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Abstract. In many distributed generation applications, microturbines
are used for energy conversion. On the other hand, neural networks are
a suitable option for the control of complex non-linear systems. Thus,
in this article is shown the speed control of a microturbine using neural
networks. For this process, the identification of the microturbine using
a neural network is carried out in order to subsequently perform the
optimization of the other neural network used for control.
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1 Introduction

Distributed resources of energy are an important alternative to supply electric
power, the approach of distributed generation may allow the costs of generators
and the production of electricity to be cheaper [1]. Some distributed resources of
energy are: eolian generation, fuel cells, microturbines and photovoltaic systems
[2]. According to [3] and [4], using appropriated control schemes is possible to
improve the reliability and the power quality.

A microturbine (MT) generation system belongs to the type of thermal gen-
eration due to characteristics like lower cost, higher efficiency, more reliability
and convenience; thus, MT system is considered one of the best forms of dis-
tributed generation. However, a microturbine is a complex thermal dynamic
system which makes complicated to establish a precise model because of the
manifested non-linearities and uncertainties [2,5]. Some investigations address-
ing proper modeling for a MT can be seen in [2,5–7] and [8].

Conventionally, a MT shows controls of velocity, acceleration, temperature,
and fuel. According to [5], a microturbine is mainly adjusted by velocity which
is regulated to a constant value close to nominal velocity in conditions of normal
operation.

Meanwhile, neural networks (NN) offer an acceptable control alternative
when having a highly complex system given by non-linearities, parameter vari-
ance, and saturation, among others [9].
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A system of control to a microturbine using NN is proposed in this paper; the
work is mainly focused on velocity controls, leaving the possibility of studying
other control variables in further papers.

2 Microturbine Model

In relation of development models for a microturbine, in [6] a modular model
of sixth order to a microturbine is presented. Moreover, [7] describes a simple
model based on a transfer function.

According to [8], assuming the microturbine operates always close to its nom-
inal velocity, and ignoring the start and off processes, it is then possible the
construction of a simple model. In this regard, it is necessary to bear in mind
that suppositions may arise uncertainties in the model [5].

2.1 Microturbine Operation

In general, the following process are involved in the operation of a microturbine:

1. Air at atmospheric pressure enters to the gas turbine through the compressor.
2. Air is compressed to achieve the conditions to combustion.
3. The fuel (gas) is mixed with the air in the combustion chamber.
4. Then, combustion takes place. Hot gases are expanded through the turbine

to generate mechanic energy.

During the combustion process, the chemical energy present in the combus-
tion reagents is transferred to the gas flux. This energy is given by gas enthalpy
such that it becomes into mechanic work by the gas expansion through the tur-
bine. It also occurs that in the last stage of the combustion process a part of the
flux is derivate to activate the compressor [10]. Figure 1 displays the interaction
of these systems. From this view three components can be seen to a MT:

1. Combustion system.
2. Turbine and compressor system.
3. Thermal system.
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Fig. 1. Microturbine systems.
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Fuel System. Figure 2 shows the fuel system parts. Main components are the
valve positioner and the flux dynamic behavior. In this figure Vf is the fuel input
signal, this is amplified via Kf (gain) and compensated using F0 which are the
fuel flux without load in nominal velocity. Then, the signal passes through the
valve and actuator positioner to produce the fuel flow signal Wf [2].

Vf

×

wr F0

Kf e−sTA
Ka

Tbs + 1
1

Tfs + 1

Wf

Effd

Delay

evlaVniaG

Actuator

Fig. 2. Fuel subsystem.

According to [11] and [12], the transfer function associated to the valve is:

Ef =
Ka

Tbs + 1
fd (1)

Regarding the flux dynamics the respective transfer function is:

Wf =
1

Tfs + 1
Ef (2)

where Ka represents the gain associated with the valve positioner, Tb and Tf are
time constant values for the valve positioner and the fuel system. Meanwhile, fd,
E1 are the input and output positioner of the valve, and Wf is the flux signal
fuel.

Turbine and Compressor Systems. Figure 3 displays the block diagram of
the gas turbine. Turbine input signals are the fuel flux Wf and the angular
velocity wr(t). Output signals are the turbine torque τm(t). According to [11]
and [12], the transfer for the gas turbine is:

WC =
1

TCDs + 1
WfC (3)

where TCD is the constant time value associated with the dynamics of the gas
turbine. The torque of the microturbine is described by:

FC = aC − bCWC + cC(1 − wr) (4)

As observable, FC is a function of the fuel flux and the turbine velocity.
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Fig. 3. Turbine and compressor systems.

Thermal System. The fuel burnt (fuel flux) in the combustion chambers gen-
erates torque of the turbine and the gas escape temperature [11]. Figure 4 shows
the block diagram of the thermal system.
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Fig. 4. Thermal system.

According to [11] and [12], the escape temperature of the gas is given by:

FT = Tref − at(1 − Wt) + bt(1 − wr) (5)

where FT is a function whose entries consist of fuel flux with delay Wt, and the
turbine velocity wr(t). Escape temperature is measured using a set of thermo-
couples which are assigned in the radiators.

On the other hand, K4 and K5 are constant values associated with the insu-
lation transfer function (opposing to the radiation). T3 and T4 are values of con-
stant time of the transfer functions of both the insulation and the thermocouple.
In addition, Tref represents the escape temperature (reference temperature) [5,8].

3 Permanent Magnet Synchronous Generator

In energy generation systems, the Permanent Magnet Synchronous Generator
(PMSG) is widely used to obtain transformation from mechanical to electrical
energy [13]. According to [14] and [15], permanent magnet synchronous gener-
ators need no feeding of direct current (DC) for the excitation circuit, neither
have contact brushes.



206 H. Espitia et al.

PSMG

τm(t)

wr(t)

Ra

Rb

Rc

τm(t) wr(t)
Generator

PSMG

S

N

Fig. 5. Scheme of a PSMG.

The scheme for PMSG is shown in Fig. 5, where the input of the generator is
the torque τm(t) and the output the angular velocity wr(t). Related works using
PMSG and neural systems are presented in [16] and [17].

The dynamic model of a PMSG is composed of two parts, one mechanical
and the other electrical that is obtained of the mobile synchronous framework of
two signals d− q, where the axis q is 90◦ ahead axis d regarding the direction of
rotation [15]. The mechanical system is composed by the following equations:

dwr

dt
=

1
J

(τe − Fwr − τm) (6)

dθ

dt
= wr (7)

where wr rotor angular velocity, θ angular position, J is the rotor inertia, F
rotor viscous friction, and τm mechanical torque. For the electrical part the
model equations in the coordinates d − q are:

did
dt

=
1
Ld

vd − R

Ld
id +

Lq

Ld
pwriq (8)

diq
dt

=
1
Lq

vq − R

Lq
id − Ld

Lq
pwrid − λpwr

Lq
(9)

τe = 1.5p[λiq + (Ld − Lq)idiq] (10)

in these equations id, iq are the currents, vd, vq voltages, Ld, Lq the inductances,
R stator resistance, λ amplitude of the flux induced by the permanent magnets,
p number of pole pairs, and τe electromagnetic torque. For current and voltage
conversions is used the parameter γ = 2π/3. The current conversion from d − q
to abc axis is:

⎡
⎣

ia
ib
ic

⎤
⎦ =

⎡
⎣

cos(θ) − sin(θ)
cos(θ − γ) − sin(θ − γ)
cos(θ + γ) − sin(θ + γ)

⎤
⎦

[
id
iq

]
(11)

The voltage conversions from abc to d − q corresponds to:

[
vd
vq

]
=

2
3

[
cos(θ) cos(θ − γ) cos(θ + γ)
− sin(θ) − sin(θ − γ) − sin(θ + γ)

] ⎡
⎣

va
vb
vc

⎤
⎦ (12)
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4 Neural Networks

According to [18,19] neural networks are a suitable alternative for the identifi-
cation and control of dynamic systems when the system presents non-linearities.
One of the advantages of neural networks is the flexibility of adaptation, associ-
ation, evaluation and recognition of patterns [20].

The information is processed through inputs, a weight per connection and
an output associated with an activation function as corresponds to equation
(13), where each input xn is weighted using wn and added to be later evaluated
by an activation function f to obtain the output y. Some activation functions
are: sigmoid, gaussian, linear, saturated linear, and hard limit. The addition of
network layers allows the increase of the adaptation capabilities [21].

y = f

(
N∑

n=1

wnxn

)
(13)

In applications of identification and control can be used feed forward or
backward networks. In recurrent networks (feed-backward networks) feedback is
present among neurons as well as from the output to the inputs. In feed-forward
the signals move forward only, therefore, it is necessary an additional feedback
from the output to the inputs [22].

5 Neural Control System

Neural control system is proposed as an alternative to identify and to control
dynamic systems, using its capacity as approximator for general functions [9].
Figure 6 shows the neural network control model.

Controller
NN

Model
NN

Plant

Reference
Model

+

−

+

−
r[n]

yr[n]

y[n]

ys[n]u[n]

ec

em

Fig. 6. Neural network control reference model.

In Fig. 6 it is shown two neural networks used for the neural control system,
where y[n] is the measured signal of the process, u[n] is the control signal, r[n]



208 H. Espitia et al.

the reference for the controller, ys[n] the simulated plant output, and yr[n] the
desired output (reference-model).

The considered architecture uses two neural networks, one for the control and
another to estimate the plant model. Thus, the identification of the plant is first
carried out and subsequently the controller training. The plant identification is
made using the Backpropagation algorithm, after carrying out the identification,
the controller training is performed using the algorithm Dynamic Backpropaga-
tion in which it incorporates in a closed loop the dynamics of the neural-model
plant and the dynamic behavior of the controller, thus, the parameters of the con-
troller are optimized so that the output has the desired behavior (reference-model).
After being trained the controller is put into operation with the plant [23,24].

5.1 Identification Using Neural Networks

According to [25], when using neural networks, the classic methods for identi-
fying dynamic systems are series-parallel and parallel, shown in Fig. 7. In the
series-parallel identification scheme are directly used the inputs and outputs of
the plant; under this approach, the Backpropagation method can be used as a
training algorithm [26]. On the other hand, in the parallel identification scheme,
inputs of the plant are used and the output of the network being feedback to
the inputs, with this perspective, the Dynamic Backpropagation is employed as
training algorithm [24]. In this paper is used series-parallel identification.

Plant

NN Model

u[n] y[n]

ys[n]

−

+

(a) Series-parallel scheme.

Plant

NN Model

u[n] y[n]

ys[n]−

+

(b) Parallel scheme.

Fig. 7. Series-parallel and parallel identification scheme.

6 Implementation and Results

Implementing the process of identification, together with microturbine control
are made in MATLAB� (version 7). The plant model used can be seen in Fig. 8;
it can be noted that the input corresponds to the flux of fuel and the output
to the angular velocity. A random signal is employed to obtain the data used
in plant identification which allows to describe the different behaviors present
in the system output (velocity). Figure 9 permits to see the neural controller
architecture using MATLAB�.
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Fig. 8. Microturbine model used.

The general expressions for neural networks used for identification are given
by fp and for control by fc functions. Taken p as the output delays, q as the
input delays, m as reference delays, then the equations for plant model ys[n+1]
and the control signal u[n + 1] are:

ys[n + 1] = fp(y[n], y[n − 1], ..., y[n − p + 1], u[n], u[n − 1], ...
, u[n − q + 1]) (14)

u[n + 1] = fc(y[n], y[n − 1], ..., y[n − p + 1], r[n], r[n − 1], ...
, r[n − m + 1], u[n − 1], ..., u[n − q + 1]) (15)

Neural

Network

Controller

Plant

Reference
Control
Signal Output

y(t)

u(t)

r(t)

Fig. 9. Neural control system scheme.

For control and identification process, different neural networks are used tak-
ing 2, 3, and 4 delays for the input as well as to output feedback. The neural
networks used have two hidden layers, the first layer is set using 2, 3, and 5
neurons, and the second layer one neuron. For plant identification is used the
function “TRAINLM” that implements the Levenberg-Marquardt Backpropa-
gation, and for controller training is used “TRAINBFGC” corresponding to
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton Backpropagation
method. The additional configurations of neural controller are:
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– Hidden layers: 2
– Activation functions layer 1: sigmoid
– Activation function layer 2: linear
– Training epoch for identification: 300
– Training epoch for controller: 50
– Number of training data for identification: 6000
– Number of training data for controller: 1000

Each configuration is respectively executed 20 times to identification and
control training; thus, obtaining the values of the Mean Squared Error (MSE) as
shown in Table 1a for identification, and Table 1b for controller training. These
tables present for each configuration the minimum, maximum, average and stan-
dard deviation (STD) values. To perform the controller training is used the con-
figuration of 2 delays and 5 neurons obtained from the identification process
(neural-model). Part of data used for identification can be seen in Fig. 10a; this
figure also displays the results of the identification process made with the neural
network.

Table 1. Results for identification and controller training.

(a) MSE training process values ob-
tained for identification.

Delays: 1
Value Neurons: 2 Neurons: 3 Neurons: 5
Min 1.49E-04 1.36E-04 1.17E-04
Max 3.72E-03 3.68E-03 7.95E-04
Mean 1.54E-03 7.86E-04 1.79E-04
STD 1.66E-03 1.04E-03 1.50E-04

Delays: 2
Value Neurons: 2 Neurons: 3 Neurons: 5
Min 2.33E-05 1.38E-05 1.15E-05
Max 2.44E-03 2.30E-03 1.11E-03
Mean 1.50E-03 5.58E-04 1.89E-04
STD 9.24E-04 8.42E-04 3.66E-04

Delays: 3
Value Neurons: 2 Neurons: 3 Neurons: 5
Min 2.17E-05 1.86E-05 1.14E-05
Max 1.68E-03 1.59E-03 1.39E-03
Mean 1.11E-03 5.44E-04 2.78E-04
STD 5.74E-04 5.97E-04 4.26E-04

(b) MSE values obtained for con-
troller training.

Delays: 1
Value Neurons: 2 Neurons: 3 Neurons: 5
Min 2.65E-02 1.20E-02 3.21E+00
Max 7.63E+01 2.28E+01 2.07E+02
Mean 1.52E+01 6.25E+00 3.60E+01
STD 2.56E+01 7.85E+00 5.59E+01

Delays: 2
Value Neurons: 2 Neurons: 3 Neurons: 5
Min 4.92E-03 4.30E-02 1.25E-01
Max 2.28E+01 9.17E+01 2.28E+02
Mean 1.24E+01 1.50E+01 5.32E+01
STD 9.67E+00 2.29E+01 7.23E+01

Delays: 3
Value Neurons: 2 Neurons: 3 Neurons: 5
Min 6.35E-03 4.85E-02 1.18E-02
Max 2.20E+01 2.28E+01 1.34E+02
Mean 6.60E+00 9.12E+00 2.69E+01
STD 7.83E+00 8.41E+00 3.22E+01

Figure 10b shows the control system response after the training, as an exam-
ple, it is taken a configuration using 1 delay and 3 neurons. This process includes
the identified model (with the neural network) to train the controller which is
implemented with another neural network.

Finally, the results of the simulation of the neural controller with the plant
model can be seen in Fig. 11; in this case, the microturbine model is used for
simulation.
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Fig. 10.Graphical results for identification and controller training. (Color figure online)
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Fig. 11. Simulation for microturbine control. (Color figure online)

These simulations allow to see the system behavior when it is performing the
controller training and also the controller response operating with the microtur-
bine model.

7 Conclusions

In this work, the identification and control of a microturbine were achieved
using a neural network scheme. Observations show that the performance of the
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system is linked to the initial configuration of the neural network, which is made
randomly.

The traditional Backpropagation algorithm was used to identify the plant,
while the Dynamic Backpropagation algorithm was used for the optimization of
the controller.

Taking the most suitable configuration obtained from the system, it is observ-
able that the system can achieve the control for different speed values.

Plant parameter variations can be considered in a further work in such a way
that an adaptive process may be implemented, as well as a neuro-fuzzy system
in which random parameter initializations be needless in the neural system.
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Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 89–101. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00350-0 8

18. Torres, N., Hernandez, C., Pedraza, L.: Redes neuronales y predicción de tráfico.
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