random number, i.e., r1 ∈ [0, 1].

Evolution Criterion. The sine-cosine optimization algorithm evolves by con-
sidering a simple sine-cosine rule. For doing so, let us suppose the fitness function
for all individuals contained in P t were evaluated, then, the best individual of
that population is named xt, with this individual, two possible descendants can
be formulated as follows:

yt+1
i = xt

i + r2 sin (r3)
∣∣r4xt − xt

i

∣∣ , i = 1, 2, ..., a, (10)

zt+1
i = xt

i + r2 cos (r3)
∣∣r4xt − xt

i

∣∣ , i = 1, 2, ..., a, (11)
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where r3 and r4 are random numbers between 0 to 1 and r2 is entrusted of the
convergence of the algorithm, and is calculated as presented below.

r2 = 1 − t

tmax
, (12)

where tmax is the maximum number of iterations projected for the optimization
process.

Note that yt+1
i and zt+1

i are the potential individuals for replacing xt
i. This

substitution can be made as follows: Select yt+1
i as a potential solution, if

zf

(
yt+1

i

)
< zf

(
zt+1
i

)
; otherwise select zt+1

i as a potential solution; then, replace
xt

i by yt+1
i (zt+1

i ) if its fitness function is better than zf (xt
i); otherwise xt+1

i = xt
i.

It is important to point out that if one component of xt+1
i violates the lower

or upper bound allowed for the distributed generation, then, its value is adjusted
using (9) for preserving the feasibility of the current population as defined in (5).

Stopping Criterion. The searching process of the SCA stops if one of the
following criteria are attained.

– If the maximum number of iteration is reached, then, the search process of
the SCA ends.

– If during kmax consecutive iterations the fitness does not shows any improve-
ment, then, the search process of the SCA ends.

Pseudocode of the SCA. Algorithm 1 presents the pseudocode of the pro-
posed SCA for optimal dimensioning of distributed generators.

Data: Read data of the network and adjust parameters of the SCA
Generate the initial population P t;
Evaluate all the individuals P t

i and find xt;
for t = 1 : tmax do

for i = 1 : a do
Generate the potential individuals yt+1

i and zt+1
i ;

Evaluate yt+1
i and zt+1

i by the slave algorithm;
Determine which potential individual will replace P t

i and construct
the descending population P t+1;

end
Evaluate the number of non-consecutive improvements of zf ;
if k ≥ kmax then

Select the best solution contained in P t+1;
Return the optimal sizing of the DGs;
break;

end
end
Result: Return the optimal sizing of the DGs
Algorithm 1. Proposed optimization methodology based on the SCA



34 M. L. Manrique et al.

Note that in this flowchart the slave stage is essential in the evolution of the
SCA since this stage allows determining the fitness function for the population
and descending individuals. In next subsection will be presented this slave stage.

3.2 Slave Stage: Power Flow Method

The solution of the power flow equations given in (2) is essential in the evolution
process of the sine-cosine optimization algorithm as presented in Algorithm1. In
order to solve this set of equations, let us rewrite (2) as fol lows:

S�
CG = D

(
V�

g

)
[YggVg + YgdVd] , (13a)

S�
DG − S�

D = D (V�
d) [YdgVg + YddVd] , (13b)

where Vd and Vg represent the voltage profiles in the demand and slack nodes1.
Note that Ygg, Ygd, Ydg and Ydd correspond to the components of the matrix
YL + YN that relates slack nodes and demands, respectively.

It is important to point out that (13a) is the power balance in the slack
node, which is linear since Vg is perfectly known and well defined. Nevertheless,
the set of equations (13b) remains being nonlinear non-convex, since Vd are the
unknown variables. Note that SDG are variables in the OPF problem; however,
for power flow analysis, those values are considered constant, since they have
been defined in the master stage.

The solution of the power flow problem it is only required to solve (13b); for
doing so, let us rearrange this set of equations as follows

Vd = Y−1
dd

[
D−1 (V�

d) [S�
DG − S�

D] − YdgVg

]
, (14)

To solve (14) a recursive procedure can be added on this set of equations as
presented below.

Vm+1
d = Y−1

dd

[
D−1

(
Vm,�

d

) [
St,�

DG − S�
D

] − YdgVg

]
, (15)

where m is the iterative counter of the power flow problem. Note that the dis-
tributed generation values depend on the t iteration of the master stage.

Note that the convergence of (15) is guaranteed, since Ydd is diagonal domi-
nant [26]. We can say that the power flow problem (15) is reached if and only if
max

∣∣Vm+1
d − Vm

d

∣∣ ≤ ε. For power flow analysis typically the tolerance conver-
gence ε is assigned as 1 × 10−10 [26], while the maximum number of iterations
is defined as mmax = 25.

4 Test Systems

In this paper, we employ two radial test feeders with 33 and 69 nodes, respec-
tively. These test systems are classically used for optimal location and dimension-
ing distributed generation in electrical distribution networks. The information
about those test systems is detailed below.
1 � represent the conjugate operator in complex numbers.
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4.1 33-Node Test Feeder

This test system is composed of 33 nodes and 32 lines with the slack source
located at node 1. The operative voltage of this test system is 12.66 kV. The
total active and reactive power demands for this test system are 3715 kW and
2300 kVAr, which produces 210.98 kW of active power losses. All branch data
of this test feeder as well as its topological information can be consulted in [9].

4.2 69-Node Test Feeder

The base voltage for this test system is 12.66 kV, and the total demand is 3800+
j2690 kVA [14]. In addition, the electrical parameters (electrical configuration)
of this test system (resistances and inductances in all the branches as well as
load consumptions) can be consulted in [9].

4.3 Simulation Scenarios

To validate the proposed approach for optimal dimensioning of distributed gen-
eration in a radial distribution test system, we employ the information provided
by [14], where, five methodologies for solving the problem were studied. Notwith-
standing, we are only interested in validating the optimal power flow for each
technique reported in [14], which implies that we assume that the location of
the generators corresponds to an input data in our approach.

5 Computational Validation

All simulations were carried-out in a desk-computer INTEL(R) Core(TM) i7 −
7700, 3.60 GHz, 8 GB RAM with 64 bits Windows 10 Pro by using MATLAB
2017b.

5.1 33-Node Test Feeder

Table 1 reports the solutions presented in [14] for all comparison methods as
well as the solution reached by the proposed master-slave optimization strategy.
Note that, in this test system the proposed SCA in the master stage as well as
the proposed slave power flow method allows improving all the results reported
in [14]. For example, see KHA method in Table 1 where is shown that the total
power losses achieved by this method are 75.4120 kW, while our approach the
total power losses are reduced to 73.5210 kW. This improvement (1.8910 kW),
implies that the dimensioning of each generator must be changed as reported in
columns 3 and 5 of Table 1.

5.2 69-Node Test Feeder

Table 2 reports the solutions presented in [14] for all comparison methods as well
as the solution reached by the proposed master-slave optimization strategy.
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Table 1. Numerical performance in the 33-node test feeder

Literature approaches SCA

Method Location Size [p.u] Losses [kW] Size [p.u] Losses [kW]

KHA [14] 13 0.8107 75.4120 0.8018 73.5210

25 0.8368 0.8493

30 0.8410 1.1014

LSFSA [28] 6 1.1124 82.0300 1.2126 81.8680

18 0.4874 0.4886

30 0.8679 0.8112

GA [16] 11 1.5000 106.3000 0.9790 86.5282

29 0.4228 0.4549

30 1.0714 0.6935

PSO [16] 8 1.1768 105.3500 0.7378 82.9994

13 0.9816 0.5720

32 0.8297 0.8690

GA/PSO [16] 11 0.9250 103.4000 0.6899 86.1523

16 0.8360 0.3946

32 1.2000 0.9537

Table 2. Numerical performance in the 69-node test feeder

Literature approaches SCA

Method Location Size [p.u] Losses [kW] Size [p.u] Losses [p.u]

KHA [14] 12 0.4715 69.6530 0.5153 69.7600

22 0.2968 1.7425

61 1.7354 1.7652

LSFSA [28] 18 0.4204 77.1000 0.5431 76.6558

60 1.3311 1.3182

65 0.4298 0.4692

GA [16] 21 0.9297 89.0000 0.5202 73.1940

62 1.0752 1.5572

64 0.9925 0.1949

PSO [16] 17 0.9925 83.2000 0.4931 71.8313

61 1.1998 1.3153

63 0.7956 0.5117

GA/PSO [16] 21 0.9105 81.1000 0.4379 72.2301

61 1.1926 1.4859

63 0.8849 0.3363
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5.3 Additional Comments

Figure 1 reports the general improvement of our proposed SCA in comparison
to the results presented in [14] for the 33- and 69-node test feeders. In Fig. 1(a)
are presented the results obtained in the 33-node test feeder, it is possible to
observe that our approach shows similar performance in comparison with the
LSFSA method since our improvement is only 0.20 % better. Notwithstanding,
the worst method reported in [14] is the PSO approach, since our proposed
method produces 21.22 % of improvements when both are compared. In the
case of the 69-node test feeder, the results are provided in Fig. 1(b), where it
can be observed that the master-slave methodology proposed obtains an average
reduction in the power losses of 12.19% in comparison with the comparison
techniques. Just 0.11% lower than the best solution (KHA), and presenting a
reduction of 0.576%, 17.76%, 13.63%, and 10.94%, when is compared with the
LSFSA, GA, PSO, and the GA/PSO, respectively.

KHA LSFSA GA PSOGA/PSO
0

10

20

30

2.51 0.2

18.6 21.22
16.68

(a
)
Im

pr
ov

.
[%

]

KHA LSFSA GA PSOGA/PSO

0

10

20

30

−0.15
0.58

17.76
13.63 10.94

(b
)
Im

pr
ov

.
[%

]

Fig. 1. Percentage of power loss improvement when the proposed approach is compared
to previous reported results: (a) 33-node test feeder, and (b) 69-node test feeder

In addition, we can affirm that:

� The Sine-Cosine metaheuristic shows the better averaged results in contrast
to the other methodologies since in the 90 % of the simulation cases analyzed
it shows better performance in comparison to the results previously reported
in specialized literature. The only one case (10 %), our approach shows a
minimal deterioration in comparison to the KHA method for the 69-node
test feeder.

� The results reported by GA, PSO, and the hybrid GA/PSO evidence that
their methodologies were not thought to dimensioning generators, since those
results are far away from KHA, LSFSA, and the proposed approach. This
situation may be attributable to the parametrization of those algorithms for
OPF analysis, which can be susceptible to improvements in order to increase
the efficiency of those algorithms.

6 Conclusions and Future Works

In this paper was studied the problem of optimal dimensioning of distributed
generation in radial distribution networks via a metaheuristic optimization tech-
nique. This methodology was designed through a master-slave optimization
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strategy. The master stage was a combinatorial optimization technique based
on the SCA. In the slave stage, it was used as a power flow numerical method
based on successive approximations. The master stage was entrusted with deter-
mining the optimal dimension of the distributed generators, while the slave stage
was entrusted with evaluating the impact of these generators in terms of power
losses.

Simulation results over two radial distribution test feeders with 33 and 69
nodes allowed observing that the SCA is an excellent methodology for solving
OPF problems in radial distribution networks by showing better results in com-
parison with classical optimization algorithms.

As future work, it will be possible to embedded the SCA into a discrete
metaheuristic optimization technique for locating and sizing distributed genera-
tors. These metaheuristic could be genetic algorithms, tabu search or population
based incremental leaning, among others.
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