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José-Mario Garćıa-Valdez3, and Sergio Rojas-Galeano4(B)

1 Universidad de Granada/CITIC, Granada, Spain
{jmerelo,pacv}@ugr.es
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Abstract. The concept of channel, a computational mechanism used to
convey state to different threads of process execution, is at the core of
the design of multi-threaded concurrent algorithms. In the case of con-
current evolutionary algorithms, channels can be used to communicate
messages between several threads performing different evolution tasks
related to genetic operations or mixing of populations. In this paper we
study to what extent the design of these messages in a communicat-
ing sequential process context may influence scaling and performance of
concurrent evolutionary algorithms. For this aim, we designed a channel-
based concurrent evolutionary algorithm that is able to effectively solve
different benchmark binary problems (e.g. OneMax, LeadingOnes, Roy-
alRoad), showing that it provides a good basis to leverage the multi-
threaded and multi-core capabilities of modern computers. Although our
results indicate that concurrency is advantageous to scale-up the perfor-
mance of evolutionary algorithms, they also highlight how the trade–off
between concurrency, communication and evolutionary parameters affect
the outcome of the evolved solutions, opening-up new opportunities for
algorithm design.
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1 Introduction

Despite the emphasis on leveraging newer hardware features with best-suited
software techniques, there are not many papers [20] dealing with the creation of
concurrent evolutionary algorithms that work in a single computing node or that
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extend seamlessly from single to many computers. In that sense, concurrent pro-
gramming seems to be the best option if we are dealing with a multi-core multi-
threaded processor architecture where many processes and threads can coexists
at the same time. The latter implies applications (and algorithms) should be
able to leverage those processes to take full advantage of their capabilities.

The best way to do so is to match those capabilities at an abstract level by
languages that build on them so that high-level algorithms can be implemented
without worrying about the low-level mechanisms of creation or destruction of
threads, or how data is shared or communicated among them. These languages
are called concurrent, and the programming paradigm implemented in them
concurrency-oriented programming or simply concurrent programming [2].

These languages, that include Perl 6, Go, Scala and Julia, usually support
programming constructs that manage threads like first class objects, including
operators for acting upon them and to using them as function’s input or return
parameters. The latter have implications in the coding of concurrent algorithms
due to the direct mapping between patterns of communication and processes
with language expressions: on the one hand it simplifies coding because higher-
level abstractions for communication are available; on the other hand it changes
the paradigm for implementing algorithms, since these new communication con-
structs and the overhead they bring to processing data need to be considered.

Moreover, concurrent programming adds a layer of abstraction over the par-
allel facilities of processors and operating systems, offering a high-level interface
that allows the user to program modules of code to be executed in parallel
threads [1].

Different languages offer different concurrency strategies depending on how
they deal with shared state, that is, data structures that could be accessed from
several processes or threads. In this regard, there are two major fields and other,
less well known models using, for instance, tuple spaces [9]:

– Actor-based concurrency [24] totally eliminates shared state by introducing
a series of data structures called actors that store state and can mutate it
locally.

– Process calculi or process algebra is a framework to describe systems that
work with independent processes interacting between them using channels.
One of the best known is called the communicating sequential processes (CSP)
methodology [12], which is effectively stateless, with different processes react-
ing to a channel input without changing state, and writing to these channels.
Unlike actor based concurrency, which keeps state local, in this case per-
process state is totally eliminated, with all computation state managed as
messages in a channel.

Many modern languages, however, follow the CSP abstraction, and it has
become popular since it fits well other programming paradigms, like reactive
and functional programming, and allows for a more efficient implementation,
with less overhead, and with well-defined primitives. This is why we will use it
in this paper for creating natively concurrent evolutionary algorithms. We have
chosen Perl 6, although other alternatives such as Go and Julia are feasible.



18 J. J. Merelo et al.

In previous papers [21,22] we designed an evolutionary algorithm that fits
well this architecture and explored its possibilities. That initial exploration
showed that a critical factor within this algorithmic model is the communication
between threads; therefore designing efficient messages is high-priority to obtain
good algorithmic performance and scaling. In this paper, we will test several
communication strategies: a loss-less one that compresses the population, and a
lossy one that sends a representation of gene-wise statistics of the population.

The rest of the paper is organized as follows: next we present the state of the
art in concurrency in evolutionary algorithms, followed by Sect. 3 on the design
of concurrent EAs in Perl 6. Experimental results are presented next in Sect. 4;
finally, we discuss our conclusions in Sect. 5.

2 State of the Art

The parallelization of nature-inspired optimization algorithms has been an active
field, allowing researchers to solve complex optimization problems having a high
computational cost [17]. In the literature, most works are concerned with process-
based concurrency, using, for instance, a Message Passing Interface (MPI) [10], or
hybrids with fine-grain parallelization by using libraries such as OpenMP [6] that
offer multi-threading capabilities [15]. Recent trends in software development
have motivated the inclusion of new constructs to programming languages to
simplify the development of multi-threaded programs. The theoretical support
used by these implementations is based on CSP. Languages such as Go and Perl
6 implement this concurrency model as an abstraction for their multi-threading
capabilities. (the latter including additional mechanisms such as promises or
low-level access to the creation of threads). Even interpreted languages with a
global interpreter lock, such as Python also have included promises and futures
in their latest versions, to leverage intensive multi-threading IO capabilities.

The fact that messages have to be processed without secondary effects and
that actors do not share state makes concurrent programming specially fit for
languages with functional features; this has made this paradigm specially popu-
lar for late cloud computing implementations; however, its reception in the EA
community has been scarce [11], although some efforts have lately revived the
interest for this paradigm [26]. Several years ago it was used in Genetic Program-
ming [4,13,29] and recently in neuroevolution [25] and program synthesis [28]
using the functional programming features of the Erlang language for building
an evolutionary multi-agent system [3].

Earlier efforts to study the issues of concurrency in EA are worth mentioning.
For instance, the EvAg model [14] resorts to the underlying platform scheduler
to manage the different threads of execution of the evolving agents; in this way
the model scaled-up seamlessly to take full advantage of CPU cores. In the same
avenue of measuring scalability, experiments were conducted in [18] comparing
single and a dual-core processor concurrency achieving near linear speed-ups.
The latter was further on extended in [19] by scaling up the experiment to
up to 188 parallel machines, reporting speed-ups up to 960×, nearly four times
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the expected linear growth in the number of machines (when local concurrency
were not taken into account). Other authors have addressed explicitly multi-
core architectures, such as Tagawa [27] which used shared memory and a clever
mechanism to avoid deadlocks. Similarly, [16] used a message-based architecture
developed in Erlang, separating GA populations as different processes, although
all communication was taking place with a common central thread.

In previous papers [8,22], we presented a proof of concept of the implementa-
tion of a stateless evolutionary algorithms using Perl 6, based on a single channel
model communicating threads for population evolving and mixing. In addition,
we studied the effect of running parameters such as the generation gap (similar
to the concept of time to migration in parallel evolutionary algorithms) and pop-
ulation size, realizing that the choice of parameters may have a strong influence
at the algorithmic level, but also at the implementation level, in fact affecting
the actual wallclock performance of the EA.

3 Design of a Concurrent Evolutionary Algorithm in
Perl6

Perl 6 is a concurrent, functional language [5] which was conceived with the
intention of providing a solid conceptual framework for multi-paradigm comput-
ing, including thread-based concurrency and asynchrony. It’s got a heuristic layer
that optimizes code during execution time. In the last few years, performance
of programs written in Perl 6 has been sped-up by a 100× factor, approaching
the same scale of other interpreted languages, although still with some room for
improvement.

The Algorithm::Evolutionary::Simple Perl 6 module was published in
the ecosystem a year ago and got recently into version 0.0.7. It is a straightfor-
ward implementation of a canonical evolutionary algorithm with binary repre-
sentation and includes building blocks for a generational genetic algorithm, as
well as some fitness functions used generally as benchmarks.

The baseline we are building upon, is similar to the one used in previous
experiments [22]. Our intention was to create a system that was not functionally
equivalent to a sequential evolutionary algorithms, that also follows the principle
of CSP. We decided to allow the algorithm to implement several threads commu-
nicating state through channels. Every process itself will be stateless, reacting
to the presence of messages in the channels it is listening to and sending result
back to them, without changing state.

As in the previous papers, [21], we will use two groups of threads and two
channels. The two groups of threads perform the following functions:

– The evolutionary threads will be the ones performing the operations of the
evolutionary algorithm.

– The mixing thread will take existing populations, to create new ones as a
mixture of them.
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Fig. 1. General scheme of
operation of channels and
thread groups.

Besides, the two channels carry messages con-
sisting of populations, but they do so in a different
way:

– The evolutionary channel will be used for carry-
ing non-evolved, or generated, populations.

– The mixer channel will carry, in pairs, evolved
populations.

These will be connected as shown in Fig. 1. The
evolutionary thread group will read only from the
evolutionary channel, evolve for a number of gen-
erations, and send the result to the mixer channel;
the mixer group of threads will read only from the
mixer channel, in pairs. From every pair, a random
element is put back into the mixer channel, and a
new population is generated and sent back to the
evolutionary channel.

Evolver Channel Mixer

evolve()

pop1

pop1evolve()

pop2

pop2 mix()

mixpop1,
mixpop2,

mixpopk

mixpop1

evolve()

pop3
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mixpopk mix()

evolve()

Fig. 2. Communication between threads and channels
for concurrent EAs. The two central bars represent the
channel, and color corresponds to their roles: blue for
mixer, red for evolver. Notice how the evolver threads
always read from the mixer channel, and always write
to the evolver channel. (Color figure online)

The main objective of
using two channels is to
avoid deadlocks; the fact
that one population is
written always back to
the mixer channel avoids
starvation of the channel.
Figure 2 illustrates this oper-
ation, where the timeline
of the interchange of mes-
sages between the evolver
and mixer threads and
evolver and mixer channels
is clarified.

The state of the algo-
rithm will be transmitted
via messages that contain
data about one popula-
tion. Since using the whole
population will incur in a
lot of overhead, we use a
strategy that is inspired
in EDA, or Estimation
of Distribution Algorithm:
instead of transmitting the
entire population, the mes-
sage sent to the channel
will consist of a prototype
array containing the prob-
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ability distribution across each gene in the population. In this sense, this strategy
is similar to the one presented by de la Ossa et al. in [7].

Nonetheless, our strategy differs from a pure EDA in that once the evolu-
tionary thread have internally run a canonical genetic algorithm, it takes only
the top quartile of best individuals to compute an array with the probability
distribution of their genes (computed with frequentist rules) and then compose
the message that is sent to the mixer threads.

A mixer thread, in turn, builds a new prototype array by choosing randomly
at each gene location one probability parameter out of the two populations (actu-
ally, distributions), instead of working directly on individuals. While in the base-
line strategy the selection took place in the mixer thread by eliminating half the
population, in this new design the selection occurs in the evolutionary thread
that selects the 25% best individuals to compose the probability distribution
message. When the evolver thread reads the message back, it generates a new
population using the mixed distribution obtained by the mixer.

4 Experimental Results

We focused on the scaling capabilities of the algorithm and implementation,
so we tested several benchmark, binary functions: OneMax, Royal Road and
Leading Ones, all of them with 64 bits (for function definitions see e.g. [23]).

Fig. 3. An htop utility screenshot for the used machine running two experiments simul-
taneously. It can be seen all processors are kept busy, with a very high load average.

However, the intention of concurrent evolutionary algorithms is to leverage
the power of all threads and processors in a computer so we must find out
how it scales for different fitness functions. We are setting the number of initial
populations to the number of threads plus one, as the minimum required to



22 J. J. Merelo et al.

avoid starvation, and we are using a single mixing thread. As reported in our
previous papers [8,22], we are dividing the total population by the number of
threads. The population size will be 1024 for OneMax, 8192 for Royal Road
and 4096 Leading Ones. These quantities were found heuristically by applying
the bisection method on a selector-recombinative algorithm, which doubles the
population until one that is able to find the solution 95% of the time is found.

Experiments were run on a machine with the Ubuntu 18.04 OS and an AMD
Ryzen 7 2700X Eight-Core Processor at 3.7GHz, which theoretically has 8×16 =
128 physical threads. Figure 3 shows the utility htop with an experiment running;
the top of the screen shows the rate at which all cores are working, showing all
of them occupied; of course, the program was not running exclusively, but the
list of processes below show how the program is replicated in several processor,
thus leveraging their full power.

Observe also the number of threads that are actually running at the same
time, a few of which are being used by our application; these are not, however,
physical but operating system threads; the OS is able to accommodate many
more threads that are physically available if the code using them is idle.

We are firstly interested in the number of evaluations needed to find the
solution (see Fig. 4), since as it was mentioned previously, a tradeoff should
exist between the performance of the algorithm and the way it is deployed over
different threads. In this case, population size does have an influence on the
number of evaluations, with bigger populations tipping the balance in favor of
exploration and thus making more evaluations to achieve the same result; the
same happens with smaller populations, they tend to reach local minima and
thus also increase exploration.

Figure 4 shows how the overall number of populations increases slightly and
not significantly from 2 to 4 threads, but it does increase significantly for 6 and 8
threads, indicating that the algorithm’s performance is worsen when we increase
the number of threads, and consequently more evaluations are needed to achieve
the same result. This is probably due to the fact that we are simultaneously
decreasing the population size, yielding an earlier convergence for the number of
generations (8) it is being used. This interplay between the degree of concurrency,
the population size and the number of generations will have to be explored further.
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Fig. 6. OneMax: Evaluations per second vs.
number of threads. Higher is better.

Besides, we also wanted to assess
the actual wallclock time, plotted
in Fig. 5. The picture shows that it
decreases significantly when we go
from 2 (the baseline) to 4 threads,
since we are using more computing
power for (roughly) the same num-
ber of evaluations. It then increases
slightly when we increase the num-
ber of threads; as a matter of fact
and as shown in Fig. 6, the number
of evaluations per second increases
steeply up to 6 threads, and slightly when we use 8 threads. However, the amount
of evaluations spetn overcompensates this speed, yielding in a worse result. It
confirms, nonetheless, that we are actually using all threads for evaluations, and
if only we could find a strategy that didn’t need more evaluations we should
be able to get a big boost in computation time that scales gracefully to a high
number of processors.

But we were interested also in checking whether the same kind of patterns
are found for other fitness functions, with a different landscape, and also how
much further scaling with the number of threads could go; that is why we set
up another experiment with the Royal Road function. We run the experiment
as above, but in this case there were some runs in which the solution was not
found within the time limit of 800 s; in the first case, for two threads, this is
indicated with a lighter shade corresponding to the number of instances where it
did found the solution, 6 out of 15. The number of evaluations needed to find the
solution is shown as a boxplot in Fig. 7; the total time in Fig. 8 and the number
of evaluations per second in Fig. 9.

Since the Royal Road function is slightly heavier than Onemax, this number
reaches a lower peak of approximately 25%. Comparing also Figs. 4 with 8 we
see that that Royal Road needs one order of magnitude more evaluations than
OneMax to find the solution. As we capped the running time at 800 s, this causes
some the lack of success for the lowest number of threads.
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Fig. 7. Royal Road: Number of evaluations
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Fig. 9. Royal Road: Evaluations per second
vs. number of threads. Higher is better.

The pattern these charts exhibit
is very similar to those for One-
Max. The performance scales up to
a certain range, and then it plateaus,
increasing only in speed, but not
in wallclock time. From 2 to 6
threads speed increases 2×, due to
an increase in speed with a slight
decrease in the number of evalua-
tions needed to find the solution;
besides, success rate goes up from 2
to 4 threads, shifting from finding the solution 6 out of 15 times to finding it
every time. This is due to the cap in the allowed runtime, which is 800 s; it is
likely that if more time had been allowed, solution had been found.

However, we again find the same effect of increase in performance up to
an optimal number of threads, 6 in this case. This is slightly better than it
was for Onemax, which reached an optimal performance for 4 threads. The fact
that the optimal population in Royal Road is 4× that needed for OneMax will
probably have an influence. As a rule of thumb, performance will only increase
to the point that population size will make the algorithm worsen in the opposite
direction. Interestingly, it also proves that the peak performance is mainly due
to algorithmic, not the physical number of threads (around 16 for this machine).

Besides, not all problems behave in the same way and scaling in performance
and success rate is strongly problem-dependent. To illustrate that fact, we used
another benchmark function, LeadingOnes, which counts the leading number of
ones in a bitstring. Despite its superficial similarity to OneMax, it’s in practice a
more difficult problem, since it has got long plateaus with no increment in fitness.
It is thus a more difficult problem which is why we had to increase the number
of generations per thread to 16 and decrease the length of the chromosome to
48, as well as the time budget to 1200 s.

Even so, results were quite different, see Figs. 10, 11 and 12 (8 threads data
not shown, because the solution was actually found with 2 and 4 threads only).
The situation is inverted with respect to the other problems. Although, as shown
in Fig. 12, the number of evaluations increases with the number of threads (and
is actually higher than for Royal Road), the success rate decreases and the time
to solution does the same.
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Fig. 10. Leading ones: Number of evalua-
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This might be due, in part, to the
intrinsic difficulty of the problem,
with a flat fitness landscape that
only changes if a single bit (among
all of them) changes when it should;
this might make the short periods
of evolution before sending the mes-
sage inadequate for this problem.
But, additionally, the message only
sends a statistical representation of
the population. If there are not many representatives with the latest bits set,
it can happen (and indeed it does) that the best solution in the previous evo-
lution run is lost, and sometimes is not retrieved in the 16 generations it runs
before communicating again. The latter gets worse with the increasing number
of threads, since the population size decreases. As indicated at the beginning,
balancing exploration and exploitation needs a population with the right size,
and tipping the balance towards too much exploitation might be as negative (in
terms of success rate) as too much exploration.

5 Conclusions

In this paper we studied to what extent scaling can be achieved on evolutionary
concurrent algorithms on different types of problems. We observed that because
OneMax simplicity requires a small population to find the solution, scaling is
very limited and only means a real improvement if we use four threads instead of
two. The Royal Road function with the same length is more challenging, showing
an interesting behavior in the sense that it scaled in success rate and speed from
2 to 4 threads, and then again in speed through 6 threads. In this problem
we measured up to 12 threads, and we noticed that the number of evaluations
per second also reaches a plateau at around 6k evaluations. For 8 threads, our
program uses actually 9 threads since there is another one for mixing. Since
the computer only has 16 physical threads (2 threads x 8 cores), plus the load
incurred by other system programs, this probably suggest a physical limit.

The experiments also indicate that creating a concurrent version of an evo-
lutionary algorithm poses challenges such as designing the best communication
strategy (including frequency and message formats) and distributing the algo-
rithm workload, i.e. the population, among the different threads; anyway, phys-
ical features such as message size and number of threads must be considered.

As a consequence, several possible future lines of research arise. The first
one is to try new algorithmic scaling strategies that consistently has a positive
influence in the number of evaluations so that speedup is extended at least up to
the physical number of threads. On the other hand, the messaging strategies
proposed here are suitable for problem representation via a binary data structure.
New mechanisms will have to be devised for floating-point representation, or
other data structures. For that matter, general-purpose compressing techniques
or EDAs extended to other abstract data types can be examined.
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Finally, we are using the same kind of algorithm and parametrization in all
threads. Nothing prevents us from using a different algorithm per thread, or
using different parameters per thread. This opens a vast space of possibilities,
but the payoff might be worth it.
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