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Abstract. Visualizing the cluster structure of high-dimensional data is
a non-trivial task that must be able to deal with the large dimensional-
ity of the input data. Unlike hard clustering structures, visualization of
fuzzy clusterings is not as straightforward because soft clustering algo-
rithms yield more complex clustering structures. Here is introduced the
concept of membership networks, an undirected weighted network con-
structed based on the fuzzy partition matrix that represents a fuzzy clus-
tering. This simple network-based method allows understanding visually
how elements involved in this kind of complex data clustering structures
interact with each other, without relying on a visualization of the input
data themselves. Experiment results demonstrated the usefulness of the
proposed method for the exploration and analysis of clustering structures
on the Iris flower data set and two large and unlabeled financial datasets,
which describes the financial profile of customers of a local bank.

Keywords: Fuzzy clustering · Clustering visualization ·
Membership network · High-dimensional data

1 Introduction

Practical problems and applications related to data clustering not only can ben-
efit from organizing data into unknown groups, but also from understanding
how groups are constituted and related to each other [27]. One way to obtain
this information is by using methods to visualize clustering results [16,17]. Since
most data of interest are high-dimensional, the visualization of the clustering
structure of such data is a non-trivial task that must be able to deal with the
large dimensionality of the input data.

For clustering structures obtained from the application of hard clustering
algorithms on high-dimensional data, an indirect and straightforward solution
to show these cluster structures is projecting the original data down to two-
or three-dimensional spaces [21,23]. Then, different colors or symbols can be
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used to represent how data objects were clustered in a scatter plot of the data.
Traditional methods to obtain this low-dimensional spaces are principal compo-
nent analysis (PCA), multidimensional scaling (MDS), and self-organizing maps
[2,25]; or new methods like the t-Stochastic Neighbor Embedding algorithm
[18,19]. However, due to these methods reduce somehow the data dimensional-
ity, an accurate representation of the original cluster structure is not guaranteed
[29].

On the contrary, the visualization of fuzzy clusterings is not as straight-
forward as in the case of crisp clustering results. Indeed, unlike the output of a
hard clustering algorithm, which is just a list of clusters with their corresponding
members, soft clustering algorithms yield complex clustering structures, wherein
data objects can belong to one or more clusters with probabilities [30].

So far, several works have addressed the problem of visualizing high-
dimensional fuzzy clusterings. In [1,5], a method is proposed to visualize fuzzy
clustering results by performing an iterative process based on an MDS method
that maps the cluster centers and the data into a two-dimensional space taking
into account the membership values of the data. In [3], a method is presented for
the interactive exploration of fuzzy clusters using the novel concept of neighbor-
grams, which is not well suited for medium-sized data sets. In [12], a technique is
introduced to represent high-dimensional fuzzy clusters as intersecting spheres,
and it is suitable for larger datasets; however, it heavily depends on the use of a
three-dimensional visualization to preserve the overlapping regions appropriately
in the original space. In [26,31], Radviz, a radial non-linear visualization tool
that displays multidimensional data in a two-dimensional projection, is used for
developing a visualization that expresses the overall distribution of the member-
ship degrees of all data points in a fuzzy clustering; however, as [31] pointed out,
scalability is a problem for the Radviz-based visualizations when the number of
clusters is large. In [24] fuzzy partitions from data are visualized by using MDS
to map the degree of belongingness of data objects to clusters into a metric
vector space which has mathematical dimensions.

In this work is proposed a straightforward representation of the fuzzy cluster-
ing results from high-dimensional data based on a simple network-based scheme,
without relying on a visualization of the data itself. To this end, here is intro-
duced the concept of membership network, which is an undirected weighted
network constructed based on the fuzzy partition matrix that represents a par-
ticular fuzzy clustering.

The remainder of this paper is organized as follows: Sect. 2 briefly presents a
theoretical background for data clustering and networks. Section 3 introduces the
proposed network-based method to represent fuzzy clustering structures in high-
dimensional data. Results and discussion are presented in Sect. 4, and finally, the
concluding remarks can be found in Sect. 5.
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2 Theoretical Background

As mentioned before, this work deals with a network-based representation of
fuzzy clusterings on multidimensional data. Consequently, we first introduce here
the basics for data clustering and networks.

2.1 Data Clustering

Clustering is the term used for methods whose objective is to partition a given
set of unlabeled data objects into groups, known as clusters, such that data
objects in the same group are similar and those in different groups are dissimilar
to each other [4].

Suppose that X = {x1,x2, . . . ,xN} is a set of N d-dimensional data objects,
where xj ∈ R

d. There are two broad forms of clustering, namely hard clus-
tering and soft clustering, also referred to as crisp and soft clustering, respec-
tively. In the first case, clustering methods obtain a K -partition of X, C =
{C1, C2, . . . , CK}, K ≤ N , such that Ci �= ∅, C1 ∪ C2 ∪ . . . ∪ CK = X, and each
data object belongs to exactly one cluster, i.e. Ci ∩Cj = ∅, for i, j = 1, . . . , K
and j �= i.

On the contrary, soft clustering considers that the boundaries between clus-
ters are ambiguous, so that a data object xj can belong to more than one cluster
Ci with a degree of membership uij ∈ [0, 1], such that

K∑

i=1

uij = 1, ∀j = 1, . . . , N (1)

and

0 <
N∑

j=1

uij < N, ∀i = 1, . . . , K. (2)

Based on the above membership degrees, a fuzzy clustering can be represented
by a K × n matrix U = [uij ], known as the fuzzy partition matrix.

The most representative algorithms for hard and soft clustering are the K -
means and the Fuzzy c-Means (FCM) algorithms, respectively. Both these algo-
rithms are center-based clustering algorithms, that is, algorithms that look for a
predefined number of clusters. These algorithms assume the existence of clusters
by using the distances of data points from the cluster centers. Then, these algo-
rithms perform an iterative optimization procedure to seek an optimal clustering
of data. FCM is considered the fuzzy counterpart K -means and uses a parameter
m ∈ [1,∞] that controls the “fuzziness” of the resulting clusters. In particular,
when m is close to 1, the entries of the fuzzy partition matrix U converges to 0
or 1, and clusters become crispier; whereas when m increases, the entries of the
same matrix decreases and clusters become fuzzier [30].
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2.2 Networks

A network is a set of items, which we will call nodes or vertices, with connections
between them, called links or edges [22]. Network nodes can be organized into
groups, commonly called communities, that have a higher probability of being
connected between them than to members of other groups [6].

Formally, a network can be denoted as G = (V,E), where V is the set of
nodes and E is the set of links such that E ⊆ V × V . The pair (p, q) is the link
connecting the node p with the node q. Links can be undirected, i.e. if (p, q) ∈ E
then (q, p) ∈ E. In addition, links can be associated with a real number, called its
weight, by defining a weight function ω : E → R. Finally, |V | and |E| represent
the number of nodes and links, respectively.

Importance of networks lies in its ability to represent and facilitate the study
and analysis of the interactions between real-world entities [22]. Network visual-
ization can improve the understanding of the structure of those interactions [10].
To this end, layout algorithms that automatically arrange the nodes and links
in an aesthetically pleasing way are used (see [10,13] for a recent review of these
algorithms). For visualization purposes, the family of force-directed algorithms
is commonly used today [7,11,14]. These algorithms model a network as a phys-
ical system where nodes are attracted and repelled according to some force [10].
Some of the algorithms included in this family are Fruchterman-Reingold [8],
GRIP [9], OpenOrd [20], and ForceAtlas2 [15].

3 Membership Networks

Here is introduced a novel method to visualize clusterings obtained from the
application of soft clustering algorithms on high-dimensional data. Rather than
using the original data itself, the cluster memberships are used as a clue to link
the data objects to the resulting clusters and revealing the similarities among
the formers through a membership network. Moreover, this kind of visualization
facilitates the understanding of the uncertainties present in the data without
any a priori knowledge or assumptions.

Consider a set of N data objects, X = {x1, . . . ,xN}, xj ∈ R
d. Let

A = {A1, . . . , AC} be a clustering provided by a center-based soft partition-
ing clustering algorithm, e.g. FCM, represented by a C-by-N fuzzy partition
matrix U = [uij ] and let ai be the center of the partition Ai for i = 1, . . . , C.

An undirected weighted membership network, GU = (V,E), that represents
the above fuzzy clustering can be constructed as follows:

1. Consider each data object xj and each cluster center ai as node of GU , i.e.
let V =

{
x1, . . . ,xN

} ∪ {
a1, . . . , aK

}
.

2. Link each data object xj with every cluster center ai to represent the belong-
ing of xj to more than one cluster, i.e. let E =

{
(xj , αi), i = 1, . . . , C; j =

1, . . . , N
}
.

3. Associate to each link (xj ,ai) a weight ω(xi, αj) equal to the degree of mem-
bership of xj in the cluster Ai, i.e. let ω(xj ,ai) = uij .
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A mathematical property of the obtained membership network is that it
allows computing a cluster validity index for fuzzy clusterings, called partition
coefficient (PC) [28], as PC = (2 |V |)−1Tr(W 2), where W is the symmetric
|V |-by-|V | matrix obtained when all of the weight edges of the graph GU are
recorded in a single matrix.

Figure 1 provides an example to illustrate the proposed method for fuzzy
clustering visualization. Eight multidimensional data objects were clustered into
two groups using a fuzzy clustering algorithm. The clustering result is a fuzzy
partition matrix U . The undirected weighted membership network that repre-
sents this fuzzy clustering has as many data objects as nodes. Two additional
nodes, nodes 9 and 10, represent the centers of the fuzzy clusters. Data object
nodes are connected to the cluster center nodes using links having weights given
by the entries of the matrix U . For clarity, the color and the thickness of the
links between data object nodes and cluster center nodes is proportional to the
degree of membership of each data object to the different clusters. Darker and
thicker links indicate a higher degree of membership.

Fig. 1. Representing a fuzzy clustering result (left) as an undirected weighted mem-
bership network (right) using the proposed method.

Once a network membership is built, it can be visualized using a layout
algorithm that automatically arranges the nodes and links in an aesthetically
pleasing way. In particular, the OpenOrd algorithm [20] is used here for this
task, since it is an algorithm suitable for drawing undirected weighted networks,
and able to provide layouts for large-scale real-world networks wherein clusters
can be better distinguished.

4 Results and Discussion

Experiments were performed to demonstrate the feasibility of the network-based
approach for visualizing soft clusterings obtained from different datasets. As the
purpose of this paper is mainly on presenting a clustering visualization method,
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the traditional FCM algorithm was used to obtain fuzzy clusterings from the data
sets. In particular, the number of clusters C and the fuzzification parameter m
were manually set depending on the case.

4.1 Iris Flower Dataset

The proposed visualization method is first demonstrated using the widely known
Iris flower data set. This multidimensional data set consist of four morphological
measurements taken on 50 samples from three different species of Iris flowers:
setosa, versicolor, and virginica. In particular, it is known that all the samples
of Iris setosa are linearly separable from the samples of the other two species,
while the latter species are not linearly separable from each other.

Three soft clusters for the Iris data set were initially obtained using FCM
with m = 2. Figure 2A shows the membership network constructed based on the
fuzzy partition matrix that represented the resulting clustering. Three groups
of nodes representing the 3-cluster structure are visible in this network-based
representation. Groups at the top of the figure represent two clusters that contain
virginica and versicolor samples, while the remaining group represents a cluster
with setosa samples. Each group of nodes has an anchor node which represents
the cluster center, and, for clarity purposes, the size of the cluster center node is
larger than the nodes representing data objects. Darker and thicker links indicate
a higher degree of membership. As expected, intra-cluster links have a greater
membership weight in comparison with extra-cluster links when clusters are well
separated from each other. However, as the boundary between the clusters of
virginica and versicolor samples is ambiguous, there exist nodes in this boundary
belonging both clusters with a no well-defined degree of membership, and thus
they are linked to both cluster center nodes with darker and thicker connections.

Since m is a crucial parameter of FCM, membership networks representing
fuzzy clusterings obtained after running FCM on the Iris data set for different
values of m were also constructed. Figure 2 also shows the behavior of the built
membership networks under these conditions. As stated before, when m is close
to 1 the entries of matrix U converge to 0 and 1, i.e., clusters become crispier.
This is represented as well-separated groups whose nodes are compactly arranged
around the cluster center node, except for those nodes which are in the boundary
of two overlapping clusters (Fig. 2B). As m is increased, the cluster fuzziness also
increased, and thus groups start to overlap each other due to the strength of the
association between the nodes, and the clusters are not clearly defined (Fig. 2C
and D).

4.2 Financial Datasets

The applicability of the proposed visualization method on large real-world data
with unknown clustering structure is demonstrated using two datasets which
describe the financial behavior of 18.583 customers of a local bank, during a
particular time window. The first data set describes each customer using four



Memberships Networks for High-Dimensional Fuzzy Clustering Visualization 269

Fig. 2. Membership network representing a 3-cluster fuzzy structure discovered by
the FCM algorithm on the Iris flower data set for different values of the fuzzification
parameter m. (A) m = 2. (B) m = 1.1. (C) m = 5. (D) m = 8.

variables which characterize its transactions with other customers, and the sec-
ond data set consists of ten variables describing the financial statements of each
customer.

Since these datasets have an unknown underlying structure, they were arbi-
trarily clustered into ten groups of customers using the FCM algorithm with
m = 2. Figures 3 and 4 show the resulting network-based representation for each
soft clustering.

Data exploration based on organizing both datasets into ten arbitrarily
soft clusters and using the network-based approach to visualize both clustering
results demonstrate how different are their corresponding underlying structures.
The clustering structure provided by FCM on the first data set consist of both
large and predominant groups, and small groups (Fig. 3), while the same algo-
rithm partitioned the second data set into regular size clusters (Fig. 4). Further-
more, larger groups discovered in the first data set are more closely connected
in comparison with the smaller groups (Fig. 3), which could indicate that the
former groups represent data objects lying in large regions with almost uniform
data density, while the latter groups consist of data objects that are outliers. A
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Fig. 3. Membership network representing a 10-cluster fuzzy structure discovered by
the FCM algorithm on the first financial data set for m = 2.

subsequent examination of these group of outliers indicated that they correspond
to clients who participate in numerous and large transactions, and thus these
clients could be of interest for receiving special banking services related with
financial transactions. On the other hand, the well-connected groups of nodes
discovered in the second data set (Fig. 4) may also consist of data objects sharing
the same feature like the larger groups in the first data set (Fig. 3). However,
this result could also be interpreted as there is no evidence of the existence of
natural groups in the second data set, and thus, the FCM algorithm only per-
formed segmentation of the bank customers. Finally, the closeness between the
three cluster center nodes in the middle of Fig. 4 could indicate that a cluster
has been wrongly split into three clusters, as FCM necessarily must partition
the data into a given number of clusters.
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Fig. 4. Membership network representing a 10-cluster fuzzy structure discovered by
the FCM algorithm on the second financial data set for m = 2.

5 Conclusions

In this work is presented a method to visualize clustering structures obtained
from the application of fuzzy clustering algorithms on high-dimensional data.
The proposed method uses undirected weighted membership networks to repre-
sent fuzzy partition matrices. This simple network-based method allows under-
standing visually how elements (data objects and clusters) involved in this kind
of complex data clustering structures interact each other, without relying on a
visualization of the input high-dimensional data itself. The proposed visualiza-
tion method provides a means to represent near-crisp and very fuzzy clustering
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structures and to explore large real-world data with unknown clustering struc-
ture. As future work, we plan to extend our analysis to other methods, besides
FCM, that consider the notion of data objects belonging to multiple groups,
such as the Gustafson-Kessel algorithm and the Possibilistic c-Means algorithm,
among others.
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