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Abstract. This paper presents a deep learning approach for urban crime
forecasting. A deep neural network architecture is designed so that it can
be trained by using geo-referenced data of criminal activity and road
intersections to capture relevant spatial patterns. Preliminary results
suggest this model would be able to identify zones with criminal activity
in square areas of 500 × 500 m2 in a weekly scale.
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1 Introduction

Recent advances in environmental criminology rely on pattern recognition, urban
factors identification and crime prediction based on temporal patterns [1]. Urban
factors may include employment status and home living locations around the
cities. In fact, some of them involve relationships between urban areas with high
marginalized zones, inequality conditions and poverty with the motivation of
people to get involved in criminal activities. For instance, local related neigh-
borhood interactions like house burglary are considered as local crime-related
factors [2].

Some traditional methods use time series from historical records to study
criminal activity at a local neighborhood area with little or no consideration
of the spatial distribution of urban crime data whereas others focus only on
the geographic determination of crime clusters [3]. More recently, criminology
experts have developed interest to adopt deep learning techniques in their work
in order to generate policies to combat criminal activity [4–6].

Environmental criminology has increased its interest in the relationship
between crime activity and the urban backcloth associated with it [7]. Experts
focus on crime as a complex phenomenon [8] whereas conventional methods
study crime activity based on data information like individual economical sta-
tus, level of education and past crime occurrences [9]. Therefore, information
like spatial patterns from spatio-temporal crime signals has received considerable
attention [10]. Particularly, in Bogotá city (Colombia, South America), theoret-
ical tools from criminology have been adopted in order to gain a better under-
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J. C. Figueroa-Garćıa et al. (Eds.): WEA 2019, CCIS 1052, pp. 179–189, 2019.
https://doi.org/10.1007/978-3-030-31019-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31019-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-31019-6_16


180 F. Piraján et al.

standing of criminal activity. This approach has been useful to direct police
patrolling efforts to zones where criminal activity is highly plausible [11].

There upon environmental criminology perspective, data contributions can
be integrated with data visualization techniques [12] and artificial intelligence
methods [13,14] to study spatial and temporal features [15] altogether to pro-
vide additional statistics related to crime activity. In this work, this particular
phenomenological approach is used to compute spatial-temporal signals that
might reveal useful information about thefts events in Bogotá city. In addition,
strengths and weaknesses of a deep learning architecture for crime prediction
are presented using some statistics to assess model performance in conjunction
with data visualization while keeping a convenient number of parameters.

This paper is organized as follows: Sect. 2 presents our method: data pre-
processing, model architecture, experimental setup, deep learning training strat-
egy and validation scheme. Section 3 presents preliminary results and findings.
Finally, we draw conclusions and comment about recommendations for upcoming
research in Sect. 4.

2 Materials and Methods

2.1 Data Base

The database1 contains reports of mobile phone thefts in Bogota City, Colombia.
It was collected privately, therefore it is not available online. These data cover
a time frame from January 10th, 2012 to May 31st, 2015, which corresponds to
1273 days (176 weeks) characterized by a daily average crime count of 19 thefts.

Formally, the database is composed by two sets: C = {c1, . . . , cL} is the set
of crime2 events and R = {r1, . . . , rM} which is the set of road intersections
(or road nodes). Each crime event is reported as a triplet {Dc

q,X
c
q , Y

c
q }. For an

event cq, with q = 1...L, Dc
q is its date, Xc

q is its horizontal coordinate in the
cartographic system for Bogotá city and Y c

q is its vertical coordinate. In the case
of R, each road node rs, with s = 1...M , is reported as a duplet {Xr

s , Y r
s }, where

Xr
s and Y r

s correspond to the geographic coordinates of the node in the same
cartographic system of crime events.

2.2 Data Preprocessing

Spatio-Temporal Resolution: Spatio-temporal resolution for crime analysis
and visualization is selected according to [16]. A crime mass is the counting of
crime events in a given square areal unit (i.e. box) over a defined time interval.
The signal of crime masses in Bogotá city corresponds to a multifractal process
where information scaling remains constant over different spatial resolutions as
the time scale increases. In fact, the informational self-similarity of this signal
is preserved for a spatial resolution δxy ≥ 500 × 500m2 over a weekly temporal
scale.
1 The database was provided by Fundación Ideas para la Paz.
2 The words theft and crime are used indistinctly throughout the document.
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Fig. 1. Data visualization at a spatial resolution of 500 × 500 m2: (a) aggregate crime
masses for 1273 days, (b) road-node masses.

Data Exploration: Figure 1a presents aggregate daily crime masses for 1237
days computed over 500 × 500m2 boxes. Road-node masses computed with the
same spatial resolution are depicted in Fig. 1b. Regarding theft masses it can
be noticed that most of the historical activity concentrates in very few regions,
which configure strong hotspots. Also note the majority of boxes exhibit little
to no theft events. On the other hand, boxes with significant road-node masses
are frequent across the study area.

Input Volume Generation: Data selection and data representation are very
important criteria to feed models correctly. Thus, the sets C and R are trans-
formed in such a way that can be used to feed in a convolutional neural network.
In fact, data are represented as a real-valued tensor T of order D such that
T ∈ R

A1×···×AD , where Ad corresponds the d-th direction of the input tensor.
Input data are set up as a three dimensional volume, as shown in Fig. 2a.

The input volume is assembled by stacking bi-dimensional maps3. Each map has
dimensions (Δy bins × Δxbins), where Δy bins and Δxbins correspond to the
number of boxes in the abscissa and ordinate directions respectively.

Available data are configured as an input volume T composed of twelve bi-
dimensional maps (depth = 12), as depicted in Fig. 2a and described in Table 1.
More specifically, with one map of crime masses E(k) where k corresponds to
the time index, 8 maps of crime masses taken from the first order Moore neigh-
borhood around mass box ei,j at time k (N1(k), . . . , N8(k)), one map of crime
masses at previous time E(k − 1), one map with aggregate crime masses (i.e.
crime masses history) H and one map with road-node masses RN . Then, the
model architecture is fed by three-dimensional volumes and fetches out a bi-
dimensional crime masses map Ê(k + 1) for every given input T(k), which rep-
resents the model prediction of E(k + 1), as shown in Fig. 2b.

The content of each input channel is inspired based upon dynamic and
static features in urban areas commonly found in the context of environmental
3 Each bi-dimensional map corresponds to a single channel from the input volume T.
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Fig. 2. Organization of training data (a) Input volume composed by 12 channels. (b)
Input to output data processing.

Table 1. Channels used to form Input volume T.

Description Time dependent Description Time invariant

Map (channel) Elements Map (channel) Elements

Crime masses at

time k

E(k) ei,j(k) Crime masses

history

H H =
∑Tend

k=1 E(k)

Moore Neigborhood

at time k

N1(k) ei−1,j−1(k) Road node

masses

RN rni,j

N2(k) ei,j−1(k)

N3(k) ei+1,j−1(k)

N4(k) ei−1,j(k)

N5(k) ei+1,j(k)

N6(k) ei−1,j+1(k)

N7(k) ei,j+1(k)

N8(k) ei+1,j+1(k)

Crime masses at

time k − 1

E(k − 1) ei,j(k − 1)

criminology [12]. Dynamic features are related to crime distribution at the neigh-
borhood level and they correspond to channels E(k), N1(k), N2(k), . . . , N8(k) in
the input volume T. Equally important, the temporal dependence is taken into
account by adding the input channel with the map of crime masses for the imme-
diately previous time E(k−1). On the other hand, static features are those with
almost zero time dependency. In this case, the road-node masses map channel
RN represents the geographical canvas scenario where crime phenomena take
place. In addition, crime masses history H characterizes the past of criminal
activity in the city. It can also be interpreted as the aggregate memory of the
phenomenon that provides spatial information from a coarse temporal scale.
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2.3 Model Architecture

Crime features exploration started with state of the art deep neural net-
work architectures like LeNet, AlexNet, VGGNet moving forward with encoder
decoder deep convolutional neural networks [17]. Then, a systematic iterative
implementation over different architecture configurations led to a convolutional-
deconvolutional architecture with an extra pooling layer on top of it. This archi-
tecture is depicted in Fig. 3a. Here, convolutional layers (in purple) match with
deconvolutional layers (in green) in number and size. The pooling layer (in red)
is plugged in on top of that architecture when predictions are required at dif-
ferent spatial resolutions. In addition, Rectified Linear Units [18] nonlinearities
were interspersed with model’s layers along the convolutional-deconvolutional
architecture.

2.4 Experimental Set-Up

The number of filters f in convolutional layers was chosen to be f = 2p, for
p = 1, 2, . . . 10, with an odd number of neurons per filter. Also, valid zero-
pad and one strided convolutions were applied. In the same fashion, the up-
sampling layers are based on transposed convolutions [19] with the same number
of filters as in convolutional layers. Then, followed by a pooling layer on top of
the architecture with a zero-strided 2 × 2 max-pooling operation.

Experiments were scheduled in a parallel infrastructure with Intel(R)
Xeon(R) CPU’s E31225 @ 3.10 GHz and Nvidia Quadro P1000 GPU’s running
experiments in TensorFlow 1.3.0 [20]. The reason behind this approach was to
take advantage of the fast data flow offered in online grid computing to distribute
tasks that involve the computation of matrix-matrix and matrix-vector opera-
tions with data processing in the margin of big data. Hence, this implementation
simplified the computation graph related to the analytic gradient computation
during the model training iterations.

Fig. 3. Architecture and training: (a) Convolutional (purple) - Deconvolutional (green)
- Pooling (red) architecture. (b) Data flow during training. (Color figure online)
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Operations and data flow during the training process were programmed as a
computational graph (See Fig. 3b). Here the model output is fetched by stream-
ing the input data through the nodes that represent model’s architecture during
the forward pass. Then, the loss function is computed and the analytical gradient
is sent backwards to update model’s trainable neurons. The matrix-matrix and
matrix-vector operations are computed in parallel as indicated by the training
algorithm.

2.5 Training Strategy

An adaptive moment estimation algorithm called Adam [21] was used during the
learning process. It computes individual learning rates for different parameters
from estimates of first and second moments of the gradient. Thus, gradient esti-
mation, bias correction of moments, update of moments and parameters update
were computed as presented in Table 2. In this case, the training algorithm hyper
parameters values were: learning rate α = 1e−3, first gradient moment coeffi-
cient β1 = 0.9, second gradient moment coefficient β2 = 0.999 and avoiding
zero-division coefficient ε = 1e−7.

In regard of used data, weekly input volumes T(k) were generated, where
k = 1...12 for training and k = 13...16 for validation. These weeks correspond
to the last four months of the database. In addition, H was configured as the
aggregation of crime masses of the other 160 weeks.

Training was carried out with a loss function L(Ê(k+1), E(k+1)) selected as
the Mean Square Error, where Ê(k+1) = f(T(k),W ) and W is the weight matrix
of the network. In order to overcome the stochasticity of random initialization, 33
independent runs were scheduled during 500 epochs allowing the model to overfit
the training data. The intuition behind this process consists on picking the best
model, saving its parameters values at every single epoch and then evaluating
its performance at different training steps. Hence, the best model was reserved
for further consideration during the model assessment stage.

Table 2. Learning algorithm updates and parameters

Learning algorithm step Action

Gradient estimation dxt = ∇f(xt)

1st Moment Ft+1 = β1Ft + (1 − β1)dxt

1st Moment Bias Correction F corrected
t+1 =

Ft+1
1−βt

1

2nd Moment St+1 = β2St + (1 − β2)[dxt]
2

2nd Moment Bias Correction Scorrected
t+1 =

St+1
1−βt

2

Parameters update xt+1 = xt − α
F corrected
t+1√

Scorrected
t+1 +ε

Hyperparameters α, β1, β2, ε
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2.6 Deep Learning Architecture for Crime Forecasting

In order to assess the model performance, four statistics were chosen. As per
[22]: “No one measure is universally best for all accuracy assessment objectives,
and different accuracy measures may lead to conflicting conclusions because the
measures do not represent accuracy in the same tray”.

Figure 4 shows a comparison between the model output and actual data. For
a 500 × 500m2 resolution there are 4080 values in these maps with more than
3000 zero boxes (i.e. no relevant values) and just tens of non zeros boxes (i.e.
boxes with crimes or changes in crime counting). Statistics used to assess the
model output have been chosen with the class-imbalanced data set challenge in
mind (Precision, Recall and F1 score) [23,24].

While accuracy, as measured by quantitative errors, is important, it may be
more crucial to accurately forecast the direction of change of crucial variables
[25]. In particular, crime masses directional accuracy can be used in a binary
evaluation fashion. Thus, either increase or decrease of crime predictions were
considered as upward (1 if ei,j(k + 1) > ei,j(k)) or downward (−1 otherwise)
disregarding its quantitative values.

Fig. 4. Comparison between predicted and actual crime masses. Upper row: model
output, lower row: actual data. The model outputs crime masses maps where the
majority of predictions fall into the region surrounding crime hotspots during the four
weeks of validation. Note expected output crime maps are class-imbalanced.
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Fig. 5. Results for the four validation weeks: (a) model accuracy, (b) model directional
accuracy.

3 Results

Accuracy results are presented in Fig. 5 for the four validation weeks. A high level
of accuracy was obtained for two spatial resolutions δxy = 500×500m2 and δxy =
1000 × 1000m2. However, this statistic is not reliable given the data imbalance.
This can be observed through the BR = (Bnz/Bz) ratio, where Bz corresponds
to the number of Zero Crime Boxes and Bnz is the number of Non-zero Crime
boxes. The average BR over the four validation weeks is approximately 80/4080
for the former resolution and 80/924 for the latter. Therefore when the model
reports a mass of zero crimes there is a high probability that its prediction falls
in the zero crime region.

The main interest for crime mass predictions is in regions where crime activ-
ity occurs. Thus, precision and recall statistics averaged over the four validation
weeks were introduced as presented in Table 3. In the case of precision of crime
mass prediction and precision of directional accuracy the model presents better
results at 1000×1000m2 compared with those at 500×500m2. Note that preci-
sion values were very poor in both cases. Implying that the model’s perception
about crime occurrence is not reliable. This problem might be solved including
a loss function that focus in more local performance at the neighborhood level
of crime occurrences during the learning process. Regarding recall of crimes, the
model shows better results for the coarser resolution for all weeks whereas in the
case of recall of tendency of crime occurrences it is for most weeks higher at the
finer resolution, which means that the model is not good when stating that at
certain locations are going to be crimes.

Table 3. Additional results for the four validation weeks in percentage.

Resolution Crime masses Directional accuracy

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

500 × 500m2 12.87 0.07 31.51 3.40 18.23 0.56 9.55 1.64 14.71 3.32 11.57 2.22

1000 × 1000m2 24.30 3.62 36.91 2.70 29.22 3.21 17.91 3.27 17.01 2.07 17.43 2.62
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In addition, F1 score was introduced to consider the trade-off over results
between precision and recall, as well as the database imbalance for model assess-
ment. In this case, the F1 scores reported in Table 3 along with the visual results
(see Fig. 6) between the perception of the model Ê(k + 1) and the ground truth
map E(k + 1) favor to understand that the trained model is hitting a very low
portion of rare crimes developing at multiple locations in the city. It may be
improved by using filters of different shapes. The intuition behind this is that
given the multi-scale nature of the crime masses E(t), the usage of filters of
multiple sizes in a similar fashion to Inception Modules [26] will allow the top
level layers to squeeze out information from each region involving dynamics at
different spatial resolutions as the filters raster across the maps. In other words,
it may be helpful to capture better not only the dynamics at hot spot zones but
also to hit rare crimes that distribute across the urban area.

Results show that evaluating the model output at higher resolutions than
the one it was trained for increases its performance in most statistics. In fact,
the low precision and recall values came out because the model does not predict
exactly the same (X,Y ) coordinates for most of expected crime masses but in
the boxes located around the actual position. Therefore the model prediction

Fig. 6. Left figure depicts an example of the model output (red boxes), expected output
(green boxes) and their intersection (blue boxes). It is shown in upper rigth figures
that even if the model predictions do not match the expected values, their positions
are close to actual crime boxes in a radius εxy at a local neighborhood level. In lower
right figures, it can be noticed that the model identifies crime hotspots zones in the
city. (Color figure online)
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capacity will improve as it will be better to predict true positive values at a
spatial resolution very close to the one it was trained for. This may be achieved
by using the tendency of crimes as expected output during the training stage
instead and batch normalization [27] for cases with a very deep architecture
setup.

On the other hand this model has also some good advantages. Even if it
might not predict the exact (X,Y ) coordinates of the expected crime mass,
actual criminal activity is likely to happen in boxes located in a small radius
(X ±εx, Y ±εy) > (0, 0) around predicted êi,j(k+1) in the neighborhood region
as shown in Fig. 6. Note that the model is able to identify crime hotspots regions.
Similarly, this network architecture allows the designer to gain intuition about
the kernels that might be used to extract features in correlation operations with
the incoming inputs at convolutional and deconvolutional layers. In addition,
this model has a very reduced number of parameters when compared with a
traditional deep convolutional network where the number of parameters is at the
order of millions while the explored architecture has a maximum of 3 × 3 × 25

parameters in the biggest configuration.

4 Conclusions

A proposal of an architecture for urban crime forecasting based on convolutional
- deconvolutional deep neural networks was presented. The architecture allows
to predict crime masses at a resolution of 500×500m2 in a weekly scale. Another
advantage of this architecture is that it emphasizes its predictions on the hot
spot zones, hence it would be convenient for segmenting massive crime regions.

Among the upcoming improvements of the architecture are: increasing the
number of model parameters by layer, going very deep in terms of number of
layers without including fully connected layers, testing additional inputs in the
framework of Risk Terrain Modeling [28]. Moreover, given the multi-scale nature
of the input signal [16], testing with filters of different shapes at each layer may
contribute to capture the signal texture at different resolutions.
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